

Building Java Programs
A Back to Basics Approach

Fifth Edition

Stuart Reges
University of Washington
Marty Stepp
Stanford University

SVP, Courseware Portfolio Management: Marcia Horton

Portfolio Manager: Matt Goldstein

Portfolio Manager Assistant: Meghan Jacoby

VP, Product Marketing: Roxanne McCarley

Director of Field Marketing: Tim Galligan

Product Marketing Manager: Yvonne Vannatta

Field Marketing Manager: Demetrius Hall

Marketing Assistant: Jon Bryant

Managing Content Producer: Scott Disanno

VP, Production & Digital Studio: Ruth Berry

Project Manager: Lakeside Editorial Services L.L.C.

Senior Specialist, Program Planning and Support: Deidra
Headlee

Cover Design: Jerilyn Bockorick

R&P Manager: Ben Ferrini

R&P Project Manager: Lav Kush Sharma/Integra Publishing
Services, Inc.

Cover Art: Marcell Faber/Shutterstock

Full-Service Project Management: Integra Software Services Pvt.
Ltd.

Composition: Integra Software Services Pvt. Ltd.

Printer/Binder: LSC Communications

Cover Printer: Phoenix Color

Text Font: Monotype

The authors and publisher of this book have used their best efforts in
preparing this book. These efforts include the development,
research, and testing of the theories and programs to determine their
effectiveness. The authors and publisher make no warranty of any
kind, expressed or implied, with regard to these programs or to the
documentation contained in this book. The authors and publisher
shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

Copyright © 2020, 2017, 2014 and 2011 Pearson Education, Inc. or
its affiliates. All rights reserved. Printed in the United States of

America. This publication is protected by copyright, and permission
should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying,
recording, or otherwise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions department, please visit
www.pearsonhighed.com/permissions/.

PEARSON, and MyLab Programming are exclusive trademarks in
the U.S. and/or other countries owned by Pearson Education, Inc. or
its affiliates.

Unless otherwise indicated herein, any third-party trademarks that
may appear in this work are the property of their respective owners
and any references to third-party trademarks, logos or other trade
dress are for demonstrative or descriptive purposes only. Such
references are not intended to imply any sponsorship, endorsement,
authorization, or promotion of Pearson's products by the owners of
such marks, or any relationship between the owner and Pearson
Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data

Names: Reges, Stuart, author. | Stepp, Martin, author.

Title: Building Java programs: a back to basics approach / Stuart
Reges, University of Washington, Marty Stepp, Stanford University.

Description: Fifth edition. | Hoboken, New Jersey: Pearson, 2019. |
Includes index.

Identifiers: LCCN 2018050748 | ISBN 9780135471944 | ISBN
013547194X

Subjects: LCSH: Java (Computer program language)

Classification: LCC QA76.73.J38 R447 2019 | DDC 005.13/3—dc23
LC record available at https://lccn.loc.gov/2018050748

1 19

ISBN 10: 0- 13-547194- X

ISBN 13: 978-0-13-547194- 4

Preface
The newly revised fifth edition of our Building Java Programs
textbook is designed for use in a two-course introduction to computer
science. We have class-tested it with thousands of undergraduates,
most of whom were not computer science majors, in our CS1-CS2
sequence at the University of Washington. These courses are
experiencing record enrollments, and other schools that have
adopted our textbook report that students are succeeding with our
approach.

Introductory computer science courses are often seen as “killer”
courses with high failure rates. But as Douglas Adams says in The
Hitchhiker’s Guide to the Galaxy, “Don’t panic.” Students can master
this material if they can learn it gradually. Our textbook uses a
layered approach to introduce new syntax and concepts over
multiple chapters.

Our textbook uses an “objects later” approach where programming
fundamentals and procedural decomposition are taught before diving
into object-oriented programming. We have championed this
approach, which we sometimes call “back to basics,” and have seen
through years of experience that a broad range of scientists,
engineers, and others can learn how to program in a procedural
manner. Once we have built a solid foundation of procedural
techniques, we turn to object-oriented programming. By the end of

the course, students will have learned about both styles of
programming.

The Java language is always evolving, and we have made it a point
of focus in recent editions on newer features that have been added
in Java 8 through 10. In the fourth edition we added a new Chapter
19 on Java’s functional programming features introduced in Java
8. In this edition we integrate the JShell tool introduced in Java 9.

New to This Edition

The following are the major changes for our fifth edition:

JShell integration. Java 9 introduced JShell, a utility with an
interactive read-eval-print loop (REPL) that makes it easy to type
Java expressions and immediately see their results. We find
JShell to be a valuable learning tool that allows students to
explore Java concepts without the overhead of creating a
complete program. We introduce JShell in Chapter 2 and
integrate JShell examples in each chapter throughout the text.
Improved Chapter 2 loop coverage. We have added new
sections and figures in Chapter 2 to help students understand
for loops and create tables to find patterns in nested loops. This
new content is based on our interactions with our own students
as they solve programming problems with loops early in our
courses.

Revamped case studies, examples, and other content. We
have rewritten or revised sections of various chapters based on
student and instructor feedback. We have also rewritten the
Chapter 10 (ArrayLists) case study with a new program
focusing on elections and ranked choice voting.
Updated collection syntax and idioms. Recent releases of
Java have introduced new syntax and features related to
collections, such as the <> “diamond operator;” collection
interfaces such as Lists , Sets , and Maps ; and new collection
methods. We have updated our collection Chapters 10 and
11 to discuss these new features, and we use the diamond
operator syntax with collections in the rest of the text.
Expanded self-checks and programming exercises. With
each new edition we add new programming exercises to the end
of each chapter. There are roughly fifty total problems and
exercises per chapter, all of which have been class-tested with
real students and have solutions provided for instructors on our
web site.
New programming projects. Some chapters have received new
programming projects, such as the Chapter 10 ranked choice
ballot project.

Features from Prior Editions

The following features have been retained from previous editions:

Focus on problem solving. Many textbooks focus on language
details when they introduce new constructs. We focus instead on
problem solving. What new problems can be solved with each
construct? What pitfalls are novices likely to encounter along the
way? What are the most common ways to use a new construct?
Emphasis on algorithmic thinking. Our procedural approach
allows us to emphasize algorithmic problem solving: breaking a
large problem into smaller problems, using pseudocode to refine
an algorithm, and grappling with the challenge of expressing a
large program algorithmically.
Layered approach. Programming in Java involves many
concepts that are difficult to learn all at once. Teaching Java to a
novice is like trying to build a house of cards. Each new card has
to be placed carefully. If the process is rushed and you try to
place too many cards at once, the entire structure collapses. We
teach new concepts gradually, layer by layer, allowing students to
expand their understanding at a manageable pace.
Case studies. We end most chapters with a significant case
study that shows students how to develop a complex program in
stages and how to test it as it is being developed. This structure
allows us to demonstrate each new programming construct in a
rich context that can’t be achieved with short code examples.
Several of the case studies were expanded and improved in the
second edition.
Utility as a CS1+CS2 textbook. In recent editions, we added
chapters that extend the coverage of the book to cover all of the
topics from our second course in computer science, making the
book usable for a two-course sequence. Chapters 12 –19

explore recursion, searching and sorting, stacks and queues,
collection implementation, linked lists, binary trees, hash tables,
heaps, and more. Chapter 12 also received a section on
recursive backtracking, a powerful technique for exploring a set
of possibilities for solving problems such as 8 Queens and
Sudoku.

This year also marks the release of our new Building Python
Programs textbook, which brings our “back to basics” approach to
the Python language. In recent years Python has seen a surge in
popularity in introductory computer science classrooms. We have
found that our materials and approach work as well in Python as
they do in Java, and we are pleased to offer the choice of two
languages to instructors and students.

Layers and Dependencies

Many introductory computer science books are language-oriented,
but the early chapters of our book are layered. For example, Java
has many control structures (including for-loops, while-loops, and
if/else-statements), and many books include all of these control
structures in a single chapter. While that might make sense to
someone who already knows how to program, it can be
overwhelming for a novice who is learning how to program. We find
that it is much more effective to spread these control structures into
different chapters so that students learn one structure at a time
rather than trying to learn them all at once.

The following table shows how the layered approach works in the
first six chapters:

Chapters 1 –6 are designed to be worked through in order, with
greater flexibility of study then beginning in Chapter 7 . Chapter
6 may be skipped, although the case study in Chapter 7
involves reading from a file, a topic that is covered in Chapter 6 .

The following is a dependency chart for the book:

Supplements

http://www.buildingjavaprograms.com/

Answers to all self-check problems appear on our web site and are
accessible to anyone. Our web site has the following additional
resources for students:

Online-only supplemental chapters, such as a chapter on
creating Graphical User Interfaces
Source code and data files for all case studies and other
complete program examples
The DrawingPanel class used in the optional graphics
Supplement 3G

http://www.buildingjavaprograms.com/

Our web site has the following additional resources for teachers:

PowerPoint slides suitable for lectures
Solutions to exercises and programming projects, along with
homework specification documents for many projects
Sample exams and solution keys
Additional lab exercises and programming exercises with
solution keys
Closed lab creation tools to produce lab handouts with the
instructor's choice of problems integrated with the textbook

To access instructor resources, contact us at
authors@buildingjavaprograms.com. The same materials are
also available at http://www.pearsonhighered.com/cs-resources.
To ask other questions related to resources, contact your Pearson
sales representative.

MyLab Programming

MyLab Programming is an online practice and assessment tool that
helps students fully grasp the logic, semantics, and syntax of
programming. Through practice exercises and immediate,
personalized feedback, MyLab Programming improves the
programming competence of beginning students who often struggle
with basic concepts and paradigms of popular high-level
programming languages. A self-study and homework tool, the MyLab
Programming course consists of hundreds of small practice

mailto:authors@buildingjavaprograms.com
http://www.pearsonhighered.com/cs-resources

exercises organized around the structure of this textbook. For
students, the system automatically detects errors in the logic and
syntax of code submissions and offers targeted hints that enable
students to figure out what went wrong, and why. For instructors, a
comprehensive grade book tracks correct and incorrect answers and
stores the code inputted by students for review.

For a full demonstration, to see feedback from instructors and
students, or to adopt MyLab Programming for your course, visit the
following web site: www.pearson.com/mylab/programming

VideoNotes

We have recorded a series of instructional videos to accompany the
textbook. They are available at the following web site:
http://www.pearsonhighered.com/cs-resources

Roughly 3–4 videos are posted for each chapter. An icon in the
margin of the page indicates when a VideoNote is available for a

http://www.pearson.com/mylab/programming

given topic. In each video, we spend 5–15 minutes walking through a
particular concept or problem, talking about the challenges and
methods necessary to solve it. These videos make a good
supplement to the instruction given in lecture classes and in the
textbook. Your new copy of the textbook has an access code that will
allow you to view the videos.

Acknowledgments

First, we would like to thank the many colleagues, students, and
teaching assistants who have used and commented on early drafts
of this text. We could not have written this book without their input.
Special thanks go to Hélène Martin, who pored over early versions of
our first edition chapters to find errors and to identify rough patches
that needed work. We would also like to thank instructor Benson
Limketkai for spending many hours performing a technical proofread
of the second edition.

Second, we would like to thank the talented pool of reviewers who
guided us in the process of creating this textbook:

Greg Anderson, Weber State University
Delroy A. Brinkerhoff, Weber State University
Ed Brunjes, Miramar Community College
Tom Capaul, Eastern Washington University
Tom Cortina, Carnegie Mellon University
Charles Dierbach, Towson University

H.E. Dunsmore, Purdue University
Michael Eckmann, Skidmore College
Mary Anne Egan, Siena College
Leonard J. Garrett, Temple University
Ahmad Ghafarian, North Georgia College & State University
Raj Gill, Anne Arundel Community College
Michael Hostetler, Park University
David Hovemeyer, York College of Pennsylvania
Chenglie Hu, Carroll College
Philip Isenhour, Virginia Polytechnic Institute
Andree Jacobson, University of New Mexico
David C. Kamper, Sr., Northeastern Illinois University
Simon G.M. Koo, University of San Diego
Evan Korth, New York University
Joan Krone, Denison University
John H.E.F. Lasseter, Fairfield University
Eric Matson, Wright State University
Kathryn S. McKinley, University of Texas, Austin
Jerry Mead, Bucknell University
George Medelinskas, Northern Essex Community College
John Neitzke, Truman State University
Dale E. Parson, Kutztown University
Richard E. Pattis, Carnegie Mellon University
Frederick Pratter, Eastern Oregon University
Roger Priebe, University of Texas, Austin
Dehu Qi, Lamar University
John Rager, Amherst College
Amala V.S. Rajan, Middlesex University

Craig Reinhart, California Lutheran University
Mike Scott, University of Texas, Austin
Alexa Sharp, Oberlin College
Tom Stokke, University of North Dakota
Leigh Ann Sudol, Fox Lane High School
Ronald F. Taylor, Wright State University
Andy Ray Terrel, University of Chicago
Scott Thede, DePauw University
Megan Thomas, California State University, Stanislaus
Dwight Tuinstra, SUNY Potsdam
Jeannie Turner, Sayre School
Tammy VanDeGrift, University of Portland
Thomas John VanDrunen, Wheaton College
Neal R. Wagner, University of Texas, San Antonio
Jiangping Wang, Webster University
Yang Wang, Missouri State University
Stephen Weiss, University of North Carolina at Chapel Hill
Laurie Werner, Miami University
Dianna Xu, Bryn Mawr College
Carol Zander, University of Washington, Bothell

Finally, we would like to thank the great staff at Pearson who helped
produce the book. Michelle Brown, Jeff Holcomb, Maurene Goo,
Patty Mahtani, Nancy Kotary, and Kathleen Kenny did great work
preparing the first edition. Our copy editors and the staff of Aptara
Corp, including Heather Sisan, Brian Baker, Brendan Short, and
Rachel Head, caught many errors and improved the quality of the
writing. Marilyn Lloyd and Chelsea Bell served well as project

manager and editorial assistant respectively on prior editions. For
their help with the third edition we would like to thank Kayla Smith-
Tarbox, Production Project Manager, and Jenah Blitz-Stoehr,
Computer Science Editorial Assistant. Mohinder Singh and the staff
at Aptara, Inc., were also very helpful in the final production of the
third edition. For their great work on production of the fourth and fifth
editions, we thank Louise Capulli and the staff of Lakeside Editorial
Services, along with Carole Snyder at Pearson. Special thanks go to
our lead editor at Pearson, Matt Goldstein, who has believed in the
concept of our book from day one. We couldn’t have finished this job
without all of their hard work and support.

Stuart Reges
Marty Stepp

Location of Video Notes in the
Text
http://www.pearson.com/cs-resources

Chapter 1 Pages 31, 40

Chapter 2 Pages 65, 76, 92, 100, 115

Chapter 3 Pages 146, 161, 166, 173, 178

Chapter 3G Pages 202, 220

Chapter 4 Pages 248, 256, 283

Chapter 5 Pages 329, 333, 337, 339, 362

Chapter 6 Pages 401, 413, 427

Chapter 7 Pages 464, 470, 488, 510

Chapter 8 Pages 540, 552, 560, 573

Chapter 9 Pages 602, 615, 631

Chapter 10 Pages 679, 686, 694

Chapter 11 Pages 723, 737, 745

Chapter 12 Pages 773, 781, 818

Chapter 13 Pages 842, 845, 852

Chapter 14 Pages 897, 904

Chapter 15 Pages 939, 945, 949

Chapter 16 Pages 982, 989, 1002

Chapter 17 Pages 1048, 1049, 1059

Chapter 18 Pages 1085, 1104

Brief Contents
Chapter 1 Introduction to Java Programming 1

Chapter 2 Primitive Data and Definite Loops 63

Chapter 3 Introduction to Parameters and Objects 142

Supplement 3G Graphics (Optional) 201

Chapter 4 Conditional Execution 243

Chapter 5 Program Logic and Indefinite Loops 320

Chapter 6 File Processing 392

Chapter 7 Arrays 447

Chapter 8 Classes 535

Chapter 9 Inheritance and Interfaces 592

Chapter 10 ArrayLists 667

Chapter 11 Java Collections Framework 722

Chapter 12 Recursion 763

Chapter 13 Searching and Sorting 840

Chapter 14 Stacks and Queues 892

Chapter 15 Implementing a Collection Class 931

Chapter 16 Linked Lists 975

Chapter 17 Binary Trees 1028

Chapter 18 Advanced Data Structures 1083

Chapter 19 Functional Programming with Java 8 1119

Appendix A Java Summary 1161

Appendix B The Java API Specification and Javadoc Comments
1176

Appendix C Additional Java Syntax 1182

Index 1191

Contents
Chapter 1 Introduction to Java Programming 1

1.1 Basic Computing Concepts 2
Why Programming? 2

Hardware and Software 3

The Digital Realm 4

The Process of Programming 6

Why Java? 7

The Java Programming Environment 8

1.2 And Now—Java 10
String Literals (Strings) 14

System.out.println 15

Escape Sequences 15

print versus println 17

Identifiers and Keywords 18

A Complex Example: DrawFigures1 20

Comments and Readability 21

1.3 Program Errors 24
Syntax Errors 24

Logic Errors (Bugs) 28

1.4 Procedural Decomposition 28
Static Methods 31

Flow of Control 34

Methods That Call Other Methods 36

An Example Runtime Error 39

1.5 Case Study: DrawFigures 40
Structured Version 41

Final Version without Redundancy 43

Analysis of Flow of Execution 44

Chapter 2 Primitive Data and Definite Loops 63
2.1 Basic Data Concepts 64

Primitive Types 64

Expressions 65

JShell 67

Literals 68

Arithmetic Operators 69

Precedence 72

Mixing Types and Casting 74

2.2 Variables 76
Assignment/Declaration Variations 81

String Concatenation 84

Increment/Decrement Operators 87

Variables and Mixing Types 90

2.3 The for Loop 92
Tracing for Loops 94

for Loop Patterns 98

Nested for Loops 100

2.4 Managing Complexity 103
Scope 103

Pseudocode 108

The Table Technique 110

Class Constants 113

2.5 Case Study: Hourglass Figure 115
Problem Decomposition and Pseudocode 115

Initial Structured Version 117

Adding a Class Constant 119

Further Variations 122

Chapter 3 Introduction to Parameters and Objects 142
3.1 Parameters 143

The Mechanics of Parameters 146

Limitations of Parameters 150

Multiple Parameters 153

Parameters versus Constants 156

Overloading of Methods 156

3.2 Methods That Return Values 157
The Math Class 158

Defining Methods That Return Values 161

3.3 Using Objects 165
String Objects 166

Interactive Programs and Scanner Objects 173

Sample Interactive Program 176

3.4 Case Study: Projectile Trajectory 178
Unstructured Solution 182

Structured Solution 184

Supplement 3G Graphics (Optional) 201

3G.1 Introduction to Graphics 202
DrawingPanel 202

Drawing Lines and Shapes 203

Colors 208

Drawing with Loops 211

Text and Fonts 215

Images 218

3G.2 Procedural Decomposition with Graphics 220
A Larger Example: DrawDiamonds 220

3G.3 Case Study: Pyramids 224
Unstructured Partial Solution 224

Generalizing the Drawing of Pyramids 226

Complete Structured Solution 228

Chapter 4 Conditional Execution 243
4.1 if/else Statements 244

Relational Operators 246

Nested if/else Statements 248

Object Equality 255

Factoring if/else Statements 256

Testing Multiple Conditions 258

4.2 Cumulative Algorithms 259
Cumulative Sum 259

Min/Max Loops 261

Cumulative Sum with if 265

Roundoff Errors 267

4.3 Text Processing 270
The char Type 270

char versus int 271

Cumulative Text Algorithms 272

System.out.printf 274

4.4 Methods with Conditional Execution 279
Preconditions and Postconditions 279

Throwing Exceptions 279

Revisiting Return Values 283

Reasoning about Paths 288

4.5 Case Study: Body Mass Index 290
One-Person Unstructured Solution 291

Two-Person Unstructured Solution 294

Two-Person Structured Solution 296

Procedural Design Heuristics 300

Chapter 5 Program Logic and Indefinite Loops 320
5.1 The while Loop 321

A Loop to Find the Smallest Divisor 322

Random Numbers 325

Simulations 329

do/while Loop 331

5.2 Fencepost Algorithms 333
Fencepost with if 334

Sentinel Loops 337

5.3 The boolean Type 339
Logical Operators 340

Short-Circuited Evaluation 343

boolean Variables and Flags 348

Boolean Zen 350

Negating Boolean Expressions 353

5.4 User Errors 354
Scanner Lookahead 354

Handling User Errors 356

5.5 Assertions and Program Logic 358
Reasoning about Assertions 360

A Detailed Assertions Example 362

5.6 Case Study: NumberGuess 366
Initial Version without Hinting 366

Randomized Version with Hinting 369

Final Robust Version 372

Chapter 6 File Processing 392
6.1 File-Reading Basics 393

Data, Data Everywhere 393

Files and File Objects 393

Reading a File with a Scanner 396

6.2 Details of Token-Based Processing 401
Structure of Files and Consuming Input 403

Scanner Parameters 407

Paths and Directories 409

A More Complex Input File 412

6.3 Line-Based Processing 413

String Scanners and Line/Token Combinations 415

6.4 Advanced File Processing 420
Output Files with PrintStream 420

Guaranteeing That Files Can Be Read 424

6.5 Case Study: Zip Code Lookup 427

Chapter 7 Arrays 447
7.1 Array Basics 448

Constructing and Traversing an Array 448

Accessing an Array 452

Initializing Arrays 455

A Complete Array Program 456

Random Access 461

Arrays and Methods 464

The For-Each Loop 467

The Arrays Class 468

7.2 Array-Traversal Algorithms 470
Printing an Array 471

Searching and Replacing 473

Testing for Equality 475

Reversing an Array 477

String Traversal Algorithms 481

Functional Approach 482

7.3 Reference Semantics 484
Multiple Objects 486

7.4 Advanced Array Techniques 488
Shifting Values in an Array 488

Arrays of Objects 493

Command-Line Arguments 494

Nested Loop Algorithms 495

7.5 Multidimensional Arrays 497
Rectangular Two-Dimensional Arrays 497

Jagged Arrays 499

7.6 Arrays of Pixels 504

7.7 Case Study: Benford’s Law 509
Tallying Values 510

Completing the Program 514

Chapter 8 Classes 535
8.1 Object-Oriented Programming 536

Classes and Objects 537

Point Objects 539

8.2 Object State and Behavior 540
Object State: Fields 541

Object Behavior: Methods 543

The Implicit Parameter 546

Mutators and Accessors 548

The toString Method 550

8.3 Object Initialization: Constructors 552
The Keyword this 557

Multiple Constructors 559

8.4 Encapsulation 560
Private Fields 561

Class Invariants 567

Changing Internal Implementations 571

8.5 Case Study: Designing a Stock Class 573
Object-Oriented Design Heuristics 574

Stock Fields and Method Headers 576

Stock Method and Constructor Implementation 578

Chapter 9 Inheritance and Interfaces 592
9.1 Inheritance Basics 593

Nonprogramming Hierarchies 594

Extending a Class 596

Overriding Methods 600

9.2 Interacting with the Superclass 602
Calling Overridden Methods 602

Accessing Inherited Fields 603

Calling a Superclass’s Constructor 605

DividendStock Behavior 607

The Object Class 609

The equals Method 610

The instanceof Keyword 613

9.3 Polymorphism 615
Polymorphism Mechanics 618

Interpreting Inheritance Code 620

Interpreting Complex Calls 622

9.4 Inheritance and Design 625
A Misuse of Inheritance 625

Is-a Versus Has-a Relationships 628

Graphics2D 629

9.5 Interfaces 631
An Interface for Shapes 632

Implementing an Interface 634

Benefits of Interfaces 637

9.6 Case Study: Financial Class Hierarchy 639
Designing the Classes 640

Redundant Implementation 644

Abstract Classes 647

Chapter 10 ArrayLists 667
10.1 ArrayLists 668

Basic ArrayList Operations 669

ArrayList Searching Methods 674

A Complete ArrayList Program 677

Adding to and Removing from an ArrayList 679

Initializing an ArrayList 683

Using the For-Each Loop with ArrayLists 684

Wrapper Classes 686

10.2 The Comparable Interface 689
Natural Ordering and compareTo 691

Implementing the Comparable Interface 694

10.3 Case Study: Ranked Choice Voting 701
Ballot Class 702

Counting Votes 705

Multiple Rounds 709

Chapter 11 Java Collections Framework 722
11.1 Lists 723

Collections 723

LinkedList versus ArrayList 724

Iterators 727

Abstract Data Types (ADTs) 731

LinkedList Case Study: Sieve 734

11.2 Sets 737
Set Concepts 738

TreeSet versus HashSet 740

Set Operations 741

Set Case Study: Lottery 743

11.3 Maps 745
Basic Map Operations 746

Map Views (keySet and values) 748

TreeMap versus HashMap 749

Map Case Study: WordCount 750

Collection Overview 753

Chapter 12 Recursion 763
12.1 Thinking Recursively 764

A Nonprogramming Example 764

An Iterative Solution Converted to Recursion 767

Structure of Recursive Solutions 769

12.2 A Better Example of Recursion 771
Mechanics of Recursion 773

12.3 Recursive Functions and Data 781
Integer Exponentiation 781

Greatest Common Divisor 784

Directory Crawler 790

Helper Methods 794

12.4 Recursive Graphics 797

12.5 Recursive Backtracking 801
A Simple Example: Traveling North/East 802

8 Queens Puzzle 807

Solving Sudoku Puzzles 814

12.6 Case Study: Prefix Evaluator 818
Infix, Prefix, and Postfix Notation 818

Evaluating Prefix Expressions 819

Complete Program 822

Chapter 13 Searching and Sorting 840
13.1 Searching and Sorting in the Java Class Libraries 841

Binary Search 842

Sorting 845

Shuffling 846

Custom Ordering with Comparators 848

13.2 Program Complexity 852
Empirical Analysis 855

Complexity Classes 858

13.3 Implementing Searching and Sorting Algorithms 861
Sequential Search 861

Binary Search 862

Recursive Binary Search 865

Searching Objects 868

Selection Sort 869

13.4 Case Study: Implementing Merge Sort 873
Splitting and Merging Arrays 873

Recursive Merge Sort 876

Complete Program 879

Chapter 14 Stacks and Queues 892
14.1 Stack/Queue Basics 893

Stack Concepts 893

Queue Concepts 896

14.2 Common Stack/Queue Operations 897
Transferring between Stacks and Queues 899

Sum of a Queue 900

Sum of a Stack 901

14.3 Complex Stack/Queue Operations 904
Removing Values from a Queue 904

Comparing Two Stacks for Similarity 906

14.4 Case Study: Expression Evaluator 908

Splitting into Tokens 909

The Evaluator 914

Chapter 15 Implementing a Collection Class 931
15.1 Simple ArrayIntList 932

Adding and Printing 932

Thinking about Encapsulation 938

Dealing with the Middle of the List 939

Another Constructor and a Constant 944

Preconditions and Postconditions 945

15.2 A More Complete ArrayIntList 949
Throwing Exceptions 949

Convenience Methods 952

15.3 Advanced Features 955
Resizing When Necessary 955

Adding an Iterator 957

15.4 ArrayList<E> 963

Chapter 16 Linked Lists 975
16.1 Working with Nodes 976

Constructing a List 977

List Basics 979

Manipulating Nodes 982

Traversing a List 985

16.2 A Linked List Class 989
Simple LinkedIntList 989

Appending add 991

The Middle of the List 995

16.3 A Complex List Operation 1002
Inchworm Approach 1007

16.4 An IntList Interface 1008

16.5 LinkedList<E> 1011
Linked List Variations 1012

Linked List Iterators 1015

Other Code Details 1017

Chapter 17 Binary Trees 1028
17.1 Binary Tree Basics 1029

Node and Tree Classes 1032

17.2 Tree Traversals 1033
Constructing and Viewing a Tree 1039

17.3 Common Tree Operations 1048
Sum of a Tree 1048

Counting Levels 1049

Counting Leaves 1051

17.4 Binary Search Trees 1052
The Binary Search Tree Property 1053

Building a Binary Search Tree 1055

The Pattern x = change(x) 1059

Searching the Tree 1062

Binary Search Tree Complexity 1066

17.5 SearchTree<E> 1067

Chapter 18 Advanced Data Structures 1083
18.1 Hashing 1084

Array Set Implementations 1084

Hash Functions and Hash Tables 1085

Collisions 1087

Rehashing 1092

Hashing Non-Integer Data 1095

Hash Map Implementation 1098

18.2 Priority Queues and Heaps 1099
Priority Queues 1099

Introduction to Heaps 1101

Removing from a Heap 1103

Adding to a Heap 1104

Array Heap Implementation 1106

Heap Sort 1110

Chapter 19 Functional Programming with Java 8 1119
19.1 Effect-Free Programming 1120

19.2 First-Class Functions 1123
Lambda Expressions 1126

19.3 Streams 1129
Basic Idea 1129

Using Map 1131

Using Filter 1132

Using Reduce 1134

Optional Results 1135

19.4 Function Closures 1136

19.5 Higher-Order Operations on Collections 1139
Working with Arrays 1140

Working with Lists 1141

Working with Files 1145

19.6 Case Study: Perfect Numbers 1146
Computing Sums 1147

Incorporating Square Root 1150

Just Five and Leveraging Concurrency 1153

Appendix A Java Summary 1161

Appendix B The Java API Specification and Javadoc Comments
1176

Appendix C Additional Java Syntax 1182

Index 1191

Chapter 1 Introduction to Java
Programming

1.1 Basic Computing Concepts
• Why Programming?

• Hardware and Software

• The Digital Realm

• The Process of Programming

• Why Java?

• The Java Programming Environment

1.2 And Now—Java
• String Literals (Strings)

• System.out.println

• Escape Sequences

• print versus println

• Identifiers and Keywords

• A Complex Example: DrawFigures1

• Comments and Readability

1.3 Program Errors
• Syntax Errors

• Logic Errors (Bugs)

1.4 Procedural Decomposition
• Static Methods

• Flow of Control

• Methods That Call Other Methods

• An Example Runtime Error

1.5 Case Study: DrawFigures
• Structured Version

• Final Version without Redundancy

• Analysis of Flow of Execution

Introduction
This chapter begins with a review of some basic
terminology about computers and computer
programming. Many of these concepts will come

up in later chapters, so it will be useful to review
them before we start delving into the details of
how to program in Java.

We will begin our exploration of Java by looking
at simple programs that produce output. This
discussion will allow us to explore many
elements that are common to all Java programs,
while working with programs that are fairly
simple in structure.

After we have reviewed the basic elements of
Java programs, we will explore the technique of
procedural decomposition by learning how to
break up a Java program into several methods.
Using this technique, we can break up complex
tasks into smaller subtasks that are easier to
manage and we can avoid redundancy in our
program solutions.

1.1 Basic Computing Concepts
Computers are pervasive in our daily lives, and, thanks to the
Internet, they give us access to nearly limitless information. Some of
this information is essential news, like the headlines on your favorite
news web site. Computers let us share photos with our families and
map directions to the nearest pizza place for dinner.

Lots of real-world problems are being solved by computers, some of
which don’t much resemble the one on your desk or lap. Computers
allow us to sequence the human genome and search for DNA
patterns within it. Computers in recently manufactured cars monitor
each vehicle’s status and motion, and computers are helping some
cars to drive themselves. Digital music players and mobile devices
such as Apple’s iPhone actually have computers inside their small
casings. Even the Roomba vacuum-cleaning robot houses a
computer with complex instructions about how to dodge furniture
while cleaning your floors.

But what makes a computer a computer? Is a calculator a computer?
Is a human being with a paper and pencil a computer? The next
several sections attempt to address this question while introducing
some basic terminology that will help prepare you to study
programming.

Why Programming?

At most universities, the first course in computer science is a
programming course. Many computer scientists are bothered by this
because it leaves people with the impression that computer science
is programming. While it is true that many trained computer
scientists spend time programming, there is a lot more to the
discipline. So why do we study programming first?

A Stanford computer scientist named Don Knuth answers this
question by saying that the common thread for most computer
scientists is that we all in some way work with algorithms.

Algorithm
A step-by-step description of how to accomplish a task.

Knuth is an expert in algorithms, so he is naturally biased toward
thinking of them as the center of computer science. Still, he claims
that what is most important is not the algorithms themselves, but
rather the thought process that computer scientists employ to
develop them. According to Knuth,

It has often been said that a person does not really understand something until after

teaching it to someone else. Actually a person does not really understand something

until after teaching it to a computer, i.e., expressing it as an algorithm.

1 Knuth, Don. Selected Papers on Computer Science. Stanford, CA: Center for the
Study of Language and Information, 1996.

Knuth is describing a thought process that is common to most of
computer science, which he refers to as algorithmic thinking. We
study programming not because it is the most important aspect of
computer science, but because it is the best way to explain the
approach that computer scientists take to solving problems.

The concept of algorithms is helpful in understanding what a
computer is and what computer science is all about. A major
dictionary defines the word “computer” as “one that computes.”
Using that definition, all sorts of devices qualify as computers,
including calculators, GPS navigation systems, and children’s toys
like the Furby. Prior to the invention of electronic computers, it was
common to refer to humans as computers. The nineteenth-century
mathematician Charles Peirce, for example, was originally hired to
work for the U.S. government as an “Assistant Computer” because
his job involved performing mathematical computations.

In a broad sense, then, the word “computer” can be applied to many
devices. But when computer scientists refer to a computer, we are
usually thinking of a universal computation device that can be
programmed to execute any algorithm. Computer science, then, is

1

the study of computational devices and the study of computation
itself, including algorithms.

Algorithms are expressed as computer programs, and that is what
this book is all about. But before we look at how to program, it will be
useful to review some basic concepts about computers.

Hardware and Software

A computer is a machine that manipulates data and executes lists of
instructions known as programs.

Program
A list of instructions to be carried out by a computer.

One key feature that differentiates a computer from a simpler
machine like a calculator is its versatility. The same computer can
perform many different tasks (playing games, computing income
taxes, connecting to other computers around the world), depending
on what program it is running at a given moment. A computer can
run not only the programs that exist on it currently, but also new
programs that haven’t even been written yet.

The physical components that make up a computer are collectively
called hardware. One of the most important pieces of hardware is
the central processing unit, or CPU. The CPU is the “brain” of the
computer: It is what executes the instructions. Also important is the
computer’s memory (often called random access memory, or RAM,
because the computer can access any part of that memory at any
time). The computer uses its memory to store programs that are
being executed, along with their data. RAM is limited in size and
does not retain its contents when the computer is turned off.
Therefore, computers generally also use a hard disk as a larger
permanent storage area.

Computer programs are collectively called software. The primary
piece of software running on a computer is its operating system. An
operating system provides an environment in which many programs
may be run at the same time; it also provides a bridge between
those programs, the hardware, and the user (the person using the
computer). The programs that run inside the operating system are
often called applications.

When the user selects a program for the operating system to run
(e.g., by double-clicking the program’s icon on the desktop), several
things happen: The instructions for that program are loaded into the
computer’s memory from the hard disk, the operating system
allocates memory for that program to use, and the instructions to run
the program are fed from memory to the CPU and executed
sequentially.

The Digital Realm

In the last section, we saw that a computer is a general-purpose
device that can be programmed. You will often hear people refer to
modern computers as digital computers because of the way they
operate.

Digital
Based on numbers that increase in discrete
increments, such as the integers 0, 1, 2, 3, etc.

Because computers are digital, everything that is stored on a
computer is stored as a sequence of integers. This includes every
program and every piece of data. An MP3 file, for example, is simply
a long sequence of integers that stores audio information. Today
we’re used to digital music, digital pictures, and digital movies, but in
the 1940s, when the first computers were built, the idea of storing
complex data in integer form was fairly unusual.

Not only are computers digital, storing all information as integers, but
they are also binary, which means they store integers as binary
numbers.

Binary Number
A number composed of just 0s and 1s, also known as
a base-2 number.

Humans generally work with decimal or base-10 numbers, which
match our physiology (10 fingers and 10 toes). However, when we
were designing the first computers, we wanted systems that would
be easy to create and very reliable. It turned out to be simpler to
build these systems on top of binary phenomena (e.g., a circuit being
open or closed) rather than having 10 different states that would
have to be distinguished from one another (e.g., 10 different voltage
levels).

From a mathematical point of view, you can store things just as
easily using binary numbers as you can using base-10 numbers. But
since it is easier to construct a physical device that uses binary
numbers, that’s what computers use.

This does mean, however, that people who aren’t used to computers
find their conventions unfamiliar. As a result, it is worth spending a
little time reviewing how binary numbers work. To count with binary
numbers, as with base-10 numbers, you start with 0 and count up,
but you run out of digits much faster. So, counting in binary, you say

0

1

And already you’ve run out of digits. This is like reaching 9 when you
count in base-10. After you run out of digits, you carry over to the
next digit. So, the next two binary numbers are

10

11

And again, you’ve run out of digits. This is like reaching 99 in base-
10. Again, you carry over to the next digit to form the three-digit
number 100. In binary, whenever you see a series of ones, such as
111111, you know you’re just one away from the digits all flipping to
0s with a 1 added in front, the same way that, in base-10, when you
see a number like 999999, you know that you are one away from all
those digits turning to 0s with a 1 added in front.

Table 1.1 shows how to count up to the base-10 number 8 using
binary.

Table 1.1 Decimal vs. Binary

We can make several useful observations about binary numbers.
Notice in the table that the binary numbers 1, 10, 100, and 1000 are
all perfect powers of 2 (, , ,). In the same way that in base-2

0
2
1
2
2
2
3

10 we talk about a ones digit, tens digit, hundreds digit, and so on,
we can think in binary of a ones digit, twos digit, fours digit, eights
digit, sixteens digit, and so on.

Computer scientists quickly found themselves needing to refer to the
sizes of different binary quantities, so they invented the term bit to
refer to a single binary digit and the term byte to refer to 8 bits. To
talk about large amounts of memory, they invented the terms
“kilobytes” (KB), “megabytes” (MB), “gigabytes” (GB), and so on.
Many people think that these correspond to the metric system,
where “kilo” means 1000, but that is only approximately true. We use
the fact that is approximately equal to 1000 (it actually equals
1024). Table 1.2 shows some common units of memory storage:

Table 1.2 Units of Memory Storage

The Process of Programming

The word code describes program fragments (“these four lines of
code”) or the act of programming (“Let’s code this into Java”). Once
a program has been written, you can execute it.

Program Execution

2
10

The act of carrying out the instructions contained in a
program.

The process of execution is often called running. This term can also
be used as a verb (“When my program runs it does something
strange”) or as a noun (“The last run of my program produced these
results”).

A computer program is stored internally as a series of binary
numbers known as the machine language of the computer. In the
early days, programmers entered numbers like these directly into the
computer. Obviously, this is a tedious and confusing way to program
a computer, and we have invented all sorts of mechanisms to
simplify this process.

Modern programmers write in what are known as high-level
programming languages, such as Java. Such programs cannot be
run directly on a computer: They first have to be translated into a
different form by a special program known as a compiler.

Compiler
A program that translates a computer program written
in one language into an equivalent program in another

language (often, but not always, translating from a
high-level language into machine language).

A compiler that translates directly into machine language creates a
program that can be executed directly on the computer, known as an
executable. We refer to such compilers as native compilers because
they compile code to the lowest possible level (the native machine
language of the computer).

This approach works well when you know exactly what computer you
want to use to run your program. But what if you want to execute a
program on many different computers? You’d need a compiler that
generates different machine language output for each of them. The
designers of Java decided to use a different approach. They cared a
lot about their programs being able to run on many different
computers, because they wanted to create a language that worked
well for the Web.

Instead of compiling into machine language, Java programs compile
into what are known as Java bytecodes. One set of bytecodes can
execute on many different machines. These bytecodes represent an
intermediate level: They aren’t quite as high-level as Java or as low-
level as machine language. In fact, they are the machine language of
a theoretical computer known as the Java Virtual Machine (JVM).

Java Virtual Machine
A theoretical computer whose machine language is the
set of Java bytecodes.

A JVM isn’t an actual machine, but it’s similar to one. When we
compile programs to this level, there isn’t much work remaining to
turn the Java bytecodes into actual machine instructions.

To actually execute a Java program, you need another program that
will execute the Java bytecodes. Such programs are known
generically as Java runtimes, and the standard environment
distributed by Oracle Corporation is known as the Java Runtime
Environment (JRE).

Java Runtime
A program that executes compiled Java bytecodes.

Most people have Java runtimes on their computers, even if they
don’t know about them. For example, Apple’s Mac OS X includes a
Java runtime, and many Windows applications install a Java runtime.

Why Java?

When Sun Microsystems released Java in 1995, it published a
document called a “white paper” describing its new programming
language. Perhaps the key sentence from that paper is the following:

Java: A simple, object-oriented, network-savvy, interpreted, robust, secure, architecture

neutral, portable, high-performance, multithreaded, dynamic language.

2http://www.oracle.com/technetwork/java/langenv-140151.html

This sentence covers many of the reasons why Java is a good
introductory programming language. For starters, Java is reasonably
simple for beginners to learn, and it embraces object-oriented
programming, a style of writing programs that has been shown to be
very successful for creating large and complex software systems.

Java also includes a large amount of prewritten software that
programmers can utilize to enhance their programs. Such off-the-
shelf software components are often called libraries. For example, if
you wish to write a program that connects to a site on the Internet,
Java contains a library to simplify the connection for you. Java
contains libraries to draw graphical user interfaces (GUIs), retrieve
data from databases, and perform complex mathematical
computations, among many other things. These libraries collectively
are called the Java class libraries.

2

Java Class Libraries
The collection of preexisting Java code that provides
solutions to common programming problems.

The richness of the Java class libraries has been an extremely
important factor in the rise of Java as a popular language. The Java
class libraries in version 10 include over 6000 entries.

Another reason to use Java is that it has a vibrant programmer
community. Extensive online documentation and tutorials are
available to help programmers learn new skills. Many of these
documents are written by Oracle, including an extensive reference to
the Java class libraries called the API Specification (API stands for
Application Programming Interface).

Java is extremely platform independent; unlike programs written in
many other languages, the same Java program can be executed on
many different operating systems, such as Windows, Linux, and Mac
OS X.

Java is used extensively for both research and business
applications, which means that a large number of programming jobs
exist in the marketplace today for skilled Java programmers. A
sample Google search for the phrase “Java jobs” returned around
816,000,000 hits at the time of this writing.

The Java Programming
Environment

You must become familiar with your computer setup before you start
programming. Each computer provides a different environment for
program development, but there are some common elements that
deserve comment. No matter what environment you use, you will
follow the same basic three steps:

1. Type in a program as a Java class.
2. Compile the program file.
3. Run the compiled version of the program.

The basic unit of storage on most computers is a file. Every file has a
name. A file name ends with an extension, which is the part of a file’s
name that follows the period. A file’s extension indicates the type of
data contained in the file. For example, files with the extension .doc
are Microsoft Word documents, and files with the extension .mp3 are
MP3 audio files.

The Java program files that you create must use the extension
.java . When you compile a Java program, the resulting Java
bytecodes are stored in a file with the same name and the extension
.class .

Most Java programmers use what are known as Integrated
Development Environments, or IDEs, which provide an all-in-one
environment for creating, editing, compiling, and executing program
files. Some of the more popular choices for introductory computer
science classes are Eclipse, IntelliJ, NetBeans, jGRASP, DrJava,
BlueJ, and TextPad. Your instructor will tell you what environment
you should use.

Try typing the following simple program in your IDE (the line
numbers are not part of the program but are used as an aid):

1 public class Hello {

2 public static void main(String[] args) {

3 System.out.println("Hello, world!");

4 }

5 }

Don’t worry about the details of this program right now. We will
explore those in the next section.

Once you have created your program file, move to step 2 and
compile it. The command to compile will be different in each
development environment, but the process is the same (typical
commands are “compile” or “build”). If any errors are reported, go
back to the editor, fix them, and try to compile the program again.
(We’ll discuss errors in more detail later in this chapter.)

Once you have successfully compiled your program, you are ready
to move to step 3, running the program. Again, the command to do
this will differ from one environment to the next, but the process is
similar (the typical command is “run”). The diagram in Figure 1.1
summarizes the steps you would follow in creating a program called
Hello.java .

Figure 1.1 Creation and execution of a Java program

In some IDEs, the first two steps are combined. In these
environments the process of compiling is more incremental; the
compiler will warn you about errors as you type in code. It is
generally not necessary to formally ask such an environment to
compile your program because it is compiling as you type.

When your program is executed, it will typically interact with the user
in some way. The Hello.java program involves an onscreen window
known as the console.

Console Window
A special text-only window in which Java programs
interact with the user.

The console window is a classic interaction mechanism wherein the
computer displays text on the screen and sometimes waits for the
user to type responses. This is known as console or terminal
interaction. The text the computer prints to the console window is
known as the output of the program. Anything typed by the user is
known as the console input.

To keep things simple, most of the sample programs in this book
involve console interaction. Keeping the interaction simple will allow

you to focus your attention and effort on other aspects of
programming.

1.2 And Now—Java
It’s time to look at a complete Java program. In the Java
programming language, nothing can exist outside of a class.

Class
A unit of code that is the basic building block of Java
programs.

The notion of a class is much richer than this, as you’ll see when we
get to Chapter 8 , but for now all you need to know is that each of
your Java programs will be stored in a class.

It is a tradition in computer science that when you describe a new
programming language, you should start with a program that
produces a single line of output with the words, “Hello, world!” The
“hello world” tradition has been broken by many authors of Java
books because the program turns out not to be as short and simple
when it is written in Java as when it is written in other languages, but
we’ll use it here anyway.

Here is our “hello world” program:

1 public class Hello {

2 public static void main(String[] args) {

3 System.out.println("Hello, world!");

4 }

5 }

This program defines a class called Hello . Oracle has established
the convention that class names always begin with a capital letter,
which makes it easy to recognize them. Java requires that the class
name and the file name match, so this program must be stored in a
file called Hello.java . You don’t have to understand all the details of
this program just yet, but you do need to understand the basic
structure.

The basic form of a Java class is as follows:

public class <name> {

 <method>

 <method>

 ...

 <method>

}

This type of description is known as a syntax template because it
describes the basic form of a Java construct. Java has rules that
determine its legal syntax or grammar. Each time we introduce a
new element of Java, we’ll begin by looking at its syntax template.
By convention, we use the less-than (<) and greater-than (>)
characters in a syntax template to indicate items that need to be
filled in (in this case, the name of the class and the methods). When
we write “...” in a list of elements, we’re indicating that any number of
those elements may be included.

The first line of the class is known as the class header. The word
public in the header indicates that this class is available to anyone
to use. Notice that the program code in a class is enclosed in curly
brace characters ({ }). These characters are used in Java to group
together related bits of code. In this case, the curly braces are
indicating that everything defined within them is part of this public
class.

So what exactly can appear inside the curly braces? What can be
contained in a class? All sorts of things, but for now, we’ll limit
ourselves to methods. Methods are the next-smallest unit of code in
Java, after classes. A method represents a single action or
calculation to be performed.

Method

A program unit that represents a particular action or
computation.

Simple methods are like verbs: They command the computer to
perform some action. Inside the curly braces for a class, you can
define several different methods. At a minimum, a complete program
requires a special method that is known as the main method. It has
the following syntax:

public static void main(String[] args) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

Just as the first line of a class is known as a class header, the first
line of a method is known as a method header. The header for main
is rather complicated. Most people memorize this as a kind of
magical incantation. You want to open the door to Ali Baba’s cave?
You say, “Open Sesame!” You want to create an executable Java
program? You say, public static void main(String[] args). A group
of Java teachers make fun of this with a website called
publicstaticvoidmain.com.

Just memorizing magical incantations is never satisfying, especially
for computer scientists who like to know everything that is going on
in their programs. But this is a place where Java shows its ugly side,
and you’ll just have to live with it. New programmers, like new
drivers, must learn to use something complex without fully
understanding how it works. Fortunately, by the time you finish this
book, you’ll understand every part of the incantation.

Notice that the main method has a set of curly braces of its own.
They are again used for grouping, indicating that everything that
appears between them is part of the main method. The lines in
between the curly braces specify the series of actions the computer
should perform when it executes the method. We refer to these as
the statements of the method. Just as you put together an essay by
stringing together complete sentences, you put together a method by
stringing together statements.

Statement
An executable snippet of code that represents a
complete command.

Each statement is terminated by a semicolon. The sample “hello
world” program has just a single statement that is known as a

println statement:

System.out.println("Hello, world!");

Notice that this statement ends with a semicolon. The semicolon has
a special status in Java; it is used to terminate statements in the
same way that periods terminate sentences in English.

In the basic “hello world” program there is just a single command to
produce a line of output, but consider the following variation (called
Hello2), which has four lines of code to be executed in the main
method:

1 public class Hello2 {

2 public static void main(String[] args) {

3 System.out.println("Hello, world!");

4 System.out.println();

5 System.out.println("This program produces four");

6 System.out.println("lines of output.");

7 }

8 }

Notice that there are four semicolons in the main method, one at the
end of each of the four println statements. The statements are

executed in the order in which they appear, from first to last, so the
Hello2 program produces the following output:

Hello, world!

This program produces four

lines of output.

Let’s summarize the different levels we just looked at:

A Java program is stored in a class.
Within the class, there are methods. At a minimum, a complete
program requires a special method called main .
Inside a method like main , there is a series of statements, each of
which represents a single command for the computer to execute.

It may seem odd to put the opening curly brace at the end of a line
rather than on a line by itself. Some people would use this style of
indentation for the program instead:

1 public class Hello3

2 {

3 public static void main(String[] args)

4 {

5 System.out.println("Hello, world!");

6 }

7 }

Different people will make different choices about the placement of
curly braces. The style we use follows Oracle’s official Java coding
conventions, but the other style has its advocates too. Often people
will passionately argue that one way is much better than the other,
but it’s really a matter of personal taste because each choice has
some advantages and some disadvantages. Your instructor may
require a particular style; if not, you should choose a style that you
are comfortable with and then use it consistently.

Now that you’ve seen an overview of the structure, let’s examine
some of the details of Java programs.

DID YOU KNOW?

Hello, World!

The “hello world” tradition was started by Brian Kernighan and
Dennis Ritchie. Ritchie invented a programming language
known as C in the 1970s and, together with Kernighan,
coauthored the first book describing C, published in 1978.
The first complete program in their book was a “hello world”
program. Kernighan and Ritchie, as well as their book The C

Programming Language, have been affectionately referred to
as “K & R” ever since.

Many major programming languages have borrowed the
basic C syntax as a way to leverage the popularity of C and to
encourage programmers to switch to it. The languages C++
and Java both borrow a great deal of their core syntax from
C.

Kernighan and Ritchie also had a distinctive style for the
placement of curly braces and the indentation of programs
that has become known as “K & R style.” This is the style that
Oracle recommends and that we use in this book.

String Literals (Strings)

When you are writing Java programs (such as the preceding “hello
world” program), you’ll often want to include some literal text to send
to the console window as output. Programmers have traditionally
referred to such text as a string because it is composed of a
sequence of characters that we string together. The Java language
specification uses the term string literals.

In Java you specify a string literal by surrounding the literal text in
quotation marks, as in

"This is a bunch of text surrounded by quotation marks."

You must use double quotation marks, not single quotation marks.
The following is not a valid string literal:

'Bad stuff here.'

The following is a valid string literal:

"This is a string even with 'these' quotes inside."

String literals must not span more than one line of a program. The
following is not a valid string literal:

"This is really

 bad stuff

 right here."

System.out.println

As you have seen, the main method of a Java program contains a
series of statements for the computer to carry out. They are
executed sequentially, starting with the first statement, then the
second, then the third, and so on until the final statement has been
executed. One of the simplest and most common statements is
System.out.println , which is used to produce a line of output. This is
another “magical incantation” that you should commit to memory. As
of this writing, Google lists around 8,000,000 web pages that
mention System.out.println . The key thing to remember about this
statement is that it’s used to produce a line of output that is sent to
the console window.

The simplest form of the println statement has nothing inside its
parentheses and produces a blank line of output:

System.out.println();

You need to include the parentheses even if you don’t have anything
to put inside them. Notice the semicolon at the end of the line. All
statements in Java must be terminated with a semicolon.

More often, however, you use println to output a line of text:

System.out.println("This line uses the println method.");

The above statement commands the computer to produce the
following line of output:

This line uses the println method.

Each println statement produces a different line of output. For
example, consider the following three statements:

System.out.println("This is the first line of output.");

System.out.println();

System.out.println("This is the third, below a blank line.");

Executing these statements produces the following three lines of
output (the second line is blank):

This is the first line of output.

This is the third, below a blank line.

Escape Sequences

Any system that involves quoting text will lead you to certain difficult
situations. For example, string literals are contained inside quotation
marks, so how can you include a quotation mark inside a string
literal? String literals also aren’t allowed to break across lines, so
how can you include a line break inside a string literal?

The solution is to embed what are known as escape sequences in
the string literals. Escape sequences are two-character sequences
that are used to represent special characters. They all begin with the
backslash character (\). Table 1.3 lists some of the more common
escape sequences.

Table 1.3 Common Escape Sequences

Keep in mind that each of these two-character sequences actually
stands for just a single character. For example, consider the
following statement:

System.out.println("What \"characters\" does this \\ print?");

If you executed this statement, you would get the following output:

What "characters" does this \ print?

The string literal in the println has three escape sequences, each of
which is two characters long and produces a single character of
output.

While string literals themselves cannot span multiple lines (that is,
you cannot use a carriage return within a string literal to force a line
break), you can use the \n escape sequence to embed newline
characters in a string. This leads to the odd situation where a single
println statement can produce more than one line of output.

For example, consider this statement:

System.out.println("This\nproduces 3 lines\nof output.");

If you execute it, you will get the following output:

This

produces 3 lines

of output.

The println itself produces one line of output, but the string literal
contains two newline characters that cause it to be broken up into a
total of three lines of output. To produce the same output without

new line characters, you would have to issue three separate println
statements.

This is another programming habit that tends to vary according to
taste. Some people (including the authors) find it hard to read string
literals that contain \n escape sequences, but other people prefer to
write fewer lines of code. Once again, you should make up your own
mind about when to use the new line escape sequence.

print versus println

Java has a variation of the println command called print that
allows you to produce output on the current line without going to a
new line of output. The println command really does two different
things: It sends output to the current line, and then it moves to the
beginning of a new line. The print command does only the first of
these. Thus, a series of print commands will generate output all on
the same line. Only a println command will cause the current line to
be completed and a new line to be started. For example, consider
these six statements:

System.out.print("To be ");

System.out.print("or not to be.");

System.out.print("That is ");

System.out.println("the question.");

System.out.print("This is");

System.out.println(" for the whole family!");

These statements produce two lines of output. Remember that every
println statement produces exactly one line of output; because
there are two println statements here, there are two lines of output.
After the first statement executes, the current line looks like this:

To be

The arrow below the output line indicates the position where output
will be sent next. We can simplify our discussion if we refer to the
arrow as the output cursor. Notice that the output cursor is at the end
of this line and that it appears after a space. The reason is that the
command was a print (doesn’t go to a new line) and the string
literal in the print ended with a space. Java will not insert a space
for you unless you specifically request it. After the next print , the
line looks like this:

To be or not to be.

There’s no space at the end now because the string literal in the
second print command ends in a period, not a space. After the next
print , the line looks like this:

^

^

To be or not to be.That is

There is no space between the period and the word “That” because
there was no space in the print commands, but there is a space at
the end of the string literal in the third statement. After the next
statement executes, the output looks like this:

To be or not to be.That is the question.

^

Because this fourth statement is a println command, it finishes the
output line and positions the cursor at the beginning of the second
line. The next statement is another print that produces this:

To be or not to be.That is the question.

This is

The final println completes the second line and positions the output
cursor at the beginning of a new line:

To be or not to be.That is the question.

This is for the whole family!

^

^

^

These six statements are equivalent to the following two single
statements:

System.out.println("To be or not to be.That is the question.");

System.out.println("This is for the whole family!");

Using the print and println commands together to produce lines
like these may seem a bit silly, but you will see that there are more
interesting applications of print in the next chapter.

Remember that it is possible to have an empty println command:

System.out.println();

Because there is nothing inside the parentheses to be written to the
output line, this command positions the output cursor at the
beginning of the next line. If there are print commands before this
empty println , it finishes out the line made by those print
commands. If there are no previous print commands, it produces a
blank line. An empty print command is meaningless and illegal.

Identifiers and Keywords

The words used to name parts of a Java program are called
identifiers.

Identifier
A name given to an entity in a program, such as a
class or method.

Identifiers must start with a letter, which can be followed by any
number of letters or digits. The following are all legal identifiers:

first hiThere numStudents TwoBy4

The Java language specification defines the set of letters to include
the underscore and dollar-sign characters (_ and $), which means
that the following are legal identifiers as well:

two_plus_two _count $2donuts

MAX_COUNT

The following are illegal identifiers:

two+two hi there hi-There 2by4

Java has conventions for capitalization that are followed fairly
consistently by programmers. All class names should begin with a
capital letter, as with the Hello , Hello2 , and Hello3 classes
introduced earlier. The names of methods should begin with
lowercase letters, as in the main method. When you are putting
several words together to form a class or method name, capitalize
the first letter of each word after the first. In the next chapter we’ll
discuss constants, which have yet another capitalization scheme,
with all letters in uppercase and words separated by underscores.
These different schemes might seem like tedious constraints, but
using consistent capitalization in your code allows the reader to
quickly identify the various code elements.

For example, suppose that you were going to put together the words
“all my children” into an identifier. The result would be:

AllMyChildren for a class name (each word starts with a capital)
allMyChildren for a method name (starts with a lowercase letter,
subsequent words capitalized)
ALL_MY_CHILDREN for a constant name (all uppercase, with words
separated by underscores; described in Chapter 2)

Java is case sensitive, so the identifiers class , Class , CLASS , and
cLASs are all considered different. Keep this in mind as you read

error messages from the compiler. People are good at understanding
what you write, even if you misspell words or make little mistakes
like changing the capitalization of a word. However, mistakes like
these cause the Java compiler to become hopelessly confused.

Don’t hesitate to use long identifiers. The more descriptive your
names are, the easier it will be for people (including you) to read
your programs. Descriptive identifiers are worth the time they take to
type. Java’s String class, for example, has a method called
compareToIgnoreCase .

Be aware, however, that Java has a set of predefined identifiers
called keywords that are reserved for particular uses. As you read
this book, you will learn many of these keywords and their uses. You
can only use keywords for their intended purposes. You must be
careful to avoid using these words in the names of identifiers. For
example, if you name a method short or try , this will cause a
problem, because short and try are reserved keywords. Table
1.4 shows the complete list of reserved keywords.

Table 1.4 List of Java Keywords

A Complex Example:
DrawFigures1

The println statement can be used to draw text figures as output.
Consider the following more complicated program example (notice
that it uses two empty println statements to produce blank lines):

 1 public class DrawFigures1 {

 2 public static void main(String[] args) {

 3 System.out.println(" /\\");

 4 System.out.println(" / \\");

 5 System.out.println(" / \\");

 6 System.out.println(" \\ /");

 7 System.out.println(" \\ /");

 8 System.out.println(" \\/");

 9 System.out.println();

10 System.out.println(" \\ /");

11 System.out.println(" \\ /");

12 System.out.println(" \\/");

13 System.out.println(" /\\");

14 System.out.println(" / \\");

15 System.out.println(" / \\");

16 System.out.println();

17 System.out.println(" /\\");

18 System.out.println(" / \\");

19 System.out.println(" / \\");

20 System.out.println("+------+");

21 System.out.println("| |");

22 System.out.println("| |");

23 System.out.println("+------+");

24 System.out.println("|United|");

25 System.out.println("|States|");

26 System.out.println("+------+");

27 System.out.println("| |");

28 System.out.println("| |");

29 System.out.println("+------+");

30 System.out.println(" /\\");

31 System.out.println(" / \\");

32 System.out.println(" / \\");

33 }

34 }

The following is the output the program generates. Notice that the
program includes double backslash characters (\\), but the output
has single backslash characters. This is an example of an escape
sequence, as described previously.

 /\

 / \

 / \

 \ /

 \ /

 \/

 \ /

 \ /

 \/

 /\

 / \

 / \

 /\

 / \

 / \

+------+

| |

| |

+------+

|United|

|States|

+------+

| |

| |

+------+

 /\

 / \

 / \

Comments and Readability

Java is a free-format language. This means you can put in as many
or as few spaces and blank lines as you like, as long as you put at
least one space or other punctuation mark between words. However,
you should bear in mind that the layout of a program can enhance

(or detract from) its readability. The following program is legal but
hard to read:

1 public class Ugly{public static void main(String[] args)

2 {System.out.println("How short I am!");}}

Here are some simple rules to follow that will make your programs
more readable:

Put class and method headers on lines by themselves.
Put no more than one statement on each line.
Indent your program properly. When an opening brace appears,
increase the indentation of the lines that follow it. When a closing
brace appears, reduce the indentation. Indent statements inside
curly braces by a consistent number of spaces (a common choice
is four spaces per level of indentation).
Use blank lines to separate parts of the program (e.g., methods).

Using these rules to rewrite the Ugly program yields the following
code:

1 public class Ugly {

2 public static void main(String[] args) {

3 System.out.println("How short I am!");

4 }

5 }

Well-written Java programs can be quite readable, but often you will
want to include some explanations that are not part of the program
itself. You can annotate programs by putting notes called comments
in them.

Comment
Text that programmers include in a program to explain
their code. The compiler ignores comments.

There are two comment forms in Java. In the first form, you open the
comment with a slash followed by an asterisk and you close it with
an asterisk followed by a slash:

/* like this */

You must not put spaces between the slashes and the asterisks:

/ * this is bad * /

You can put almost any text you like, including multiple lines, inside
the comment:

/* Thaddeus Martin

 Assignment #1

 Instructor: Professor Walingford

 Grader: Bianca Montgomery */

The only things you aren’t allowed to put inside a comment are the
comment end characters. The following code is not legal:

/* This comment has an asterisk/slash /*/ in it,

 which prematurely closes the comment. This is bad. */

Java also provides a second comment form for shorter, single-line
comments. You can use two slashes in a row to indicate that the rest
of the current line (everything to the right of the two slashes) is a
comment. For example, you can put a comment after a statement:

System.out.println("You win!"); // Good job!

Or you can create a comment on its own line:

// give an introduction to the user

System.out.println("Welcome to the game of blackjack.");

System.out.println();

System.out.println("Let me explain the rules.");

You can even create blocks of single-line comments:

// Thaddeus Martin

// Assignment #1

// Instructor: Professor Walingford

// Grader: Bianca Montgomery

Some people prefer to use the first comment form for comments that
span multiple lines but it is safer to use the second form because
you don’t have to remember to close the comment. It also makes the
comment stand out more. This is another case in which, if your
instructor does not tell you to use a particular comment style, you
should decide for yourself which style you prefer and use it
consistently.

Don’t confuse comments with the text of println statements. The
text of your comments will not be displayed as output when the
program executes. The comments are there only to help readers
examine and understand the program.

It is a good idea to include comments at the beginning of each class
file to indicate what the class does. You might also want to include
information about who you are, what course you are taking, your
instructor and/or grader’s name, the date, and so on. You should
also comment each method to indicate what it does.

Commenting becomes more useful in larger and more complicated
programs, as well as in programs that will be viewed or modified by
more than one programmer. Clear comments are extremely helpful
to explain to another person, or to yourself at a later time, what your
program is doing and why it is doing it.

In addition to the two comment forms already discussed, Java
supports a particular style of comments known as Javadoc
comments. Their format is more complex, but they have the
advantage that you can use a program to extract the comments to
make HTML files suitable for reading with a web browser. Javadoc
comments are useful in more advanced programming and are
discussed in more detail in Appendix B .

1.3 Program Errors
In 1949, Maurice Wilkes, an early pioneer of computing, expressed a
sentiment that still rings true today:

As soon as we started programming, we found out to our surprise that it wasn’t as easy

to get programs right as we had thought. Debugging had to be discovered. I can

remember the exact instant when I realized that a large part of my life from then on was

going to be spent in finding mistakes in my own programs.

You also will have to face this reality as you learn to program. You’re
going to make mistakes, just like every other programmer in history,
and you’re going to need strategies for eliminating those mistakes.
Fortunately, the computer itself can help you with some of the work.

There are three kinds of errors that you’ll encounter as you write
programs:

Syntax errors occur when you misuse Java. They are the
programming equivalent of bad grammar and are caught by the
Java compiler.
Logic errors occur when you write code that doesn’t perform the
task it is intended to perform.
Runtime errors are logic errors that are so severe that Java stops
your program from executing.

Syntax Errors

Human beings tend to be fairly forgiving about minor mistakes in
speech. For example, the character Yoda would lose points for his
unusual grammar in any writing class, but we still understand what
he means.

The Java compiler will be far less forgiving. The compiler reports
syntax errors as it attempts to translate your program from Java into
bytecodes if your program breaks any of Java’s grammar rules. For
example, if you misplace a single semicolon in your program, you
can send the compiler into a tailspin of confusion. The compiler may
report several error messages, depending on what it thinks is wrong
with your program.

A program that generates compilation errors cannot be executed. If
you submit your program to the compiler and the compiler reports
errors, you must fix the errors and resubmit the program. You will not
be able to proceed until your program is free of compilation errors.

Some development environments, such as Eclipse, help you along
the way by underlining syntax errors as you write your program. This
makes it easy to spot exactly where errors occur.

It’s possible for you to introduce an error before you even start
writing your program, if you choose the wrong name for its file.

COMMON PROGRAMMING ERROR

File Name Does Not Match Class

Name

As mentioned earlier, Java requires that a program’s class
name and file name match. For example, a program that
begins with public class Hello must be stored in a file called
Hello.java .

If you use the wrong file name (for example, saving it as
WrongFileName.java), you’ll get an error message like this:

WrongFileName.java:1: error: class Hello is public,

 should be declared in a file named Hello.java

public class Hello {

 ^

1 error

The file name is just the first hurdle. A number of other errors may
exist in your Java program. One of the most common syntax errors
is to misspell a word. You may have punctuation errors, such as
missing semicolons. It’s also easy to forget an entire word, such as a
required keyword.

The error messages the compiler gives may or may not be helpful. If
you don’t understand the content of the error message, look for the
caret marker (^) below the line, which points at the position in the
line where the compiler became confused. This can help you
pinpoint the place where a required keyword might be missing.

COMMON PROGRAMMING ERROR

Misspelled Words

Java (like most programming languages) is very picky about
spelling. You need to spell each word correctly, including
proper capitalization. Suppose, for example, that you were to
replace the println statement in the “hello world” program
with the following:

System.out.pruntln("Hello, world!");

When you try to compile this program, it will generate an error
message similar to the following:

Hello.java:3: error: cannot find symbol

symbol : method pruntln(java.lang.String)

location: variable out of type PrintStream

 System.out.pruntln("Hello, world!");

 ^

1 error

The first line of this output indicates that the error occurs in
the file Hello.java on line 3 and that the error is that the
compiler cannot find a symbol. The second line indicates that
the symbol it can’t find is a method called pruntln . That’s
because there is no such method; the method is called
println . The error message can take slightly different forms
depending on what you have misspelled. For example, you
might forget to capitalize the word System :

system.out.println("Hello, world!");

You will get the following error message:

Hello.java:3: error: package system does not exist

 system.out.println("Hello, world!");

 ^

1 error

Again, the first line indicates that the error occurs in line 3 of
the file Hello.java . The error message is slightly different
here, though, indicating that it can’t find a package called
system . The second and third lines of this error message
include the original line of code with an arrow (caret) pointing

to where the compiler got confused. The compiler errors are
not always very clear, but if you pay attention to where the
arrow is pointing, you’ll have a pretty good sense of where the
error occurs.

If you still can’t figure out the error, try looking at the error’s line
number and comparing the contents of that line with similar lines in
other programs. You can also ask someone else, such as an
instructor or lab assistant, to examine your program.

COMMON PROGRAMMING ERROR

Forgetting a Semicolon

All Java statements must end with semicolons, but it’s easy to
forget to put a semicolon at the end of a statement, as in the
following program:

1 public class MissingSemicolon {

2 public static void main(String[] args) {

3 System.out.println("A rose by any other

name")

4 System.out.println("would smell as sweet");

5 }

6 }

In this case, the compiler produces output similar to the
following:

MissingSemicolon.java:3: error: ';' expected

 System.out.println("A rose by any other name")

 ^

1 error

COMMON PROGRAMMING ERROR

Forgetting a Required Keyword

Another common syntax error is to forget a required keyword
when you are typing your program, such as static or class .
Double-check your programs against the examples in the
textbook to make sure you haven’t omitted an important
keyword.

The compiler will give different error messages depending on
which keyword is missing, but the messages can be hard to
understand. For example, you might write a program called
Bug4 and forget the keyword class when writing its class
header. In this case, the compiler will provide the following
error message:

Bug4.java:1: error: class, interface, or enum expected

public Bug4 {

 ^

1 error

However, if you forget the keyword void when declaring the
main method, the compiler generates a different error
message:

Bug5.java:2: error: invalid method declaration; return

type required

 public static main(String[] args) {

 ^

1 error

Yet another common syntax error is to forget to close a string literal.

A good rule of thumb to follow is that the first error reported by the
compiler is the most important one. The rest might be the result of
that first error. Many programmers don’t even bother to look at errors
beyond the first, because fixing that error and recompiling may
cause the other errors to disappear.

Logic Errors (Bugs)

Logic errors are also called bugs. Computer programmers use words
like “bug-ridden” and “buggy” to describe poorly written programs,
and the process of finding and eliminating bugs from programs is
called debugging.

The word “bug” is an old engineering term that predates computers;
early computing bugs sometimes occurred in hardware as well as
software. Admiral Grace Hopper, an early pioneer of computing, is
largely credited with popularizing the use of the term in the context of
computer programming. She often told the true story of a group of
programmers at Harvard University in the mid-1940s who couldn’t
figure out what was wrong with their programs until they opened up
the computer and found an actual moth trapped inside.

The form that a bug takes may vary. Sometimes your program will
simply behave improperly. For example, it might produce the wrong
output. Other times it will ask the computer to perform some task that
is clearly a mistake, in which case your program will have a runtime
error that stops it from executing. In this chapter, since your
knowledge of Java is limited, generally the only type of logic error
you will see is a mistake in program output from an incorrect println
statement or method call.

We’ll look at an example of a runtime error in the next section.

1.4 Procedural Decomposition
Brian Kernighan, coauthor of The C Programming Language, has
said, “Controlling complexity is the essence of computer
programming.” People have only a modest capacity for detail. We
can’t solve complex problems all at once. Instead, we structure our
problem solving by dividing the problem into manageable pieces and
conquering each piece individually. We often use the term
decomposition to describe this principle as applied to programming.

Decomposition
A separation into discernible parts, each of which is
simpler than the whole.

With procedural programming languages like C, decomposition
involves dividing a complex task into a set of subtasks. This is a very
verb- or action-oriented approach, involving dividing up the overall
action into a series of smaller actions. This technique is called
procedural decomposition.

COMMON PROGRAMMING ERROR

Not Closing a String Literal or

Comment

Every string literal has to have an opening quote and a
closing quote, but it’s easy to forget the closing quotation
mark. For example, you might say:

System.out.println("Hello, world!);

This produces three different error messages, even though
there is only one underlying syntax error:

Hello.java:3: error: unclosed string literal

 System.out.println("hello world);

 ^

Hello.java:3: error: ';' expected

 System.out.println("hello world);

 ^

Hello.java:5: error: reached end of file while parsing

 }

 ^

3 errors

In this case, the first error message is quite clear, including an
arrow pointing at the beginning of the string literal that wasn’t
closed. The second error message was caused by the first.
Because the string literal was not closed, the compiler didn’t
notice the right parenthesis and semicolon that appear at the
end of the line.

A similar problem occurs when you forget to close a multiline
comment by writing */ , as in the first line of the following
program:

/* This is a bad program.

public class Bad {

 public static void main(String[] args){

 System.out.println("Hi there.");

 }

} /* end of program */

The preceding file is not a program; it is one long comment.
Because the comment on the first line is not closed, the entire
program is swallowed up.

Luckily, many Java editor programs color the parts of a
program to help you identify them visually. Usually, if you
forget to close a string literal or comment, the rest of your
program will turn the wrong color, which can help you spot the
mistake.

Java was designed for a different kind of decomposition that is more
noun- or object-oriented. Instead of thinking of the problem as a
series of actions to be performed, we think of it as a collection of
objects that have to interact.

As a computer scientist, you should be familiar with both types of
problem solving. This book begins with procedural decomposition
and devotes many chapters to mastering various aspects of the
procedural approach. Only after you have thoroughly practiced
procedural programming will we turn our attention back to object
decomposition and object-oriented programming.

As an example of procedural decomposition, consider the problem of
baking a cake. You can divide this problem into the following
subproblems:

Make the batter.
Bake the cake.
Make the frosting.
Frost the cake.

Each of these four tasks has details associated with it. To make the
batter, for example, you follow these steps:

Mix the dry ingredients.
Cream the butter and sugar.
Beat in the eggs.
Stir in the dry ingredients.

Thus, you divide the overall task into subtasks, which you further
divide into even smaller subtasks. Eventually, you reach descriptions
that are so simple they require no further explanation (i.e.,
primitives).

A partial diagram of this decomposition is shown in Figure 1.2 .
“Make cake” is the highest-level operation. It is defined in terms of
four lower-level operations called “Make batter,” “Bake,” “Make
frosting,” and “Frost cake.” The “Make batter” operation is defined in
terms of even lower-level operations, and the same could be done
for the other three operations. This diagram is called a structure
diagram and is intended to show how a problem is broken down into
subproblems. In this diagram, you can also tell in what order
operations are performed by reading from left to right. That is not
true of most structure diagrams. To determine the actual order in
which subprograms are performed, you usually have to refer to the
program itself.

Figure 1.2 Decomposition of “Make cake” task

One final problem-solving term has to do with the process of
programming. Professional programmers develop programs in
stages. Instead of trying to produce a complete working program all
at once, they choose some piece of the problem to implement first.
Then they add another piece, and another, and another. The overall
program is built up slowly, piece by piece. This process is known as
iterative enhancement or stepwise refinement.

Iterative Enhancement
The process of producing a program in stages, adding
new functionality at each stage. A key feature of each
iterative step is that you can test it to make sure that
piece works before moving on.

Now, let’s look at a construct that will allow you to iteratively enhance
your Java programs to improve their structure and reduce their
redundancy: static methods.

Static Methods

Java is designed for objects, and programming in Java usually
involves decomposing a problem into various objects, each with
methods that perform particular tasks. You will see how this works in
later chapters, but for now, we are going to explore procedural
decomposition. We will postpone examining some of Java’s details
while we discuss programming in general.

Consider the following program, which draws two text boxes on the
console:

 1 // This program draws two box figures.

 2 public class DrawBoxes {

 3 public static void main(String[] args) {

 4 System.out.println("+------+");

 5 System.out.println("| |");

 6 System.out.println("| |");

 7 System.out.println("+------+");

 8 System.out.println();

 9 System.out.println("+------+");

10 System.out.println("| |");

11 System.out.println("| |");

12 System.out.println("+------+");

13 }

14 }

The program works correctly, but the four lines used to draw the box
appear twice. This redundancy is undesirable for several reasons.
For example, you might wish to change the appearance of the
boxes, in which case you’ll have to make all of the edits twice. Also,
you might wish to draw additional boxes, which would require you to
type additional copies of (or copy and paste) the redundant lines.

We can improve the program by introducing a new command to
draw the box and then executing that command twice. Java doesn’t
have a “draw a box” command, but you can create one. Such a
named command is called a static method.

Static Method
A block of Java statements that is given a name.

Static methods are units of procedural decomposition. We typically
break a class into several static methods, each of which solves some
piece of the overall problem. For example, here is a static method to
draw a box:

public static void drawBox() {

 System.out.println("+------+");

 System.out.println("| |");

 System.out.println("| |");

 System.out.println("+------+");

}

You have already seen a static method called main in earlier
programs. Recall that the main method has the following form:

public static void main(String[] args) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

The static methods you'll write have a similar structure:

public static void <name>() {

 <statement>;

 <statement>;

 ...

 <statement>;

}

The first line is known as the method header. You don’t yet need to
fully understand what each part of this header means in Java; for
now, just remember that you’ll need to write public static void ,
followed by the name you wish to give the method, followed by a set
of parentheses. Briefly, here is what the words in the header mean:

The keyword public indicates that this method is available to be
used by all parts of your program. All methods you write will be
public.
The keyword static indicates that this is a static (procedural-
style, not object-oriented) method. For now, all methods you write
will be static, until you learn about defining objects in Chapter
8 .
The keyword void indicates that this method executes
statements but does not produce any value. (Other methods
you’ll see later compute and return values.)
<name> (e.g., drawBox) is the name of the method.
The empty parentheses specify a list (in this case, an empty list)
of values that are sent to your method as input; such values are
called parameters and will not be included in your methods until
Chapter 3 .

Including the keyword static for each method you define may seem
cumbersome. Other Java textbooks often do not discuss static
methods as early as we do here; instead, they show other
techniques for decomposing problems. But even though static

methods require a bit of work to create, they are powerful and useful
tools for improving basic Java programs.

After the header in our sample method, a series of println
statements makes up the body of this static method. As in the main
method, the statements of this method are executed in order from
first to last.

By defining the method drawBox , you have given a simple name to
this sequence of println statements. It’s like saying to the Java
compiler, “Whenever I tell you to ’drawBox,’ I really mean that you
should execute the println statements in the drawBox method.” But
the command won’t actually be executed unless our main method
explicitly says that it wants to do so. The act of executing a static
method is called a method call.

Method Call
A command to execute another method, which causes
all of the statements inside that method to be
executed.

To execute the drawBox command, include this line in your program’s
main method:

drawBox();

Since we want to execute the drawBox command twice (to draw two
boxes), the main method should contain two calls to the drawBox
method. The following program uses the drawBox method to produce
the same output as the original DrawBoxes program:

 1 // Draws two box figures using a static method.

 2 public class DrawBoxes2 {

 3 public static void main(String[] args) {

 4 drawBox();

 5 System.out.println();

 6 drawBox();

 7 }

 8

 9 public static void drawBox() {

10 System.out.println("+------+");

11 System.out.println("| |");

12 System.out.println("| |");

13 System.out.println("+------+");

14 }

15 }

Flow of Control

The most confusing thing about static methods is that programs with
static methods do not execute sequentially from top to bottom.
Rather, each time the program encounters a static method call, the
execution of the program “jumps” to that static method, executes
each statement in that method in order, and then “jumps” back to the
point where the call began and resumes executing. The order in
which the statements of a program are executed is called the
program’s flow of control.

Flow of Control
The order in which the statements of a Java program
are executed.

Let’s look at the control flow of the DrawBoxes2 program shown
previously. It has two methods. The first method is the familiar main
method, and the second is drawBox . As in any Java program,
execution starts with the main method:

public static void main(String[] args) {

 drawBox();

 System.out.println();

 drawBox();

}

In a sense, the execution of this program is sequential: Each
statement listed in the main method is executed in turn, from first to
last.

But this main method includes two different calls on the drawBox
method. This program will do three different things: execute drawBox ,
execute a println , then execute drawBox again.

The diagram below indicates the flow of control produced by this
program.

Following the diagram, you can see that nine println statements are
executed. First you transfer control to the drawBox method and
execute its four statements. Then you return to main and execute its
println statement. Then you transfer control a second time to
drawBox and once again execute its four statements. Making these

method calls is almost like copying and pasting the code of the
method into the main method. As a result, this program has the exact
same behavior as the nine-line main method of the DrawBoxes
program:

public static void main(String[] args) {

 System.out.println("+------+");

 System.out.println("| |");

 System.out.println("| |");

 System.out.println("+------+");

 System.out.println();

 System.out.println("+------+");

 System.out.println("| |");

 System.out.println("| |");

 System.out.println("+------+");

}

This version is simpler in terms of its flow of control, but the first
version avoids the redundancy of having the same println
statements appear multiple times. It also gives a better sense of the
structure of the solution. In the original version, it is clear that there is
a subtask called drawBox that is being performed twice. Also, while
the last version of the main method contains fewer lines of code than
the DrawBoxes2 program, consider what would happen if you wanted
to add a third box to the output. You would have to add the five
requisite println statements again, whereas in the programs that

use the drawBox method you can simply add one more println and a
third method call.

Java allows you to define methods in any order you like. It is a
common convention to put the main method as either the first or last
method in the class. In this textbook we will generally put main first,
but the programs would behave the same if we switched the order.
For example, the following modified program behaves identically to
the previous DrawBoxes2 program:

 1 // Draws two box figures using a static method.

 2 public class DrawBoxes3 {

 3 public static void drawBox() {

 4 System.out.println("+------+");

 5 System.out.println("| |");

 6 System.out.println("| |");

 7 System.out.println("+------+");

 8 }

 9

10 public static void main(String[] args) {

11 drawBox();

12 System.out.println();

13 drawBox();

14 }

15 }

The main method is always the starting point for program execution,
and from that starting point you can determine the order in which
other methods are called.

Methods That Call Other Methods

The main method is not the only place where you can call another
method. In fact, any method may call any other method. As a result,
the flow of control can get quite complicated. Consider, for example,
the following rather strange program. We use nonsense words (“foo,”
“bar,” “baz,” and “mumble”) on purpose because the program is not
intended to make sense.

 1 public class FooBarBazMumble {

 2 public static void main(String[] args) {

 3 foo();

 4 bar();

 5 System.out.println("mumble");

 6 }

 7

 8 public static void foo() {

 9 System.out.println("foo");

10 }

11

12 public static void bar() {

13 baz();

14 System.out.println("bar");

15 }

16

17 public static void baz() {

18 System.out.println("baz");

19 }

20 }

You can’t tell easily what output this program produces, so let’s
explore in detail what the program is doing. Remember that Java
always begins with the method called main . In this program, the main
method calls the foo method and the bar method and then executes
a println statement:

public static void main(String[] args) {

 foo();

 bar();

 System.out.println("mumble");

}

Each of these two method calls will expand into more statements.
Let’s first expand the calls on the foo and bar methods:

This helps to make our picture of the flow of control more complete,
but notice that bar calls the baz method, so we have to expand that
as well.

Finally, we have finished our picture of the flow of control of this
program. It should make sense, then, that the program produces the

following output:

foo

baz

bar

mumble

We will see a much more useful example of methods calling
methods when we go through the case study at the end of the
chapter.

DID YOU KNOW?

The New Hacker’s Dictionary

Computer scientists and computer programmers use a lot of
jargon that can be confusing to novices. A group of software
professionals spearheaded by Eric Raymond have collected
together many of the jargon terms in a book called The New
Hacker’s Dictionary. You can buy the book, or you can
browse it online at Eric’s website:
http://catb.org/esr/jargon/html/frames.html.

For example, if you look up foo, you’ll find this definition:
“Used very generally as a sample name for absolutely

anything, esp. programs and files.” In other words, when we
find ourselves looking for a nonsense word, we use “foo.”

The New Hacker’s Dictionary contains a great deal of
historical information about the origins of jargon terms. The
entry for foo includes a lengthy discussion of the combined
term foobar and how it came into common usage among
engineers.

If you want to get a flavor of what is there, check out the
entries for bug, hacker, bogosity, and bogo-sort.

Source: Raymond, Eric S., The New Hacker's Dictionary, pp. 38, © 1991 Massachusetts Institute of

Technology, by permission of The MIT Press.

An Example Runtime Error

Runtime errors occur when a bug causes your program to be unable
to continue executing. What could cause such a thing to happen?
One example is if you asked the computer to calculate an invalid
value, such as 1 divided by 0. Another example would be if your
program tries to read data from a file that does not exist.

We haven’t discussed how to compute values or read files yet, but
there is a way you can “accidentally” cause a runtime error. The way
to do this is to write a static method that calls itself. If you do this,
your program will not stop running, because the method will keep

calling itself indefinitely, until the computer runs out of memory.
When this happens, the program prints a large number of lines of
output, and then eventually stops executing with an error message
called a StackOverflowError . Here’s an example:

 1 // This program contains a function that calls itself

 2 // infinitely, causing a runtime error.

 3 public class Infinite {

 4 public static void main(String[] args) {

 5 oops();

 6 }

 7

8 public static void oops() {

 9 System.out.println("Make it stop!");

10 oops();

11 }

12 }

This ill-fated program produces the following output (with large
groups of identical lines represented by “...”):

Make it stop!

Make it stop!

Make it stop!

Make it stop!

Make it stop!

Make it stop!

Make it stop!

Make it stop!

Make it stop!

...

Make it stop!

Exception in thread "main" java.lang.StackOverflowError

 at sun.nio.cs.SingleByteEncoder.encodeArrayLoop(Unknown

Source)

 at sun.nio.cs.SingleByteEncoder.encodeLoop(Unknown

Source)

 at java.nio.charset.CharsetEncoder.encode(Unknown

Source)

 at sun.nio.cs.StreamEncoder$CharsetSE.implWrite(Unknown

Source)

 at sun.nio.cs.StreamEncoder.write(Unknown Source)

 at java.io.OutputStreamWriter.write(Unknown Source)

 at java.io.BufferedWriter.flushBuffer(Unknown Source)

 at java.io.PrintStream.newLine(Unknown Source)

 at java.io.PrintStream.println(Unknown Source)

 at Infinite.oops(Infinite.java:7)

 at Infinite.oops(Infinite.java:8)

 at Infinite.oops(Infinite.java:8)

 at Infinite.oops(Infinite.java:8)

 at ...

Runtime errors are, unfortunately, something you’ll have to live with
as you learn to program. You will have to carefully ensure that your
programs not only compile successfully, but do not contain any bugs
that will cause a runtime error. The most common way to catch and
fix runtime errors is to run the program several times to test its
behavior.

1.5 Case Study: DrawFigures

Earlier in the chapter, you saw a program called DrawFigures1 that
produced the following output:

 /\

 / \

 / \

 \ /

 \ /

 \/

 \ /

 \ /

 \/

 /\

 / \

 / \

 /\

 / \

 / \

+------+

| |

| |

+------+

|United|

|States|

+------+

| |

| |

+------+

 /\

 / \

 / \

It did so with a long sequence of println statements in the main
method. In this section you’ll improve the program by using static
methods for procedural decomposition to capture structure and
eliminate redundancy. The redundancy might be more obvious, but
let’s start by improving the way the program captures the structure of
the overall task.

Structured Version

If you look closely at the output, you’ll see that it has a structure that
would be desirable to capture in the program structure. The output is
divided into three subfigures: the diamond, the X, and the rocket.

You can better indicate the structure of the program by dividing it into
static methods. Since there are three subfigures, you can create
three methods, one for each subfigure. The following program
produces the same output as DrawFigures1 :

 1 // This program draws three text figures using

 2 // a static method to represent each figure.

 3 public class DrawFigures2 {

 4 public static void main(String[] args) {

 5 drawDiamond();

 6 drawX();

 7 drawRocket();

 8 }

 9

10 public static void drawDiamond() {

11 System.out.println(" /\\");

12 System.out.println(" / \\");

13 System.out.println(" / \\");

14 System.out.println(" \\ /");

15 System.out.println(" \\ /");

16 System.out.println(" \\/");

17 System.out.println();

18 }

19

20 public static void drawX() {

21 System.out.println(" \\ /");

22 System.out.println(" \\ /");

23 System.out.println(" \\/");

24 System.out.println(" /\\");

25 System.out.println(" / \\");

26 System.out.println(" / \\");

27 System.out.println();

28 }

29

30 public static void drawRocket() {

31 System.out.println(" /\\");

32 System.out.println(" / \\");

33 System.out.println(" / \\");

34 System.out.println("+------+");

35 System.out.println("| |");

36 System.out.println("| |");

37 System.out.println("+------+");

38 System.out.println("|United|");

39 System.out.println("|States|");

40 System.out.println("+------+");

41 System.out.println("| |");

42 System.out.println("| |");

43 System.out.println("+------+");

44 System.out.println(" /\\");

45 System.out.println(" / \\");

46 System.out.println(" / \\");

47 }

48 }

The program appears in a class called DrawFigures2 and has four
static methods defined within it. The first static method is the usual
main method, which calls three methods. The three methods called
by main appear next.

Figure 1.3 is a structure diagram for this version of the program.
Notice that it has two levels of structure. The overall problem is
broken down into three subtasks.

Figure 1.3 Decomposition of DrawFigures2

Final Version without Redundancy

The program can still be improved. Each of the three subfigures has
individual elements, and some of those elements appear in more
than one of the three subfigures. The program prints the following
redundant group of lines several times:

 /\

 / \

/ \

A better version of the preceding program adds an additional method
for each redundant section of output. The redundant sections are the
top and bottom halves of the diamond shape and the box used in the
rocket. Here is the improved program:

 1 // This program draws three text figures using static

 2 // methods for structure and to avoid redundancy.

 3 public class DrawFigures3 {

 4 public static void main(String[] args) {

 5 drawDiamond();

 6 drawX();

 7 drawRocket();

 8 }

 9

10 public static void drawDiamond() {

11 drawCone();

12 drawV();

13 System.out.println();

14 }

15

16 public static void drawX() {

17 drawV();

18 drawCone();

19 System.out.println();

20 }

21

22 public static void drawRocket() {

23 drawCone();

24 drawBox();

25 System.out.println("|United|");

26 System.out.println("|States|");

27 drawBox();

28 drawCone();

29 System.out.println();

30 }

31

32 public static void drawBox() {

33 System.out.println("+------+");

34 System.out.println("| |");

35 System.out.println("| |");

36 System.out.println("+------+");

37 }

38

39 public static void drawCone() {

40 System.out.println(" /\\");

41 System.out.println(" / \\");

42 System.out.println(" / \\");

43 }

44

45 public static void drawV() {

46 System.out.println(" \\ /");

47 System.out.println(" \\ /");

48 System.out.println(" \\/");

49 }

50 }

This program, now called DrawFigures3 , has seven static methods
defined within it. The first static method is the usual main method,
which calls three methods. These three methods in turn call three
other methods, which appear next.

Analysis of Flow of Execution

The structure diagram in Figure 1.4 shows which static methods
main calls and which static methods each of them calls. As you can
see, this program has three levels of structure and two levels of
decomposition. The overall task is split into three subtasks, each of
which has two subtasks.

Figure 1.4 Decomposition of DrawFigures3

A program with methods has a more complex flow of control than
one without them, but the rules are still fairly simple. Remember that
when a method is called, the computer executes the statements in
the body of that method. Then the computer proceeds to the next
statement after the method call. Also remember that the computer
always starts with the main method, executing its statements from
first to last.

So, to execute the DrawFigures3 program, the computer first
executes its main method. That, in turn, first executes the body of the
method drawDiamond . drawDiamond executes the methods drawCone
and drawV (in that order). When drawDiamond finishes executing,
control shifts to the next statement in the body of the main method:
the call to the drawX method.

A complete breakdown of the flow of control from static method to
static method in DrawFigures3 follows:

 1st main

 2nd drawDiamond

 3rd drawCone

 4th drawV

 5th drawX

 6th drawV

 7th drawCone

 8th drawRocket

 9th drawCone

10th drawBox

11th drawBox

12th drawCone

Recall that the order in which you define methods does not have to
parallel the order in which they are executed. The order of execution
is determined by the body of the main method and by the bodies of
methods called from main . A static method declaration is like a
dictionary entry—it defines a word, but it does not specify how the
word will be used. The body of this program’s main method says to
first execute drawDiamond , then drawX , then drawRocket . This is the
order of execution, regardless of the order in which the methods are
defined.

Java allows you to define methods in any order you like. Starting
with main at the top and working down to lower and lower-level
methods is a popular approach to take, but many people prefer the

opposite, placing the low-level methods first and main at the end.
Java doesn’t care what order you use, so you can decide for yourself
and do what you think is best. Consistency is important, though, so
that you can easily find a method later in a large program.

It is important to note that the programs DrawFigures1 , DrawFigures2 ,
and DrawFigures3 produce exactly the same output to the console.
While DrawFigures1 may be the easiest program for a novice to read,
DrawFigures2 and particularly DrawFigures3 have many advantages
over it. For one, a well-structured solution is easier to comprehend,
and the methods themselves become a means of explaining the
program. Also, programs with methods are more flexible and can
more easily be adapted to similar but different tasks. You can take
the seven methods defined in DrawFigures3 and write a new program
to produce a larger and more complex output. Building static
methods to create new commands increases your flexibility without
adding unnecessary complication. For example, you could replace
the main method with a version that calls the other methods in the
following new order. What output would it produce?

public static void main(String[] args) {

 drawCone();

 drawCone();

 drawRocket();

 drawX();

 drawRocket();

 drawDiamond();

 drawBox();

 drawDiamond();

 drawX();

 drawRocket();

}

Chapter Summary
Computers execute sets of instructions called programs. Computers
store information internally as sequences of 0s and 1s (binary
numbers).

Programming and computer science deal with algorithms, which are
step-by-step descriptions for solving problems.

Java is a modern object-oriented programming language developed
by Sun Microsystems, now owned by Oracle Corporation, that has a
large set of libraries you can use to build complex programs.

A program is translated from text into computer instructions by
another program called a compiler. Java’s compiler turns Java
programs into a special format called Java bytecodes, which are
executed using a special program called the Java Runtime
Environment.

Java programmers typically complete their work using an editor
called an Integrated Development Environment (IDE). The

commands may vary from environment to environment, but the same
three-step process is always involved:

1. Type in a program as a Java class.

2. Compile the program file.

3. Run the compiled version of the program.

Java uses a command called System.out.println to display text on
the console screen.

Written words in a program can take different meanings. Keywords
are special reserved words that are part of the language. Identifiers
are words defined by the programmer to name entities in the
program. Words can also be put into strings, which are pieces of text
that can be printed to the console.

Java programs that use proper spacing and layout are more
readable to programmers. Readability is also improved by writing
notes called comments inside the program.

The Java language has a syntax, or a legal set of commands that
can be used. A Java program that does not follow the proper syntax
will not compile. A program that does compile but that is written

incorrectly may still contain errors called exceptions that occur when
the program runs. A third kind of error is a logic or intent error. This
kind of error occurs when the program runs but does not do what the
programmer intended.

Commands in programs are called statements. A class can group
statements into larger commands called static methods. Static
methods help the programmer group code into reusable pieces. An
important static method that must be part of every program is called
main .

Iterative enhancement is the process of building a program piece by
piece, testing the program at each step before advancing to the next.

Complex programming tasks should be broken down into the major
tasks the computer must perform. This process is called procedural
decomposition. Correct use of static methods aids procedural
decomposition.

Self-Check Problems

Section 1.1: Basic Computing
Concepts

1. Why do computers use binary numbers?
2. Convert each of the following decimal numbers into its

equivalent binary number:
a. 6
b. 44
c. 72
d. 131

3. What is the decimal equivalent of each of the following binary
numbers?

a. 100
b. 1011
c. 101010
d. 1001110

4. In your own words, describe an algorithm for baking cookies.
Assume that you have a large number of hungry friends, so
you’ll want to produce several batches of cookies!

5. What is the difference between the file MyProgram.java and the
file MyProgram.class?

Section 1.2: And Now—Java

6. Which of the following can be used in a Java program as
identifiers?

println first-name AnnualSalary "hello" ABC

42isTheAnswer for sum_of_data _average B4

7. Which of the following is the correct syntax to output a
message?

a. System.println(Hello, world!);
b. System.println.out('Hello, world!');
c. System.println("Hello, world!");
d. System.out.println("Hello, world!");
e. Out.system.println"(Hello, world!)";

8. What is the output produced from the following statements?

System.out.println("\"Quotes\"");

System.out.println("Slashes \\//");

System.out.println("How '\"confounding' \"\\\" it is!");

9. What is the output produced from the following statements?

System.out.println("name\tage\theight");

System.out.println("Archie\t17\t5'9\"");

System.out.println("Betty\t17\t5'6\"");

System.out.println("Jughead\t16\t6'");

10. What is the output produced from the following statements?

System.out.println("Shaq is 7'1");

System.out.println("The string \"\" is an empty

message.");

System.out.println("\\'\"\"");

11. What is the output produced from the following statements?

System.out.println("\ta\tb\tc");

System.out.println("\\\\");

System.out.println("'");

System.out.println("\"\"\"");

System.out.println("C:\nin\the downward spiral");

12. What is the output produced from the following statements?

System.out.println("Dear \"DoubleSlash\" magazine,");

System.out.println();

System.out.println("\tYour publication confuses me. Is

it");

System.out.println("a \\\\ slash or a //// slash?");

System.out.println("\nSincerely,");

System.out.println("Susan \"Suzy\" Smith");

13. What series of println statements would produce the
following output?

"Several slashes are sometimes seen,"

said Sally. "I've said so." See?

\ / \\ // \\\ ///

14. What series of println statements would produce the
following output?

This is a test of your

knowledge of "quotes" used

in 'string literals.'

You're bound to "get it right"

if you read the section on

''quotes.''

15. Write a println statement that produces the following output:

/ \ // \\ /// \\\

16. Rewrite the following code as a series of equivalent
System.out.println statements (i.e., without any
System.out.print statements):

System.out.print("Twas ");

System.out.print("brillig and the");

System.out.println(" ");

System.out.print(" slithy toves did");

System.out.print(" ");

System.out.println("gyre and");

System.out.println("gimble");

System.out.println();

System.out.println("in the wabe.");

17. What is the output of the following program? Note that the
program contains several comments.

 1 public class Commentary {

 2 public static void main(String[] args) {

 3 System.out.println("some lines of code");

 4 System.out.println("have // characters on

them");

 5 System.out.println("which means "); // that

they are comments

 6 // System.out.println("written by the

programmer.");

 7

 8 System.out.println("lines can also");

 9 System.out.println("have /* and */

characters");

10 /* System.out.println("which represents");

11 System.out.println("a multi-line style");

12 */ System.out.println("of comment.");

13 }

14 }

Section 1.3: Program Errors

18. Name the three errors in the following program:

1 public MyProgram {

2 public static void main(String[] args) {

3 System.out.println("This is a test of the")

4 System.out.Println("emergency broadcast

system.");

5 }

6 }

19. Name the four errors in the following program:

1 public class SecretMessage {

2 public static main(string[] args) {

3 System.out.println("Speak friend");

4 System.out.println("and enter);

5

6 }

20. Name the four errors in the following program:

 1 public class FamousSpeech

 2 public static void main(String[]) {

 3 System.out.println("Four score and seven

years ago,");

 4 System.out.println("our fathers brought forth

on");

 5 System.out.println("this continent a new

nation");

 6 System.out.println("conceived in liberty,");

 7 System.out.println("and dedicated to the

proposition");

 8 System.out.println("that"); /* this part

should

 9 System.out.println("all"); really say,

10 System.out.println("men"); "all

PEOPLE!" */

11 System.out.println("are";

12 System.out.println("created");

13 System.out.println("equal");

14 }

15 }

Section 1.4: Procedural
Decomposition

21. Which of the following method headers uses the correct
syntax?

a. public static example() {
b. public static void example() {
c. public void static example() {
d. public static example void[] {
e. public void static example{} (

22. What is the output of the following program? (You may wish to
draw a structure diagram first.)

 1 public class Tricky {

 2 public static void main(String[] args) {

 3 message1();

 4 message2();

 5 System.out.println("Done with main.");

 6 }

 7

 8 public static void message1() {

 9 System.out.println("This is message1.");

10 }

11

12 public static void message2() {

13 System.out.println("This is message2.");

14 message1();

15 System.out.println("Done with message2.");

16 }

17 }

23. What is the output of the following program? (You may wish to
draw a structure diagram first.)

 1 public class Strange {

 2 public static void first() {

 3 System.out.println("Inside first method");

 4 }

 5

 6 public static void second() {

 7 System.out.println("Inside second method");

 8 first();

 9 }

10

11 public static void third() {

12 System.out.println("Inside third method");

13 first();

14 second();

15 }

16

17 public static void main(String[] args) {

18 first();

19 third();

20 second();

21 third();

22 }

23 }

24. What would have been the output of the preceding program if
the third method had contained the following statements?

public static void third() {

 first();

 second();

 System.out.println("Inside third method");

}

25. What would have been the output of the Strange program if
the main method had contained the following statements?
(Use the original version of third , not the modified version
from the most recent exercise.)

public static void main(String[] args) {

 second();

 first();

 second();

 third();

}

26. What is the output of the following program? (You may wish to
draw a structure diagram first.)

 1 public class Confusing {

 2 public static void method2() {

 3 method1();

 4 System.out.println("I am method 2.");

 5 }

 6

 7 public static void method3() {

 8 method2();

 9 System.out.println("I am method 3.");

10 method1();

11 }

12

13 public static void method1() {

14 System.out.println("I am method 1.");

15 }

16

17 public static void main(String[] args) {

18 method1();

19 method3();

20 method2();

21 method3();

22 }

23 }

27. What would have been the output of the preceding program if
the method3 method had contained the following statements?

public static void method3() {

 method1();

 method2();

 System.out.println("I am method 3.");

}

28. What would have been the output of the Confusing program if
the main method had contained the following statements?
(Use the original version of method3 , not the modified version
from the most recent exercise.)

public static void main(String[] args) {

 method2();

 method1();

 method3();

 method2();

}

29. The following program contains at least 10 syntax errors.
What are they?

 1 public class LotsOf Errors {

 2 public static main(String args) {

 3 System.println(Hello, world!);

 4 message()

 5 }

 6

 7 public static void message {

 8 System.out println("This program surely

cannot ";

 9 System.out.println("have any "errors" in

it");

10 }

30. Consider the following program, saved into a file named
Example.java :

 1 public class Example {

 2 public static void displayRule() {

 3 System.out.println("The first rule ");

 4 System.out.println("of Java Club is,");

 5 System.out.println();

 6 System.out.println("you do not talk about

Java Club.");

 7 }

 8

 9 public static void main(String[] args) {

10 System.out.println("The rules of Java

Club.");

11 displayRule();

12 displayRule();

13 }

14 }

What would happen if each of the following changes were
made to the Example program? For example, would there be
no effect, a syntax error, or a different program output? Treat
each change independently of the others.

a. Change line 1 to: public class Demonstration
b. Change line 9 to: public static void MAIN(String[]

args) {

c. Insert a new line after line 11 that reads:
System.out.println();

d. Change line 2 to: public static void printMessage() {
e. Change line 2 to: public static void showMessage() {

and change lines 11 and 12 to: showMessage();
f. Replace lines 3–4 with: System.out.println(" The first
rule of Java Club is, ");

31. The following program is legal under Java’s syntax rules, but
it is difficult to read because of its layout and lack of
comments. Reformat it using the rules given in this chapter,
and add a comment header at the top of the program.

 1 public

 2 class GiveAdvice{ public static

 3 void main (String[]args){ System.out.println (

 4

 5 "Programs can be easy or"); System.out.println(

 6 "difficult to read, depending"

 7); System.out.println("upon their format.")

 8 ;System.out.println();System.out.println(

 9 "Everyone, including yourself,");

10 System.out.println

11 ("will be happier if you choose");

12 System.out.println("to format your programs."

13); }

14 }

32. The following program is legal under Java’s syntax rules, but
it is difficult to read because of its layout and lack of
comments. Reformat it using the rules given in this chapter,
and add a comment header at the top of the program.

 1 public

 2 class Messy{public

 3 static void main(String[]args){message ()

 4 ;System.out.println() ; message ();} public

static void

 5 message() { System.out.println(

 6 "I really wish that"

 7);System.out.println

 8 ("I had formatted my source")

 9 ;System.out.println("code correctly!");}}

Exercises
1. Write a complete Java program called Stewie that prints the

following output:

//////////////////////

|| Victory is mine! ||

\\\\\\\\\\\\\\\\\\\\\\

2. Write a complete Java program called Spikey that prints the
following output:

 \/

 \\//

\\\///

///\\\

 //\\

 /\

3. Write a complete Java program called WellFormed that prints
the following output:

A well–formed Java program has

a main method with { and }

braces.

A System.out.println statement

has (and) and usually a

String that starts and ends

with a " character.

(But we type \" instead!)

4. Write a complete Java program called Difference that prints
the following output:

What is the difference between

a ' and a "? Or between a " and a \"?

One is what we see when we're typing our program.

The other is what appears on the "console."

5. Write a complete Java program called MuchBetter that prints
the following output:

A "quoted" String is

'much' better if you learn

the rules of "escape sequences."

Also, "" represents an empty String.

Don't forget: use \" instead of " !

'' is not the same as "

6. Write a complete Java program called Meta whose output is
the text that would be the source code of a Java program that

prints “Hello, world!” as its output.
7. Write a complete Java program called Mantra that prints the

following output. Use at least one static method besides main .

There's one thing every coder must understand:

The System.out.println command.

There's one thing every coder must understand:

The System.out.println command.

8. Write a complete Java program called Stewie2 that prints the
following output. Use at least one static method besides main .

//////////////////////

|| Victory is mine! ||

\\\\\\\\\\\\\\\\\\\\\\

|| Victory is mine! ||

\\\\\\\\\\\\\\\\\\\\\\

|| Victory is mine! ||

\\\\\\\\\\\\\\\\\\\\\\

|| Victory is mine! ||

\\\\\\\\\\\\\\\\\\\\\\

|| Victory is mine! ||

\\\\\\\\\\\\\\\\\\\\\\

9. Write a program called Egg that displays the following output:

 / \

 / \

 -"-'-"-'-"-

 \ /

 _______/

10. Modify the program from the previous exercise to become a
new program Egg2 that displays the following output. Use
static methods as appropriate.

 / \

/ \

\ /

 _______/

-"-'-"-'-"-

 / \

/ \

\ /

 _______/

-"-'-"-'-"-

\ /

 _______/

 / \

/ \

-"-'-"-'-"-

\ /

 _______/

11. Write a Java program called TwoRockets that generates the
following output. Use static methods to show structure and
eliminate redundancy in your solution. Note that there are two
rocket ships next to each other. What redundancy can you
eliminate using static methods? What redundancy cannot be
eliminated?

 /\ /\

 / \ / \

 / \ / \

+------+ +------+

| | | |

| | | |

+------+ +------+

|United| |United|

|States| |States|

+------+ +------+

| | | |

| | | |

+------+ +------+

 /\ /\

 / \ / \

 / \ / \

12. Write a program called FightSong that produces this output.
Use at least two static methods to show structure and
eliminate redundancy in your solution.

Go, team, go!

You can do it.

Go, team, go!

You can do it.

You're the best,

In the West.

Go, team, go!

You can do it.

Go, team, go!

You can do it.

You're the best,

in the West.

Go, team, go!

You can do it.

Go, team, go!

You can do it.

13. Write a Java program called StarFigures that generates the
following output. Use static methods to show structure and
eliminate redundancy in your solution.

 * *

 *

 * *

 * *

 *

 * *

 *

 *

 *

 * *

 *

 * *

14. Write a Java program called Lanterns that generates the
following output. Use static methods to show structure and
eliminate redundancy in your solution.

* | | | | | *

* | | | | | *

* | | | | | *

15. Write a Java program called EggStop that generates the
following output. Use static methods to show structure and
eliminate redundancy in your solution.

 / \

/ \

\ /

 _______/

\ /

 _______/

+-------+

 / \

/ \

| STOP |

\ /

 _______/

 / \

/ \

+---------+

16. Write a program called Shining that prints the following line of
output 1000 times:

All work and no play makes Jack a dull boy.

You should not write a program that uses 1000 lines of source
code; use methods to shorten the program. What is the

shortest program you can write that will produce the 1000
lines of output, using only the material from this chapter?

17. Write a program called FarewellGoodBye that prints the
following lyrics. Use static methods to show structure and
eliminate redundancy in your solution.

Farewell,

goodbye,

au revoir,

good night!

It's time, to go,

and I'll be out of sight!

Farewell,

goodbye,

au revoir,

take care!

I'll say, goodbye,

that's neither here nor there!

Farewell,

goodbye,

au revoir,

see you later!

I hope, you think,

I'm a lover, not a hater!

Programming Projects
1. Write a program to spell out MISSISSIPPI using block letters

like the following (one per line):

M M IIIII SSSSS PPPPPP

MM MM I S S P P

M M M M I S P P

M M M I SSSSS PPPPPP

M M I S P

M M I S S P

M M IIIII SSSSS P

2. Sometimes we write similar letters to different people. For
example, you might write to your parents to tell them about
your classes and your friends and to ask for money; you might
write to a friend about your love life, your classes, and your
hobbies; and you might write to your brother about your
hobbies and your friends and to ask for money. Write a
program that prints similar letters such as these to three
people of your choice. Each letter should have at least one
paragraph in common with each of the other letters. Your
main program should have three method calls, one for each of
the people to whom you are writing. Try to isolate repeated
tasks into methods.

3. Write a program that produces as output the lyrics to the
repetitive song, “There Was an Old Lady Who Swallowed a
Fly,” by Simms Taback. Use methods for each verse and the
refrain. Your methods should capture the structure of the
song’s verses as well as avoid redundancy between similar
lines and groups of lines.

4. Write a program that produces as output the words of “The
Twelve Days of Christmas.” (Static methods simplify this
task.) Here are the first two verses and the last verse of the
song:

On the first day of Christmas,

my true love sent to me

a partridge in a pear tree.

On the second day of Christmas,

my true love sent to me

two turtle doves, and

a partridge in a pear tree.

...

On the twelfth day of Christmas,

my true love sent to me

Twelve drummers drumming,

eleven pipers piping,

ten lords a-leaping,

nine ladies dancing,

eight maids a-milking,

seven swans a-swimming,

six geese a-laying,

five golden rings,

four calling birds,

three French hens,

two turtle doves, and

a partridge in a pear tree.

5. Write a program that produces as output the words of “The
House That Jack Built.” Use methods for each verse and for
repeated text. Here are lyrics to use:

This is the house that Jack built.

This is the malt

That lay in the house that Jack built.

This is the rat,

That ate the malt

That lay in the house that Jack built.

This is the cat,

That killed the rat,

That ate the malt

That lay in the house that Jack built.

This is the dog,

That worried the cat,

That killed the rat,

That ate the malt

That lay in the house that Jack built.

This is the cow with the crumpled horn,

That tossed the dog,

That worried the cat,

That killed the rat,

That ate the malt

That lay in the house that Jack built.

This is the maiden all forlorn

That milked the cow with the crumpled horn,

That tossed the dog,

That worried the cat,

That killed the rat,

That ate the malt

That lay in the house that Jack built.

6. Write a program that produces as output the words of the
song, “Bought Me a Cat.” Use methods for each verse and for
repeated text.

7. Write a program that produces as output the words of the
following silly song. Use methods for each verse and for
repeated text. Here are the song’s complete lyrics:

I once wrote a program that wouldn't compile

I don't know why it wouldn't compile,

My TA just smiled.

My program did nothing

So I started typing.

I added System.out.println("I <3 coding"),

I don't know why it wouldn't compile,

My TA just smiled.

"Parse error," cried the compiler

Luckily I'm such a code baller.

I added a backslash to escape the quotes,

I added System.out.println("I <3 coding"),

I don't know why it wouldn't compile,

My TA just smiled.

Now the compiler wanted an identifier

And I thought the situation was getting dire.

I added a main method with its String[] args,

I added a backslash to escape the quotes,

I added System.out.println("I <3 coding"),

I don't know why it wouldn't compile,

My TA just smiled.

Java complained it expected an enum

Boy, these computers really are dumb!

I added a public class and called it Scum,

I added a main method with its String[] args,

I added a backslash to escape the quotes,

I added System.out.println("I <3 coding"),

I don't know why it wouldn't compile,

My TA just smiled.

Chapter 2 Primitive Data and
Definite Loops

2.1 Basic Data Concepts
• Primitive Types

• Expressions

• JShell

• Literals

• Arithmetic Operators

• Precedence

• Mixing Types and Casting

2.2 Variables
• Assignment/Declaration Variations

• String Concatenation

• Increment/Decrement Operators

• Variables and Mixing Types

2.3 The for Loop
• Tracing for Loops

• for Loop Patterns

• Nested for Loops

2.4 Managing Complexity
• Scope

• Pseudocode

• The Table Technique

• Class Constants

2.5 Case Study: Hourglass Figure
• Problem Decomposition and Pseudocode

• Initial Structured Version

• Adding a Class Constant

• Further Variations

Introduction
Now that you know something about the basic
structure of Java programs, you are ready to
learn how to solve more complex problems. For

the time being we will still concentrate on
programs that produce output, but we will begin
to explore some of the aspects of programming
that require problem-solving skills.

The first half of this chapter fills in two important
areas. First, it examines expressions, which are
used to perform simple computations in Java,
particularly those involving numeric data.
Second, it discusses program elements called
variables that can change in value as the
program executes.

The second half of the chapter introduces your
first control structure: the for loop. You use this
structure to repeat actions in a program. This is
useful whenever you find a pattern in a task
such as the creation of a complex figure,
because you can use a for loop to repeat the
action to create that particular pattern. The
challenge is finding each pattern and figuring out
what repeated actions will reproduce it.

The for loop is a flexible control structure that
can be used for many tasks. In this chapter we
use it for definite loops, where you know exactly
how many times you want to perform a

particular task. In Chapter 5 we will discuss
how to write indefinite loops, where you don't
know in advance how many times to perform a
task.

2.1 Basic Data Concepts
Programs manipulate information, and information comes in many
forms. Java is a type-safe language, which means that it requires
you to be explicit about what kind of information you intend to
manipulate and it guarantees that you manipulate the data in a
reasonable manner. Everything that you manipulate in a Java
program will be of a certain type, and you will constantly find yourself
telling Java what types of data you intend to use.

Data Type
A name for a category of data values that are all
related, as in type int in Java, which is used to
represent integer values.

A decision was made early in the design of Java to support two
different kinds of data: primitive data and objects. The designers
made this decision purely on the basis of performance, to make Java
programs run faster. Unfortunately, it means that you have to learn
two sets of rules about how data works, but this is one of those times
when you simply have to pay the price if you want to use an

industrial-strength programming language. To make things a little
easier, we will study the primitive data types first, in this chapter; in
the next chapter, we will turn our attention to objects.

Primitive Types

There are eight primitive data types in Java: boolean , byte , char ,
double , float , int , long , and short . Four of these are considered
fundamental: boolean , char , double , and int . The other four types
are variations that exist for programs that have special requirements.
The four fundamental types that we will explore are listed in Table
2.1 .

Table 2.1 Commonly Used Primitive Types in Java

The type names (int , double , char , and boolean) are Java
keywords that you will use in your programs to let the compiler know
that you intend to use that type of data.

It may seem odd to use one type for integers and another type for
real numbers. Isn’t every integer a real number? The answer is yes,
but these are fundamentally different types of numbers. The
difference is so great that we make this distinction even in English.
We don’t ask, “How much sisters do you have?” or “How many do
you weigh?” We realize that sisters come in discrete integer
quantities (0 sisters, 1 sister, 2 sisters, 3 sisters, and so on), and we

use the word “many” for integer quantities (“How many sisters do
you have?”). Similarly, we realize that weight can vary by tiny
amounts (175 pounds versus 175.5 pounds versus 175.25 pounds,
and so on), and we use the word “much” for these real-number
quantities (“How much do you weigh?”).

In programming, this distinction is even more important, because
integers and reals are represented in different ways in the
computer’s memory: Integers are stored exactly, while reals are
stored as approximations with a limited number of digits of accuracy.
You will see that storing values as approximations can lead to round-
off errors when you use real values.

The name double for real values is not very intuitive. It’s an accident
of history in much the same way that we still talk about “dialing” a
number on our telephones even though modern telephones don’t
have dials. The C programming language introduced a type called
float (short for “floating-point number”) for storing real numbers. But
float had limited accuracy, so another type was introduced, called
double (short for “double precision,” meaning that it had double the
precision of a simple float). As memory became cheaper, people
began using double as the default for floating-point values. In
hindsight, it might have been better to use the word float for what is
now called double and a word like “half” for the values with less
accuracy, but it’s tough to change habits that are so ingrained. So,
programming languages will continue to use the word double for

floating-point numbers, and people will still talk about “dialing” people
on the phone even if they’ve never touched a telephone dial.

Expressions

When you write programs, you will often need to include values and
calculations. The technical term for these elements is expressions.

Expression
A simple value or a set of operations that produces a
value.

The simplest expression is a specific value, like 42 or 28.9 . We call
these “literal values,” or literals. More complex expressions involve

combining simple values. Suppose, for example, that you want to
know how many bottles of water you have. If you have two 6-packs,
four 4-packs, and two individual bottles, you can compute the total
number of bottles with the following expression:

(2 * 6) + (4 * 4) + 2

Notice that we use an asterisk to represent multiplication and that we
use parentheses to group parts of the expression. The computer
determines the value of an expression by evaluating it.

Evaluation
The process of obtaining the value of an expression.

The value obtained when an expression is evaluated is called the
result.

Complex expressions are formed using operators.

Operator

A special symbol (like + or *) that is used to indicate
an operation to be performed on one or more values.

The values used in the expression are called operands. For
example, consider the following simple expressions:

3 + 29

4 * 5

The operators here are the + and * , and the operands are simple
numbers.

When you form complex expressions, these simpler expressions can
in turn become operands for other operators. For example, the
expression

(3 + 29) − (4 * 5)

has two levels of operators.

The addition operator has simple operands of 3 and 29 and the
multiplication operator has simple operands of 4 and 5 , but the
subtraction operator has operands that are each parenthesized
expressions with operators of their own. Thus, complex expressions
can be built from smaller expressions. At the lowest level, you have
simple numbers. These are used as operands to make more
complex expressions, which in turn can be used as operands in even
more complex expressions.

There are many things you can do with expressions. One of the
simplest things you can do is to print the value of an expression
using a println statement. For example, if you say:

System.out.println(42);

System.out.println(2 + 2);

you will get the following two lines of output:

42

4

Notice that for the second println , the computer evaluates the
expression (adding 2 and 2) and prints the result (in this case, 4). In
the next section we will discuss JShell, which is a program that
allows you to type Java expressions and see their results
immediately.

You will see many different operators as you progress through this
book, all of which can be used to form expressions. Expressions can
be arbitrarily complex, with as many operators as you like. For that
reason, when we tell you, “An expression can be used here,” we
mean that you can use arbitrary expressions that include complex
expressions as well as simple values.

JShell

Starting with Java 9, the Java Development Kit now includes a tool
called JShell that you can use to explore Java’s syntax and features.
JShell is a program with a prompt where you can type arbitrary Java
expressions. Once you press Enter, the expression you typed will
immediately be evaluated and its result will be displayed. This kind of
tool is often called a Read-Evaluate-Print Loop or REPL for short.

Read-Evaluate-Print Loop (REPL)
A program that prompts the user for an individual code
expression, then executes the expression and displays
its result immediately.

REPLs are useful when you are learning to program or learning a
new language because you can try out commands quickly and
receive instant feedback. In the official proposal for adding this tool
to Java, the developers of the language wrote, “Immediate feedback
is important when learning a programming language and its APIs.
The number one reason schools cite for moving away from Java as
a teaching language is that other languages have a ‘REPL’ and have
far lower bars to an initial ‘Hello, world!’ program.”

JShell is integrated with some Java editor programs. (In some
editors, the shell is given an alternate name such as “Interactions

Pane.”) Consult your editor’s documentation or the JShell
documentation to learn the best way to launch JShell on your
machine.

When you first launch JShell, you will see a prompt that looks
something like the following:

| Welcome to JShell -- Version 10.0.2

| For an introduction type: /help intro

jshell>

You can type an expression at the prompt, and JShell will compute
and display its result (user input is in bold):

jshell> 1 + 2

$1 ==> 3

In the above interaction, JShell computed the result of 1 + 2 and
displayed it as 3 . The output refers to $1 because JShell gives a
numeric ID to every result it computes in case you want to refer back
to that result later. You can generally ignore these IDs and focus on
the computed values.

JShell can compute results of complex expressions. For example,
here is the result of an expression from the previous section:

jshell> (3 + 29) - (4 * 5)

$2 ==> 12

JShell has lots of features and options. For example, you can press
the Up and Down arrows on your keyboard to recall previous
expressions you typed. When you are done using JShell, you can
type /exit to stop using the tool:

jshell> /exit

As you are learning new programming concepts and Java features,
consider launching JShell to test them out. It is a valuable tool to
help you verify and enhance your understanding of programming
concepts. We will also show examples of JShell interactions
throughout the rest of this text when introducing new concepts.

Literals

The simplest expressions refer to values directly using what are
known as literals. An integer literal (considered to be of type int) is
a sequence of digits with or without a leading sign:

3 482 −29434 0 92348 +9812

A floating-point literal (considered to be of type double) includes a
decimal point:

298.4 0.284 207. .2843 −17.452 −.98

Notice that 207 . is considered a double even though it coincides with
an integer, because of the decimal point. Literals of type double can
also be expressed in scientific notation (a number followed by e
followed by an integer):

2.3e4 1e-5 3.84e92 2.458e12

The first of these numbers represents 2.3 times 10 to the 4th power,
which equals 23,000. Even though this value happens to coincide
with an integer, it is considered to be of type double because it is
expressed in scientific notation. The second number represents 1
times 10 to the -5th power, which is equal to 0.00001. The third
number represents 3.84 times 10 to the 92nd power. The fourth
number represents 2.458 times 10 to the 12th power.

We have seen that textual information can be stored in literal strings
that store a sequence of characters. In later chapters we will explore
how to process a string character by character. Each such character

is of type char . A character literal is enclosed in single quotation
marks and includes just one character:

'a' 'm' 'X' '!' '3' '\\'

All of these examples are of type char . Notice that the last example
uses an escape sequence to represent the backslash character. You
can even refer to the single quotation character using an escape
sequence:

'\''

Finally, the primitive type boolean stores logical information. We
won’t be exploring the use of type boolean until we reach Chapter
4 and see how to introduce logical tests into our programs, but for
completeness, we include the boolean literal values here. Logic
deals with just two possibilities: true and false. These two Java
keywords are the two literal values of type boolean :

true false

Arithmetic Operators

The basic arithmetic operators are shown in Table 2.2 . The
addition and subtraction operators will, of course, look familiar to
you, as should the asterisk as a multiplication operator and the
forward slash as a division operator. However, as you’ll see, Java
has two different division operations. The remainder or mod
operation may be unfamiliar.

Table 2.2 Arithmetic Operators in Java

Division presents a problem when the operands are integers. When
you divide 119 by 5, for example, you do not get an integer result.
Therefore, the results of integer division are expressed as two
different integers, a quotient and a remainder:

In terms of the arithmetic operators:

119 / 5 evaluates to 23

119 % 5 evaluates to 4

These two division operators should be familiar if you recall how
long-division calculations are performed:

119

5
= 23 (quotient) with 4 (remainder)

Here, dividing 1079 by 34 yields 31 with a remainder of 25. Using
arithmetic operators, the problem would be described like this:

1079 / 34 evaluates to 31

1079 % 34 evaluates to 25

It takes a while to get used to integer division in Java. When you are
using the division operator (/), the key thing to keep in mind is that it
truncates anything after the decimal point. So, if you imagine
computing an answer on a calculator, just think of ignoring anything
after the decimal point:

19/5 is 3.8 on a calculator, so 19/5 evaluates to 3
207/10 is 20.7 on a calculator, so 207/10 evaluates to 20
3/8 is 0.375 on a calculator, so 3/8 evaluates to 0

The remainder operator (%) is usually referred to as the “mod
operator,” or simply “mod.” The mod operator lets you know how

31

34

 102

 59

 34

 25

1079

much was left unaccounted for by the truncating division operator.
For example, given the previous examples, you’d compute the mod
results as shown in Table 2.3 .

Table 2.3 Examples of Mod Operator

In each case, you figure out how much of the number is accounted
for by the truncating division operator. The mod operator gives you
any excess (the remainder). When you put this into a formula, you
can think of the mod operator as behaving as follows:

x % y = x − (x / y) * y

It is possible to get a result of 0 for the mod operator. This happens
when one number divides evenly into another. For example, each of
the following expressions evaluates to 0 because the second
number goes evenly into the first number:

28 % 7

95 % 5

44 % 2

A few special cases are worth noting because they are not always
immediately obvious to novice programmers:

Numerator smaller than denominator: In this case division
produces 0 and mod produces the original number. For example,
7 / 10 is 0 and 7 % 10 is 7 .
Numerator of 0: In this case both division and mod return 0. For
example, both 0 / 10 and 0 % 10 evaluate to 0 .
Denominator of 0: In this case, both division and mod are
undefined and produce a runtime error. For example, a program
that attempts to evaluate either 7 / 0 or 7 % 0 will throw an
ArithmeticException error.

The mod operator has many useful applications in computer
programs. Here are just a few ideas:

Testing whether a number is even or odd (number % 2 is 0 for
evens, number % 2 is 1 for odds).
Finding individual digits of a number (e.g., number % 10 is the final
digit).
Finding the last four digits of a social security number (number %
10000).

The remainder operator can be used with doubles as well as with
integers, and it works similarly: You consider how much is left over
when you take away as many “whole” values as you can. For
example, the expression 10.2 % 2.4 evaluates to 0.6 because you
can take away four 2.4s from 10.2 , leaving you with 0.6 left over.

For floating-point values (values of type double), the division
operator does what we consider “normal” division. So, even though
the expression 119 / 5 evaluates to 23 , the expression 119.0 / 5.0
evaluates to 23.8 .

You can test the division operators using JShell. Here is an example
interaction:

jshell> 19 / 5

$1 ==> 3

jshell> 1079 % 34

$2 ==> 25

jshell> 7 / 10

$3 ==> 0

jshell> 7 % 10

$4 ==> 7

jshell> 0 % 10

$5 ==> 0

jshell> 125.0 / 5.0 / 10.0

$6 ==> 2.5

Precedence

Java expressions are like complex noun phrases in English. Such
phrases are subject to ambiguity. For example, consider the phrase
“the man on the hill by the river with the telescope.” Is the river by
the hill or by the man? Is the man holding the telescope, or is the
telescope on the hill, or is the telescope in the river? We don’t know
how to group the various parts together.

You can get the same kind of ambiguity if parentheses aren’t used to
group the parts of a Java expression. For example, the expression 2
+ 3 * 4 has two operators. Which operation is performed first? You
could interpret this two ways:

The first of these evaluates to 20 while the second evaluates to 14 .
To deal with the ambiguity, Java has rules of precedence that
determine how to group together the various parts.

Precedence

2 + 3������ * 4 2 + 3 * 4������

20

5 * 4������
14

2 + 12������

The binding power of an operator, which determines
how to group parts of an expression.

The computer applies rules of precedence when the grouping of
operators in an expression is ambiguous. An operator with high
precedence is evaluated first, followed by operators of lower
precedence. Within a given level of precedence the operators are
evaluated in one direction, usually left to right.

For arithmetic expressions, there are two levels of precedence. The
multiplicative operators (* , / , %) have a higher level of precedence
than the additive operators (+ , −). Thus, the expression 2 + 3 * 4 is
interpreted as

Within the same level of precedence, arithmetic operators are
evaluated from left to right. This often doesn’t make a difference in
the final result, but occasionally it does. Consider, for example, the
expression

40 − 25 − 9

2 + 3 * 4������

14

2 + 12������

which evaluates as follows:

You would get a different result if the second subtraction were
evaluated first.

You can always override precedence with parentheses. For example,
if you really want the second subtraction to be evaluated first, you
can force that to happen by introducing parentheses:

40 − (25 − 9)

The expression now evaluates as follows:

Another concept in arithmetic is unary plus and minus, which take a
single operand, as opposed to the binary operators we have seen
thus far (e.g., *, /, and even binary + and −), all of which take two

− 940 − 25������

6

15 − 9������

40 − (25 − 9)������

24

40 − 16������

operands. For example, we can find the negation of 8 by asking for
−8 . These unary operators have a higher level of precedence than
the multiplicative operators. Consequently, we can form expressions
like the following:

12 * −8

which evaluates to −96 .

We will see many types of operators in the next few chapters. Table
2.4 is a precedence table that includes the arithmetic operators.
As we introduce more operators, we’ll update this table to include
them as well. The table is ordered from highest precedence to lowest
precedence and indicates that Java will first group parts of an
expression using the unary operators, then using the multiplicative
operators, and finally using the additive operators.

Table 2.4 Java Operator Precedence

Before we leave this topic, let’s look at a complex expression and
see how it is evaluated step by step. Consider the following
expression:

13 * 2 + 239 / 10 % 5 − 2 * 2

It has a total of six operators: two multiplications, one division, one
mod, one subtraction, and one addition. The multiplication, division,
and mod operations will be performed first, because they have
higher precedence, and they will be performed from left to right
because they are all at the same level of precedence:

Now we evaluate the additive operators from left to right:

Mixing Types and Casting

You’ll often find yourself mixing values of different types and wanting
to convert from one type to another. Java has simple rules to avoid

− 426 + 3������

25

29 − 4������

confusion and provides a mechanism for requesting that a value be
converted from one type to another.

Two types that are frequently mixed are ints and doubles . You
might, for example, ask Java to compute 2 * 3.6 . This expression
includes the int literal 2 and the double literal 3.6 . In this case,
Java converts the int into a double and performs the computation
entirely with double values; this is always the rule when Java
encounters an int where it was expecting a double .

This becomes particularly important when you form expressions that
involve division. If the two operands are both of type int , Java will
use integer (truncating) division. If either of the two operands is of
type double , however, it will do real-valued (normal) division. For
example, 23 / 4 evaluates to 5 , but all of the following evaluate to
5.75 :

23.0 / 4

23. / 4

23 / 4.0

23 / 4.

23. / 4.

23.0 / 4.0

Sometimes you want Java to go the other way, converting a double
into an int . You can ask Java for this conversion with a cast. Think
of it as “casting a value in a different light.” You request a cast by
putting the name of the type you want to cast to in parentheses in
front of the value you want to cast. For example,

(int) 4.75

will produce the int value 4 . When you cast a double value to an
int , it simply truncates anything after the decimal point.

If you want to cast the result of an expression, you have to be careful
to use parentheses. For example, suppose that you have some
books that are each 0.15 feet wide and you want to know how many
of them will fit in a bookshelf that is 2.5 feet wide. You could do a
straight division of 2.5 / 0.15 , but that evaluates to a double result
that is between 16 and 17. Americans use the phrase “16 and
change” as a way to express the idea that a value is larger than 16
but not as big as 17. In this case, we don’t care about the “change”;
we only want to compute the 16 part. You might form the following
expression:

jshell> (int) 2.5 / 0.15

$1 ==> 13.333333333333334

Unfortunately, this expression evaluates to the wrong answer
because the cast is applied to whatever comes right after it (here,
the value 2.5). This casts 2.5 into the integer 2 , divides by 0.15 ,
and evaluates to 13 and change, which isn’t an integer and isn’t the
right answer. Instead, you want to form this expression:

jshell> (int) (2.5 / 0.15)

$2 ==> 16

This expression first performs the division to get 16 and change, and
then casts that value to an int by truncating it. It thus evaluates to
the int value 16 , which is the answer you’re looking for.

2.2 Variables

Primitive data can be stored in the computer’s memory in a variable.

Variable
A memory location with a name and a type that stores
a value.

Think of the computer’s memory as being like a giant spreadsheet
that has many cells where data can be stored. When you create a
variable in Java, you are asking it to set aside one of those cells for
this new variable. Initially the cell will be empty, but you will have the

option to store a value in the cell. And as with a spreadsheet, you will
have the option to change the value in that cell later.

Java is a little more picky than a spreadsheet, though, in that it
requires you to tell it exactly what kind of data you are going to store
in the cell. For example, if you want to store an integer, you need to
tell Java that you intend to use type int . If you want to store a real
value, you need to tell Java that you intend to use a double . You also
have to decide on a name to use when you want to refer to this
memory location. The normal rules of Java identifiers apply (the
name must start with a letter, which can be followed by any
combination of letters and digits). The standard convention in Java is
to start variable names with a lowercase letter, as in number or
digits , and to capitalize any subsequent words, as in
numberOfDigits.

To explore the basic use of variables, let’s examine a program that
computes an individual’s body mass index (BMI). Health
professionals use this number to advise people about whether or not
they are overweight. Given an individual’s height and weight, we can
compute that person’s BMI. A simple BMI program, then, would
naturally have three variables for these three pieces of information.
There are several details that we need to discuss about variables,
but it can be helpful to look at a complete program first to see the
overall picture. The following program computes and prints the BMI
for an individual who is 5 feet 10 inches tall and weighs 195 pounds:

 1 // Computes Body Mass Index (BMI) for a specific person.

 2 public class BMICalculator {

 3 public static void main(String[] args) {

 4 // declare variables

 5 double height;

 6 double weight;

 7 double bmi;

 8

 9 // compute BMI

10 height = 70;

11 weight = 195;

12 bmi = weight / (height * height) * 703;

13

14 // print results

15 System.out.println("Current BMI:");

16 System.out.println(bmi);

17 }

18 }

Notice that the program includes blank lines to separate the sections
and comments to indicate what the different parts of the program do.
It produces the following output:

Current BMI:

27.976530612244897

Let’s now examine the details of this program to understand how
variables work. Before variables can be used in a Java program,
they must be declared. The line of code that declares the variable is
known as a variable declaration.

Declaration
A request to set aside a new variable with a given
name and type.

Each variable is declared just once. If you declare a variable more
than once, you will get an error message from the Java compiler.
Simple variable declarations are of the form

<type> <name>;

as in the three declarations at the beginning of our sample program:

double height;

double weight;

double bmi;

Notice that a variable declaration, like a statement, ends with a
semicolon. These declarations can appear anywhere a statement
can occur. The declaration indicates the type and the name of the
variable. Remember that the name of each primitive type is a
keyword in Java (int , double , char , boolean). We’ve used the
keyword double to define the type of these three variables.

Once a variable is declared, Java sets aside a memory location to
store its value. However, with the simple form of variable declaration
used in our program, Java does not store initial values in these
memory locations. We refer to these as uninitialized variables, and
they are similar to blank cells in a spreadsheet:

So how do we get values into those cells? The easiest way to do so
is using an assignment statement. The general syntax of the
assignment statement is

<variable> = <expression>;

as in

height = 70;

This statement stores the value 70 in the memory location for the
variable height , indicating that this person is 70 inches tall (5 feet 10
inches). We often use the phrase “gets” or “is assigned” when
reading a statement like this, as in “ height gets 70 ” or “ height is
assigned 70 .”

When the statement executes, the computer first evaluates the
expression on the right side; then, it stores the result in the memory
location for the given variable. In this case the expression is just a
simple literal value, so after the computer executes this statement,
the memory looks like this:

Notice that the value is stored as 70.0 because the variable is of
type double . The variable height has now been initialized, but the
variables weight and bmi are still uninitialized. The second
assignment statement gives a value to weight :

weight = 195;

After executing this statement, the memory looks like this:

The third assignment statement includes a formula (an expression to
be evaluated):

bmi = weight / (height * height) * 703;

To calculate the value of this expression, the computer divides the
weight by the square of the height and then multiplies the result of
that operation by the literal value 703 . The result is stored in the
variable bmi . So, after the computer has executed the third
assignment statement, the memory looks like this:

The last two lines of the program report the BMI result using println
statements:

System.out.println("Current BMI:");

System.out.println(bmi);

Notice that we can include a variable in a println statement the
same way that we include literal values and other expressions to be
printed.

As its name implies, a variable can take on different values at
different times. For example, consider the following variation of the

BMI program, which computes a new BMI assuming the person lost
15 pounds (going from 195 pounds to 180 pounds).

 1 // Computes Body Mass Index (BMI) for two specific people.

 2 public class BMICalculator2 {

 3 public static void main(String[] args) {

 4 // declare variables

 5 double height;

 6 double weight;

 7 double bmi;

 8

 9 // compute BMI

10 height = 70;

11 weight = 195;

12 bmi = weight / (height * height) * 703;

13

14 // print results

15 System.out.println("Previous BMI:");

16 System.out.println(bmi);

17

18 // recompute BMI

19 weight = 180;

20 bmi = weight / (height * height) * 703;

21

22 // report new results

23 System.out.println("Current BMI:");

24 System.out.println(bmi);

25 }

26 }

The program begins the same way, setting the three variables to the
following values and reporting this initial value for BMI:

But the new program then includes the following assignment
statement:

weight = 180;

This changes the value of the weight variable:

You might think that this would also change the value of the bmi
variable. After all, earlier in the program we said that the following
should be true:

bmi = weight / (height * height) * 703;

This is a place where the spreadsheet analogy is not as accurate. A
spreadsheet can store formulas in its cells and when you update one
cell it can cause the values in other cells to be updated. The same is
not true in Java.

You might also be misled by the use of an equals sign for
assignment. Don’t confuse this statement with a statement of
equality. The assignment statement does not represent an algebraic
relationship. In algebra, you might say

In mathematics you state definitively that is equal to plus two, a
fact that is true now and forever. If changes, will change
accordingly, and vice versa. Java’s assignment statement is very
different.

The assignment statement is a command to perform an action at a
particular point in time. It does not represent a lasting relationship
between variables. That’s why we usually say “gets” or “is assigned”
rather than saying “equals” when we read assignment statements.

Getting back to the program, resetting the variable called weight
does not reset the variable called bmi . To recompute bmi based on
the new value for weight , we must include the second assignment
statement:

x = y + 2

x y

x y

weight = 180;

bmi = weight / (height * height) * 703;

Otherwise, the variable bmi would store the same value as before.
That would be a rather depressing outcome to report to someone
who’s just lost 15 pounds. By including both of these statements, we
reset both the weight and bmi variables so that memory looks like
this:

The output of the new version of the program is

Previous BMI:

27.976530612244897

Current BMI:

25.82448979591837

One very common assignment statement that points out the
difference between algebraic relationships and program statements
is:

x = x + 1;

Remember not to think of this as “ x equals x + 1 .” There are no
numbers that satisfy that equation. We use a word like “gets” to read
this as “ x gets the value of x plus one.” This may seem a rather odd
statement, but you should be able to decipher it given the rules
outlined earlier. Suppose that the current value of x is 19 . To
execute the statement, you first evaluate the expression to obtain the
result 20 . The computer stores this value in the variable named on
the left, x. Thus, this statement adds one to the value of the
variable. We refer to this as incrementing the value of x . It is a
fundamental programming operation because it is the programming
equivalent of counting (1, 2, 3, 4, and so on). The following
statement is a variation that counts down, which we call
decrementing a variable:

x = x − 1;

We will discuss incrementing and decrementing in more detail later
in this chapter.

Assignment/Declaration Variations

Java is a complex language that provides a lot of flexibility to
programmers. In the last section we saw the simplest form of
variable declaration and assignment, but there are many variations

on this theme. It wouldn’t be a bad idea to stick with the simplest
form while you are learning, but you’ll come across other forms as
you read other people’s programs, so you’ll want to understand what
they mean.

The first variation is that Java allows you to provide an initial value
for a variable at the time that you declare it. The syntax is as follows:

<type> <name> = <expression>;

as in

double height = 70;

double weight = 195;

double bmi = weight / (height * height) * 703;

This variation combines declaration and assignment in one line of
code. The first two assignments have simple numbers after the
equals sign, but the third has a complex expression after the equals
sign. These three assignments have the same effect as providing
three declarations followed by three assignment statements:

double height;

double weight;

double bmi;

height = 70;

weight = 195;

bmi = weight / (height * height) * 703;

Another variation is to declare several variables that are all of the
same type in a single statement. The syntax is

<type> <name>, <name>, <name>, ..., <name>;

as in

double height, weight;

This example declares two different variables, both of type double .
Notice that the type appears just once, at the beginning of the
declaration.

The final variation is a mixture of the previous two forms. You can
declare multiple variables all of the same type, and you can initialize
them at the same time. For example, you could say

double height = 70, weight = 195;

This statement declares the two double variables height and weight
and gives them initial values (70 and 195 , respectively). Java even
allows you to mix initializing and not initializing, as in

double height = 70, weight = 195, bmi;

This statement declares three double variables called height ,
weight , and bmi and provides initial values to two of them (height
and weight). The variable bmi is uninitialized.

Since Java 10, you can declare a variable’s type as var and the
Java compiler will automatically infer the appropriate type. For
example, the declarations:

var age = 42;

var height = 70.5;

are equivalent to:

int age = 42;

double height = 70.5;

The authors prefer the standard style with variable types explicitly
named, so we will not use var in our examples in this text.

COMMON PROGRAMMING ERROR

Declaring the Same Variable Twice

One of the things to keep in mind as you learn is that you can
declare any given variable just once. You can assign it as
many times as you like once you’ve declared it, but the
declaration should appear just once. Think of variable
declaration as being like checking into a hotel and
assignment as being like going in and out of your room. You
have to check in first to get your room key, but then you can
come and go as often as you like. If you tried to check in a
second time, the hotel would be likely to ask you if you really
want to pay for a second room.

If you declare a variable more than once, Java generates a
compiler error. For example, say your program contains the
following lines:

int x = 13;

System.out.println(x);

int x = 2; // this line does not compile

System.out.println(x);

The first line is okay. It declares an integer variable called x
and initializes it to 13 . The second line is also okay, because

it simply prints the value of x . But the third line will generate
an error message indicating that “ x is already defined.” If you
want to change the value of x you need to use a simple
assignment statement instead of a variable declaration:

int x = 13;

System.out.println(x);

x = 2;

System.out.println(x);

We have been referring to the “assignment statement,” but in fact
assignment is an operator, not a statement. When you assign a
value to a variable, the overall expression evaluates to the value just
assigned. That means that you can form expressions that have
assignment operators embedded within them. Unlike most other
operators, the assignment operator evaluates from right to left, which
allows programmers to write statements like the following:

int x, y, z;

x = y = z = 2 * 5 + 4;

Because the assignment operator evaluates from right to left, this
statement is equivalent to:

x = (y = (z = 2 * 5 + 4));

The expression 2 * 5 + 4 evaluates to 14 . This value is assigned to
z . The assignment is itself an expression that evaluates to 14 , which
is then assigned to y . The assignment to y evaluates to 14 as well,
which is then assigned to x . The result is that all three variables are
assigned the value 14 .

String Concatenation

You saw in Chapter 1 that you can output string literals using
System.out.println . You can also output numeric expressions using
System.out.println :

System.out.println(12 + 3 − 1);

This statement causes the computer first to evaluate the expression,
which yields the value 14 , and then to write that value to the console
window. You’ll often want to output more than one value on a line,
but unfortunately, you can pass only one value to println . To get
around this limitation, Java provides a simple mechanism called
concatenation for putting together several pieces into one long string
literal.

String Concatenation
Combining several strings into a single string, or
combining a string with other data into a new, longer
string.

The addition (+) operator concatenates the pieces together. Doing
so forms an expression that can be evaluated. Even if the
expression includes both numbers and text, it can be evaluated just
like the numeric expressions we have been exploring. Consider, for
example, the following:

"I have " + 3 + " things to concatenate"

You have to pay close attention to the quotation marks in an
expression like this to keep track of which parts are “inside” a string
literal and which are outside. This expression begins with the text "I
have " (including a space at the end), followed by a plus sign and the
integer literal 3 . Java converts the integer into a textual form ("3")
and concatenates the two pieces together to form "I have 3" .
Following the 3 is another plus and another string literal, " things to
concatenate" (which starts with a space). This piece is glued onto the

end of the previous string to form the string "I have 3 things to
concatenate" .

You can see the result of string concatenation in JShell:

jshell> "I have " + 3 + " things to concatenate"

$1 ==> "I have 3 things to concatenate"

Because this expression produces a single concatenated string, we
can include it in a println statement:

System.out.println("I have " + 3 + " things to concatenate");

This statement produces a single line of output:

I have 3 things to concatenate

String concatenation is often used to report the value of a variable.
Consider, for example, the following program that computes the
number of hours, minutes, and seconds in a standard year:

 1 // Prints conversions between units of time.

 2 public class Time {

 3 public static void main(String[] args) {

 4 int hours = 365 * 24;

 5 int minutes = hours * 60;

 6 int seconds = minutes * 60;

 7 System.out.println("Hours in a year = " + hours);

 8 System.out.println("Minutes in a year = " +

minutes);

 9 System.out.println("Seconds in a year = " +

seconds);

10 }

11 }

Notice that the three println commands at the end each have a
string literal concatenated with a variable. The program produces the
following output:

Hours in a year = 8760

Minutes in a year = 525600

Seconds in a year = 31536000

You can use concatenation to form arbitrarily complex expressions.
For example, if you had variables x , y , and z and you wanted to
write out their values in coordinate format with parentheses and
commas, you could say:

System.out.println("(" + x + ", " + y + ", " + z + ")");

If x , y , and z had the values 8 , 19 , and 23 , respectively, this
statement would output the string "(8, 19, 23)" .

The + used for concatenation has the same level of precedence as
the normal arithmetic + operator, which can lead to some confusion.
Consider, for example, the following expression:

2 + 3 + " hello " + 7 + 2 * 3

This expression has four addition operators and one multiplication
operator. Because of precedence, we evaluate the multiplication first:

This grouping might seem odd, but that’s what the precedence rule
says to do: We don’t evaluate any additive operators until we’ve first
evaluated all of the multiplicative operators. Once we’ve taken care
of the multiplication, we’re left with the four addition operators. These
will be evaluated from left to right.

2 + 3 + " hello " + 7 +

2 + 3 + " hello " + 7 +

2 * 3������

6

The first addition involves two integer values. Even though the
overall expression involves a string, because this little subexpression
has just two integers we perform integer addition:

The next addition involves adding the integer 5 to the string literal "
hello " . If either of the two operands is a string, we perform
concatenation. So, in this case, we convert the integer into a text
equivalent ("5") and glue the pieces together to form a new string
value:

You might think that Java would add together the 7 and 6 the same
way it added the 2 and 3 to make 5 . But it doesn’t work that way.
The rules of precedence are simple, and Java follows them with
simple-minded consistency. Precedence tells us that addition
operators are evaluated from left to right, so first we add the string "5
hello " to 7 . That is another combination of a string and an integer,
so Java converts the integer to its textual equivalent ("7") and
concatenates the two parts together to form a new string:

2 + 3������ + " hello " + 7 + 6

5 + " hello " + 7 + 6

+ 7 + 6

+ 7 + 6

5 + " hello "������

" 5 hello "

Now there is just a single remaining addition to perform, which again
involves a string/integer combination. We convert the integer to its
textual equivalent ("6") and concatenate the two parts together to
form a new string:

Clearly, such expressions can be confusing, but you wouldn’t want
the Java compiler to have to try to guess what you mean. Our job as
programmers is easier if we know that the compiler is going to follow
simple rules consistently. You can make the expression clearer, and
specify how it is evaluated, by adding parentheses. For example, if
we really did want Java to add together the 7 and 6 instead of
concatenating them separately, we could have written the original
expression in the following much clearer way:

(2 + 3) + " hello " + (7 + 2 * 3)

Because of the parentheses, Java will evaluate the two numeric
parts of this expression first and then concatenate the results with

+ 6

+ 6

" 5 hello " + 7������

" 5 hello 7 "

" 5 hello 7" + 6������

" 5 hello 76"

the string in the middle. This expression evaluates to " 5 hello 13 ".

Increment/Decrement Operators

In addition to the standard assignment operator, Java has several
special operators that are useful for a particular family of operations
that are common in programming. As we mentioned earlier, you will
often find yourself increasing the value of a variable by a particular
amount, an operation called incrementing. You will also often find
yourself decreasing the value of a variable by a particular amount,
an operation called decrementing. To accomplish this, you write
statements like the following:

x = x + 1;

y = y − 1;

z = z + 2;

Likewise, you’ll frequently find yourself wanting to double or triple the
value of a variable or to reduce its value by a factor of 2, in which
case you might write code like the following:

x = x * 2;

y = y * 3;

z = z / 2;

Java has a shorthand for these situations. You glue together the
operator character (+ , − , * , etc.) with the equals sign to get a
special assignment operator (+= , −= , *= , etc.). This variation allows
you to rewrite assignment statements like the previous ones as
follows:

x += 1;

y −= 1;

z += 2;

x *= 2;

y *= 3;

z /= 2;

This convention is yet another detail to learn about Java, but it can
make the code easier to read. Think of a statement like x += 2 as
saying, “add 2 to x .” That’s more concise than saying x = x + 2 .

Java has an even more concise way of expressing the particular
case in which you want to increment by 1 or decrement by 1. In this
case, you can use the increment and decrement operators (++ and −
−). For example, you can say

x++;

y−−;

There are actually two different forms of each of these operators,
because you can also put the operator in front of the variable:

++x;

−−y;

The two versions of ++ are known as the preincrement (++x) and
postincrement (x++) operators. The two versions of −− are similarly
known as the predecrement (−− x) and postdecrement (x−−)
operators. The pre- versus post- distinction doesn’t matter when you
include them as statements by themselves, as in these two
examples. The difference comes up only when you embed these
statements inside more complex expressions, which we don’t
recommend.

Now that we’ve seen a number of new operators, it is worth revisiting
the issue of precedence. Table 2.5 shows an updated version of
the Java operator precedence table that includes the assignment
operators and the increment and decrement operators. Notice that
the increment and decrement operators are grouped with the unary
operators and have the highest precedence.

Table 2.5 Java Operator Precedence

You can declare and use variables in JShell. The JShell command
/vars shows all variables you have declared. Notice in the

interaction below that the /vars output also lists the IDs like $1, $2,
and so on that are automatically generated if you do not give a
variable name to a given expression. These are actually variables
you can use if you want to refer to a previous computation.

jshell> int age = 42;

age ==> 42

jshell> double height = 63.5;

height ==> 63.5

jshell> age * 2

$3 ==> 84

jshell> /vars

| int age = 42

| double height = 63.5

| int $3 = 84

jshell> $3 + 2

$4 ==> 86

DID YOU KNOW?

++ and −−

The ++ and −− operators were first introduced in the C
programming language. Java has them because the
designers of the language decided to use the syntax of C as
the basis for Java syntax. Many languages have made the
same choice, including C++ and C#. There is almost a sense
of pride among C programmers that these operators allow
you to write extremely concise code, but many other people
feel that they can make code unnecessarily complex. In this
book we always use these operators as separate statements
so that it is obvious what is going on, but in the interest of
completeness we will look at the other option here.

The pre- and post- variations both have the same overall
effect—the two increment operators increment a variable and
the two decrement operators decrement a variable—but they
differ in terms of what they evaluate to. When you increment
or decrement, there are really two values involved: the
original value that the variable had before the increment or
decrement operation, and the final value that the variable has
after the increment or decrement operation. The post-
versions evaluate to the original (older) value and the pre-
versions evaluate to the final (later) value.

Consider, for example, the following code fragment:

int x = 10;

int y = 20;

int z = ++x * y−−;

What value is z assigned? The answer is 220 . The third
assignment increments x to 11 and decrements y to 19, but
in computing the value of z , it uses the new value of x (++x)
times the old value of y (y−−), which is 11 times 20, or 220.

There is a simple mnemonic to remember this: When you see
x++ , read it as “give me x , then increment,” and when you
see ++x, read it as “increment, then give me x .” Another
memory device that might help is to remember that C++ is a
bad name for a programming language. The expression
“C++” would be interpreted as “evaluate to the old value of C
and then increment C.” In other words, even though you’re
trying to come up with something new and different, you’re
really stuck with the old awful language. The language you
want is ++C, which would be a new and improved language
rather than the old one. Some people have suggested that
perhaps Java is ++C.

Variables and Mixing Types

You already know that when you declare a variable, you must tell
Java what type of value it will be storing. For example, you might
declare a variable of type int for integer values or of type double for
real values. The situation is fairly clear when you have just integers

or just reals, but what happens when you start mixing the types? For
example, the following code is clearly okay:

int x;

double y;

x = 2 + 3;

y = 3.4 * 2.9;

Here, we have an integer variable that we assign an integer value
and a double variable that we assign a double value. But what if we
try to do it the other way around?

int x;

double y;

x = 3.4 * 2.9; // illegal

y = 2 + 3; // okay

As the comments indicate, you can’t assign an integer variable a
double value, but you can assign a double variable an integer value.
Let’s consider the second case first. The expression 2 + 3 evaluates
to the integer 5 . This value isn’t a double , but every integer is a real
value, so it is easy enough for Java to convert the integer into a
double . The technical term is that Java promotes the integer into a
double .

The first case is more problematic. The expression 3.4 * 2.9
evaluates to the double value 9.86 . This value can’t be stored in an
integer because it isn’t an integer. If you want to perform this kind of
operation, you’ll have to tell Java to convert this value into an integer.
As described earlier, you can cast a double to an int , which will
truncate anything after the decimal point:

x = (int) (3.4 * 2.9); // now legal

This statement first evaluates 3.4 * 2.9 to get 9.86 and then
truncates that value to get the integer 9 .

COMMON PROGRAMMING ERROR

Forgetting to Cast

We often write programs that involve a mixture of ints and
doubles , so it is easy to make mistakes when it comes to
combinations of the two. For example, suppose that you want
to compute the percentage of correctly answered questions
on a student’s test, given the total number of questions on the
test and the number of questions the student got right. You
might declare the following variables:

int totalQuestions;

int numRight;

double percent;

Suppose the first two are initialized as follows:

totalQuestions = 73;

numRight = 59;

How do you compute the percentage of questions that the
student got right? You divide the number right by the total
number of questions and multiply by 100 to turn it into a
percentage:

percent = numRight / totalQuestions * 100; // incorrect

Unfortunately, if you print out the value of the variable percent
after executing this line of code, you will find that it has the
value 0.0 . But obviously the student got more than 0%
correct.

The problem comes from integer division. The expression you
are using begins with two int values:

numRight / totalQuestions

which means you are computing

59 / 73

This evaluates to 0 with integer division. Some students fix
this by changing the types of all the variables to double . That
will solve the immediate problem, but it’s not a good choice
from a stylistic point of view. It is best to use the most
appropriate type for data, and the number of questions on the
test will definitely be an integer.

You could try to fix this by changing the value 100 to 100.0 :

percent = numRight / totalQuestions * 100.0; //

incorrect

but this doesn’t help because the division is done first.
However, it does work if you put the 100.0 first:

percent = 100.0 * numRight / totalQuestions;

Now the multiplication is computed before the division, which
means that everything is converted to double .

Sometimes you can fix a problem like this through a clever
rearrangement of the formula, but you don’t want to count on

cleverness. This is a good place to use a cast. For example,
returning to the original formula, you can cast each of the int
variables to double :

percent = (double) numRight / (double) totalQuestions *

100.0;

You can also take advantage of the fact that once you have
cast one of these two variables to double , the division will be
done with doubles. So you could, for example, cast just the
first value to double :

percent = (double) numRight / totalQuestions * 100.0;

2.3 The for Loop

Programming often involves specifying redundant tasks. The for
loop helps to avoid such redundancy by repeatedly executing a
sequence of statements over a particular range of values. Suppose
you want to write out the squares of the first five integers. You could
write a program like this:

 1 // A redundant program for squaring integers.

 2 public class WriteSquares {

 3 public static void main(String[] args) {

 4 System.out.println(1 + " squared = " + (1 * 1));

 5 System.out.println(2 + " squared = " + (2 * 2));

 6 System.out.println(3 + " squared = " + (3 * 3));

 7 System.out.println(4 + " squared = " + (4 * 4));

 8 System.out.println(5 + " squared = " + (5 * 5));

 9 }

10 }

which would produce the following output:

1 squared = 1

2 squared = 4

3 squared = 9

4 squared = 16

5 squared = 25

But this approach is tedious. The program has five statements that
are very similar. They are all of the form:

System.out.println(number + " squared = " + (number * number));

where number is either 1 , 2 , 3 , 4 , or 5 . The for loop avoids such
redundancy. Here is an equivalent program using a for loop:

1 // A program that squares integers in a for loop.

2 public class WriteSquares2 {

3 public static void main(String[] args) {

4 for (int i = 1; i <= 5; i++) {

5 System.out.println(i + " squared = " + (i * i));

6 }

7 }

8 }

This program initializes a variable called i to the value 1 . Then it
repeatedly executes the println statement as long as the variable i
is less than or equal to 5 . After each println , it evaluates the
expression i++ to increment i .

The general syntax of the for loop is as follows:

for (<initialization>; <continuation test>; <update>) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

You always include the keyword for and the parentheses. Inside the
parentheses are three different parts, separated by semicolons: the
initialization, the continuation test, and the update. Then there is a
set of curly braces that encloses a set of statements. The for loop
controls the statements inside the curly braces. We refer to the
controlled statements as the body of the loop. The idea is that we

execute the body multiple times, as determined by the combination
of the other three parts.

The diagram in Figure 2.1 indicates the steps that Java follows to
execute a for loop. It performs whatever initialization you have
requested once before the loop begins executing. Then it repeatedly
performs the continuation test you have provided.

Figure 2.1 Flow of for loop

If the continuation test evaluates to true , it executes the controlled
statements once and executes the update part. Then it performs the
test again. If it again evaluates to true , it executes the statements
again and executes the update again. Notice that the update is

performed after the controlled statements are executed. When the
test evaluates to false , Java is done executing the loop and moves
on to whatever statement comes after the loop.

The for loop is the first example of a control structure that we will
study.

Control Structure
A syntactic structure that controls other statements.

You should be careful to use indentation to indicate controlled
statements. In the case of the for loop, all of the statements in the
body of the loop are indented as a way to indicate that they are
“inside” the loop.

Tracing for Loops

Let’s examine the for loop of the WriteSquares2 program in detail:

for (int i = 1; i <= 5; i++) {

 System.out.println(i + " squared = " + (i * i));

}

In this loop, the initialization (int i = 1) declares an integer variable
i that is initialized to 1 . The continuation test (i <= 5) indicates that
we should keep executing as long as i is less than or equal to 5 .
That means that once i is greater than 5 , we will stop executing the
body of the loop. The update (i++) will increment the value of i by
one each time, bringing i closer to being larger than 5 . After five
executions of the body and the accompanying five updates, i will be
larger than 5 and the loop will finish executing. Figure 2.2 traces
this process in detail.

Figure 2.2 Detailed trace of for loop

Java allows great flexibility in deciding what to include in the
initialization part and the update, so we can use the for loop to
solve all sorts of programming tasks. For now, though, we will restrict
ourselves to a particular kind of loop that declares and initializes a
single variable that is used to control the loop. This variable is often
referred to as the loop variable of the loop. In the test we compare

the loop variable against some final desired value, and in the update
we change the value of the loop variable, most often incrementing it
by 1 . Such loops are very common in programming. By convention,
we often use names like i , j , and k for the loop variables.

Each execution of the controlled statement of a loop is called an
iteration of the loop (as in, “The loop finished executing after four
iterations”). Iteration also refers to looping in general (as in, “I solved
the problem using iteration”).

Consider another for loop:

for (int i = −100; i <= 100; i++) {

 System.out.println(i + " squared = " + (i * i));

}

This loop executes a total of 201 times, producing the squares of all
the integers between −100 and +100 inclusive. The values used in
the initialization and the test, then, can be any integers. They can, in
fact, be arbitrary integer expressions:

for (int i = (2 + 2); i <= (17 * 3); i++) {

 System.out.println(i + " squared = " + (i * i));

}

This loop will generate the squares of all the integers between 4 and
51 inclusive. The parentheses around the expressions are not
necessary but improve readability. Consider the following loop:

for (int i = 1; i <= 30; i++) {

 System.out.println("+--------+");

}

This loop generates 30 lines of output, all exactly the same. It is
slightly different from the previous one because the statement
controlled by the for loop makes no reference to the loop variable.
Thus,

for (int i = −30; i <= −1; i++) {

 System.out.println("+--------+");

}

generates exactly the same output. The behavior of such a loop is
determined solely by the number of iterations it performs. The
number of iterations is given by

<ending value> − <starting value> + 1

It is much simpler to see that the first of these loops iterates 30
times, so it is better to use that loop.

Now let’s look at some borderline cases. Consider this loop:

for (int i = 1; i <= 1; i++) {

 System.out.println("+--------+");

}

According to our rule it should iterate once, and it does. It initializes
the variable i to 1 and tests to see if this is less than or equal to 1 ,
which it is. So it executes the println , increments i , and tests
again. The second time it tests, it finds that i is no longer less than
or equal to 1 , so it stops executing. Now consider this loop:

for (int i = 1; i <= 0; i++) {

 System.out.println("+--------+"); // never executes

}

This loop performs no iterations at all. It will not cause an execution
error; it just won’t execute the body. It initializes the variable to 1 and
tests to see if this is less than or equal to 0 . It isn’t, so rather than
executing the statements in the body, it stops there.

When you construct a for loop, you can include more than one
statement inside the curly braces. Consider, for example, the
following code:

for (int i = 1; i <= 20; i++) {

 System.out.println("Hi!");

 System.out.println("Ho!");

}

This will produce 20 pairs of lines, the first of which has the word
“Hi!” on it and the second of which has the word “Ho!”

When a for loop controls a single statement, you don’t have to
include the curly braces. The curly braces are required only for
situations like the previous one, where you have more than one
statement that you want the loop to control. However, the Java
coding convention includes the curly braces even for a single
statement, and we follow this convention in this book. There are two
advantages to this convention:

Including the curly braces prevents future errors. Even if you
need only one statement in the body of your loop now, your code
is likely to change over time. Having the curly braces there
ensures that, if you add an extra statement to the body later, you
won’t accidentally forget to include them. In general, including
curly braces in advance is cheaper than locating obscure bugs
later.

Always including the curly braces reduces the level of detail you
have to consider as you learn new control structures. It takes
time to master the details of any new control structure, and it will
be easier to master those details if you don’t have to also be
thinking about when to include and when not to include the
braces.

COMMON PROGRAMMING ERROR

Forgetting Curly Braces

You should use indentation to indicate the body of a for loop,
but indentation alone is not enough. Java ignores indentation
when it is deciding how different statements are grouped.
Suppose, for example, that you were to write the following
code:

for (int i = 1; i <= 20; i++)

 System.out.println("Hi!");

 System.out.println("Ho!");

The indentation indicates to the reader that both of the
println statements are in the body of the for loop, but there
aren’t any curly braces to indicate that to Java. As a result,
this code is interpreted as follows:

for (int i = 1; i <= 20; i++) {

 System.out.println("Hi!");

}

System.out.println("Ho!");

Only the first println is considered to be in the body of the
for loop. The second println is considered to be outside the
loop. So, this code would produce 20 lines of output that all
say “Hi!” followed by one line of output that says “Ho!” To
include both printlns in the body, you need curly braces
around them:

for (int i = 1; i <= 20; i++) {

 System.out.println("Hi!");

 System.out.println("Ho!");

}

for Loop Patterns

In general, if you want a loop to iterate exactly times, you will use
one of two standard loops. The first standard form looks like the
ones you have already seen:

n

for (int <variable> = 1; <variable> <= n; <variable>++) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

It’s pretty clear that this loop executes times, because it starts at 1
and continues as long as it is less than or equal to . For example,
this loop prints the numbers 1 through 10:

for (int i = 1; i <= 10; i++) {

 System.out.print(i + " ");

}

Because it uses a print instead of a println statement, it produces
a single line of output:

1 2 3 4 5 6 7 8 9 10

Often, however, it is more convenient to start our counting at 0
instead of 1 . That requires a change in the loop test to allow you to
stop when is one less:

n

n

n

for (int <variable> = 0; <variable> < n; i++) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

Notice that in this form when you initialize the variable to 0 , you test
whether it is strictly less than . Either form will execute exactly
times, although there are some situations where the zero-based loop
works better. For example, this loop executes 10 times just like the
previous loop:

for (int i = 0; i < 10; i++) {

 System.out.print(i + " ");

}

Because it starts at 0 instead of starting at 1 , it produces a different
sequence of 10 values:

0 1 2 3 4 5 6 7 8 9

Most often you will use the loop that starts at 0 or 1 to perform
some operation a fixed number of times. But there is a slight

n n

variation that is also sometimes useful. Instead of running the loop in
a forward direction, we can run it backward. Instead of starting at 1
and executing until you reach , you instead start at and keep
executing until you reach 1 . You can accomplish this by using a
decrement rather than an increment, so we sometimes refer to this
as a decrementing loop.

Here is the general form of a decrementing loop:

for (int <variable> = n; <variable> >= 1; <variable>−−) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

For example, here is a decrementing loop that executes 10 times:

for (int i = 10; i >= 1; i−−) {

 System.out.print(i + " ");

}

Because it runs backward, it prints the values in reverse order:

10 9 8 7 6 5 4 3 2 1

n n

JShell allows you to write for loops. Since a loop spans multiple
lines, the shell displays a continued prompt of ...> on each
subsequent line until you finish the loop by writing the closing }
brace, as shown in the following interaction. Once you finish writing
the complete loop, the loop will execute.

jshell> for (int i = 1; i <= 10; i++) {

 ...> System.out.print(i + "! ");

 ...> }

1! 2! 3! 4! 5! 6! 7! 8! 9! 10!

Nested for Loops

The for loop controls a statement, and the for loop is itself a
statement, which means that one for loop can control another for

loop. For example, you can write code like the following:

for (int i = 1; i <= 10; i++) {

 for (int j = 1; j <= 5; j++) {

 System.out.println("Hi there.");

 }

}

This code is probably easier to read from the inside out. The println
statement produces a single line of output. The inner j loop
executes this statement five times, producing five lines of output.
The outer i loop executes the inner loop 10 times, which produces
10 sets of 5 lines, or 50 lines of output. The preceding code, then, is
equivalent to

for (int i = 1; i <= 50; i++) {

 System.out.println("Hi there.");

}

This example shows that a for loop can be controlled by another
for loop. Such a loop is called a nested loop. This example wasn’t
very interesting, though, because the nested loop can be eliminated.

Now that you know how to write for loops, you will want to be able
to produce complex lines of output piece by piece using the print

command. Recall from Chapter 1 that the print command prints
on the current line of output without going to a new line of output. For
example, if you want to produce a line of output that has 80 stars on
it, you can use a print command to print one star at a time and have
it execute 80 times rather than using a single println .

Let’s look at a more interesting nested loop that uses a print
command:

for (int i = 1; i <= 6; i++) {

 for (int j = 1; j <= 3; j++) {

 System.out.print(j + " ");

 }

}

We can once again read this from the inside out. The inner loop
prints the value of its loop variable j as it varies from 1 to 3 . The
outer loop executes this six different times. As a result, we get six
occurrences of the sequence 1 2 3 as output:

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

This code prints all of its output on a single line of output. Let’s look
at some code that includes a combination of print and println to
produce several lines of output:

for (int i = 1; i <= 6; i++) {

 for (int j = 1; j <= 10; j++) {

 System.out.print("*");

 }

 System.out.println();

}

When you write code that involves nested loops, you have to be
careful to indent the code correctly to make the structure clear. At the
outermost level, the preceding code is a simple for loop that
executes six times:

for (int i = 1; i <= 6; i++) {

 ...

}

We use indentation for the statements inside this for loop to make it
clear that they are the body of this loop. Inside, we find two
statements: another for loop and a println . Let’s look at the inner
for loop:

for (int j = 1; j <= 10; j++) {

 System.out.print("*");

}

This loop is controlled by the outer for loop, which is why it is
indented, but it itself controls a statement (the print statement), so
we end up with another level of indentation. The indentation thus
indicates that the print statement is controlled by the inner for
loop, which in turn is controlled by the outer for loop. So what does
this inner loop do? It prints 10 stars on the current line of output.
They all appear on the same line because we are using a print
instead of a println . Notice that after this loop we perform a
println :

System.out.println();

The net effect of the for loop followed by the println is that we get
a line of output with 10 stars on it. But remember that these
statements are contained in an outer loop that executes six times, so
we end up getting six lines of output, each with 10 stars:

Let’s examine one more variation. In the code above, the inner for
loop always does exactly the same thing: It prints exactly 10 stars on
a line of output. But what happens if we change the test for the inner
for loop to make use of the outer for loop’s variable (i)?

for (int i = 1; i <= 6; i++) {

 for (int j = 1; j <= i; j++) {

 System.out.print("*");

 }

 System.out.println();

}

In the old version the inner loop always executes 10 times,
producing 10 stars on each line of output. With the new test (j <= i),
the inner loop will execute i times with each iteration. But i is
changing: It takes on the values 1 , 2 , 3 , 4 , 5 , and 6 . On the first
iteration of the outer loop, when i is 1 , the test j <= i is effectively
testing j <= 1 , and it generates a line with one star on it. On the
second iteration of the outer loop, when i is 2 , the test is effectively
testing j <= 2 , and it generates a line with two stars on it. On the
third iteration of the outer loop, when i is 3 , the test is effectively
testing j <= 3 , and it generates a line with three stars on it. This
continues through the sixth iteration.

In other words, this code produces a triangle as output:

*

**

2.4 Managing Complexity
You’ve learned about several new programming constructs in this
chapter, and it’s time to put the pieces together to solve some
complex tasks. As we pointed out in Chapter 1 , Brian Kernighan,
one of the coauthors of The C Programming Language, has said that
“Controlling complexity is the essence of computer programming.” In
this section we will examine several techniques that computer
scientists use to solve complex problems without being overwhelmed
by complexity.

Scope

As programs get longer, it is increasingly likely that different parts of
the program will interfere with each other. Java helps us to manage
this potential problem by enforcing rules of scope.

Scope
The part of a program in which a particular declaration
is valid.

As you’ve seen, when it comes to declaring static methods, you can
put them in any order whatsoever. The scope of a static method is
the entire class in which it appears. Variables work differently. The
simple rule is that the scope of a variable declaration extends from
the point where it is declared to the right curly brace that encloses it.
In other words, find the pair of curly braces that directly encloses the
variable declaration. The scope of the variable is from the point
where it is declared to the closing curly brace.

This scope rule has several implications. Consider first what it
means for different methods. Each method has its own set of curly
braces to indicate the statements to be executed when the method is
called. Any variables declared inside a method’s curly braces won’t
be available outside the method. We refer to such variables as local
variables, and we refer to the process of limiting their scope as
localizing variables.

Local Variable
A variable declared inside a method that is accessible
only in that method.

Localizing Variables
Declaring variables in the innermost (most local) scope
possible.

In general, you will want to declare variables in the most local scope
possible. You might wonder why we would want to localize variables
to just one method. Why not just declare everything in one outer
scope? That certainly seems simpler, but there are some important
drawbacks. Localizing variables leads to some duplication (and
possibly confusion) but provides more security. As an analogy,
consider the use of refrigerators in dormitories. Every dorm room can
have its own refrigerator, but if you are outside a room, you don’t
know whether it has a refrigerator in it. The contents of the room are
hidden from you.

Java programs use variables to store values just as students use
refrigerators to store beer, ice cream, and other valuables. The last
time we were in a dorm we noticed that most of the individual rooms
had refrigerators in them. This seems terribly redundant, but the
reason is obvious. If you want to guarantee the security of
something, you put it where nobody else can get it. You will use local
variables in your programs in much the same way. If each individual
method has its own local variables to use, you don’t have to consider
possible interference from other parts of the program.

Let’s look at a simple example involving two methods:

 1 // This program does not compile.

 2 public class ScopeExample {

 3 public static void main(String[] args) {

 4 int x = 3;

 5 int y = 7;

 6 computeSum();

 7 }

 8

 9 public static void computeSum() {

10 int sum = x + y; // illegal, x/y are not in scope

11 System.out.println("sum = " + sum);

12 }

13 }

In this example, the main method declares local variables x and y
and gives them initial values. Then it calls the method computeSum .
Inside this method, we try to use the values of x and y to compute a
sum. However, because the variables x and y are local to the main
method and are not visible inside of the computeSum method, this
doesn’t work. (In the next chapter, we will see a technique for
allowing one method to pass a value to another.)

The program produces error messages like the following:

ScopeExample.java:10: error: cannot find symbol

symbol : variable x

location: class ScopeExample

 int sum = x + y; // illegal, x/y are not in scope

 ^

ScopeExample.java:10: error: cannot find symbol

symbol : variable y

location: class ScopeExample

 int sum = x + y; // illegal, x/y are not in scope

 ^

It’s important to understand scope in discussing the local variables of
one method versus another. Scope also has implications for what
happens inside a single method. You have seen that curly braces
are used to group together a series of statements. But you can have
curly braces inside curly braces, and this leads to some scope
issues. For example, consider the following code:

for (int i = 1; i <= 5; i++) {

 int squared = i * i;

 System.out.println(i + " squared = " + squared);

}

This is a variation of the code we looked at earlier in the chapter to
print out the squares of the first five integers. In this version, a

variable called squared is used to keep track of the square of the for
loop variable. This code works fine, but consider this variation:

for (int i = 1; i <= 5; i++) {

 int squared = i * i;

 System.out.println(i + " squared = " + squared);

}

 System.out.println("Last square = " + squared); // illegal

This code generates a compiler error. The variable squared is
declared inside the for loop. In other words, the curly braces that
contain it are the curly braces for the loop. It can’t be used outside
this scope, so when you attempt to refer to it outside the loop, you’ll
get a compiler error.

If for some reason you need to write code like this that accesses the
variable after the loop, you have to declare the variable in the outer
scope before the loop:

int squared = 0; // declaration is now in outer scope

for (int i = 1; i <= 5; i++) {

 squared = i * i; // change this to an assignment

statement

 System.out.println(i + " squared = " + squared);

}

System.out.println("Last square = " + squared); // now legal

There are a few special cases for scope, and the for loop is one of
them. When a variable is declared in the initialization part of a for
loop, its scope is just the for loop itself (the three parts in the for
loop header and the statements controlled by the for loop). That
means you can use the same variable name in multiple for loops:

for (int i = 1; i <= 10; i++) {

 System.out.println(i + " squared = " + (i * i));

}

for (int i = 1; i <= 10; i++) {

 System.out.println(i + " cubed = " + (i * i * i));

}

The variable i is declared twice in the preceding code, but because
the scope of each variable is just the for loop in which it is declared,
this isn’t a problem. (It’s like having two dorm rooms, each with its
own refrigerator.) Of course, you can’t do this with nested for loops.
The following code, for example, will not compile:

for (int i = 1; i <= 5; i++) {

 for (int i = 1; i <= 10; i++) { // illegal

 System.out.println("hi there.");

 }

}

When Java encounters the inner for loop, it will complain that the
variable i has already been declared within this scope. You can’t
declare the same variable twice within the same scope. You have to
come up with two different names to distinguish between them, just
as when there are two Carls in the same family they tend to be
called “Carl Junior” and “Carl Senior” to avoid any potential
confusion.

A loop variable that is used in a for loop doesn’t have to be
declared in the initialization part of the loop. You can separate the
declaration of the for loop variable from the initialization of the
variable, as in the following code:

int i;

for (i = 1; i <= 5; i++) {

 System.out.println(i + " squared = " + (i * i));

}

Doing so extends the variable’s scope to the end of the enclosing set
of curly braces. One advantage of this approach is that it enables
you to refer to the final value of the loop variable after the loop.
Normally you wouldn’t be able to do this, because the loop variable’s
scope would be limited to the loop itself. However, declaring the loop
variable outside the loop is a dangerous practice, and it provides a
good example of the problems you can encounter when you don’t
localize variables. Consider the following code, for example:

int i;

for (i = 1; i <= 5; i++) {

 for (i = 1; i <= 10; i++) {

 System.out.println("hi there.");

 }

}

As noted earlier, you shouldn’t use the same loop variable when you
have nested loops. But unlike the previous example, this code
compiles, because here the variable declaration is outside the outer
for loop. So, instead of getting a helpful error message from the
Java compiler, you get a program with a bug in it. You’d think from
reading these loops that the code will produce 50 lines of output, but
it actually produces just 10 lines of output. The inner loop increments
the variable i until it becomes 11 , and that causes the outer loop to
terminate after just one iteration. It can be even worse if you reverse
the order of these loops:

int i;

for (i = 1; i <= 10; i++) {

 for (i = 1; i <= 5; i++) {

 System.out.println("hi there.");

 }

}

This code has an infinite loop.

Infinite Loop
A loop that never terminates.

This loop is infinite because no matter what the outer loop does to
the variable i , the inner loop always sets it back to 1 and iterates
until it becomes 6 . The outer loop then increments the variable to 7
and finds that 7 is less than or equal to 10 , so it always goes back to
the inner loop, which once again sets the variable back to 1 and
iterates up to 6 . This process goes on indefinitely. These are the
kinds of interference problems you can get when you fail to localize
variables.

COMMON PROGRAMMING ERROR

Referring to the Wrong Loop

Variable

The following code is intended to print a triangle of stars.
However, it has a subtle bug that causes it to print stars
infinitely:

for (int i = 1; i <= 6; i++) {

 for (int j = 1; j <= i; i++){

 System.out.print("*");

 }

 System.out.println();

}

The problem is in the second line, in the inner for loop
header’s update statement. The programmer meant to write
j++ but instead accidentally wrote i++ . A trace of the code is
shown in Table 2.6 .

Table 2.6 Trace of Nested for Loop

The variable j should be increasing, but instead i is
increasing. The effect of this mistake is that the variable j is
never incremented in the inner loop, and therefore the test of
j <= i never fails, so the inner loop doesn’t terminate.

Here’s another broken piece of code. This one tries to print a
 box of stars, but it also prints infinitely:

for (int i = 1; i <= 6; i++) {

 for (int j = 1; i <= 4; j++) {

 System.out.print("*");

 }

6 × 4

 System.out.println();

}

The problem is on the second line, this time in the inner for
loop header’s test. The programmer meant to write j <= 4
but instead accidentally wrote i <= 4 . Since the value of i is
never incremented in the inner loop, the test of i <= 4 never
fails, so the inner loop again doesn’t terminate.

Pseudocode

As you write more complex algorithms, you will find that you can’t
just write the entire algorithm immediately. Instead, you will
increasingly make use of the technique of writing pseudocode.

Pseudocode
English-like descriptions of algorithms. Programming
with pseudocode involves successively refining an
informal description until it is easily translated into
Java.

For example, you can describe the problem of drawing a box as:

draw a box with 50 lines and 30 columns of asterisks.

While this statement describes the figure, it does not give specific
instructions about how to draw it (that is, what algorithm to use). Do
you draw the figure line by line or column by column? In Java,
figures like these must be generated line by line, because once a
println has been performed on a line of output, that line cannot be
changed. There is no command for going back to a previous line in
the output. Therefore, you must output the first line in its entirety,
then the second line in its entirety, and so on. As a result, your
decompositions for figures such as these will be line-oriented at the
top level. Thus, a version of the statement that is closer to Java is:

for (each of 50 lines) {

 draw a line of 30 asterisks.

}

This instruction can be made more specific by introducing the idea of
repeatedly writing a single character on the output line and then
moving to a new line of output:

for (each of 50 lines) {

 for (each of 30 columns) {

 write one asterisk on the output line.

 }

 go to a new output line.

}

Using pseudocode, you can gradually convert an English description
into something that is easily translated into a Java program. The
simple examples we’ve looked at so far are hardly worth the
application of pseudocode, so we will now examine the problem of
generating a more complex figure:

 *

This figure must also be generated line by line:

for (each of 5 lines) {

 draw one line of the triangle.

}

Unfortunately, each line is different. Therefore, you must come up
with a general rule that fits all the lines. The first line of this figure
has a series of asterisks on it with no leading spaces. Each of the
subsequent lines has a series of spaces followed by a series of
asterisks. Using your imagination a bit, you can say that the first line
has 0 spaces on it followed by a series of asterisks. This allows you
to write a general rule for making this figure:

for (each of 5 lines) {

 write some spaces (possibly 0) on the output line.

 write some asterisks on the output line.

 go to a new output line.

}

In order to proceed, you must determine a rule for the number of
spaces and a rule for the number of asterisks. You want to find a
relationship between line number and these other two values. This is
simple algebra, because the values are related in a linear way. You
often need to figure out expressions for these kind of linear
relationships, so it is worth exploring a general technique for doing
so before we complete this pseudocode.

The Table Technique

You may remember from algebra class that linear relationships are
expressed using a slope and an intercept. For our purposes, it is
easier to think of these two values as a multiplier and a constant.
Consider, for example, the columns of values in Table 2.7 , which
represent character counts on each line for a hypothetical figure.

Table 2.7 Character Counts

For the figure drawing programs in this chapter, you typically have an
outer for loop that produces the output line by line. As a result, you
tend to have a variable called line that takes on sequential values
starting at 1, as in the first column of the table. Your task is to come
up with expressions that predict the other columns of numbers.
There are two steps involved in determining an appropriate
expression for a column of numbers:

First pick an appropriate multiplier by examining how much the
values increase or decrease from row to row within that column.
Then pick an appropriate constant to add to the expression that
produces the correct sequence of values.

Look at the column labeled value1 . Notice that the values go up by 4
each time as you go from one row to the next. If you are going to use
the variable line , which goes up by 1 every time, to produce
numbers that go up by 4 every time, you will need to multiply it by 4.
So applying the first step, you end up with the expression (4 *
line) . But this expression isn’t enough. When line is 1, (4 * line) is
4 when you want to get the value 6. You fix this in the second step.

What value do you need to add to 4 to get the value 6? The answer
is 2. So the correct expression to use is (4 * line + 2) . You can
plug in the different values of line to verify that this expression
evaluates to 6 when line is 1 , to 10 when line is 2 , to 14 when
line is 3 , and so on.

If you look at the column labeled value2 you will see that the
numbers go up by 3 every time, which means you want a multiplier
of 3. That leads to the expression (3 * line) . In the second step you
are supposed to pick an appropriate constant to add to this
expression to make it work, but the expression already works,
producing 3 when line is 1 , 6 when line is 2 , and so on. This is a
special case where the constant is simply 0 because no adjustment
is necessary once you have chosen an appropriate multiplier.

Values do not always go up. In the column labeled value3 you will
notice that the values go down by 2 every time, which means you
want a multiplier of -2 . That leads to the expression (-2 * line) .
When line is 1, this expression would evaluate to -2 when you
want to get the value 10 . That means you need to add 12 to the
expression, obtaining (-2 * line + 12) . Many programmers would
rearrange this to be (12 - 2 * line) , but either expression works
fine.

The values in the column labeled value4 go down by 1 every time,
which means you need a multiplier of -1 . That leads to the

expression (-1 * line) . This expression evaluates to -1 when line
is 1 when you want to obtain the value 4 . That means you need to
add 5 to the expression which leads to (-1 * line + 5) . Again, most
programmers would rearrange to simplify this to (5 - line) , but
either version of the expression works.

To apply this technique to the cone-drawing programming problem
we were working on in the previous section, we first make a table
that has columns for the number of spaces and asterisks we have on
each line of the output. These values are included in Table 2.8 .

Table 2.8 Analysis of Figure

Notice that the values in the column labeled spaces go up by 1 each
time, which means you want a multiplier of 1 . But you want 0 spaces
when line is 1 , which means that you need to add the value -1 to
the expression. That produces the expression (1 * line - 1) , or
simply (line - 1) .

The values in the column labeled asterisks go down by 2 every
time, which means we want a multiplier of -2 . That would produce
-2 when line is 1 when we want to have the value 9 , which means
we need to add a constant of 11 . That produces the expression (-2
* line + 11) or (11 - 2 * line) .

Using these expressions, we can improve our pseudocode as
follows:

for (line going 1 to 5) {

 write (line − 1) spaces on the output line.

 write (11 − 2 * line) asterisks on the output line.

 go to a new output line.

}

This pseudocode is simple to turn into a program:

 1 // Uses nested loops to draw a 'V' text figure.

 2 public class DrawV {

 3 public static void main(String[] args) {

 4 for (int line = 1; line <= 5; line++) {

 5 for (int i = 1; i <= (line − 1); i++) {

 6 System.out.print(" ");

 7 }

 8 for (int i = 1; i <= (11 − 2 * line); i++) {

 9 System.out.print("*");

10 }

11 System.out.println();

12 }

13 }

14 }

Sometimes we manage complexity by taking advantage of work that
we have already done. For example, how would you produce this
figure?

 *

You could follow the same process you did before and find new
expressions that produce the appropriate number of spaces and
asterisks. However, there is an easier way. This figure is the same
as the previous one, except the lines appear in reverse order. This is
a good place to use a decrementing loop to run the for loop
backward: Instead of starting at 1 and going up to 5 with a ++
update, you can start at 5 and go down to 1 using a −− update.

The simple way to produce the upward-pointing triangle, then, is with
the following code:

 1 // Uses nested loops to draw a triangular cone.

 2 public class DrawCone {

 3 public static void main(String[] args) {

 4 for (int line = 5; line >= 1; line−−) {

 5 for (int i = 1; i <= (line − 1); i++) {

 6 System.out.print(" ");

 7 }

 8 for (int i = 1; i <= (11 − 2 * line); i++) {

 9 System.out.print("*");

10 }

11 System.out.println();

12 }

13 }

14 }

Class Constants

The DrawCone program in the last section draws a cone with five
lines. How would you modify it to produce a cone with three lines?
Your first thought might be to simply change the 5 in the code to a
3 . However, that would cause the program to produce the following
output:

which is obviously wrong. If you work through the geometry of the
figure, you will discover that the problem is with the use of the
number 11 in the expression that calculates the number of asterisks
to print. The number 11 comes from this formula:

2 * (number of lines) + 1

Thus, when the number of lines is five, the appropriate value is 11 ,
but when the number of lines is three, the appropriate value is 7 .
Programmers call numbers like these magic numbers. They are
magic in the sense that they seem to make the program work, but
their definition is not always obvious. Glancing at the DrawCone
program, one is apt to ask, “Why 5? Why 11? Why 3? Why 7? Why
me?”

To make programs more readable and more adaptable, you should
try to avoid magic numbers whenever possible. You do so by storing
the magic numbers. You can use variables to store these values, but
that is misleading, given that you are trying to represent values that
don’t change. Fortunately, Java offers an alternative: You can
declare values that are similar to variables but that are guaranteed to
have constant values. Not surprisingly, they are called constants. We
most often define class constants, which can be accessed
throughout the entire class.

Class Constant
A named value that cannot be changed. A class
constant can be accessed anywhere in the class (i.e.,
its scope is the entire class).

You can choose a descriptive name for a constant that explains what
it represents. You can then use that name instead of referring to the
specific value to make your programs more readable and adaptable.
For example, in the DrawCone program, you might want to introduce a
constant called LINES that represents the number of lines (recall from
Chapter 1 that we use all uppercase letters for constant names).
You can use that constant in place of the magic number 5 and as
part of an expression to calculate a value. This approach allows you
to replace the magic number 11 with the formula from which it is
derived (2 * LINES + 1).

Constants are declared with the keyword final , which indicates the
fact that their values cannot be changed once assigned, as in

final int LINES = 5;

You can declare a constant anywhere you can declare a variable,
but because constants are often used by several different methods,

we generally declare them outside methods. This causes another
run-in with our old pal, the static keyword. If you want your static
methods to be able to access your constants, the constants
themselves must be static. Likewise, just as we declare our methods
to be public, we usually declare our constants to be public. The
following is the general syntax for constant definitions:

public static final <type> <name> = <expression>;

For example, here are definitions for two constants:

public static final int HEIGHT = 10;

public static final int WIDTH = 20;

These definitions create constants called HEIGHT and WIDTH that will
always have the values 10 and 20 , respectively. These are known
as class constants, because we declare them in the outermost scope
of the class, along with the methods of the class. That way, they are
visible in each method of the class.

We’ve already mentioned that we can avoid using a magic number in
the DrawCone program by introducing a constant for the number of
lines. Here’s what the constant definition looks like:

public static final int LINES = 5;

We can now replace the 5 in the outer loop with this constant and
replace the 11 in the second inner loop with the expression 2 *
LINES + 1 . The result is the following program:

 1 // Uses nested loops to draw a triangular cone.

 2 // This version uses a class constant.

 3 public class DrawCone2 {

 4 public static final int LINES = 5;

 5

 6 public static void main(String[] args) {

 7 for (int line = LINES; line >= 1; line−−) {

 8 for (int i = 1; i <= (line − 1); i++) {

 9 System.out.print(" ");

10 }

11 int stars = 2 * LINES + 1 − 2 * line;

12 for (int i = 1; i <= stars; i++) {

13 System.out.print("*");

14 }

15 System.out.println();

16 }

17 }

18 }

Notice that in this program the expression for the number of stars
has become sufficiently complex that we’ve introduced a local

variable called stars to store the value. The advantage of this
program is that it is more readable and more adaptable. A simple
change to the constant LINES will make it produce a figure with a
different number of lines.

2.5 Case Study: Hourglass Figure

Now we’ll consider an example that is even more complex. To solve
it, we will follow three basic steps:

1. Decompose the task into subtasks, each of which will become
a static method.

2. For each subtask, make a table for the figure and compute
formulas for each column of the table in terms of the line
number.

3. Convert the tables into actual for loop code for each method.

The output we want to produce is the following:

+------+

|\..../|

| \../ |

| \/ |

| /\ |

| /..\ |

|/....\|

+------+

Problem Decomposition and
Pseudocode

To generate this figure, you have to first break it down into
subfigures. In doing so, you should look for lines that are similar in
one way or another. The first and last lines are exactly the same.
The three lines after the first line all fit one pattern, and the three
lines after that fit another:

+------+ line

|\..../|

| \../ | top half

| \/ |

| /\ |

| /..\ | bottom half

|/....\|

+------+ line

Thus, you can break down the overall problem as follows:

draw a solid line.

draw the top half of the hourglass.

draw the bottom half of the hourglass.

draw a solid line.

You should solve each subproblem independently. Eventually you’ll
want to incorporate a class constant to make the program more
flexible, but let’s first solve the problem without worrying about the
use of a constant.

The solid line task can be further specified as

write a plus on the output line.

write 6 dashes on the output line.

write a plus on the output line.

go to a new output line.

This set of instructions translates easily into a static method:

public static void drawLine() {

 System.out.print("+");

 for (int i = 1; i <= 6; i++) {

 System.out.print("-");

 }

 System.out.println("+");

}

The top half of the hourglass is more complex. Here is a typical line:

| \../ |

There are four individual characters, separated by spaces and dots.

Thus, a first approximation in pseudocode might look like this:

for (each of 3 lines) {

 write a bar on the output line.

 write some spaces on the output line.

 write a backslash on the output line.

 write some dots on the output line.

 write a slash on the output line.

 write some spaces on the output line.

 write a bar on the output line.

 go to a new line of output.

}

Again, you can make a table to figure out the required expressions.
Writing the individual characters will be easy enough to translate into
Java, but you need to be more specific about the spaces and dots.
Each line in this group contains two sets of spaces and one set of
dots. Table 2.9 shows how many to use.

Table 2.9 Analysis of Figure

The two sets of spaces fit the rule (line − 1) , and the number of
dots is (6 − 2 * line) . Therefore, the pseudocode should read

for (line going 1 to 3) {

 write a bar on the output line.

 write (line − 1) spaces on the output line.

 write a backslash on the output line.

 write (6 − 2 * line) dots on the output line.

 write a slash on the output line.

 write (line − 1) spaces on the output line.

 write a bar on the output line.

 go to a new line of output.

}

Initial Structured Version

The pseudocode for the top half of the hourglass is easily translated
into a static method called drawTop . A similar solution exists for the
bottom half of the hourglass. Put together, the program looks like
this:

 1 // Draws an hourglass figure using nested loops.

 2 public class Hourglass {

 3 public static void main(String[] args) {

 4 drawLine();

 5 drawTop();

 6 drawBottom();

 7 drawLine();

 8 }

 9

10 // produces a solid line

11 public static void drawLine() {

12 System.out.print("+");

13 for (int i = 1; i <= 6; i++) {

14 System.out.print("−");

15 }

16 System.out.println("+");

17 }

18

19 // produces the top half of the hourglass figure

20 public static void drawTop() {

21 for (int line = 1; line <= 3; line++) {

22 System.out.print("|");

23 for (int i = 1; i <= (line − 1); i++) {

24 System.out.print(" ");

25 }

26 System.out.print("\\");

27 for (int i = 1; i <= (6 − 2 * line); i++) {

28 System.out.print(".");

29 }

30 System.out.print("/");

31 for (int i = 1; i <= (line − 1); i++) {

32 System.out.print(" ");

33 }

34 System.out.println("|");

35 }

36 }

37

38 // produces the bottom half of the hourglass figure

39 public static void drawBottom() {

40 for (int line = 1; line <= 3; line++) {

41 System.out.print("|");

42 for (int i = 1; i <= (3 − line); i++) {

43 System.out.print(" ");

44 }

45 System.out.print("/");

46 for (int i = 1; i <= 2 * (line − 1); i++) {

47 System.out.print(".");

48 }

49 System.out.print("\\");

50 for (int i = 1; i <= (3 − line); i++) {

51 System.out.print(" ");

52 }

53 System.out.println("|");

54 }

55 }

56 }

Adding a Class Constant

The Hourglass program produces the desired output, but it is not
very flexible. What if we wanted to produce a similar figure of a
different size? The original problem involved an hourglass figure that
had three lines in the top half and three lines in the bottom half. What
if we wanted the following output, with four lines in the top half and
four lines in the bottom half?

+--------+

|\....../|

| \..../ |

| \../ |

| \/ |

| /\ |

| /..\ |

| /....\ |

|/......\|

+--------+

Obviously the program would be more useful if we could make it
flexible enough to produce either output. We do so by eliminating the
magic numbers with the introduction of a class constant. You might
think that we need to introduce two constants—one for the height
and one for the width—but because of the regularity of this figure,
the height is determined by the width and vice versa. Consequently,
we only need to introduce a single class constant. Let’s use the
height of the hourglass halves:

public static final int SUB_HEIGHT = 4;

We’ve called the constant SUB_HEIGHT rather than HEIGHT because it
refers to the height of each of the two halves, rather than the figure
as a whole. Notice how we use the underscore character to separate
the different words in the name of the constant.

So, how do we modify the original program to incorporate this
constant? We look through the program for any magic numbers and

insert the constant or an expression involving the constant where
appropriate. For example, both the drawTop and drawBottom methods
have a for loop that executes 3 times to produce 3 lines of output.
We change this to 4 to produce 4 lines of output, and more generally,
we change it to SUB_HEIGHT to produce SUB_HEIGHT lines of output.

In other parts of the program we have to update our formulas for the
number of dashes, spaces, and dots. Sometimes we can use
educated guesses to figure out how to adjust such a formula to use
the constant. If you can’t guess a proper formula, you can use the
table technique to find the appropriate formula. Using this new output
with a subheight of 4, you can update the various formulas in the
program. Table 2.10 shows the various formulas.

Table 2.10 Analysis of Different Height Figures

We then go through each formula and figure out how to replace it
with a new formula involving the constant. The number of dashes
increases by 2 when the subheight increases by 1, so we need a
multiplier of 2. The expression 2 * SUB_HEIGHT produces the correct
values. The number of spaces in drawTop does not change with the
subheight, so the expression does not need to be altered. The
number of dots in drawTop involves the number 6 for a subheight of 3
and the number 8 for a subheight of 4. Once again we need a
multiplier of 2, so we use the expression 2 * SUB_HEIGHT − 2 * line .
The number of spaces in drawBottom involves the value 3 for a
subheight of 3 and the value 4 for a subheight of 4, so the

generalized expression is SUB_HEIGHT − line . The number of dots in
drawBottom does not change when subheight changes.

Here is the new version of the program with a class constant for the
subheight. It uses a SUB_HEIGHT value of 4 , but we could change this
to 3 to produce the smaller version or to some other value to
produce yet another version of the figure.

 1 // Draws an hourglass figure using nested loops.

 2 // Second version that uses a class constant.

 3 public class Hourglass2 {

 4 public static final int SUB_HEIGHT = 4;

 5

 6 public static void main(String[] args) {

 7 drawLine();

 8 drawTop();

 9 drawBottom();

10 drawLine();

11 }

12

13 // produces a solid line

14 public static void drawLine() {

15 System.out.print("+");

16 for (int i = 1; i <= (2 * SUB_HEIGHT); i++) {

17 System.out.print("−");

18 }

19 System.out.println("+");

20 }

21

22 // produces the top half of the hourglass figure

23 public static void drawTop() {

24 for (int line = 1; line <= SUB_HEIGHT; line++) {

25 System.out.print("|");

26 for (int i = 1; i <= (line − 1); i++) {

27 System.out.print(" ");

28 }

29 System.out.print("\\");

30 int dots = 2 * SUB_HEIGHT − 2 * line;

31 for (int i = 1; i <= dots; i++) {

32 System.out.print(".");

33 }

34 System.out.print("/");

35 for (int i = 1; i <= (line − 1); i++) {

36 System.out.print(" ");

37 }

38 System.out.println("|");

39 }

40 }

41

42 // produces the bottom half of the hourglass figure

43 public static void drawBottom() {

44 for (int line = 1; line <= SUB_HEIGHT; line++) {

45 System.out.print("|");

46 for (int i = 1; i <= (SUB_HEIGHT − line); i++)

{

47 System.out.print(" ");

48 }

49 System.out.print("/");

50 for (int i = 1; i <= 2 * (line − 1); i++) {

51 System.out.print(".");

52 }

53 System.out.print("\\");

54 for (int i = 1; i <= (SUB_HEIGHT − line); i++)

{

55 System.out.print(" ");

56 }

57 System.out.println("|");

58 }

59 }

60 }

Notice that the SUB_HEIGHT constant is declared with class-wide
scope, rather than locally in the individual methods. While localizing
variables is a good idea, the same is not true for constants. We
localize variables to avoid potential interference, but that argument
doesn’t hold for constants, since they are guaranteed not to change.
Another argument for using local variables is that it makes static
methods more independent. That argument has some merit when
applied to constants, but not enough. It is true that class constants
introduce dependencies between methods, but often that is what you
want. For example, the three methods in Hourglass2 should not be
independent of each other when it comes to the size of the figure.
Each subfigure has to use the same size constant. Imagine the

potential disaster if each method had its own SUB_HEIGHT , each with a
different value—none of the pieces would fit together.

Further Variations

The solution we have arrived at may seem cumbersome, but it
adapts more easily to a new task than does our original program. For
example, suppose that you want to generate the following output:

+----------+

|\......../|

| \....../ |

| \..../ |

| \../ |

| \/ |

| /\ |

| /..\ |

| /....\ |

| /......\ |

|/........\|

+----------+

| /\ |

| /..\ |

| /....\ |

| /......\ |

|/........\|

|\......../|

| \....../ |

| \..../ |

| \../ |

| \/ |

+----------+

This output uses a subheight of 5 and includes both a diamond
pattern and an X pattern. You can produce this output by changing
the SUB_HEIGHT constant to 5 :

public static final int SUB_HEIGHT = 5;

and rewriting the main method as follows to produce both the original
X pattern and the new diamond pattern, which you get simply by
reversing the order of the calls on the two halves:

public static void main(String[] args) {

 drawLine();

 drawTop();

 drawBottom();

 drawLine();

 drawBottom();

 drawTop();

 drawLine();

}

Chapter Summary
Java groups data into types. There are two major categories of data
types: primitive data and objects. Primitive types include int
(integers), double (real numbers), char (individual text characters),
and boolean (logical values).

Values and computations are called expressions. The simplest
expressions are individual values, also called literals. Some example
literals are: 42 , 3.14 , 'Q' , and false . Expressions may contain
operators, as in (3 + 29) − 4 * 5 . The division operation is odd in
that it’s split into quotient (/) and remainder (%) operations.

Rules of precedence determine the order in which multiple operators
are evaluated in complex expressions. Multipli-cation and division
are performed before addition and subtraction. Parentheses can be
used to force a particular order of evaluation.

Data can be converted from one type to another by an operation
called a cast.

Variables are memory locations in which values can be stored. A
variable is declared with a name and a type. Any data value with a
compatible type can be stored in the variable’s memory and used
later in the program.

Primitive data can be printed on the console using the
System.out.println method, just like text strings. A string can be
connected to another value (concatenated) with the + operator to
produce a larger string. This feature allows you to print complex
expressions including numbers and text on the console.

A loop is used to execute a group of statements several times. The
for loop is one kind of loop that can be used to apply the same
statements over a range of numbers or to repeat statements a
specified number of times. A loop can contain another loop, called a
nested loop.

A variable exists from the line where it is declared to the right curly
brace that encloses it. This range, also called the scope of the
variable, constitutes the part of the program where the variable can
legally be used. A variable declared inside a method or loop is called
a local variable. A local variable can only be used inside its method
or loop.

An algorithm can be easier to write if you first write an English
description of it. Such a description is also called pseudocode.

Important constant values written into a program should be declared
as class constants, both to explain their names and values and to
make it easier to change their values later.

Self-Check Problems

Section 2.1: Basic Data Concepts

1. Which of the following are legal int literals?

22 1.5 −1 2.3 10.0 5. −6875309 '7'

2. What is the result of the following expression?

1 + 2 * 3 + 7 * 2 % 5

a. 1
b. 2
c. 5
d. 11
e. 21

3. Trace the evaluation of the following expressions, and give
their resulting values:

a. 2 + 3 * 4 − 6
b. 14 / 7 * 2 + 30 / 5 + 1
c. (12 + 3) / 4 * 2
d. (238 % 10 + 3) % 7
e. (18 − 7) * (43 % 10)
f. 2 + 19 % 5 − (11 * (5 / 2))

g. 813 % 100 / 3 + 2.4

h. 26 % 10 % 4 * 3
i. 22 + 4 * 2
j. 23 % 8 % 3
k. 12 − 2 − 3
l. 6/2 + 7/3

m. 6 * 7 % 4
n. 3 * 4 + 2 * 3
o. 177 % 100 % 10 / 2
p. 89 % (5 + 5) % 5
q. 392 / 10 % 10 / 2
r. 8 * 2 − 7 / 4
s. 37 % 20 % 3 * 4
t. 17 % 10 / 4

4. Trace the evaluation of the following expressions, and give
their resulting values:

a. 4.0 / 2 * 9 / 2
b. 2.5 * 2 + 8 / 5.0 + 10 / 3
c. 12 / 7 * 4.4 * 2 / 4
d. 4 * 3 / 8 + 2.5 * 2
e. (5 * 7.0 / 2 − 2.5) / 5 * 2
f. 41 % 7 * 3 / 5 + 5 / 2 * 2.5

g. 10.0 / 2 / 4
h. 8 / 5 + 13 / 2 / 3.0
i. (2.5 + 3.5) / 2

j. 9 / 4 * 2.0 − 5 / 4
k. 9 / 2.0 + 7 / 3 − 3.0 / 2
l. 813 % 100 / 3 + 2.4

m. 27 / 2 / 2.0 * (4.3 + 1.7) − 8 / 3
n. 53 / 5 / (0.6 + 1.4) / 2 + 13 / 2
o. 2 * 3 / 4 * 2 / 4.0 + 4.5 − 1
p. 89 % 10 / 4 * 2.0 / 5 + (1.5 + 1.0 / 2) * 2

5. Trace the evaluation of the following expressions, and give
their resulting values:

a. 2 + 2 + 3 + 4
b. "2 + 2" + 3 + 4
c. 2 + " 2 + 3 " + 4
d. 3 + 4 + " 2 + 2"
e. "2 + 2 " + (3 + 4)
f. "(2 + 2) " + (3 + 4)

g. "hello 34 " + 2 * 4
h. 2 + "(int) 2.0" + 2 * 2 + 2
i. 4 + 1 + 9 + "." + (-3 + 10) + 11 / 3
j. 8 + 6 * −2 + 4 + "0" + (2 + 5)
k. 1 + 1 + "8 − 2" + (8 − 2) + 1 + 1
l. 5 + 2 + "(1 + 1)" + 4 + 2 * 3

m. "1" + 2 + 3 + "4" + 5 * 6 + "7" + (8 + 9)

Section 2.2: Variables

6. Which of the following choices is the correct syntax for
declaring a real number variable named grade and initializing
its value to 4.0?

a. int grade: 4.0;
b. grade = double 4.0;
c. double grade = 4.0;
d. grade = 4;
e. 4.0 = grade;

7. Imagine you are writing a personal fitness program that stores
the user’s age, gender, height (in feet or meters), and weight
(to the nearest pound or kilogram). Declare variables with the
appropriate names and types to hold this information.

8. Imagine you are writing a program that stores a student’s year
(Freshman, Sophomore, Junior, or Senior), the number of
courses the student is taking, and his or her GPA on a 4.0
scale. Declare variables with the appropriate names and
types to hold this information.

9. Suppose you have an int variable called number . What Java
expression produces the last digit of the number (the 1s
place)?

10. The following program contains 9 mistakes! What are they?

 1 public class Oops2 {

 2 public static void main(String[] args) {

 3 int x;

 4 System.out.println("x is" x);

 5

 6 int x = 15.2; // set x to 15.2

 7 System.out.println("x is now + x");

 8

 9 int y; // set y to 1 more than x

10 y = int x + 1;

11 System.out.println("x and y are " + x + and +

y);

12 }

13 }

11. Suppose you have an int variable called number . What Java
expression produces the second-to-last digit of the number
(the 10s place)? What expression produces the third-to-last
digit of the number (the 100s place)?

12. What is the value of variable x after the following code
executes?

int x = 3;

x = x + 2;

x = x + x;

a. 3

b. 5
c. 7
d. 10
e. 12

13. What are the values of a , b , and c after the following
statements?

int a = 5;

int b = 10;

int c = b;

a = a + 1;

b = b - 1;

c = c + a;

14. What are the values of first and second at the end of the
following code? How would you describe the net effect of the
code statements in this exercise?

int first = 8;

int second = 19;

first = first + second;

second = first − second;

first = first − second;

15. Rewrite the code from the previous exercise to be shorter, by
declaring the variables together and by using the special
assignment operators (e.g., += , −= , *= , and /=) as
appropriate.

16. What are the values of i , j , and k after the following
statements?

int i = 2;

int j = 3;

int k = 4;

int x = i + j + k;

i = x - i - j;

j = x - j - k;

k = x - i - k;

17. What is the output from the following code?

int max;

int min = 10;

max = 17 − 4 / 10;

max = max + 6;

min = max − min;

System.out.println(max * 2);

System.out.println(max + min);

System.out.println(max);

System.out.println(min);

18. Suppose you have a real number variable . Write a Java
expression that computes the following value while using
the * operator only four times:

19. The following program redundantly repeats the same
expressions many times. Modify the program to remove all
redundant expressions using variables of appropriate types.

 1 public class ComputePay {

 2 public static void main(String[] args) {

 3 // Calculate pay at work based on hours

worked each day

 4 System.out.println("My total hours

worked:");

 5 System.out.println(4 + 5 + 8 + 4);

 6

 7 System.out.println("My hourly salary:");

 8 System.out.println("$8.75");

 9

10 System.out.println("My total pay:");

11 System.out.println((4 + 5 + 8 + 4) * 8.75);

12

13 System.out.println("My taxes owed:"); //

20% tax

14 System.out.println((4 + 5 + 8 + 4) * 8.75 *

0.20);

x

y

y = 12.3x
4

− 9.1x
3

+ 19.3x
2

− 4.6x + 34.2

15 }

16 }

20. The following program redundantly repeats the same
expressions many times. Modify the program to remove all
redundant expressions using variables of appropriate types.

// This program computes the total amount owed for a

meal,

// assuming 8% tax and a 15% tip.

public class Receipt {

 public static void main(String[] args) {

 System.out.println("Subtotal:");

 System.out.println(38 + 40 + 30);

 System.out.println("Tax:");

 System.out.println((38 + 40 + 30) * .08);

 System.out.println("Tip:");

 System.out.println((38 + 40 + 30) * .15);

 System.out.println("Total:");

 System.out.println(38 + 40 + 30 +

 (38 + 40 + 30) * .08 +

 (38 + 40 + 30) * .15);

 }

}

Section 2.3: The for Loop

21. Complete the following code, replacing the "FINISH ME" parts
with your own code:

public class Count2 {

 public static void main(String[] args) {

 for (int i = /* FINISH ME */) {

 System.out.println(/* FINISH ME */);

 }

 }

}

to produce the following output:

2 times 1 = 2

2 times 2 = 4

2 times 3 = 6

2 times 4 = 8

22. Assume that you have a variable called count that will take on
the values 1 , 2 , 3 , 4 , and so on. You are going to formulate
expressions in terms of count that will yield different
sequences. For example, to get the sequence 2 , 4 , 6 , 8 , 10 ,
12 , ... , you would use the expression (2 * count) . Fill in the

following table, indicating an expression that will generate
each sequence.

23. Complete the code for the following for loop:

for (int i = 1; i <= 6; i++) {

 // your code here

}

so that it prints the following numbers, one per line:

−4

14

32

50

68

86

24. What is the output of the following oddStuff method?

public static void oddStuff() {

 int number = 4;

 for (int count = 1; count <= number; count++) {

 System.out.println(number);

 number = number / 2;

 }

}

25. What is the output of the following loop?

int total = 25;

for (int number = 1; number <= (total / 2); number++) {

 total = total − number;

 System.out.println(total + " " + number);

}

26. What is the output of the following loop?

System.out.println("+---+");

for (int i = 1; i <= 3; i++) {

 System.out.println("\\ /");

 System.out.println("/ \\");

}

System.out.println("+---+");

27. What is the output of the following loop?

for (int i = 1; i <= 3; i++)

 System.out.println("How many lines");

 System.out.println("are printed?");

28. What is the output of the following loop?

System.out.print("T-minus ");

for (int i = 5; i >= 1; i— —) {

 System.out.print(i + ", ");

}

System.out.println("Blastoff!");

29. What is the output of the following sequence of loops?

for (int i = 1; i <= 5; i++) {

 for (int j = 1; j <= 10; j++) {

 System.out.print((i * j) + " ");

 }

 System.out.println();

}

30. What is the output of the following sequence of loops?

for (int i = 1; i <= 10; i++) {

 for (int j = 1; j <= 10 — i; j++) {

 System.out.print(" ");

 }

 for (int j = 1; j <= 2 * i — 1; j++) {

 System.out.print("*");

 }

 System.out.println();

}

31. What is the output of the following sequence of loops?

for (int i = 1; i <= 2; i++) {

 for (int j = 1; j <= 3; j++) {

 for (int k = 1; k <= 4; k++) {

 System.out.print("*");

 }

 System.out.print("!");

 }

 System.out.println();

}

32. What is the output of the following sequence of loops? Notice
that the code is the same as that in the previous exercise,
except that the placement of the braces has changed.

for (int i = 1; i <= 2; i++) {

 for (int j = 1; j <= 3; j++) {

 for (int k = 1; k <= 4; k++) {

 System.out.print("*");

 }

 }

 System.out.print("!");

 System.out.println();

}

33. What is the output of the following sequence of loops? Notice
that the code is the same as that in the previous exercise,
except that the placement of the braces has changed.

for (int i = 1; i <= 2; i++) {

 for (int j = 1; j <= 3; j++) {

 for (int k = 1; k <= 4; k++) {

 System.out.print("*");

 System.out.print("!");

 }

 System.out.println();

 }

}

Section 2.4: Managing Complexity

34. Suppose that you are trying to write a program that produces
the following output:

1 3 5 7 9 11 13 15 17 19 21

1 3 5 7 9 11

The following program is an attempt at a solution, but it
contains four major errors. Identify them all.

 1 public class BadNews {

 2 public static final int MAX_ODD = 21;

 3

 4 public static void writeOdds() {

 5 // print each odd number

 6 for (int count = 1; count <= (MAX_ODD - 2);

count++) {

 7 System.out.print(count + " ");

 8 count = count + 2;

 9 }

10

11 // print the last odd number

12 System.out.print(count + 2);

13 }

14

15 public static void main(String[] args) {

16 // write all odds up to 21

17 writeOdds();

18

19 // now, write all odds up to 11

20 MAX_ODD = 11;

21 writeOdds();

22 }

23 }

35. What is the output of the following unknown method?

 1 public class Strange {

 2 public static final int MAX = 5;

 3

 4 public static void unknown() {

 5 int number = 0;

 6

 7 for (int count = MAX; count >= 1; count--) {

 8 number += (count * count);

 9 }

10

11 System.out.println("The result is: " +

number);

12 }

13

14 public static void main(String[] args) {

15 unknown();

16 }

17 }

36. Suppose that you have a variable called line that will take on
the values 1, 2, 3, 4, and so on, and a class constant
named SIZE that takes one of two values. You are going to
formulate expressions in terms of line and SIZE that will yield
different sequences of numbers of characters. Fill in the table
below, indicating an expression that will generate each
sequence.

37. Write a table that determines the expressions for the number
of each type of character on each of the 6 lines in the
following output.

!!!!!!!!!!!!!!!!!!!!!!

\\!!!!!!!!!!!!!!!!!!//

\\\\!!!!!!!!!!!!!!////

\\\\\\!!!!!!!!!!//////

\\\\\\\\!!!!!!////////

\\\\\\\\\\!!//////////

38. Suppose that a program has been written that produces the
output shown in the previous problem. Now the author wants
the program to be scalable using a class constant called SIZE .
The previous output used a constant height of 6, since there
were 6 lines. The following is the output for a constant height

of 4. Create a new table that shows the expressions for the
character counts at this new size of 4, and compare these
tables to figure out the expressions for any size using the
SIZE constant.

!!!!!!!!!!!!!!

\\!!!!!!!!!!//

\\\\!!!!!!////

\\\\\\!!//////

Exercises
1. In physics, a common useful equation for finding the position

 of a body in linear motion at a given time , based on its
initial position , initial velocity , and rate of acceleration ,
is the following:

Write code to declare variables for , , , and , and then
write the code to compute on the basis of these values.

2. Write a for loop that produces the following output:

1 4 9 16 25 36 49 64 81 100

For added challenge, try to modify your code so that it does
not need to use the * multiplication operator. (It can be done!
Hint: Look at the differences between adjacent numbers.)

3. The Fibonacci numbers are a sequence of integers in which
the first two elements are 1, and each following element is the
sum of the two preceding elements. The mathematical
definition of each th Fibonacci number is the following:

s t

s0 v0 a

s = s0 + v0t +
1

2
at

2

s0 v0 a t

s

k

F(k) = {
F(k − 1) + F(k − 2), k > 2

1, k ≤ 2

The first 12 Fibonacci numbers are

1 1 2 3 5 8 13 21 34 55 89 144

Write a for loop that computes and prints the first 12
Fibonacci numbers.

4. Write nested for loops to produce the following output:

5. Write nested for loops to produce the following output:

*

**

6. Write nested for loops to produce the following output:

1

22

333

4444

55555

666666

7777777

7. Write nested for loops to produce the following output:

 1

 2

 3

 4

5

8. Write nested for loops to produce the following output:

 1

 22

 333

 4444

55555

9. Write nested for loops to produce the following output, with
each line 40 characters wide:

--

-^--^-_-^-_-^-_-^-_-^-_-^-_-^-_-^-_-^-

1122334455667788990011223344556677889900

--

10. It’s common to print a rotating, increasing list of single-digit
numbers at the start of a program’s output as a visual guide to
number the columns of the output to follow. With this in mind,
write nested for loops to produce the following output, with
each line 60 characters wide:

 | | | | |

|

123456789012345678901234567890123456789012345678901234567

890

11. Modify your code from the previous exercise so that it could
easily be modified to display a different range of numbers
(instead of 1234567890) and a different number of repetitions of
those numbers (instead of 60 total characters), with the
vertical bars still matching up correctly. Use class constants
instead of “magic numbers.” Here are some example outputs
that could be generated by changing your constants:

 | | | | | | | | | |

12340123401234012340123401234012340123401234012340

 | | | | | | |

12345670123456701234567012345670123456701234567012345670

12. Write nested for loops that produce the following output:

000111222333444555666777888999

000111222333444555666777888999

000111222333444555666777888999

13. Modify the code so that it now produces the following output:

99999888887777766666555554444433333222221111100000

99999888887777766666555554444433333222221111100000

99999888887777766666555554444433333222221111100000

99999888887777766666555554444433333222221111100000

99999888887777766666555554444433333222221111100000

14. Modify the code so that it now produces the following output:

999999999888888887777777666666555554444333221

999999999888888887777777666666555554444333221

999999999888888887777777666666555554444333221

999999999888888887777777666666555554444333221

15. Write a method called printDesign that produces the following
output. Use nested for loops to capture the structure of the
figure.

-----1-----

----333----

---55555---

--7777777--

-999999999-

16. Write a Java program called SlashFigure that produces the
following output. Use nested for loops to capture the
structure of the figure. (See also Self-Check Problems 34
and 35 .)

!!!!!!!!!!!!!!!!!!!!!!

\\!!!!!!!!!!!!!!!!!!//

\\\\!!!!!!!!!!!!!!////

\\\\\\!!!!!!!!!!//////

\\\\\\\\!!!!!!////////

\\\\\\\\\\!!//////////

17. Modify your SlashFigure program from the previous exercise
to become a new program called SlashFigure2 that uses a
global constant for the figure’s height. (You may want to make
loop tables first.) The previous output used a constant height
of 6. The following are the outputs for constant heights of 4
and 8:

18. Write a pseudocode algorithm that will produce the following
figure as output:

+===+===+

| | |

| | |

| | |

+===+===+

| | |

| | |

| | |

+===+===+

19. Use your pseudocode from the previous exercise to write a
Java program called Window that produces the preceding
figure as output. Use nested for loops to print the repeated
parts of the figure. Once you get it to work, add a class
constant so that the size of the figure can be changed simply
by changing the constant’s value.

20. Write a Java program called StarFigure that produces the
following output. Use nested for loops to capture the
structure of the figure.

////////////////\\\\\\\\\\\\\\\\

////////////********\\\\\\\\\\\\

////////****************\\\\\\\\

////************************\\\\

21. Modify your StarFigure program from the previous exercise to
become a new program named StarFigure2 that uses a global
constant for the figure’s height. (You may want to make loop

tables first.) The previous output used a constant height of 5.
The following are the outputs for constant heights of 3 and 6:

22. Write a Java program called DollarFigure that produces the
following output. Use nested for loops to capture the
structure of the figure.

$$$$$$$**************$$$$$$$

$$$$$$**********$$$$$$**

****$$$$$**********$$$$$****

******$$$$********$$$$******

********$$$******$$$********

**********$$****$$**********

************$**$************

23. Modify your DollarFigure program from the previous exercise
to become a new program called DollarFigure2 that uses a
global constant for the figure’s height. (You may want to make
loop tables first.) The previous output used a constant height
of 7.

24. Write a program called TwoRectangles that uses two integer
class constants called WIDTH and HEIGHT to draw two
rectangles of stars of the given dimensions. The first rectangle
should be flush left, and the second should be indented
horizontally by the given width. For example, if the WIDTH and
HEIGHT are 7 and 4 respectively, the program should draw the
following figure:

Programming Projects
1. Write a program that produces the following output using

nested for loops:

****** //////////// ******

***** //////////\\ *****

**** ////////\\\\ ****

*** //////\\\\\\ ***

** ////\\\\\\\\ **

* //\\\\\\\\\\ *

 \\\\\\\\\\\\

2. Write a program that produces the following output using
nested for loops:

+------+

| ^^ |

| ^ ^ |

|^ ^|

| ^^ |

| ^ ^ |

|^ ^|

+------+

|v v|

| v v |

| vv |

|v v|

| v v |

| vv |

+------+

3. Write a program that produces the following output using
nested for loops:

+---------+

| * |

| /*\ |

| //*\\ |

| ///*\\\ |

| */// |

| *// |

| */ |

| * |

+---------+

| */// |

| *// |

| */ |

| * |

| * |

| /*\ |

| //*\\ |

| ///*\\\ |

+---------+

4. Write a program that produces the following hourglass figure
as its output using nested for loops:

|""""""""""|

 \::::::::/

 \::::::/

 \::::/

 \::/

 ||

 /::\

 /::::\

 /::::::\

 /::::::::\

|""""""""""|

5. Write a program that produces the following output using
nested for loops. Use a class constant to make it possible to
change the number of stairs in the figure.

 o *******

 /|\ * *

 / \ * *

 o ****** *

 /|\ * *

 / \ * *

 o ****** *

 /|\ * *

 / \ * *

 o ****** *

 /|\ * *

 / \ * *

 o ****** *

 /|\ * *

 / \ * *

6. Write a program that produces the following rocket ship figure
as its output using nested for loops. Use a class constant to
make it possible to change the size of the rocket (the following
output uses a size of 3).

 /**\

 //**\\

 ///**\\\

 ////**\\\\

 /////**\\\\\

+=*=*=*=*=*=*+

|../\..../\..|

|./\/\../\/\.|

|/\/\/\/\/\/\|

|\/\/\/\/\/\/|

|.\/\/..\/\/.|

|..\/....\/..|

+=*=*=*=*=*=*+

|\/\/\/\/\/\/|

|.\/\/..\/\/.|

|..\/....\/..|

|../\..../\..|

|./\/\../\/\.|

|/\/\/\/\/\/\|

+=*=*=*=*=*=*+

 /**\

 //**\\

 ///**\\\

 ////**\\\\

 /////**\\\\\

7. Write a program that produces the following figure (which
vaguely resembles the Seattle Space Needle) as its output
using nested for loops. Use a class constant to make it
possible to change the size of the figure (the following output
uses a size of 4).

 ||

 ||

 ||

 ||

 __/||__

 __/:::||:::__

 __/::::::||::::::__

__/:::::::::||:::::::::__

|""""""""""""""""""""""""|

/\/\/\/\/\/\/\/\/\/\//

 /\/\/\/\/\/\/\/\//

 /\/\/\/\/\/\//

 /\/\/\/\//

 ||

 ||

 ||

 ||

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 |%%||%%|

 __/||__

 __/:::||:::__

 __/::::::||::::::__

__/:::::::::||:::::::::__

|""""""""""""""""""""""""|

8. Write a program that produces the following figure (which
vaguely resembles a textbook) as its output using nested for
loops. Use a class constant to make it possible to change the
size of the figure (the following output uses a size of 10).

 +------------------------------+

 / ___/

 / ___/__//

 / ___/__/__///

 / ___/__/__/__////

 / ___/__/__/__/__/////

 / ___/__/__/__/__/__//////

 / ___/__/__/__/__/__/__///////

 / ___/__/__/__/__/__/__/__////////

 / ___/__/__/__/__/__/__/__/__/////////

 /___/__/__/__/__/__/__/__/__/__//////////

+------------------------------+//////////

| Building Java Programs |//////////

| Building Java Programs |////////

| Building Java Programs |//////

| Building Java Programs |////

| Building Java Programs |//

+------------------------------+

Chapter 3 Introduction to
Parameters and Objects

3.1 Parameters
• The Mechanics of Parameters

• Limitations of Parameters

• Multiple Parameters

• Parameters versus Constants

• Overloading of Methods

3.2 Methods That Return Values
• The Math Class

• Defining Methods That Return Values

3.3 Using Objects
• String Objects

• Interactive Programs and Scanner Objects

• Sample Interactive Program

3.4 Case Study: Projectile Trajectory
• Unstructured Solution

• Structured Solution

Introduction
Chapter 2 introduced techniques for
managing complexity, including the use of class
constants, which make programs more flexible.
This chapter explores a more powerful
technique for obtaining such flexibility. Here, you
will learn how to use parameters to create
methods that solve not just single tasks, but
whole families of tasks. Creating such methods
requires you to generalize, or look beyond a
specific task to find the more general category of
task that it exemplifies. The ability to generalize
is one of the most important qualities of a good
software engineer, and the generalization
technique you will study in this chapter is one of
the most powerful techniques programmers use.
After exploring parameters, we’ll discuss some
other issues associated with methods, such as
the ability of a method to return a value.

This chapter then introduces the idea of objects
and how to use them in Java programs. We
aren’t going to explore the details of defining
objects for a while, but we want to begin using
objects early. One of the most attractive features
of Java is that it comes with a rich library of
predefined objects that can be used to solve
many common programming tasks.

The chapter concludes with an exploration of a
very important kind of object known as a
Scanner . Using a Scanner object, you can write
programs that obtain values from the user. This
feature will allow you to write interactive
programs that prompt for input as well as
producing output.

3.1 Parameters
Humans are very good at learning new tasks. When we learn, we
often develop a single generalized solution for a family of related
tasks. For example, someone might ask you to take 10 steps forward
or 20 steps forward. These are different tasks, but they both involve
taking a certain number of steps forward. We think of this action as a
single task of taking steps forward, and we understand that the
number of steps will vary from one task to another. In programming
terms, we refer to the number of steps as a parameter that allows us
to generalize the task.

Parameter (Parameterize)
Any of a set of characteristics that distinguish different
members of a family of tasks. To parameterize a task is
to identify a set of its parameters.

For a programming example, let’s return to the DrawFigure2 program
of Chapter 2 . It performs its task adequately, but there are several
aspects of this program that we can improve. For example, there are
many different places where a for loop writes out spaces. This

approach is redundant and can be consolidated into a single method
that performs all space-writing tasks.

Each space-writing task requires a different number of spaces, so
you need some way to tell the method how many spaces to write.
The methods you’ve written so far have a simple calling mechanism
where you say:

writeSpaces();

One approach might be to set a variable to a particular value before
the method is called:

int number = 10;

writeSpaces();

Then the method could look at the value of the variable number to
see how many spaces to write. Unfortunately, this approach won’t
work. Recall from Chapter 2 that scope rules determine where
variables can be accessed. Following those rules, the variable
number would be a local variable in main that could not be seen
inside writeSpaces .

Instead, you can specify one or more parameters to a method. The
idea is that instead of writing a method that performs just one version

of a task, you write a more flexible version that solves a family of
related tasks that all differ by one or more parameters. In the case of
the writeSpaces method, the parameter is the number of spaces to
write.

The following is the definition of writeSpaces with a parameter for the
number of spaces to write:

public static void writeSpaces(int number) {

 for (int i = 1; i <= number; i++) {

 System.out.print(" ");

 }

}

The parameter appears in the method header, after the name and
inside the parentheses that you have, up to this point, been leaving
empty. The writeSpaces method uses a parameter called number of
type int . As we indicated earlier, you can no longer call the
parameterized method by using just its name:

writeSpaces();

You must now say something like

writeSpaces(10);

When a call like this is made, the value 10 is used to initialize the
number parameter. You can think of this as information flowing into
the method from the call:

The parameter number is a local variable, but it gets its initial value
from the call. Calling this method with the value 10 is equivalent to
including the following declaration at the beginning of the
writeSpaces method:

int number = 10;

Of course, this mechanism is more flexible than a specific variable
declaration, because you can instead say

writeSpaces(20);

and it will be as if you had said

int number = 20;

at the beginning of the method. You can even use an integer
expression for the call:

writeSpaces(3 * 4 – 5);

In this case, Java evaluates the expression to get the value 7 and
then calls writeSpaces , initializing number to 7 .

Computer scientists use the word “parameter” broadly to mean both
what appears in the method header (the formal parameter) and what
appears in the method call (the actual parameter).

Formal Parameter
A variable that appears inside parentheses in the
header of a method that is used to generalize the
method’s behavior.

Actual Parameter
A specific value or expression that appears inside
parentheses in a method call.

The term “formal parameter” does not describe its purpose. A better
name would be “generalized parameter.” In the writeSpaces method,
number is the generalized parameter that appears in the method
declaration. It is a placeholder for some unspecified value. The
values appearing in the method calls are the actual parameters,
because each call indicates a specific task to perform. In other
words, each call provides an actual value to fill the placeholder.

The word “argument” is often used as a synonym for “parameter,” as
in “These are the arguments I’m passing to this method.” Some
people prefer to reserve the word “argument” for actual parameters
and the word “parameter” for formal parameters.

Let’s look at an example of how you might use this writeSpaces
method. Remember that the DrawFigure2 program had the following
method, called drawTop :

// produces the top half of the hourglass figure

public static void drawTop() {

 for (int line = 1; line <= SUB_HEIGHT; line++) {

 System.out.print("|");

 for (int i = 1; i <= (line – 1); i++) {

 System.out.print(" ");

 }

 System.out.print("\\");

 int dots = 2 * SUB_HEIGHT – 2 * line;

 for (int i = 1; i <= dots; i++) {

 System.out.print(".");

 }

 System.out.print("/");

 for (int i = 1; i <= (line – 1); i++) {

 System.out.print(" ");

 }

 System.out.println("|");

 }

}

Using the writeSpaces method, you can rewrite this as follows:

public static void drawTop() {

 for (int line = 1; line <= SUB_HEIGHT; line++) {

 System.out.print("|");

 writeSpaces(line – 1);

 System.out.print("\\");

 int dots = 2 * SUB_HEIGHT – 2 * line;

 for (int i = 1; i <= dots; i++) {

 System.out.print(".");

 }

 System.out.print("/");

 writeSpaces(line – 1);

 System.out.println("|");

 }

}

Notice that writeSpaces is called two different times, specifying how
many spaces are required in each case. You could modify the
drawBottom method from the DrawFigure2 program similarly to simplify
it.

You can write an entire method in JShell to test parameters. Here is
a method called writeStars that prints a given number of asterisks to
the console:

jshell> public static void writeStars(int number) {

 ...> for (int i = 1; i <= number; i++) {

 ...> System.out.print("*");

 ...> }

 ...> }

| created method writeStars(int)

jshell> writeStars(5);

jshell> writeStars(8);

The Mechanics of Parameters

When Java executes a call on a method, it initializes the method’s
parameters. For each parameter, it first evaluates the expression
passed as the actual parameter and then uses the result to initialize
the local variable whose name is given by the formal parameter.
Let’s use an example to clarify this process:

 1 // Demonstrates parameters with a method for writing

spaces.

 2 public class ParameterExample {

 3 public static void main(String[] args) {

 4 int spaces1 = 3;

 5 int spaces2 = 5;

 6

 7 System.out.print("*");

 8 writeSpaces(spaces1);

 9 System.out.println("*");

10

11 System.out.print("!");

12 writeSpaces(spaces2);

13 System.out.println("!");

14

15 System.out.print("'");

16 writeSpaces(8);

17 System.out.println("'");

18

19 System.out.print("<");

20 writeSpaces(spaces1 * spaces2 – 5);

21 System.out.println(">");

22 }

23

24 // writes "number" spaces on the current output line

25 public static void writeSpaces(int number) {

26 for (int i = 1; i <= number; i++) {

27 System.out.print(" ");

28 }

29 }

30 }

In the first two lines of the main method, the computer finds
instructions to allocate and initialize two variables:

The next three lines of code produce an output line with three
spaces bounded by asterisks on either side:

System.out.print("*");

writeSpaces(spaces1);

System.out.println("*");

You can see where the asterisks come from, but look at the method
call that produces the spaces. When Java executes the call on
writeSpaces , it must set up its parameter. To set up the parameter,
Java first evaluates the expression being passed as the actual
parameter. The expression is simply the variable spaces1 , which has
the value 3 . Therefore, the expression evaluates to 3 . Java uses
this result to initialize a local variable called number .

The following diagram indicates how the computer’s memory would
look as the writeSpaces method is entered the first time. Because
there are two methods involved (main and writeSpaces), the diagram

indicates which variables are local to main (spaces1 and spaces2)
and which are local to writeSpaces (the parameter number):

The net effect of this process is that the writeSpaces method has a
local copy of the value stored in the variable spaces1 from the main
method. The println that comes after the call on writeSpaces puts
an asterisk at the end of the line and then completes the line of
output.

Let’s now trace the next three lines of code:

System.out.print("!");

writeSpaces(spaces2);

System.out.println("!");

The first line prints an exclamation mark on the second line of output,
then calls writeSpaces again, this time with the variable spaces2 as
its actual parameter. The computer evaluates this expression,
obtaining the result 5 . This value is used to initialize number . Thus,

this time it creates a copy of the value stored in the variable spaces2
from the main method:

Because number has a different value this time (5 instead of 3), the
method produces a different number of spaces. After the method
executes, the println finishes the line of output with a second
exclamation mark.

Here are the next three lines of code:

System.out.print("'");

writeSpaces(8);

System.out.println("'");

This code writes a single quotation mark at the beginning of the third
line of output and then calls writeSpaces again. This time it uses the
integer literal 8 as the expression, which means that it initializes the
parameter number as a copy of the number 8:

Again, the method will behave differently because of the different
value of number . It prints eight spaces on the line and finishes
executing. Then the println completes the line of output by printing
another single quotation mark at the end of the line.

Finally, the last three lines of code in the main method are:

System.out.print("<");

writeSpaces(spaces1 * spaces2 – 5);

System.out.println(">");

This code prints a less-than character at the beginning of the fourth
line of output and then makes a final call on the writeSpaces method.
This time the actual parameter is an expression, not just a variable
or literal value. Thus, before the call is made, the computer
evaluates the expression to determine its value:

The computer uses this result to initialize number :

Now number is a copy of the value described by this complex
expression. Therefore, the total output of this program is:

* *

! !

' '

< >

COMMON PROGRAMMING ERROR

Confusing Actual and Formal

Parameters

Many students get used to seeing declarations of formal
parameters and mistakenly believe that their syntax is
identical to that for passing actual parameters. It’s a common
mistake to write the type of a variable as it’s being passed to
a parameter:

writeSpaces(int spaces1); // this doesn’t work

This confusion is due to the fact that parameters’ types are
written in the declaration of the method, like this:

public static void writeSpaces(int number)

Types must be written when variables or parameters are
declared, but when variables are used, such as when the
code calls a method and passes the variables as actual
parameters, their types are not written. Actual parameters are
not declarations; therefore, types should not be written before
them:

writeSpaces(spaces1); // much better!

Limitations of Parameters

We’ve seen that a parameter can be used to provide input to a
method. But while you can use a parameter to send a value into a
method, you can’t use a parameter to get a value out of a method.

When a parameter is set up, a local variable is created and is
initialized to the value being passed as the actual parameter. The net
effect is that the local variable is a copy of the value coming from the
outside. Since it is a local variable, it can’t influence any variables
outside the method. Consider the following sample program:

 1 // A demonstration of parameter limitations.

 2 public class ParameterExample2 {

 3 public static void main(String[] args) {

 4 int x = 17;

 5 doubleNumber(x);

 6 System.out.println("x = " + x);

 7 System.out.println();

 8

 9 int number = 42;

10 doubleNumber(number);

11 System.out.println("number = " + number);

12 }

13

14 public static void doubleNumber(int number) {

15 System.out.println("Initial value = " + number);

16 number = number * 2;

17 System.out.println("Final value = " + number);

18 }

19 }

This program begins by declaring and initializing an integer variable
called x with the value 17 :

It then calls the method doubleNumber , passing x as a parameter.
The value of x is used to initialize the parameter number as a local
variable of the method called doubleNumber :

The program then executes the statements inside of doubleNumber .
First, doubleNumber prints the initial value of number (17). Then it
doubles number :

Notice that this has no effect on the variable x . The parameter called
number is a copy of x , so even though they started out the same,
changing the value of number does not affect x . Next, doubleNumber
reports the new value of number (34).

At this point, doubleNumber finishes executing and we return to main :

The next statement in the main method reports the value of x , which
is 17 . Then it declares and initializes a variable called number with
the value 42 :

The following statement calls doubleNumber again, this time passing it
the value of number . This is an odd situation because the parameter
has the same name as the variable in main , but Java doesn’t care. It
always creates a new local variable for the doubleNumber method:

So, at this point there are two different variables called number , one
in each method. Now it’s time to execute the statements of
doubleNumber again. It first reports the value of number (42), then
doubles it:

Again, notice that doubling number inside doubleNumber has no effect
on the original variable number in main . These are separate
variables. The method then reports the new value of number (84) and
returns to main :

The program then reports the value of number and terminates. So,
the overall output of the program is as follows:

Initial value = 17

Final value = 34

x = 17

Initial value = 42

Final value = 84

number = 42

The local manipulations of the parameter do not change these
variables outside the method. The fact that variables are copied is an
important aspect of parameters. On the positive side, we know that
the variables are protected from change because the parameters are
copies of the originals. On the negative side, it means that although
parameters will allow us to send values into a method, they will not
allow us to get values back out of a method.

Multiple Parameters

So far, our discussion of parameter syntax has been informal. It’s
about time that we wrote down more precisely the syntax we use to
declare static methods with parameters. Here it is:

public static void <name>(<type> <name>, ..., <type> <name>) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

This template indicates that we can declare as many parameters as
we want inside the parentheses that appear after the name of a
method in its header. We use commas to separate different
parameters.

As an example of a method with multiple parameters, let’s consider a
variation of writeSpaces . It is convenient that we can use the method
to write different numbers of spaces, but it always writes spaces.
What if we want 18 asterisks or 23 periods or 17 question marks?
We can generalize the task even further by having the method take
two parameters—a character and a number of times to write that
character:

public static void writeChars(char ch, int number) {

 for (int i = 1; i <= number; i++) {

 System.out.print(ch);

 }

}

The character to be printed is a parameter of type char , which we
will discuss in more detail in the next chapter. Recall that character
literals are enclosed in single quotation marks.

The syntax template for calling a method that accepts parameters is
the following:

<method name>(<expression>, <expression>, ..., <expression>);

By calling the writeChars method you can write code like the
following:

writeChars('=', 20);

System.out.println();

for (int i = 1; i <= 10; i++) {

 writeChars('>', i);

 writeChars(' ', 20 – 2 * i);

 writeChars('<', i);

 System.out.println();

}

This code produces the following output:

====================

> <

>> <<

>>> <<<

>>>> <<<<

>>>>> <<<<<

>>>>>> <<<<<<

>>>>>>> <<<<<<<

>>>>>>>> <<<<<<<<

>>>>>>>>> <<<<<<<<<

>>>>>>>>>><<<<<<<<<<

Using the writeChars method we can write an even better version of
the drawTop method from the DrawFigure2 program of Chapter 2 .
We saw earlier that using writeSpaces we could eliminate two of the
inner loops, but this left us with the inner loop to print dots. Now we
can eliminate all three of the inner loops and produce a much more
readable version of the method:

public static void drawTop() {

 for (int line = 1; line <= SUB_HEIGHT; line++) {

 System.out.print("|");

 writeChars(' ', line – 1);

 System.out.print("\\");

 writeChars('.', 2 * SUB_HEIGHT – 2 * line);

 System.out.print("/");

 writeChars(' ', line – 1);

 System.out.println("|");

 }

}

You can include as many parameters as you want when you define a
method. Each method call must provide exactly that number of
parameters, in the same order. For example, consider the first call on
writeChars in the preceding code fragment and the header for
writeChars . Java lines up the parameters in sequential order (with
the first actual parameter going into the first formal parameter and
the second actual parameter going into the second formal
parameter):

We’ve seen that methods can call other methods; this is equally true
of methods that take parameters. For example, here is a method for
drawing a box of a given height and width that calls the writeChars
method:

public static void drawBox(int height, int width) {

 // draw top of box

 writeChars('*', width);

 System.out.println();

 // draw middle lines

 for (int i = 1; i <= height – 2; i++) {

 System.out.print('*');

 writeChars(' ', width – 2);

 System.out.println("*");

 }

 // draw bottom of box

 writeChars('*', width);

 System.out.println();

}

Notice that drawBox is passed values for its parameters called height
and width and that these parameters are used to form expressions
that are passed as values to writeChars . For example, inside the for
loop we call writeChars asking it to produce width – 2 spaces. (We
subtract 2 because we print a star at the beginning and the end of
the line.) Here is a sample call on the method:

drawBox(5, 10);

This code produces the following output:

* *

* *

* *

When you’re writing methods that accept many parameters, the
method header can become very long. It is common to wrap long
lines (ones that exceed roughly 80 characters in length) by inserting
a line break after an operator or parameter and indenting the line
that follows by twice the normal indentation width:

// this method’s header is too long, so we’ll wrap it

public static void printTriangle(int xCoord1, int yCoord1,

 int xCoord2, int yCoord2, int xCoord3, int yCoord3) {

 ...

}

Parameters versus Constants

In Chapter 2 , you saw that class constants are a useful
mechanism to increase the flexibility of your programs. By using
such constants, you can make it easy to modify a program to behave
differently. Parameters provide much of the same flexibility, and

more. Consider the writeSpaces method. Suppose you wrote it using
a class constant:

public static final int NUMBER_OF_SPACES = 10;

This approach would give you the flexibility to produce a different
number of spaces, but it has one major limitation: The constant can
change only from execution to execution; it cannot change within a
single execution. In other words, you can execute the program once
with one value, edit the program, recompile, and then execute it
again with a different value, but you can’t use different values in a
single execution of the program using a class constant.

Parameters are more flexible. Because you specify the value to be
used each time you call the method, you can use several different
values in a single program execution. As you have seen, you can
call the method many different times within a single program
execution and have it behave differently every time. However, using
parameters involves more work for the programmer than using class
constants. It makes your method headers and method calls more
tedious, not to mention making the execution (and, thus, the
debugging) more complex.

Therefore, you will probably find occasion to use each technique.
The basic rule is to use a class constant when you only want to
change the value from execution to execution. If you want to use
different values within a single execution, use a parameter.

Overloading of Methods

You’ll often want to create slight variations of the same method,
passing different parameters. For example, you could have a
drawBox method that allows you to specify a particular height and
width, but you might also want to have a version that draws a box of
default size. In other words, sometimes you want to specify these
values, as in

drawBox(8, 10);

and other times you want to just draw a box with the standard height
and width:

drawBox();

Some programming languages require you to come up with different
names for these versions, such as drawBox and drawDefaultBox . As
you can imagine, coming up with new names for each variation
becomes tedious. Fortunately, Java allows you to have more than
one method with the same name, as long as they have different
parameters. This is called overloading. The primary requirement for
overloading is that the different methods that you define must have
different method signatures.

Method Overloading
The ability to define two or more different methods with
the same name but different method signatures.

Method Signature
The name of a method, along with its number and type
of parameters.

The two example drawBox versions clearly have different method
signatures, because one has two parameters and the other has zero
parameters. It would be obvious from any call on the method which
version to use: If you see two parameters, you execute the version
with two parameters; if you see zero parameters, you execute the
version with zero parameters.

The situation gets more complicated when overloading involves the
same number of parameters, but this turns out to be one of the most
useful applications of overloading. For example, the println method

is actually a series of overloaded methods. We can call println
passing it a String , an int , a double , and so on. This flexibility is
implemented as a series of different methods, all of which take one
parameter: One version takes a String , another version takes an
int , another version takes a double , and so on. Obviously, you do
slightly different things to print one of these kinds of data versus
another, which is why it’s useful to have these different versions of
the method.

3.2 Methods That Return Values
The last few methods we’ve looked at have been action-oriented
methods that perform some specific task. You can think of them as
being like commands that you could give someone, as in “Draw a
box” or “Draw a triangle.” Parameters allow these commands to be
more flexible, as in “Draw a box that is 10 by 20.”

You will also want to be able to write methods that compute values.
These methods are more like questions, as in “What is the square
root of 2.5?” or “What do you get when you carry 2.3 to the 4th
power?” Consider, for example, a method called sqrt that would
compute the square root of a number.

It might seem that the way to write such a method would be to have
it accept a parameter of type double and println its square root to
the console. But you may want to use the square root as part of a
larger expression or computation, such as solving a quadratic
equation or computing the distance between points on an
plane.

A better solution would be a square root command that passes the
number of interest as a parameter and returns its square root back to
the program as a result. You could then use the result as part of an
expression, store it in a variable, or print it to the console. Such a
command is a new type of method that is said to return a value.

x/y

Return
To send a value out as the result of a method that can
be used in an expression in your program. Void
methods do not return any value.

If you had such a method, you could ask for the square root of 2.5 by
writing code like this:

// assuming you had a method called sqrt

double answer = sqrt(2.5);

The sqrt method has a parameter (the number whose square root
you want to find), and it also returns a value (the square root). The
actual parameter 2.5 goes “into” the method, and the square root
comes out. In the preceding code, the returned result is stored in a
variable called answer .

You can tell whether or not a method returns a value by looking at its
header. All the methods you’ve written so far have begun with public
static void . The word void is known as the return type of the
method.

The void return type is a little odd because, as its name implies, the
method returns nothing. A method can return any legal type: an int ,
a double , or any other type. In the case of the sqrt method, you
want it to return a double , so you would write its header as follows:

public static double sqrt(double n)

As in the previous case, the word that comes after public static is
the return type of the method:

Fortunately, you don’t actually need to write a method for computing
the square root of a number, because Java has one that is built in.
The method is included in a class known as Math that includes many
useful computing methods. So, before we discuss the details of
writing methods that return values, let’s explore the Math class and
what it has to offer.

The Math Class

In Chapter 1 we mentioned that a great deal of predefined code,
collectively known as the Java class libraries, has been written for

public static double
return type

 sqrt(double n)����

Java. One of the most useful classes is Math . It includes predefined
mathematical constants and a large number of common
mathematical functions. The Math class should be available on any
machine on which Java is properly installed.

As we noted in the previous section, the Math class has a method
called sqrt that computes the square root of a number. The method
has the following header:

public static double sqrt(double n)

This header says that the method is called sqrt , that it takes a
parameter of type double , and that it returns a value of type double .

Unfortunately, you can’t just call this method directly by referring to it
as sqrt because it is in another class. Whenever you want to refer to
something declared in another class, you use dot notation:

<class name>.<element>

So you would refer to this method as Math.sqrt . Here’s a sample
program that uses the method:

1 // Computes square roots using the Math class.

2 public class WriteRoots {

3 public static void main(String[] args) {

4 for (int i = 1; i <= 20; i++) {

5 double root = Math.sqrt(i);

6 System.out.println("sqrt(" + i + ") = " + root);

7 }

8 }

9 }

This program produces the following output:

sqrt(1) = 1.0

sqrt(2) = 1.4142135623730951

sqrt(3) = 1.7320508075688772

sqrt(4) = 2.0

sqrt(5) = 2.23606797749979

sqrt(6) = 2.449489742783178

sqrt(7) = 2.6457513110645907

sqrt(8) = 2.8284271247461903

sqrt(9) = 3.0

sqrt(10) = 3.1622776601683795

sqrt(11) = 3.3166247903554

sqrt(12) = 3.4641016151377544

sqrt(13) = 3.605551275463989

sqrt(14) = 3.7416573867739413

sqrt(15) = 3.872983346207417

sqrt(16) = 4.0

sqrt(17) = 4.123105625617661

sqrt(18) = 4.242640687119285

sqrt(19) = 4.358898943540674

sqrt(20) = 4.47213595499958

Notice that we passed a value of type int to Math.sqrt , but the
header says that it expects a value of type double . Remember that if
Java is expecting a double and gets an int , it converts the int into
a corresponding double .

The Math class also defines two frequently used constants: and π
(see Table 3.1). Following the Java convention, we use all
uppercase letters for their names and refer to them as Math.E and
Math.PI .

Table 3.1 Math Constants

Table 3.2 lists some of the most useful static methods from the
Math class. You can see a complete list of methods defined in the
Math class by checking out the API documentation for your version
of Java. The API describes how to use the standard libraries that are
available to Java programmers. It can be a bit overwhelming,
because the Java libraries are vast. Wander around a bit if you are

e

so inclined, but don’t be dismayed that there are so many libraries to
choose from in Java.

Table 3.2 Useful Static Methods in the Math Class

The following JShell interaction demonstrates several Math methods:

jshell> Math.ceil(2.13)

$1 ==> 3.0

jshell> Math.pow(2, 5)

$2 ==> 32.0

jshell> Math.random()

$3 ==> 0.6051518556439361

jshell> Math.sin(Math.PI / 2)

$4 ==> 1.0

jshell> Math.pow(2, 2) + Math.pow(3, 2)

$5 ==> 13.0

If you do look into the Math API, you’ll notice that the Math class has
several overloaded methods. For example, there is a version of the
absolute value method (Math.abs) for integers and another for
doubles. The rules that govern which method is called are complex,
so we won’t cover them here. The basic idea, though, is that Java
tries to find the method that is the best fit. For the most part, you
don’t have to think much about this issue; you can just let Java
choose for you, and it will generally make the right choice.

Defining Methods That Return
Values

You can write your own methods that return values by using a
special statement known as a return statement. For example, we
often use a method that returns a value to express an equation.
There is a famous story about the mathematician Carl Friedrich
Gauss that illustrates the use of such a method. When Gauss was a
boy, his teacher asked the class to add up the integers 1 through
100, thinking that it would take a while for them to complete the task.
Gauss immediately found a formula and presented his answer to the
teacher. He used a simple trick of adding two copies of the series
together, one in forward order and one in backward order. This
method allowed him to pair up values from the two copies so that
their sum was the same:

Every entry in the right-hand column is equal to 101 and there are
100 rows in this table, so the overall sum is
Of course, that’s the sum of two copies of the sequence, so the
actual answer is half that. Using this approach, Gauss determined
that the sum of the first 100 integers is 5050. When the series goes
from 1 to the sum is

We can use Gauss’ formula to write a method that computes the
sum of the first integers:

// returns the sum of the integers 1-N, inclusive

public static int sum(int n) {

 return (n + 1) * n / 2;

}

The sum method could be used by the main method in code such as
the following:

int answer = sum(100);

System.out.println("The sum of 1 through 100 is " + answer);

A diagram of what happens when this code is executed follows. The
method is invoked with the parameter n being initialized to 100.
Plugging this value into the formula, we get a value of 5050, which is
sent back to be stored in the variable called answer :

100 × 101 = 10, 100.

n, (n + 1) × n/2.

n

Notice once again that in the header for the method the familiar word
void (indicating no return value) has been replaced with the word
int . Remember that when you declare a method that returns a
value, you have to tell Java what kind of value it will return. Thus, we
can update our syntax template for static methods once more to
clarify that the header includes a return type (void for none):

public static <type> <name>(<type> <name>, ..., <type> <name>)

{

 <statement>;

 <statement>;

 ...

 <statement>;

}

The syntax of the return statement is:

return <expression>;

When Java encounters a return statement, it evaluates the given
expression and immediately terminates the method, returning the
value it obtained from the expression. As a result, it’s not legal to
have any other statements after a return statement; the return
must be the last statement in your method. It is also an error for a
Java method with a return type other than void to terminate without
a return .

There are exceptions to the previous rules, as you’ll see later. For
example, it is possible for a method to have more than one return
statement; this will come up in the next chapter, when we discuss
conditional execution using if and if/else statements.

Let’s look at another example method that returns a value. In The
Wizard of Oz, the Scarecrow after being given a diploma
demonstrates his intelligence by describing a formula using the sum
of the square roots of any two sides of an isosceles triangle.
Probably he was trying to state the Pythagorean theorem, although
it’s not clear whether the writers were bad at math or whether they
were making a comment about the value of a diploma. In an episode
of The Simpsons, Homer repeats the Scarecrow’s mistaken formula
after putting on a pair of Henry Kissinger’s glasses that he finds in a
bathroom at the Springfield nuclear power plant.

The correct Pythagorean theorem refers only to right triangles and
says that the length of the hypotenuse of a right triangle is equal to
the square root of the sums of the squares of the two remaining
sides. If you know the lengths of two sides and of a right triangle
and want to find the length of the third side you compute it as
follows:

COMMON PROGRAMMING ERROR

Ignoring the Returned Value

When you call a method that returns a value, the expectation
is that you’ll do something with the value that’s returned. You
can print it, store it in a variable, or use it as part of a larger
expression. It is legal (but unwise) to simply call the method
and ignore the value being returned from it:

sum(1000); // doesn’t do anything

The preceding call doesn’t print the sum or have any
noticeable effect. If you want the value printed, you must
include a println statement:

a b

c,

c = √a2 + b2

int answer = sum(1000); // better

System.out.println("Sum up to 1000 is " + answer);

A shorter form of the fixed code would be the following:

System.out.println("Sum up to 1000 is " + sum(1000));

Say you want to print out the lengths of the hypotenuses of two right
triangles, one with side lengths of 5 and 12, and the other with side
lengths of 3 and 4. You could write code such as the following:

double c1 = Math.sqrt(Math.pow(5, 2) + Math.pow(12, 2));

System.out.println("hypotenuse 1 = " + c1);

double c2 = Math.sqrt(Math.pow(3, 2) + Math.pow(4, 2));

System.out.println("hypotenuse 2 = " + c2);

The preceding code is correct, but it’s a bit hard to read, and you’d
have to duplicate the same complex math a third time if you wanted
to include a third triangle. A better solution would be to create a
method that computes and returns the hypotenuse length when
given the lengths of the two other sides as parameters. Such a
method would look like this:

public static double hypotenuse(double a, double b) {

 double c = Math.sqrt(Math.pow(a, 2) + Math.pow(b, 2));

 return c;

}

This method can be used to craft a more concise and readable main
method, as shown here.

1 // Computes triangle hypotenuse lengths using return values.

 2 public class Triangles {

 3 public static void main(String[] args) {

 4 System.out.println("hypotenuse 1 = " + hypotenuse(5,

12));

 5 System.out.println("hypotenuse 2 = " + hypotenuse(3,

4));

 6 }

 7

 8 public static double hypotenuse(double a, double b) {

 9 double c = Math.sqrt(Math.pow(a, 2) + Math.pow(b,

2));

10 return c;

11 }

12 }

A few variations of this program are possible. For one, it isn’t
necessary to store the hypotenuse method’s return value into the

variable c . If you prefer, you can simply compute and return the
value in one line. In this case, the body of the hypotenuse method
would become the following:

return Math.sqrt(Math.pow(a, 2) + Math.pow(b, 2));

Also, some programmers avoid using Math.pow for low powers such
as 2 and just manually do the multiplication. Using that approach, the
body of the hypotenuse method would look like this:

return Math.sqrt(a * a + b * b);

COMMON PROGRAMMING ERROR

Statement after Return

It’s illegal to place other statements immediately after a
return statement, because those statements can never be
reached or executed. New programmers often accidentally do
this when trying to print the value of a variable after returning.
Say you’ve written the hypotenuse method but have
accidentally written the parameters to Math.pow in the wrong
order, so the method is not producing the right answer. You

would try to debug this by printing the value of c that is being
returned. Here’s the faulty code:

// trying to find the bug in this buggy version of

hypotenuse

public static double hypotenuse(double a, double b) {

 double c = Math.sqrt(Math.pow(2, a) + Math.pow(2,

b));

 return c;

 System.out.println(c); // this doesn’t work

}

The compiler complains about the println statement being
unreachable, since it follows a return statement. The
compiler error output looks something like this:

Triangles.java:10: error: unreachable statement

 System.out.println(c);

 ^

Triangles.java:11: error: missing return statement

 }

 ^

2 errors

The fix is to move the println statement earlier in the
method, before the return statement:

public static double hypotenuse(double a, double b) {

 double c = Math.sqrt(Math.pow(2, a) + Math.pow(2,

b));

 System.out.println(c); // better

 return c;

}

3.3 Using Objects
We’ve spent a considerable amount of time discussing the primitive
types in Java and how they work, so it’s about time that we started
talking about objects and how they work.

The idea for objects came from the observation that as we start
working with new kinds of data (integers, reals, characters, text,
etc.), we find ourselves writing a lot of methods that operate on that
data. Rather than completely separating the basic operations from
the data, it seemed to make sense to include them together. This
packaging of data and operations into one entity is the central idea
behind objects. An object stores some data and has methods that
act on its data.

Object
A programming entity that contains state (data) and
behavior (methods).

As we said in Chapter 1 , classes are the basic building blocks of
Java programs. But classes also serve another purpose: to describe

new types of objects.

Class
A category or type of object.

When it is used this way, a class is like a blueprint of what the object
looks like. Once you’ve given Java the blueprint, you can ask it to
create actual objects that match that blueprint. We sometimes refer
to the individual objects as instances of the class. We tend to use the
words “instance” and “object” interchangeably.

This concept is difficult to understand in the abstract. To help you
come to grips with what it means and how it works, we’ll look at
several different classes. In keeping with our idea of focusing on
fundamental concepts first, in this chapter we’ll study how to use
existing objects that are already part of Java, but we aren’t going to
study how to define our own new types of objects just yet. We’ll get
to that in Chapter 8 , after we’ve had time to practice using
objects.

Using objects differs from using primitive types, so we’ll have to
introduce some new syntax and concepts. It would be nice if Java
had a consistent model for using all types of data, but it doesn’t.

Consequently, if you want to understand how your programs
operate, you’ll have to learn two sets of rules: one for primitives and
one for objects.

String Objects

String objects are one of the most useful and most commonly used
types of objects in Java, so they make a good starting point. They
aren’t the best example of objects, though, because there are a lot of
special rules that apply only to strings . In the next section, we’ll look
at a more typical kind of object.

One special property of String objects is that there are literals that
represent them (string literals). We’ve been using them in println
statements since Chapter 1 . What we haven’t discussed is that
these literal values represent objects of type String (instances of the
String class). For example, in the same way that you can say

int x = 8;

you can say

String s = "hello there";

You can declare variables of type String and use the assignment
statement to give values to these variables. You can also write code
that involves String expressions:

String s1 = "hello";

String s2 = "there";

String combined = s1 + " " + s2;

This code defines two Strings that each represent a single word and
a third String that represents the concatenation of the two words
with a space in between. You’ll notice that the type String is
capitalized (as are the names of all object types in Java), unlike the
primitive types such as double and int .

These examples haven’t shown what’s special about String objects,
but we’re getting there. Remember that the idea behind objects was
to include basic operations with the data itself, the way we make

cars that have controls built in. The data stored in a String is a
sequence of characters. There are all sorts of operations you might
want to perform on this sequence of characters. For example, you
might want to know how many characters there are in the String .
String objects have a length method that returns this information.

If the length method were static, you would call it by saying
something like

length(s) // this isn't legal

But when you perform operations on objects, you use a different
syntax. Objects store data and methods, so the method to report a
String ’s length actually exists inside that String object itself. To call
an object’s method, you write the name of the variable first, followed
by a dot, and then the name of the method:

s.length()

Think of it as talking to the String object. When you ask for
s.length() , you’re saying, “Hey, s . I’m talking to you. What’s your
length?” Of course, different String objects have different lengths,
so you will get different answers when you communicate with
different String objects.

The general syntax for calling a method of an object is the following:

<variable>.<method name>(<expression>, <expression>, ...,

<expression>)

For example, the following JShell interaction creates two String
variables and asks each for its length:

jshell> String s1 = "hello";

s1 ==> "hello"

jshell> String s2 = "how are you?";

s2 ==> "how are you?"

jshell> s1.length()

$3 ==> 5

jshell> s2.length()

$4 ==> 12

What else might you want to do with a String object? With the
length method, you can figure out how many characters there are in
a String , but what about getting the individual characters
themselves? There are several ways to do this, but one of the most
common is to use a method called charAt that returns the character
at a specific location in the string.

This leads us to the problem of how to specify locations in a
sequence. Obviously there is a first character, a second character,
and so on, so it makes sense to use an integer to refer to a specific
location. We call this the index.

Index
An integer used to specify a location in a sequence of
values. Java generally uses zero-based indexing (with
0 as the first index value, followed by 1, 2, 3, and so
on).

Each character of a String object is assigned an index value,
starting with 0. For example, for the variable s1 that refers to the
string " hello ", the indexes are:

It may seem intuitive to consider the letter “h” to be at position 1, but
there are advantages to starting with an index of 0. It’s a convention
that was adopted by the designers of the C language and that has

been followed by the designers of C++ and Java, so it’s a convention
you’ll have to learn to live with.

For the longer String s2 , the positions are:

Notice that the spaces in this String have positions as well (here,
positions 3 and 7). Also notice that the indexes for a given string
always range from 0 to one less than the length of the string.

Using the charAt method, you can request specific characters of a
string. The return type is char . For example, if you ask for
s1.charAt(1) you’ll get 'e' (the ’e’ in “hello”). If you ask for
s2.charAt(5), you’ll get 'r' (the ’r’ in “how are you?”). For any
String , if you ask for charAt(0) , you’ll get the first character of the
string.

When you are working with String objects, you’ll often find it useful
to write a for loop to handle the different characters of the String .
Because Strings are indexed starting at 0, this task is easier to write
with for loops that start with 0 rather than 1 . Consider, for example,
the following JShell interaction that prints out the individual
characters of s1 :

jshell> String s1 = "hello";

s1 ==> "hello"

jshell> for (int i = 0; i < s1.length(); i++) {

 ...> System.out.println(i + ": " + s1.charAt(i));

 ...> }

0: h

1: e

2: l

3: l

4: o

Remember that when we start loops at 0, we usually test with less
than (<) rather than less than or equal to (<=). The string s1 has five
characters in it, so the call on s1.length() will return 5 . But because
the first index is 0, the last index will be one less than 5, or 4. This
convention takes a while to get used to, but zero-based indexing is
used throughout Java, so you’ll eventually get the hang of it.

Another useful String method is the substring method. It takes two
integer arguments representing a starting and ending index. When
you call the substring method, you provide two of these indexes: the
index of the first character you want and the index just past the last
index that you want.

Recall that the String s2 has the following positions:

Suppose you want to pull out individual words from this string. To get
the first word, “how,” you would ask for:

jshell> String s2 = "how are you?";

s2 ==> "how are you?"

jshell> s2.substring(0, 3)

$2 ==> "how"

Remember that the second value that you pass to the substring
method is supposed to be one beyond the end of the substring you
are forming. So, even though there is a space at position 3 in the
original string, it will not be part of what you get from the call on
substring. Instead, you’ll get all the characters just before position 3.
Following this rule means that sometimes you will give a position to a
substring at which there is no character. For instance, the last
character in the string to which s2 refers is at index 11 (the question
mark). If you want to get the substring “you?” including the question
mark, you’d ask for:

jshell> s2.substring(8, 12)

$3 ==> "you?"

There is no character at position 12 in s2 , but this call asks for
characters starting at position 8 that come before position 12, so this
actually makes sense.

You have to be careful about what indexes you use, though. With the
substring method you can ask for the position just beyond the end
of the string, but you can’t ask for anything beyond that. For
example, if you specify 13 as the ending index in our preceding
example, the code will generate an execution error:

jshell> s2.substring(8, 13)

| java.lang.StringIndexOutOfBoundsException thrown:

| begin 8, end 13, length 12

| at String.checkBoundsBeginEnd (String.java:3107)

| at String.substring (String.java:1873)

| at (#4:1)

Similarly, if you ask for the charAt at a nonexistent position, your
program will generate an execution error. These errors are known as
exceptions. Exceptions are runtime errors as mentioned in Chapter
1 .

Exception

A runtime error that prevents a program from
continuing its normal execution.

We say that an exception is thrown when an error is encountered.
When an exception is thrown, Java looks to see if you have written
code to handle it. If not, program execution is halted and you will see
what is known as a stack trace or back trace. The stack trace shows
you the series of methods that have been called, in reverse order. In
the case of bad String indexes, the exception prints a message
such as the following to the console:

Exception in thread "main"

 java.lang.StringIndexOutOfBoundsException:

 String index out of range: 13

 at java.lang.String.substring(Unknown Source)

 at ExampleProgram.main(ExampleProgram.java:3)

You can use a String as a parameter to method. For example, the
following program uses String parameters to print a custom
message to a person based on their name:

 1 // This program demonstrates String parameters.

 2 public class FormLetter {

 3 public static void main(String[] args) {

 4 letter("Philip", "Smith");

 5 letter("Jean", "Geges");

 6 }

 7

 8 public static void letter(String first, String last) {

 9 System.out.println("Dear " + first + ",");

10 System.out.println("Check out this amazing offer!

20%");

11 System.out.println("off all items. A great deal,

as");

12 System.out.println("sure as your name is " + last +

"!");

13 System.out.println();

14 }

15 }

It produces the following output:

Dear Philip,

Check out this amazing offer! 20%

off all items. A great deal, as

sure as your name is Smith!

Dear Jean,

Check out this amazing offer! 20%

off all items. A great deal, as

sure as your name is Geges!

Table 3.3 lists some of the most useful methods that you can call
on String objects.

Table 3.3 Useful Methods of String Objects

Strings in Java are immutable, which means that once they are
constructed, their values can never be changed.

Immutable Object
An object whose value cannot be changed.

It may seem odd that Strings are immutable and yet have methods
like toUpperCase and toLowerCase . But if you read the descriptions in
the table carefully, you’ll see that these methods don’t actually

change a given String object; instead they return a new string.
Consider the following code:

String s = "Hello, Maria";

s.toUpperCase();

System.out.println(s);

You might think that this will turn the string s into its uppercase
equivalent, but it doesn’t. The second line of code constructs a new
string that has the uppercase equivalent of the value of s , but we
don’t do anything with this new value. In order to turn the string into
uppercase, the key is to either store this new string in a different
variable or reassign the variable s to point to the new string:

String s = "Hello, Maria";

s = s.toUpperCase();

System.out.println(s);

This version of the code produces the following output:

HELLO, MARIA

The toUpperCase and toLowerCase methods are particularly helpful
when you want to perform string comparisons in which you ignore
the case of the letters involved.

Another useful method found in String objects is the replace
method. It accepts two parameters: a string to search for, and a new
string to replace all occurrences of it with.

The following JShell interaction demonstrates the replace method:

jshell> String name = "Tweedle Dee";

name ==> "Tweedle Dee"

jshell> name = name.replace("ee", "oo");

name ==> "Twoodle Doo"

jshell> name = name.replace("w", "");

name ==> "Toodle Doo"

Interactive Programs and Scanner
Objects

As you’ve seen, you can easily produce output in the console
window by calling System.out.println and System.out.print . You can
also write programs that pause and wait for the user to type a
response. Such programs are known as interactive programs, and
the responses typed by the user are known as console input.

Console Input
Responses typed by the user when an interactive
program pauses for input.

When you refer to System.out , you are accessing an object in the
System class known as the standard output stream, or “standard out”
for short. There is a corresponding object for standard input known
as System.in , but Java wasn’t designed for console input, and
System.in has never been particularly easy to use for this purpose.

Fortunately for us, there is an easier way to read console input:
Scanner objects.

Most objects have to be explicitly constructed by calling a special
method known as a constructor.

Constructor (Construct)
A special syntax used to create and initialize an object.
Objects in Java programs must be constructed before
they can be used.

Remember that a class is like a blueprint for a family of objects.
Calling a constructor is like sending an order to the factory asking it
to follow the blueprint to get you an actual object that you can
manipulate. When you send in your order to the factory, you
sometimes specify certain parameters (e.g., what color you want the
object to be).

In Java, constructors are called using the special keyword new ,
followed by the object’s type and any necessary parameters. For
example, to construct a specific Scanner object, you have to pass
information about the source of input. In particular, you have to

provide an input stream. To read from the console window, pass it
System.in :

Scanner console = new Scanner(System.in);

Once you’ve constructed the Scanner , you can ask it to return a
value of a particular type. A number of methods, all beginning with
the word “next,” are available to obtain the various types of values.
Table 3.4 lists them.

Table 3.4 Scanner Methods

Typically, you will use variables to keep track of the values returned
by these methods. For example, you might say:

int n = console.nextInt();

The call on the console object’s nextInt method pauses for user
input. Whenever the computer pauses for input, it will pause for an
entire line of input. In other words, it will wait until the user hits the
Enter key before continuing to execute the program.

You can use the Scanner class to read input line by line using the
nextLine method, although we won’t be using nextLine very much

for now. The other “next” methods are all token-based (that is, they
read single elements of input rather than entire lines).

Token
A single element of input (e.g., one word, one number).

By default, the Scanner uses whitespace to separate tokens.

Whitespace
Spaces, tab characters, and newline characters.

A Scanner object looks at what the user types and uses the
whitespace on the input line to break it up into individual tokens. For
example, the line of input

hello there. "how are" "you?" all-one-token

would be split into six tokens:

hello

there.

"how

are"

"you?"

all-one-token

Notice that the Scanner includes punctuation characters such as
periods, question marks, and quotation marks in the tokens it
generates. It also includes dashes, so because there is no
whitespace in the middle to break it up into different tokens, we get
just one token for “all-one-token.” It’s possible to control how a
Scanner turns things into tokens (a process called tokenizing the
input), but we won’t be doing anything that fancy.

It is possible to read more than one value from a Scanner , as in:

double x = console.nextDouble();

double y = console.nextDouble();

Because there are two different calls on the console object’s
nextDouble method, this code will cause the computer to pause until
the user has entered two numeric values. The values can be entered

on the same line or on separate lines. In general, the computer
continues to pause for user input until it has obtained whatever
values you have asked the Scanner to obtain.

If a user types something that isn’t an integer when you call nextInt ,
such as XYZZY , the Scanner object generates an exception. Recall
from the section on String objects that exceptions are runtime errors
that halt program execution. In this case, you’ll see runtime error
output such as the following:

Exception in thread "main" java.util.InputMismatchException

 at java.util.Scanner.throwFor(Unknown Source)

 at java.util.Scanner.next(Unknown Source)

 at java.util.Scanner.nextInt(Unknown Source)

 at Example.main(Example.java:13)

You will see in a later chapter how to test for user errors. In the
meantime, we will assume that the user provides appropriate input.

Sample Interactive Program

Using the Scanner class, we can write a complete interactive
program that performs a useful computation for the user. If you ever

find yourself buying a house, you’ll want to know what your monthly
mortgage payment is going to be. The following is a complete
program that asks for information about a loan and prints the
monthly payment:

 1 // This program prompts for information about a loan and

 2 // computes the monthly mortgage payment.

 3

 4 import java.util.*; // for Scanner

 5

 6 public class Mortgage {

 7 public static void main(String[] args) {

 8 Scanner console = new Scanner(System.in);

 9

10 // obtain values

11 System.out.println("This program computes monthly "

+

12 "mortgage payments.");

13 System.out.print("loan amount : ");

14 double loan = console.nextDouble();

15 System.out.print("number of years: ");

16 int years = console.nextInt();

17 System.out.print("interest rate : ");

18 double rate = console.nextDouble();

19 System.out.println();

20

21 // compute result and report

22 int n = 12 * years;

23 double c = rate / 12.0 / 100.0;

24 double payment = loan * c * Math.pow(1 + c, n) /

25 (Math.pow(1 + c, n) – 1);

26 System.out.println("payment = $" + (int) payment);

27 }

28 }

The following is a sample execution of the program (user input is in
bold):

This program computes monthly mortgage payments.

loan amount : 275000

number of years: 30

interest rate : 4.25

payment = $1352

The first thing we do in the program is construct a Scanner object,
which we will use for console input. Next, we explain what the
program is going to do, printing a description to the console. This is
essential for interactive programs. You don’t want a program to
pause for user input until you’ve explained to the user what is going
to happen.

Below the println , you’ll notice several pairs of statements like
these:

System.out.print("loan amount : ");

double loan = console.nextDouble();

The first statement is called a prompt, a request for information from
the user. We use a print statement instead of a println so that the
user will type the values on the same line as the prompt (i.e., to the
right of the prompt). The second statement calls the nextDouble
method of the console object to read a value of type double from the
user. This value is stored in a variable called loan . This pattern of
prompt/read statements is common in interactive programs.

After prompting for values, the program computes several values.
The formula for computing monthly mortgage payments involves the
loan amount, the total number of months involved (a value we call
n), and the monthly interest rate (a value we call c). The payment
formula is given by the following equation:

You will notice in the program that we use the Math.pow method for
exponentiation to translate this formula into a Java expression.

payment = loan
c (1 + c)n

(1 + c)n − 1

The final line of the program prints out the monthly payment. You
might imagine that we would simply say:

System.out.println("payment = $" + payment);

However, because the payment is stored in a variable of type
double , such a statement would print all the digits of the number. For
example, for the log listed above, it would print the following:

payment = $1352.8347004685593

That is a rather strange-looking output for someone who is used to
dollars and cents. For the purposes of this simple program, it’s easy
to cast the double to an int and report just the dollar amount of the
payment:

System.out.println("payment = $" + (int) payment);

Most people trying to figure out their mortgage payments aren’t that
interested in the pennies, so the program is still useful. In the next
section, we will see how to round a double to two decimal places.

There is something new at the beginning of this class file called an
import declaration. Remember that Java has a large number of
classes included in what are collectively known as the Java class
libraries. To help manage these classes, Java provides an
organizational unit known as a package. Related classes are
combined together into a single package. For example, the Scanner
class is stored in a package known as java.util . Java programs
don’t normally have access to a package unless they include an
import declaration.

Package
A collection of related Java classes.

Import Declaration
A request to access a specific Java package.

We haven’t needed an import declaration yet because Java
automatically imports every class stored in a package called

java.lang . The java.lang package includes basic classes that most
Java programs are likely to use (e.g., System , String , Math).
Because Java does not automatically import java.util , you have to
do it yourself.

Java allows you to use an asterisk to import all classes from a
package:

import java.util.*;

But some people prefer to specifically mention each class they
import. The import declaration allows you to import just a single class
from a package, as in

import java.util.Scanner;

The problem is that once you start importing one class from a
package, you’re likely to want to import others as well. We will use
the asterisk version of import in this book to keep things simple.

3.4 Case Study: Projectile
Trajectory

It’s time to pull together the threads of this chapter with a more
complex example that will involve parameters, methods that return
values, mathematical computations, and the use of a Scanner object
for console input.

Physics students are often asked to calculate the trajectory that a
projectile will follow, given its initial velocity and its initial angle
relative to the horizontal. For example, the projectile might be a
football that someone has kicked. We want to compute the path it
follows given Earth’s gravity. To keep the computation reasonable,
we will ignore air resistance.

There are several questions relating to this problem that we might
want to answer:

When does the projectile reach its highest point?
How high does it reach?
How long does it take to come back to the ground?
How far does it land from where it was launched?

There are several ways to answer these questions. One simple
approach is to provide a table that displays the trajectory step by
step, indicating the position, position, and elapsed time.

To make such a table, we need to obtain three values from the user:
the initial velocity, the angle relative to the horizontal, and the
number of steps to include in the table we will produce. We could
ask for the velocity in either meters/second or feet/second, but given
that this is a physics problem, we’ll stick to the metric system and
ask for meters/second.

We also have to think about how to specify the angle. Unfortunately,
most of the Java methods that operate on angles require angles in
radians rather than degrees. We could request the angle in radians,
but that would be highly inconvenient for the user, who would be
required to make the conversion. Instead, we can allow the user to
enter the angle in degrees and then convert it to radians using the
built-in method Math.toRadians .

So, the interactive part of the program will look like this:

x y

Scanner console = new Scanner(System.in);

System.out.print("velocity (meters/second)? ");

double velocity = console.nextDouble();

System.out.print("angle (degrees)? ");

double angle = Math.toRadians(console.nextDouble());

System.out.print("number of steps to display? ");

int steps = console.nextInt();

Notice that for the velocity and angle we call the nextDouble method
of the console object, because we want to let the user specify any
number (including one with a decimal point), but for the number of
steps we call nextInt , because the number of lines in our table
needs to be an integer.

Look more closely at this line of code:

double angle = Math.toRadians(console.nextDouble());

Some beginners would write this as two separate steps:

double angleInDegrees = console.nextDouble();

double angle = Math.toRadians(angleInDegrees);

Both approaches work and are reasonable, but keep in mind that
you don’t need to divide this operation into two separate steps. You
can write it in the more compact form as a single line of code.

Once we have obtained these values from the user, we are ready to
begin the computations for the trajectory table. The -position of
the projectile at each time increment is determined by its velocity in
each dimension and by the acceleration on the projectile due to
gravity. Figure 3.1 shows the projectile’s initial velocity and
angle just as it is thrown and final velocity just as it hits the
ground.

Figure 3.1 Initial and Final Velocity of Projectile

We need to compute the x component of the velocity versus the
component of the velocity. From physics, we know that these can be
computed as follows:

x/y

ν0

θ νt

y

double xVelocity = velocity * Math.cos(angle);

double yVelocity = velocity * Math.sin(angle);

Because we are ignoring the possibility of air resistance, the -
velocity will not change. The -velocity, however, is subject to the
pull of gravity. Physics tells us that on the surface of the Earth,
acceleration due to gravity is approximately

 This is an appropriate value to define as a
class constant:

public static final double ACCELERATION = –9.81;

Notice that we define gravity acceleration as a negative number
because it decreases the -velocity of an object (pulling it down as
opposed to pushing it away).

Our goal is to display and elapsed time as the object goes up
and comes back down again. The -velocity decreases steadily until
it becomes 0. From physics, we know that the graph of the projectile
will be symmetrical. The projectile will go upward until its -velocity
reaches 0, and then it will follow a similar path back down that takes
an equal amount of time. Thus, the total time involved in seconds
can be computed as follows:

double totalTime = –2.0 * yVelocity / ACCELERATION;

x

y

9.81 meters/second2.

y

x, y,
y

y

Now, how do we compute the values of x , y , and elapsed time to
include in our table? It is relatively simple to compute two of these.
We want steady time increments for each entry in the table, so we
can compute the time increment by dividing the total time by the
number of steps we want to include in our table:

double timeIncrement = totalTime / steps;

As noted earlier, the -velocity does not change, so for each of
these time increments, we move the same distance in the -
direction:

double xIncrement = xVelocity * timeIncrement;

The tricky value to compute here is the -position. Because of
acceleration due to gravity, the -velocity changes over time. But
from physics, we have the following general formula for computing
the displacement of an object given the velocity time and
acceleration :

In our case, the velocity we want is the -velocity and the
acceleration is from the Earth’s gravity constant. Here, then, is a

x

x

y

y

v, t,
a

displacement = vt +
1

2
 at2

y

pseudocode description of how to create the table:

set all of x, y, and t to 0.

for (given number of steps) {

 add timeIncrement to t.

 add xIncrement to x.

 reset y to yVelocity * t + 0.5 * ACCELERATION * t * t.

 report step #, x, y, t.

}

We are fairly close to having real Java code here, but we have to
think about how to report the values of x , y , and t in a table. They
will all be of type double , which means they are likely to produce a
large number of digits after the decimal point. But we aren’t
interested in seeing all those digits, because they aren’t particularly
relevant and because our computations aren’t that accurate.

Before we try to complete the code for the table, let’s think about the
problem of displaying only some of the digits of a number. The idea
is to truncate the digits so that we don’t see all of them. One way to
truncate is to cast a double to an int , which truncates all of the
digits after the decimal point. We could do that, but we probably want
at least some of those digits. Say, for example, that we want to
report two digits after the decimal point. The trick is to bring the two
digits we want to the other side of the decimal point. We can do that
by multiplying by 100 and then casting to int :

(int) (n * 100.0)

This expression gets us the digits we want, but now the decimal
point is in the wrong place. For example, if n is initially 3.488834 , the
preceding expression will give us 348 . We have to divide this result
by 100 to turn it back into the number 3.48:

(int) (n * 100.0) / 100.0

While we’re at it, we can make one final improvement. Notice that
the original number was 3.488834 . If we do simple truncation we get
3.48 , but really this number is closer to 3.49 . We can round to the
nearest digit by calling the Math.round method on the number instead
of casting it:

Math.round(n * 100.0) / 100.0

This is an operation that we are likely to want to perform on more
than one number, so it deserves to be included in a method:

public static double round2(double n) {

 return Math.round(n * 100.0) / 100.0;

}

Getting back to our pseudocode for the table, we can incorporate
calls on the round2 method to get a bit closer to actual Java code:

set all of x, y, and t to 0.

for (given number of steps) {

 add timeIncrement to t.

 add xIncrement to x.

 reset y to yVelocity * t + 0.5 * ACCELERATION * t * t.

 report step #, round2(x), round2(y), round2(t).

}

It would be nice if the values in the table were aligned. To get
numbers that line up nicely, we would have to use formatted output,
which we will discuss in Chapter 4 . For now, we can at least get
the numbers to line up in columns by separating them with tab
characters. Remember that the escape sequence \t represents a
single tab.

If we’re going to have a table with columns, it also makes sense to
have a header for the table. And we probably want to include a line
in the table showing the initial condition, where x , y , and time are all
equal to 0. So we can expand our pseudocode into the following
Java code:

double x = 0.0;

double y = 0.0;

double t = 0.0;

System.out.println("step\tx\ty\ttime");

System.out.println("0\t0.0\t0.0\t0.0");

for (int i = 1; i <= steps; i++) {

 t += timeIncrement;

 x += xIncrement;

 y = yVelocity * t + 0.5 * ACCELERATION * t * t;

 System.out.println(i + "\t" + round2(x) + "\t" +

 round2(y) + "\t" + round2(t));

}

Unstructured Solution

We can put all of these pieces together to form a complete program.
Let’s first look at an unstructured version that includes most of the
code in main . This version also includes some new println
statements at the beginning that give a brief introduction to the user:

 1 // This program computes the trajectory of a projectile.

 2

 3 import java.util.*; // for Scanner

 4

 5 public class Projectile {

 6 // constant for Earth acceleration in meters/second^2

 7 public static final double ACCELERATION = –9.81;

 8

 9 public static void main(String[] args) {

10 Scanner console = new Scanner(System.in);

11

12 System.out.println("This program computes the");

13 System.out.println("trajectory of a projectile

given");

14 System.out.println("its initial velocity and its");

15 System.out.println("angle relative to the");

16 System.out.println("horizontal.");

17 System.out.println();

18

19 System.out.print("velocity (meters/second)? ");

20 double velocity = console.nextDouble();

21 System.out.print("angle (degrees)? ");

22 double angle =

Math.toRadians(console.nextDouble());

23 System.out.print("number of steps to display? ");

24 int steps = console.nextInt();

25 System.out.println();

26

27 double xVelocity = velocity * Math.cos(angle);

28 double yVelocity = velocity * Math.sin(angle);

29 double totalTime = –2.0 * yVelocity / ACCELERATION;

30 double timeIncrement = totalTime / steps;

31 double xIncrement = xVelocity * timeIncrement;

32

33 double x = 0.0;

34 double y = 0.0;

35 double t = 0.0;

36 System.out.println("step\tx\ty\ttime");

37 System.out.println("0\t0.0\t0.0\t0.0");

38 for (int i = 1; i <= steps; i++) {

39 t += timeIncrement;

40 x += xIncrement;

41 y = yVelocity * t + 0.5 * ACCELERATION * t * t;

42 System.out.println(i + "\t" + round2(x) + "\t"

+

43 round2(y) + "\t" +

round2(t));

44 }

45 }

46

47 public static double round2(double n) {

48 return Math.round(n * 100.0) / 100.0;

49 }

50 }

The following is a sample execution of the program:

This program computes the

trajectory of a projectile given

its initial velocity and its

angle relative to the

horizontal.

velocity (meters/second)? 30

angle (degrees)? 50

number of steps to display? 10

step x y time

0 0.0 0.0 0.0

1 9.03 9.69 0.47

2 18.07 17.23 0.94

3 27.1 22.61 1.41

4 36.14 25.84 1.87

5 45.17 26.92 2.34

6 54.21 25.84 2.81

7 63.24 22.61 3.28

8 72.28 17.23 3.75

9 81.31 9.69 4.22

10 90.35 0.0 4.69

From the log of execution, you can see that the projectile reaches a
maximum height of 26.92 meters after 2.34 seconds (the fifth step)
and that it lands 90.35 meters from where it began after 4.69
seconds (the tenth step).

This version of the program works, but we don’t generally want to
include so much code in the main method. The next section explores

how to break up the program into smaller pieces.

Structured Solution

There are three major blocks of code in the main method of the
Projectile program: a series of println statements that introduce
the program to the user, a series of statements that prompt the user
for the three values used to produce the table, and then the code
that produces the table itself.

So, in pseudocode, the overall structure looks like this:

give introduction.

prompt for velocity, angle, and number of steps.

produce table.

The first and third steps are easily turned into methods, but not the
middle step. This step prompts the user for values that we need to
produce the table. If we turned it into a method, it would have to
somehow return three values back to main . A method can return only
a single value, so unfortunately we can’t turn this step into a method.
We could turn it into three different methods, one for each of the
three values, but each of those methods would be just two lines long,
so it’s not clear that doing so would improve the overall structure.

The main improvement we can make, then, is to split off the
introduction and the table into separate methods. Another
improvement we can make is to turn the physics displacement
formula into its own method. It is always a good idea to turn
equations into methods. Introducing those methods, we get the
following structured version of the program:

 1 // This program computes the trajectory of a projectile.

 2

 3 import java.util.*; // for Scanner

 4

 5 public class Projectile2 {

 6 // constant for Earth acceleration in meters/second^2

 7 public static final double ACCELERATION = 29.81;

 8

 9 public static void main(String[] args) {

10 Scanner console = new Scanner(System.in);

11 giveIntro();

12

13 System.out.print("velocity (meters/second)? ");

14 double velocity = console.nextDouble();

15 System.out.print("angle (degrees)? ");

16 double angle =

Math.toRadians(console.nextDouble());

17 System.out.print("number of steps to display? ");

18 int steps = console.nextInt();

19 System.out.println();

20

21 printTable(velocity, angle, steps);

22 }

23

24 // prints a table showing the trajectory of an object

given

25 // its initial velocity and angle and including the

given

26 // number of steps in the table

27 public static void printTable(double velocity,

28 double angle, int steps)

{

29 double xVelocity = velocity * Math.cos(angle);

30 double yVelocity = velocity * Math.sin(angle);

31 double totalTime = 22.0 * yVelocity / ACCELERATION;

32 double timeIncrement = totalTime / steps;

33 double xIncrement = xVelocity * timeIncrement;

34

35 double x = 0.0;

36 double y = 0.0;

37 double t = 0.0;

38 System.out.println("step\tx\ty\ttime");

39 System.out.println("0\t0.0\t0.0\t0.0");

40 for (int i = 1; i <= steps; i++) {

41 t += timeIncrement;

42 x += xIncrement;

43 y = displacement(yVelocity, t, ACCELERATION);

44 System.out.println(i + "\t" + round2(x) + "\t"

+

45 round2(y) + "\t" +

round2(t));

46 }

47 }

48

49 // gives a brief introduction to the user

50 public static void giveIntro() {

51 System.out.println("This program computes the");

52 System.out.println("trajectory of a projectile

given");

53 System.out.println("its initial velocity and its");

54 System.out.println("angle relative to the");

55 System.out.println("horizontal.");

56 System.out.println();

57 }

58

59 // returns the vertical displacement for a body given

60 // initial velocity v, elapsed time t, and acceleration

a

61 public static double displacement(double v, double t,

62 double a){

63 return v * t + 0.5 * a * t * t;

64 }

65

66 // rounds n to 2 digits after the decimal point

67 public static double round2(double n) {

68 return Math.round(n * 100.0) / 100.0;

69 }

70 }

This version executes the same way as the earlier version.

Chapter Summary
Methods may be written to accept parameters, which are sets of
characteristics that distinguish different members of a family of tasks.
Parameters allow data values to flow into a method, which can
change the way the method executes. A method declared with a set
of parameters can perform an entire family of similar tasks instead of
exactly one task.

When primitive values such as those of type int or double are
passed as parameters, their values are copied into the method.
Primitive parameters send values into a method but not out of it; the
method can use the data values but cannot affect the value of any
variables outside it.

Two methods can have the same name if they declare different
parameters. This is called overloading.

Methods can be written to return values to the calling code. This
feature allows a method to perform a complex computation and then
provide its result back to the calling code. The type of the return
value must be declared in the method’s header and is called the
method’s return type.

Java has a class called Math that contains several useful static
methods that you can use in your programs, such as powers, square
roots, and logarithms.

An object is an entity that combines data and operations. Some
objects in Java include Strings , which are sequences of text
characters, and Scanners , which read user input.

Objects contain methods that implement their behavior. To call a
method on an object, write its name, followed by a dot, followed by
the method name.

A String object holds a sequence of characters. The characters
have indexes, starting with 0 for the first character.

An exception is an error that occurs when a program has performed
an illegal action and is unable to continue executing normally.

Some programs are interactive and respond to input from the user.
These programs should print a message to the user, also called a
prompt, asking for the input.

Java has a class called Scanner that reads input from the keyboard.
A Scanner can read various pieces of input (also called tokens) from
an input source. It can read either one token at a time or an entire
line at a time.

Self-Check Problems

Section 3.1: Parameters

1. Which of the following is the correct syntax for a method
header with parameters?

a. public static void example(x, y) {
b. public static (int x, int y) example() {
c. public static void example(int x, y) {
d. public static void example(x: int, y: int) {
e. public static void example(int x, int y) {

2. What output is produced by the following program?

 1 public class MysteryNums {

 2 public static void main(String[] args) {

 3 int x = 15;

 4 sentence(x, 42);

 5

 6 int y = x - 5;

 7 sentence(y, x + y);

 8 }

 9

10 public static void sentence(int num1, int num2) {

11 System.out.println(num1 + " " + num2);

12 }

13 }

3. The following program has 9 mistakes. What are they?

 1 public class Oops3 {

 2 public static void main() {

 3 double bubble = 867.5309;

 4 double x = 10.01;

 5 printer(double x, double y);

 6 printer(x);

 7 printer("barack", "obama");

 8 System.out.println("z = " + z);

 9 }

10

11 public static void printer(x, y double) {

12 int z = 5;

13 System.out.println("x = " + double x + " and

y = " + y);

14 System.out.println("The value from main is: "

+ bubble);

15 }

16 }

4. What output is produced by the following program?

 1 public class Odds {

 2 public static void main(String[] args) {

 3 printOdds(3);

 4 printOdds(17 / 2);

 5

 6 int x = 25;

 7 printOdds(37 – x + 1);

 8 }

 9

10 public static void printOdds(int n) {

11 for (int i = 1; i <= n; i++) {

12 int odd = 2 * i – 1;

13 System.out.print(odd + " ");

14 }

15 System.out.println();

16 }

17 }

5. What is the output of the following program?

 1 public class Weird {

 2 public static void main(String[] args) {

 3 int number = 8;

 4 halfTheFun(11);

 5 halfTheFun(2 – 3 + 2 * 8);

 6 halfTheFun(number);

 7 System.out.println("number = " + number);

 8 }

 9

10 public static void halfTheFun(int number) {

11 number = number / 2;

12 for (int count = 1; count <= number; count++)

{

13 System.out.print(count + " ");

14 }

15 System.out.println();

16 }

17 }

6. What is the output of the following program?

 1 public class MysteryNumbers {

 2 public static void main(String[] args) {

 3 String one = "two";

 4 String two = "three";

 5 String three = "1";

 6 int number = 20;

 7

 8 sentence(one, two, 3);

 9 sentence(two, three, 14);

10 sentence(three, three, number + 1);

11 sentence(three, two, 1);

12 sentence("eight", three, number / 2);

13 }

14

15 public static void sentence(String three, String

one, int number) {

16 System.out.println(one + " times " + three +

" = " + (number * 2));

17 }

18 }

7. What output is produced by the following program?

 1 public class MysteryWho {

 2 public static void main(String[] args) {

 3 String whom = "her";

 4 String who = "him";

 5 String it = "who";

 6 String he = "it";

 7 String she = "whom";

 8

 9 sentence(he, she, it);

10 sentence(she, he, who);

11 sentence(who, she, who);

12 sentence(it, "stu", "boo");

13 sentence(it, whom, who);

14 }

15

16 public static void sentence(String she, String

who, String whom) {

17 System.out.println(who + " and " + whom + "

like " + she);

18 }

19 }

8. What output is produced by the following program?

 1 public class MysteryTouch {

 2 public static void main(String[] args) {

 3 String head = "shoulders";

 4 String knees = "toes";

 5 String elbow = "head";

 6 String eye = "eyes and ears";

 7 String ear = "eye";

 8

 9 touch(ear, elbow);

10 touch(elbow, ear);

11 touch(head, "elbow");

12 touch(eye, eye);

13 touch(knees, "Toes");

14 touch(head, "knees " + knees);

15 }

16

17 public static void touch(String elbow, String

ear) {

18 System.out.println("touch your " + elbow + "

to your " + ear);

19 }

20 }

9. What output is produced by the following program?

 1 public class MysterySoda {

 2 public static void main(String[] args) {

 3 String soda = "Coke";

 4 String pop = "Pepsi";

 5 String Coke = "pop";

 6 String Pepsi = "soda";

 7 String say = pop;

 8

 9 carbonated(Coke, soda, pop);

10 carbonated(pop, Pepsi, Pepsi);

11 carbonated("pop", pop, "Kool-Aid");

12 carbonated(say, "say", pop);

13 }

14 public static void carbonated(String Coke, String

soda, String pop) {

15 System.out.println("say " + soda + " not " +

pop + " or " + Coke);

16 }

17 }

10. Write a method called printStrings that accepts a String and
a number of repetitions as parameters and prints that String
the given number of times with a space after each time. For
example, the call

printStrings("abc", 5);

will print the following output:

abc abc abc abc abc

11. The System.out.println command works on many different
types of values, such as integers or doubles . What is the term
for such a method?

Section 3.2: Methods That Return
Values

12. What is wrong with the following program?

 1 public class Temperature {

 2 public static void main(String[] args) {

 3 double tempf = 98.6;

 4 double tempc = 0.0;

 5 ftoc(tempf, tempc);

 6 System.out.println("Body temp in C is: " +

tempc);

 7 }

 8

 9 // converts Fahrenheit temperatures to Celsius

10 public static void ftoc(double tempf, double

tempc) {

11 tempc = (tempf – 32) * 5 / 9;

12 }

13 }

13. Evaluate the following expressions:
a. Math.abs(–1.6)
b. Math.abs(2 + –4)
c. Math.pow(6, 2)

d. Math.pow(5 / 2, 6)
e. Math.ceil(9.1)
f. Math.ceil(115.8)

g. Math.max(7, 4)
h. Math.min(8, 3 + 2)
i. Math.min(–2, –5)
j. Math.sqrt(64)
k. Math.sqrt(76 + 45)
l. 100 + Math.log10(100)

m. 13 + Math.abs(–7) – Math.pow(2, 3) + 5
n. Math.sqrt(16) * Math.max(Math.abs(–5), Math.abs(–3))
o. 7 – 2 + Math.log10(1000) + Math.log(Math.pow(Math.E,

5))

p. Math.max(18 – 5, Math.ceil(4.6 * 3))

14. What output is produced by the following program?

 1 public class MysteryReturn {

 2 public static void main(String[] args) {

 3 int x = 1, y = 2, z = 3;

 4 z = mystery(x, z, y);

 5 System.out.println(x + " " + y + " " + z);

 6 x = mystery(z, z, x);

 7 System.out.println(x + " " + y + " " + z);

 8 y = mystery(y, y, z);

 9 System.out.println(x + " " + y + " " + z);

10 }

11

12 public static int mystery(int z, int x, int y) {

13 z––;

14 x = 2 * y + z;

15 y = x – 1;

16 System.out.println(y + " " + z);

17 return x;

18 }

19 }

15. Write the result of each expression. Note that a variable’s
value changes only if you reassign it using the = operator.

double grade = 2.7;

Math.round(grade); //

grade =

grade = Math.round(grade); //

grade =

double min = Math.min(grade, Math.floor(2.9)); //

min =

double x = Math.pow(2, 4); //

x =

x = Math.sqrt(64); //

x =

int count = 25;

Math.sqrt(count); //

count =

count = (int) Math.sqrt(count); //

count =

int a = Math.abs(Math.min(-1, -3)); //

a =

16. Write a method called min that takes three integers as
parameters and returns the smallest of the three values; for
example, a call of min(3, -2, 7) would return -2 , and a call
of min(19, 27, 6) would return 6. Use Math.min to write your
solution.

17. Write a method called countQuarters that takes an int
representing a number of cents as a parameter and returns
the number of quarter coins represented by that many cents.
Don’t count any whole dollars, because those would be
dispensed as dollar bills. For example, countQuarters(64)
would return 2, because 64 cents is equivalent to 2 quarters
with 14 cents left over. A call of countQuarters(1278) would
return 3, because after the 12 dollars are taken out, 3 quarters
remain in the 78 cents that are left.

Section 3.3: Using Objects

18. What output is produced by the following code?

String first = "James";

String last = "Kirk";

String middle = "T.";

System.out.println(last);

System.out.println("My name is " + first);

System.out.println(first + " " + last);

System.out.println(last + ", " + first + " " + middle);

System.out.println(middle + " is for Tiberius");

19. Assuming that the following variables have been declared:

// index 0123456789012345

String str1 = "Frodo Baggins";

String str2 = "Gandalf the GRAY";

evaluate the following expressions:
a. str1.length()
b. str1.charAt(7)
c. str2.charAt(0)
d. str1.indexOf("o")
e. str2.toUpperCase()
f. str1.toLowerCase().indexOf("B")

g. str1.substring(4)
h. str2.substring(3, 14)
i. str2.replace("a", "oo")
j. str2.replace("gray", "white")
k. "str1".replace("r", "range")

20. Assuming that the following variables have been declared:

String str1 = "Q.E.D.";

String str2 = "Arcturan Megadonkey";

String str3 = "Sirius Cybernetics Corporation";

evaluate the following expressions:
a. str1.length()
b. str2.length()
c. str1.toLowerCase()
d. str2.toUpperCase()
e. str1.substring(2, 4)
f. str2.substring(10, 14)

g. str1.indexOf("D")
h. str1.indexOf(".")
i. str2.indexOf("donkey")
j. str3.indexOf("X")
k. str2 + str3.charAt(17)
l. str3.substring(9, str3.indexOf("e"))

m. str3.substring(7, 12)

n. str2.toLowerCase().substring(9, 13) +
str3.substring(18, str3.length() – 7)

21. Consider the following String :

String quote = "Four score and seven years ago";

What expression produces the new String "SCORE"? What
expression produces "four years"?

22. Consider the following code fragment:

Scanner console = new Scanner(System.in);

System.out.print("How much money do you have? ");

double money = console.nextDouble();

Describe what will happen when the user types each of the
following values. If the code will run successfully, describe the
value that will be stored in the variable money .

a. 34.50
b. 6
c. $25.00
d. million
e. 100*5
f. 600x000

g. none
h. 645

23. Write Java code to read an integer from the user, then print
that number multiplied by 2. You may assume that the user
types a valid integer.

24. Consider the following program. Modify the code to use a
Scanner to prompt the user for the values of low and high .

 1 public class SumNumbers {

 2 public static void main(String[] args) {

 3 int low = 1;

 4 int high = 1000;

 5 int sum = 0;

 6 for (int i = low; i <= high; i++) {

 7 sum += i;

 8 }

 9 System.out.println("sum = " + sum);

10 }

11 }

Below is a sample execution in which the user asks for the
sum of the values 1 through 10:

low? 1

high? 10

sum = 55

25. Write Java code that prompts the user for a phrase and a
number of times to repeat it, then prints the phrase the

requested number of times. Here is an example dialogue with
the user:

What is your phrase? His name is Robert Paulson.

How many times should I repeat it? 3

His name is Robert Paulson.

His name is Robert Paulson.

His name is Robert Paulson.

Exercises
1. Write a method called printNumbers that accepts a maximum

number as an argument and prints each number from 1 up to
that maximum, inclusive, boxed by square brackets. For
example, consider the following calls:

printNumbers(15);

printNumbers(5);

These calls should produce the following output:

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

[14] [15]

[1] [2] [3] [4] [5]

You may assume that the value passed to printNumbers is 1
or greater.

2. Write a method called printPowersOf2 that accepts a
maximum number as an argument and prints each power of 2
from (1) up to that maximum power, inclusive. For
example, consider the following calls:

printPowersOf2(3);

printPowersOf2(10);

20

These calls should produce the following output:

1 2 4 8

1 2 4 8 16 32 64 128 256 512 1024

You may assume that the value passed to printPowersOf2 is 0
or greater. (The Math class may help you with this problem. If
you use it, you may need to cast its results from double to int
so that you don’t see a . 0 after each number in your output.
Also try to write this program without using the Math class.)

3. Write a method called printPowersOfN that accepts a base and
an exponent as arguments and prints each power of the base
from (1) up to that maximum power, inclusive. For
example, consider the following calls:

printPowersOfN(4, 3);

printPowersOfN(5, 6);

printPowersOfN(–2, 8);

These calls should produce the following output:

1 4 16 64

1 5 25 125 625 3125 15625

1 –2 4 –8 16 –32 64 –128 256

base0

You may assume that the exponent passed to printPowersOfN
has a value of 0 or greater. (The Math class may help you with
this problem. If you use it, you may need to cast its results
from double to int so that you don’t see a . 0 after each
number in your output. Also try to write this program without
using the Math class.)

4. Write a method called printSquare that accepts a minimum
and maximum integer and prints a square of lines of
increasing numbers. The first line should start with the
minimum, and each line that follows should start with the next-
higher number. The sequence of numbers on a line wraps
back to the minimum after it hits the maximum. For example,
the call

printSquare(3, 7);

should produce the following output:

34567

45673

56734

67345

73456

If the maximum passed is less than the minimum, the method
produces no output.

5. Write a method called printGrid that accepts two integers
representing a number of rows and columns and prints a grid
of integers from 1 to (rows * columns) in column major order.
For example, the call

printGrid(4, 6);

should produce the following output:

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

6. Write a method called largerAbsVal that takes two integers as
parameters and returns the larger of the two absolute values.
A call of largerAbsVal(11, 2) would return 11 , and a call of
largerAbsVal(4, –5) would return 5 .

7. Write a variation of the largestAbsVal method from the last
exercise that takes three integers as parameters and returns
the largest of their three absolute values. For example, a call
of largestAbsVal(7, –2, –11) would return 11 , and a call of
largestAbsVal(-4, 5, 2) would return 5 .

8. Write a method called quadratic that solves quadratic
equations and prints their roots. Recall that a quadratic
equation is a polynomial equation in terms of a variable ofx

the form The formula for solving a
quadratic equation is

Here are some example equations and their roots:

Your method should accept the coefficients and as
parameters and should print the roots of the equation. You
may assume that the equation has two real roots, though
mathematically this is not always the case.

9. Write a method called lastDigit that returns the last digit of
an integer. For example, lastDigit(3572) should return 2 . It
should work for negative numbers as well. For example,
lastDigit(-947) should return 7 .

10. Write a method called area that accepts as a parameter the
radius of a circle and that returns the area of the circle. For
example, the call area(2.0) should return 12.566370614359172 .
Recall that area can be computed as pi () times the radius
squared and that Java has a constant called Math.PI .

11. Write a method called distance that accepts four integer
coordinates and as parameters and computes
the distance between points and on the
Cartesian plane. The equation for the distance is

ax2 + bx + c = 0.

x =
−b ± √b2 − 4ac

2a

x2 − 7x + 12 : x = 4, x = 3

x − 3x + 2 : x = −2, x = −1

a, b, c

π

x1, y1, x2, y2

(x1, y1) (x2, y2)

For example, the call of distance(1, 0, 4, 4) would return
5.0 and the call of distance(10, 2, 3, 15) would return
14.7648230602334 .

12. Write a method called scientific that accepts a real number
base and an exponent as parameters and computes the base
times 10 to the exponent, as seen in scientific notation. For
example, the call of scientific(6.23, 5) would return
623000.0 and the call of scientific(1.9, –2) would return
0.019 .

13. Write a method called pay that accepts two parameters: a real
number for a TA’s salary, and an integer for the number of
hours the TA worked this week. The method should return
how much money to pay the TA. For example, the call
pay(5.50, 6) should return 33.0 . The TA should receive
“overtime” pay of times the normal salary for any hours
above 8. For example, the call pay(4.00, 11) should return

 or 50.0 .
14. Write a method called cylinderSurfaceArea that accepts a

radius and height as parameters and returns the surface area
of a cylinder with those dimensions. For example, the call
cylinderSurfaceArea(3.0, 4.5) should return
141.3716694115407 . The formula for the surface area of a
cylinder with radius and height is the following:

d = √(x2 − x1)2 + (y2 − y1)2

11/2

(4.00 * 8) + (6.00 * 3)

r h

15. Write a method called sphereVolume that accepts a radius as a
parameter and returns the volume of a sphere with that
radius. For example, the call sphereVolume(2.0) should return
33.510321638291124 . The formula for the volume of a sphere
with radius is the following:

16. Write a method called triangleArea that accepts the three
side lengths of a triangle as parameters and returns the area
of a triangle with those side lengths. For example, the call
triangleArea(8, 5.2, 7.1) should return 18.151176098258745 .
To compute the area, use Heron’s formula, which states that
the area of a triangle whose three sides have lengths
and is the following. The formula is based on the computed
value a length equal to half the perimeter of the triangle:

17. Write a method called padString that accepts two parameters:
a string and an integer representing a length. The method
should pad the parameter string with spaces until its length is
the given length. For example, padString("hello", 8) should
return "hello " . (This sort of method is useful when trying to

surface area = 2πr2 + 2πrh

r

volume =4 /3πr
3

a, b,
c,
s,

area = √s(s − a)(s − b)(s − c)

s =
a + b + c

2

print output that lines up horizontally.) If the string’s length is
already at least as long as the length parameter, your method
should return the original string. For example,
padString("congratulations", 10) should return
"congratulations" .

18. Write a method called vertical that accepts a string as its
parameter and prints each letter of the string on separate
lines. For example, a call of vertical("hey now") should
produce the following output:

h

e

y

n

o

w

19. Write a method called printReverse that accepts a string as its
parameter and prints the characters in opposite order. For
example, a call of printReverse("hello there!") should print
"!ereht olleh" . If the empty string is passed, the method
should produce no output.

20. Write a method called inputBirthday that accepts a Scanner
for the console as a parameter and prompts the user to enter
a month, day, and year of birth, then prints the birthdate in a
suitable format. Here is an example dialogue with the user:

On what day of the month were you born? 8

What is the name of the month in which you were born? May

During what year were you born? 1981

You were born on May 8, 1981. You’re mighty old!

21. Write a method called processName that accepts a Scanner for
the console as a parameter and prompts the user to enter a
full name, then prints the name in reverse order (i.e., last
name, first name). Here is an example dialogue with the user:

Please enter your full name: Sammy Jankis

Your name in reverse order is Jankis, Sammy

22. Write a program that outputs “The Name Game,” where the
user inputs a first and last name and a song is printed about
their first, then last, name. Use a method to avoid redundancy.

23. Write a method called printIndexed that accepts a string as its
parameter and prints the string’s characters in order followed
by their indexes in reverse order. For example, the call of
printIndexed("ZELDA") should print Z4E3L2D1A0 to the console.

Programming Projects
1. Write a program that produces images of Christmas trees as

output. It should have a method with two parameters: one for
the number of segments in the tree and one for the height of
each segment. For example, the tree shown here on the left
has three segments of height 4 and the one on the right has
two segments of height 5:

 * *

 *** ***

 ***** *****

 ******* *******

 *** *********

 ***** ***

 ******* *****

 ********* *******

 ***** *********

 ******* ***********

 ********* *

*********** *

 * *******

 *

2. A certain bank offers 6.5% interest on savings accounts,
compounded annually. Create a table that shows how much
money a person will accumulate over a period of 25 years,
assuming that the person makes an initial investment of
$1000 and deposits $100 each year after the first. Your table
should indicate for each year the current balance, the interest,
the new deposit, and the new balance.

3. Write a program that shows the total number of presents that
the person in the song “The Twelve Days of Christmas”
received on each day, as indicated in Table 3.5 .
Table 3.5 Twelve Days of Christmas

4. Write a program that prompts for the lengths of the sides of a
triangle and reports the three angles.

5. Write a program that computes the spherical distance
between two points on the surface of the Earth, given their
latitudes and longitudes. This is a useful operation because it
tells you how far apart two cities are if you multiply the
distance by the radius of the Earth, which is roughly

Let and be the latitude and longitude of two
points, respectively. the longitudinal difference, and
the angular difference/distance in radians, can be determined
as follows from the spherical law of cosines:

For example, consider the latitude and longitude of two major
cities:

6372.795 km.
φ1, λ1, φ2, λ2

△λ, △σ,

△σ = arccos(sinφ1sinφ2 + cosφ2cosφ2cos △λ)

Nashville, TN:
Los Angeles, CA:

You must convert these coordinates to radians before you can
use them effectively in the formula. After conversion, the
coordinates become

Nashville:

Los Angeles:

Using these values in the angular distance equation, you get

Thus, the distance between these cities is about 2887 km, or
1794 miles. (Note: To solve this problem, you will need to use
the Math.acos method, which returns an arccosine angle in
radians.)

6. Write a program that produces calendars as output. Your
program should have a method that outputs a single month’s
calendar like the one below, given parameters to specify how
many days are in the month and what the date of the first
Sunday is in that month. In the month shown below, these
values are 31 and 6, respectively.

 Sun Mon Tue Wed Thu Fri Sat

+------+------+------+------+------+------+------+

| | | 1 | 2 | 3 | 4 | 5 |

N 36∘7.2′, W 86∘40.2′
N 33∘56.4′, W 118∘24.0′

φ1 = 36. 12∘ = 0.6304 rad,
Δ1 = −86. 67∘ = −1.5127 rad

φ2 = 33. 94∘ = 0.5924 rad,
Δ2 = −118. 40∘ = −2.0665 rad

r△σ = 6372.795 × 0.45306 = 2887.259 km

| 6 | 7 | 8 | 9 | 10 | 11 | 12 |

| 13 | 14 | 15 | 16 | 17 | 18 | 19 |

| 20 | 21 | 22 | 23 | 24 | 25 | 26 |

| 27 | 28 | 29 | 30 | 31 | | |

+------+------+------+------+------+------+------+

One tricky part of this program is making the various columns
line up properly with proper widths. We will learn better ways
of formatting output in the next chapter. For now, you may
copy the following helper method into your program and call it
to turn a number into a left-padded string of a given exact
width. For example, the call System.out.print(padded(7, 5));
prints " 7" (the number 7 with four leading spaces).

// Returns a string of the number n, left-padded

// with spaces until it is at least the given width.

public static String padded(int n, int width) {

 String s = "" + n;

 for (int i = s.length(); i < width; i++) {

 s = " " + s;

 }

 return s;

}

Supplement 3G Graphics
(Optional)

3G.1 Introduction to Graphics
• DrawingPanel

• Drawing Lines and Shapes

• Colors

• Drawing with Loops

• Text and Fonts

• Images

3G.2 Procedural Decomposition with Graphics
• A Larger Example: DrawDiamonds

3G.3 Case Study: Pyramids
• Unstructured Partial Solution

• Generalizing the Drawing of Pyramids

• Complete Structured Solution

Introduction
One of the most compelling reasons to learn
about using objects is that they allow us to draw
graphics in Java. Graphics are used for games,
computer animations, and modern graphical
user interfaces (GUIs), and to render complex
images. Graphics are also a good way to
practice the use of parameters as discussed in
the previous chapter.

In this optional supplement we will examine a
few of the basic classes from Java’s graphical
framework and use them to draw patterned two-
dimensional figures of shapes and text onto the
screen.

3G.1 Introduction to Graphics
Java’s original graphical tools were collectively known as the
Abstract Window Toolkit (AWT). The classes associated with the
AWT reside in the package java.awt . In order to create graphical
programs like the ones you’ll see in this section, you’ll need to
include the following import declaration at the top of your programs:

import java.awt.*; // for graphics

To keep things simple, we’ll use a custom class called DrawingPanel
that was written by the authors of this textbook to simplify some of
the more esoteric details of Java graphics. Its core code is less than
a page long, so we aren’t hiding much. You won’t need to import
DrawingPanel , but you will need to place the file DrawingPanel.java in
the same folder as your program. If you want to test the
DrawingPanel ’s functionality in JShell, run JShell from the same folder
where DrawingPanel.java is located, then type /open
DrawingPanel.java at the prompt.

The drawing panel keeps track of the overall image, but the actual
drawing will be done with an object of type Graphics . The Graphics
class is also part of the java.awt library.

DrawingPanel

You can create a graphical window on your screen by constructing a
DrawingPanel object. You must specify the width and height of the
drawing area. When the following line executes, a window appears
immediately on the screen:

DrawingPanel panel = new DrawingPanel(width, height);

DrawingPanel objects have two public methods, listed in Table
3G.1 .

Table 3G.1 Useful Methods for DrawingPanel

The typical way that you’ll use DrawingPanel will be to construct a
panel of a particular height and width, set its background color (if you
don’t want the default white background), and then draw something
on it using its Graphics object. The DrawingPanel appears on the
screen at the time that you construct it.

All coordinates are specified as integers. Each () position
corresponds to a different pixel on the computer screen. The word
pixel is shorthand for “picture element” and represents a single dot
on the computer screen.

x, y

Pixel
A single small dot on a computer screen.

The coordinate system assigns the upper-left corner of a panel the
position (0, 0). As you move to the right of this position, the value
increases. As you move down from this position, the value
increases. For example, suppose that you construct a DrawingPanel
object with a width of 200 pixels and a height of 100 pixels. The
upper-left corner will have the coordinates (0, 0), and the lower-right
corner will have the coordinates (199, 99) as shown in Figure
3G.1 .

Figure 3G.1 The () Coordinate Space

x

y

x, y

This is likely to be confusing at first, because you’re probably used to
coordinate systems where values decrease as you move down.
However, you’ll soon get the hang of it.

Drawing Lines and Shapes

So, how do you actually draw something? To draw shapes and lines,
you don’t talk directly to the DrawingPanel , but rather to a related
object of type Graphics . Think of the DrawingPanel as a canvas and
the Graphics object as the paintbrush. The DrawingPanel class has a
method called getGraphics that returns its Graphics object:

Graphics g = panel.getGraphics();

One of the simplest drawing commands is drawLine , which takes
four integer arguments.

For example, the method call:

g.drawLine(x1, y1, x2, y2);

draws a line from the point () to the point (). The
drawLine method is just one of many commands a Graphics object

y

x1, y1 x2, y2

understands; see Table 3G.2 for others. The Graphics object has
many more methods in addition to the ones discussed here. You can
read about them in the Java API documentation.

Table 3G.2 Some Useful Methods of Graphics Objects

Here is a sample program that puts these pieces together:

 1 // Draws a line onto a DrawingPanel.

 2

 3 import java.awt.*; // for graphics

 4

 5 public class DrawLine1 {

 6 public static void main(String[] args) {

 7 // create the drawing panel

 8 DrawingPanel panel = new DrawingPanel(200, 100);

 9

10 // draw a line on the panel using

11 // the Graphics paintbrush

12 Graphics g = panel.getGraphics();

13 g.drawLine(25, 75, 175, 25);

14 }

15 }

When you run this program, the window shown in Figure 3G.2
appears. Though it isn’t text on the console, as in previous chapters,
we’ll still refer to this as the “output” of the program.

Figure 3G.2 Output of DrawLine1

(Java can be run on a variety of systems. Depending on your
operating system, your output may differ slightly from the
screenshots in this chapter.)

The first statement in main constructs a DrawingPanel with a width of
200 and a height of 100. Once it has been constructed, the window
will pop up on the screen. The second statement draws a line from
(25, 75) to (175, 25). The first point is in the lower-left part of the
window (25 over from the left, 75 down from the top). The second
point is in the upper-right corner (175 over from the left, 25 down
from the top).

Notice these particular lines of code:

Graphics g = panel.getGraphics();

g.drawLine(25, 75, 175, 25);

You might wonder why you can’t just say:

panel.drawLine(25, 75, 175, 25); // this is illegal

The problem is that there are two different objects involved in this
program: the DrawingPanel itself (the canvas) and the Graphics object
associated with the panel (the paintbrush). The panel doesn’t know
how to draw a line; only the Graphics object knows how to do this.
You have to be careful to make sure that you are talking to the right
object when you give a command.

This requirement can be confusing, but it is common in Java
programs. In fact, in a typical Java program, there are hundreds (if
not thousands) of objects interacting with each other. These
interactions aren’t so unlike interactions between people. If you want
to schedule a meeting, a busy corporate executive might tell you,
“Talk to my secretary about that.” Or if you’re asking difficult legal
questions, a person might tell you, “Talk to my lawyer about that.” In
this case, the DrawingPanel doesn’t know how to draw, so if it could
talk it would say, “Talk to my Graphics object about that.”

It’s also legal to use the Graphics object without storing it in a
variable, like this:

panel.getGraphics().drawLine(25, 75, 175, 25); // also legal

But you’ll often want to send several commands to the Graphics
object, so it’s more convenient to give it a name and store it in a
variable.

Let’s look at a more complicated example:

 1 // Draws three lines to make a triangle.

 2

 3 import java.awt.*;

 4

 5 public class DrawLine2 {

 6 public static void main(String[] args) {

 7 DrawingPanel panel = new DrawingPanel(200, 100);

 8

 9 // draw a triangle on the panel

10 Graphics g = panel.getGraphics();

11 g.drawLine(25, 75, 100, 25);

12 g.drawLine(100, 25, 175, 75);

13 g.drawLine(25, 75, 175, 75);

14 }

15 }

This program draws three different lines to form a triangle, as shown
in Figure 3G.3 . The lines are drawn between three different
points. In the lower-left corner we have the point (25, 75). In the
middle at the top we have the point (100, 25). And in the lower-right

corner we have the point (175, 75). The various calls on drawLine
simply draw the lines that connect these three points.

Figure 3G.3 Output of DrawLine2

The Graphics object also has methods for drawing particular shapes.
For example, you can draw rectangles with the drawRect method:

g.drawRect(x, y, width, height);

This draws a rectangle with upper-left coordinates () and the
given height and width.

Another figure you’ll often want to draw is a circle or, more generally,
an oval. But how do you specify where it appears and how big it is?

x, y

What you actually specify is what is known as the “bounding
rectangle” of the circle or oval. Java will draw the largest oval
possible that fits inside that rectangle. So, the method call:

g.drawOval(x, y, width, height);

draws the largest oval that fits within the rectangle with upper-left
coordinates () and the given height and width.

Notice that the first two values passed to drawRect and drawOval are
coordinates, while the next two values are a width and a height. For
example, here is a short program that draws two rectangles and two
ovals:

 1 // Draws several shapes.

 2

 3 import java.awt.*;

 4

 5 public class DrawShapes1 {

 6 public static void main(String[] args) {

 7 DrawingPanel panel = new DrawingPanel(200, 100);

 8

 9 Graphics g = panel.getGraphics();

10 g.drawRect(25, 50, 20, 20);

11 g.drawRect(150, 10, 40, 20);

12 g.drawOval(50, 25, 20, 20);

x, y

13 g.drawOval(150, 50, 40, 20);

14 }

15 }

Figure 3G.4 shows the output of the program.

Figure 3G.4 Output of DrawShapes1

The first rectangle has its upper-left corner at the coordinates (25,
50). Its width and height are each 20, so this is a square. The
coordinates of its lower-right corner would be (45, 70), or 20 more
than the () coordinates of the upper-left corner. The program
also draws a rectangle with its upper-left corner at (150, 10) that has
a width of 40 and a height of 20 (wider than it is tall). The bounding
rectangle of the first oval has upper-left coordinates (50, 25) and a
width and height of 20. In other words, it’s a circle. The bounding

x, y

rectangle of the second oval has upper-left coordinates (150, 50), a
width of 40, and a height of 20 (it’s an oval that is wider than it is tall).

Sometimes you don’t just want to draw the outline of a shape; you
want to paint the entire area with a particular color. There are
variations of the drawRect and drawOval methods known as fillRect
and fillOval that do exactly that, drawing a rectangle or oval and
filling it in with the current color of paint (the default is black). Let’s
change two of the calls in the previous program to be “fill” operations
instead of “draw” operations:

 1 // Draws and fills several shapes.

 2

 3 import java.awt.*;

 4

 5 public class DrawShapes2 {

 6 public static void main(String[] args) {

 7 DrawingPanel panel = new DrawingPanel(200, 100);

 8

 9 Graphics g = panel.getGraphics();

10 g.fillRect(25, 50, 20, 20);

11 g.drawRect(150, 10, 40, 20);

12 g.drawOval(50, 25, 20, 20);

13 g.fillOval(150, 50, 40, 20);

14 }

15 }

Now we get the output shown in Figure 3G.5 instead.

Figure 3G.5 Output of DrawShapes2

Colors

All of the shapes and lines drawn by the preceding programs were
black, and all of the panels had a white background. These are the
default colors, but you can change the background color of the
panel, and you can change the color being used by the Graphics
object as many times as you like. To change these colors, you use
the standard Color class, which is part of the java.awt package.

There are a number of predefined colors that you can refer to
directly. They are defined as class constants in the Color class (a lot
like the constants we used in Chapter 2). The names of these
constants are all in uppercase and are self-explanatory. To refer to
one of these colors, you have to precede it with the class name and
a dot, as in Color.GREEN or Color.BLUE . The predefined Color
constants are listed in Table 3G.3 .

Table 3G.3 Color Constants

As mentioned earlier, the DrawingPanel object has a method that can
be used to change the background color that covers the entire panel:

panel.setBackground(Color.YELLOW);

Likewise, the Graphics object has a method that can be used to
change the current color that draws or fills shapes and lines:

g.setColor(Color.MAGENTA);

Calling setColor is like dipping your paintbrush in a different color of
paint. From that point on, all drawing and filling will be done in the
specified color. For example, here is another version of the previous
program that uses a cyan (light blue) background color and fills in
the oval and square with white instead of black:

 1 // Draws and fills shapes in different colors.

 2

 3 import java.awt.*;

 4

 5 public class DrawColoredShapes {

 6 public static void main(String[] args) {

 7 DrawingPanel panel = new DrawingPanel(200, 100);

 8 panel.setBackground(Color.CYAN);

 9

10 Graphics g = panel.getGraphics();

11 g.drawRect(150, 10, 40, 20);

12 g.drawOval(50, 25, 20, 20);

13 g.setColor(Color.WHITE);

14 g.fillOval(150, 50, 40, 20);

15 g.fillRect(25, 50, 20, 20);

16 }

17 }

This program produces the output shown in Figure 3G.6 . (The
figures shown in this textbook may not match the colors you would
see on your screen.)

Figure 3G.6 Output of DrawColoredShapes

Notice that you tell the panel to set the background color, while you
tell the Graphics object to set the foreground color. The reasoning is
that the background color is a property of the entire window, while
the foreground color affects only the particular shapes that you draw.

Notice also that the order of the calls has been rearranged. The two
drawing commands appear first, then the call on setColor that
changes the color to white, then the two filling commands. This
ensures that the drawing is done in black and the filling is done in
white. The order of operations is very important in these drawing
programs, so you’ll have to keep track of what your current color is
each time you give a new command to draw or fill something.

COMMON PROGRAMMING ERROR

Misunderstanding Draw vs. Fill

Some new programmers think that a shape must be drawn
(such as with drawRect) before it can be filled in (such as with
fillRect). This is not the case. In fact, when you are trying to
draw an outlined shape, this is exactly the wrong thing to do.
Suppose you want to draw a green rectangle with a
black border at (20, 50). You might write the following code:

g.setColor(Color.BLACK); // incorrect code

g.drawRect(20, 50, 60, 30);

g.setColor(Color.GREEN);

g.fillRect(20, 50, 60, 30);

However, the fill command covers the same pixels as the
draw command, and the green interior will be drawn over the
black outline, leading to the following appearance:

60 × 30

Instead, the code should fill the interior of the rectangle first,
then draw the black outline, to make sure that the outline
shows on top of the filling. The following is the correct code
and its output:

g.setColor(Color.GREEN); // corrected code

g.fillRect(20, 50, 60, 30);

g.setColor(Color.BLACK);

g.drawRect(20, 50, 60, 30);

Drawing with Loops

In each of the preceding examples we used simple constants for the
drawing and filling commands, but it is possible to use expressions.
For example, suppose that we stick with our DrawingPanel size of
200 pixels wide and 100 pixels tall and we want to produce a
diagonal series of four rectangles that extend from the upper-left
corner to the lower-right corner, each with a white oval inside. In
other words, we want to produce the output shown in Figure
3G.7 .

Figure 3G.7 Desired Output of DrawLoop1

The overall width of 200 and overall height of 100 are divided evenly
into four rectangles, which means that they must all be 50 pixels
wide and 25 pixels high. So, width and height values for the four
rectangles are the same, but the positions of their upper-left corners
are different. The first rectangle’s upper-left corner is at (0, 0), the
second is at (50, 25), the third is at (100, 50), and the fourth is at
(150, 75). We need to write code to generate these different
coordinates.

This is a great place to use a for loop. Using the techniques
introduced in Chapter 2 , we can make a table and develop a
formula for the coordinates. In this case it is easier to have the loop
start with 0 rather than 1, which will often be the case with drawing
programs. Here is a program that makes a good first stab at
generating the desired output:

 1 // Draws boxed ovals using a for loop (flawed version).

 2

 3 import java.awt.*;

 4

 5 public class DrawLoop1 {

 6 public static void main(String[] args) {

 7 DrawingPanel panel = new DrawingPanel(200, 100);

 8 panel.setBackground(Color.CYAN);

 9

10 Graphics g = panel.getGraphics();

11 for (int i = 0; i < 4; i++) {

12 g.drawRect(i * 50, i * 25, 50, 25);

13 g.setColor(Color.WHITE);

14 g.fillOval(i * 50, i * 25, 50, 25);

15 }

16 }

17 }

This program produces the output shown in Figure 3G.8 .

Figure 3G.8 Output of DrawLoop1

The coordinates and sizes are right, but not the colors. Instead of
getting four black rectangles with white ovals inside, we’re getting
one black rectangle and three white rectangles. That’s because we
only have one call on setColor inside the loop. Initially the color will

be set to black, which is why the first rectangle comes out black. But
once we make a call on setColor changing the color to white, every
subsequent drawing and filling command is done in white, including
the second, third, and fourth rectangles.

So, we need to include calls to set the color to black, to draw the
rectangles, and to set the color to white to draw the filled ovals.
While we’re at it, it’s a good idea to switch the order of these tasks.
The rectangles and ovals overlap slightly, and we would rather have
the rectangle drawn over the oval than the other way around. The
following program produces the correct output:

 1 // Draws boxed ovals using a for loop.

 2

 3 import java.awt.*;

 4

 5 public class DrawLoop2 {

 6 public static void main(String[] args) {

 7 DrawingPanel panel = new DrawingPanel(200, 100);

 8 panel.setBackground(Color.CYAN);

 9

10 Graphics g = panel.getGraphics();

11 for (int i = 0; i < 4; i++) {

12 g.setColor(Color.WHITE);

13 g.fillOval(i * 50, i * 25, 50, 25);

14 g.setColor(Color.BLACK);

15 g.drawRect(i * 50, i * 25, 50, 25);

16 }

17 }

18 }

It’s also possible to create custom Color objects of your own, rather
than using the constant colors provided in the Color class. Computer
monitors use red, green, and blue (RGB) as their primary colors, so
when you construct a Color object you pass your own parameter
values for the redness, greenness, and blueness of the color:

new Color(red, green, blue)

The red/green/blue components should be integer values between 0
and 255 . The higher the value, the more of that color is mixed in. All
0 values produce black, and all 255 values produce white. Values of
(0, 255, 0) produce a pure green, while values of (128, 0, 128)
make a dark purple color (because red and blue are mixed). Search
for “RGB table” in your favorite search engine to find tables of many
common colors.

The following program demonstrates the use of custom colors. It
uses a class constant for the number of rectangles to draw and
produces a blend of colors from black to white:

 1 // Draws a smooth color gradient from black to white.

 2

 3 import java.awt.*;

 4

 5 public class DrawColorGradient {

 6 public static final int RECTS = 32;

 7

 8 public static void main(String[] args) {

 9 DrawingPanel panel = new DrawingPanel(256, 256);

10 panel.setBackground(new Color(255, 128, 0)); //

orange

11

12 Graphics g = panel.getGraphics();

13

14 // from black to white, top left to bottom right

15 for (int i = 0; i < RECTS; i++) {

16 int shift = i * 256 / RECTS;

17 g.setColor(new Color(shift, shift, shift));

18 g.fillRect(shift, shift, 20, 20);

19 }

20 }

21 }

This program produces the output shown in Figure 3G.9 .

Figure 3G.9 Output of DrawColorGradient

It is also legal to store a Color object into a variable or pass it as a
parameter. For example, we could have written the coloring code in
the preceding program as follows:

Color c = new Color(shift, shift, shift);

g.setColor(c);

...

We will use this idea later when parameterizing colors in this
chapter’s Case Study.

Text and Fonts

Another drawing command worth mentioning can be used to include
text in your drawings. The drawString method of the Graphics object
draws the given String with its lower-left corner at coordinates (
):

g.drawString(message, x, y);

This is a slightly different convention than we used for drawRect . With
drawRect , we specified the coordinates of the upper-left corner. Here
we specify the coordinates of the lower-left corner. By default, text is
drawn approximately 10 pixels high. Here is a sample program that
uses a loop to draw a particular String 10 different times, each time
indenting it 5 pixels to the right and moving it down 10 pixels from
the top:

 1 // Draws a message several times.

 2

 3 import java.awt.*;

 4

x, y

 5 public class DrawStringMessage1 {

 6 public static void main(String[] args) {

 7 DrawingPanel panel = new DrawingPanel(200, 100);

 8 panel.setBackground(Color.YELLOW);

 9

10 Graphics g = panel.getGraphics();

11 for (int i = 0; i < 10; i++) {

12 g.drawString("There is no place like home",

13 i * 5, 10 + i * 10);

14 }

15 }

16 }

This program produces the output shown in Figure 3G.10 .

Figure 3G.10 Output of DrawStringMessage

Fonts are used to describe different styles for writing characters on
the screen. If you’d like to change the style or size of the onscreen
text, you can use the setFont method of the Graphics object.

Font
An overall design for a set of text characters, including
the style, size, weight, and appearance of each
character.

This method changes the text size and style in which strings are
drawn.

The parameter to setFont is a Font object. A Font object is
constructed by passing three parameters—the font’s name as a
String , its style (such as bold or italic), and its size as an integer:

new Font(name, style, size)

Common font styles such as bold are implemented as constants in
the Font class. The available constants and some popular font
names are listed in Tables 3G.4 and 3G.5 .

Table 3G.4 Useful Constants of the Font Class

Table 3G.5 Common Font Names

As in the case of colors, setting the font affects only strings that are
drawn after the font is set. The following program sets several fonts
and uses them to draw strings:

 1 // Draws several messages using different fonts.

 2

 3 import java.awt.*;

 4

 5 public class DrawFonts {

 6 public static void main(String[] args) {

 7 DrawingPanel panel = new DrawingPanel(200, 100);

 8 panel.setBackground(Color.PINK);

 9

10 Graphics g = panel.getGraphics();

11 g.setFont(new Font("Monospaced",

12 Font.BOLD + Font.ITALIC, 36));

13 g.drawString("Too big", 20, 40);

14

15 g.setFont(new Font("SansSerif", Font.PLAIN, 10));

16 g.drawString("Too small", 30, 60);

17

18 g.setFont(new Font("Serif", Font.ITALIC, 18));

19 g.drawString("Just right", 40, 80);

20 }

21 }

This program produces the output shown in Figure 3G.11 .

Figure 3G.11 Output of DrawFonts

Images

The DrawingPanel is also capable of displaying images loaded from
files in formats such as JPEG, PNG, and GIF. To display an image,
first you must find an image file (such as one on the internet or on
your computer) and place it into the same directory as your code
project. Images are displayed in two steps: first the image must be
loaded from the hard drive into an Image object, and then your
panel’s Graphics object can display the image.

Image img = panel.loadImage("smileyface.png");

g.drawImage(img, x, y, panel);

The and coordinates passed when drawing the image represent
its top/left corner pixel position.

x y

There are a few quirks to the syntax. One is that we use the
DrawingPanel to load the image, while you use the Graphics object to
draw it. It’s easy to accidentally get the two mixed up. Also, unlike
the other drawing commands, drawImage requires you to pass the
DrawingPanel as a last parameter to the method. This is required by
Java’s Graphics class in order for the code to compile.

For example, the following program loads an image that looks like a
drawing of a rainbow and draws it onto the DrawingPanel with a text
string underneath it.

 1 // This program displays a rainbow from an image file.

 2 import java.awt.*;

 3

 4 public class DrawRainbow {

 5 public static void main(String[] args) {

 6 DrawingPanel panel = new DrawingPanel(280, 200);

 7 Image rainbow = panel.loadImage("rainbow.png");

 8 Graphics g = panel.getGraphics();

 9 g.drawImage(rainbow, 0, 0, panel);

10 g.drawString("Somewhere over the rainbow...", 10,

180);

11 }

12 }

The program produces the output shown in Figure 3G.12 .

Figure 3G.12 Output of DrawRainbow

If you want to draw the same image multiple times on the panel, you
don’t need to repeat the loadImage part of the process. It is much
more efficient to load the image a single time and then draw it as
many times as you like. The following code would draw several
copies of an image in a file named smiley.png , which is
pixels in size. The output of this code is shown in Figure 3G.13 .

Figure 3G.13 Smiley face output

100 × 100

Image smileyFace = panel.loadImage("smiley.png");

Graphics g = panel.getGraphics();

for (int i = 0; i < 4; i++) {

 g.drawImage(smileyFace, i * 110 + 10, 10, panel);

}

3G.2 Procedural Decomposition
with Graphics
If you write complex drawing programs, you will want to break them
down into several static methods to structure the code and to
remove redundancy. When you do this, you’ll have to pass the
Graphics object to each static method that you introduce. For a quick
example, the DrawStringMessage1 program from the previous section
could be split into a main method and a drawText method, as follows:

 1 // Draws a message several times using a static method.

 2

 3 import java.awt.*;

 4

 5 public class DrawStringMessage2 {

 6 public static void main(String[] args) {

 7 DrawingPanel panel = new DrawingPanel(200, 100);

 8 panel.setBackground(Color.YELLOW);

 9

10 Graphics g = panel.getGraphics();

11 drawText(g);

12 }

13

14 public static void drawText(Graphics g) {

15 for (int i = 0; i < 10; i++) {

16 g.drawString("There is no place like home",

17 i * 5, 10 + i * 10);

18 }

19 }

20 }

This program produces the same output as the original program
(Figure 3G.10).

The program wouldn’t compile without passing Graphics g to the
drawText method, because g is needed to call drawing methods
such as drawString and fillRect .

A Larger Example: DrawDiamonds

Now let’s consider a slightly more complicated task: drawing the
largest diamond figure that will fit into a box of a particular size. The
largest diamond that can fit into a box of size is shown in
Figure 3G.14 .

Figure 3G.14 Diamond

50 × 50

The code to draw such a diamond would be the following:

g.drawRect(0, 0, 50, 50);

g.drawLine(0, 25, 25, 0);

g.drawLine(25, 0, 50, 25);

g.drawLine(50, 25, 25, 50);

g.drawLine(25, 50, 0, 25);

Now imagine that we wish to draw three such diamonds at
different locations. We can turn our diamond-drawing code into a
drawDiamond method that we’ll call three times. Since each diamond

50 × 50

will be in a different position, we can pass the - and -coordinates
as parameters to our drawDiamond method.

A diamond enclosed by a box with top-left corner at the location (78,
22) is shown in Figure 3G.15 .

Figure 3G.15 Diamond at (78, 22)

The code to draw this diamond would be the following:

g.drawRect(78, 22, 50, 50);

g.drawLine(78, 47, 103, 22);

g.drawLine(103, 22, 128, 47);

x y

g.drawLine(128, 47, 103, 72);

g.drawLine(103, 72, 78, 47);

As you can see, the parameter values passed to the drawRect and
drawLine methods are very similar to those of the first diamond,
except that they’re shifted by 78 in the -direction and 22 in the -
direction (except for the third and fourth parameters to drawRect ,
since these are the rectangle’s width and height). This (78, 22) shift
is called an offset.

We can generalize the coordinates to pass to Graphics g ’s drawing
commands so that they’ll work with any diamond if we pass that
diamond’s top-left - and -offset. For example, we’ll generalize the
line from (0, 25) to (25, 0) in the first diamond and from (78, 47) to
(103, 22) in the second diamond by saying that it is a line from (

) to (), where () is the offset of the given
diamond.

The following program uses the drawDiamond method to draw three
diamonds without redundancy:

 1 // This program draws several diamond figures of size

50x50.

 2

 3 import java.awt.*;

 4

x y

x y

x,

y + 25 x + 25, y x, y

 5 public class DrawDiamonds {

 6 public static void main(String[] args) {

 7 DrawingPanel panel = new DrawingPanel(250, 150);

 8 Graphics g = panel.getGraphics();

 9

10 drawDiamond(g, 0, 0);

11 drawDiamond(g, 78, 22);

12 drawDiamond(g, 19, 81);

13 }

14

15 // draws a diamond in a 50x50 box

16 public static void drawDiamond(Graphics g, int x, int y)

{

17 g.drawRect(x, y, 50, 50);

18 g.drawLine(x, y + 25, x + 25, y);

19 g.drawLine(x + 25, y, x + 50, y + 25);

20 g.drawLine(x + 50, y + 25, x + 25, y + 50);

21 g.drawLine(x + 25, y + 50, x, y + 25);

22 }

23 }

This program produces the output shown in Figure 3G.16 .

Figure 3G.16 Output of DrawDiamonds

It’s possible to draw patterned figures in loops and to have one
drawing method call another. For example, if we want to draw five
diamonds, starting at (12, 15) and spaced 60 pixels apart, we just
need a for loop that repeats five times and shifts the -coordinate
by 60 each time. Here’s an example loop:

for (int i = 0; i < 5; i++) {

 drawDiamond(g, 12 + 60 * i, 15);

}

If we created another method to draw the line of five diamonds, we
could call it from main to draw many lines of diamonds. Here’s a

x

modified version of the DrawDiamonds program with two graphical
methods:

 1 // This program draws several diamond figures of size

50x50.

 2

 3 import java.awt.*;

 4

 5 public class DrawDiamonds2 {

 6 public static void main(String[] args) {

 7 DrawingPanel panel = new DrawingPanel(360, 160);

 8 Graphics g = panel.getGraphics();

 9

10 drawManyDiamonds(g, 12, 15);

11 g.setColor(Color.RED);

12 drawManyDiamonds(g, 55, 100);

13 }

14

15 // draws five diamonds in a horizontal line

16 public static void drawManyDiamonds(Graphics g,

17 int x, int y) {

18 for (int i = 0; i < 5; i++) {

19 drawDiamond(g, x + 60 * i, y);

20 }

21 }

22

23 // draws a diamond in a 50x50 box

24 public static void drawDiamond(Graphics g, int x, int y)

{

25 g.drawRect(x, y, 50, 50);

26 g.drawLine(x, y + 25, x + 25, y);

27 g.drawLine(x + 25, y, x + 50, y + 25);

28 g.drawLine(x + 50, y + 25, x + 25, y + 50);

29 g.drawLine(x + 25, y + 50, x, y + 25);

30 }

31 }

This program produces the output shown in Figure 3G.17 .

Figure 3G.17 Output of DrawDiamonds2

3G.3 Case Study: Pyramids
Imagine that you’ve been asked to write a program that will draw the
images in Figure 3G.18 onto a DrawingPanel .

Figure 3G.18 Desired Pyramids Output

The overall drawing panel has a size of Each pyramid
is 100 pixels high and 100 pixels wide. The pyramids consist of
centered flights of colored stairs that widen toward the bottom, with

350 × 250.

black outlines around each stair. Table 3G.6 lists the attributes of
each pyramid.

Table 3G.6 Pyramid Attributes

Unstructured Partial Solution

When trying to solve a larger and more complex problem like this, it’s
important to tackle it piece by piece and make iterative
enhancements toward a final solution. Let’s begin by trying to draw
the top-left white pyramid correctly.

Each stair is centered horizontally within the pyramid. The top stair is
10 pixels wide. Therefore, it is surrounded by or 45 pixels of
empty space on either side. That means that the
rectangle’s top-left corner is at (45, 0). The second stair is 20 pixels
wide, meaning that it’s surrounded by or 40 pixels on each
side:

90/2
10 × 10

80/2

The following program draws the white pyramid in the correct
position:

 1 import java.awt.*;

 2

 3 // Draws the first pyramid only, with a lot of redundancy.

 4 public class Pyramids1 {

 5 public static void main(String[] args) {

 6 DrawingPanel panel = new DrawingPanel(350, 250);

 7 Graphics g = panel.getGraphics();

 8

 9 // draws the border rectangle

10 g.drawRect(0, 0, 100, 100);

11

12 // draws the 10 "stairs" in the white pyramid

13 g.drawRect(45, 0, 10, 10);

14 g.drawRect(40, 10, 20, 10);

15 g.drawRect(35, 20, 30, 10);

16 g.drawRect(30, 30, 40, 10);

17 g.drawRect(25, 40, 50, 10);

18 g.drawRect(20, 50, 60, 10);

19 g.drawRect(15, 60, 70, 10);

20 g.drawRect(10, 70, 80, 10);

21 g.drawRect(5, 80, 90, 10);

22 g.drawRect(0, 90, 100, 10);

23 }

24 }

Looking at the code, it’s clear that there’s a lot of redundancy among
the 10 lines to draw the stairs. Examining the patterns of numbers in
each column reveals that the value decreases by 5 each time, the

 value increases by 10 each time, the width increases by 10 each
time, and the height stays the same.

Another way of describing a stair’s value is to say that it is half of
the overall 100 minus the stair’s width. With that in mind, the
following for loop draws the 10 stairs without the previous
redundancy:

for (int i = 0; i < 10; i++) {

 int stairWidth = 10 * (i + 1);

 int stairHeight = 10;

 int stairX = (100 – stairWidth) / 2;

 int stairY = 10 * i;

 g.drawRect(stairX, stairY, stairWidth, stairHeight);

}

Generalizing the Drawing of
Pyramids

Next let’s add code to draw the bottom (red) pyramid. Its ()
position is (80, 140) and it has only five stairs. That means each stair

x

y

x

x, y

is twice as tall and wide as those in the white pyramid.

Given this information, we can determine that the top stair’s upper-
left corner is at (120, 140) and its size is the second stair’s
upper-left corner is at (110, 160) and its size is and so on.

For the moment, let’s focus on getting the coordinates of the stairs
right and not worry about the red fill color. Here is a redundant bit of
code to draw the red pyramid’s stairs, without the coloring:

// draws the border rectangle

g.drawRect(80, 140, 100, 100);

// draws the 5 "stairs" of the red pyramid

g.drawRect(120, 140, 20, 20);

g.drawRect(110, 160, 40, 20);

g.drawRect(100, 180, 60, 20);

g.drawRect(90, 200, 80, 20);

g.drawRect(80, 220, 100, 20);

20 × 20,
40 × 20,

Again we have redundancy among the five lines to draw the stairs,
so let’s look for a pattern. We’ll use a loop to eliminate the
redundancy like we did for the last pyramid, but with appropriate
modifications. Each stair’s height is now 20 pixels, and each stair’s
width is now 20 times the number for that stair. The - and -
coordinates are a bit trickier. The -coordinate formula is similar to
the (100 – stairWidth) / 2 from before, but this time it must be
shifted right by 80 to account for the position of its bounding box’s
top-left corner. The -coordinate must similarly be shifted downward
by 140 pixels. Here’s the correct loop:

// draws the 5 "stairs" of the red pyramid

for (int i = 0; i < 5; i++) {

 int stairWidth = 20 * (i + 1);

 int stairHeight = 20;

 int stairX = 80 + (100 – stairWidth) / 2;

 int stairY = 140 + 20 * i;

 g.drawRect(stairX, stairY, stairWidth, stairHeight);

}

Can you spot the pattern between the two for loops used to draw
the stairs of the pyramids? The - and -coordinates differ only in
the addition of the offset from (0, 0) in the second loop. The stairs’
widths and heights differ only in that one pyramid’s stairs are 20
pixels tall and the other pyramid’s stairs are 10 pixels tall (the result
of dividing the overall size of 100 by the number of stairs).

x y

x

y

x y

Using the preceding information, let’s turn the code for drawing a
pyramid into a method that we can call three times to avoid
redundancy. The parameters will be the () coordinates of the
top-left corner of the pyramid’s bounding box and the number of
stairs in the pyramid. We’ll also need to pass Graphics g as a
parameter so that we can draw onto the DrawingPanel . We’ll modify
the for loop to compute the stair height first, then use the height to
compute the stair width, and finally use the width and height to help
compute the () coordinates of the stair. Here’s the code:

public static void drawPyramid(Graphics g, int x,

 int y, int stairs) {

 // draws the border rectangle

 g.drawRect(x, y, 100, 100);

 // draws the stairs of the pyramid

 for (int i = 0; i < stairs; i++) {

 int stairHeight = 100 / stairs;

 int stairWidth = stairHeight * (i + 1);

 int stairX = x + (100 – stairWidth) / 2;

 int stairY = y + stairHeight * i;

 g.drawRect(stairX, stairY, stairWidth, stairHeight);

 }

}

The preceding code is now generalized to draw a pyramid at any
location with any number of stairs. But one final ingredient is

x, y

x, y

missing: the ability to give a different color to each pyramid.

Complete Structured Solution

The preceding code is correct except that it doesn’t allow us to draw
the pyramids in the proper colors. Let’s add an additional parameter,
a Color , to our method and use it to fill the pyramid stairs as needed.
We’ll pass Color.WHITE as this parameter’s value for the first white
pyramid; it’ll fill the stairs with white, even though this isn’t necessary.

The way to draw a filled shape with an outline of a different color is
to first fill the shape, then use the outline color to draw the same
shape. For example, to get red rectangles with black outlines, first
we’ll use fillRect with red, then we’ll use drawRect with black with
the same parameters.

Here’s the new version of the drawPyramid method that uses the fill
color as a parameter:

public static void drawPyramid(Graphics g, Color c,

 int x, int y, int stairs) {

 g.drawRect(x, y, 100, 100);

 for (int i = 0; i < stairs; i++) {

 int stairHeight = 100 / stairs;

 int stairWidth = stairHeight * (i + 1);

 int stairX = x + (100 – stairWidth) / 2;

 int stairY = y + stairHeight * i;

 g.setColor(c);

 g.fillRect(stairX, stairY, stairWidth, stairHeight);

 g.setColor(Color.BLACK);

 g.drawRect(stairX, stairY, stairWidth, stairHeight);

 }

}

Using this method, we can now draw all three pyramids easily by
calling drawPyramid three times with the appropriate parameters:

drawPyramid(g, Color.WHITE, 0, 0, 10);

drawPyramid(g, Color.RED, 80, 140, 5);

drawPyramid(g, Color.BLUE, 220, 50, 20);

One last improvement we can make to our Pyramids program is to
turn the overall pyramid size of 100 into a constant, so there aren’t
so many 100s lying around in the code. Here is the complete
program:

 1 // This program draws three colored pyramid figures.

 2

 3 import java.awt.*;

 4

 5 public class Pyramids {

 6 public static final int SIZE = 100;

 7

 8 public static void main(String[] args) {

 9 DrawingPanel panel = new DrawingPanel(350, 250);

10 Graphics g = panel.getGraphics();

11

12 drawPyramid(g, Color.WHITE, 0, 0, 10);

13 drawPyramid(g, Color.RED, 80, 140, 5);

14 drawPyramid(g, Color.BLUE, 220, 50, 20);

15 }

16

17 // draws one pyramid figure with the given

18 // number of stairs at the given (x, y) position

19 // with the given color

20 public static void drawPyramid(Graphics g, Color c,

21 int x, int y, int stairs)

{

22

23 // draws the border rectangle

24 g.drawRect(x, y, SIZE, SIZE);

25

26 // draws the stairs of the pyramid

27 for (int i = 0; i < stairs; i++) {

28 int stairHeight = SIZE / stairs;

29 int stairWidth = stairHeight * (i + 1);

30 int stairX = x + (SIZE – stairWidth) / 2;

31 int stairY = y + stairHeight * i;

32

33 // fills the rectangles with the fill colors

34 g.setColor(c);

35 g.fillRect(stairX, stairY, stairWidth,

stairHeight);

36

37 // draws the black rectangle outlines

38 g.setColor(Color.BLACK);

39 g.drawRect(stairX, stairY, stairWidth,

stairHeight);

40 }

41 }

42 }

Chapter Summary
DrawingPanel is a custom class provided by the authors to easily
show a graphical window on the screen. A DrawingPanel contains a
Graphics object that can be used to draw lines, text, and shapes on
the screen using different colors.

A Graphics object has many useful methods for drawing shapes and
lines, such as drawLine , fillRect , and setColor . Shapes can be
“drawn” (drawing only the outline) or “filled” (coloring the entire
shape).

The Graphics object can write text on the screen with its drawString
method. You can specify different font styles and sizes with the
setFont method.

Graphical programs that are decomposed into methods must pass
appropriate parameters to those methods (for example, the Graphics
object, as well as any () coordinates, sizes, or other values that
guide the figures to be drawn).

x, y

Self-Check Problems

Section 3G.1: Introduction to
Graphics

1. Which of the following is the correct syntax to draw a
rectangle?

a. Graphics g.drawRect(10, 20, 50, 30);
b. g.drawRect(10, 20, 50, 30);
c. g.draw.rectangle(10, 20, 50, 30);
d. Graphics.drawRect(10, 20, 50, 30);
e. g.drawRect(x = 10, y = 20, width = 50, height = 30);

2. There are two mistakes in the following code, which attempts
to draw a line from coordinates (50, 86) to (20, 35). What are
they?

DrawingPanel panel = new DrawingPanel(200, 200);

panel.drawLine(50, 20, 86, 35);

3. The following code attempts to draw a black-filled outer
rectangle with a white-filled inner circle inside it:

DrawingPanel panel = new DrawingPanel(200, 100);

Graphics g = panel.getGraphics();

g.setColor(Color.WHITE);

g.fillOval(10, 10, 50, 50);

g.setColor(Color.BLACK);

g.fillRect(10, 10, 50, 50);

However, the graphical output looks like Figure 3G.19
instead. What must be changed for it to look as intended?
Figure 3G.19 Graphical output of Self-Check 3G.3

4. The following code attempts to draw a black rectangle from
(10, 20) to (50, 40) with a line across its diagonal:

DrawingPanel panel = new DrawingPanel(200, 100);

Graphics g = panel.getGraphics();

g.drawRect(10, 20, 50, 40);

g.drawLine(10, 20, 50, 40);

However, the graphical output looks like Figure 3G.20
instead. What must be changed for it to look as intended?
Figure 3G.20 Graphical output of Self-Check 3G.4

5. What sort of figure will be drawn by the following program?
Can you draw a picture that will approximately match its
appearance without running it first?

 1 import java.awt.*;

 2

 3 public class Draw7 {

 4 public static void main(String[] args) {

 5 DrawingPanel panel = new DrawingPanel(200,

200);

 6 Graphics g = panel.getGraphics();

 7 for (int i = 0; i < 20; i++) {

 8 g.drawOval(i * 10, i * 10, 200 – (i *

10), 200 – (i * 10));

 9 }

10 }

11 }

Exercises
1. Write a program that uses the DrawingPanel to draw Figure

3G.21 .
Figure 3G.21 Expected graphical output of Exercise
3G.1

The window is 220 pixels wide and 150 pixels tall. The
background is yellow. There are two blue ovals of size

 pixels. They are 80 pixels apart, and the left oval’s40 × 40

top-left corner is located at position (50, 25). There is a red
square whose top two corners exactly intersect the centers of
the two ovals. Lastly, there is a black horizontal line through
the center of the square.

2. Modify your program from the previous exercise to draw the
figure by a method called drawFigure . The method should
accept three parameters: the Graphics g of the DrawingPanel
on which to draw, and a pair of () coordinates specifying
the location of the top-left corner of the figure. Use the
following heading for your method:

public static void drawFigure(Graphics g, int x, int y)

Set your DrawingPanel ’s size to pixels, and use
your drawFigure method to place two figures on it, as shown
in Figure 3G.22 . One figure should be at position (50, 25)
and the other should be at position (250, 45).
Figure 3G.22 Expected graphical output of Exercise
3G.2

x, y

450 × 150

3. Suppose you have the following existing program called Face
that uses the DrawingPanel to draw the face figure shown in
Figure 3G.23 . Modify the program to draw the modified
output shown in Figure 3G.24 . Do so by writing a
parameterized method that draws a face at different positions.
The window size should be changed to pixels,
and the two faces’ top-left corners are at (10, 30) and (150,
50).
Figure 3G.23 Initial graphical output of Exercise 3G.3

320 × 180

Figure 3G.24 Expected graphical output of Exercise
3G.3

 1 public class Face {

 2 public static void main(String[] args) {

 3 DrawingPanel panel = new DrawingPanel(220,

150);

 4 Graphics g = panel.getGraphics();

 5

 6 g.setColor(Color.BLACK);

 7 g.drawOval(10, 30, 100, 100); // face

outline

 8

 9 g.setColor(Color.BLUE);

10 g.fillOval(30, 60, 20, 20); // eyes

11 g.fillOval(70, 60, 20, 20);

12

13 g.setColor(Color.RED); // mouth

14 g.drawLine(40, 100, 80, 100);

15 }

16 }

4. Modify your previous Face program to draw the new output
shown in Figure 3G.25 . The window size should be
changed to pixels, and the faces’ top-left corners
are at (10, 30), (110, 30), (210, 30), (310, 30), and (410, 30).
Figure 3G.25 Expected graphical output of Exercise
3G.4

5. Write a program called ShowDesign that uses the DrawingPanel
to draw Figure 3G.26 .
Figure 3G.26 Expected graphical output of Exercise
3G.5

520 × 180

The window is 200 pixels wide and 200 pixels tall. The
background is white and the foreground is black. There are 20
pixels between each of the four rectangles, and the rectangles
are concentric (their centers are at the same point). Use a
loop to draw the repeated rectangles.

6. Modify your ShowDesign program from the previous exercise
so that it has a method that accepts parameters for the
window width and height and displays the rectangles at the
appropriate sizes. For example, if your method was called
with values of 300 and 100, the window would look like
Figure 3G.27 .

Figure 3G.27 Expected graphical output of Exercise
3G.6

7. Write a program called Squares that uses the DrawingPanel to
draw the shape shown in Figure 3G.28 .
Figure 3G.28 Expected graphical output of Exercise
3G.7

The DrawingPanel is 300 pixels wide by 200 pixels high. Its
background is cyan. The horizontal and vertical lines are
drawn in red and the diagonal line is drawn in black. The
upper-left corner of the diagonal line is at (50, 50). Successive
horizontal and vertical lines are spaced 20 pixels apart.

8. Modify your code from the previous exercise to produce the
pattern shown in Figure 3G.29 .
Figure 3G.29 Expected graphical output of Exercise
3G.8

The DrawingPanel is now pixels in size. The first
figure is at the same position, (50, 50). The other figures are
at positions (250, 10) and (180, 115), respectively. Use one or
more parameterized static methods to reduce the redundancy
of your solution.

9. Modify your code from the previous exercise to produce the
pattern shown in Figure 3G.30 .
Figure 3G.30 Expected graphical output of Exercise
3G.9

400 × 300

The DrawingPanel is the same except that now each figure has
a different size. The left figure has its original size of 100, the
top-right figure has a size of 50, and the bottom-right figure
has a size of 180. Use parameterized static methods to
reduce the redundancy of your solution.

10. Write a program called Stairs that uses the DrawingPanel to
draw the figure shown in Figure 3G.31 . The first stair’s top-
left corner is at position (5, 5). The first stair is pixels
in size. Each stair is 10 pixels wider than the one above it.
Make a table with the () coordinates and (

10 × 10

x, y

) sizes of the first five stairs. Note which
values change and which ones stay the same.
Figure 3G.31 Expected graphical output of Exercise
3G.10

11. Modify your previous Stairs program to draw each of the
outputs shown in Figure 3G.32 . Modify only the body of
your loop. (You may want to make a new table to find the
expressions for width, and height for each new output.)
Figure 3G.32 Expected graphical outputs of Exercise
3G.11

width × height

x, y,

12. Write a program called Triangle that uses the DrawingPanel to
draw the figure shown in Figure 3G.33 .
Figure 3G.33 Expected graphical output of Exercise
3G.12

The window is pixels in size. The background is
yellow and the lines are blue. The lines are 10 pixels apart
vertically, and the diagonal lines intersect at the bottom of the
figure in its horizontal center.

13. Write a program called Football that uses the DrawingPanel to
draw the figure shown in Figure 3G.34 . Though the figure
looks to contain curves, it is entirely made of straight lines.
Figure 3G.34 Expected graphical output of Exercise
3G.13

The window is pixels in size. There is an outer
rectangle from (10, 30) to (210, 230), and a set of black lines
drawn around the edges every 10 pixels. For example, along
the top-left there is a line from (10, 200) to (20, 30), a line

600 × 200

250 × 250

from (10, 190) to (30, 30), a line from (10, 180) to (40, 30),...
and along the bottom-right there is a line from (20, 210) to
(210, 200), a line from (30, 210) to (210, 190), and so on.

Programming Projects
1. Write a program that draws the patterns shown in Figure

3G.35 onto a DrawingPanel .
Figure 3G.35 Expected graphical output of Programming
Project 3G.1

The DrawingPanel ’s size is pixels and its
background color is cyan. It contains four figures of concentric
yellow circles with black outlines, all surrounded by a green
rectangle with a black outline. The four figures on your
DrawingPanel should have the properties shown in Table
3G.7 .
Table 3G.7 Circle Figure Properties

Break down your program into methods for drawing one
subfigure as well as larger grids of subfigures, such as the

 grid at (10, 120).
2. Write a program that draws the image shown in Figure

3G.36 onto a DrawingPanel of size Each stamp
is pixels in size.
Figure 3G.36 Expected graphical output of Programming
Project 3G.2

400 × 400

5 × 5

200 × 200.

50 × 50

3. Write a program that draws checkerboards like these shown
in Figure 3G.37 onto a DrawingPanel of size
Figure 3G.37 Expected graphical output of Programming
Project 3G.3

420 × 300.

4. Write a modified version of the Projectile case study
program from Chapter 3 that draws a graph of the
projectile’s flight onto a DrawingPanel of size For
example, the panel shown in Figure 3G.38 draws a

420 × 220.

projectile with an initial velocity of 30 meters per second, an
angle of 50 degrees, and 10 steps.
Figure 3G.38 Expected graphical output of Programming
Project 3G.4

5. Write a program that draws the image shown in Figure
3G.39 onto a DrawingPanel of size The image
represents a famous optical illusion called the “Cafe Wall,” in
which a series of straight squares appears to be slanted.
Figure 3G.39 Expected graphical output of Programming
Project 3G.5

650 × 400.

The image has a gray background and many rows of black
and white squares with a blue X drawn through each black
square. The two free-standing rows in the diagram have the
following properties:
Table 3G.8 Cafe Wall Row Properties

The diagram has four grids of rows of squares, with 2 pixels of
vertical space between adjacent rows. A key aspect of the
optical illusion is that every other row is shifted horizontally by

a particular offset. The four grids have the following
properties:
Table 3G.9 Cafe Wall Grid Properties

Chapter 4 Conditional Execution

4.1 if/else Statements
• Relational Operators

• Nested if/else Statements

• Object Equality

• Factoring if/else Statements

• Testing Multiple Conditions

4.2 Cumulative Algorithms
• Cumulative Sum

• Min/Max Loops

• Cumulative Sum with if

• Roundoff Errors

4.3 Text Processing
• The char Type

• char versus int

Cumulative Text Algorithms

• System.out.printf

4.4 Methods with Conditional Execution
• Preconditions and Postconditions

• Throwing Exceptions

• Revisiting Return Values

• Reasoning about Paths

4.5 Case Study: Body Mass Index
• One-Person Unstructured Solution

• Two-Person Unstructured Solution

• Two-Person Structured Solution

• Procedural Design Heuristics

Introduction
In the last few chapters, you’ve seen how to
solve complex programming problems using
for loops to repeat certain tasks many times.
You’ve also seen how to introduce some
flexibility into your programs by using class

constants and how to read values input by the
user with a Scanner object. Now we are going to
explore a much more powerful technique for
writing code that can adapt to different
situations.

In this chapter, we’ll look at conditional
execution in the form of a control structure
known as the if/else statement. With if/else
statements, you can instruct the computer to
execute different lines of code depending on
whether certain conditions are true. The
if/else statement, like the for loop, is so
powerful that you will wonder how you managed
to write programs without it.

This chapter will also expand your
understanding of common programming
situations. It includes an exploration of loop
techniques that we haven’t yet examined and
includes a discussion of text-processing issues.
Adding conditional execution to your repertoire
will also require us to revisit methods,
parameters, and return values so that you can
better understand some of the fine points. The
chapter concludes with several rules of thumb

that help us to design better procedural
programs.

4.1 if/else Statements
You will often find yourself writing code that you want to execute
some of the time but not all of the time. For example, if you are
writing a game-playing program, you might want to print a message
each time the user achieves a new high score and store that score.
You can accomplish this by putting the required two lines of code
inside an if statement:

if (currentScore > maxScore) {

 System.out.println("A new high score!");

 maxScore = currentScore;

}

The idea is that you will sometimes want to execute the two lines of
code inside the if statement, but not always. The test in
parentheses determines whether or not the statements inside the if
statement are executed. In other words, the test describes the
conditions under which we want to execute the code.

The general form of the if statement is as follows:

if (<test>) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

The if statement, like the for loop, is a control structure. Notice
that we once again see a Java keyword (if) followed by
parentheses and a set of curly braces enclosing a series of
controlled statements.

The diagram in Figure 4.1 indicates the flow of control for the
simple if statement. The computer performs the test, and if it
evaluates to true , the computer executes the controlled statements.
If the test evaluates to false , the computer skips the controlled
statements.

Figure 4.1 Flow of if statement

You’ll use the simple if statement when you have code that you
want to execute sometimes and skip other times. Java also has a
variation known as the if/else statement that allows you to choose
between two alternatives. Suppose, for example, that you want to set
a variable called answer to the square root of a number:

answer = Math.sqrt(number);

You don’t want to ask for the square root if the number is negative.
To avoid this potential problem, you could use a simple if
statement:

if (number >= 0) {

 answer = Math.sqrt(number);

}

This code will avoid asking for the square root of a negative number,
but what value will it assign to answer if number is negative? In this
case, you’ll probably want to give a value to answer either way.
Suppose you want answer to be –1 when number is negative. You
can express this pair of alternatives with the following if/else
statement:

if (number >= 0) {

 answer = Math.sqrt(number);

} else {

 answer = –1;

}

The if/else statement provides two alternatives and executes one
or the other. So, in the code above, you know that answer will be
assigned a value regardless of whether number is positive or
negative.

The general form of the if/else statement is:

if (<test>) {

 <statement>;

 <statement>;

 ...

 <statement>;

} else {

 <statement>;

 <statement>;

 ...

 <statement>;

}

This control structure is unusual in that it has two sets of controlled
statements and two different keywords (if and else). Figure 4.2
indicates the flow of control. The computer performs the test and,
depending upon whether the code evaluates to true or false ,
executes one or the other group of statements.

Figure 4.2 Flow of if/else statement

As in the case of the for loop, if you have a single statement to
execute, you don’t need to include curly braces. However, the Java
convention is to include the curly braces even if you don’t need
them, and we follow that convention in this book.

Relational Operators

An if/else statement is controlled by a test. Simple tests compare
two expressions to see if they are related in some way. Such tests
are themselves expressions of the following form and evaluate to
either true or false :

<expression> <relational operator> <expression>

To evaluate a test of this form, first evaluate the two expressions and
then see whether the given relation holds between the value on the
left and the value on the right. If the relation holds, the test evaluates
to true . If not, the test evaluates to false .

The relational operators are listed in Table 4.1 . Notice that the
equality operator consists of two equals signs (==), to distinguish it
from the assignment operator (=).

Table 4.1 Relational Operators

Because we use the relational operators as a new way of forming
expressions, we must reconsider precedence. Table 4.2 is an
updated version of Table 2.5 that includes these new operators.
You will see that, technically, the equality comparisons have a
slightly different level of precedence than the other relational
operators, but both sets of operators have lower precedence than
the arithmetic operators.

Table 4.2 Java Operator Precedence

Let’s look at an example. The following expression is made up of the
constants 3 , 2 , and 9 and contains addition, multiplication, and
equality operations:

3 + 2 * 2 == 9

Which of the operations is performed first? Because the relational
operators have a lower level of precedence than the arithmetic
operators, the multiplication is performed first, then the addition, then
the equality test. In other words, Java will perform all of the “math”
operations first before it tests any relationships. This precedence
scheme frees you from the need to place parentheses around the
left and right sides of a test that uses a relational operator. When you
follow Java’s precedence rules, the sample expression is evaluated
as follows:

You can put arbitrary expressions on either side of the relational
operator, as long as the types are compatible. Here is a test with
complex expressions on either side:

(2 – 3 * 8) / (435 % (7 * 2)) <= 3.8 – 4.5 / (2.2 * 3.8)

You can test the relational operators in JShell, as shown in the
following interaction:

jshell> int a = 3;

a ==> 3

jshell> int b = 2;

b ==> 2

jshell> a > b

$3 ==> true

jshell> a > b * b

$4 ==> false

jshell> a - 1 == b

$5 ==> true

One limitation of the relational operators is that they should be used
only with primitive data. Later in this chapter we will talk about how to
compare objects for equality, and in a later chapter we’ll discuss how
to perform less-than and greater-than comparisons on objects.

Nested if/else Statements

Many beginners write code that looks like this:

if (<test1>) {

 <statement1>;

}

if (<test2>) {

 <statement2>;

}

if (<test3>) {

 <statement3>;

}

This sequential structure is appropriate if you want to execute any
combination of the three statements. For example, you might write
this code in a program for a questionnaire with three optional parts,
any combination of which might be applicable for a given person.

Figure 4.3 shows the flow of the sequential if code. Notice that
it’s possible for the computer to execute none of the controlled
statements (if all tests are false), just one of them (if only one test

happens to be true), or more than one of them (if multiple tests are
true).

Figure 4.3 Flow of sequential ifs

Often, however, you only want to execute one of a series of
statements. In such cases, it is better to nest the if statements,
stacking them one inside another:

if (<test1>) {

 <statement1>;

} else {

 if (<test2>) {

 <statement2>;

 } else {

 if (<test3>) {

 <statement3>;

 }

 }

}

When you use this construct, you can be sure that the computer will
execute at most one statement: the statement corresponding to the
first test that evaluates to true . If no tests evaluate to true , no
statement is executed. If executing at most one statement is your
objective, this construct is more appropriate than the sequential if
statements. It reduces the likelihood of errors and simplifies the
testing process.

As you can see, nesting if statements like this leads to a lot of
indentation. The indentation isn’t very helpful, because this construct
is really intended to allow the choice of one of a number of

alternatives. K&R style has a solution for this as well. If an else is
followed by an if , we put them on the same line:

if (<test1>) {

 <statement1>;

} else if (<test2>) {

 <statement2>;

} else if (<test3>) {

 <statement3>;

}

When you follow this convention, the various statements all appear
at the same level of indentation. We recommend that nested if/else
statements be indented in this way.

Figure 4.4 shows the flow of the nested if/else code. Notice that
it is possible to execute one of the controlled statements (the first
one that evaluates to true) or none (if no tests evaluate to true).

Figure 4.4 Flow of nested ifs ending in test

In a variation of this structure, the final statement is controlled by an
else instead of a test:

if (<test1>) {

 <statement1>;

} else if (<test2>) {

 <statement2>;

} else {

 <statement3>;

}

In this construct, the computer will always select the final branch
when all the tests fail, and thus the construct will always execute
exactly one of the three statements. Figure 4.5 shows the flow of
this modified nested if/else code.

Figure 4.5 Flow of nested ifs ending in else

To explore these variations, consider the task of having the computer
state whether a number is positive, negative, or zero. You could
structure this task as three simple if statements as follows:

if (number > 0) {

 System.out.println("Number is positive.");

}

if (number == 0) {

 System.out.println("Number is zero.");

}

if (number < 0) {

 System.out.println("Number is negative.");

}

To determine how many of the printlns are potentially executed,
you have to stop and think about the tests being performed. But you
shouldn’t have to put that much effort into understanding this code.
The code is clearer if you nest the if statements:

if (number > 0) {

 System.out.println("Number is positive.");

} else if (number == 0) {

 System.out.println("Number is zero.");

} else if (number < 0) {

 System.out.println("Number is negative.");

}

This solution has a problem, however. You know that you want to
execute one and only one println statement, but this nested
structure does not preclude the possibility of no statement being
executed (which would happen if all three tests failed). Of course,
with these particular tests that will never happen: If a number is
neither positive nor zero, it must be negative. Thus, the final test
here is unnecessary and misleading. You must think about the tests
to determine whether or not it is possible for all three tests to fail and
all three branches to be skipped.

In this case, the best solution is the nested if/else approach with a
final branch that is always taken if the first two tests fail:

if (number > 0) {

 System.out.println("Number is positive.");

} else if (number == 0) {

 System.out.println("Number is zero.");

} else {

 System.out.println("Number is negative.");

}

You can glance at this construct and see immediately that exactly
one println will be executed. You don’t have to look at the tests
being performed in order to realize this; it is a property of this kind of

nested if/else structure. If you want, you can include a comment to
make it clear what is going on:

if (number > 0) {

 System.out.println("Number is positive.");

} else if (number == 0) {

 System.out.println("Number is zero.");

} else { // number must be negative

 System.out.println("Number is negative.");

}

One final benefit of this approach is efficiency. When the code
includes three simple if statements, the computer will always
perform all three tests. When the code uses the nested if/else
approach, the computer carries out tests only until a match is found,
which is a better use of resources. For example, in the preceding
code we only need to perform one test for positive numbers and at
most two tests overall.

When you find yourself writing code to choose among alternatives
like these, you have to analyze the particular problem to figure out
how many of the branches you potentially want to execute. If it
doesn’t matter what combination of branches is taken, use
sequential if statements. If you want one or none of the branches to
be taken, use nested if/else statements with a test for each
statement. If you want exactly one branch to be taken, use nested

if/else statements with a final branch controlled by an else rather
than by a test. Table 4.3 summarizes these choices.

Table 4.3 if/else Options

COMMON PROGRAMMING ERROR

Choosing the Wrong if/else

Construct

Suppose that your instructor has told you that grades will be
determined as follows:

You can translate this scale into code as follows:

String grade;

if (score >= 90) {

 grade = "A";

}

A for scores ≥ 90

B for scores ≥ 80

C for scores ≥ 70

D for scores ≥ 60

F for scores < 60

if (score >= 80) {

 grade = "B";

}

if (score >= 70) {

 grade = "C";

}

if (score >= 60) {

 grade = "D";

}

if (score < 60) {

 grade = "F";

}

However, if you then try to use the variable grade after this
code, you’ll get this error from the compiler:

variable grade might not have been initialized

This is a clue that there is a problem. The Java compiler is
saying that it believes there are paths through this code that
will leave the variable grade uninitialized. In fact, the variable
will always be initialized, but the compiler cannot figure this
out. We can fix this problem by giving an initial value to grade :

String grade = "no grade";

This change allows the code to compile. But if you compile
and run the program, you will find that it gives out only two
grades: D and F. Anyone who has a score of at least 60 ends
up with a D and anyone with a grade below 60 ends up with
an F. And even though the compiler complained that there
was a path that would allow grade not to be initialized, no one
ever gets a grade of “no grade.”

The problem here is that you want to execute exactly one of
the assignment statements, but when you use sequential if
statements, it’s possible for the program to execute several of
them sequentially. For example, if a student has a score of
95, that student’s grade is set to "A" , then reset to "B" , then
reset to "C" , and finally reset to "D" . You can fix this problem
by using a nested if/else construct:

String grade;

if (score >= 90) {

 grade = "A";

} else if (score >= 80) {

 grade = "B";

} else if (score >= 70) {

 grade = "C";

} else if (score >= 60) {

 grade = "D";

} else { // score < 60

 grade = "F";

}

You don’t need to set grade to "no grade" now because the
compiler can see that no matter what path is followed, the
variable grade will be assigned a value (exactly one of the
branches will be executed).

Object Equality

You saw earlier in the chapter that you can use the == and !=
operators to test for equality and nonequality of primitive data,
respectively. Unfortunately, these operators do not work the way you
might expect when you test for equality of objects like strings. You
will have to learn a new way to test objects for equality.

For example, you might write code like the following to read a token
from the console and to call one of two different methods depending
on whether the user responded with “yes” or “no.” If the user types
neither word, this code is supposed to print an error message:

System.out.print("yes or no? ");

String s = console.next();

if (s == "yes") {

 processYes();

} else if (s == "no") {

 processNo();

} else {

 System.out.println("You didn't type yes or no");

}

Unfortunately, this code does not work. No matter what the user
enters, this program always prints “You didn’t type yes or no”. We will
explore in detail in Chapter 8 why this code doesn’t work. For now
the important thing to know is that Java provides a second way of
testing for equality that is intended for use with objects. Every Java
object has a method called equals that takes another object as an
argument. You can use this method to ask an object whether it
equals another object. For example, we can fix the previous code as
follows:

System.out.print("yes or no? ");

String s = console.next();

if (s.equals("yes")) {

 processYes();

} else if (s.equals("no")) {

 processNo();

} else {

 System.out.println("You didn't type yes or no");

}

Remember when you’re working with strings that you should always
call the equals method rather than using == .

The String class also has a special variation of the equals method
called equalsIgnoreCase that ignores case differences (uppercase
versus lowercase letters). For example, you could rewrite the
preceding code as follows to recognize responses like “Yes,” “YES,”
“No,” “NO,” yES”, and so on:

System.out.print("yes or no? ");

String s = console.next();

if (s.equalsIgnoreCase("yes")) {

 processYes();

} else if (s.equalsIgnoreCase("no")) {

 processNo();

} else {

 System.out.println("You didn't type yes or no");

}

Factoring if/else Statements

Suppose you are writing a program that plays a betting game with a
user and you want to give different warnings about how much cash
the user has left. The nested if/else construct that follows
distinguishes three different cases: funds less than $500, which is
considered low; funds between $500 and $1000, which is considered
okay; and funds over $1000, which is considered good. Notice that
the user is given different advice in each case:

if (money < 500) {

 System.out.println("You have $" + money + " left.");

 System.out.print("Cash is dangerously low. Bet

carefully.");

 System.out.print("How much do you want to bet? ");

 bet = console.nextInt();

} else if (money < 1000) {

 System.out.println("You have $" + money + " left.");

 System.out.print("Cash is somewhat low. Bet moderately.");

 System.out.print("How much do you want to bet? ");

 bet = console.nextInt();

} else {

 System.out.println("You have $" + money + " left.");

 System.out.print("Cash is in good shape. Bet liberally.");

 System.out.print("How much do you want to bet? ");

 bet = console.nextInt();

}

This construct is repetitious and can be made more efficient by using
a technique called factoring. Using this simple technique, you factor
out common pieces of code from the different branches of the
if/else construct. In the preceding code, three different branches
can execute, depending on the value of the variable money . Start by
writing down the series of actions being performed in each branch
and comparing them, as in Figure 4.6 .

Figure 4.6 if/else branches before factoring

You can factor at both the top and the bottom of a construct like this.
If you notice that the top statement in each branch is the same, you
factor it out of the branching part and put it before the branch.

Similarly, if the bottom statement in each branch is the same, you
factor it out of the branching part and put it after the loop. You can
factor the top statement in each of these branches and the bottom
two statements, as in Figure 4.7 .

Figure 4.7 if/else branches after factoring

Thus, the preceding code can be reduced to the following more
succinct version:

System.out.println("You have $" + money + " left.");

if (money < 500) {

 System.out.print("Cash is dangerously low. Bet

carefully.");

} else if (money < 1000) {

 System.out.print("Cash is somewhat low. Bet moderately.");

} else {

 System.out.print("Cash is in good shape. Bet liberally.");

}

System.out.print("How much do you want to bet? ");

bet = console.nextInt();

Testing Multiple Conditions

When you are writing a program, you often find yourself wanting to
test more than one condition. For example, suppose you want the
program to take a particular course of action if a number is between
1 and 10. You might say:

if (number >= 1) {

 if (number <= 10) {

 doSomething();

 }

}

In these lines of code, you had to write two statements: one testing
whether the number was greater than or equal to 1 and one testing
whether the number was less than or equal to 10.

Java provides an efficient alternative: You can combine the two tests
by using an operator known as the logical AND operator, which is

written as two ampersands with no space in between (&&). Using the
AND operator, we can write the preceding code more simply:

if (number >= 1 && number <= 10) {

 doSomething();

}

As its name implies, the AND operator forms a test that requires that
both parts of the test evaluate to true . There is a similar operator
known as logical OR that evaluates to true if either of two tests
evaluates to true . The logical OR operator is written using two
vertical bar characters (||). For example, if you want to test whether
a variable number is equal to 1 or 2, you can say:

if (number == 1 || number == 2) {

 processNumber(number);

}

We will explore the logical AND and logical OR operators in more
detail in the next chapter.

4.2 Cumulative Algorithms
The more you program, the more you will find that certain patterns
emerge. Many common algorithms involve accumulating an answer
step by step. In this section, we will explore some of the most
common cumulative algorithms.

Cumulative Algorithm
An operation in which an overall value is computed
incrementally, often using a loop.

For example, you might use a cumulative algorithm over a set of
numbers to compute the average value or to find the largest number.

Cumulative Sum

You’ll often want to find the sum of a series of numbers. One way to
do this is to declare a different variable for each value you want to
include, but that would not be a practical solution: If you have to add

a hundred numbers together, you won’t want to declare a hundred
different variables. Fortunately, there is a simpler way.

The trick is to keep a running tally of the result and process one
number at a time. For example, to add to a variable called sum , you
would write the following line of code:

sum = sum + next;

Alternatively, you could use the shorthand assignment operator:

sum += next;

The preceding statement takes the existing value of sum , adds the
value of a variable called next , and stores the result as the new
value of sum . This operation is performed for each number to be
summed. Notice that when you execute this statement for the first
time sum does not have a value. To get around this, you initialize sum
to a value that will not affect the answer: 0 .

Here is a pseudocode description of the cumulative sum algorithm:

sum = 0.

for (all numbers to sum) {

 obtain "next".

 sum += next.

}

To implement this algorithm, you must decide how many times to go
through the loop and how to obtain a next value. Here is an
interactive program that prompts the user for the number of numbers
to add together and for the numbers themselves:

 1 // Finds the sum of a sequence of numbers.

 2

 3 import java.util.*;

 4

 5 public class ExamineNumbers1 {

 6 public static void main(String[] args) {

 7 System.out.println("This program adds a sequence

of");

 8 System.out.println("numbers.");

 9 System.out.println();

10

11 Scanner console = new Scanner(System.in);

12

13 System.out.print("How many numbers do you have? ");

14 int totalNumber = console.nextInt();

15

16 double sum = 0.0;

17 for (int i = 1; i <= totalNumber; i++) {

18 System.out.print(" #" + i + "? ");

19 double next = console.nextDouble();

20 sum += next;

21 }

22 System.out.println();

23

24 System.out.println("sum = " + sum);

25 }

26 }

The program’s execution will look something like this (as usual, user
input is in bold):

This program adds a sequence of

numbers.

How many numbers do you have? 6

 #1? 3.2

 #2? 4.7

 #3? 5.1

 #4? 9.0

 #5? 2.4

 #6? 3.1

sum = 27.5

Let’s trace the execution in detail. Before we enter the for loop, we
initialize the variable sum to 0.0 :

On the first execution of the for loop, we read in a value of 3.2 from
the user and add this value to sum :

The second time through the loop, we read in a value of 4.7 and add
this to the value of sum :

Notice that the sum now includes both of the numbers entered by the
user, because we have added the new value, 4.7 , to the old value,
3.2 . The third time through the loop, we add in the value 5.1 :

Notice that the variable sum now contains the sum of the first three
numbers (3.2 + 4.7 + 5.1). Now we read in 9.0 and add it to the
sum:

Then we add in the fifth value, 2.4 :

Finally, we add in the sixth value, 3.1 :

We then exit the for loop and print the value of sum .

There is an interesting scope issue in this particular program. Notice
that the variable sum is declared outside the loop, while the variable
next is declared inside the loop. We have no choice but to declare
sum outside the loop because it needs to be initialized and it is used
after the loop. But the variable next is used only inside the loop, so it
can be declared in that inner scope. It is best to declare variables in
the innermost scope possible.

The cumulative sum algorithm and variations on it will be useful in
many of the programming tasks you solve. How would you do a
cumulative product? Here is the pseudocode:

product = 1.

for (all numbers to multiply) {

 obtain "next".

 product = product * next.

}

Min/Max Loops

Another common programming task is to keep track of the maximum
and/or minimum values in a sequence. For example, consider the
task of deciding whether it will be viable to build a living area on the
Moon inhabited by humans. One obstacle is that the average daily
surface temperature on the Moon is a chilly degrees
Fahrenheit. But a much more daunting problem is the wide range of
values; it ranges from a minimum of degrees to a maximum of
250 degrees.

To compute the maximum of a sequence of values, you can keep
track of the largest value you’ve seen so far and use an if
statement to update the maximum if you come across a new value
that is larger than the current maximum. This approach can be
described in pseudocode as follows:

−50

−240

initialize max.

for (all numbers to examine) {

 obtain "next".

 if (next > max) {

 max = next.

 }

}

Initializing the maximum isn’t quite as simple as it sounds. For
example, novices often initialize max to 0 . But what if the sequence
of numbers you are examining is composed entirely of negative
numbers? For example, you might be asked to find the maximum of
this sequence:

The maximum value in this sequence is but if you’ve initialized
max to 0 , the program will incorrectly report 0 as the maximum.

There are two classic solutions to this problem. First, if you know the
range of the numbers you are examining, you can make an
appropriate choice for max . In that case, you can set max to the
lowest value in the range. That seems counterintuitive because
normally we think of the maximum as being large, but the idea is to
set max to the smallest possible value it could ever be so that
anything larger will cause max to be reset to that value. For example,
if you knew that the preceding sequence of numbers consisted of

−84, − 7, − 14, − 39, − 410, − 17, − 41, − 9

−7,

temperatures in degrees Fahrenheit, you would know that the
temperatures could never be smaller than absolute zero (around

 degrees Fahrenheit), so you could initialize max to that value.

The second possibility is to initialize max to the first value in the
sequence. That won’t always be convenient because it means
obtaining one of the numbers outside the loop.

When you combine these two possibilities, the pseudocode
becomes:

initialize max either to lowest possible value or to first

value.

for (all numbers to examine) {

 obtain "next".

 if (next > max) {

 max = next;

 }

}

The pseudocode for computing the minimum is a slight variation of
this code:

initialize min either to highest possible value or to first

value.

for (all numbers to examine) {

−460

 obtain "next".

 if (next < min) {

 min = next.

 }

}

To help you understand this better, let’s put the pseudocode into
action with a real problem. In mathematics, there is an open problem
that involves what are known as hailstone sequences. These
sequences of numbers often rise and fall in unpredictable patterns,
which is somewhat analogous to the process that forms hailstones.

A hailstone sequence is a sequence of numbers in which each value
 is followed by:

For example, if you start with 7 and construct a sequence of length
10, you get the sequence:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20

In this sequence, the maximum and minimum values are 52 and 7,
respectively. If you extend this computation to a sequence of length
20, you get the sequence:

x

(3x + 1), if x is odd

(
x

2
) if x is even

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1

In this case, the maximum and minimum values are 52 and 1,
respectively.

You will notice that once 1, 2, or 4 appears in the sequence, the
sequence repeats itself. It is conjectured that all integers eventually
reach 1, like hailstones that fall to the ground. This is an unsolved
problem in mathematics. Nobody has been able to disprove it, but
nobody has proven it either.

Let’s write a method that takes a starting value and a sequence
length and prints the maximum and minimum values obtained in a
hailstone sequence formed with that starting value and of that length.
Our method will look like this:

public static void printHailstoneMaxMin(int value, int length)

{

 ...

}

We can use the starting value to initialize max and min :

int min = value;

int max = value;

We then need a loop that will generate the other values. The method
call will provide a value for the length parameter telling us how many
times to go through the loop, but we don’t want to execute the loop
body length times: Remember that the starting value is part of the
sequence, so if we want to use a sequence of the given length, we
have to make sure that the number of iterations is one less than
length . Combining this idea with the max / min pseudocode, we know
the loop will look like this:

for (int i = 1; i <= length - 1; i++) {

 compute next number.

 if (value > max) {

 max = value.

 } else if (value < min) {

 min = value.

 }

}

print max and min.

To fill out the pseudocode for “compute next number,” we need to
translate the hailstone formula into code. The formula is different,
depending on whether the current value is odd or even. We can use
an if/else statement to solve this task. For the test, we can use a
“mod 2” test to see what remainder we get when we divide by 2.
Even numbers have a remainder of 0 and odd numbers have a
remainder of 1. So the test should look like this:

if (value % 2 == 0) {

 do even computation.

} else {

 do odd computation.

}

Translating the hailstone mathematical formulas into Java, we get
the following code:

if (value % 2 == 0) {

 value = value / 2;

} else {

 value = 3 * value + 1;

}

The only part of our pseudocode that we haven’t filled in yet is the
part that prints the result. This part comes after the loop and is fairly
easy to complete. Here is the complete method:

public static void printHailstoneMaxMin(int value, int length)

{

 int min = value;

 int max = value;

 for (int i = 1; i <= length – 1; i++) {

 if (value % 2 == 0) {

 value = value / 2;

 } else {

 value = 3 * value + 1;

 }

 if (value > max) {

 max = value;

 } else if (value < min) {

 min = value;

 }

 }

 System.out.println("max = " + max);

 System.out.println("min = " + min);

}

Cumulative Sum with if

Let’s now explore how you can use if/else statements to create
some interesting variations on the cumulative sum algorithm.
Suppose you want to read a sequence of numbers and compute the
average. This task seems like a straightforward variation of the
cumulative sum code. You can compute the average as the sum
divided by the number of numbers:

double average = sum / totalNumber;

System.out.println("average = " + average);

But there is one minor problem with this code. Suppose that when
the program asks the user how many numbers to process, the user
enters 0 . Then the program will not enter the cumulative sum loop,
and your code will try to compute the value of 0 divided by 0 . Java
will then print that the average is NaN , a cryptic message that is short
for “Not a Number.” It would be better for the program to print out
some other kind of message which indicates that there aren’t any
numbers to average. You can use an if/else statement for this
purpose:

if (totalNumber <= 0) {

 System.out.println("No numbers to average");

} else {

 double average = sum / totalNumber;

 System.out.println("average = " + average);

}

Another use of if statements would be to count how many negative
numbers the user enters. You will often want to count how many
times something occurs in a program. This goal is easy to
accomplish with an if statement and an integer variable called a
counter. You start by initializing the counter to 0 :

int negatives = 0;

You can use any name you want for the variable. Here we used
negatives because that is what you’re counting. The other essential
step is to increment the counter inside the loop if it passes the test of
interest:

if (next < 0) {

 negatives++;

}

When you put this all together and modify the comments and
introduction, you end up with the following variation of the cumulative
sum program:

 1 // Finds the average of a sequence of numbers as well as

 2 // reporting how many of the user-specified numbers were

negative.

 3

 4 import java.util.*;

 5

 6 public class ExamineNumbers2 {

 7 public static void main(String[] args) {

 8 System.out.println("This program examines a

sequence");

 9 System.out.println("of numbers to find the

average");

10 System.out.println("and count how many are

negative.");

11 System.out.println();

12

13 Scanner console = new Scanner(System.in);

14

15 System.out.print("How many numbers do you have? ");

16 int totalNumber = console.nextInt();

17

18 int negatives = 0;

19 double sum = 0.0;

20 for (int i = 1; i <= totalNumber; i++) {

21 System.out.print(" #" + i + "? ");

22 double next = console.nextDouble();

23 sum += next;

24 if (next < 0) {

25 negatives++;

26 }

27 }

28 System.out.println();

29

30 if (totalNumber <= 0) {

31 System.out.println("No numbers to average");

32 } else {

33 double average = sum / totalNumber;

34 System.out.println("average = " + average);

35 }

36 System.out.println("# of negatives = " + negatives);

37 }

38 }

The program’s execution will look something like this:

This program examines a sequence

of numbers to find the average

and count how many are negative.

How many numbers do you have? 8

 #1? 2.5

 #2? 9.2

 #3? -19.4

 #4? 208.2

 #5? 42.3

 #6? 92.7

 #7? -17.4

 #8? 8

average = 40.7625

of negatives = 2

Roundoff Errors

As you explore cumulative algorithms, you’ll discover a particular
problem that you should understand. For example, consider the
following execution of the previous ExamineNumbers2 program with
different user input:

This program examines a sequence

of numbers to find the average

and count how many are negative.

How many numbers do you have? 4

 #1? 2.1

 #2? -3.8

 #3? 5.4

 #4? 7.4

average = 2.7750000000000004

of negatives = 1

If you use a calculator, you will find that the four numbers add up to
11.1. If you divide this number by 4, you get 2.775. Yet Java reports
the result as 2.7750000000000004 . Where do all of those zeros come
from, and why does the number end in 4? The answer is that
floating-point numbers can lead to roundoff errors.

Roundoff Error
A numerical error that occurs because floating-point
numbers are stored as approximations rather than as
exact values.

Roundoff errors are generally small and can occur in either direction
(slightly high or slightly low). In the previous case, we got a roundoff
error that was slightly high.

Floating-point numbers are stored in a format similar to scientific
notation, with a set of digits and an exponent. Consider how you
would store the value one-third in scientific notation using base-10.
You would state that the number is 3.33333 (repeating) times 10 to
the power. We can’t store an infinite number of digits on a
computer, though, so we’ll have to stop repeating the 3s at some
point. Suppose we can store 10 digits. Then the value for one-third
would be stored as 3.333333333 times 10 to the If we multiply
that number by 3, we don’t get back 1. Instead, we get 9.999999999
times 10 to the (which is equal to 0.9999999999).

You might wonder why the numbers we used in the previous
example caused a problem when they didn’t have any repeating
digits. You have to remember that the computer stores numbers in

−1

−1.

−1

base-2. Numbers like 2.1 and 5.4 might look like simple numbers in
base-10, but they have repeating digits when they are stored in
base-2.

Roundoff errors can lead to rather surprising outcomes. For
example, consider the following short program:

 1 // This program demonstrates roundoff errors.

 2 public class Roundoff {

 3 public static void main(String[] args) {

 4 double n = 1.0;

 5 for (int i = 1; i <= 10; i++) {

 6 n += 0.1;

 7 System.out.println(n);

 8 }

 9 }

10 }

This program presents a classic cumulative sum with a loop that
adds 0.1 to the number n each time the loop executes. We start with
n equal to 1.0 and the loop iterates 10 times, which we might
expect to print the numbers 1.1, 1.2, 1.3, and so on through 2.0.
Instead, it produces the following output:

1.1

1.2000000000000002

1.3000000000000003

1.4000000000000004

1.5000000000000004

1.6000000000000005

1.7000000000000006

1.8000000000000007

1.9000000000000008

2.000000000000001

The problem occurs because 0.1 cannot be stored exactly in base-2
(it produces a repeating set of digits, just as one-third does in base-
10). Each time through the loop the error is compounded, which is
why the roundoff error gets worse each time.

As another example, consider the task of adding together the values
of a penny, a nickel, a dime, and a quarter. If we use variables of
type int , we will get an exact answer regardless of the order in
which we add the numbers:

jshell> int cents1 = 1 + 5 + 10 + 25;

cents1 ==> 41

jshell> int cents2 = 25 + 10 + 5 + 1;

cents2 ==> 41

Regardless of the order, these numbers always add up to 41 cents.
But suppose that instead of thinking of these values as whole cents,
we think of them as fractions of a dollar that we store as doubles:

jshell> double dollars1 = 0.01 + 0.05 + 0.10 + 0.25;

dollars1 ==> 0.41000000000000003

jshell> double dollars2 = 0.25 + 0.10 + 0.05 + 0.01;

dollars2 ==> 0.41

Even though we are adding up exactly the same numbers, the fact
that we add them in a different order makes a difference. The reason
is roundoff errors.

There are several lessons to draw from this:

Be aware that when you store floating-point values (e.g.,
doubles), you are storing approximations and not exact values. If
you need to store an exact value, store it using type int .
Don’t be surprised when you see numbers that are slightly off
from the expected values.
Don’t expect to be able to compare variables of type double for
equality.

To follow up on the third point, consider what the preceding code
would lead to if we were to perform the following test:

if (dollars1 == dollars2) {

 ...

}

The test would evaluate to false because the values are very close,
but not close enough for Java to consider them equal. We rarely use
a test for exact equality when we work with doubles. Instead, we can
use a test like this to see if numbers are close to one another:

if (Math.abs(dollars1 – dollars2) < 0.001) {

 ...

}

We use the absolute value (abs) method from the Math class to find
the magnitude of the difference and then test whether it is less than
some small amount (in this case, 0.001).

Later in this chapter, we’ll introduce a variation on print / println
called printf that will make it easier to print numbers like these
without all of the extra digits.

4.3 Text Processing
Programmers commonly face problems that require them to create,
edit, examine, and format text. Collectively, we call these tasks text
processing.

Text Processing
Editing and formatting text strings.

In this section, we’ll look in more detail at the char primitive type and
introduce a new command called System.out.printf . Both of these
tools are very useful for text-processing tasks.

The char Type

The primitive type char represents a single character of text. It’s
legal to have variables, parameters, and return values of type char if
you so desire. Literal values of type char are expressed by placing
the character within single quotes:

char ch = 'A';

It is also legal to create a char value that represents an escape
sequence:

char newline = '\n';

In the previous chapter, we discussed String objects. The distinction
between char and String is a subtle one that confuses many new
Java programmers. The main difference is that a String is an object,
but a char is a primitive value. A char occupies a very small amount
of memory, but it has no methods. Table 4.4 summarizes several
of the differences between the types.

Table 4.4 Differences between char and String

Why does Java have two types for such similar data? The char type
exists primarily for historical reasons; it dates back to older
languages such as C that influenced the design of Java.

So why would a person ever use the char type when String is
available? It’s often necessary to use char because some methods
in Java’s API use it as a parameter or return type. But there are also

a few cases in which using char can be more useful or simpler than
using String .

The characters of a String are stored inside the object as values of
type char . You can access the individual characters through the
object’s charAt method, which takes an integer index as a parameter
and returns the character at that index. We often loop over a string to
examine or change its characters. For example, the following
method prints each character of a string on its own line:

public static void printVertical(String message) {

 for (int i = 0; i < message.length(); i++) {

 char ch = message.charAt(i);

 System.out.println(ch);

 }

}

char versus int

Values of type char are stored internally as integers. A standard
encoding scheme called Unicode determines which integer value
represents each character. (Unicode will be covered in more detail
later in this chapter.) Since characters are really integers, Java

automatically converts a value of type char into an int whenever it
is expecting an int :

int letter = 'a' + 2; // stores 99

It turns out that the integer value for 'a' is 97 , so the expression’s
result is 99 , which is stored as the character 'c' . An int can
similarly be converted into a char using a type cast. (The cast is
needed as a promise to the compiler, because not every possible
int value corresponds to a valid character.) Below is an example of
a code segment that uses a type cast to convert an int value to a
value of type char :

int code = 66;

char grade = (char) code; // stores 'B'

Because values of type char are really integers, they can also be
compared by using relational operators such as < or == . In addition,
they can be used in loops to cover ranges of letters. For example,
the following code prints every letter of the alphabet:

for (char letter = 'a'; letter <= 'z'; letter++) {

 System.out.print(letter);

}

if (grade == 'B') {... // true

You can learn more about the character-to-integer equivalences by
searching the web for Unicode tables.

Cumulative Text Algorithms

Strings of characters are often used in cumulative algorithms as
discussed earlier in this chapter. For example, you might loop over
the characters of a string searching for a particular letter. The
following method accepts a string and a character and returns the
number of times the character occurs in the string:

public static int count(String text, char c) {

 int found = 0;

 for (int i = 0; i < text.length(); i++) {

 if (text.charAt(i) == c) {

 found++;

 }

 }

 return found;

}

A char can be concatenated with a String using the standard +
operator. Using this idea, a String can be built using a loop, starting
with an empty string and concatenating individual characters in the
loop. This is called a cumulative concatenation. The following
method accepts a string and returns the same characters in the
reverse order:

public static String reverse(String phrase) {

 String result = "";

 for (int i = 0; i < phrase.length(); i++) {

 result = phrase.charAt(i) + result;

 }

 return result;

}

For example, the call of reverse("Tin man ") returns "nam niT" .

Because char is a primitive type you can’t use the dot syntax to call
methods as you would with a value of type String . Instead Java
provides a class called Character that has several static methods
that allow you to verify what kind of character you have (digit, letter,
etc.) and to perform various conversions. Some of the most useful
Character methods are listed in Table 4.5 .

Table 4.5 Useful Methods of the Character Class

The following method counts the number of letters in a String ,
ignoring all nonletter characters such as punctuation, numbers, and
spaces:

public static int countLetters(String phrase) {

 int count = 0;

 for (int i = 0; i < phrase.length(); i++) {

 char ch = phrase.charAt(i);

 if (Character.isLetter(ch)) {

 count++;

 }

 }

 return count;

}

For example, the call of countLetters("gr8 JoB! ") returns 5.

System.out.printf

So far we’ve used System.out.println and System.out.print for
console output. There’s a third method, System.out.printf , which is a
bit more complicated than the others but gives us some useful new
abilities. The “f” in printf stands for “formatted,” implying that
System.out.printf gives you more control over the format in which
your output is printed.

Imagine that you’d like to print a multiplication table from 1 to 10. The
following code prints the correct numbers, but it doesn’t look very
nice:

for (int i = 1; i <= 10; i++) {

 for (int j = 1; j <= 10; j++) {

 System.out.print(i * j + " ");

 }

 System.out.println();

}

The output is the following. Notice that the numbers don’t line up
vertically:

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

We could separate the numbers by tabs, which would be better. But
this separation doesn’t give us very much control over the
appearance of the table. Every number would be exactly eight
spaces apart on the screen, and the numbers would appear left-
aligned. It would be a pain to try to right-align the numbers manually,
because you’d have to use if/else statements to check whether a
given number was in a certain range and, if necessary, pad it with a
given number of spaces.

DID YOU KNOW?

ASCII and Unicode

We store data on a computer as binary numbers (sequences
of 0s and 1s). To store textual data, we need an encoding
scheme that will tell us what sequence of 0s and 1s to use for
any given character. Think of it as a giant secret decoder ring
that says things like, “If you want to store a lowercase ‘a,’ use
the sequence 01100001.”

In the early 1960s, IBM developed an encoding scheme
called EBCDIC that worked well with the company’s punched
cards, which had been in use for decades before computers
were even invented. But it soon became clear that EBCDIC
wasn’t a convenient encoding scheme for computer
programmers. There were gaps in the sequence that made

characters like 'i' and 'j' appear far apart even though
they follow one directly after the other.

In 1967, the American Standards Association published a
scheme known as ASCII (pronounced “AS-kee”) that has
been in common use ever since. The acronym is short for
“American Standard Code for Information Interchange.” In its
original form, ASCII defined 128 characters that each could
be stored with 7 bits of data.

The biggest problem with ASCII is that it is an American code.
There are many characters in common use in other countries
that were not included in ASCII. For example, the British
pound (£) and the Spanish variant of the letter n (ñ) are not
included in the standard 128 ASCII characters. Various
attempts have been made to extend ASCII, doubling it to 256
characters so that it can include many of these special
characters. However, it turns out that even 256 characters is
simply not enough to capture the incredible diversity of
human communication.

Around the time that Java was created, a consortium of
software professionals introduced a new standard for
encoding characters known as Unicode. They decided that
the 7 bits of standard ASCII and the 8 bits of extended ASCII
were simply not big enough and chose not to set a limit on
how many bits they might use for encoding characters. At the
time of this writing, the consortium has identified over 110,000
characters, which require a little over 16 bits to store. Unicode
includes the characters used in most modern languages and

even some ancient languages. Egyptian hieroglyphs were
added in 2007, although it still does not include Mayan
hieroglyphs, and the consortium has rejected a proposal to
include Klingon characters.

The designers of Java used Unicode as the standard for the
type char , which means that Java programs are capable of
manipulating a full range of characters. Fortunately, the
Unicode Consortium decided to incorporate the ASCII
encodings, so ASCII can be seen as a subset of Unicode. If
you are curious about the actual ordering of characters in
ASCII, type “ASCII table” into your favorite search engine and
you will find millions of hits to explore.

A much easier way to print values aligned in fixed-width fields is to
use the System.out.printf command. The printf method accepts a
specially written String called a format string that specifies the
general appearance of the output, followed by any parameters to be
included in the output:

System.out.printf(<format string>, <parameter>,...,

<parameter>);

A format string is like a normal String, except that it can contain
placeholders called format specifiers that allow you to specify a
location where a variable’s value should be inserted, along with the
format you’d like to give that value. Format specifiers begin with a %

sign and end with a letter specifying the kind of value, such as d for
decimal integers (int) or f for floating-point numbers (real numbers
of type double). Consider the following printf statement:

int x = 38, y = -152;

System.out.printf("location: (%d, %d)\n", x, y);

This statement produces the following output:

location: (38, -152)

The %d is not actually printed but is instead replaced with the
corresponding parameter written after the format string. The number
of format specifiers in the format string must match the number of
parameters that follow it. The first specifier will be replaced by the
first parameter, the second specifier by the second parameter, and
so on. System.out.printf is unusual because it can accept a varying
number of parameters.

The printf command is like System.out.print in that it doesn’t move
to a new line unless you explicitly tell it to do so. Notice that in the
previous code we ended our format string with \n to complete the
line of output.

Since a format specifier uses % as a special character, if you want to
print an actual % sign in a printf statement, instead write two %
characters in a row. For example:

int score = 87;

System.out.printf("You got %d%% on the exam!\n", score);

The code produces the following output:

You got 87% on the exam!

A format specifier can contain information after its % sign to specify
the width, precision, and alignment of the value being printed. For
example, %8d specifies an integer right-aligned in an 8-space-wide
area, and %12.4f specifies a double value right-aligned in a 12-
space-wide area, rounded to four digits past the decimal point. Table
4.6 lists some common format specifiers that you may wish to use
in your programs.

Table 4.6 Common Format Specifiers

As a comprehensive example, suppose that the following variables
have been declared to represent information about a student:

int score = 87;

double gpa = 3.18652;

String name = "Jessica";

The following code sample prints the preceding variables with
several format specifiers:

System.out.printf("student name: %10s\n", name);

System.out.printf("exam score : %10d\n", score);

System.out.printf("GPA : %10.2f\n", gpa);

The code produces the following output:

student name: Jessica

exam score : 87

GPA : 3.19

The three values line up on their right edge, because we print all of
them with a width of 10. The printf method makes it easy to line up
values in columns in this way. Notice that the student’s GPA rounds
to 3.19, because of the 2 in that variable’s format specifier. The
specifier 10.2 makes the value fit into an area 10 characters wide
with exactly 2 digits after the decimal point.

Let’s return to our multiplication table example. Now that we know
about printf , we can print the table with right-aligned numbers
relatively easily. We’ll right-align the numbers into fields of width 5:

for (int i = 1; i <= 10; i++) {

 for (int j = 1; j <= 10; j++) {

 System.out.printf("%5d", i * j);

 }

 System.out.println();

}

This code produces the following output:

 1 2 3 4 5 6 7 8 9 10

 2 4 6 8 10 12 14 16 18 20

 3 6 9 12 15 18 21 24 27 30

 4 8 12 16 20 24 28 32 36 40

 5 10 15 20 25 30 35 40 45 50

 6 12 18 24 30 36 42 48 54 60

 7 14 21 28 35 42 49 56 63 70

 8 16 24 32 40 48 56 64 72 80

 9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

The printf method can also solve the problem with the Roundoff
program introduced earlier in this chapter. Fixing the precision of the
double value ensures that it will be rounded to avoid the tiny roundoff
mistakes that result from double arithmetic. Here is the corrected
program:

 1 // Uses System.out.printf to correct roundoff errors.

 2 public class Roundoff2 {

 3 public static void main(String[] args) {

 4 double n = 1.0;

 5 for (int i = 1; i <= 10; i++) {

 6 n += 0.1;

 7 System.out.printf("%3.1f\n", n);

 8 }

 9 }

10 }

The program produces the following output:

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

4.4 Methods with Conditional
Execution
We introduced a great deal of information about methods in Chapter
3 , including how to use parameters to pass values into a method
and how to use a return statement to have a method return a value.
Now that we’ve introduced conditional execution, we need to revisit
these issues so that you can gain a deeper understanding of them.

Preconditions and Postconditions

Every time you write a method you should think about exactly what
that method is supposed to accomplish. You can describe how a
method works by describing the preconditions that must be true
before it executes and the postconditions that will be true after it has
executed.

Precondition
A condition that must be true before a method
executes in order to guarantee that the method can

perform its task.

Postcondition
A condition that the method guarantees will be true
after it finishes executing, as long as the preconditions
were true before the method was called.

For example, if you are describing the task of a person on an
automobile assembly line, you might use a postcondition like, “The
bolts that secure the left front tire are on the car and tight.” But
postconditions are not the whole story. Employees on an assembly
line depend on one another. A line worker can’t add bolts and tighten
them if the left tire isn’t there or if there are no bolts. So, the
assembly line worker might have preconditions like, “The left tire is
mounted properly on the car, there are at least eight bolts in the
supply box, and a working wrench is available.” You describe the
task fully by saying that the worker can make the postcondition(s)
true if the precondition(s) are true before starting.

Like workers on an assembly line, methods need to work together,
each solving its own portion of the task in order for them all to solve

the overall task. The preconditions and postconditions describe the
dependencies between methods.

Throwing Exceptions

We have seen several cases in which Java might throw an
exception. For example, if we have a console Scanner and we call
nextInt , the program will throw an exception if the user types
something that isn’t an int . In Appendix C , we examine how you
can handle exceptions. For now, we just want to explore some of the
ways in which exceptions can occur and how you might want to
generate them in your own code.

Ideally programs execute without generating any errors, but in
practice various problems arise. If you ask the user for an integer,
the user may accidentally or perhaps even maliciously type
something that is not an integer. Or your code might have a bug in it.

The following program always throws an exception because it tries to
compute the value of 1 divided by 0, which is mathematically
undefined:

1 public class CauseException {

2 public static void main(String[] args) {

3 int x = 1 / 0;

4 System.out.println(x);

5 }

6 }

When you run the program, you get the following error message:

Exception in thread "main" java.lang.ArithmeticException: / by

zero

 at CauseException.main(CauseException.java:3)

The problem occurs in line 3, when you ask Java to compute a value
that can’t be stored as an int . What is Java supposed to do with
that value? It throws an exception that stops the program from
executing and warns you that an arithmetic exception occurred while
the program was executing that specific line of code.

It is worth noting that division by zero does not always produce an
exception. You won’t get an exception if you execute this line of
code:

double x = 1.0 / 0.0;

In this case, the program executes normally and produces the output
Infinity . This is because floating-point numbers follow a standard
from the Institute of Electrical and Electronics Engineers (IEEE) that

defines exactly what should happen in these cases, and there are
special values representing infinity and "NaN" (not a number).

You may want to throw exceptions yourself in the code you write. In
particular, it is a good idea to throw an exception if a precondition
fails. For example, suppose that you want to write a method for
computing the factorial of an integer. The factorial is defined as
follows:

You can write a Java method that uses a cumulative product to
compute this result:

public static int factorial(int n) {

 int product = 1;

 for (int i = 2; i <= n; i++) {

 product = product * i;

 }

 return product;

}

You can then test the method for various values with a loop:

for (int i = 0; i <= 10; i++) {

 System.out.println(i + "! = " + factorial(i));

n! (which is read as "n factorial") = 1 * 2 * 3 * ... * n

}

The loop produces the following output:

0! = 1

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

6! = 720

7! = 5040

8! = 40320

9! = 362880

10! = 3628800

It seems odd that the factorial method should return 1 when it is
asked for 0!, but that is actually part of the mathematical definition of
the factorial function. It returns 1 because the local variable product
in the factorial method is initialized to 1 , and the loop is never
entered when the parameter n has the value 0 . So, this is actually
desirable behavior for 0!.

But what if you’re asked to compute the factorial of a negative
number? The method returns the same value, 1 . The mathematical

definition of factorial says that the function is undefined for negative
values of n , so it actually shouldn’t even compute an answer when
n is negative. Accepting only numbers that are zero or positive is a
precondition of the method that can be described in the
documentation:

// pre : n >= 0

// post: returns n factorial (n!)

Adding comments about this restriction is helpful, but what if
someone calls the factorial method with a negative value anyway?
The best solution is to throw an exception. The general syntax of the
throw statement is:

throw <exception>;

In Java, exceptions are objects. Before you can throw an exception,
you have to construct an exception object using new . You’ll normally
construct the object as you are throwing the exception, because the
exception object includes information about what was going on when
the error occurred. Java has a class called IllegalArgumentException
that is meant to cover a case like this where someone has passed
an inappropriate value as an argument. You can construct the
exception object and include it in a throw statement as follows:

throw new IllegalArgumentException();

Of course, you’ll want to do this only when the precondition fails, so
you need to include the code inside an if statement:

if (n < 0) {

 throw new IllegalArgumentException();

}

You can also include some text when you construct the exception
that will be displayed when the exception is thrown:

if (n < 0) {

 throw new IllegalArgumentException("negative n: " + n);

}

Incorporating the pre/post comments and the exception code into
the method definition, you get the following code:

// pre : n >= 0

// post: returns n factorial (n!)

public static int factorial(int n) {

 if (n < 0) {

 throw new IllegalArgumentException("negative n: " + n);

 }

 int product = 1;

 for (int i = 2; i <= n; i++) {

 product = product * i;

 }

 return product;

}

You don’t need an else after the if that throws the exception,
because when an exception is thrown, it halts the execution of the
method. So, if someone calls the factorial method with a negative
value of n , Java will never execute the code that follows the throw
statement.

You can test this code with the following main method:

public static void main(String[] args) {

 System.out.println(factorial(–1));

}

When you execute this program, it stops executing and prints the
following message:

Exception in thread "main"

java.lang.IllegalArgumentException: negative n: –1

 at Factorial2.factorial(Factorial2.java:8)

 at Factorial2.main(Factorial2.java:3)

The message indicates that the program Factorial2 stopped running
because an IllegalArgumentException was thrown with a negative n
of –1 . The system then shows you a backward trace of how it got
there. The illegal argument appeared in line 8 of the factorial
method of the Factorial2 class. It got there because of a call in line
3 of the main of the Factorial2 class. This kind of information is very
helpful when you want to find the bugs in your programs.

Throwing exceptions is an example of defensive programming. We
don’t intend to have bugs in the programs we write, but we’re only
human, so we want to build in mechanisms that will give us feedback
when we make mistakes. Writing code that will test the values
passed to methods and throw an IllegalArgumentException when a
value is not appropriate is a great way to provide that feedback.

Revisiting Return Values

In Chapter 3 we looked at some examples of simple calculating
methods that return a value, as in this method for finding the sum of
the first integers:

public static int sum(int n) {

 return (n + 1) * n / 2;

}

Now that you know how to write if/else statements, we can look at
some more interesting examples involving return values. For
example, earlier in this chapter you saw that the Math class has a
method called max that returns the larger of two values. There are
actually two different versions of the method, one that finds the
larger of two integers and one that finds the larger of two doubles.
Recall that when two methods have the same name (but different
parameters), it is called overloading.

Let’s write our own version of the max method that returns the larger
of two integers. Its header will look like this:

n

public static int max(int x, int y) {

 ...

}

We want to return either x or y , depending on which is larger. This
is a perfect place to use an if/else construct:

public static int max(int x, int y) {

 if (x > y) {

 return x;

 } else {

 return y;

 }

}

This code begins by testing whether x is greater than y . If it is, the
computer executes the first branch by returning x . If it is not, the
computer executes the else branch by returning y . But what if x
and y are equal? The preceding code executes the else branch
when the values are equal, but it doesn’t actually matter which
return statement is executed when x and y are equal.

Remember that when Java executes a return statement, the
method stops executing. It’s like a command to Java to “get out of

this method right now.” That means that this method could also be
written as follows:

public static int max(int x, int y) {

 if (x > y) {

 return x;

 }

 return y;

}

This version of the code is equivalent in behavior because the
statement return x inside the if statement will cause Java to exit
the method immediately and Java will not execute the return
statement that follows the if . On the other hand, if we don’t enter
the if statement, we proceed directly to the statement that follows it
(return y).

Whether you choose to use the first form or the second in your own
programs depends somewhat on personal taste. The if/else
construct makes it more clear that the method is choosing between
two alternatives, but some people prefer the second alternative
because it is shorter.

As another example, consider the indexOf method of the String
class. You can use expressions like the following to determine where
a particular character occurs in a string:

jshell> String s = "four score and seven years ago";

s ==> "four score and seven years ago"

jshell> int r = s.indexOf('r');

r ==> 3

jshell> int v = s.indexOf('v');

v ==> 17

This code sets r to 3 because 3 is the index of the first occurrence
of the letter 'r' in the String . It sets v to 17 because that is the
index of the first occurrence of the letter 'v' in the String .

The indexOf method is part of the String class, but let’s see how we
could write a different method that performs the same task. Our
method would be called differently because it is a static method
outside the String object. We would have to pass it both the String
and the letter:

int r = indexOf('r', s);

int v = indexOf('v', s);

So, the header for our method would be:

public static int indexOf(char ch, String s) {

 ...

}

Remember that when a method returns a value, we must include the
return type after the words public static . In this case, we have
indicated that the method returns an int because the index will be
an integer.

This task can be solved rather nicely with a for loop that goes
through each possible index from first to last. We can describe this in
pseudocode as follows:

for (each index i in the string) {

 if the char is at position i, we've found it.

}

To flesh this out, we have to think about how to test whether the
character at position i is the one we are looking for. Remember that
String objects have a method called charAt that allows us to pull out
an individual character from the String , so we can refine our
pseudocode as follows:

for (int i = 0; i < s.length(); i++) {

 if (s.charAt(i) == ch) {

 we've found it.

 }

}

To complete this code, we have to refine what to do when “we’ve
found it.” If we find the character, we have our answer: the current
value of the variable i . And if that is the answer we want to return,
we can put a return statement there:

for (int i = 0; i < s.length(); i++) {

 if (s.charAt(i) == ch) {

 return i;

 }

}

...

To understand this code, you have to understand how the return
statement works. For example, if the String s is the one from our
example (“four score...”) and we are searching for the character 'r' ,
we know that when i is equal to 3 we will find that s.charAt(3) is
equal to 'r' . That case causes our code to execute the return
statement, effectively saying:

return 3;

When a return statement is executed, Java immediately exits the
method, which means that we break out of the loop and return 3 as
our answer. Even though the loop would normally increment i to 4
and keep going, our code doesn’t do that because we hit the return
statement.

There is only one thing missing from our code. If we try to compile it
as it is, we get this error message from the Java compiler:

missing return statement

This error message occurs because we haven’t told Java what to do
if we never find the character we are searching for. In that case, we
will execute the for loop in its entirety and reach the end of the
method without having returned a value. This is not acceptable. If we
say that the method returns an int , we have to guarantee that every
path through the method will return an int .

If we don’t find the character, we want to return some kind of special
value to indicate that the character was not found. We can’t use the
value 0 , because 0 is a legal index for a String (the index of the
first character). So, the convention in Java is to return –1 if the

character is not found. It is easy to add the code for this return
statement after the for loop:

public static int indexOf(char ch, String s) {

 for (int i = 0; i < s.length(); i++) {

 if (s.charAt(i) == ch) {

 return i;

 }

 }

 return –1;

}

COMMON PROGRAMMING ERROR

String Index Out of Bounds

It’s very easy to forget that the last index of a String of length
 is actually Forgetting this fact can cause you to

write incorrect text-processing loops like this one:

// This version of the code has a mistake!

// The test should be i < s.length()

public static int indexOf(char ch, String s) {

 for (int i = 0; i <= s.length(); i++) {

 if (s.charAt(i) == ch) {

n n − 1.

 return i;

 }

 }

 return –1;

}

The program will throw an exception if the loop runs past the
end of the String . On the last pass through the loop, the
value of the variable i will be equal to s.length() . When it
executes the if statement test, the program will throw the
exception. The error message will resemble the following:

Exception in thread "main"

 java.lang.StringIndexOutOfBoundsException:

 String index out of range: 11

 at java.lang.String.charAt(Unknown Source)

 at

OutOfBoundsExample.indexOf(OutOfBoundsExample.java:9)

 at

OutOfBoundsExample.main(OutOfBoundsExample.java:4)

An interesting thing about the bug in this example is that it
only occurs if the String does not contain the character ch . If
ch is contained in the String , the if test will be true for one
of the legal indexes in s , so the code will return that index.

Only if all the characters from s have been examined without
finding ch will the loop attempt its last fatal pass.

It may seem strange that we don’t have a test for the final return
statement that returns –1 , but remember that the for loop tries
every possible index of the String searching for the character. If the
character appears anywhere in the String , the return statement
inside the loop will be executed and we’ll never get to the return
statement after the loop. The only way to get to the return statement
after the loop is to find that the character appears nowhere in the
given String .

Reasoning about Paths

The combination of if/else and return is powerful. It allows you to
solve many complex problems in the form of a method that accepts
some input and computes a result. But you have to be careful to
think about the different paths that exist in the code that you write. At
first this process might seem annoying, but when you get the hang of
it, you will find that it allows you to simplify your code.

For example, suppose that we want to convert scores on the SAT
into a rating to be used for college admission. Each of the two
components of the SAT ranges from 200 to 800, so the overall total
ranges from 400 to 1600. Suppose that a hypothetical college breaks

up this range into three subranges with totals below 800 considered
not competitive, scores of at least 800 but less than 1200 considered
competitive, and scores of 1200 to 1600 considered highly
competitive.

Let’s write a method called rating that will take the total SAT score
as a parameter and will return a string with the appropriate text. We
can use the AND operator described earlier to write an if/else
construct that has tests for each of these ranges:

public static String rating(int totalSAT) {

 if (totalSAT >= 400 && totalSAT < 800) {

 return "not competitive";

 } else if (totalSAT >= 800 && totalSAT < 1200) {

 return "competitive";

 } else if (totalSAT >= 1200 && totalSAT <= 1600) {

 return "highly competitive";

 }

}

This method has been written in a logical manner with specific tests
for each of the three cases, but it doesn’t compile. The compiler
indicates at the end of the method that there was a “missing return
statement.” That seems odd because there are three different return
statements in this method. We have included a return for each of
the different cases, so why is there a compiler error?

When the compiler encounters a method that is supposed to return a
value, it computes every possible path through the method and
makes sure that each path ends with a call on return . The method
we have written has four paths through it. If the first test succeeds,
then the method returns "not competitive" . Otherwise, if the second
test succeeds, then the method returns "competitive" . If both of
those tests fail but the third test succeeds, then the method returns
"highly competitive" . But what if all three tests fail? That case would
constitute a fourth path that doesn’t have a return statement
associated with it. Instead, we would reach the end of the method
without having returned a value. That is not acceptable, which is why
the compiler produces an error message.

It seems annoying that we have to deal with a fourth case because
we know that the total SAT score will always be in the range of 400
to 1600. Our code covers all of the cases that we expect for this
method, but that isn’t good enough. Java insists that we cover every
possible case.

Understanding this idea can simplify the code you write. If you think
in terms of paths and cases, you can often eliminate unnecessary
code. For our method, if we really want to return just one of three
different values, then we don’t need a third test. We can make the
final branch of the nested if/else be a simple else :

public static String rating(int totalSAT) {

 if (totalSAT >= 400 && totalSAT < 800) {

 return "not competitive";

 } else if (totalSAT >= 800 && totalSAT < 1200) {

 return "competitive";

 } else { // totalSAT >= 1200

 return "highly competitive";

 }

}

This version of the method compiles and returns the appropriate
string for each different case. We were able to eliminate the final test
because we know that we want only three paths through the method.
Once we have specified two of the paths, then everything else must
be part of the third path.

We can carry this idea one step further. We’ve written a method that
compiles and computes the right answer, but we can make it even
simpler. Consider the first test, for example. Why should we test for
the total being greater than or equal to 400? If we expect that it will
always be in the range of 400 to 1600, then we can simply test
whether the total is less than 800. Similarly, to test for the highly
competitive range, we can simply test whether the score is at least
1200. Of the three ranges, these are the two simplest to test for. So
we can simplify this method even further by including tests for the
first and third subranges and assume that all other totals are in the
middle range:

public static String rating(int totalSAT) {

 if (totalSAT < 800) {

 return "not competitive";

 } else if (totalSAT >= 1200) {

 return "highly competitive";

 } else { // 800 <= totalSAT < 1200

 return "competitive";

 }

}

Whenever you write a method like this, you should think about the
different cases and figure out which ones are the simplest to test for.
This will allow you to avoid writing an explicit test for the most
complex case. As in these examples, it is a good idea to include a
comment on the final else branch to describe that particular case in
English.

Before we leave this example, it is worth thinking about what
happens when the method is passed an illegal SAT total. If it is
passed a total less than 400, then it classifies it as not competitive
and if it passed a total greater than 1600, it will classify it as highly
competitive. Those aren’t bad answers for the program to give, but
the right thing to do is to document the fact that there is a
precondition on the total. In addition, we can add an extra test for
this particular case and throw an exception if the precondition is
violated. Testing for the illegal values is a case in which the logical

OR is appropriate because illegal values will either be too low or too
high (but not both):

// pre: 400 <= totalSAT <= 1600 (throws IllegalArgumentException

if not)

public static String rating(int totalSAT) {

 if (totalSAT < 400 || totalSAT > 1600) {

 throw new IllegalArgumentException("total: " +

totalSAT);

 } else if (totalSAT < 800) {

 return "not competitive";

 } else if (totalSAT >= 1200) {

 return "highly competitive";

 } else { // 800 <= totalSAT < 1200

 return "competitive";

 }

}

4.5 Case Study: Body Mass Index
Individual body mass index has become a popular measure of
overall health. The Centers for Disease Control and Prevention
(CDC) website about body mass index
(http://www.cdc.gov/healthyweight/assessing/bmi/index.html)
explains:

Body Mass Index (BMI) is a number calculated from a person’s weight and height. BMI

provides a reliable indicator of body fatness for most people and is used to screen for

weight categories that may lead to health problems.

It has also become popular to compare the statistics for two or more
individuals who are pitted against one another in a “fitness
challenge,” or to compare two sets of numbers for the same person
to get a sense of how that person’s BMI will vary if a person loses
weight. In this section, we will write a program that prompts the user
for the height and weight of two individuals and reports the overall
results for the two people. Here is a sample execution for the
program we want to write:

This program reads data for two

people and computes their body

mass index and weight status.

Enter next person's information:

height (in inches)? 73.5

weight (in pounds)? 230

Enter next person's information:

height (in inches)? 71

weight (in pounds)? 220.5

Person #1 body mass index = 29.93

overweight

Person #2 body mass index = 30.75

obese

In Chapter 1 we introduced the idea of iterative enhancement, in
which you develop a complex program in stages. Every professional
programmer uses this technique, so it is important to learn to apply it
yourself in the programs you write.

In this case, we eventually want our program to explain to the user
what it does and compute BMI results for two different people. We
also want the program to be well structured. But we don’t have to do
everything at once. In fact, if we try to do so, we are likely to be
overwhelmed by the details. In writing this program, we will go
through three different stages:

1. First, we’ll write a program that computes results for just one
person, without an introduction. We won’t worry about
program structure yet.

2. Next, we’ll write a complete program that computes results for
two people, including an introduction. Again, we won’t worry
about program structure at this point.

3. Finally, we will put together a well-structured and complete
program.

One-Person Unstructured
Solution

Even the first version of the program will prompt for user input, so we
will need to construct a Scanner object to read from the console:

Scanner console = new Scanner(System.in);

To compute the BMI for an individual, we will need to know the
height and weight of that person. This is a fairly straightforward
“prompt and read” task. The only real decision here is with regard to
the type of variable to use for storing the height and weight. People
often talk about height and weight in whole numbers, but the
question to ask is whether or not it makes sense for people to use
fractions. Do people ever describe their heights using half-inches?
The answer is yes. Do people ever describe their weights using half-
pounds? Again the answer is yes. So it makes sense to store the

values as doubles, to allow people to enter either integer values or
fractions:

System.out.println("Enter next person's information:");

System.out.print("height (in inches)? ");

double height1 = console.nextDouble();

System.out.print("weight (in pounds)? ");

double weight1 = console.nextDouble();

Once we have the person’s height and weight, we can compute the
person’s BMI. The CDC website gives the following BMI formula for
adults:

This formula is fairly easy to translate into a Java expression:

double bmi1 = weight1 / (height1 * height1) * 703;

If you look closely at the sample execution, you will see that we want
to print blank lines to separate different parts of the user interaction.
The introduction ends with a blank line, then there is a blank line
after the “prompt and read” portion of the interaction. So, after we
add an empty println and put all of these pieces together, our main
method looks like this:

weight (lb)

[height (in)]2
× 703

public static void main(String[] args) {

 Scanner console = new Scanner(System.in);

 System.out.println("Enter next person's information:");

 System.out.print("height (in inches)? ");

 double height1 = console.nextDouble();

 System.out.print("weight (in pounds)? ");

 double weight1 = console.nextDouble();

 double bmi1 = weight1 / (height1 * height1) * 703;

 System.out.println();

 ...

}

This program prompts for values and computes the BMI. Now we
need to include code to report the results. We could use a println
for the BMI:

System.out.println("Person #1 body mass index = " + bmi1);

This would work, but it produces output like the following:

Person #1 body mass index = 29.930121708547368

The long sequence of digits after the decimal point is distracting and
implies a level of precision that we simply don’t have. It is more

appropriate and more appealing to the user to list just a few digits
after the decimal point. This is a good place to use a printf :

System.out.printf("Person #1 body mass index = %5.2f\n", bmi1);

In the sample execution we also see a report of the person’s weight
status. The CDC website includes the information shown in Table
4.7 . There are four entries in this table, so we need four different
println statements for the four possibilities. We will want to use if
or if/else statements to control the four println statements. In this
case, we know that we want to print exactly one of the four
possibilities. Therefore, it makes most sense to use a nested if/else
construct that ends with an else .

Table 4.7 Weight Status by BMI

But what tests do we use for the nested if/else? If you look closely
at Table 4.7 , you will see that there are some gaps. For example,
what if your BMI is 24.95? That number isn’t between 18.5 and 24.9
and it isn’t between 25.0 and 29.9. It seems clear that the CDC
intended its table to be interpreted slightly differently. The range is
probably supposed to be 18.5–24.999999 (repeating), but that would
look rather odd in a table. In fact, if you understand nested if/else
statements, this is a case in which a nested if/else construct
expresses the possibilities more clearly than a table like the CDC’s.
The nested if/else construct looks like this:

if (bmi1 < 18.5) {

 System.out.println("underweight");

} else if (bmi1 < 25) {

 System.out.println("normal");

} else if (bmi1 < 30) {

 System.out.println("overweight");

} else { // bmi1 >= 30

 System.out.println("obese");

}

So, putting all this together, we get a complete version of the first
program:

 1 // This program finds the body mass index (BMI) for one

person.

 2 import java.util.*;

 3

 4 public class BMI1 {

 5 public static void main(String[] args) {

 6 Scanner console = new Scanner(System.in);

 7

 8 System.out.println("Enter next person's

information:");

 9 System.out.print("height (in inches)? ");

10 double height1 = console.nextDouble();

11 System.out.print("weight (in pounds)? ");

12 double weight1 = console.nextDouble();

13 double bmi1 = weight1 / (height1 * height1) * 703;

14 System.out.println();

15

16 System.out.printf("Person #1 body mass index =

%5.2f\n", bmi1);

17 if (bmi1 < 18.5) {

18 System.out.println("underweight");

19 } else if (bmi1 < 25) {

20 System.out.println("normal");

21 } else if (bmi1 < 30) {

22 System.out.println("overweight");

23 } else { // bmi1 >= 30

24 System.out.println("obese");

25 }

26 }

27 }

Here is a sample execution of the program:

Enter next person's information:

height (in inches)? 73.5

weight (in pounds)? 230

Person #1 body mass index = 29.93

overweight

Two-Person Unstructured Solution

Now that we have a program that computes one person’s BMI and
weight status, let’s expand it to handle two different people.
Experienced programmers would probably begin by adding structure
to the program before trying to make it handle two sets of data, but
novice programmers will find it easier to consider the unstructured
solution first.

To make this program handle two people, we can copy and paste a
lot of the code and make slight modifications. For example, instead
of using variables called height1 , weight1 , and bmi1 , for the second
person we will use variables height2 , weight2 , and bmi2 .

We also have to be careful to do each step in the right order. Looking
at the sample execution, you’ll see that the program prompts for data
for both individuals first and then reports results for both. Thus, we
can’t copy the entire program and simply paste a second copy; we
have to rearrange the order of the statements so that all of the
prompting happens first and all of the reporting happens later.

We’ve also decided that when we move to this second stage, we will
add code for the introduction. This code should appear at the
beginning of the program and should include an empty println to

produce a blank line to separate the introduction from the rest of the
user interaction.

We now combine these elements into a complete program:

 1 // This program finds the body mass index (BMI) for two

 2 // individuals.

 3

 4 import java.util.*;

 5

 6 public class BMI2 {

 7 public static void main(String[] args) {

 8 System.out.println("This program reads data for

two");

 9 System.out.println("people and computes their

body");

10 System.out.println("mass index and weight

status.");

11 System.out.println();

12

13 Scanner console = new Scanner(System.in);

14

15 System.out.println("Enter next person's

information:");

16 System.out.print("height (in inches)? ");

17 double height1 = console.nextDouble();

18 System.out.print("weight (in pounds)? ");

19 double weight1 = console.nextDouble();

20 double bmi1 = weight1 / (height1 * height1) * 703;

21 System.out.println();

22

23 System.out.println("Enter next person's

information:");

24 System.out.print("height (in inches)? ");

25 double height2 = console.nextDouble();

26 System.out.print("weight (in pounds)? ");

27 double weight2 = console.nextDouble();

28 double bmi2 = weight2 / (height2 * height2) * 703;

29 System.out.println();

30

31 System.out.printf("Person #1 body mass index =

%5.2f\n", bmi1);

32 if (bmi1 < 18.5) {

33 System.out.println("underweight");

34 } else if (bmi1 < 25) {

35 System.out.println("normal");

36 } else if (bmi1 < 30) {

37 System.out.println("overweight");

38 } else { // bmi1 >= 30

39 System.out.println("obese");

40 }

41

42 System.out.printf("Person #2 body mass index =

%5.2f\n", bmi2);

43 if (bmi2 < 18.5) {

44 System.out.println("underweight");

45 } else if (bmi2 < 25) {

46 System.out.println("normal");

47 } else if (bmi2 < 30) {

48 System.out.println("overweight");

49 } else { // bmi2 >= 30

50 System.out.println("obese");

51 }

52 }

53 }

This program compiles and works. When we execute it, we get
exactly the interaction we wanted. However, the program lacks
structure. All of the code appears in main , and there is significant
redundancy. That shouldn’t be a surprise, because we created this
version by copying and pasting. Whenever you find yourself using
copy and paste, you should wonder whether there isn’t a better way
to solve the problem. Usually there is.

Two-Person Structured Solution

Let’s explore how static methods can improve the structure of the
program. Looking at the code, you will notice a great deal of
redundancy. For example, we have two code segments that look like
this:

System.out.println("Enter next person's information:");

System.out.print("height (in inches)? ");

double height1 = console.nextDouble();

System.out.print("weight (in pounds)? ");

double weight1 = console.nextDouble();

double bmi1 = weight1 / (height1 * height1) * 703;

System.out.println();

The only difference between these two code segments is that the
first uses variables height1 , weight1 , bmi1 , and the second uses
variables height2 , weight2 , and bmi2 . We eliminate redundancy by
moving code like this into a method that we can call twice. So, as a
first approximation, we can turn this code into a more generic form
as the following method:

public static void getBMI(Scanner console) {

 System.out.println("Enter next person's information:");

 System.out.print("height (in inches)? ");

 double height = console.nextDouble();

 System.out.print("weight (in pounds)? ");

 double weight = console.nextDouble();

 double bmi = weight / (height * height) * 703;

 System.out.println();

}

We have to pass in the Scanner from main . Otherwise we have made
all the variables local to this method. From main we can call this
method twice:

getBMI(console);

getBMI(console);

Unfortunately, introducing this change breaks the rest of the code. If
we try to compile and run the program, we find that we get error
messages in main whenever we refer to the variables bmi1 and
bmi2 .

The problem is that the method computes a bmi value that we need
later in the program. We can fix this by having the method return the
bmi value that it computes:

public static double getBMI(Scanner console) {

 System.out.println("Enter next person's information:");

 System.out.print("height (in inches)? ");

 double height = console.nextDouble();

 System.out.print("weight (in pounds)? ");

 double weight = console.nextDouble();

 double bmi = weight / (height * height) * 703;

 System.out.println();

 return bmi;

}

Notice that the method header now lists the return type as double .
We also have to change main . We can’t just call the method twice
the way we would call a void method. Because each call returns a
BMI result that the program will need later, for each call we have to
store the result coming back from the method in a variable:

double bmi1 = getBMI(console);

double bmi2 = getBMI(console);

Study this change carefully, because this technique can be one of
the most challenging for novices to master. When we write the
method, we have to make sure that it returns the BMI result. When
we write the call, we have to make sure that we store the result in a
variable so that we can access it later.

After this modification, the program will compile and run properly. But
there is another obvious redundancy in the main method: The same
nested if/else construct appears twice. The only difference
between them is that in one case we use the variable bmi1 , and in
the other case we use the variable bmi2 . The construct is easily
generalized with a parameter:

public static void reportStatus(double bmi) {

 if (bmi < 18.5) {

 System.out.println("underweight");

 } else if (bmi < 25) {

 System.out.println("normal");

 } else if (bmi < 30) {

 System.out.println("overweight");

 } else { // bmi >= 30

 System.out.println("obese");

 }

}

Using this method, we can replace the code in main with two calls:

System.out.printf("Person #1 body mass index = %5.2f\n", bmi1);

reportStatus(bmi1);

System.out.printf("Person #2 body mass index = %5.2f\n", bmi2);

reportStatus(bmi2);

That change takes care of the redundancy in the program, but we
can still use static methods to improve the program by better
indicating structure. It is best to keep the main method short if
possible, to reflect the overall structure of the program. The problem
breaks down into three major phases: introduction, the computation
of the BMI, and the reporting of the results. We already have a
method for computing the BMI, but we haven’t yet introduced
methods for the introduction and reporting of results. It is fairly
simple to add these methods.

There is one other method that we should add to the program. We
are using a formula from the CDC website for calculating the BMI of
an individual given the person’s height and weight. Whenever you
find yourself programming a formula, it is a good idea to introduce a
method for that formula so that it is easy to spot and so that it has a
name.

Applying all these ideas, we end up with the following version of the
program:

 1 // This program finds the body mass index (BMI) for two

 2 // individuals. This variation includes several methods

 3 // other than main.

 4

 5 import java.util.*;

 6

 7 public class BMI3 {

 8 public static void main(String[] args) {

 9 giveIntro();

10 Scanner console = new Scanner(System.in);

11 double bmi1 = getBMI(console);

12 double bmi2 = getBMI(console);

13 reportResults(bmi1, bmi2);

14 }

15

16 // introduces the program to the user

17 public static void giveIntro() {

18 System.out.println("This program reads data for

two");

19 System.out.println("people and computes their

body");

20 System.out.println("mass index and weight

status.");

21 System.out.println();

22 }

23

24 // prompts for one person's statistics, returning the

BMI

25 public static double getBMI(Scanner console) {

26 System.out.println("Enter next person's

information:");

27 System.out.print("height (in inches)? ");

28 double height = console.nextDouble();

29 System.out.print("weight (in pounds)? ");

30 double weight = console.nextDouble();

31 double bmi = BMIFor(height, weight);

32 System.out.println();

33 return bmi;

34 }

35

36 // this method contains the body mass index formula for

37 // converting the given height (in inches) and weight

38 // (in pounds) into a BMI

39 public static double BMIFor(double height, double

weight) {

40 return weight / (height * height) * 703;

41 }

42

43 // reports the overall bmi values and weight status

44 public static void reportResults(double bmi1, double

bmi2) {

45 System.out.printf("Person #1 body mass index =

%5.2f\n", bmi1);

46 reportStatus(bmi1);

47 System.out.printf("Person #2 body mass index =

%5.2f\n",bmi2);

48 reportStatus(bmi2);

49 }

50

51 // reports the weight status for the given BMI value

52 public static void reportStatus(double bmi) {

53 if (bmi < 18.5) {

54 System.out.println("underweight");

55 } else if (bmi < 25) {

56 System.out.println("normal");

57 } else if (bmi < 30) {

58 System.out.println("overweight");

59 } else { // bmi >= 30

60 System.out.println("obese");

61 }

62 }

63 }

This solution interacts with the user the same way and produces the
same results as the unstructured solution, but it has a much nicer
structure. The unstructured program is in a sense simpler, but the
structured solution is easier to maintain if we want to expand the
program or make other modifications. These structural benefits
aren’t so important in short programs, but they become essential as
programs become longer and more complex.

Procedural Design Heuristics

There are often many ways to divide (decompose) a problem into
methods, but some sets of methods are better than others.
Decomposition is often vague and challenging, especially for larger
programs that have complex behavior. But the rewards are worth the
effort, because a well-designed program is more understandable and
more modular. These features are important when programmers
work together or when revisiting a program written earlier to add new
behavior or modify existing code. There is no single perfect design,
but in this section we will discuss several heuristics (guiding
principles) for effectively decomposing large programs into methods.

Consider the following alternative poorly structured implementation
of the single-person BMI program. We’ll use this program as a
counterexample, highlighting places where it violates our heuristics
and giving reasons that it is worse than the previous complete
version of the BMI program.

 1 // A poorly designed version of the BMI case study program.

 2

 3 import java.util.*;

 4

 5 public class BadBMI {

 6 public static void main(String[] args) {

 7 System.out.println("This program reads data for

one");

 8 System.out.println("person and computes his/her

body");

 9 System.out.println("mass index and weight

status.");

10 System.out.println();

11

12 Scanner console = new Scanner(System.in);

13 person(console);

14 }

15

16 public static void person(Scanner console) {

17 System.out.println("Enter next person's

information:");

18 System.out.print("height (in inches)? ");

19 double height = console.nextDouble();

20 getWeight(console, height);

21 }

22

23 public static void getWeight(Scanner console, double

height) {

24 System.out.print("weight (in pounds)? ");

25 double weight = console.nextDouble();

26 reportStatus(console, height, weight);

27 }

28

29 public static void reportStatus(Scanner console, double

height,

30 double weight) {

31 double bmi = weight / (height * height) * 703;

32 System.out.println("Person #1 body mass index = " +

bmi);

33 if (bmi < 18.5) {

34 System.out.println("underweight");

35 } else if (bmi < 25) {

36 System.out.println("normal");

37 } else if (bmi < 30) {

38 System.out.println("overweight");

39 } else {

40 System.out.println("obese");

41 }

42 }

43 }

The methods of a program are like workers in a company. The
author of a program acts like the director of a company, deciding
what employee positions to create, how to group employees together
into working units, which work to task to which group, and how
groups will interact. Suppose a company director were to divide work

into three major departments, two of which are overseen by middle
managers:

A good structure gives each group clear tasks to complete, avoids
giving any particular person or group too much work, and provides a
balance between workers and management. These guidelines lead
to the first of our procedural design heuristics.

1. Each method should have a coherent set of
responsibilities. In our analogy to a company, each group of
employees must have a clear idea of what work it is to
perform. If any of the groups does not have clear
responsibilities, it’s difficult for the company director to keep
track of who is working on what task. When a new job comes
in, two departments might both try to claim it, or a job might
go unclaimed by any department.

The analogous concept in programming is that each method
should have a clear purpose and set of responsibilities. This
characteristic of computer programs is called cohesion.

Cohesion
A desirable quality in which the responsibilities
of a method or process are closely related to
each other.

A good rule of thumb is that you should be able to summarize
each of your methods in a single sentence such as “The
purpose of this method is to” Writing a sentence like this
is a good way to develop a comment for a method’s header.
It’s a bad sign when you have trouble describing the method
in a single sentence or when the sentence is long and uses
the word “and” several times. Those indications can mean
that the method is too large, too small, or does not perform a
cohesive set of tasks.
The methods of the BadBMI example have poor cohesion. The
person method’s purpose is vague, and getWeight is probably
too trivial to be its own method. The reportStatus method
would be more readable if the computation of the BMI were its
own method, since the formula is complex.
A subtler application of this first heuristic is that not every
method must produce output. Sometimes a method is more

reusable if it simply computes a complex result and returns it
rather than printing the result that was computed. This format
leaves the caller free to choose whether to print the result or
to use it to perform further computations. In the BadBMI
program, the reportStatus method both computes and prints
the user’s BMI. The program would be more flexible if it had a
method to simply compute and return the BMI value, such as
BMIFor in the BMI3 version of the code. Such a method might
seem trivial because its body is just one line in length, but it
has a clear, cohesive purpose: capturing a complex
expression that is used several times in the program.

2. No one method should do too large a share of the overall
task. One subdivision of a company cannot be expected to
design and build the entire product line for the year. This
system would overwork that subdivision and would leave the
other divisions without enough work to do. It would also make
it difficult for the subdivisions to communicate effectively,
since so much important information and responsibility would
be concentrated among so few people.
Similarly, one method should not be expected to comprise the
bulk of a program. This principle follows naturally from our first
heuristic regarding cohesion, because a method that does too
much cannot be cohesive. We sometimes refer to methods
like these as “do-everything” methods because they do nearly
everything involved in solving the problem. You may have
written a “do-everything” method if one of your methods is
much longer than the others, hoards most of the variables and
data, or contains the majority of the logic and loops.

In the BadBMI program, the person method is an example of a
do-everything method. This fact may seem surprising, since
the method is not very many lines long. But a single call to
person leads to several other calls that collectively end up
doing all of the work for the program.

3. Coupling and dependencies between methods should be
minimized. A company is more productive if each of its
subdivisions can largely operate independently when
completing small work tasks. Subdivisions of the company do
need to communicate and depend on each other, but such
communication comes at a cost. Interdepartmental
interactions are often minimized and kept to meetings at
specific times and places.
When we are programming, we try to avoid methods that
have tight coupling.

Coupling
An undesirable state in which two methods or
processes rigidly depend on each other.

Methods are coupled if one cannot easily be called without
the other. One way to determine how tightly coupled two
methods are is to look at the set of parameters one passes to
the other. A method should accept a parameter only if that
piece of data needs to be provided from outside and only if

that data is necessary to complete the method’s task. In other
words, if a piece of data could be computed or gathered
inside the method, or if the data isn’t used by the method, it
should not be declared as a parameter to the method.
An important way to reduce coupling between methods is to
use return statements to send information back to the caller.
A method should return a result value if it computes
something that may be useful to later parts of the program.
Because it is desirable for methods to be cohesive and self-
contained, it is often better for the program to return a result
than to call further methods and pass the result as a
parameter to them.
None of the methods in the BadBMI program returns a value.
Each method passes parameters to the next methods, but
none of them returns the value. This is a lost opportunity
because several values (such as the user’s height, weight, or
BMI) would be better handled as return values.

4. The main method should be a concise summary of the
overall program. The top person in each major group or
department of our hypothetical company reports to the
group’s director. If you look at the groups that are directly
connected to the director at the top level of the company
diagram, you can see a summary of the overall work: design,
engineering, and marketing. This structure helps the director
stay aware of what each group is doing. Looking at the top-
level structure can also help the employees get a quick
overview of the company’s goals.

A program’s main method is like the director in that it begins
the overall task and executes the various subtasks. A main
method should read as a summary of the overall program’s
behavior. Programmers can understand each other’s code by
looking at main to get a sense of what the program is doing as
a whole.
A common mistake that prevents main from being a good
program summary is the inclusion of a “do-everything”
method. When the main method calls it, the do-everything
method proceeds to do most or all of the real work.
Another mistake is setting up a program in such a way that it
suffers from chaining.

Chaining
An undesirable design in which a “chain” of
several methods call each other without
returning the overall flow of control to main .

A program suffers from chaining if the end of each method
simply calls the next method. Chaining often occurs when a
new programmer does not fully understand returns and tries
to avoid using them by passing more and more parameters
down to the rest of the program. Figure 4.8 shows a
hypothetical program with two designs. The flow of calls in a
badly chained program might look like the diagram on the left.

Figure 4.8 Sample code with chaining (left) and without
chaining (right)

The BadBMI program suffers heavily from chaining. Each
method does a small amount of work and then calls the next
method, passing more and more parameters down the chain.
The main method calls person , which calls getWeight , which
calls reportStatus . Never does the flow of execution return to
main in the middle of the computation. So when you read
main , you don’t get a very clear idea of what computations will
be made.
One method should not call another simply as a way of
moving on to the next task. A more desirable flow of control is
to let main manage the overall execution of tasks in the
program, as shown in the BMI3 program and on the right side
of Figure 4.8 . This guideline doesn’t mean that it is always
bad for one method to call another method; it is okay for one
method to call another when the second is a subtask within

the overall task of the first, such as in BMI3 when the
reportResults method calls reportStatus .

5. Data should be “owned” at the lowest level possible.
Decisions in a company should be made at the lowest
possible level in the organizational hierarchy. For example, a
low-level administrator can decide how to perform his or her
own work without needing to constantly consult a manager for
approval. But the administrator does not have enough
information or expertise to design the entire product line; this
design task goes to a higher authority such as the manager.
The key principle is that each work task should be given to the
lowest person in the hierarchy who can correctly handle it.
This principle has two applications in computer programs. The
first is that the main method should avoid performing low-level
tasks as much as possible. For example, in an interactive
program main should not read the majority of the user input or
contain lots of println statements.
The second application is that variables should be declared
and initialized in the narrowest possible scope. A poor design
is for main (or another high-level method) to read all of the
input, perform heavy computations, and then pass the
resulting data as parameters to the various low-level methods.
A better design uses low-level methods to read and process
the data, and return data to main only if they are needed by a
later subtask in the program.
It is a sign of poor data ownership when the same parameter
must be passed down several method calls, such as the

height variable in the BadBMI program. If you are passing the
same parameter down several levels of calls, perhaps that
piece of data should instead be read and initialized by one of
the lower-level methods (unless it is a shared object such as a
Scanner).

Chapter Summary
An if statement lets you write code that will execute only if a certain
condition is met. An if/else statement lets you execute one piece of
code if a condition is met, and another if the condition is not met.
Conditions are Boolean expressions and can be written using
relational operators such as < , >= , and != . You can test multiple
conditions using the && and || operators.

You can nest if/else statements to test a series of conditions and
execute the appropriate block of code on the basis of whichever
condition is true.

The == operator that tests primitive data for equality doesn’t behave
the way we would expect with objects, so we test objects for equality
by calling their equals method instead.

Common code that appears in every branch of an if/else statement
should be factored out so that it is not replicated multiple times in the
code.

Cumulative algorithms compute values incrementally. A cumulative
sum loop declares a sum variable and incrementally adds to that
variable’s value inside the loop.

Since the double type does not store all values exactly, small
roundoff errors can occur when the computer performs calculations
on real numbers. Avoid these errors by providing a small amount of
tolerance in your code for values near the values that you expect.

The char type represents individual characters of text. Each letter of
a String is stored internally as a char value, and you can use the
String’s charAt method to access these characters with an index.

The System.out.printf method prints formatted text. You can specify
complex format strings to control the width, alignment, and precision
by which values are printed.

You can “throw” (generate) exceptions in your own code. This
technique can be useful if your code ever reaches an unrecoverable
error condition, such as the passing of an invalid argument value to a
method.

Self-Check Problems

Section 4.1: if/else Statements

1. Translate each of the following English statements into logical
tests that could be used in an if/else statement. Write the
appropriate if statement with your logical test. Assume that
three int variables, x , y , and z , have been declared.

a. z is odd.
b. z is not greater than y’s square root.
c. y is positive.
d. Either x or y is even, and the other is odd.
e. y is a multiple of z .
f. z is not zero.

g. y is greater in magnitude than z .
h. x and z are of opposite signs.
i. y is a nonnegative one-digit number.
j. z is nonnegative.
k. x is even.
l. x is closer in value to y than z is.

2. Given the variable declarations

int x = 4;

int y = –3;

int z = 4;

what are the results of the following relational expressions?
a. x == 4
b. x == y
c. x == z
d. y == z
e. x + y > 0
f. x – z != 0

g. y * y <= z
h. y / y == 1
i. x * (y + 2) > y - (y + z) * 2

3. Which of the following if statement headers uses the correct
syntax?

a. if x = 10 then {
b. if [x == 10] {
c. if (x => y) {
d. if (x equals 42) {
e. if (x == y) {

4. The following program contains 7 mistakes! What are they?

 1 public class Oops4 {

 2 public static void main(String[] args) {

 3 int a = 7, b = 42;

 4 minimum(a, b);

 5 if {smaller = a} {

 6 System.out.println("a is the smallest!");

 7 }

 8 }

 9

10 public static void minimum(int a, int b) {

11 if (a < b) {

12 int smaller = a;

13 } else (a => b) {

14 int smaller = b;

15 }

16 return int smaller;

17 }

18 }

5. Consider the following method:

public static void ifElseMystery1(int x, int y) {

 int z = 4;

 if (z <= x) {

 z = x + 1;

 } else {

 z = z + 9;

 }

 if (z <= y) {

 y++;

 }

 System.out.println(z + " " + y);

}

What output is produced for each of the following calls?
a. ifElseMystery1(3, 20);
b. ifElseMystery1(4, 5);
c. ifElseMystery1(5, 5);
d. ifElseMystery1(6, 10);

6. Consider the following method:

public static void ifElseMystery2(int a, int b) {

 if (a * 2 < b) {

 a = a * 3;

 } else if (a > b) {

 b = b + 3;

 }

 if (b < a) {

 b++;

 } else {

 a––;

 }

 System.out.println(a + " " + b);

}

What output is produced for each of the following calls?
a. ifElseMystery2(10, 2);
b. ifElseMystery2(3, 8);
c. ifElseMystery2(4, 4);
d. ifElseMystery2(10, 30);

7. Write Java code to read an integer from the user, then print
even if that number is an even number or odd otherwise. You
may assume that the user types a valid integer.

8. The following code contains a logic error:

Scanner console = new Scanner(System.in);

System.out.print("Type a number: ");

int number = console.nextInt();

if (number % 2 == 0) {

 if (number % 3 == 0) {

 System.out.println("Divisible by 6.");

 } else {

 System.out.println("Odd.");

 }

}

Examine the code and describe a case in which the code
would print something that is untrue about the number that
was entered. Explain why. Then correct the logic error in the
code.

9. Describe a problem with the following code:

Scanner console = new Scanner(System.in);

System.out.print("What is your favorite color?");

String name = console.next();

if (name == "blue") {

 System.out.println("Mine, too!");

}

10. Factor out redundant code from the following example by
moving it out of the if/else statement, preserving the same
output.

if (x < 30) {

 a = 2;

 x++;

 System.out.println("Java is awesome! " + x);

} else {

 a = 2;

 System.out.println("Java is awesome! " + x);

}

11. The following code is poorly structured:

int sum = 1000;

Scanner console = new Scanner(System.in);

System.out.print("Is your money multiplied 1 or 2 times?

");

int times = console.nextInt();

if (times == 1) {

 System.out.print("And how much are you contributing?

");

 int donation = console.nextInt();

 sum = sum + donation;

 count1++;

 total = total + donation;

}

if (times == 2) {

 System.out.print("And how much are you contributing?

");

 int donation = console.nextInt();

 sum = sum + 2 * donation;

 count2++;

 total = total + donation;

}

Rewrite it so that it has a better structure and avoids
redundancy. To simplify things, you may assume that the user
always types 1 or 2 . (How would the code need to be
modified to handle any number that the user might type?)

12. The following code is poorly structured:

Scanner console = new Scanner(System.in);

System.out.print("How much will John be spending? ");

double amount = console.nextDouble();

System.out.println();

int numBills1 = (int) (amount / 20.0);

if (numBills1 * 20.0 < amount) {

 numBills1++;

}

System.out.print("How much will Jane be spending? ");

amount = console.nextDouble();

System.out.println();

int numBills2 = (int) (amount / 20.0);

if (numBills2 * 20.0 < amount) {

 numBills2++;

}

System.out.println("John needs " + numBills1 + " bills");

System.out.println("Jane needs " + numBills2 + " bills");

Rewrite it so that it has a better structure and avoids
redundancy. You may wish to introduce a method to help
capture redundant code.

13. Write a piece of code that reads a shorthand text description
of a color and prints the longer equivalent. Acceptable color
names are B for Blue , G for Green , and R for Red . If the user
types something other than B , G , or R , the program should
print an error message. Make your program case-insensitive
so that the user can type an uppercase or lowercase letter.
Here are some example executions:

What color do you want? B

You have chosen Blue.

What color do you want? g

You have chosen Green.

What color do you want? Bork Unknown color: Bork

14. Write a piece of code that reads a shorthand text description
of a playing card and prints the longhand equivalent. The

shorthand description is the card’s rank (2 through 10 , J , Q ,
K , or A) followed by its suit (C , D , H , or S). You should
expand the shorthand into the form “<Rank> of <Suit>”. You
may assume that the user types valid input. Here are two
sample executions:

Enter a card: 9 S

Nine of Spades

Enter a card: K C

King of Clubs

Section 4.2: Cumulative
Algorithms

15. What is wrong with the following code, which attempts to add
all numbers from 1 to a given maximum? Describe how to fix
the code.

public static int sumTo(int n) {

 for (int i = 1; i <= n; i++) {

 int sum = 0;

 sum += i;

 }

 return sum;

}

16. What is wrong with the following code, which attempts to
return the number of factors of a given integer Describe
how to fix the code.

public static int countFactors(int n) {

 for (int i = 1; i <= n; i++) {

 if (n % i == 0) { // factor

 return i;

 }

 }

}

n?

17. Write code to produce a cumulative product by multiplying
together many numbers that are read from the console.

18. The following expression should equal 6.8 , but in Java it does
not. Why not?

0.2 + 1.2 + 2.2 + 3.2

19. The following code was intended to print a message, but it
actually produces no output. Describe how to fix the code to
print the expected message.

double gpa = 3.2;

if (gpa * 3 == 9.6) {

 System.out.println("You earned enough credits.");

}

Section 4.3: Text Processing

20. What output is produced by the following program?

 1 public class CharMystery {

 2 public static void printRange(char startLetter,

char endLetter) {

 3 for (char letter = startLetter; letter <=

endLetter; letter++) {

 4 System.out.print(letter);

 5 }

 6 System.out.println();

 7 }

 8

 9 public static void main(String[] args) {

10 printRange('e', 'g');

11 printRange('n', 's');

12 printRange('z', 'a');

13 printRange('q', 'r');

14 }

15 }

21. Write an if statement that tests to see whether a String
begins with a capital letter.

22. What is wrong with the following code, which attempts to
count the number occurrences of the letter 'e' in a String ,
case-insensitively?

int count = 0;

for (int i = 0; i < s.length(); i++) {

 if (s.charAt(i).toLowerCase() == 'e') {

 count++;

 }

}

23. Consider a String stored in a variable called name that stores
a person’s first and last name (e.g., “Marla Singer”). Write the
expression that would produce the last name followed by the
first initial (e.g., “Singer, M.”).

24. Write code to examine a String and determine how many of
its letters come from the second half of the alphabet (that is,
have values of 'n' or subsequent letters). Compare case-
insensitively, such that values of 'N' through 'Z' also count.
Assume that every character in the String is a letter.

Section 4.4: Methods with
Conditional Execution

25. Consider a method printTriangleType that accepts three
integer arguments representing the lengths of the sides of a
triangle and prints the type of triangle that these sides form.
The three types are equilateral, isosceles, and scalene. An
equilateral triangle has three sides of the same length, an
isosceles triangle has two sides that are the same length, and
a scalene triangle has three sides of different lengths.
However, certain integer values (or combinations of values)
would be illegal and could not represent the sides of an actual
triangle. What are these values? How would you describe the
precondition(s) of the printTriangleType method?

26. Consider a method getGrade that accepts an integer
representing a student’s grade percentage in a course and
returns that student’s numerical course grade. The grade can
be between 0.0 (failing) and 4.0 (perfect). What are the
preconditions of such a method?

27. The following method attempts to return the median (middle)
of three integer values, but it contains logic errors. In what
cases does the method return an incorrect result? How can
the code be fixed?

public static int medianOf3(int n1, int n2, int n3) {

 if (n1 < n2) {

 if (n2 < n3) {

 return n2;

 } else {

 return n3;

 }

 } else {

 if (n1 < n3) {

 return n1;

 } else {

 return n3;

 }

 }

}

28. One of the exercises in Chapter 3 asked you to write a
method that would find the roots of a quadratic equation of the
form The quadratic method was passed
a , b , and c and then applied the following quadratic formula:

Under what conditions would this formula fail? Modify the
quadratic method so that it will reject invalid values of a , b , or
c by throwing an exception. (If you did not complete the
exercise in the previous chapter, just write the method’s
header and the exception-throwing code.)

ax
2 + bx + c = 0.

x =
−b ±√b2 − 4ac

2a

29. Consider the following Java method, which is written
incorrectly:

// This method should return how many of its three

// arguments are odd numbers.

public static void printNumOdd(int n1, int n2, int n3) {

 int count = 0;

 if (n1 % 2 != 0) {

 count++;

 } else if (n2 % 2 != 0) {

 count++;

 } else if (n3 % 2 != 0) {

 count++;

 }

 System.out.println(count + " of the 3 numbers are

odd.");

}

Under what cases will the method print the correct answer,
and when will it print an incorrect answer? What should be
changed to fix the code? Can you think of a way to write the
code correctly without any if/else statements?

Exercises
1. Write a method called fractionSum that accepts an integer

parameter and returns as a double the sum of the first
terms of the sequence

In other words, the method should generate the following
sequence:

You may assume that the parameter is nonnegative.
2. Write a method called repl that accepts a String and a

number of repetitions as parameters and returns the String
concatenated that many times. For example, the call
repl("hello ", 3) should return "hellohellohello" . If the
number of repetitions is zero or less, the method should return
an empty string.

3. Write a method called season that takes as parameters two
integers representing a month and day and returns a String
indicating the season for that month and day. Assume that the

n n

n

∑
i=1

1

i

1 +
1

2
+

1

3
+

1

4
+

1

5
+. . .

n

month is specified as an integer between 1 and 12 (1 for
January, 2 for February, and so on) and that the day of the
month is a number between 1 and 31. If the date falls
between 12/16 and 3/15, the method should return "winter" .
If the date falls between 3/16 and 6/15, the method should
return "spring" . If the date falls between 6/16 and 9/15, the
method should return "summer" . And if the date falls between
9/16 and 12/15, the method should return "fall" .

4. Write a method called daysInMonth that takes a month (an
integer between 1 and 12) as a parameter and returns the
number of days in that month in this year. For example, the
call daysInMonth(9) would return 30 because September has
30 days. Assume that the code is not being run during a leap
year (that February always has 28 days). The following table
lists the number of days in each month:

5. Write a method called pow that accepts a base and an
exponent as parameters and returns the base raised to the
given power. For example, the call pow(3, 4) should return 3
* 3 * 3 * 3 , or 81 . Assume that the base and exponent are
nonnegative.

6. Write a method called printRange that accepts two integers as
arguments and prints the sequence of numbers between the
two arguments, separated by spaces. Print an increasing
sequence if the first argument is smaller than the second;
otherwise, print a decreasing sequence. If the two numbers

are the same, that number should be printed by itself. Here
are some sample calls to printRange :

printRange(2, 7);

printRange(19, 11);

printRange(5, 5);

The output produced from these calls should be the following
sequences of numbers:

2 3 4 5 6 7

19 18 17 16 15 14 13 12 11

5

7. Write a static method called xo that accepts an integer size

as a parameter and prints a square of size by size characters,
where all characters are “o” except that an “x” pattern of “x”
characters has been drawn from the corners of the square.
On the first line, the first and last characters are “x”; on the
second line, the second and second-from-last characters are
“x”; and so on. Here are two example outputs:

8. Write a method called smallestLargest that accepts a Scanner
for the console as a parameter and asks the user to enter
numbers, then prints the smallest and largest of all the
numbers supplied by the user. You may assume that the user

enters a valid number greater than 0 for the number of
numbers to read. Here is a sample execution:

How many numbers do you want to enter? 4

Number 1: 5

Number 2: 11

Number 3: -2

Number 4: 3

Smallest = -2

Largest = 11

9. Write a method called evenSumMax that accepts a Scanner for
the console as a parameter. The method should prompt the
user for a number of integers, then prompt the integer that
many times. Once the user has entered all the integers, the
method should print the sum of all the even numbers the user
typed, along with the largest even number typed. You may
assume that the user will type at least one nonnegative even
integer. Here is an example dialogue:

How many integers? 4

Next integer? 2

Next integer? 9

Next integer? 18

Next integer? 4

Even sum = 24, Even max = 18

10. Write a method called printGPA that accepts a Scanner for the
console as a parameter and calculates a student’s grade point
average. The user will type a line of input containing the
student’s name, then a number that represents the number of
scores, followed by that many integer scores. Here are two
example dialogues:

Enter a student record: Maria 5 72 91 84 89 78

Maria's grade is 82.8

Enter a student record: Jordan 4 86 71 62 90

Jordan's grade is 77.25

Maria's grade is 82.8 because her average of
 equals 82.8.

11. Write a method called longestName that accepts a Scanner for
the console and an integer as parameters and prompts for

 names, then prints the longest name (the name that
contains the most characters) in the format shown below,
which might result from a call of longestName(console, 4) :

name #1? Roy

name #2? DANE

name #3? sTeFaNiE

name #4? Mariana

Stefanie's name is longest

(72 + 91 + 84 + 89 + 78)/5

n

n

12. Write the method called printTriangleType referred to in Self-
Check Problem 25. This method accepts three integer
arguments representing the lengths of the sides of a triangle
and prints the type of triangle that these sides form. Here are
some sample calls to printTriangleType :

printTriangleType(5, 7, 7);

printTriangleType(6, 6, 6);

printTriangleType(5, 7, 8);

printTriangleType(2, 18, 2);

The output produced by these calls should be

isosceles

equilateral

scalene

isosceles

Your method should throw an IllegalArgumentException if
passed invalid values, such as ones where one side’s length
is longer than the sum of the other two, which is impossible in
a triangle. For example, the call of printTriangleType(2, 18,
2); should throw an exception.

13. Write a method called average that takes two integers as
parameters and returns the average of the two integers.

14. Modify your pow method from Exercise 5 to make a new
method called pow2 that uses the type double for the first

parameter and that works correctly for negative numbers. For
example, the call pow2(–4.0, 3) should return –4.0 * –4.0 * –
4.0 , or –64.0 , and the call pow2(4.0, –2) should return 1 /
16 , or 0.0625 .

15. Write a method called getGrade that accepts an integer
representing a student’s grade in a course and returns that
student’s numerical course grade. The grade can be between
0.0 (failing) and 4.0 (perfect). Assume that scores are in the
range of 0 to 100 and that grades are based on the following
scale:

For an added challenge, make your method throw an
IllegalArgumentException if the user passes a grade lower
than 0 or higher than 100 .

16. Write a method called printPalindrome that accepts a Scanner
for the console as a parameter, prompts the user to enter one
or more words, and prints whether the entered String is a
palindrome (i.e., reads the same forward as it does backward,
like "abba" or "racecar ") .
For an added challenge, make the code case-insensitive, so
that words like “Abba” and “Madam” will be considered
palindromes.

17. Write a method called stutter that accepts a string
parameter and returns that string with its characters repeated
twice. For example, stutter("Hello!") returns "HHeelllloo!!"

18. Write a method called wordCount that accepts a String as its
parameter and returns the number of words in the String . A
word is a sequence of one or more nonspace characters (any
character other than ' '). For example, the call
wordCount("hello ") should return 1 , the call wordCount("how

are you? ") should return 3 , the call wordCount(" this string

has wide spaces ") should return 5 , and the call wordCount("
") should return 0 .

19. Write a method called quadrant that accepts as parameters a
pair of double values representing an () point and returns
the quadrant number for that point. Recall that quadrants are
numbered as integers from 1 to 4 with the upper-right
quadrant numbered 1 and the subsequent quadrants
numbered in a counterclockwise fashion:

x, y

Notice that the quadrant is determined by whether the and
 coordinates are positive or negative numbers. Return 0 if

the point lies on the x- or -axis. For example, the call of
quadrant(-2.3, 3.5) should return 2 and the call of
quadrant(4.5, -4.5) should return 4 .

20. Write a method called numUnique that takes three integers as
parameters and returns the number of unique integers among
the three. For example, the call numUnique(18, 3, 4) should
return 3 because the parameters have three different values.
By contrast, the call numUnique(6, 7, 6) should return 2

x

y

y

because there are only two unique numbers among the three
parameters: 6 and 7 .

21. Write a method called perfectNumbers that accepts an integer
maximum as its parameter and prints all “perfect numbers” up
to and including that maximum. A perfect number is an integer
that is equal to the sum of its proper factors, that is, all
numbers that evenly divide it other than 1 and itself. For
example, 28 is a perfect number because

 The call perfectNumbers(500);
should produce the following output:

Perfect numbers up to 500: 6 28 496

22. Write a method called printAcronym that accepts a string as its
parameter and prints the first letter of each word of the string
as an acronym. For example, the call of printAcronym("Breath
of the Wild") should print "BotW" . You may assume that the
string contains at least one word and does not have any
surrounding whitespace at its start or end.

1 + 2 + 4 + 7 + 14 = 28.

Programming Projects
1. Write a program that prompts for a number and displays it in Roman numerals.
2. Write a program that prompts for a date (month, day, year) and reports the day of

the week for that date. It might be helpful to know that January 1, 1601, was a
Monday.

3. Write a program that compares two college applicants. The program should prompt
for each student’s GPA, SAT, and ACT exam scores and report which candidate is
more qualified on the basis of these scores.

4. Write a program that prompts for two people’s birthdays (month and day), along
with today’s month and day. The program should figure out how many days remain
until each user’s birthday and which birthday is sooner. Hint: It is much easier to
solve this problem if you convert each date into an “absolute day” of year, from 1
through 365.

5. Write a program that computes a student’s grade in a course. The course grade
has three components: homework assignments, a midterm exam, and a final exam.
The program should prompt the user for all information necessary to compute the
grade, such as the number of homework assignments, the points earned and points
possible for each assignment, the midterm and final exam scores, and whether
each exam was curved (and, if so, by how much).
Consider writing a variation of this program that reports what final exam score the
student needs to get a certain course grade.

6. A useful technique for catching typing errors is to use a check digit. For example,
suppose that a school assigns a six-digit number to each student. A seventh digit
can be determined from the other digits with the use of the following formula:

When a user types in a student number, the user types all seven digits. If the
number is typed incorrectly, the check digit will fail to match in 90% of the cases.
Write an interactive program that prompts for a six-digit student number and reports
the check digit for that number, using the preceding formula.

7. Write a program that displays Pascal’s triangle:

7th digit = (1 * (1st digit) + 2 * (2nd digit)+. . . +6 * (6th digit))%10

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

 1 6 15 20 15 6 1

 1 7 21 35 35 21 7 1

 1 8 28 56 70 56 28 8 1

 1 9 36 84 126 126 84 36 9 1

 1 10 45 120 210 252 210 120 45 10 1

Use System.out.printf to format the output into fields of width 4.
8. Write a program that produces a Caesar cipher of a given message string. A

Caesar cipher, or rotation cipher, is formed by rotating each letter of a message by
a given amount. For example, if you rotate by 3, every A becomes D; every B
becomes E; and so on. Toward the end of the alphabet, you wrap around: X
becomes A; Y becomes B; and Z becomes C. Your program should prompt for a
message and an amount by which to rotate each letter and should output the
encoded message.

Your message? Attack zerg at dawn

Encoding key? 3

Your message: DWWDFN CHUJ DW GDZQ

Chapter 5 Program Logic and
Indefinite Loops

5.1 The while Loop
• A Loop to Find the Smallest Divisor

• Random Numbers

• Simulations

• The do/while Loop

5.2 Fencepost Algorithms
• Fencepost with if

• Sentinel Loops

5.3 The boolean Type
• Logical Operators

• Short-Circuited Evaluation

• boolean Variables and Flags

• Boolean Zen

• Negating Boolean Expressions

5.4 User Errors
• Scanner Lookahead

• Handling User Errors

5.5 Assertions and Program Logic
• Reasoning about Assertions

• A Detailed Assertions Example

5.6 Case Study: NumberGuess
• Initial Version without Hinting

• Randomized Version with Hinting

• Final Robust Version

Introduction
The chapter begins by examining a new
construct called a while loop that allows you to
loop an indefinite number of times. The while
loop will allow you to solve a new class of
programming problems in which you don’t know
in advance how many times you want a loop to

execute. For example, game-playing programs
often involve while loops because it is not
possible to know beforehand how the user will
play the game. Because we will be exploring
game programs, we will also explore how to
generate random numbers inside a Java
program. We will also explore another class of
algorithms known as fencepost algorithms that
occur often in loop-programming tasks.

The chapter then discusses the fourth primitive
type that we are going to examine in detail,
boolean . The boolean type is used to store
logical (true/false) information. Once you
understand the details of the boolean type, you
will be able to write complex loops involving
multiple tests.

Next, we’ll briefly examine the important topic of
handling user errors.

The chapter concludes with a discussion of
assertions. Using assertions, you can reason
about the formal properties of programs (what is
true at different points in program execution).

5.1 The while Loop
The for loops we have been writing since Chapter 2 are fairly
simple loops that execute a predictable number of times. Recall that
we call them definite loops because we know before the loops begin
executing exactly how many times they will execute. Now we want to
turn our attention to indefinite loops, which execute an unknown
number of times. Indefinite loops come up often in interactive
programs and file processing. For example, you don’t know in
advance how many times a user might want to play a game, and you
won’t know before you look at a file exactly how much data it stores.

The while loop is the first indefinite loop we will study. It has the
following syntax:

while (<test>) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

The diagram in Figure 5.1 indicates the flow of control for the
while loop. The loop performs its test and, if the test evaluates to
true , executes the controlled statements. It repeatedly tests and
executes if the test evaluates to true . Only when the test evaluates
to false does the loop terminate.

Figure 5.1 Flow of while loop

As Figure 5.1 indicates, the while loop performs its test at the top
of the loop, before the body of the loop is executed. A while loop will
not execute its controlled statements if its test evaluates to false the
first time it is evaluated.

Here is an example of a while loop:

int number = 1;

while (number <= 200) {

 number = number * 2;

}

This loop initializes an integer variable called number to 1 and then
doubles it while it is less than or equal to 200 . On the surface, this
operation is similar to using an if statement:

int number = 1;

if (number <= 200) {

 number = number * 2;

}

The difference between the two forms is that the while loop
executes multiple times, looping until the test evaluates to false. The
if statement executes the doubling statement only once, leaving
number equal to 2 . The while loop executes the doubling statement
repeatedly, with number taking on the values 1 , 2 , 4 , 8 , 16 , 32 , 64 ,
128 , and 256 . The loop doesn’t stop executing until the test

evaluates to false . It executes the assignment statement eight times
and terminates when number is set to the value 256 (the first power
of 2 that is greater than 200).

Here is a while loop containing two statements:

int number = 1;

while (number <= max) {

 System.out.println("Hi there");

 number++;

}

This while loop is almost the same as the following for loop:

for (int number = 1; number <= max; number++) {

 System.out.println("Hi there");

}

The only difference between these two loops is the scope of the
variable number . In the while loop, number is declared in the scope
outside the loop. In the for loop, number is declared inside the loop.

A Loop to Find the Smallest
Divisor

Suppose you want to find the smallest divisor of a number other than
1. Table 5.1 gives examples of what you are looking for.

Table 5.1 Examples of Factors

Here is a pseudocode description of how you might find this value:

start divisor at 2.

while (the current value of divisor does not work) {

 increase divisor.

}

You don’t start divisor at 1 because you are looking for the first
divisor greater than 1 . To refine this pseudocode, you must be more
explicit about what makes a divisor work. A divisor of a number has
no remainder when the number is divided by that divisor. You can
rewrite this rule as the following pseudocode:

start divisor at 2.

while (the remainder of number/divisor is not 0) {

 increase divisor.

}

This problem can be solved using the mod operator, which gives the
remainder for integer division. The following while loop performs the
task:

int divisor = 2;

while (number % divisor != 0) {

 divisor++;

}

One problem you will undoubtedly encounter when you write while
loops is the infamous infinite loop. Consider the following code:

int number = 1;

while (number > 0) {

 number++;

}

Because number begins as a positive value and the loop makes it
larger, this loop will continue indefinitely. You must be careful when

you formulate your while loops to avoid situations in which a piece
of code will never finish executing. Every time you write a while
loop, you should consider when and how it will finish executing.

COMMON PROGRAMMING ERROR

Infinite Loop

It is relatively easy to write a while loop that never
terminates. One reason it’s so easy to make this mistake is
that a while loop doesn’t have an update step in its header
like a for loop does. It’s crucial for the programmer to include
a correct update step because this step is needed to
eventually cause the loop’s test to fail.

Consider the following code, which is intended to prompt the
user for a number and repeatedly print that number divided in
half until 0 is reached. This first attempt doesn’t compile:

Scanner console = new Scanner(System.in);

System.out.print("Type a number: ");

// this code does not compile

while (number > 0) {

 int number = console.nextInt();

 System.out.println(number / 2);

}

The problem with the preceding code is that the variable
number needs to be in scope during the loop’s test, so it
cannot be declared inside the loop. An incorrect attempt to fix
this compiler error would be to cut and paste the line
initializing number outside the loop:

// this code has an infinite loop

int number = console.nextInt(); // moved out of loop

while (number > 0) {

 System.out.println(number / 2);

}

This version of the code has an infinite loop; if the loop is
entered, it will never be exited. This problem arises because
there is no update inside the while loop’s body to change the
value of number . If number is greater than 0 , the loop will keep
printing its value and checking the loop test, and the test will
evaluate to true every time.

The following version of the code solves the infinite loop
problem. The loop contains an update step on each pass that

divides the integer in half and stores its new value. If the
integer hasn’t reached 0, the loop repeats:

// this code behaves correctly

int number = console.nextInt(); // moved out of loop

while (number > 0) {

 number = number / 2; // update step: divide in half

 System.out.println(number);

}

The key idea is that every while loop’s body should contain
code to update the terms that are tested in the loop test. If the
while loop test examines a variable’s value, the loop body
should potentially reassign a meaningful new value to that
variable.

Random Numbers

We often want our programs to exhibit apparently random behavior.
For example, we want game-playing programs to make up a number
for the user to guess, shuffle a deck of cards, pick a word from a list
for the user to guess, and so on. Programs are, by their very nature,
predictable and nonrandom. But we can produce values that seem to

be random. Such values are called pseudorandom because they are
produced algorithmically.

Pseudorandom Numbers
Numbers that, although they are derived from
predictable and well-defined algorithms, mimic the
properties of numbers chosen at random.

Java provides several mechanisms for obtaining pseudorandom
numbers. One option is to call the random method from the Math
class to obtain a random value of type double that has the following
property:

0.0 ≤ Math.random() < 1.0

This method provides a quick and easy way to get a random
number, and you can use multiplication to change the range of the
numbers the method produces. Java also provides a class called
Random that can be easier to use. It is included in the java.util
package, so you have to include an import declaration at the
beginning of your program to use it.

Random objects have several useful methods that are related to
generating pseudorandom numbers, listed in Table 5.2 . Each time
you call one of these methods, Java will generate and return a new
random number of the requested type.

Table 5.2 Useful Methods of Random Objects

To create random numbers, you first construct a Random object:

Random r = new Random();

You can then call its nextInt method, passing it a maximum integer.
The number returned will be between 0 (inclusive) and the maximum
(exclusive). For example, if you call nextInt(100) , you will get a
number between 0 and 99. You can add 1 to the number to have a
range between 1 and 100.

The following JShell interaction creates a Random object and uses it
to generate several random numbers from 1-10. Notice that each call
to nextInt produces a new random integer:

jshell> Random r = new Random();

r ==> java.util.Random@5c7fa833

jshell> r.nextInt(10)

$2 ==> 2

jshell> r.nextInt(10)

$3 ==> 9

jshell> r.nextInt(10)

$4 ==> 9

jshell> r.nextInt(10)

$5 ==> 0

jshell> r.nextInt(10)

$6 ==> 5

Let’s look at a simple program that picks numbers between 1 and 10
until a particular number comes up. We’ll use a Random object for
generating our pseudorandom numbers.

Our loop should look something like this (where number is the value
the user has asked us to generate):

int result;

while (result != number) {

 result = r.nextInt(10) + 1; // random number from 1–10

 System.out.println("next number = " + result);

}

Notice that we have to declare the variable result outside the while
loop, because result appears in the while loop test. The preceding
code has the right approach, but Java won’t accept it. The code
generates an error message that the variable result might not be
initialized. This is an example of a loop that needs priming.

Priming a Loop
Initializing variables before a loop to “prime the pump”
and guarantee that the loop is entered.

We want to set the variable result to something that will cause the
loop to be entered, but the value isn’t important as long as it gets us
into the loop. We do want to be careful not to set it to a value the
user wants us to generate, though. We are dealing with values
between 1 and 10 in this program, so we could set result to a value
such as –1 that is clearly outside this range of numbers. We
sometimes refer to this as a “dummy” value because we don’t
actually process it. Later in this chapter we will see a variation of the
while loop that doesn’t require this kind of priming.

The following is the complete program solution:

 1 // Picks random numbers from 1-10 until a given value is

chosen.

 2 import java.util.*;

 3

 4 public class Pick {

 5 public static void main(String[] args) {

 6 System.out.println("This program picks numbers

from");

 7 System.out.println("1 to 10 until a particular");

 8 System.out.println("number comes up.");

 9 System.out.println();

10

11 Scanner console = new Scanner(System.in);

12 Random r = new Random();

13

14 System.out.print("Pick a number between 1 and 10––>

");

15 int number = console.nextInt();

16

17 int result = –1; // set to –1 to make sure we enter

the loop

18 int count = 0;

19 while (result != number) {

20 result = r.nextInt(10) + 1; // random number from

1–10

21 System.out.println("next number = " + result);

22 count++;

23 }

24 System.out.println("Your number came up after " +

25 count + " times");

26 }

27 }

Depending on the sequence of numbers returned by the Random
object, the program might end up picking the given number quickly,
as in the following sample execution:

This program picks numbers from

1 to 10 until a particular

number comes up.

Pick a number between 1 and 10––> 2

next number = 7

next number = 8

next number = 2

Your number came up after 3 times

It’s also possible that the program will take a while to pick the
number, as in the following sample execution:

This program picks numbers from

1 to 10 until a particular

number comes up.

Pick a number between 1 and 10––> 10

next number = 9

next number = 7

next number = 7

next number = 5

next number = 8

next number = 8

next number = 1

next number = 5

next number = 1

next number = 9

next number = 7

next number = 10

Your number came up after 12 times

COMMON PROGRAMMING ERROR

Misusing the Random Object

A Random object chooses a new random integer every time the
nextInt method is called. When students are trying to
produce a constrained random value, such as one that is odd,
sometimes they mistakenly write code such as the following:

// this code contains a bug

Random r = new Random();

if (r.nextInt() % 2 == 0) {

 System.out.println("Even number: " + r.nextInt());

} else {

 System.out.println("Odd number: " + r.nextInt());

}

The preceding code fails in many cases because the Random
object produces one random integer for use in the if/else
test, then another for use in whichever println statement is
chosen to execute. For example, the if test might retrieve a
random value of 47 from the Random object. The test would
find that 47 % 2 does not equal 0 , so the code would proceed
to the else statement. The println statement would then
execute another call on nextInt , which would return a
completely different number (say, 128). The output of the
code would then be the following bizarre statement:

Odd number: 128

The solution to this problem is to store the randomly chosen
integer in a variable and call nextInt again only if another
random integer is truly needed. The following code
accomplishes this task:

// this code behaves correctly

Random r = new Random();

int n = r.nextInt(); // save random number into a

variable

if (n % 2 == 0) {

 System.out.println("Even number: " + n);

} else {

 System.out.println("Odd number: " + n);

}

Simulations

Traditional science and engineering involve a lot of real-world
interaction. Scientists run experiments to test their hypotheses and
engineers build prototypes to test their designs. But increasingly
scientists and engineers are turning to computers as a way to
increase their productivity by running simulations first to explore
possibilities before they go out and run an actual experiment or build
an actual prototype. A famous computer scientist named Jeanette
Wing has argued that this increased use of computation by scientists
and engineers will lead to computational thinking being viewed as
fundamental in the same way that reading, writing, and arithmetic
are considered fundamental today.

From a programming perspective, the two key ingredients in a
simulation are pseudorandom numbers and loops. Some simulations
can be written using for loops, but more often than not we use a
while loop because the simulation should be run indefinitely until
some condition is met.

As a simple example, let’s look at how we would simulate the rolling
of two dice until the sum of the dice is 7. We can use a Random object
to simulate the dice, calling it once for each of the two dice. We want

to loop until the sum is equal to 7 and we can print the various rolls
that come up as we run the simulation. Here is a good first attempt:

Random r = new Random();

while (sum != 7) {

 // roll the dice once

 int roll1 = r.nextInt(6) + 1;

 int roll2 = r.nextInt(6) + 1;

 int sum = roll1 + roll2;

 System.out.println(roll1 + " + " + roll2 + " = " + sum);

}

The preceding code produces the following compiler error:

Dice.java:7: error: cannot find symbol

symbol : variable sum

location: class Dice

 while (sum != 7) {

 ^

1 error

The problem is that the while loop test refers to the variable sum , but
the variable is declared inside the body of the loop. We can’t declare
the variable in the inner scope because we need to refer to it in the

loop test. So we have to move the variable declaration before the
loop. We also have to give the variable an initial value to guarantee
that it enters the loop. This code is another example of a time when
we need to prime the loop:

Random r = new Random();

int sum = 0; // set to 0 to make sure we enter the loop

while (sum != 7) {

 // roll the dice once

 int roll1 = r.nextInt(6) + 1;

 int roll2 = r.nextInt(6) + 1;

 sum = roll1 + roll2;

 System.out.println(roll1 + " + " + roll2 + " = " + sum);

}

This version of the code compiles and works properly. A sample
execution follows:

1 + 4 = 5

5 + 6 = 11

1 + 3 = 4

4 + 3 = 7

do/while Loop

The while loop is the standard indefinite loop, but Java provides
several alternatives. This section presents the do/while loop. Other
variations are included in Appendix C .

As we have seen, the while loop tests at the “top” of the loop, before
it executes its controlled statement. Java has an alternative known
as the do/while loop that tests at the “bottom” of the loop. The
do/while loop has the following syntax:

do {

 <statement>;

 ...

 <statement>;

} while (<test>);

Here is some sample code using a do/while loop:

int number = 1;

do {

 number *= 2;

} while (number <= 200);

This loop produces the same result as the corresponding while loop,
doubling the variable number until its value reaches 256 , which is the
first power of 2 greater than 200 . But unlike the while loop, the
do/while loop always executes its controlled statements at least
once. The diagram in Figure 5.2 shows the flow of control in a
do/while loop.

Figure 5.2 Flow of do/while loop

The do/while loop is most useful in situations in which you know you
have to execute the loop at least once. For example, in the last
section we wrote the following code that simulates the rolling of two
dice until you get a sum of 7:

Random r = new Random();

int sum = 0; // set to 0 to make sure we enter the loop

while (sum != 7) {

 // roll the dice once

 int roll1 = r.nextInt(6) + 1;

 int roll2 = r.nextInt(6) + 1;

 sum = roll1 + roll2;

 System.out.println(roll1 + " + " + roll2 + " = " + sum);

}

We had to prime the loop by setting sum to 0 so that the computer
would enter the loop. With a do/while loop, we can eliminate the
priming:

Random r = new Random();

int sum;

do {

 // roll the dice once

 int roll1 = r.nextInt(6) + 1;

 int roll2 = r.nextInt(6) + 1;

 sum = roll1 + roll2;

 System.out.println(roll1 + " + " + roll2 + " = " + sum);

} while (sum != 7);

In this version, we always execute the body of the loop at least once,
which ends up giving a value to the variable sum before it reaches
the loop test that now appears at the bottom of the loop.

There are many programming problems in which using do/while
loops is appropriate. These loops are often useful in interactive
programs where you know you want to do something at least once.
For example, you might have a loop that allows a user to play a
game multiple times; you can be fairly sure that the user will want to
play at least once. Likewise, if you are playing a guessing game with
the user, you will always have to obtain at least one guess.

5.2 Fencepost Algorithms

A common programming problem involves a particular kind of loop
known as a fencepost loop. Consider the following problem: You
want to put up a fence that is 100 yards long, and you want to install
a post every 10 yards. How many posts do you need? If you do a
quick division in your head, you might think that you need 10 posts,
but actually you need 11 posts. That’s because fences begin and
end with posts. In other words, a fence looks like Figure 5.3 .

Figure 5.3 A typical fence

Because you want posts on both the far left and the far right, you
can’t use the following simple loop (it doesn’t plant the final post):

for (the length of the fence) {

 plant a post.

 attach some wire.

}

If you use the preceding loop, you’ll get a fence that looks like
Figure 5.4 .

Figure 5.4 A flawed fence

Switching the order of the two operations doesn’t help, because then
you miss the first post. The problem with this loop is that it produces
the same number of posts as sections of wire, but we know we need
an extra post. That’s why this problem is also sometimes referred to
as the “loop and a half” problem—we want to execute one half of this
loop (planting a post) one additional time.

One solution is to plant one of the posts either before or after the
loop. The usual solution is to do it before:

plant a post.

for (the length of the fence) {

 attach some wire.

 plant a post.

}

Notice that the order of the two operations in the body of the loop is
now reversed because the initial post is planted before the loop is
entered.

As a simple example, consider the problem of writing out the
integers between 1 and 10, separated by commas. In other words,
we want to get the following output:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

This task is a classic fencepost problem because we want to write
out 10 numbers but only 9 commas. In our fencepost terminology,
writing a number is the “post” part of the task and writing a comma is
the “wire” part. So, implementing the pseudocode we developed, we

print the first number before the loop and reverse the order of
operations inside the loop by printing a comma in front of a number:

System.out.print(1);

for (int i = 2; i <= 10; i++) {

 System.out.print(", " + i);

}

System.out.println();

Fencepost with if

Many of the fencepost loops that you write will require conditional
execution. In fact, the fencepost problem itself can be solved with an
if statement. Remember that the classic solution to the fencepost is
to handle the first post before the loop begins:

plant a post.

for (the length of the fence) {

 attach some wire.

 plant a post.

}

This solution solves the problem, but it can be confusing because
inside the loop the steps are apparently in reverse order. You can
use an if statement and keep the original order of the steps:

for (the length of the fence) {

 plant a post.

 if (this isn't the last post) {

 attach some wire.

 }

}

This variation isn’t used as often as the classic solution because it
involves both a loop test and a test inside the loop. Often these tests
are nearly identical, so it is inefficient to test the same thing twice
each time the loop executes. But there will be situations in which you
might use this approach. For example, in the classic approach, the
lines of code that correspond to planting a post are repeated. If you
were writing a program in which this step required a lot of code, you
might decide that putting the if statement inside the loop was a
better approach, even if it led to some extra testing.

As an example, consider writing a method called multiprint that will
print a string a particular number of times. Suppose that you want
the output on a line by itself, inside square brackets, and separated
by commas. Here are two example calls:

multiprint("please", 4);

multiprint("beetlejuice", 3);

You would expect these calls to produce the following output:

[please, please, please, please]

[beetlejuice, beetlejuice, beetlejuice]

Your first attempt at writing this method might be a simple loop that
prints square brackets outside the loop and prints the string and a
comma inside the loop:

public static void multiprint(String s, int times) {

 System.out.print("[");

 for (int i = 1; i <= times; i++) {

 System.out.print(s + ", ");

 }

 System.out.println("]");

}

Unfortunately, this code produces an extraneous comma after the
last value:

[please, please, please, please,]

[beetlejuice, beetlejuice, beetlejuice,]

Because the commas are separators, you want to print one more
string than comma (e.g., two commas to separate the three
occurrences of “beetlejuice”). You can use the classic solution to the
fencepost problem to achieve this effect by printing one string
outside the loop and reversing the order of the printing inside the
loop:

public static void multiprint(String s, int times) {

 System.out.print("[" + s);

 for (int i = 2; i <= times; i++) {

 System.out.print(", " + s);

 }

 System.out.println("]");

}

Notice that because you’re printing one of the strings before the loop
begins, you have to modify the loop so that it won’t print as many

strings as it did before. Adjusting the loop variable i to start at two
accounts for the first value that is printed before the loop.

Unfortunately, this solution does not work properly either. Consider
what happens when you ask the method to print a string zero times,
as in:

multiprint("please don't", 0);

This call produces the following incorrect output:

[please don't]

You want it to be possible for a user to request zero occurrences of a
string, so the method shouldn’t produce that incorrect output. The
problem is that the classic solution to the fencepost problem involves
printing one value before the loop begins. To get the method to
behave correctly for the zero case, you can include an if/else
statement:

public static void multiprint(String s, int times) {

 if (times == 0) {

 System.out.println("[]");

 } else {

 System.out.print("[" + s);

 for (int i = 2; i <= times; i++) {

 System.out.print(", " + s);

 }

 System.out.println("]");

 }

}

Alternatively, you can include an if statement inside the loop (the
double-test approach):

public static void multiprint(String s, int times) {

 System.out.print("[");

 for (int i = 1; i <= times; i++) {

 System.out.print(s);

 if (i < times) {

 System.out.print(", ");

 }

 }

 System.out.println("]");

}

Although the preceding version of the code performs a similar test
twice on each iteration, it is simpler than using the classic fencepost

solution and its special case. Neither solution is better than the other,
as there is a tradeoff involved. If you think that the code will be
executed often and that the loop will iterate many times, you might
be more inclined to use the efficient solution. Otherwise, you might
choose the simpler code.

Sentinel Loops

Suppose you want to read a series of numbers from the user and
compute their sum. You could ask the user in advance how many
numbers to read, as we did in the last chapter, but that isn’t always
convenient. What if the user has a long list of numbers to enter and
hasn’t counted them? One way around asking for the number is to
pick some special input value that will signal the end of input. We call
this a sentinel value.

Sentinel
A special value that signals the end of input.

For example, you could tell the user to enter the value –1 to stop
entering numbers. But how do you structure your code to use this
sentinel? In general, you’ll want to use the following approach:

sum = 0.

while (we haven't seen the sentinel) {

 prompt and read.

 add it to the sum.

}

This approach doesn’t quite work. Suppose, for example, that the
user enters the numbers 10 , 42 , 5 , and –1 . As the pseudocode
indicates, we’ll prompt for and read each of these four values and
add them to our sum until we encounter the sentinel value of –1 . We
initialize the sum to 0 , so this computes (10 + 42 + 5 + –1) , which is
56 . But the right answer is 57 . The sentinel value of –1 isn’t
supposed to be included in the sum.

This problem is a classic fencepost or “loop-and-a-half” problem: You
want to prompt for and read a series of numbers, including the
sentinel, and you want to add up most of the numbers, but you don’t
want to add the sentinel to the sum.

The usual fencepost solution works: We insert the first prompt-and-
read instruction before the loop and reverse the order of the two
steps in the body of the loop:

sum = 0.

prompt and read.

while (we haven't seen the sentinel) {

 add it to the sum.

 prompt and read.

}

You can then refine this pseudocode by introducing a variable for the
number that is read from the user:

sum = 0.

prompt and read a value into n.

while (n is not the sentinel) {

 add n to the sum.

 prompt and read a value into n.

}

This pseudocode translates fairly easily into Java code:

Scanner console = new Scanner(System.in);

int sum = 0;

System.out.print("next integer (–1 to quit)? ");

int number = console.nextInt();

while (number != –1) {

 sum += number;

 System.out.print("next integer (–1 to quit)? ");

 number = console.nextInt();

}

System.out.println("sum = " + sum);

When the preceding code is executed, the interaction might look like
this:

next integer (–1 to quit)? 10

next integer (–1 to quit)? 20

next integer (–1 to quit)? 30

next integer (–1 to quit)? 40

next integer (–1 to quit)? 50

next integer (–1 to quit)? 60

next integer (–1 to quit)? –1

sum = 210

Some students notice that the program would behave the same way
if instead of having a prompt and read before the loop starts we
instead initialize number to 0. That is true in this special case, but it
does not generalize. For example, if you want to compute a
maximum or minimum, you wouldn’t want to include 0 as a value to
be considered. So even though this specific bit of code could be
simplified, we prefer to present a solution that works for all
cumulative tasks.

5.3 The boolean Type

George Boole was such a good logician that Java has a data type
named after him. The Java type boolean is used to describe logical
true/false relationships. Recall that boolean is one of the primitive
types, like int , double , and char .

Novices often wonder why computer scientists are so interested in
logic. The answer is that logic is fundamental to computing in the
same way that physics is fundamental to engineering. Engineers
study physics because they want to build real-world artifacts that are
governed by the laws of physics. If you don’t understand physics,
you’re likely to build a bridge that will collapse. Computer scientists
build artifacts as well, but in a virtual world that is governed by the
laws of logic. If you don’t understand logic, you’re likely to build
computer programs that collapse.

Without realizing it, you have already used booleans . All of the
control structures we have looked at— if/else statements, for
loops, and while loops—are controlled by expressions that specify
tests. For example, the expression

number % 2 == 0

is a test for divisibility by 2. It is also a Boolean expression. Boolean
expressions are meant to capture the concepts of truth and falsity, so
it is not surprising that the domain of type boolean has only two
values: true and false . The words true and false are reserved
words in Java. They are the literal values of type boolean . All
Boolean expressions, when evaluated, will return one or the other of
these literals. Don’t confuse these special values with the string
literals "true" and "false" . You don’t need quotes to refer to the
Boolean literals.

When you write a program that manipulates numerical values, you’ll
often want to compute a value and store it in a variable or write a
method that captures some complex formula. We end up doing the
same thing with type boolean . We might want to record a Boolean
value in a variable and we often write methods that return Boolean
results. For example, we have seen that the String class has
methods that return a Boolean result, including startsWith , endsWith ,
equals , and equalsIgnoreCase .

To understand this better, remember what these terms mean for the
type int . The literals of type int include 0 , 1 , 2 , and so on.
Because these are literals of type int , you can write expressions
like the following ones with them:

int number1 = 1;

int number2 = 0;

Consider what you can do with variables of type boolean . Suppose
you define two boolean variables, test1 and test2 . These variables
can take on only two possible values: true and false . You can say:

boolean test1 = true;

boolean test2 = false;

You can also write a statement that copies the value of one boolean
variable to another, as with variables of any other type:

test1 = test2;

Furthermore, you know that the assignment statement can use
expressions like:

number1 = 2 + 2;

and that the simple tests you have been using are Boolean
expressions. That means you can write statements like the following
ones:

test1 = (2 + 2 == 4);

test2 = (3 * 100 < 250);

These assignment statements say, in effect, “Set this boolean
variable according to the truth value returned by the following test.”
The first statement sets the variable test1 to true , because the test
evaluates to true . The second sets the variable test2 to false ,
because the second test evaluates to false . You don’t need to
include parentheses, but they make the statements more readable.

Obviously, then, assignment is one of the operations you can
perform on variables of type boolean .

Logical Operators

In Java, you can form complicated Boolean expressions using what
are known as the logical operators, shown in Table 5.3 .

Table 5.3 Logical Operators

The NOT operator (!) reverses the truth value of its operand. If an
expression evaluates to true , its negation evaluates to false , and
vice versa. You can express this relationship in a truth table. The
truth table that follows has two columns, one for a variable and one
for its negation. For each value of the variable, the table shows the
corresponding value of the negation.

Truth Table for NOT (!)

In addition to the negation operator, there are two logical connectives
you will use, AND (&&) and OR (||). You use these connectives to
tie together two Boolean expressions, creating a new Boolean
expression. The following truth table shows that the AND operator
evaluates to true only when both of its individual operands are true .

Truth Table for AND (&&)

The following truth table shows that the OR operator evaluates to
true except when both operands are false .

Truth Table for OR (||)

The Java OR operator has a slightly different meaning from the
English word “or.” In English you say, “I’ll study tonight or I’ll go to a
movie.” One or the other will be true, but not both. The OR operator
is more like the English expression “and/or”: If one or both operands
are true , the overall proposition is true .

You generally use logical operators when what you have to say
cannot be reduced to a single test. For example, as we saw in the
previous chapter, if you want to do a particular operation when a
number is between 1 and 10, you might say,

if (number >= 1) {

 if (number <= 10) {

 doSomething();

 }

}

But you can say this more easily using logical AND :

if (number >= 1 && number <= 10) {

 doSomething();

}

People use the words “and” and “or” all the time, but Java only
allows you to use them in the strict logical sense. Be careful not to
write code like the following:

// this does not compile

if (x == 1 || 2 || 3) {

 doSomething();

}

In English, we would read this as “ x equals 1 or 2 or 3 ,” which
makes sense to us, but it doesn’t make sense to Java. You might
also be tempted to write code like the following:

// this does not compile

if (1 <= x <= 10) {

 doSomethingElse();

}

In mathematics, this expression would make sense and would test
whether x is between 1 and 10 inclusive. However, the expression
doesn’t make sense in Java.

You can only use the logical AND and OR operators to combine a
series of Boolean expressions. Otherwise, the computer will not

understand what you mean. To express the “1 or 2 or 3” idea,
combine three different Boolean expressions with logical ORs:

if (x == 1 || x == 2 || x == 3) {

 doSomething();

}

To express the “between 1 and 10 inclusive” idea, combine two
Boolean expressions with a logical AND :

if (1 <= x && x <= 10) {

 doSomethingElse();

}

Now that we’ve introduced the AND, OR, and NOT logical operators,
it’s time to revisit our precedence table. The NOT operator appears
at the top, with the highest level of precedence. The other two logical
operators have fairly low precedence, lower than the arithmetic and
relational operators but higher than the assignment operators. The
AND operator has a slightly higher level of precedence than the OR
operator. Table 5.4 includes these new operators.

Table 5.4 Java Operator Precedence

According to these rules of precedence, when Java evaluates an
expression like the following one, the computer will evaluate the
NOT first, the AND second, and then the OR.

if (test1 || !test2 && test3) {

 doSomething();

}

Short-Circuited Evaluation

In this section we will explore the use of the logical operators to
solve a complex programming task, and we’ll introduce an important
property of these operators. We will write a method called firstWord
that takes a String as a parameter and returns the first word in the
string. To keep things simple, we will adopt the convention that a
String is broken up into individual words by spaces. If the String
has no words at all, the method should return an empty string. Here
are a few example calls:

Remember that we can call the substring method to pull out part of
a string. We pass two parameters to the substring method: the
starting index of the substring and the index one beyond the end of

the substring. If the string is stored in a variable called s , our task
basically reduces to the following steps:

set start to the first index of the word.

set stop to the index just beyond the word.

return s.substring(start, stop).

As a first approximation, let’s assume that the starting index is 0.
This starting index won’t work for strings that begin with spaces, but
it will allow us to focus on the second step in the pseudocode.
Consider a string that begins with "four score" . If we examine the
individual characters of the string and their indexes, we find the
following pattern:

We set start to 0 . We want to set the variable stop to the index just
beyond the end of the first word. In this example, the word we want
is "four" , and it extends from indexes 0 through 3. So, if we want
the variable stop to be one beyond the end of the desired substring,
we want to set it to index 4, the location of the first space in the
string.

So how do we find the first space in the string? We use a while loop.
We simply start at the front of the string and loop until we get to a
space:

set stop to 0.

while (the character at index stop is not a space) {

 increase stop by 1.

}

This is easily converted into Java code. Combining it with our
assumption that start will be 0 , we get:

public static String firstWord(String s) {

 int start = 0;

 int stop = 0;

 while (s.charAt(stop) != ' ') {

 stop++;

 }

 return s.substring(start, stop);

}

This version of the method works for many cases, including our
sample string, but it doesn’t work for all strings. It has two major

limitations. We began by assuming that the string did not begin with
spaces, so we know we have to fix that limitation.

The second problem is that this version of firstWord doesn’t work on
one-word strings. For example, if we execute it with a string like
"four" , it generates a StringIndexOutOfBoundsException indicating
that 4 is not a legal index. The exception occurs because our code
assumes that we will eventually find a space, but there is no space in
the string "four" . So stop is incremented until it becomes equal to
4 , and an exception is thrown because there is no character at index
4. This is sometimes referred to as “running off the end of the string.”

To address this problem, we need to incorporate a test that involves
the length of the string. Many novices attempt to do this by using
some combination of while and if , as in the following code:

int stop = 0;

while (stop < s.length()) {

 if (s.charAt(stop) != ' ') {

 stop++;

 }

}

This code works for one-word strings like "four" because as soon
as stop becomes equal to the length of the string, we break out of

the loop. However, it doesn’t work for the original multiword cases
like "four score" . We end up in an infinite loop because once stop
becomes equal to 4 , we stop incrementing it, but we get trapped
inside the loop because the test says to continue as long as stop is
less than the length of the string. This approach of putting an if
inside a while led to a world-famous bug on December 31, 2008,
when Zune music players all over the world stopped working (see
Self-Check Problem 21 for more details).

The point to recognize is that in this case we need to use two
different conditions in controlling the loop. We want to continue
incrementing stop only if we know that we haven’t seen a space and

that we haven’t reached the end of the string. We can express that
idea using the logical AND operator:

int stop = 0;

while (s.charAt(stop) != ' ' && stop < s.length()) {

 stop++;

}

Unfortunately, even this test does not work. It expresses the two
conditions properly, because we want to make sure that we haven’t
reached a space and we want to make sure that we haven’t reached
the end of the string. But think about what happens just as we reach
the end of a string. Suppose that s is "four" and stop is equal to 3 .

We see that the character at index 3 is not a space and we see that
stop is less than the length of the string, so we increment one more
time and stop becomes 4 . As we come around the loop, we test
whether s.charAt(4) is a space. This test throws an exception
because the index is out of bounds. We also test whether stop is
less than 4 , which it isn’t, but that test comes too late to avoid the
exception.

Java offers a solution for this situation. The logical operators && and
|| use short-circuited evaluation.

Short-Circuited Evaluation
The property of the logical operators && and || that
prevents the second operand from being evaluated if
the overall result is obvious from the value of the first
operand.

In our case, we are performing two different tests and asking for the
logical AND of the two tests. If either test fails, the overall result is
false , so if the first test fails, it’s not necessary to perform the
second test. Because of short-circuited evaluation—that is, because
the overall result is obvious from the first test—we don’t perform the

second test at all. In other words, the performance and evaluation of
the second test are prevented (short-circuited) by the fact that the
first test fails.

This means we need to reverse the order of our two tests:

int stop = 0;

while (stop < s.length() && s.charAt(stop) != ' ') {

 stop++;

}

If we run through the same scenario again with stop equal to 3 , we
pass both of these tests and increment stop to 4 . Then, as we come
around the loop again, we first test to see if stop is less than
s.length() . It is not, which means the test evaluates to false . As a
result, Java knows that the overall expression will evaluate to false
and never evaluates the second test. This order of events prevents
the exception from occurring, because we never test whether
s.charAt(4) is a space.

This solution gives us a second version of the method:

public static String firstWord(String s) {

 int start = 0;

 int stop = 0;

 while (stop < s.length() && s.charAt(stop) != ' ') {

 stop++;

 }

 return s.substring(start, stop);

}

But remember that we assumed that the first word starts at position
0. That won’t necessarily be the case. For example, if we pass a
string that begins with several spaces, this method will return an
empty string. We need to modify the code so that it skips any leading
spaces. Accomplishing that goal requires another loop. As a first
approximation, we can write the following code:

int start = 0;

while (s.charAt(start) == ' ') {

 start++;

}

This code works for most strings, but it fails in two important cases.
The loop test assumes we will find a nonspace character. What if the
string is composed entirely of spaces? In that case, we’ll simply run
off the end of the string, generating a
StringIndexOutOfBoundsException . And what if the string is empty to

begin with? We’ll get an error immediately when we ask about
s.charAt(0) , because there is no character at index 0 .

We could decide that these cases constitute errors. After all, how
can you return the first word if there is no word? So, we could
document a precondition that the string contains at least one
nonspace character, and throw an exception if we find that it doesn’t.
Another approach is to return an empty string in these cases.

To deal with the possibility of the string being empty, we need to
modify our loop to incorporate a test on the length of the string. If we
add it at the end of our while loop test, we get the following code:

int start = 0;

while (s.charAt(start) == ' ' && start < s.length()) {

 start++;

}

But this code has the same flaw we saw before. It is supposed to
prevent problems when start becomes equal to the length of the
string, but when this situation occurs, a
StringIndexOutOfBoundsException will be thrown before the computer
reaches the test on the length of the string. So these tests also have
to be reversed to take advantage of short-circuited evaluation:

int start = 0;

while (start < s.length() && s.charAt(start) == ' ') {

 start++;

}

To combine these lines of code with our previous code, we have to
change the initialization of stop . We no longer want to search from
the front of the string. Instead, we need to initialize stop to be equal
to start . Putting these pieces together, we get the following version
of the method:

public static String firstWord(String s) {

 int start = 0;

 while (start < s.length() && s.charAt(start) == ' ') {

 start++;

 }

 int stop = start;

 while (stop < s.length() && s.charAt(stop) != ' ') {

 stop++;

 }

 return s.substring(start, stop);

}

This version works in all cases, skipping any leading spaces and
returning an empty string if there is no word to return.

boolean Variables and Flags

All if/else statements are controlled by Boolean tests. The tests
can be boolean variables or Boolean expressions. Consider, for
example, the following code:

if (number > 0) {

 System.out.println("positive");

} else {

 System.out.println("not positive");

}

This code could be rewritten as follows:

boolean positive = (number > 0);

if (positive) {

 System.out.println("positive");

} else {

 System.out.println("not positive");

}

Using boolean variables adds to the readability of your programs
because it allows you to give names to tests. Consider the kind of
code you would generate for a dating program. You might have
some integer variables that describe certain attributes of a person:
looks , to store a rough estimate of physical beauty (on a scale of 1–
10); IQ , to store intelligence quotient; income , to store gross annual
income; and snothers , to track intimate friends (“snother” is short for
“significant other”). Given these variables to specify a person’s
attributes, you can develop various tests of suitability. As you are
writing the program, you can use boolean variables to give names to
those tests, adding greatly to the readability of the code:

boolean cute = (looks >= 9);

boolean smart = (IQ > 125);

boolean rich = (income > 100000);

boolean available = (snothers == 0);

boolean awesome = cute && smart && rich && available;

You might find occasion to use a special kind of boolean variable
called a flag. Typically we use flags within loops to record error
conditions or to signal completion. Different flags test different
conditions. As an analogy, consider a referee at a sports game who

watches for a particular illegal action and throws a flag if it happens.
You sometimes hear an announcer saying, “There is a flag down on
the play.”

Let’s introduce a flag into the cumulative sum code we saw in the
previous chapter:

double sum = 0.0;

for (int i = 1; i <= totalNumber; i++) {

 System.out.print(" #" + i + "? ");

 double next = console.nextDouble();

 sum += next;

}

System.out.println("sum = " + sum);

Suppose we want to know whether the sum ever goes negative at
any point. Notice that this situation isn’t the same as the situation in
which the sum ends up being negative. Like a bank account balance,
the sum might switch back and forth between positive and negative.
As you make a series of deposits and withdrawals, the bank will
keep track of whether you overdraw your account along the way.
Using a boolean flag, we can modify the preceding loop to keep track
of whether the sum ever goes negative and report the result after the
loop:

double sum = 0.0;

boolean negative = false;

for (int i = 1; i <= totalNumber; i++) {

 System.out.print(" #" + i + "? ");

 double next = console.nextDouble();

 sum += next;

 if (sum < 0.0) {

 negative = true;

 }

}

System.out.println("sum = " + sum);

if (negative) {

 System.out.println("Sum went negative");

} else {

 System.out.println("Sum never went negative");

}

Notice that the if statement inside the loop does not have an else
because you don’t want to set the flag back to false after a negative
value is seen.

Boolean Zen

In 1974, Robert Pirsig started a cultural trend with his book Zen and
the Art of Motorcycle Maintenance: An Inquiry into Values. A slew of
later books copied the title with Zen and the Art of X, where was
Poker, Knitting, Writing, Foosball, Guitar, Public School Teaching,
Making a Living, Falling in Love, Quilting, Stand-up Comedy, the
SAT, Flower Arrangement, Fly Tying, Systems Analysis, Fatherhood,
Screenwriting, Diabetes Maintenance, Intimacy, Helping, Street
Fighting, Murder, and on and on. There was even a book called Zen
and the Art of Anything.

We now join this cultural trend by discussing Zen and the art of type
boolean . It seems to take a while for many novices to get used to
Boolean expressions. Novices often write overly complex
expressions involving boolean values because they don’t grasp the
simplicity that is possible when you “get” how the boolean type
works.

For example, suppose that you are writing a game-playing program
that involves two-digit numbers, each of which is composed of two
different digits. In other words, the program will use numbers like 42
that are composed of two distinct digits, but not numbers like 6 (only
one digit), 394 (more than two digits), or 22 (both digits are the
same). You might find yourself wanting to test whether a given
number is legal for use in the game. You can restrict yourself to two-
digit numbers with a test like the following one:

n >= 10 && n <= 99

X

You also have to test to make sure that the two digits aren’t the
same. You can get the digits of a two-digit number with the
expressions n / 10 and n % 10 . So you can expand the test to
ensure that the digits aren’t the same:

n >= 10 && n <= 99 && (n / 10 != n % 10)

This test is a good example of a situation in which you could use a
method to capture a complex Boolean expression. Returning a
boolean will allow you to call the method as many times as you want
without having to copy this complex expression each time, and you
can give a name to this computation to make the program more
readable.

Suppose you want to call the method isTwoUniqueDigits . You want
the method to take a value of type int and return true if the int is
composed of two unique digits and false if it is not. So, the method
would look like the following:

public static boolean isTwoUniqueDigits(int n) {

 ...

}

How would you write the body of this method? We’ve already written
the test, so we just have to figure out how to incorporate it into the
method. The method has a boolean return type, so you want it to
return the value true when the test succeeds and the value false
when it fails. You can write the method as follows:

public static boolean isTwoUniqueDigits(int n) {

 if (n >= 10 && n <= 99 && (n % 10 != n / 10)) {

 return true;

 } else {

 return false;

 }

}

This method works, but it is more verbose than it needs to be. The
preceding code evaluates the test that we developed. That
expression is of type boolean , which means that it evaluates to either
true or false . The if/else statement tells the computer to return
true if the expression evaluates to true and to return false if it
evaluates to false . But why use this construct? If the method is
going to return true when the expression evaluates to true and
return false when it evaluates to false , you can just return the
value of the expression directly:

public static boolean isTwoUniqueDigits(int n) {

 return (n >= 10 && n <= 99 && (n % 10 != n / 10));

}

Even the preceding version can be simplified, because the
parentheses are not necessary (although they make it clearer
exactly what the method will return). This code evaluates the test
that we developed to determine whether a number is composed of
two unique digits and returns the result (true when it does, false
when it does not).

Consider an analogy to integer expressions. To someone who
understands Boolean Zen, the if/else version of this method looks
as odd as the following code:

if (x == 1) {

 return 1;

} else if (x == 2) {

 return 2;

} else if (x == 3) {

 return 3;

} else if (x == 4) {

 return 4;

} else if (x == 5) {

 return 5;

}

If you always want to return the value of x , you should just say:

return x;

A similar confusion can occur when students use boolean variables.
In the last section we looked at a variation of the cumulative sum
algorithm that used a boolean variable called negative to keep track
of whether or not the sum ever goes negative. We then used an
if/else statement to print a message reporting the result:

if (negative) {

 System.out.println("Sum went negative");

} else {

 System.out.println("Sum never went negative");

}

Some novices would write this code as follows:

if (negative == true) {

 System.out.println("Sum went negative");

} else {

 System.out.println("Sum never went negative");

}

The comparison is unnecessary because the if/else statement
expects an expression of type boolean to appear inside the
parentheses. A boolean variable is already of the appropriate type,
so we don’t need to test whether it equals true ; it either is true or it
isn’t (in which case it is false). To someone who understands
Boolean Zen, the preceding test seems as redundant as saying:

if ((negative == true) == true) {

 ...

}

Novices also often write tests like the following:

if (negative == false) {

 ...

}

This makes some sense because the test is doing something useful,
in that it switches the meaning of the boolean variable (evaluating to
true if the variable is false and evaluating to false if the variable is
true). But the negation operator is designed to do this kind of
switching of boolean values, so this test is better written as follows:

if (!negative) {

 ...

}

You should get used to reading the exclamation mark as “not”, so
this test would be read as “if not negative.” To those who understand
Boolean Zen, that is a more concise way to express the test than to
test whether negative is equal to false .

Negating Boolean Expressions

Programmers often find themselves needing to form the negation of
a complex Boolean expression. For example, it is often easiest to
reason about a loop in terms of an exit condition that would make us
want to stop the loop, but the while loop requires us to express the
code in terms of a continuation condition. Suppose that you want to
write a loop that keeps prompting the user for an integer until that
integer is a two-digit number. Because two-digit numbers range from

10 to 99, you can use the following lines of code to test whether a
number has exactly two digits:

number >= 10 && number <= 99

To put this in a while loop, we have to turn the test around because
the while loop test is a continuation test. In other words, we want to
stay in the loop while this is not true (while the user has not yet given
us a two-digit number). One approach is to use the logical NOT
operator to negate this expression:

while (!(number >= 10 && number <= 99))

Notice that we need to parenthesize the entire Boolean expression
and then put the NOT operator in front of it. While this approach
works, it is generally considered bad style. It is best to simplify this
expression.

A general approach to simplifying such expressions was formalized
by the British logician Augustus De Morgan. We can apply one of
two rules that are known as De Morgan’s laws.

Table 5.5 shows De Morgan’s laws. Notice that when you negate
a Boolean expression, each operand is negated (p becomes !p and

q becomes !q) and the logical operator flips. Logical OR becomes
logical AND and vice versa when you compute the negation.

Table 5.5 De Morgan’s Laws

We can use the first De Morgan’s law for our two-digit number
program because we are trying to find the negation of an expression
that involves the logical OR operator. Instead of writing:

while (!(number >= 10 && number <= 99))

we can say:

while (number < 10 || number > 99)

Each individual test has been negated and the AND operator has
been replaced with an OR operator.

Let’s look at a second example that involves the other De Morgan’s
law. Suppose that you want to ask the user a question and you want
to force the user to answer either “yes” or “no”. If you have a String
variable called response , you can use the following test to describe
what you want to be true:

response.equals("yes") || response.equals("no")

If we’re writing a loop to keep reading a response until this
expression evaluates to true, then we want to write the loop so that it
uses the negation of this test. So, once again, we could use the NOT
operator for the entire expression:

while (!(response.equals("yes") || response.equals("no")))

Once again it is best to simplify the expression using De Morgan’s
law:

while (!response.equals("yes") && !response.equals("no"))

5.4 User Errors
In the previous chapter, you learned that it is good programming
practice to think about the preconditions of a method and to mention
them in the comments for the method. You also learned that in some
cases your code can throw exceptions if preconditions are violated.

When you are writing interactive programs, the simplest approach is
to assume that the user will provide good input. You can then
document your preconditions and throw exceptions when the user
input isn’t what was expected. In general, though, it’s better to write
programs that don’t make assumptions about user input. You’ve
seen, for example, that the Scanner object can throw an exception if
the user enters the wrong kind of data. It’s preferable to write
programs that can deal with user errors. Such programs are referred
to as being robust.

Robust
Ability of a program to execute even when presented
with illegal data.

In this section we will explore how to write robust interactive
programs. Before you can write robust code, though, you have to
understand some special functionality of the Scanner class.

Scanner Lookahead

The Scanner class has methods that allow you to perform a test
before you read a value. In other words, it allows you to look before
you leap. For each of the “next” methods of the Scanner class, there
is a corresponding “has” method that tells you whether or not you
can perform the given operation.

For example, you will often want to read an int using a Scanner
object. But what if the user types something other than an int?
Scanner has a method called hasNextInt that tells you whether or not
reading an int is currently possible. To determine whether it is
possible, the Scanner object looks at the next token and checks
whether it can be interpreted as an integer.

We tend to interpret certain sequences of characters as particular
types of data, but when we read tokens, they can be interpreted in
different ways. The following program will allow us to explore this
concept:

 1 // Prints the ways a token of input can be read by the

Scanner.

 2 import java.util.*;

 3

 4 public class ExamineInput1 {

 5 public static void main(String[] args) {

 6 System.out.println("This program examines the

ways");

 7 System.out.println("a token can be read.");

 8 System.out.println();

 9

10 Scanner console = new Scanner(System.in);

11

12 System.out.print("token? ");

13 System.out.println(" hasNextInt = " +

14 console.hasNextInt());

15 System.out.println(" hasNextDouble = " +

16 console.hasNextDouble());

17 System.out.println(" hasNext = " +

console.hasNext());

18 }

19 }

Let’s look at a few sample executions. Here is the output of the
program when we enter the token 348 :

This program examines the ways

a token can be read.

token? 348

 hasNextInt = true

 hasNextDouble = true

 hasNext = true

As you’d expect, the call on hasNextInt returns true , which means
that we could interpret this token as an integer. The Scanner would
also allow us to interpret this token as a double , so hasNextDouble
also returns true . But notice that hasNext() returns true as well.
That result means that we could call the next method to read in this
token as a String .

Here’s another execution, this time for the token 348.2 :

This program examines the ways

a token can be read.

token? 348.2

 hasNextInt = false

 hasNextDouble = true

 hasNext = true

This token cannot be interpreted as an int , but it can be interpreted
as a double or a String . Finally, consider this execution for the token
hello :

This program examines the ways

a token can be read.

token? hello

 hasNextInt = false

 hasNextDouble = false

 hasNext = true

The token hello can’t be interpreted as an int or double ; it can only
be interpreted as a String .

Handling User Errors

Consider the following code fragment:

Scanner console = new Scanner(System.in);

System.out.print("How old are you? ");

int age = console.nextInt();

What if the user types something that is not an integer? If that
happens, the Scanner will throw an exception on the call to nextInt .
We saw in the previous section that we can test whether or not the
next token can be interpreted as an integer by using the hasNextInt
method. So, we can test before reading an int whether the user has
typed an appropriate value.

If the user types something other than an integer, we want to discard
the input, print out some kind of error message, and prompt for a
second input. We want this code to execute in a loop so that we
keep discarding input and generating error messages as necessary
until the user enters legal input.

Here is a first attempt at a solution in pseudocode:

while (user hasn't given us an integer) {

 prompt.

 discard input.

 generate an error message.

}

read the integer.

This reflects what we want to do, in general. We want to keep
prompting, discarding, and generating error messages as long as the
input is illegal, and when a legal value is entered, we want to read
the integer. Of course, in that final case we don’t want to discard the
input or generate an error message. In other words, the last time
through the loop we want to do just the first of these three steps
(prompting, but not discarding and not generating an error
message). This is another classic fencepost problem, and we can
solve it in the usual way by putting the initial prompt before the loop
and changing the order of the operations within the loop:

prompt.

while (user hasn't given us an integer) {

 discard input.

 generate an error message.

 prompt.

}

read the integer.

This pseudocode is fairly easy to turn into actual Java code:

Scanner console = new Scanner(System.in);

System.out.print("How old are you? ");

while (!console.hasNextInt()) {

 console.next(); // to discard the input

 System.out.println("Not an integer; try again.");

 System.out.print("How old are you? ");

}

int age = console.nextInt();

In fact, this is such a common operation that it is worth turning into a
static method:

// prompts until a valid number is entered

public static int getInt(Scanner console, String prompt) {

 System.out.print(prompt);

 while (!console.hasNextInt()) {

 console.next(); // to discard the input

 System.out.println("Not an integer; try again.");

 System.out.print(prompt);

 }

 return console.nextInt();

}

Using this method, we can rewrite our original code as follows:

Scanner console = new Scanner(System.in);

int age = getInt(console, "How old are you? ");

When you execute this code, the interaction looks like this:

How old are you? what?

Not an integer; try again.

How old are you? 18.4

Not an integer; try again.

How old are you? ten

Not an integer; try again.

How old are you? darn!

Not an integer; try again.

How old are you? help

Not an integer; try again.

How old are you? 19

5.5 Assertions and Program Logic
Logicians concern themselves with declarative statements called
assertions.

Assertion
A declarative sentence that is either true or false.

The following statements are all assertions:

 equals 4.
The sun is larger than the Earth.

It was raining.
The rain in Spain falls mainly on the plain.

The following statements are not assertions (the first is a question
and the second is a command):

How much do you weigh?
Take me home.

2 + 2

x > 45.

Some assertions are true or false depending upon their context:

 (The validity of this statement depends on the value of
)

It was raining. (The validity of this statement depends on the time
and location.)

You can pin down whether they are true or false by providing a
context:

When
On July 4, 1776, in Philadelphia, it was raining.

To write programs correctly and efficiently, you must learn to make
assertions about your programs and to understand the contexts in
which those assertions will be true. For example, if you are trying to
obtain a nonnegative number from the user, you want the assertion
“Number is nonnegative” to be true. You can use a simple prompt
and read:

System.out.print("Please give me a nonnegative number— —> ");

double number = console.nextDouble();

// is number nonnegative?

But the user can ignore your request and input a negative number
anyway. In fact, users often input values that you don’t expect,

x > 45.

x.

x = 13, x > 45.

usually because they are confused. Given the uncertainty of user
input, this particular assertion may sometimes be true and
sometimes false. But something later in the program may depend on
the assertion being true. For example, if you are going to take the
square root of that number, you must be sure the number is
nonnegative. Otherwise, you might end up with a bad result.

Using a loop, you can guarantee that the number you get is
nonnegative:

System.out.print("Please give me a nonnegative number— —> ");

double number = console.nextDouble();

while (number < 0.0) {

 System.out.print("That is a negative number. Try again— —>

");

 number = console.nextDouble();

}

// is number nonnegative?

You know that number will be nonnegative after the loop; otherwise,
the program would not exit the while loop. As long as a user gives
negative values, your program stays in the while loop and continues
to prompt for input.

This doesn’t mean that number should be nonnegative after the loop.
It means that number will be nonnegative. By working through the
logic of the program, you can see that this is a certainty, an assertion
of which you are sure. You could even prove it if need be. Such an
assertion is called a provable assertion.

Provable Assertion
An assertion that can be proven to be true at a
particular point in program execution.

Provable assertions help to identify unnecessary bits of code.
Consider the following statements:

int x = 0;

if (x == 0) {

 System.out.println("This is what I expect.");

} else {

 System.out.println("How can that be?");

}

The if/else construct is not necessary. You know what the
assignment statement does, so you know that it sets x to 0 . Testing
whether x is 0 is as unnecessary as saying, “Before I proceed, I’m
going to check that equals 4.” Because the if part of this
if/else statement is always executed, you can prove that the
following lines of code always do the same thing as the preceding
lines:

int x = 0;

System.out.println("This is what I expect.");

This code is simpler and, therefore, better. Programs are complex
enough without adding unnecessary code.

The concept of assertions has become so popular among software
practitioners that many programming languages provide support for
testing assertions. Java added support for testing assertions starting
with version 1.4 of the language. You can read more about Java’s
assert statement in Appendix C .

Reasoning about Assertions

The focus on assertions comes out of a field of computer science
known as formal verification.

2 + 2

Formal Verification
A field of computer science that involves reasoning
about the formal properties of programs to prove the
correctness of a program.

For example, consider the properties of the simple if statement:

if (<test>) {

 // test is always true here

 ...

}

You enter the body of the if statement only if the test is true, which
is why you know that the test must be true if that particular line is
reached in program execution. You can draw a similar conclusion
about what is true in an if/else statement:

if (<test>) {

 // test is always true here

 ...

} else {

 // test is never true here

 ...

}

You can draw a similar conclusion about what is true inside the body
of a while loop:

while (<test>) {

 // test is always true here

 ...

}

But in the case of the while loop, you can draw an even stronger
conclusion. You know that as long as the test evaluates to true ,
you’ll keep going back into the loop. Thus, you can conclude that
after the loop is done executing, the test can no longer be true:

while (<test>) {

 // test is always true here

 ...

}

// test is never true here

The test can’t be true after the loop because if it had been true, the
program would have executed the body of the loop again.

These observations about the properties of if statements, if/else
statements, and while loops provide a good start for proving certain
assertions about programs. But often, proving assertions requires a
deeper analysis of what the code actually does. For example,
suppose you have a variable x of type int and you execute the
following if statement:

if (x < 0) {

 // x < 0 is always true here

 x = –x;

}

// but what about x < 0 here?

You wouldn’t normally be able to conclude anything about x being
less than 0 after the if statement, but you can draw a conclusion if
you think about the different cases. If x was greater than or equal to
0 before the if statement, it will still be greater than or equal to 0
after the if statement. And if x was less than 0 before the if

statement, it will be equal to –x after. When x is less than 0 , –x is
greater than 0 . Thus, in either case, you know that after the if
statement executes, x will be greater than or equal to 0 .

Programmers naturally apply this kind of reasoning when writing
programs. Computer scientists are trying to figure out how to do this
kind of reasoning in a formal, verifiable way.

A Detailed Assertions Example

To explore assertions further, let’s take a detailed look at a code
fragment and a set of assertions we might make about the fragment.
Consider the following method:

public static void printCommonPrefix(int x, int y) {

 int z = 0;

 // Point A

 while (x != y) {

 // Point B

 z++;

 // Point C

 if (x > y) {

 // Point D

 x = x / 10;

 } else {

 // Point E

 y = y / 10;

 }

 // Point F

 }

 // Point G

 System.out.println("common prefix = " + x);

 System.out.println("digits discarded = " + z);

}

This method finds the longest sequence of leading digits that two
numbers have in common. For example, the numbers 32845 and
328929343 each begin with the prefix 328. This method will report
that prefix and will also report the total number of digits that follow
the common prefix and that are discarded.

We will examine the program to check whether various assertions
are always true, never true, or sometimes true and sometimes false
at various points in program execution. The comments in the method
indicate the points of interest. The assertions we will consider are:

x > y

x == y

z == 0

Normally computer scientists write assertions in mathematical
notation, as in z = 0 , but we will use a Java expression to
distinguish this assertion of equality from the practice of assigning a
value to the variable.

We can record our answers in a table with the words “always,”
“never,” or “sometimes.” Our table will look like the following one:

Let’s start at point A, which appears near the beginning of the
method’s execution:

public static void printCommonPrefix(int x, int y) {

 int z = 0;

 // Point A

The variables x and y are parameters and get their values from the
call to the method. Many calls are possible, so we don’t really know
anything about the values of x and y . Thus, the assertion x > y
could be true but doesn’t have to be. The assertion is sometimes

true, sometimes false at point A. Likewise, the assertion x == y
could be true depending on what values are passed to the method,
but it doesn’t have to be true. However, we initialize the local variable
z to 0 just before point A, so the assertion z == 0 will always be
true at that point in execution. So, we can fill in the first line of the
table as follows:

Point B appears just inside the while loop:

while (x != y) {

 // Point B

 z++;

 ...

}

We get to point B only by entering the loop, which means that the
loop test must have evaluated to true . In other words, at point B it
will always be true that x is not equal to y , so the assertion x == y
will never be true at that point. But we don’t know which of the two is
larger. Therefore, the assertion x > y is sometimes true and
sometimes false.

You might think that the assertion z == 0 would always be true at
point B because we were at point A just before we were at point B,
but that is not the right answer. Remember that point B is inside a

while loop. On the first iteration of the loop we will have been at
point A just before reaching point B, but on later iterations of the loop
we will have been inside the loop just before reaching point B. And if
you look at the line of code just after point B, you will see that it
increments z . There are no other modifications to the variable z
inside the loop. Therefore, each time the body of the loop executes,
z will increase by 1. So, z will be 0 at point B the first time through
the loop, but it will be 1 on the second iteration, 2 on the third
iteration, and so forth. Therefore, the right answer for the assertion z
== 0 at point B is that it is sometimes true, sometimes false. So, the
second line of the table should look like this:

Point C is right after the increment of the variable z . There are no
changes to the values of x and y between point B and point C, so
the same answers apply at point C for the assertions x > y and x ==
y . The assertion z == 0 will never be true after the increment, even
though z starts at 0 before the loop begins because there are no
other manipulations of the variable inside the loop; once it is
incremented, it will never be 0 again. Therefore, we can fill in the
table for point C as follows:

Points D and E are part of the if/else statement inside the while
loop, so we can evaluate them as a pair. The if/else statement
appears right after point C:

// Point C

if (x > y) {

 // Point D

 x = x / 10;

} else {

 // Point E

 y = y / 10;

}

No variables are changed between point C and points D and E. Java
performs a test and branches in one of two directions. The if/else
test determines whether x is greater than y . If the test is true , we
go to point D. If not, we go to point E. So, for the assertion x > y , we
know it is always true at point D and never true at point E. The
assertion x == y is a little more difficult to work out. We know it can
never be true at point D, but could it be true at point E? Solely on the
basis of the if/else test, the answer is yes. But remember that at
point C the assertion could never be true. The values of x and y
have not changed between point C and point E, so it still can never
be true.

As for the assertion z == 0 , the variable z hasn’t changed between
point C and points D and E, and z is not included in the test. So
whatever we knew about z before still holds. Therefore, the right
answers to fill in for points D and E are as follows:

Point F appears after the if/else statement. To determine the
relationship between x and y at point F, we have to look at how the
variables have changed. The if/else statement either divides x by
10 (if it is the larger value) or divides y by 10 (if it is the larger value).
So, we have to ask whether it is possible for the assertion x > y to
be true at point F. The answer is yes. For example, x might have
been 218 and y might have been 6 before the if/else statement. In
that case, x would now be 21 , which is still larger than y . But does it
have to be larger than y? Not necessarily. The values might have
been reversed, in which case y will be larger than x . So, that
assertion is sometimes true and sometimes false at point F.

What about the assertion x == y? We know it doesn’t have to be
true because we have seen cases in which x is greater than y or y
is greater than x . Is it possible for it to be true? Are there any values
of x and y that would lead to this outcome? Consider the case in
which x is 218 and y is 21 . Then we would divide x by 10 to get 21 ,
which would equal y . So, this assertion also is sometimes true and
sometimes false.

There was no change to z between points D and E and point F, so
we simply carry our answer down from the previous columns. So we
would fill in the table as follows for point F:

Point G appears after the while loop:

while (x != y) {

 ...

}

// Point G

We can escape the while loop only if x becomes equal to y . So, at
point G we know that the assertion x == y is always true. That
means that the assertion x > y can never be true. The assertion z
== 0 is a little tricky. At point F it was never true, so you might
imagine that at point G it can never be true. But we weren’t
necessarily at point F just before we reached point G. We might
never have entered the while loop at all, in which case we would
have been at point A just before point G. At point A the variable z
was equal to 0 . Therefore, the right answer for this assertion is that
it is sometimes true, sometimes false at point G. The final row of our
table thus looks like this:

When we combine this information, we can fill in our table as follows:

5.6 Case Study: NumberGuess
If we combine indefinite loops, the ability to check for user errors,
and random number generation, it’s possible for us to create
guessing games in which the computer thinks of random numbers
and the user tries to guess them. Let’s consider an example game
with the following rules. The computer thinks of a random two-digit
number but keeps it secret from the player. We’ll allow the program
to accept positive numbers only, so the acceptable range of numbers
is 00 through 99 inclusive. The player will try to guess the number
the computer picked. If the player guesses correctly, the program will
report the number of guesses that the player made.

To make the game more interesting, the computer will give the player
a hint each time the user enters an incorrect guess. Specifically, the
computer will tell the player how many digits from the guess are
contained in the correct answer. The order of the digits doesn’t affect
the number of digits that match. For example, if the correct number
is 57 and the player guesses 73 , the computer will report one
matching digit, because the correct answer contains a 7 . If the
player next guesses 75 , the computer will report two matching digits.
At this point the player knows that the computer’s number must be
57 , because 57 is the only two-digit number whose digits match
those of 75 .

Since the players will be doing a lot of console input, it’s likely that
they will type incorrect numbers or nonnumeric tokens by mistake.
We’d like our guessing-game program to be robust against user
input errors.

Initial Version without Hinting

In previous chapters, we’ve talked about the idea of iterative
enhancement. Since this is a challenging program, we’ll tackle it in
stages. One of the hardest parts of the program is giving correct
hints to the player. For now, we’ll simply write a game that tells
players whether they are correct or incorrect on each guess and,
once the game is done, reports the number of guesses the players
made. The program won’t be robust against user input errors yet;
that can be added later. To further simplify the game, rather than
having the computer choose a random number, we’ll choose a
known value for the number so that the code can be tested more
easily.

Since we don’t know how many tries a player will need before
correctly guessing the number, it seems that the main loop for this
game will have to be a while loop. It might be tempting to write the
code to match the following pseudocode:

// flawed number guess pseudocode

think of a number.

while (user has not guessed the number) {

 prompt and read a guess.

 report whether the guess was correct or incorrect.

}

But the problem with this pseudocode is that you can’t start the
while loop if you don’t have a guess value from the player yet. The
following code doesn’t compile, because the variable guess isn’t
initialized when the loop begins:

// this code doesn't compile

int numGuesses = 0;

int number = 42; // computer always picks same number

int guess;

while (guess ! = number) {

 System.out.print("Your guess? ");

 guess = console.nextInt();

 numGuesses++;

 System.out.println("Incorrect.");

}

System.out.println("You got it right in " + numGuesses + "

tries.");

It turns out that the game’s main guess loop is a fencepost loop,
because after each incorrect guess the program must print an
“Incorrect” message (and later a hint). For guesses, there are

 hints. Recall the following general pseudocode for fencepost
loops:

plant a post.

for (the length of the fence) {

 attach some wire.

 plant a post.

}

This particular problem is an indefinite fencepost using a while loop.
Let’s look at some more specific pseudocode. The “posts” are the
prompts for guesses, and the “wires” are the “Incorrect” messages:

// specific number guess pseudocode

think of a number.

ask for the player's initial guess.

while (the guess is not the correct number) {

 inform the player that the guess was incorrect.

 ask for another guess.

}

report the number of guesses needed.

n

n − 1

This pseudocode leads us to write the following Java program. Note
that the computer always picks the value 42 in this version of the
program:

 1 // Two-digit guessing game without hinting.

 2 import java.util.*;

 3

 4 public class NumberGuess1 {

 5 public static void main(String[] args) {

 6 Scanner console = new Scanner(System.in);

 7 int number = 42; // always picks the same number

 8

 9 System.out.print("Your guess? ");

10 int guess = console.nextInt();

11 int numGuesses = 1;

12

13 while (guess != number) {

14 System.out.println("Incorrect.");

15 System.out.print("Your guess? ");

16 guess = console.nextInt();

17 numGuesses++;

18 }

19

20 System.out.println("You got it right in " +

21 numGuesses + " tries.");

22 }

23 }

We can test our initial program to verify the code we’ve written so far.
A sample dialogue looks like this:

Your guess? 65 Incorrect.

Your guess? 12 Incorrect.

Your guess? 34 Incorrect.

Your guess? 42 You got it right in 4 tries.

Randomized Version with Hinting

Now that we’ve tested the code to make sure our main game loops,
let’s make the game random by choosing a random value between
00 and 99 inclusive. To do so, we’ll create a Random object and call
its nextInt method, specifying the maximum value. Remember that
the value passed to nextInt should be one more than the desired
maximum, so we’ll pass 100 :

// pick a random number between 00 and 99 inclusive

Random rand = new Random();

int number = rand.nextInt(100);

The next important feature our game should have is to give a hint
when the player makes an incorrect guess. The tricky part is figuring
out how many digits of the player’s guess match the correct number.
Since this code is nontrivial to write, let’s make a method called
matches that does the work for us. To figure out how many digits
match, the matches method needs to use the guess and the correct
number as parameters. It will return the number of matching digits.
Therefore, its header should look like this:

public static int matches(int number, int guess) {

 ...

}

Our algorithm must count the number of matching digits. Either digit
from the guess can match either digit from the correct number. Since
the digits are somewhat independent—that is, whether the ones digit
of the guess matches is independent of whether the tens digit
matches—we should use sequential if statements rather than an
if/else statement to represent these conditions.

The digit-matching algorithm has one special case. If the player
guesses a number such as 33 that contains two of the same digit,

and if that digit is contained in the correct answer (say the correct
answer is 37), it would be misleading to report that two digits match.
It makes more sense for the program to report one matching digit. To
handle this case, our algorithm must check whether the guess
contains two of the same digit and consider the second digit of the
guess to be a match only if it is different from the first.

Here is the pseudocode for the algorithm:

matches = 0.

if (the first digit of the guess matches

 either digit of the correct number) {

 we have found one match.

}

if (the second digit of the guess is different from the first

digit,

 AND it matches either digit of the correct number) {

 we have found another match.

}

We need to be able to split the correct number and the guess into
the two digits that compose each so that we can compare them.
Recall from the Boolean Zen section that we can use the division
and remainder operators to express the digits of any two-digit
number n as n / 10 for the tens digit and n % 10 for the ones digit.

Let’s write the statement that compares the tens digit of the guess
against the correct answer. Since the tens digit of the guess can
match either of the correct number’s digits, we’ll use an OR test with
the || operator:

int matches = 0;

// check the first digit for a match

if (guess / 10 == number / 10 || guess / 10 == number % 10) {

 matches++;

}

Writing the statement that compares the ones digit of the guess
against the correct answer is slightly trickier, because we have to
take into consideration the special case described previously (in
which both digits of the guess are the same). We’ll account for this
by counting the second digit as a match only if it is unique and
matches a digit from the correct number:

// check the second digit for a match

if (guess / 10 ! = guess % 10 &&

 (guess % 10 == number / 10 || guess % 10 == number %

10)) {

 matches++;

}

The following version of the program uses the hinting code we’ve
just written. It also adds the randomly chosen number and a brief
introduction to the program:

 1 // Two-digit number-guessing game with hinting.

 2 import java.util.*;

 3

 4 public class NumberGuess2 {

 5 public static void main(String[] args) {

 6 System.out.println("Try to guess my two-digit");

 7 System.out.println("number, and I'll tell you how");

 8 System.out.println("many digits from your guess");

 9 System.out.println("appear in my number.");

10 System.out.println();

11

12 Scanner console = new Scanner(System.in);

13

14 // pick a random number from 0 to 99 inclusive

15 Random rand = new Random();

16 int number = rand.nextInt(100);

17

18 // get first guess

19 System.out.print("Your guess? ");

20 int guess = console.nextInt();

21 int numGuesses = 1;

22

23 // give hints until correct guess is reached

24 while (guess != number) {

25 int numMatches = matches(number, guess);

26 System.out.println("Incorrect (hint: " +

27 numMatches + " digits

match)");

28 System.out.print("Your guess? ");

29 guess = console.nextInt();

30 numGuesses++;

31 }

32

33 System.out.println("You got it right in " +

34 numGuesses + " tries.");

35 }

36

37 // returns how many digits from the given

38 // guess match digits from the given correct number

39 public static int matches(int number, int guess) {

40 int numMatches = 0;

41

42 if (guess / 10 == number / 10 ||

43 guess / 10 == number % 10) {

44 numMatches++;

45 }

46

47 if (guess / 10 ! = guess % 10 &&

48 (guess % 10 == number / 10 ||

49 guess % 10 == number % 10)) {

50 numMatches++;

51 }

52

53 return numMatches;

54 }

55 }

The following is a sample log of the program execution:

Try to guess my two-digit

number, and I'll tell you how

many digits from your guess

appear in my number.

Your guess? 13

Incorrect (hint: 0 digits match)

Your guess? 26

Incorrect (hint: 0 digits match)

Your guess? 78

Incorrect (hint: 1 digits match)

Your guess? 79

Incorrect (hint: 1 digits match)

Your guess? 70

Incorrect (hint: 2 digits match)

Your guess? 7 You got it right in 6 tries.

Final Robust Version

The last major change we’ll make to our program is to make it robust
against invalid user input. There are two types of bad input that we
may see:

1. Nonnumeric tokens.
2. Numbers outside the range of 0–99.

Let’s deal with these cases one at a time. Recall the getInt method
that was discussed earlier in this chapter. It repeatedly prompts the
user for input until an integer is typed. Here is its header:

public static int getInt(Scanner console, String prompt)

We can make use of getInt to get an integer between 0 and 99 .
We’ll repeatedly call getInt until the integer that is returned is within
the acceptable range. The postcondition we require before we can
stop prompting for guesses is:

guess >= 0 && guess <= 99

To ensure that this postcondition is met, we can use a while loop
that tests for the opposite condition. Using De Morgan’s law, we
know that the opposite of the previous test would be the following:

guess < 0 || guess > 99

The reversed test is used in our new getGuess method to get a valid
guess between 0 and 99. Now whenever we want to read user input
in the main program, we’ll call getGuess . It’s useful to separate the
input prompting in this way, to make sure that we don’t accidentally
count invalid inputs as guesses.

The final version of our code is the following:

 1 // Robust two-digit number-guessing game with hinting.

 2 import java.util.*;

 3

 4 public class NumberGuess3 {

 5 public static void main(String[] args) {

 6 giveIntro();

 7 Scanner console = new Scanner(System.in);

 8

 9 // pick a random number from 0 to 99 inclusive

10 Random rand = new Random();

11 int number = rand.nextInt(100);

12

13 // get first guess

14 int guess = getGuess(console);

15 int numGuesses = 1;

16

17 // give hints until correct guess is reached

18 while (guess != number) {

19 int numMatches = matches(number, guess);

20 System.out.println("Incorrect (hint: " +

21 numMatches + " digits

match)");

22 guess = getGuess(console);

23 numGuesses++;

24 }

25

26 System.out.println("You got it right in " +

27 numGuesses + " tries.");

28 }

29

30 public static void giveIntro() {

31 System.out.println("Try to guess my two-digit");

32 System.out.println("number, and I'll tell you how");

33 System.out.println("many digits from your guess");

34 System.out.println("appear in my number.");

35 System.out.println();

36 }

37

38 // returns # of matching digits between the two numbers

39 // pre: number and guess are unique two-digit numbers

40 public static int matches(int number, int guess) {

41 int numMatches = 0;

42

43 if (guess / 10 == number / 10 ||

44 guess / 10 == number % 10) {

45 numMatches++;

46 }

47

48 if (guess / 10 != guess % 10 &&

49 (guess % 10 == number / 10 ||

50 guess % 10 == number % 10)) {

51 numMatches++;

52 }

53

54 return numMatches;

55 }

56

57 // prompts until a number in proper range is entered

58 // post: guess is between 0 and 99

59 public static int getGuess(Scanner console) {

60 int guess = getInt(console, "Your guess? ");

61 while (guess < 0 || guess >= 100) {

62 System.out.println("Out of range; try again.");

63 guess = getInt(console, "Your guess? ");

64 }

65

66 return guess;

67 }

68

69 // prompts until a valid number is entered

70 public static int getInt(Scanner console, String prompt)

{

71 System.out.print(prompt);

72 while (!console.hasNextInt()) {

73 console.next(); // to discard the input

74 System.out.println("Not an integer; try

again.");

75 System.out.print(prompt);

76 }

77 return console.nextInt();

78 }

79 }

The following sample log of execution demonstrates the new input
robustness of this program:

Try to guess my two-digit

number, and I'll tell you how

many digits from your guess

appear in my number.

Your guess? 12

Incorrect (hint: 0 digits match)

Your guess? okay

Not an integer; try again.

Your guess? 34

Incorrect (hint: 1 digits match)

Your guess? 35

Incorrect (hint: 1 digits match)

Your guess? 67

Incorrect (hint: 0 digits match)

Your guess? 89

Incorrect (hint: 0 digits match)

Your guess? 3

Incorrect (hint: 2 digits match)

Your guess? 300

Out of range; try again.

Your guess? 30 You got it right in 7 tries.

Notice that we’re careful to comment our code to document relevant
preconditions and postconditions of our methods. The precondition
of the matches method is that the two parameters are unique two-
digit numbers. The postcondition of our new getGuesses method is
that it returns a guess between 0 and 99 inclusive. Also, note that
the program does not count invalid input (okay and 300 in the
previous sample log of execution) as guesses.

Chapter Summary
Java has a while loop in addition to its for loop. The while loop can
be used to write indefinite loops that keep executing until some
condition fails.

Priming a loop means setting the values of variables that will be
used in the loop test, so that the test will be sure to succeed the first
time and the loop will execute.

Java can generate pseudorandom numbers using objects of the
Random class.

The do/while loop is a variation on the while loop that performs its
loop test at the end of the loop body. A do/while loop is guaranteed
to execute its body at least once.

A fencepost loop executes a “loop-and-a-half” by executing part of a
loop’s body once before the loop begins.

A sentinel loop is a kind of fencepost loop that repeatedly processes
input until it is passed a particular value, but does not process the
special value.

The boolean primitive type represents logical values of either true or
false . Boolean expressions are used as tests in if statements and
loops. Boolean expressions can use relational operators such as <
or != as well as logical operators such as && or ! .

Complex Boolean tests with logical operators such as && or || are
evaluated lazily: If the overall result is clear from evaluating the first
part of the expression, later parts are not evaluated. This is called
short-circuited evaluation.

Boolean variables (sometimes called “flags”) can store Boolean
values and can be used as loop tests.

A complex Boolean expression can be negated using a set of rules
known as De Morgan’s laws, in which each sub-expression is
negated and all AND and OR operations are swapped.

A robust program checks for errors in user input. Better robustness
can be achieved by looping and reprompting the user to enter input

when he or she types bad input. The Scanner class has methods like
hasNextInt that you can use to “look ahead” for valid input.

Assertions are logical statements about a particular point in a
program. Assertions are useful for proving properties about how a
program will execute. Two useful types of assertions are
preconditions and postconditions, which are claims about what will
be true before and after a method executes.

Self-Check Problems

Section 5.1: The while Loop

1. For each of the following while loops, state how many times
the loop will execute its body. Remember that “zero,” “infinity,”
and “unknown” are legal answers. Also, what is the output of
the code in each case?

a.
int x = 1;

while (x < 100) {

 System.out.print(x + " ");

 x += 10;

}

b.
int max = 10;

while (max < 10) {

 System.out.println("count down: " + max);

 max––;

}

c.
int x = 250;

while (x % 3 != 0) {

 System.out.println(x);

}

d.
int x = 2;

while (x < 200) {

 System.out.print(x + " ");

 x *= x;

}

e.
String word = "a";

while (word.length() < 10) {

 word = "b" + word + "b";

}

System.out.println(word);

f.
int x = 100;

while (x > 0) {

 System.out.println(x / 10);

 x = x / 2;

}

2. Convert each of the following for loops into an equivalent
while loop:

a.
for (int n = 1; n <= max; n++) {

 System.out.println(n);

}

b.
int total = 25;

for (int number = 1; number <= (total / 2);

number++) {

 total = total – number;

 System.out.println(total + " " + number);

}

c.
for (int i = 1; i <= 2; i++) {

 for (int j = 1; j <= 3; j++) {

 for (int k = 1; k <= 4; k++) {

 System.out.print("*");

 }

 System.out.print("!");

 }

 System.out.println();

}

d.
int number = 4;

for (int count = 1; count <= number; count++) {

 System.out.println(number);

 number = number / 2;

}

3. Consider the following method:

public static void mystery(int x) {

 int y = 1;

 int z = 0;

 while (2 * y <= x) {

 y = y * 2;

 z++;

 }

 System.out.println(y + " " + z);

}

For each of the following calls, indicate the output that the
preceding method produces:

mystery(1);

mystery(6);

mystery(19);

mystery(39);

mystery(74);

4. Consider the following method:

public static void mystery(int x) {

 int y = 0;

 while (x % 2 == 0) {

 y++;

 x = x / 2;

 }

 System.out.println(x + " " + y);

}

For each of the following calls, indicate the output that the
preceding method produces:

mystery(19);

mystery(42);

mystery(48);

mystery(40);

mystery(64);

5. Consider the following code:

Random rand = new Random();

int a = rand.nextInt(100);

int b = rand.nextInt(20) + 50;

int c = rand.nextInt(20 + 50);

int d = rand.nextInt(100) – 20;

int e = rand.nextInt(10) * 4;

What range of values can each variable (a , b , c , d , and e)
have?

6. Write code that generates a random integer between 0 and
10 inclusive.

7. Write code that generates a random odd integer (not divisible
by 2) between 50 and 99 inclusive.

8. For each of the do/while loops that follow, state the number of
times that the loop will execute its body. Remember that
“zero,” “infinity,” and “unknown” are legal answers. Also, what
is the output of the code in each case?

a.
int x = 1;

do {

 System.out.print(x + " ");

 x = x + 10;

} while (x < 100);

b.
int max = 10;

do {

 System.out.println("count down: " + max);

 max––;

} while (max < 10);

c.
int x = 250;

do {

 System.out.println(x);

} while (x % 3 != 0);

d.
int x = 100;

do {

 System.out.println(x);

 x = x / 2;

} while (x % 2 == 0);

e.
int x = 2;

do {

 System.out.print(x + " ");

 x *= x;

} while (x < 200);

f.
String word = "a";

do {

 word = "b" + word + "b";

} while (word.length() < 10);

System.out.println(word);

g.
int x = 100;

do {

 System.out.println(x / 10);

 x = x / 2;

} while (x > 0);

h.
String str = "/\\";

do {

 str += str;

} while (str.length() < 10);

System.out.println(str);

9. Write a do/while loop that repeatedly prints a certain
message until the user tells the program to stop. The
do/while is appropriate because the message should always
be printed at least one time, even if the user types n after the
first message appears. The message to be printed is as
follows:

She sells seashells by the seashore.

Do you want to hear it again? y

She sells seashells by the seashore.

Do you want to hear it again? y

She sells seashells by the seashore.

Do you want to hear it again? n

10. Write a method called zeroDigits that accepts an integer
parameter and returns the number of digits in the number that
have the value 0. For example, the call zeroDigits(5024036)
should return 2 , and zeroDigits(743) should return 0 . The
call zeroDigits(0) should return 1 . (We suggest you use a
do/while loop in your solution.)

11. Write a do/while loop that repeatedly prints random numbers
between 0 and 1000 until a number above 900 is printed. At
least one line of output should always be printed, even if the
first random number is above 900 . Here is a sample
execution:

Random number: 235

Random number: 15

Random number: 810

Random number: 147

Random number: 915

Section 5.2: Fencepost Algorithms

12. Consider the flawed method printLetters that follows, which
accepts a String as its parameter and attempts to print the
letters of the String , separated by dashes. For example, the
call of printLetters("Rabbit") should print R-a-b-b-i-t . The
following code is incorrect:

public static void printLetters(String text) {

 for (int i = 0; i < text.length(); i++) {

 System.out.print(text.charAt(i) + "–");

 }

 System.out.println(); // to end the line of output

}

What is wrong with the code? How can it be corrected to
produce the desired behavior?

13. Write a sentinel loop that repeatedly prompts the user to enter
a number and, once the number –1 is typed, displays the
maximum and minimum numbers that the user entered. Here
is a sample dialogue:

Type a number (or –1 to stop): 5

Type a number (or –1 to stop): 2

Type a number (or –1 to stop): 17

Type a number (or –1 to stop): 8

Type a number (or –1 to stop): –1

Maximum was 17

Minimum was 2

If –1 is the first number typed, no maximum or minimum
should be printed. In this case, the dialogue would look like
this:

Type a number (or –1 to stop): –1

Section 5.3: The boolean Type

14. Consider the following variable declarations:

int x = 27;

int y = –1;

int z = 32;

boolean b = false;

What is the value of each of the following Boolean
expressions?

a. !b
b. b || true
c. (x > y) && (y > z)
d. (x == y) || (x <= z)
e. !(x % 2 == 0)
f. (x % 2 != 0) && b

g. b && !b
h. b || !b
i. (x < y) == b
j. !(x / 2 == 13) || b || (z * 3 == 96)
k. (z < x) == false
l. !((x > 0) && (y < 0))

15. Write a method called isVowel that accepts a character as
input and returns true if that character is a vowel (a, e, i, o, or
u). For an extra challenge, make your method case-
insensitive.

16. The following code attempts to examine a number and return
whether that number is prime (i.e., has no factors other than 1
and itself). A flag named prime is used. However, the Boolean
logic is not implemented correctly, so the method does not
always return the correct answer. In what cases does the
method report an incorrect answer? How can the code be
changed so that it will always return a correct result?

public static boolean isPrime(int n) {

 boolean prime = true;

 for (int i = 2; i < n; i++) {

 if (n % i == 0) {

 prime = false;

 } else {

 prime = true;

 }

 }

 return prime;

}

17. The following code attempts to examine a String and return
whether it contains a given letter. A flag named found is used.

However, the Boolean logic is not implemented correctly, so
the method does not always return the correct answer. In
what cases does the method report an incorrect answer? How
can the code be changed so that it will always return a correct
result?

public static boolean contains(String str, char ch) {

 boolean found = false;

 for (int i = 0; i < str.length(); i++) {

 if (str.charAt(i) == ch) {

 found = true;

 } else {

 found = false;

 }

 }

 return found;

}

18. Using “Boolean Zen,” write an improved version of the
following method, which returns whether the given String
starts and ends with the same character:

public static boolean startEndSame(String str) {

 if (str.charAt(0) == str.charAt(str.length() – 1)) {

 return true;

 } else {

 return false;

 }

}

19. Using “Boolean Zen,” write an improved version of the
following method, which returns whether the given number of
cents would require any pennies (as opposed to being an
amount that could be made exactly using coins other than
pennies):

public static boolean hasPennies(int cents) {

 boolean nickelsOnly = (cents % 5 == 0);

 if (nickelsOnly == true) {

 return false;

 } else {

 return true;

 }

}

20. Consider the following method:

public static int mystery(int x, int y) {

 while (x != 0 && y != 0) {

 if (x < y) {

 y –= x;

 } else {

 x –= y;

 }

 }

 return x + y;

}

For each of the following calls, indicate the value that is
returned:

mystery(3, 3)

mystery(5, 3)

mystery(2, 6)

mystery(12, 18)

mystery(30, 75)

21. The following code is a slightly modified version of actual
code that was in the Microsoft Zune music player in 2008. The
code attempts to calculate today’s date by determining how
many years and days have passed since 1980. Assume the
existence of methods for getting the total number of days
since 1980 and for determining whether a given year is a leap
year:

int days = getTotalDaysSince1980();

year = 1980;

while (days > 365) { // subtract out years

 if (isLeapYear(year)) {

 if (days > 366) {

 days –= 366;

 year += 1;

 }

 } else {

 days –= 365;

 year += 1;

 }

}

Thousands of Zune players locked up on January 1, 2009, the
first day after the end of a leap year since the Zune was
released. (Microsoft quickly released a patch to fix the
problem.) What is the problem with the preceding code, and in
what cases will it exhibit incorrect behavior? How can it be
fixed?

22. Which of the following is a properly reversed version of the
following Boolean expression, according to De Morgan’s
Laws?

(2 == 3) && (–1 < 5) && isPrime(n)

a. (2 != 3) && (–1 > 5) && isPrime(n)
b. (2 == 3) || (–1 < 5) || isPrime(n)
c. !(2 == 3) && !(–1 < 5) && !isPrime(n)

d. (2 != 3) || (–1 >= 5) || !isPrime(n)
e. !(2 != 3) || !(-1 < 5) || isNotPrime(n)

Section 5.4: User Errors

23. The following code is not robust against invalid user input.
Describe how to change the code so that it will not proceed
until the user has entered a valid age and grade point average
(GPA). Assume that any int is a legal age and that any
double is a legal GPA.

Scanner console = new Scanner(System.in);

System.out.print("Type your age: ");

int age = console.nextInt();

System.out.print("Type your GPA: ");

double gpa = console.nextDouble();

For an added challenge, modify the code so that it rejects
invalid ages (for example, numbers less than 0) and GPAs
(say, numbers less than 0.0 or greater than 4.0).

24. Consider the following code:

Scanner console = new Scanner(System.in);

System.out.print("Type something for me! ");

if (console.hasNextInt()) {

 int number = console.nextInt();

 System.out.println("Your IQ is " + number);

} else if (console.hasNext()) {

 String token = console.next();

 System.out.println("Your name is " + token);

}

What is the output when the user types the following values?
a. Jane
b. 56
c. 56.2

25. Write a piece of code that prompts the user for a number and
then prints a different message depending on whether the
number was an integer or a real number. Here are two sample
dialogues:

Type a number: 42.5

You typed the real number 42.5

Type a number: 3

You typed the integer 3

26. Write code that prompts for three integers, averages them,
and prints the average. Make your code robust against invalid
input. (You may want to use the getInt method discussed in
this chapter.)

Section 5.5: Assertions and
Program Logic

27. Identify the various assertions in the following code as being
always true, never true, or sometimes true and sometimes
false at various points in program execution. The comments
indicate the points of interest:

public static int mystery(Scanner console, int x) {

 int y = console.nextInt();

 int count = 0;

 // Point A

 while (y < x) {

 // Point B

 if (y == 0) {

 count++;

 // Point C

 }

 y = console.nextInt();

 // Point D

 }

 // Point E

 return count;

}

Categorize each assertion at each point with ALWAYS,
NEVER, or SOMETIMES:

28. Identify the various assertions in the following code as being
always true, never true, or sometimes true and sometimes
false at various points in program execution. The comments
indicate the points of interest:

public static int mystery(int n) {

 Random r = new Random();

 int a = r.nextInt(3) + 1;

 int b = 2;

 // Point A

 while (n > b) {

 // Point B

 b = b + a;

 if (a > 1) {

 n--;

 // Point C

 a = r.nextInt(b) + 1;

 } else {

 a = b + 1;

 // Point D

 }

 }

 // Point E

 return n;

}

Categorize each assertion at each point with ALWAYS,
NEVER, or SOMETIMES:

29. Identify the various assertions in the following code as being
always true, never true, or sometimes true and sometimes
false at various points in program execution. The comments
indicate the points of interest:

public static int mystery(Scanner console) {

 int prev = 0;

 int count = 0;

 int next = console.nextInt();

 // Point A

 while (next != 0) {

 // Point B

 if (next == prev) {

 // Point C

 count++;

 }

 prev = next;

 next = console.nextInt();

 // Point D

 }

 // Point E

 return count;

}

Categorize each assertion at each point with ALWAYS,
NEVER, or SOMETIMES:

Exercises
1. Write a method called showTwos that shows the factors of 2 in

a given integer. For example, consider the following calls:

showTwos(7);

showTwos(18);

showTwos(68);

showTwos(120);

These calls should produce the following output:

7 = 7

18 = 2 * 9

68 = 2 * 2 * 17

120 = 2 * 2 * 2 * 15

2. Write a method called gcd that accepts two integers as
parameters and returns the greatest common divisor (GCD) of
the two numbers. The GCD of two integers a and b is the
largest integer that is a factor of both a and b .
One efficient way to compute the GCD of two numbers is to
use Euclid’s algorithm, which states the following:

3. Write a method called toBinary that accepts an integer as a
parameter and returns a String containing that integer’s
binary representation. For example, the call of
printBinary(44) should return "101100" .

4. Write a method called randomX that prints a lines that contain a
random number of “x” characters (between 5 and 20
inclusive) until it prints a line that contains 16 or more
characters. For example, the output might look like the
following:

xxxxxxx

xxxxxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxxxx

xxxxxx

xxxxxxxxxxx

xxxxxxxxxxxxxxxxx

5. Write a method called randomLines that prints between 5 and
10 random strings of letters (between “a” and “z”), one per
line. Each string should have random length of up to 80
characters.

GCD(a, b) = GCD(b, a % b)

GCD(a, 0) = Absolute value of a

6. Write a method called makeGuesses that guesses numbers
between 1 and 50 inclusive until it makes a guess of at least
48 . It should report each guess and at the end should report
the total number of guesses made. Here is a sample
execution:

guess = 43

guess = 47

guess = 45

guess = 27

guess = 49

total guesses = 5

7. Write a method called diceSum that accepts a Scanner for the
console as a parameter and prompts for a desired sum, then
repeatedly simulates the rolling of 2 six-sided dice until their
sum is the desired sum. Here is a sample dialogue with the
user:

Desired dice sum: 9

4 and 3 = 7

3 and 5 = 8

5 and 6 = 11

5 and 6 = 11

1 and 5 = 6

6 and 3 = 9

8. Write a method called randomWalk that performs steps of a
random one-dimensional walk. The random walk should begin
at position 0. On each step, you should either increase or
decrease the position by 1 (each with equal probability). Your
code should continue making steps until a position of 3 or
is reached, and then report the maximum position that was
reached during the walk. The output should look like the
following:

position = 1

position = 0

position = –1

position = –2

position = –1

position = –2

position = –3

max position = 1

9. Write a method called printFactors that accepts an integer as
its parameter and uses a fencepost loop to print the factors of
that number, separated by the word " and ". For example, the
factors of the number 24 should print as the following:

1 and 2 and 3 and 4 and 6 and 8 and 12 and 24

−3

You may assume that the parameter’s value is greater than 0 ,
or you may throw an exception if it is 0 or negative.

10. Write a method called hopscotch that accepts an integer
number of “hops” as its parameter and prints a pattern of
numbers that resembles a hopscotch board. A “hop” is a
three-number sequence where the output shows two numbers
on a line, followed by one number on its own line. 0 hops is a
board up to 1; one hop is a board up to 4; two hops is a board
up to 7; and so on. For example, the call of hopscotch(3);
should print the following output:

 1

2 3

 4

5 6

 7

8 9

 10

A call of hopscotch(0); should print only the number 1. If it is
passed a negative value, the method should produce no
output.

11. Write a method called threeHeads that repeatedly flips a coin
until the results of the coin toss are three heads in a row. You
should use a Random object to make it equally likely that a
head or a tail will appear. Each time the coin is flipped, display

H for heads or T for tails. When three heads in a row are
flipped, the method should print a congratulatory message.
Here is a possible output of a call to the method:

T T H T T T H T H T H H H

Three heads in a row!

12. Write a method called printAverage that uses a sentinel loop
to repeatedly prompt the user for numbers. Once the user
types any number less than zero, the method should display
the average of all nonnegative numbers typed. Display the
average as a double . Here is a sample dialogue with the user:

Type a number: 7

Type a number: 4

Type a number: 16

Type a number: –4

Average was 9.0

If the first number that the user types is negative, do not print
an average:

Type a number: –2

13. Write a method called consecutive that accepts three integers
as parameters and returns true if they are three consecutive
numbers—that is, if the numbers can be arranged into an
order such that, assuming some integer the parameters’
values are + 1 , and + 2 . Your method should return
false if the integers are not consecutive. Note that order is
not significant; your method should return the same result for
the same three integers passed in any order.
For example, the calls consecutive(1, 2, 3) , consecutive(3,
2, 4) , and consecutive(–10, –8, –9) would return true . The
calls consecutive(3, 5, 7) , consecutive(1, 2, 2) , and
consecutive(7, 7, 9) would return false .

14. Write a method called hasMidpoint that accepts three integers
as parameters and returns true if one of the integers is the
midpoint between the other two integers; that is, if one integer
is exactly halfway between them. Your method should return
false if no such midpoint relationship exists. For example, the
call hasMidpoint(7, 4, 10) should return true because 7 is
halfway between 4 and 10. By contrast, the call
hasMidpoint(9, 15, 8) should return false because no integer
is halfway between the other two. The integers could be
passed in any order; the midpoint could be the 1st, 2nd, or
3rd. You must check all cases. If your method is passed three
of the same value, return true .

15. Write a method called dominant that accepts three integers as
parameters and returns true if any one of the three integers

k,
k, k k

is larger than the sum of the other two integers. The integers
might be passed in any order, so the largest value could be
any of the three. For example, the call dominant(4, 9, 2)
returns true because 9 is larger than Assume that
none of the numbers is negative.

16. Write a method called anglePairs that accepts three angles
(integers), measured in degrees, as parameters and returns
whether or not there exist both complementary and
supplementary angles among the three angles passed. Two
angles are complementary if their sum is exactly 90 degrees;
two angles are supplementary if their sum is exactly 180
degrees. Therefore, the method should return true if any two
of the three angles add up to 90 degrees and also any two of
the three angles add up to 180 degrees. For example, the call
anglePairs(120, 60, 30) returns true . Assume that each
angle passed is nonnegative.

17. Write a method called monthApart that accepts four integer
parameters, and representing two calendar
dates. Each date consists of a month (1 through 12) and a
day (1 through the number of days in that month [28–31]).
Assume that all parameter values passed are valid. The
method should return true if the dates are at least a month
apart and false otherwise. For example, the call of
monthApart(4, 15, 5, 22) would return true while the call of
monthApart(9, 19, 10, 17) would return false . Assume that
all the dates in this problem occur during the same year. Note
that the first date could come before or after the second date.

4 + 2.

m1, d1, m2, d2,

18. Write a method called digitSum that accepts an integer as a
parameter and returns the sum of the digits of that number.
For example, the call digitSum(29107) returns

 or 19 . For negative numbers, return the
same value that would result if the number were positive. For
example, digitSum(-456) returns or 15 . The call
digitSum(0) returns 0 .

19. Write a method called firstDigit that returns the first (most
significant) digit of an integer. For example, firstDigit(3572)
should return 3 . It should work for negative numbers as well;
firstDigit(-947) should return 9 .

20. Write a method called digitRange that accepts an integer as a
parameter and returns the range of values of its digits. The
range is defined as 1 more than the difference between the
largest and smallest digit value. For example, the call of
digitRange(68437) would return 6 because the largest digit
value is 8 and the smallest is 3, so If the
number contains only one digit, return 1 . You should solve
this problem without using a String .

21. Write a method called swapDigitPairs that accepts an integer
 as a parameter and returns a new integer whose value is

similar to ’s but with each pair of digits swapped in order. For
example, the call of swapDigitPairs(482596) would return
845269 . Notice that the 9 and 6 are swapped, as are the 2 and
5, and the 4 and 8. If the number contains an odd number of
digits, leave the leftmost digit in its original place. For

2 + 9 + 1 + 0 + 7

4 + 5 + 6

8 − 3 + 1 = 6.

n

n

example, the call of swapDigitPairs(1234567) would return
1325476 . You should solve this problem without using a
String .

22. Write a method called allDigitsOdd that returns whether
every digit of a positive integer is odd. Return true if the
number consists entirely of odd digits (1, 3, 5, 7, 9) and false
if any of its digits are even (0, 2, 4, 6, 8). For example, the call
allDigitsOdd(135319) returns true but allDigitsOdd(9145293)
returns false .

23. Write a method called hasAnOddDigit that returns whether a
given positive integer has at least one digit whose value is
odd. Return true if the number has at least one odd digit and
false if none of its digits are odd. For example, the call
hasAnOddDigit(4822116) should return true and
hasAnOddDigit(2448) should return false .

24. Write a method called isAllVowels that returns whether a
string consists entirely of vowels (a, e, i, o, or u, case-
insensitively). If and only if every character of the string is a
vowel, your method should return true . For example, the call
isAllVowels("eIEiO") returns true and isAllVowels("oink")
returns false . You should return true if passed the empty
string, since it does not contain any non-vowel characters.

25. Write a method called charsSorted that accepts a string as its
parameter and returns true if the characters in the string
appear in sorted alphabetical order. For example, the calls of

charsSorted("abcde") and charsSorted("bins") should return
true , but the call of charsSorted("beads") should return false .

Programming Projects
1. Write an interactive program that reads lines of input from the

user and converts each line into “Pig Latin.” Pig Latin is
English with the initial consonant sound moved to the end of
each word, followed by “ay.” Words that begin with vowels
simply have an “ay” appended. For example, the phrase

The deepest shade of mushroom blue

would have the following appearance in Pig Latin:

e-Thay eepest-day ade-shay of-ay ushroom-may ue-blay

Terminate the program when the user types a blank line.
2. Write a reverse Hangman game in which the user thinks of a

word and the computer tries to guess the letters in that word.
The user tells the computer how many letters the word
contains.

3. Write a program that plays a guessing game with the user.
The program should generate a random number between 1
and some maximum (such as 100), then prompt the user
repeatedly to guess the number. When the user guesses
incorrectly, the game should give the user a hint about
whether the correct answer is higher or lower than the guess.

Once the user guesses correctly, the program should print a
message showing the number of guesses that the user made.
Consider extending this program by making it play multiple
games until the user chooses to stop and then printing
statistics about the player’s total and average number of
guesses.

4. Write a program that plays a reverse guessing game with the
user. The user thinks of a number between 1 and 10 , and the
computer repeatedly tries to guess it by guessing random
numbers. It’s fine for the computer to guess the same random
number more than once. At the end of the game, the program
reports how many guesses it made. Here is a sample
execution:

This program has you, the user, choose a number

between 1 and 10. Then I, the computer, will try

my best to guess it.

Is it 8? (y/n) n

Is it 7? (y/n) n

Is it 5? (y/n) n

Is it 1? (y/n) n

Is it 8? (y/n) n

Is it 1? (y/n) n

Is it 9? (y/n) y

I got your number of 9 correct in 7 guesses.

For an added challenge, consider having the user hint to the
computer whether the correct number is higher or lower than
the computer’s guess. The computer should adjust its range
of random guesses on the basis of the hint.

5. Write a game that plays many rounds of Rock Paper Scissors.
The user and computer will each choose between three items:
rock (defeats scissors, but loses to paper), paper (defeats
rock, but loses to scissors), and scissors (defeats paper, but
loses to rock). If the player and computer choose the same
item, the game is a tie.
You could extend this program to include different algorithmic
strategies for choosing the best item. Should the computer
pick randomly? Should it always pick a particular item or a
repeating pattern of items? Should it count the number of
times the opponent chooses various items and base its
strategy on this history?

6. Write a program that draws a graphical display of a 2D
random walk using a DrawingPanel . Start a pixel walker in the
middle of the panel. On each step, choose to move 1 pixel up,
down, left, or right, then redraw the pixel. (You can draw a
single pixel by drawing a rectangle of size)

7. Write a program that plays the dice game “Pig.” Pig is a two-
player game where the players take turns repeatedly rolling a
single 6-sided die; a player repeatedly rolls the die until one of
two events occurs. Either the player chooses to stop rolling, in
which case the sum of that player’s roll are added to his/her
total points; or if the player rolls a 1 at any time, all points for

1 × 1.

that turn are lost and the turn ends immediately. The first
player to reach a score of at least 100 points wins.

Chapter 6 File Processing

6.1 File-Reading Basics
• Data, Data Everywhere

• Files and File Objects

• Reading a File with a Scanner

6.2 Details of Token-Based Processing
• Structure of Files and Consuming Input

• Scanner Parameters

• Paths and Directories

• A More Complex Input File

6.3 Line-Based Processing
• String Scanners and Line/Token Combinations

6.4 Advanced File Processing
• Output Files with PrintStream

• Guaranteeing That Files Can Be Read

6.5 Case Study: Zip Code Lookup

Introduction
In Chapter 3 we discussed how to construct a
Scanner object to read input from the console.
Now we will look at how to construct Scanner
objects to read input from files. The idea is fairly
straightforward, but Java does not make it easy
to read from input files. This is unfortunate
because many interesting problems can be
formulated as file-processing tasks. Many
introductory computer science classes have
abandoned file processing altogether and left
the topic for the second course because it is
considered too advanced for novices.

There is nothing intrinsically complex about file
processing, but Java was not designed for it and
the designers of Java have not been particularly
eager to provide a simple solution. They did,
however, introduce the Scanner class as a way
to simplify some of the details associated with
reading files. The result is that file reading is still
awkward in Java, but at least the level of detail
is manageable.

Before we start writing file-processing programs,
we have to explore some issues related to Java
exceptions. Remember that exceptions are
errors that halt the execution of a program. In
the case of file processing, trying to open a file
that doesn’t exist or trying to read beyond the
end of a file generates an exception.

6.1 File-Reading Basics
In this section, we’ll look at the most basic issues related to file
processing. What are files and why do we care about them? What
are the most basic techniques for reading files in a Java program?
Once you’ve mastered these basics, we’ll move on to a more
detailed discussion of the different techniques you can use to
process files.

Data, Data Everywhere

People are fascinated by data. When the field of statistics emerged
in the nineteenth century, there was an explosion of interest in
gathering and interpreting large amounts of data. Mark Twain
reported that the British statesman Benjamin Disraeli complained to
him, “There are three kinds of lies: lies, damn lies, and statistics.”

The advent of the Internet has only added fuel to the fire. Today,
every person with an Internet connection has access to a vast array
of databases containing information about every facet of our
existence. Here are just a few examples:

If you visit http://www.landmark-project.com and click on the link
for “Raw Data,” you will find data files about earthquakes, air

pollution, baseball, labor, crime, financial markets, U.S. history,
geography, weather, national parks, a “world values survey,” and
more.
At http://www.gutenberg.org you’ll find thousands of online books,
including the complete works of Shakespeare and works by Sir
Arthur Conan Doyle, Jane Austen, H.G. Wells, James Joyce,
Albert Einstein, Mark Twain, Lewis Carroll, T.S. Eliot, Edgar Allan
Poe, and many others.
A wealth of genomic data is available from sites like
http://www.ncbi.nlm.nih.gov/guide/. Biologists have decided that
the vast quantities of data describing the human genome and the
genomes of other organisms should be publicly available to
everyone to study.
Many popular web sites, such as the Internet Movie Database,
make their data available for download as simple data files (see
http://www.imdb.com/interfaces).
The U.S. government produces reams of statistical data. The
web site https://www.usa.gov/statistics provides a lengthy list of
available downloads, including maps and statistics on
employment, climate, manufacturing, demographics, health,
crime, and more.

Files and File Objects

When you store data on your own computer, you store it in a file.

File
A collection of information that is stored on a computer
and assigned a particular name.

As we have just noted, every file has a name. For example, if you
were to download the text of Hamlet from the Gutenberg site, you
might store it on your computer in a file called hamlet.txt . A file
name often ends with a special suffix that indicates the kind of data it
contains or the format in which it has been stored. This suffix is
known as a file extension. Table 6.1 lists some common file
extensions.

Table 6.1 Common File Extensions

DID YOU KNOW?

Origin of Data Processing

The field of data processing predates computers by over half
a century. It is often said that necessity is the mother of
invention, and the emergence of data processing is a good
example of this principle. The crisis that spawned the industry
came from a requirement in Article 1, Section 2, of the U.S.

Constitution, which indicates that each state’s population will
determine how many representatives that state gets in the
House of Representatives. To calculate the correct number,
you need to know the population, so the Constitution says,
“The actual Enumeration shall be made within three Years
after the first Meeting of the Congress of the United States,
and within every subsequent Term of ten Years, in such
Manner as they shall by Law direct.”

The first census was completed relatively quickly in 1790.
Since then, every 10 years the U.S. government has had to
perform another complete census of the population. This
process became more and more difficult as the population of
the country grew larger. By 1880 the government discovered
that using old-fashioned hand-counting techniques, it barely
completed the census within the 10 years allotted to it. So the
government announced a competition for inventors to
propose machines that could be used to speed up the
process.

Herman Hollerith won the competition with a system involving
punched cards. Clerks punched over 62 million cards that
were then counted by 100 counting machines. This system
allowed the 1890 tabulation to be completed in less than half
the time it had taken to hand-count the 1880 results, even
though the population had increased by 25 percent.

Hollerith struggled for years to turn his invention into a
commercial success. His biggest problem initially was that he
had just one customer: the U.S. government. Eventually he

found other customers, and the company that he founded
merged with competitors and grew into the company we now
know as International Business Machines Corporation, or
IBM.

We think of IBM as a computer company, but it sold a wide
variety of data-processing equipment involving Hollerith cards
long before computers became popular. Later, when it
entered the computer field, IBM used Hollerith cards for
storing programs and data. These cards were still being used
when one of this book’s authors took his freshman computer
programming class in 1978.

Files can be classified into text files and binary files depending on
the format that is used. Text files can be edited using simple text
editors. Binary files are stored using an internal format that requires
special software to process. Text files are often stored using the .txt
extension, but other file formats are also text formats, including
.java and .html files.

To access a file from inside a Java program, you need to construct
an internal object that will represent the file. The Java class libraries
include a class called File that performs this duty.

You construct a File object by passing in the name of a file, as in
the following line of code:

File f = new File("hamlet.txt");

Once you’ve constructed the object, you can call a number of
methods to manipulate the file. For example, the following JShell
interaction calls methods that determine whether a file exists,
whether it can be read, whether it is a directory, what its length is
(i.e., how many characters are in the file), and what its absolute path
is (i.e., where it is stored on the computer). Assuming you have
stored the file hamlet.txt in the same directory as the program, you’ll
get output like the following:

jshell> File f = new File("hamlet.txt");

f ==> hamlet.txt

jshell> f.exists()

$2 ==> true

jshell> f.canRead()

$3 ==> true

jshell> f.isDirectory()

$4 ==> false

jshell> f.length()

$5 ==> 196197

jshell> f.getAbsolutePath()

$6 ==> "/home/bjp/data/hamlet.txt"

When you want to use File objects in a regular Java program, you
will need to import the class from the package java.io . The term
“I/O” is jargon used by computer science professionals to mean
“input/output”. The following declaration will do the job:

import java.io.*;

The fact that we use a call on new to construct a File object can be
misleading. We aren’t creating an actual new file on the hard disk by
constructing this object. The File object is an internal object that
allows us to access files that already exist on the computer. Later in
the chapter we will see how to write a program that creates a file as
output.

Table 6.2 lists some useful methods for File objects.

Table 6.2 Useful Methods of File Objects

Reading a File with a Scanner

The Scanner class that we have been using since Chapter 3 is
flexible in that Scanner objects can be attached to many different
kinds of input (see Figure 6.1).You can think of a Scanner object
as being like a faucet that you can attach to a pipe that has water
flowing through it. The water can come from various sources. For
example, in a house you’d attach a faucet to a pipe carrying water
from the city water supply or from a well, but faucets in places like
mobile homes and airplanes have different sources of water.

Figure 6.1 Scanners can be connected to many input sources.

Thus far, we have been constructing Scanner objects by passing
System.in to the Scanner constructor:

Scanner console = new Scanner(System.in);

This line of code instructs the computer to construct a Scanner that
reads from the console (i.e., pauses for input from the user).

Instead of passing System.in to the constructor, you can pass a File
object:

File f = new File("hamlet.txt");

Scanner input = new Scanner(f);

In this case the variable f is not necessary, so we can shorten this
code to the following:

Scanner input = new Scanner(new File("hamlet.txt"));

This line of code, or something like it, will appear in all of your file-
processing programs. When we were reading from the console
window, we called our Scanner variable console . When you read
from an input file, you may want to call the variable input . Of course,

you can name the variable anything you want, as long as you refer to
it in a consistent way.

Unfortunately, when you try to compile a program that constructs a
Scanner in this manner, you’ll run into a snag. Say you write a main
method that begins by opening a Scanner as follows:

// flawed method--does not compile

public static void main(String[] args) {

 Scanner input = new Scanner(new File("hamlet.txt"));

 ...

}

This program does not compile. It produces a message like the
following:

CountWords.java:8:

unreported exception java.io.FileNotFoundException;

must be caught or declared to be thrown

 Scanner input = new Scanner(new File(hamlet.txt));

 ^

1 error

The issue involves exceptions, which were described in Chapter
3 . Remember that exceptions are errors that prevent a program
from continuing normal execution. In this case the compiler is

worried that it might not be able to find a file called hamlet.txt . What
is it supposed to do if that happens? It won’t have a file to read from,
so it won’t have any way to continue executing the rest of the code.

If the program is unable to locate the specified input file, it will
generate an error by throwing what is known as a
FileNotFoundException . This particular exception is known as a
checked exception.

Checked Exception
An exception that must be caught or specifically
declared in the header of the method that might
generate it.

Because FileNotFoundException is a checked exception, you can’t
just ignore it. Java provides a construct known as the try/catch
statement for handling such errors (described in Appendix C), but
it allows you to avoid handling this error as long as you clearly
indicate the fact that you aren’t handling it. All you have to do is
include a throws clause in the header for the main method to clearly
state the fact that your main method might generate this exception.

throws Clause
A declaration that a method will not attempt to handle a
particular type of exception.

Here’s how to modify the header for the main method to include a
throws clause indicating that it may throw a FileNotFoundException :

public static void main(String[] args)

 throws FileNotFoundException {

 Scanner input = new Scanner(new File("hamlet.txt"));

 ...

}

With the throws clause, the line becomes so long that we have to
break it into two lines to allow it to fit in the margins of the textbook.
On your own computer, you will probably include all of it on a single
line.

After this modification, the program compiles. Once you’ve
constructed the Scanner so that it reads from the file, you can
manipulate it like any other Scanner . Of course, you should always
prompt before reading from the console to give the user an indication
of what kind of data you want, but when reading from a file, you don’t

need to prompt because the data is already there, stored in the file.
For example, you could write a program like the following to count
the number of words in Hamlet:

 1 // Counts the number of words in Hamlet.

 2

 3 import java.io.*;

 4 import java.util.*;

 5

 6 public class CountWords {

 7 public static void main(String[] args)

 8 throws FileNotFoundException {

 9 Scanner input = new Scanner(new File("hamlet.txt"));

10 int count = 0;

11 while (input.hasNext()) {

12 String word = input.next();

13 count++;

14 }

15 System.out.println("total words = " + count);

16 }

17 }

Note that you have to include an import from java.util for the
Scanner class and an import from java.io for the File class. The
program generates the following output:

total words = 31956

COMMON PROGRAMMING ERROR

Reading Beyond the End of a File

As you learn how to process input files, you are likely to write
programs that accidentally attempt to read data when there is
no data left to read. For example, the CountWords program we
just saw uses a while loop to keep reading words from the
file as long as there are still words left to read. After the while
loop, you might include an extra statement to read a word:

while (input.hasNext()) {

 String word = input.next();

 count++;

}

String extra = input.next(); // illegal, no more input

This new line of code causes the computer to try to read a
word when there is no word to read. Java throws an
exception when this occurs:

Exception in thread "main"

java.util.NoSuchElementException

 at java.util.Scanner.throwFor(Scanner.java:817)

 at java.util.Scanner.next(Scanner.java:1317)

 at CountWords.main(CountWords.java:15)

As usual, the most important information appears at the end
of this list of line numbers. The exception indicates that the
error occurred in line 15 of CountWords . The other line
numbers come from the Scanner class and aren’t helpful.

If you find yourself getting a NoSuchElementException , it is
probably because you have somehow attempted to read
beyond the end of the input. The Scanner is saying, “You’ve
asked me for some data, but I don’t have any such value to
give you.”

COMMON PROGRAMMING ERROR

Forgetting "new File "

Suppose that you intend to construct a Scanner the way we’ve
learned:

Scanner input = new Scanner(new File("hamlet.txt"));

But you accidentally forget to include the File object and
instead write this line of code:

Scanner input = new Scanner("hamlet.txt"); // not right

The line of code may seem correct because it mentions the
name of the file, but it won’t work because it doesn’t include
the File object.

Normally, when you make a mistake like this Java warns you
that you have done something illegal. In this case, however,
you’ll get no warning from Java. This is because, as you’ll see
later in this chapter, it is possible to construct a Scanner from
a String , in which case Java reads from the String itself.

If you were to make this mistake in the CountWords program,
you would get the following output:

total words = 1

The program would report just one word because the String
"hamlet.txt" looks like a single word to the Scanner . So,
whenever you construct a Scanner that is supposed to read
from an input file, make sure that you include the call on new
File to construct an appropriate File object.

6.2 Details of Token-Based
Processing

Now that we’ve introduced some of the basic issues involved in
reading an input file, let’s explore reading from a file in more detail.
One way to process a file is token by token.

Token-Based Processing
Processing input token by token (i.e., one word at a
time or one number at a time).

Recall from Chapter 3 the primary token-reading methods for the
Scanner class:

nextInt for reading an int value
nextDouble for reading a double value
next for reading the next token as a String

For example, you might want to create a file called numbers.dat with
the following content:

308.2 14.9 7.4

2.8

3.9 4.7 -15.4

2.8

You can create such a file with an editor like Notepad on a Windows
machine or TextEdit on a Macintosh. Then you might write a program
that processes this input file and produces some kind of report. For
example, the following program reads the first five numbers from the
file and reports their sum:

 1 // Program that reads five numbers and reports their sum.

 2

 3 import java.io.*;

 4 import java.util.*;

 5

 6 public class ShowSum1 {

 7 public static void main(String[] args)

 8 throws FileNotFoundException {

 9 Scanner input = new Scanner(new

File("numbers.dat"));

10

11 double sum = 0.0;

12 for (int i = 1; i <= 5; i++) {

13 double next = input.nextDouble();

14 System.out.println("number " + i + " = " +

next);

15 sum += next;

16 }

17 System.out.println("Sum = " + sum);

18 }

19 }

This program uses a variation of the cumulative sum code from
Chapter 4 . Remember that you need a throws clause in the
header for main because there is a potential FileNotFoundException .
The program produces the following output:

number 1 = 308.2

number 2 = 14.9

number 3 = 7.4

number 4 = 2.8

number 5 = 3.9

Sum = 337.19999999999993

Notice that the reported sum is not 337.2. This result is another
example of a roundoff error (also described in Chapter 4).

The preceding program reads exactly five numbers from the file.
More typically, you’ll continue to read numbers as long as there are
more numbers to read while a while loop is executing. Remember
that the Scanner class includes a series of hasNext methods that
parallel the various next methods. In this case, nextDouble is being
used to read a value of type double , so you can use hasNextDouble to
test whether there is such a value to read:

 1 // Reads an input file of numbers and prints the numbers and

 2 // their sum.

 3

 4 import java.io.*;

 5 import java.util.*;

 6

 7 public class ShowSum2 {

 8 public static void main(String[] args)

 9 throws FileNotFoundException {

10 Scanner input = new Scanner(new

File("numbers.dat"));

11

12 double sum = 0.0;

13 int count = 0;

14 while (input.hasNextDouble()) {

15 double next = input.nextDouble();

16 count++;

17 System.out.println("number " + count + " = " +

next);

18 sum += next;

19 }

20 System.out.println("Sum = " + sum);

21 }

22 }

This program would work on an input file with any number of
numbers; numbers.dat happens to contain eight. This version of the
program produces the following output:

number 1 = 308.2

number 2 = 14.9

number 3 = 7.4

number 4 = 2.8

number 5 = 3.9

number 6 = 4.7

number 7 = -15.4

number 8 = 2.8

Sum = 329.29999999999995

Structure of Files and Consuming
Input

We think of text as being two-dimensional, like a sheet of paper, but
from the computer’s point of view, each file is just a one-dimensional
sequence of characters. For example, consider the file numbers.dat
that we used in the previous section:

308.2 14.9 7.4

2.8

3.9 4.7 -15.4

2.8

We think of this as a six-line file with text going across and down and
two blank lines in the middle. However, the computer views the file
differently. When you typed the text in this file, you hit the Enter key
to go to a new line. This key inserts special “new line” characters in
the file. You can annotate the file with \n characters to indicate the
end of each line:

308.2 14.9 7.4\n

2.8\n

\n

\n

3.9 4.7 -15.4\n

2.8\n

COMMON PROGRAMMING ERROR

Reading the Wrong Kind of Token

It’s easy to write code that accidentally reads the wrong kind
of data. For example, the ShowSum1 program always reads
exactly five doubles from the input file numbers.dat . But
suppose that the input file has some extraneous text in it:

308.2 14.9 7.4

hello

2.8

3.9 4.7 –15.4

2.8

The first line of the file contains three numbers that the
program will read properly. But when it attempts to read a
fourth number, the computer finds that the next token in the
file is the text “hello”. This token cannot be interpreted as a
double , so the program generates an exception:

number 1 = 308.2

number 2 = 14.9

number 3 = 7.4

Exception in thread "main"

java.util.InputMismatchException

 at

java.util.Scanner.throwFor(Scanner.java:819)

 at java.util.Scanner.next(Scanner.java:1431)

 at

java.util.Scanner.nextDouble(Scanner.java:2335)

 at ShowSum1.main(ShowSum1.java:13)

Once again, the useful line number appears at the bottom of
this list. The last line indicates that the exception occurred in
line 13 of the ShowSum1 class. The other line numbers are from
the Scanner class and aren’t helpful.

You saw earlier that when you attempt to read beyond the
end of a file, the Scanner throws a NoSuchElementException . In
the case of this program that attempts to read the wrong kind
of token, the Scanner throws an InputMismatchException . By

paying attention to the kind of exception the Scanner throws,
you can get better feedback about what the problem is.

When you mark the end of each line in your program, you no longer
need to use a two-dimensional representation. You can collapse this
text to a one-dimensional sequence of characters:

308.2 14.9 7.4\n2.8\n\n\n3.9 4.7 -15.4\n2.8\n

This sequence is how the computer views the file: as a one-
dimensional sequence of characters including special characters that
represent “new line”. On some systems, including Windows
machines, there are two different “new line” characters, but we’ll use
just \n here—objects like Scanner handle these differences for you,
so you can generally ignore them. (For those who are interested, the
brief explanation is that Windows machines end each line with a \r
followed by a \n .)

When it is processing a file, the Scanner object keeps track of the
current position in the file. You can think of this as an input cursor or
pointer into the file.

Input Cursor

A pointer to the current position in an input file.

Figure 6.2 Scanners treat files as one-dimensional strings of
characters and convert their contents into a series of
whitespace-separated tokens.

When a Scanner object is first constructed, the cursor points to the
beginning of the file. But as you perform various next operations, the
cursor moves forward. The ShowSum2 program from the last section
processes the file through a series of calls on nextDouble . Let’s take
a moment to examine in detail how that works. Again, when the
Scanner is first constructed, the input cursor will be positioned at the
beginning of the file (indicated with an up-arrow pointing at the first
character):

After the first call on nextDouble the cursor will be positioned in the
middle of the first line, after the token “308.2”:

We refer to this process as consuming input.

Consuming Input
Moving the input cursor forward past some input.

The process of consuming input doesn’t actually change the file, it
just changes the corresponding Scanner object so that it is positioned
at a different point in the file.

The first call on nextDouble consumes the text “308.2” from the input
file and leaves the input cursor positioned at the first character after
this token. Notice that this leaves the input cursor positioned at a
space. When the second call is made on nextDouble , the Scanner
first skips past this space to get to the next token, then consumes
the text “14.9” and leaves the cursor positioned at the space that
follows it:

The third call on nextDouble skips that space and consumes the text
“7.4”:

At this point, the input cursor is positioned at the new line character
at the end of the first line of input. The fourth call on nextDouble skips
past this new line character and consumes the text “2.8”:

Notice that when it skipped past the first new line character, the input
cursor moved into data stored on the second line of input. At this
point, the input cursor is positioned at the end of the second line of
input, because it has consumed the “2.8” token. When a fifth call is
made on nextDouble , the Scanner finds three new line characters in a
row. This isn’t a problem for the Scanner , because it simply skips
past any leading whitespace characters (spaces, tabs, new line
characters) until it finds an actual token. So, it skips all three of these
new line characters and consumes the text “3.9”:

At this point the input cursor is positioned in the middle of the fifth
line of input. (The third and fourth lines were blank). The program
continues reading in this manner, consuming the remaining three
numbers in the input file. After it reads the final token, “2.8”, the input
cursor is positioned at the new line character at the end of the file:

If you attempted to call nextDouble again, it would throw a
NoSuchElementException because there are no more tokens left to
process. But remember that the ShowSum2 program has a while loop
that calls hasNextDouble before it calls nextDouble . When you call
methods like hasNextDouble , the Scanner looks ahead in the file to
see whether there is a next token and whether it is of the specified
type (in this case, a double). So, the ShowSum2 program will continue
executing until it reaches the end of the file or until it encounters a
token that cannot be interpreted as a double .

When the input cursor reaches the new line character at the end of
the file, the Scanner notices that there are no more double values to
read and returns false when hasNextDouble is called. That return
stops the while loop from executing and causes the program to exit.

Scanner objects are designed for file processing in a forward manner.
They provide a great deal of flexibility for looking ahead in an input
file, but no support for reading the input backward. There are no
“previous” methods, and there’s no mechanism for resetting a
Scanner back to the beginning of the input. Instead, you would have
to construct a new Scanner object that would be positioned at the

beginning of the file. We will see an example of this technique in the
case study at the end of the chapter.

Scanner Parameters

Novices are sometimes surprised that the input cursor for a Scanner
does not reset to the beginning of the file when it is passed as a
parameter to a method. For example, consider the following variation
of the ShowSum1 program. It has a method that takes a Scanner as
input and an integer specifying how many numbers to process:

 1 // Demonstrates a Scanner as a parameter to a method that

 2 // can consume an arbitrary number of tokens.

 3

 4 import java.io.*;

 5 import java.util.*;

 6

 7 public class ShowSum3 {

 8 public static void main(String[] args)

 9 throws FileNotFoundException {

10 Scanner input = new Scanner(new

File("numbers.dat"));

11 processTokens(input, 2);

12 processTokens(input, 3);

13 processTokens(input, 2);

14 }

15

16 public static void processTokens(Scanner input, int n) {

17 double sum = 0.0;

18 for (int i = 1; i <= n; i++) {

19 double next = input.nextDouble();

20 System.out.println("number " + i + " = " +

next);

21 sum += next;

22 }

23 System.out.println("Sum = " + sum);

24 System.out.println();

25 }

26 }

The main method creates a Scanner object that is tied to the
numbers.dat file. It then calls the processTokens method several
times, indicating the number of tokens to process. The first call
instructs the method to process two tokens. It operates on the first
two tokens of the file, generating the following output:

number 1 = 308.2

number 2 = 14.9

Sum = 323.09999999999997

The second call on the method indicates that three tokens are to be
processed. Some people expect the method to process the first
three tokens of the file, but that’s not what happens. Remember that
the Scanner keeps track of where the input cursor is positioned. After
the first call on the method, the input cursor is positioned beyond the
first two tokens. So the second call on the method processes the
next three tokens from the file, producing the following output:

number 1 = 7.4

number 2 = 2.8

number 3 = 3.9

Sum = 14.1

The final call on the method asks the Scanner to process the next
two tokens from the file, so it ends up processing the sixth and
seventh numbers from the file:

number 1 = 4.7

number 2 = −15.4

Sum = −10.7

The program then terminates, never having processed the eighth
number in the file.

The key point to remember is that a Scanner keeps track of the
position of the input cursor, so you can process an input file piece by
piece in a very flexible manner. Even when the Scanner is passed as
a parameter to a method, it remembers how much of the input file
has been processed so far.

Paths and Directories

Files are grouped into folders, also called directories. Directories are
organized in a hierarchy, starting from a root directory at the top. For
example, most Windows machines have a disk drive known as C: .
At the top level of this drive is the root directory, which we can
describe as C:\ . This root directory will contain various top-level
directories. Each top-level directory can have subdirectories, each of
which also has subdirectories, and so on. All files are stored in one
of these directories. The description of how to get from the top-level
directory to the particular directory that stores a file is known as the
path of the file.

File Path
A description of a file’s location on a computer, starting
with a drive and including the path from the root
directory to the directory where the file is stored.

We read the path information from left to right. For example, if the
path to a file is C:\school\data\hamlet.txt , we know that the file is on
the C: drive in a folder called school and in a subfolder called data .

In the previous section, the program used the file name numbers.dat .
When Java encounters a simple name like that (also called a relative
file path), it looks in the current directory to find the file.

Current Directory (a.k.a. Working
Directory)
The directory that Java uses as the default when a
program uses a simple file name.

The default directory varies with the Java environment you are using.
In most environments, the current directory is the one in which your
program appears. We’ll assume that this is the case for the
examples in this textbook.

You can also use a fully qualified, or complete, file name (sometimes
called an absolute file path). However, this approach works well only

when you know exactly where your file is going to be stored on your
system. For example, if you are on a Windows machine and you
have stored the file in the C:\data directory, you could use a file
name like the following:

Scanner input = new Scanner(new File("C:/data/numbers.dat"));

Notice that the path is written with forward-slash characters rather
than backslash characters. On Windows you would normally use a
backslash, but Java allows you to use a forward slash instead. If you
wanted to use a backslash, you would have to use a \\ escape
sequence. Most programmers choose the simpler approach of using
forward-slash characters because Java does the appropriate
translation on Windows machines.

You can also specify a file using a relative path. To write a relative
path you omit the drive specification at the beginning of the string.
You can still specify subdirectory relationships that will be relative to
the current directory. For example, the relative path
"data/numbers.dat" indicates a file called numbers.dat in a
subdirectory of the working directory called data .

Sometimes, rather than writing a file’s path name in the code
yourself, you’ll ask the user for a file name. For example, here is a
variation of ShowSum2 that prompts the user for the file name:

 1 // Variation of ShowSum2 that prompts for a file name.

 2

 3 import java.io.*;

 4 import java.util.*;

 5

 6 public class ShowSum4 {

 7 public static void main(String[] args)

 8 throws FileNotFoundException {

 9 System.out.println("This program will add a

series");

10 System.out.println("of numbers from a file.");

11 System.out.println();

12

13 Scanner console = new Scanner(System.in);

14 System.out.print("What is the file name? ");

15 String name = console.nextLine();

16 Scanner input = new Scanner(new File(name));

17 System.out.println();

18

19 double sum = 0.0;

20 int count = 0;

21 while (input.hasNextDouble()) {

22 double next = input.nextDouble();

23 count++;

24 System.out.println("number " + count + " = " +

next);

25 sum += next;

26 }

27 System.out.println("Sum = " + sum);

28 }

29 }

Notice that the program has two different Scanner objects: one for
reading from the console and one for reading from the file. We read
the file name using a call on nextLine to read an entire line of input
from the user, which allows the user to type in file names that have
spaces in them. Notice that we still need the throws
FileNotFoundException in the header for main because even though
we are prompting the user to enter a file name, there won’t
necessarily be a file of that name.

If we have this program read from the file numbers.dat used earlier, it
will produce the following output:

This program will add a series

of numbers from a file.

What is the file name? numbers.dat

number 1 = 308.2

number 2 = 14.9

number 3 = 7.4

number 4 = 2.8

number 5 = 3.9

number 6 = 4.7

number 7 = -15.4

number 8 = 2.8

Sum = 329.29999999999995

The user also has the option of specifying a full file path:

This program will add a series

of numbers from a file.

What is the file name? C:\data\numbers.dat

number 1 = 308.2

number 2 = 14.9

number 3 = 7.4

number 4 = 2.8

number 5 = 3.9

number 6 = 4.7

number 7 = -15.4

number 8 = 2.8

Sum = 329.29999999999995

Notice that the user doesn’t have to type two backslashes to get a
single backslash. The Scanner object that reads the user’s input is
able to read it without escape sequences.

A More Complex Input File

Suppose an input file contains information about how many hours
each employee of a company has worked. It might look like the
following:

Erica 7.5 8.5 10.25 8 8.5

Erin 10.5 11.5 12 11 10.75

Simone 8 8 8

Ryan 6.5 8 9.25 8

Kendall 2.5 3

Suppose you want to find out the total number of hours worked by
each individual. You can construct a Scanner object linked to this file
to solve this task. As you start writing more complex file-processing
programs, you will want to divide the program into methods to break
up the code into logical subtasks. In this case, you can open the file
in main and write a separate method to process the file.

Most file processing will involve while loops, because you won’t
know in advance how much data the file contains. You’ll need to
write different tests, depending on the particular file being processed,
but they will almost all be calls on the various hasNext methods of
the Scanner class. You basically want to say, “While you have more
data for me to process, let’s keep reading.”

In this case, the data is a series of input lines that each begins with a
name. For this program you can assume that names are simple, with

no spaces in the middle. That means you can read them with a call
on the next method. As a result, the while loop test involves seeing
whether there is another name in the input file:

while (input.hasNext()) {

 process next person.

}

So, how do you process each person? You have to read that
person’s name and then read that person’s list of hours. If you look
at the sample input file, you will see that the list of hours is not
always the same length. For example, some employees worked on
five days, while others worked only two or three days. This
unevenness is a common occurrence in input files. You can deal with
it by using a nested loop. The outer loop will handle one person at a
time and the inner loop will handle one number at a time. The task is
a fairly straightforward cumulative sum:

double sum = 0.0;

while (input.hasNextDouble()) {

 sum += input.nextDouble();

}

When you put the parts of the program together, you end up with the
following complete program:

 1 // This program reads an input file of hours worked by

various

 2 // employees and reports the total hours worked by each.

 3

 4 import java.io.*;

 5 import java.util.*;

 6

 7 public class HoursWorked {

 8 public static void main(String[] args)

 9 throws FileNotFoundException {

10 Scanner input = new Scanner(new File("hours.dat"));

11 process(input);

12 }

13

14 public static void process(Scanner input) {

15 while (input.hasNext()) {

16 String name = input.next();

17 double sum = 0.0;

18 while (input.hasNextDouble()) {

19 sum += input.nextDouble();

20 }

21 System.out.println("Total hours worked by " +

name

22 + " = " + sum);

23 }

24 }

25 }

Notice that you need to put the throws FileNotFoundException in the
header for main . You don’t need to include it in the process method
because the code to open the file appears in method main .

If you put the input data into a file called hours.dat and execute the
program, you get the following result:

Total hours worked by Erica = 42.75

Total hours worked by Erin = 55.75

Total hours worked by Simone = 24.0

Total hours worked by Ryan = 31.75

Total hours worked by Kendall = 5.5

6.3 Line-Based Processing

So far we have been looking at programs that process input token by
token. However, you’ll often find yourself working with input files that
are line-based: Each line of input represents a different case, to be
handled separately from the rest. These types of files lend
themselves to a second style of file processing called line-based
processing.

Line-Based Processing
The practice of processing input line by line (i.e.,
reading in entire lines of input at a time).

Most file processing involves a combination of line- and token-based
styles, and the Scanner class is flexible enough to allow you to write
programs that include both styles of processing. For line-based
processing, you’ll use the nextLine and hasNextLine methods of the
Scanner object. For example, here is a program that echoes an input
file in uppercase:

 1 // Reads a file and echoes it in uppercase.

 2

 3 import java.io.*;

 4 import java.util.*;

 5

 6 public class EchoUppercase {

 7 public static void main(String[] args)

 8 throws FileNotFoundException {

 9 Scanner input = new Scanner(new File("poem.txt"));

10 while (input.hasNextLine()) {

11 String text = input.nextLine();

12 System.out.println(text.toUpperCase());

13 }

14 }

15 }

This loop reads the input line by line and prints each line in
uppercase until it runs out of lines to process. It reads from a file
called poem.txt . Suppose that the file has the following contents:

My candle burns at both ends

It will not last the night;

But ah, my foes, and oh, my friends -

It gives a lovely light.

 --Edna St. Vincent Millay

If you run the preceding program on this input, it will produce the
following output:

MY CANDLE BURNS AT BOTH ENDS

IT WILL NOT LAST THE NIGHT;

BUT AH, MY FOES, AND OH, MY FRIENDS -

IT GIVES A LOVELY LIGHT.

 --EDNA ST. VINCENT MILLAY

Notice that you could not have accomplished the same task with
token-based processing. In this example, the line breaks are
significant because they are part of the poem. Also, when you read a
file token by token, you lose the spacing within the line because the
Scanner skips any leading whitespace when it reads a token. The
final line of this input file is indented because it is the name of the
author and not part of the poem. That spacing would be lost if the file
was read as a series of tokens.

String Scanners and Line/Token
Combinations

In the last section we looked at a program called HoursWorked that
processed the following data file:

Erica 7.5 8.5 10.25 8 8.5

Erin 10.5 11.5 12 11 10.75

Simone 8 8 8

Ryan 6.5 8 9.25 8

Kendall 2.5 3

The data are line-oriented, each employee’s information appearing
on a different line of input, but this aspect of the data wasn’t
incorporated into the program. The program processed the file in a
token-based manner. However, that approach won’t always work.
For example, consider a slight variation in the data in which each line
of input begins with an employee ID rather than just a name:

101 Erica 7.5 8.5 10.25 8 8.5

783 Erin 10.5 11.5 12 11 10.75

114 Simone 8 8 8

238 Ryan 6.5 8 9.25 8

156 Kendall 2.5 3

This addition seems like a fairly simple change that shouldn’t require
major changes to the code. Recall that the program uses a method
to process the file:

public static void process(Scanner input) {

 while (input.hasNext()) {

 String name = input.next();

 double sum = 0.0;

 while (input.hasNextDouble()) {

 sum += input.nextDouble();

 }

 System.out.println("Total hours worked by " + name +

 " = " + sum);

 }

}

Suppose you add a line of code to read the employee ID and modify
the println to report it:

public static void process(Scanner input) {

 while (input.hasNext()) {

 int id = input.nextInt();

 String name = input.next();

 double sum = 0.0;

 while (input.hasNextDouble()) {

 sum += input.nextDouble();

 }

 System.out.println("Total hours worked by " + name +

 " (id#" + id + ") = " + sum);

 }

}

When you run this new version of the program on the new input file,
you’ll get one line of output and then Java will throw an exception:

Total hours worked by Erica (id#101) = 825.75

Exception in thread "main" java.util.InputMismatchException

 at java.util.Scanner.throwFor(Scanner.java:819)

 at java.util.Scanner.next(Scanner.java:1431)

 at java.util.Scanner.nextInt(Scanner.java:2040)

 ...

The program correctly reads Erica’s employee ID and reports it in
the println statement, but then it crashes. Also, notice that the
program reports Erica’s total hours worked as 825.75, when the
number should be 42.75. Where did it go wrong?

If you compute the difference between the reported sum of 825.75
hours and the correct sum of 42.75 hours, you’ll find it is equal to
783. That number appears in the data file: It’s the employee ID of the

second employee, Erin. When the program was adding up the hours
for Erica, it accidentally read Erin’s employee ID as more hours
worked by Erica and added this number to the sum. That’s also why
the exception occurs—on the second iteration of the loop, the
program tries to read an employee ID for Erin when the next token in
the file is her name, not an integer.

The solution is to somehow get the program to stop reading when it
gets to the end of an input line. Unfortunately, there is no easy way
to do this with a token-based approach. The loop asks whether the
Scanner has a next double value to read, and the employee ID looks
like a double that can be read. You might try to write a complex test
that looks for a double that is not also an integer, but even that won’t
work because some of the hours are integers.

To make this program work, you need to write a more sophisticated
version that pays attention to the line breaks. The program must
read an entire line of input at a time and process that line by itself.
Recall the main method for the program:

public static void main(String[] args)

 throws FileNotFoundException {

 Scanner input = new Scanner(new File("hours2.dat"));

 process(input);

}

If you incorporate a line-based loop, you’ll end up with the following
method:

public static void main(String[] args)

 throws FileNotFoundException {

 Scanner input = new Scanner(new File("hours2.dat"));

 while (input.hasNextLine()) {

 String text = input.nextLine();

 processLine(text);

 }

}

Reading the file line by line guarantees that you don’t accidentally
combine data for two employees. The downside to this approach is
that you have to write a method called processLine that takes a
String as a parameter, and you have to pull apart that String . It
contains the employee ID, followed by the employee name, followed
by the numbers indicating how many hours the employee worked on
different days. In other words, the input line is composed of several
pieces (tokens) that you want to process piece by piece. It’s much
easier to process this data in a token-based manner than to have it
in a String .

Fortunately, there is a convenient way to do this. You can construct a
Scanner object from an individual String . Remember that just as you
can attach a faucet to different sources of water (a faucet in a house
attached to city or well water versus a faucet on an airplane attached

to a tank of water), you can attach a Scanner to different sources of
input. You’ve seen how to attach it to the console (System.in) and to
a file (passing a File object). You can also attach it to an individual
String . For example, consider the following line of code:

Scanner input = new Scanner("18.4 17.9 8.3 2.9");

This code constructs a Scanner that gets its input from the String
used to construct it. This Scanner has an input cursor just like a
Scanner linked to a file. Initially the input cursor is positioned at the
first character in the String , and it moves forward as you read
tokens from the Scanner .

The following short program demonstrates this solution:

 1 // Simple example of a Scanner reading from a String.

 2

 3 import java.util.*;

 4

 5 public class StringScannerExample {

 6 public static void main(String[] args) {

 7 Scanner input = new Scanner("18.4 17.9 8.3 2.9");

 8 while (input.hasNextDouble()) {

 9 double next = input.nextDouble();

10 System.out.println(next);

11 }

12 }

13 }

This program produces the following output:

18.4

17.9

8.3

2.9

Notice that the program produces four lines of output because there
are four numbers in the String used to construct the Scanner .

When a file requires a combination of line-based and token-based
processing, you can construct a String -based Scanner for each line
of the input file. Using this approach, you end up with a lot of Scanner
objects. You have a Scanner object that is keeping track of the input
file, and you use that Scanner to read entire lines of input. In addition,
each time you read a line of text from the file, you construct a mini-
Scanner for just that line of input. You can then use token-based
processing for these mini- Scanner objects, because each contains
just a single line of data.

This combination of line-based and token-based processing is
powerful. You will find that you can use this approach (and slight
variations on it) to process a large variety of input files. To
summarize, this approach involves a two-step process:

1. Break the file into lines with a Scanner using calls on
hasNextLine and nextLine .

2. Break apart each line by constructing a Scanner just for that
line of input and making calls on token-based methods like
hasNext and next .

Following this approach, if you have a file composed of lines of
input, you end up constructing different Scanner objects–one
for each of the individual lines (step 2) and one extra Scanner that
is used to process the overall file line by line (step 1).

In the HoursWorked program, each input line contains information for
a single employee. Processing the input line involves making a
Scanner for the line and then reading its various parts (employee ID,
name, hours) in a token-based manner. You can put this all together
into a new version of the program:

 1 // Variation of HoursWorked that includes employee IDs.

 2

 3 import java.io.*;

 4 import java.util.*;

n

n + 1

n

 5

 6 public class HoursWorked2 {

 7 public static void main(String[] args)

 8 throws FileNotFoundException {

 9 Scanner input = new Scanner(new File("hours2.dat"));

10 while (input.hasNextLine()) {

11 String text = input.nextLine();

12 processLine(text);

13 }

14 }

15

16 // processes the given String (ID, name, and hours

worked)

17 public static void processLine(String text) {

18 Scanner data = new Scanner(text);

19 int id = data.nextInt();

20 String name = data.next();

21 double sum = 0.0;

22 while (data.hasNextDouble()) {

23 sum += data.nextDouble();

24 }

25 System.out.println("Total hours worked by " + name +

26 " (id#" + id + ") = " + sum);

27 }

28 }

Notice that the main method includes line-based processing to read
entire lines of input from the file. Each such line is passed to the

processLine method. Each time the program calls processLine , it
makes a mini- Scanner for just that line of input and uses token-based
processing (calling the methods nextInt , next , and nextDouble).

This new version of the program produces the following output:

Total hours worked by Erica (id#101) = 42.75

Total hours worked by Erin (id#783) = 55.75

Total hours worked by Simone (id#114) = 24.0

Total hours worked by Ryan (id#238) = 31.75

Total hours worked by Kendall (id#156) = 5.5

While this version of the program is a little more complex than the
original, it is much more flexible because it pays attention to line
breaks.

6.4 Advanced File Processing
In this section, we’ll explore two advanced topics related to file
processing: producing output files and guaranteeing that files can be
read.

Output Files with PrintStream

All of the programs we’ve studied so far have sent their output to the
console window by calling System.out.print or System.out.println .
But just as you can read input from a file instead of reading from the
console, you can write output to a file instead of writing it to the
console. There are many ways to accomplish this task. The simplest
approach is to take advantage of what you already know. You’ve
already learned all about how print and println statements work,
and you can leverage that knowledge to easily create output files.

If you look at the Java documentation, you will find that System.out is
a variable that stores a reference to an object of type PrintStream .
The print and println statements you’ve been writing are calls on
methods that are part of the PrintStream class. The variable
System.out stores a reference to a special PrintStream object that is
tied to the console window. However, you can construct other

PrintStream objects that send their output to other places. Suppose,
for example, that you want to send output to a file called
results.txt . You can construct a PrintStream object as follows:

PrintStream output = new PrintStream(new File("results.txt"));

This line of code looks a lot like the one we used to construct a
Scanner tied to an input file. In this case, the computer is creating an
output file. If no such file already exists, the program creates it. If
such a file does exist, the computer overwrites the current version.
Initially, the file will be empty. It will end up containing whatever
output you tell it to produce through calls on print and println .

The line of code that constructs a PrintStream object can generate
an exception if Java is unable to create the file you’ve described.
There are many reasons that this might happen: You might not have
permission to write to the directory, or the file might be locked
because another program is using it. Like the line of code that
creates a file-based Scanner , this line of code potentially throws a
FileNotFoundException . Therefore, Java requires you to include the
throws clause in whatever method contains this line of code. The
simplest approach is to put this line in main . In fact, it is common
practice to have the main method begin with the lines of code that
deal with the input and output files.

Once you have constructed a PrintStream object, how do you use it?
You should already have a good idea of what to do. We have been
making calls on System.out.print and System.out.println since
Chapter 1 . If you recall everything you know about System.out
you’ll have a good idea of what to do, but for this program, you will
call output.print instead of System.out.print and output.println
instead of System.out.println .

As a simple example, remember that in Chapter 1 we looked at
the following variation of the simple “hello world” program that
produces several lines of output:

1 public class Hello2 {

2 public static void main(String[] args) {

3 System.out.println("Hello, world!");

4 System.out.println();

5 System.out.println("This program produces four");

6 System.out.println("lines of output.");

7 }

8 }

Here is a variation that sends its output to a file called hello.txt :

 1 // Variation of Hello2 that prints to a file.

 2

 3 import java.io.*;

 4

 5 public class Hello4 {

 6 public static void main(String[] args)

 7 throws FileNotFoundException {

 8 PrintStream output =

 9 new PrintStream(new File("hello.txt"));

10 output.println("Hello, world.");

11 output.println();

12 output.println("This program produces four");

13 output.println("lines of output.");

14 }

15 }

When you run this new version of the program, a curious thing
happens. The program doesn’t seem to do anything; no output
appears on the console at all. You’re so used to writing programs
that send their output to the console that this might seem confusing
at first. We don’t see any output in the console window when we run
this program because the output was directed to a file instead. After
the program finishes executing, you can open up the file called
hello.txt and you’ll find that it contains the following:

Hello, world.

This program produces four

lines of output.

The main point is that everything you’ve learned to do with
System.out , you can also do with PrintStream objects that are tied to
files.

You can also write methods that take PrintStream objects as
parameters. For example, consider the task of fixing the spacing for
a series of words. Say that you have a line of text with erratic
spacing, like the following line:

a new nation, conceived in liberty

Suppose that you want to print this text with exactly one space
between each pair of words:

a new nation, conceived in liberty

How do you do that? Assume that you are writing a method that is
passed a String to echo and a PrintStream object to which the
output should be sent:

public static void echoFixed(String text, PrintStream output) {

 ...

}

You can construct a Scanner from the String and then use the next
method to read one word at a time. Recall that the Scanner class
ignores whitespace, so you’ll get just the individual words without all
of the spaces between them. As you read words, you’ll need to echo
them to the PrintStream object. Here’s a first attempt:

Scanner data = new Scanner(text);

while (data.hasNext()) {

 output.print(data.next());

}

This code does a great job of deleting the long sequences of spaces
from the String , but it goes too far: It eliminates all of the spaces. To
get one space between each pair of words, you’ll have to include
some spaces:

Scanner data = new Scanner(text);

while (data.hasNext()) {

 output.print(data.next() + " ");

}

This method produces results that look pretty good, but it prints an
extra space at the end of the line. To get rid of that space so that you
truly have spaces appearing only between pairs of words, you’ll have
to change the method slightly. This is a classic fencepost problem;

you want to print one more word than you have spaces. You can use
the typical solution of processing the first word before the loop
begins and swapping the order of the other two operations inside the
loop (printing a space and then the word):

Scanner data = new Scanner(text);

output.print(data.next());

while (data.hasNext()) {

 output.print(" " + data.next());

}

This version of the program works well for almost all cases, but by
including the fencepost solution, which echoes the first word before
the loop begins, you’ve introduced an assumption that there is a first
word. If the String has no words at all, this call on next will throw an
exception. So, you need a test for the case in which the String
doesn’t contain any words. If you also want this program to produce
a complete line of output, you’ll have to include a call on println to
complete the line of output after printing the individual words.
Incorporating these changes, you get the following code:

public static void echoFixed(String text, PrintStream output) {

 Scanner data = new Scanner(text);

 if (data.hasNext()) {

 output.print(data.next());

 while (data.hasNext()) {

 output.print(" " + data.next());

 }

 }

 output.println();

}

Notice that you’re now calling output.print and output.println
instead of calling System.out.print and System.out.println . An
interesting aspect of this method is that it can be used not only to
send output to an output file, but also to send it to System.out . The
method header indicates that it works on any PrintStream , so you
can call it to send output either to a PrintStream object tied to a file
or to System.out .

The following complete program uses this method to fix the spacing
in an entire input file of text. To underscore the flexibility of the
method, the program sends its output both to a file (words2.txt) and
to the console:

 1 // This program removes excess spaces in an input file.

 2

 3 import java.io.*;

 4 import java.util.*;

 5

 6 public class FixSpacing {

 7 public static void main(String[] args)

 8 throws FileNotFoundException {

 9 Scanner input = new Scanner(new File("words.txt"));

10 PrintStream output =

11 new PrintStream(new File("words2.txt"));

12 while (input.hasNextLine()) {

13 String text = input.nextLine();

14 echoFixed(text, output);

15 echoFixed(text, System.out);

16 }

17 }

18

19 public static void echoFixed(String text,

20 PrintStream output) {

21 Scanner data = new Scanner(text);

22 if (data.hasNext()) {

23 output.print(data.next());

24 while (data.hasNext()) {

25 output.print(" " + data.next());

26 }

27 }

28 output.println();

29 }

30 }

Consider the following input file:

 four score and

seven years ago our

 fathers brought forth on this continent

a new nation, conceived in liberty

 and dedicated to the proposition that

 all men are created equal

Using this input, the program produces the following output file,
called words2.txt :

four score and

seven years ago our

fathers brought forth on this continent

a new nation, conceived in liberty

and dedicated to the proposition that

all men are created equal

The output also appears in the console window.

Guaranteeing That Files Can Be
Read

The programs we have studied so far assume that the user will
provide a legal file name. But what if the user accidentally types in
the name of a file that doesn’t exist or that can’t be read for some
reason? In this section we explore how to guarantee that a file can
be read.

Let’s explore how you might handle the task of prompting the user
for a file name in the console window. If the user does not input a
legal file name, you can keep prompting until the user does enter a
legal name. The File class has a method called canRead that you
can use to test whether a file exists and can be read. You can print
an error message each time the file can’t be read, until you get a
good file name. This situation turns out to be a fencepost problem. If
you end up prompting the user times, you’ll want to produce

 error messages. You can use the classic fencepost solution of
prompting for the file name once before the loop:

System.out.print("input file name? ");

File f = new File(console.nextLine());

while (!f.canRead()) {

 System.out.println("File not found. Try again.");

 System.out.print("input file name? ");

 f = new File(console.nextLine());

}

This code could be included in your main method, but there is
enough code here that it makes sense to put it in its own method.

n

n − 1

Because it is prompting the user for input, the code requires a
Scanner for reading from the console. It can return a Scanner that is
tied to the input file to process.

When you try to create a method that includes this code, you again
run into the problem of checked exceptions. Even though we are
being very careful to make sure that the file exists and can be read,
the Java compiler doesn’t know that. From its point of view, this code
might throw an exception. You still need to include a throws clause in
the method header, just as you’ve been doing with main :

public static Scanner getInput(Scanner console)

 throws FileNotFoundException {

 System.out.print("input file name? ");

 File f = new File(console.nextLine());

 while (!f.canRead()) {

 System.out.println("File not found. Try again.");

 System.out.print("input file name? ");

 f = new File(console.nextLine());

 }

 // now we know that f is a file that can be read

 return new Scanner(f);

}

Here is a variation of the CountWords program that prompts for a file
name:

 1 // Variation of CountWords that prompts for a file name.

 2

 3 import java.io.*;

 4 import java.util.*;

 5

 6 public class CountWords2 {

 7 public static void main(String[] args)

 8 throws FileNotFoundException {

 9 Scanner console = new Scanner(System.in);

10 Scanner input = getInput(console);

11

12 // and count words

13 int count = 0;

14 while (input.hasNext()) {

15 String word = input.next();

16 count++;

17 }

18 System.out.println("total words = " + count);

19 }

20

21 // Prompts the user for a legal file name; creates and

22 // returns a Scanner tied to the file

23 public static Scanner getInput(Scanner console)

24 throws FileNotFoundException {

25 System.out.print("input file name? ");

26 File f = new File(console.nextLine());

27 while (!f.canRead()) {

28 System.out.println("File not found. Try

again.");

29 System.out.print("input file name? ");

30 f = new File(console.nextLine());

31 }

32 // now we know that f is a file that can be read

33 return new Scanner(f);

34 }

35 }

The following log of execution shows what happens when the user
types in some illegal file names, ending with a legal file name:

input file name? amlet.txt

File not found. Try again.

input file name? hamlet.dat

File not found. Try again.

input file name? humlet.txt

File not found. Try again.

input file name? hamlet.txt

Total words = 31956

The code for opening a file is fairly standard and could be used
without modification in many programs. We refer to this as
boilerplate code.

Boilerplate Code
Code that tends to be the same from one program to
another.

The getInput method is a good example of the kind of boilerplate
code that you might use in many different file-processing programs.

6.5 Case Study: Zip Code Lookup

Knowing the distance between two locations turns out to be
extremely helpful and valuable. For example, many popular Internet
dating sites allow you to search for people on the basis of a target
location. On Match.com, you can search for potential matches within
a particular radius of a given city or zip code (5 miles, 10 miles, 15
miles, 25 miles, and so on). Obviously this is an important feature for
a dating site because people are most interested in dating other
people who live near them.

There are many other applications of this kind of proximity search. In
the 1970s and 1980s there was an explosion of interest in what is
known as direct mail marketing that has produced what we now call
junk mail. Proximity searches are very important in direct mail
campaigns. A local store, for example, might decide to mail out a
brochure to all residents who live within 5 miles of the store. A
political candidate might pay a membership organization like The

Sierra Club or the National Rifle Association a fee to get the mailing
addresses of all its members who live within a certain distance of a
town or a city district.

Massive databases keep track of potential customers and voters.
Direct-mail marketing organizations often want to find the distance
between one of these individuals and some fixed location. The
distance calculations are done almost exclusively with zip codes.
There are over 40,000 five-digit zip codes in the United States.
Some zip codes cover rural areas that are fairly large, but more often
a zip code determines your location in a city or town to within a
fraction of a mile. If you use the more specific database,
you can often pinpoint a location to within a few city blocks.

If you do a web search for “zip code database” or “zip code software”
you will find that there are many people selling the data and the
software to interpret the data. There are also some free databases,
although the data aren’t quite as accurate. The U.S. Census Bureau
is the source of much of the free data.

To explore this application, let’s write a program that finds all the zip
codes within a certain proximity of another zip code. A web site like
Match.com could use the logic of this program to find potential dates
within a certain radius. You’d simply start with the zip code of
interest, find all the other zip codes within a particular distance, and
then find all the customers who have those zip codes. We don’t have
access to a massive dating database like Match.com, so we’ll be

Zip + 4

working on just the first part of this task, finding the zip codes that
are within a specified distance.

As we noted earlier, some free zip code databases are available
online. Our sample program uses data compiled by software
developer Schuyler Erle, whose data are distributed free through a
Creative Commons license (obtained from
https://boutell.com/zipcodes/).

We have reformatted the data to make it more convenient for us to
work with it (a process known as data munging). We will be working
with a file called zipcode.txt that has a series of 3-line entries, one
for each zip code. The first line contains the zip code, the second
line contains the city and state, and the third line contains two
numbers that represent the latitude and longitude of the zip code.
For example, the following is an entry for one of the authors’ home
zip codes:

98104

Seattle, WA

47.60252 -122.32855

The overall task is to prompt the user for a target zip code and a
proximity and to show all zip codes within the given proximity of the
target. Here is a first attempt at pseudocode for the overall task:

introduce program to user.

prompt for target zip code and proximity.

display matching zip codes from file.

This approach doesn’t quite work. To display a match, you have to
compare the target location to each of the different zip codes in the
data file. You’ll need the latitude and longitude information to make
this comparison. But when you prompt the user, you’re just asking
for a zip code and proximity. You could alter the program to prompt
for a latitude and longitude, but that wouldn’t be a very friendly
program for the user. Imagine if Match.com required you to know
your latitude and longitude in order for you to search for people who
live near you.

Instead, you can use the zip code data to find the latitude and
longitude of the target zip code. As a result, you’ll have to search the
data twice. The first time through you will be looking for the target zip
code, so that you can find its coordinates. The second time through
you will display all the zip codes that are within the distance specified
by the user. Here is a new version of the pseudocode:

introduce program to user.

prompt for target zip code and proximity.

find coordinates for target zip code.

display matching zip codes from file.

Introducing the program and prompting for the target zip code and
proximity are fairly straightforward tasks that don’t require detailed
explanation. The real work of the program involves solving the third
and fourth steps in this pseudocode. Each of these steps is
sufficiently complex that it deserves to be included in a static
method.

First consider the problem of finding the coordinates for the target zip
code. You need to set up a Scanner to read from the file, and then
you need to call the method that will do the search. But what
information should the searching method return? You want the
coordinates of the target zip code (the latitude and longitude). Your
method can’t return two different values, but these coordinates
appear on a single line of input, so you can return that line of input
as a String . That means that your main method will include the
following code:

Scanner input = new Scanner(new File("zipcode.txt"));

String targetCoordinates = find(target, input);

The method should read the input file line by line, searching for the
target zip code. Remember that each entry in the file is composed of
three different lines. As a result, you need a slight variation of the
standard line-processing loop that reads three lines each time
through the loop:

public static String find(String target, Scanner input) {

 while (input.hasNextLine()) {

 String zip = input.nextLine();

 String city = input.nextLine();

 String coordinates = input.nextLine();

 ...

 }

 ...

}

As you read various zip code entries, you want to test each to see
whether it matches the target. Remember that you need to use the
equals method to compare strings for equality. If you find a match,
you can print it and return the coordinates:

public static String find(String target, Scanner input) {

 while (input.hasNextLine()) {

 String zip = input.nextLine();

 String city = input.nextLine();

 String coordinates = input.nextLine();

 if (zip.equals(target)) {

 System.out.println(zip + ": " + city);

 return coordinates;

 }

 }

 ...

}

This method isn’t complete because you have to consider the case
in which the target zip code doesn’t appear in the file. In that case,
you exit the loop without having returned a value. There are many
things the program could do at this point, such as printing an error
message or throwing an exception. To keep things simple, let’s
instead return a set of fake coordinates. If the program returns a
latitude and longitude of (0, 0), there won’t be any matches unless
the user asks for an outrageously high proximity (over 4,000 miles):

public static String find(String target, Scanner input) {

 while (input.hasNextLine()) {

 String zip = input.nextLine();

 String city = input.nextLine();

 String coordinates = input.nextLine();

 if (zip.equals(target)) {

 System.out.println(zip + ": " + city);

 return coordinates;

 }

 }

 // at this point we know the zip code isn't in the file

 // we return fictitious (no match) coordinates

 return "0 0";

}

This method completes the first of the two file-processing tasks. In
the second task, you have to read the file and search for zip codes
within the given proximity. The Scanner doesn’t have a reset option
for going back to the beginning of the file. Instead, you have to
construct a second Scanner object that will be used for the second
pass. Thus, your code in main will look like the following:

input = new Scanner(new File("zipcode.txt"));

showMatches(targetCoordinates, input, miles);

The code for finding matches involves a similar file-processing loop
that reads three lines of input at a time, printing matches as it finds
them:

public static void showMatches(String targetCoordinates,

 Scanner input, double miles) {

 // compute lat1 and long1

 System.out.println("zip codes within " + miles + "

miles:");

 while (input.hasNextLine()) {

 String zip = input.nextLine();

 String city = input.nextLine();

 String coordinates = input.nextLine();

 // compute lat2 and long2

 double distance = distance(lat1, long1, lat2, long2);

 if (distance <= miles) {

 // print zip code

 }

 }

}

Again, this is an incomplete version of the method. It indicates that
before the loop begins you will compute two values known as lat1
and long1 that represent the latitude and longitude of the target
coordinates. Inside the loop you compute values for lat2 and long2
that represent the latitude and longitude of the next entry from the
data file. The latitude and longitude are stored in a String . You can
construct a Scanner for each String that can be used to pull out the
individual tokens. You also need to fill in the details of printing. This
is a good place to use a printf to format the output:

public static void showMatches(String targetCoordinates,

 Scanner input, double miles) {

 Scanner data = new Scanner(targetCoordinates);

 double lat1 = data.nextDouble();

 double long1 = data.nextDouble(); System.out.println("zip

codes within " + miles + " miles:");

 while (input.hasNextLine()) {

 String zip = input.nextLine();

 String city = input.nextLine();

 String coordinates = input.nextLine();

 data = new Scanner(coordinates);

 double lat2 = data.nextDouble();

 double long2 = data.nextDouble();

 double distance = distance(lat1, long1, lat2, long2);

 if (distance <= miles) {

 System.out.printf(" %s %s, %3.2f miles\n",

 zip, city, distance);

 }

 }

}

This addition almost completes the program. The preceding code
calls a method called distance that is intended to compute the
distance between two points, given their latitude and longitude. This
problem was included as Programming Project 5 in Chapter 3 .
You can use the following standard formula:

Let , , and , be the latitude and longitude of two points,
respectively. , the longitudinal difference, and , the angular
difference/distance in radians, can be determined from the spherical
law of cosines as:

We won’t dwell on the math involved here, but a short explanation
might be helpful. Imagine forming a triangle by connecting two points
with the North Pole. From the two latitudes, you can compute the
distance from each point to the North Pole. The difference between
the two longitudes tells you the angle formed by these two sides of

φ1 λ1 φ2 λ2

Δλ Δσ

Δσ = arccos(sin φ1sin φ2 + cos φ1cos φ2cos Δλ)

the triangle. You may recall from geometry class that if you know two
sides and the angle between them, then you can compute the third
side. We are using a special version of the law of cosines that works
for spheres to compute the length of the third side of the triangle
(which is the line connecting the two points on our sphere). We have
to convert from degrees into radians and we have to include the
radius of our sphere (in this case the Earth). The resulting calculation
is included in the final version of the program.

Here is the complete version of the program:

 1 // This program uses a file of zip code information to allow

a user

 2 // to find zip codes within a certain distance of another

zip code.

 3

 4 import java.util.*;

 5 import java.io.*;

 6

 7 public class ZipLookup {

 8 // radius of sphere. Here it’s the Earth, in miles

 9 public static final double RADIUS = 3956.6;

10

11 public static void main(String[] args)

12 throws FileNotFoundException {

13 giveIntro();

14 Scanner console = new Scanner(System.in);

15

16 System.out.print("What zip code are you interested

in? ");

17 String target = console.next();

18 System.out.print("And what proximity (in miles)?

");

19 double miles = console.nextDouble();

20 System.out.println();

21

22 Scanner input = new Scanner(new

File("zipcode.txt"));

23 String targetCoordinates = find(target, input);

24 input = new Scanner(new File("zipcode.txt"));

25 showMatches(targetCoordinates, input, miles);

26 }

27

28 // introduces the program to the user

29 public static void giveIntro() {

30 System.out.println("Welcome to the zip code

database.");

31 System.out.println("Give me a 5-digit zip code and

a");

32 System.out.println("proximity, and I’ll tell you

where");

33 System.out.println("that zip code is located,

along");

34 System.out.println("with a list of other zip

codes");

35 System.out.println("within the given proximity.");

36 System.out.println();

37 }

38

39 // Searches for the given string in the input file; if

found,

40 // returns the coordinates; otherwise returns (0, 0)

41 public static String find(String target, Scanner input)

{

42 while (input.hasNextLine()) {

43 String zip = input.nextLine();

44 String city = input.nextLine();

45 String coordinates = input.nextLine();

46 if (zip.equals(target)) {

47 System.out.println(zip + ": " + city);

48 return coordinates;

49 }

50 }

51 // at this point we know the zip code isn’t in the

file

52 // we return fictitious (no match) coordinates

53 return "0 0";

54 }

55

56 // Shows all matches for the given coordinates within

the

57 // given number of miles

58 public static void showMatches(String

targetCoordinates,

59 Scanner input, double

miles) {

60 Scanner data = new Scanner(targetCoordinates);

61 double lat1 = data.nextDouble();

62 double long1 = data.nextDouble();

63 System.out.println("zip codes within " + miles + "

miles:");

64 while (input.hasNextLine()) {

65 String zip = input.nextLine();

66 String city = input.nextLine();

67 String coordinates = input.nextLine();

68 data = new Scanner(coordinates);

69 double lat2 = data.nextDouble();

70 double long2 = data.nextDouble();

71 double distance = distance(lat1, long1, lat2,

long2);

72 if (distance <= miles) {

73 System.out.printf(" %s %s, %3.2f

miles\n",

74 zip, city, distance);

75 }

76 }

77 }

78

79 // Returns spherical distance in miles given the

latitude

80 // and longitude of two points (depends on constant

RADIUS)

81 public static double distance(double lat1, double

long1,

82 double lat2, double long2)

{

83 lat1 = Math.toRadians(lat1);

84 long1 = Math.toRadians(long1);

85 lat2 = Math.toRadians(lat2);

86 long2 = Math.toRadians(long2);

87 double theCos = Math.sin(lat1) * Math.sin(lat2) +

88 Math.cos(lat1) * Math.cos(lat2) * Math.cos(long1

– long2);

89 double arcLength = Math.acos(theCos);

90 return arcLength * RADIUS;

91 }

92 }

Here is a sample execution:

Welcome to the zip code database.

Give me a 5-digit zip code and a

proximity, and I’ll tell you where

that zip code is located, along

with a list of other zip codes

within the given proximity.

What zip code are you interested in? 98104

And what proximity (in miles)? 1

98104: Seattle, WA

zip codes within 1.0 miles:

 98101 Seattle, WA, 0.62 miles

 98104 Seattle, WA, 0.00 miles

 98154 Seattle, WA, 0.35 miles

 98164 Seattle, WA, 0.29 miles

 98174 Seattle, WA, 0.35 miles

There is an old saying that you get what you pay for, and these zip
code data are no exception. There are several web sites that list zip
codes within a mile of 98104, and they include many zip codes not
included here. That’s because the free zip code information is
incomplete. Each of those web sites gives you the option of
obtaining a better database for a small fee.

Chapter Summary
Files are represented in Java as File objects. The File class is
found in the java.io package.

A Scanner object can read input from a file rather than from the
keyboard. This task is achieved by passing new File(filename) to
the Scanner ’s constructor, rather than passing System.in .

A checked exception is a program error condition that must be
caught or declared in order for the program to compile. For example,
when constructing a Scanner that reads a file, you must write the
phrase throws FileNotFoundException in the main method’s header.

The Scanner treats an input file as a one-dimensional stream of data
that is read in order from start to end. The input cursor consumes
(moves past) input tokens as they are read and returns them to your
program.

A Scanner that reads a file makes use of the various hasNext
methods to discover when the file’s input has been exhausted.

Scanners can be passed as parameters to methods to read part or all
of a file, since they are objects and therefore use reference
semantics.

A file name can be specified as a relative path such as
data/text/numbers.dat , which refers to a file called numbers.dat that
exists in the data/text/ subfolder of the current directory.
Alternatively, you can specify a full file path such as C:/Documents and
Settings/user/My Documents/data/text/numbers.dat .

In many files, input is structured by lines, and it makes sense to
process those files line by line. In such cases, it is common to use
nested loops: an outer loop that iterates over each line of the file and
an inner loop that processes the tokens in each line.

Output to a file can be achieved with a PrintStream object, which is
constructed with a File and has the same methods as System.out ,
such as println and print .

Self-Check Problems

Section 6.1: File-Reading Basics

1. What is a file? How can we read data from a file in Java?
2. What is wrong with the following line of code?

Scanner input = new Scanner("test.dat");

3. Which of the following is the correct syntax to declare a
Scanner to read the file example.txt in the current directory?

a. Scanner input = new Scanner("C:\example.txt");
b. Scanner input = new Scanner(new File("example.txt"));
c. Scanner input = new File("\\example.txt");
d. File input = new Scanner("/example.txt");
e. Scanner input = new Scanner("C:/example.txt");

4. Write code to construct a Scanner object to read the file
input.txt , which exists in the same folder as your program.

Section 6.2: Details of Token-
Based Processing

5. Given the following line of input, what tokens does a Scanner
break the line apart into?

welcome...to the matrix.

a. "welcome", "to", "the", "matrix"
b. "welcome...to the matrix."
c. "welcome...to", "the", "matrix."
d. "welcome...", "to", "the matrix."
e. "welcome", "to the matrix"

6. Given the following lines of input, what tokens does a Scanner
break the line apart into?

in fourteen-hundred 92

columbus sailed the ocean blue :)

a. "in", "fourteen-hundred", "92"
b. "in", "fourteen-hundred", "92", "columbus", "sailed",

"the", "ocean", "blue", ":)"

c. "in", "fourteen", "hundred", "92", "columbus",
"sailed", "the", "ocean", "blue"

d. "in", "fourteen-hundred", "92\ncolumbus", "sailed",
"the", "ocean", "blue :)"

e. "in fourteen-hundred 92", "columbus sailed the ocean
blue :)"

7. How many tokens are there in the following input, and what
Scanner method(s) can be used to read each of the tokens?

Hello there,how are you?

I am "very well", thank you.

12 34 5.67 (8 + 9) "10"

8. What is wrong with the following line of code?

Scanner input = new Scanner(new File("C:\temp\new

files\test.dat"));

(Hint: Try printing the String in this line of code.)
9. Answer the following questions about a Java program located

on a Windows machine in the folder C:\Documents and
Settings\amanda\My Documents\programs :

a. What are two legal ways you can refer to the file
C:\Documents and Settings\amanda\My

Documents\programs\numbers.dat?

b. How can you refer to the file C:\Documents and
Settings\amanda\My

Documents\programs\data\homework6\input.dat?
c. How many, and in what legal, ways can you refer to the

file C:\Documents and Settings\amanda\My
Documents\homework\data.txt?

10. Answer the following questions about a Java program located
on a Linux machine in the folder /home/amanda/Documents/hw6 :

a. What are two legal ways you can refer to the file
/home/amanda/Documents/hw6/names.txt?

b. How can you refer to the file
/home/amanda/Documents/hw6/data/numbers.txt?

c. How many legal ways can you refer to the file
/home/amanda/download/saved.html?

11. The following program contains 6 mistakes! What are they?

 1 public class Oops6 {

 2 public static void main(String[] args) {

 3 Scanner in = new Scanner("example.txt");

 4 countWords(in);

 5 }

 6

 7 // Counts total lines and words in the input

scanner.

 8 public static void countWords(Scanner input) {

 9 Scanner input = new Scanner("example.txt");

10 int lineCount = 0;

11 int wordCount = 0;

12

13 while (input.nextLine()) {

14 String line = input.line(); // read

one line

15 lineCount++;

16 while (line.next()) { // tokens

in line

17 String word = line.hasNext;

18 wordCount++;

19 }

20 }

21 }

22 }

Section 6.3: Line-Based
Processing

12. For the next several questions, consider a file called
readme.txt that has the following contents:

6.7 This file has

 several input lines.

 10 20 30 40

test

What would be the output from the following code when it is
run on the readme.txt file?

Scanner input = new Scanner(new File("readme.txt"));

int count = 0;

while (input.hasNextLine()) {

 System.out.println("input: " + input.nextLine());

 count++;

}

System.out.println(count + " total");

13. What would be the output from the code in the previous
exercise if the calls to hasNextLine and nextLine were
replaced by calls to hasNext and next , respectively?

14. What would be the output from the code in the previous
exercise if the calls to hasNextLine and nextLine were
replaced by calls to hasNextInt and nextInt , respectively?
How about hasNextDouble and nextDouble?

15. Given the following file contents, what will be the output from
each of the following code fragments?

the quick brown

 fox jumps

 over

the lazy dog

a. Scanner input = new Scanner(new

File(“brownfox.txt”));

while (input.hasNextLine()) {

 String line = input.nextLine();

 System.out.println(line);

}

b. Scanner input = new Scanner(new

File(“brownfox.txt”));

while (input.hasNext()) {

 String token = input.next();

 System.out.println(token);

}

16. Write a program that prints itself to the console as output. For
example, if the program is stored in Example.java , it will open
the file Example.java and print its contents to the console.

17. Write code that prompts the user for a file name and prints the
contents of that file to the console as output. Assume that the
file exists. You may wish to place this code into a method
called printEntireFile .

18. Write a program that takes as input lines of text like the
following:

This is some

text here.

The program should produce as output the same text inside a
box, as in the following:

+--------------+

| This is some |

| text here. |

+--------------+

Your program will have to assume some maximum line length
(e.g., 12 in this case).

Section 6.4: Advanced File
Processing

19. What object is used to write output to a file? What methods
does this object have available for you to use?

20. Write code to print the following four lines of text into a file
named message.txt :

Testing,

1, 2, 3.

This is my output file.

21. Write code that repeatedly prompts the user for a file name
until the user types the name of a file that exists on the
system. You may wish to place this code into a method called
getFileName , which will return that file name as a String .

22. In Problem 16 , you wrote a piece of code that prompted
the user for a file name and printed that file’s contents to the
console. Modify your code so that it will repeatedly prompt the
user for the file name until the user types the name of a file
that exists on the system.

Exercises
1. Write a method called boyGirl that accepts a Scanner that is

reading its input from a file containing a series of names
followed by integers. The names alternate between boys’
names and girls’ names. Your method should compute the
absolute difference between the sum of the boys’ integers and
the sum of the girls’ integers. The input could end with either a
boy or girl; you may not assume that it contains an even
number of names. For example, if the input file contains the
following text:

Erik 3 Rita 7 Tanner 14 Jillyn 13 Curtis 4 Stefanie 12

Ben 6

Then the method should produce the following console
output, since the boys’ sum is 27 and the girls’ sum is 32:

4 boys, 3 girls

Difference between boys’ and girls’ sums: 5

2. Write a method called evenNumbers that accepts a Scanner
reading input from a file with a series of integers, and report
various statistics about the integers to the console. Report the
total number of numbers, the sum of the numbers, the count

of even numbers and the percent of even numbers. For
example, if the input file contains the following text:

5 7 2 8 9 10 12 98 7 14 20 22

Then the method should produce the following console
output:

12 numbers, sum = 214

8 evens (66.67%)

3. Write a method called negativeSum that accepts a Scanner
reading input from a file containing a series of integers, and
print a message to the console indicating whether the sum
starting from the first number is ever negative. You should
also return true if a negative sum can be reached and false
if not. For example, suppose the file contains the following
text:

38 4 19 -27 -15 -3 4 19 38

Your method would consider the sum of just one number (38),
the first two numbers , the first three numbers

, and so on to the end. None of these sums is
negative, so the method would produce the following output
and return false :

(38 + 4)
(38 + 4 + 19)

no negative sum

If the file instead contains the following numbers:

14 7 -10 9 -18 -10 17 42 98

The method finds that a negative sum of is reached after
adding the first six numbers. It should output the following to
the console and return true :

sum of -8 after 6 steps

4. Write a method called countCoins that accepts a Scanner
representing an input file whose data is a series of pairs of
tokens, where each pair begins with an integer and is followed
by the type of coin, which will be “pennies” (1 cent each),
“nickels” (5 cents each), “dimes” (10 cents each), or “quarters”
(25 cents each), case-insensitively. Add up the cash values of
all the coins and print the total money. For example, if the
input file contains the following text:

3 pennies 2 quarters 1 Pennies 23 NiCkeLs 4 DIMES

For the input above, your method should produce the
following output:

−8

Total money: $2.09

5. Write a method called collapseSpaces that accepts a Scanner
representing an input file as its parameter, then reads that file
and outputs it with all its tokens separated by single spaces,
collapsing any sequences of multiple spaces into single
spaces. For example, consider the following text:

many spaces on this line!

If this text were a line in the file, the same line should be
output as follows:

many spaces on this line!

6. Write a method called readEntireFile that accepts a Scanner
representing an input file as its parameter, then reads that file
and returns its entire text contents as a String .

7. Write a method called flipLines that accepts a Scanner for an
input file and writes to the console the same file’s contents
with each pair of lines reversed in order. If the file contains an
odd number of lines, leave the last line unmodified. For
example, if the file contains:

Twas brillig and the slithy toves

did gyre and gimble in the wabe.

All mimsey were the borogroves,

and the mome raths outgrabe.

your method should produce the following output:

did gyre and gimble in the wabe.

Twas brillig and the slithy toves

and the mome raths outgrabe.

All mimsey were the borogroves,

8. Write a method called doubleSpace that accepts a Scanner for
an input file and a PrintStream for an output file as its
parameters, writing into the output file a double-spaced
version of the text in the input file. You can achieve this task
by inserting a blank line between each line of output.

9. Write a method called wordWrap that accepts a Scanner
representing an input file as its parameter and outputs each
line of the file to the console, word-wrapping all lines that are
longer than 60 characters. For example, if a line contains 112
characters, the method should replace it with two lines: one
containing the first 60 characters and another containing the
final 52 characters. A line containing 217 characters should
be wrapped into four lines: three of length 60 and a final line
of length 37.

10. Modify the preceding wordWrap method so that it outputs the
newly wrapped text back into the original file. (Be careful—
don’t output into a file while you are reading it!) Also, modify it

to use a class constant for the maximum line length rather
than hard-coding 60.

11. Modify the preceding wordWrap method so that it only wraps
whole words, never chopping a word in half. Assume that a
word is any whitespace-separated token and that all words
are under 60 characters in length.

12. Write a method called stripHtmlTags that accepts a Scanner
representing an input file containing an HTML web page as its
parameter, then reads that file and prints the file’s text with all
HTML tags removed. A tag is any text between the characters
< and > . For example, consider the following text:

<html>

<head>

<title>My web page</title>

</head>

<body>

<p>There are many pictures of my cat here,

as well as my very cool blog page,

which contains awesome

stuff about my trip to Vegas.</p>

Here’s my cat now:

</body>

</html>

If the file contained these lines, your program should output
the following text:

My web page

There are many pictures of my cat here,

as well as my very cool blog page,

which contains awesome

stuff about my trip to Vegas.

Here’s my cat now:

You may assume that the file is a well-formed HTML
document and that there are no < or > characters inside tags.

13. Write a method called stripComments that accepts a Scanner
representing an input file containing a Java program as its
parameter, reads that file, and then prints the file’s text with all
comments removed. A comment is any text on a line from //
to the end of the line, and any text between /* and */
characters. For example, consider the following text:

import java.util.*;

/* My program

by Suzy Student */

public class Program {

 public static void main(String[] args) {

 System.out.println("Hello, world!"); // a println

 }

 public static /* Hello there */ void foo() {

 System.out.println("Goodbye!"); // comment here

 } /* */

}

If the file contained this text, your program should output the
following text:

import java.util.*;

public class Program {

 public static void main(String[] args) {

 System.out.println("Hello, world!");

 }

 public static void foo() {

 System.out.println("Goodbye!");

 }

}

14. Write a method called printDuplicates that takes as a
parameter a Scanner containing a series of lines. Your method
should examine each line looking for consecutive occurrences
of the same token on the same line and print each duplicated
token, along with the number of times that it appears
consecutively. Nonrepeated tokens are not printed. You may
ignore the case of repetition across multiple lines (such as if a
line ends with a given token and the next line starts with the
same token). You may assume that each line of the file

contains at least 1 token of input. For example, consider the
following input:

hello how how are you you you you

I I I am Jack’s Jack’s smirking smirking smirking

smirking revenge

bow wow wow yippee yippee yo yippee yippee yay yay yay

one fish two fish red fish blue fish

It’s the Muppet Show, wakka wakka wakka

Your method should produce the following output:

how*2 you*4

I*3 Jack's*2 smirking*4

wow*2 yippee*2 yippee*2 yay*3

wakka*3

15. Write a method called coinFlip that accepts a Scanner
representing an input file of coin flips that are heads (H) or
tails (T). Consider each line to be a separate set of coin flips
and output the number and percentage of heads in that line. If
it is more than 50%, print “You win!”. Consider the following
file:

H T H H T

T t t T h H

For the input above, your method should produce the
following output:

3 heads (60.0%)

You win!

2 heads (33.3%)

16. Write a method called mostCommonNames that accepts a Scanner
representing an input file with names on each line separated
by spaces. Some names appear multiple times in a row on
the same line. For each line, print the most commonly
occurring name. If there’s a tie, use the first name that had
that many occurrences; if all names are unique, print the first
name on the line. For example, if the file has this input:

Benson Eric Eric Kim Kim Kim Jenny Nancy Nancy

Paul Paul

Ethan Jamie Jamie Alyssa Alyssa Helene Helene Jessica

Jessica

For the input above, your method should produce the
following output:

Most common: Kim

Most common: Jamie

17. Write a method called inputStats that accepts a Scanner
representing an input file and reports the number of lines, the
longest line, the number of tokens on each line, and the
length of the longest token on each line. If the file contains the
following text:

Beware the Jabberwock, my son,

the jaws that bite, the claws that catch,

Beware the JubJub bird and shun

the frumious bandersnatch.

For the input above, your method should produce the
following output:

Line 1 has 5 tokens (longest = 11)

Line 2 has 8 tokens (longest = 6)

Line 3 has 6 tokens (longest = 6)

Line 4 has 3 tokens (longest = 13)

Longest line: the jaws that bite, the claws that catch,

18. Write a method called plusScores that accepts a Scanner
representing an input file containing a series of lines that
represent student records. Each student record takes up two
lines of input. The first line has the student’s name and the
second line has a series of plus and minus characters. Below
is a sample input:

Kane, Erica

--+-+

Chandler, Adam

++-+

Martin, Jake

+++++++

For each student you should produce a line of output with the
student’s name followed by a colon followed by the percent of
plus characters. For the input above, your method should
produce the following output:

Kane, Erica: 40.0% plus

Chandler, Adam: 75.0% plus

Martin, Jake: 100.0% plus

19. Write a method called leetSpeak that accepts two parameters:
a Scanner representing an input file, and a PrintStream
representing an output file. Convert the input file’s text to “leet
speak,” where various letters are replaced by other
letters/numbers, and output the new text to the given output
file. Replace "o" with "0" , "l" (lowercase “L”) with "1" (the
number one), "e" with "3" , "a" with "4" , "t" with "7" , and
an "s" at the end of a word with "Z" . Preserve the original
line breaks from the input. Also wrap each word of input in

parentheses. For example, if the input file contains the
following text:

four score and

seven years ago our

fathers brought forth on this continent

a new nation

For the input above, your method should produce the
following in the output file:

(f0ur) (sc0r3) (4nd)

(s3v3n) (y34rZ) (4g0) (0ur)

(f47h3rZ) (br0ugh7) (f0r7h) (0n) (7hiZ) (c0n7in3n7)

(4) (n3w) (n47i0n)

20. Write a method called pigLatin that accepts as a parameter a
Scanner representing an input file. Your method should,
preserving line breaks, print out the input file’s text in a
simplified version of Pig Latin, a silly English variant where the
first letter of each word is moved to the end. Our rules for
translating a word to Pig Latin are as follows:

If the word starts with a vowel (a, e, i, o, or u), append
"yay" . For example, "elephant" becomes "elephantyay" .
If the word starts with a consonant, move the consonant to
the end, and append "ay" . For example, "welcome"
becomes "elcomeway" .

You should also convert every word to lowercase. For
example, if the input file contains the following text:

Shall I compare thee to

a summer's day Thou art more

lovely and more temperate

For the preceding input, your method should produce the
following console output:

hallsay iyay omparecay heetay otay

ayay ummer'ssay ayday houtay artyay oremay

ovelylay andyay oremay emperatetay

Programming Projects
1. Students are often asked to write term papers containing a

certain number of words. Counting words in a long paper is a
tedious task, but the computer can help. Write a program that
counts the number of words, lines, and total characters (not
including whitespace) in a paper, assuming that consecutive
words are separated either by spaces or end-of-line
characters.

2. Write a program that compares two files and prints
information about the differences between them. For example,
consider a file data1.txt with the following contents:

This file has a great deal of

text in it which needs to

be processed.

Consider another file data2.txt that exists with the following
contents:

This file has a grate deal of

text in it which needs to

bee procesed.

A dialogue with the user running your program might look like
the following:

Enter a first file name: data1.txt

Enter a second file name: data2.txt

Differences found:

Line 1:

< This file has a great deal of

> This file has a grate deal of

Line 4:

< be processed.

> bee procesed.

3. Write a program that prompts the user for a file name,
assuming that the file contains a Java program. Your program
should read the file and print its contents properly indented.
When you see a left-brace character ({) in the file, increase
your indentation level by four spaces. When you see a right-
brace character (}), decrease your indentation level by four
spaces. You may assume that the file has only one opening or
closing brace per line, that every block statement (such as if
or for) uses braces rather than omitting them, and that every
relevant occurrence of a { or } character in the file occurs at
the end of a line. Consider using a class constant for the
number of spaces to indent (4), so that it can easily be
changed later.

4. Write a program that reads a file containing data about the
changing popularity of various baby names over time and
displays the data about a particular name. Each line of the file
stores a name followed by integers representing the name’s
popularity in each decade: 1900, 1910, 1920, and so on. The
rankings range from 1 (most popular) to 1000 (least popular),
or 0 for a name that was less popular than the 1000th name.
The following lines are a sample of the file format:

Sally 0 0 0 0 0 0 0 0 0 0 886

Sam 58 69 99 131 168 236 278 380 467 408 466

Samantha 0 0 0 0 0 0 272 107 26 5 7

Samir 0 0 0 0 0 0 0 0 920 0 798

Your program should prompt the user for a name and search
the file for that name:

This program allows you to search through the

data from the Social Security Administration

to see how popular a particular name has been

since 1900.

Name? Sam

If the name is found, the program should display data about
the name on the screen:

Statistics on name "Sam"

 1900: 58

 1910: 69

 1920: 99

 1930: 131

 ...

This program is more fun and challenging if you also draw the
name’s popularity on a DrawingPanel as a line graph. Plot the
decades on the -axis and the popularity on the -axis.

5. Write a program that plays a game where a player is asked to
fill in various words of a mostly complete story without being
able to see the rest. Then the user is shown his/her story,
which is often funny. The input for your program is a set of
story files, each of which contains “placeholder” tokens
surrounded by < and > , such as:

One of the most <adjective> characters in fiction is

named

"Tarzan of the <plural-noun> ." Tarzan was raised by a/an

<noun> and lives in the <adjective> jungle in the

heart of darkest <place> .

The user is prompted to fill in each of the placeholders in the
story, and then a resulting output file is created with the
placeholders filled in. For example:

x y

Input file name? story1.txt

Please enter an adjective: silly

Please enter a plural noun: socks

Please enter a noun: tree

Please enter an adjective: tiny

Please enter a place: Canada

The resulting output story would be:

One of the most silly characters in fiction is named

"Tarzan of the socks ." Tarzan was raised by a/an

tree and lives in the tiny jungle in the

heart of darkest Canada .

Chapter 7 Arrays

7.1 Array Basics
• Constructing and Traversing an Array

• Accessing an Array

• Initializing Arrays

• A Complete Array Program

• Random Access

• Arrays and Methods

• The For-Each Loop

• The Arrays Class

7.2 Array-Traversal Algorithms
• Printing an Array

• Searching and Replacing

• Testing for Equality

• Reversing an Array

• String Traversal Algorithms

• Functional Approach

7.3 Reference Semantics
• Multiple Objects

7.4 Advanced Array Techniques
• Shifting Values in an Array

• Arrays of Objects

• Command-Line Arguments

• Nested Loop Algorithms

7.5 Multidimensional Arrays
• Rectangular Two-Dimensional Arrays

• Jagged Arrays

7.6 Arrays of Pixels

7.7 Case Study: Benford’s Law
• Tallying Values

• Completing the Program

Introduction

The sequential nature of files severely limits the
number of interesting things that you can do
easily with them. The algorithms we have
examined so far have all been sequential
algorithms: algorithms that can be performed by
examining each data item once, in sequence.
An entirely different class of algorithms can be
performed when you can access the data items
multiple times and in an arbitrary order.

This chapter examines a new object called an
array that provides this more flexible kind of
access. The concept of arrays is not complex,
but it can take a while for a novice to learn all of
the different ways that an array can be used.
The chapter begins with a general discussion of
arrays and then moves into a discussion of
common array manipulations as well as
advanced array techniques. The chapter also
includes a discussion of special rules known as
reference semantics that apply only to objects
like arrays and strings.

7.1 Array Basics
An array is a flexible structure for storing a sequence of values that
are all of the same type.

Array
An indexed structure that holds multiple values of the
same type.

The values stored in an array are called elements. The individual
elements are accessed using an integer index.

Index
An integer indicating the position of a particular value
in a data structure.

As an analogy, consider post office boxes. The boxes are indexed
with numbers, so you can refer to an individual box by using a
description like “P.O. Box 884.” You already have experience using
an index to indicate positions within a String ; recall the methods
charAt and substring . Like String indexes, array indexes start with
0. This is a convention known as zero-based indexing.

Zero-Based Indexing
A numbering scheme used throughout Java in which a
sequence of values is indexed starting with 0 (element
0, element 1, element 2, and so on).

It might seem more natural to start indexes with 1 instead of 0, but
Java uses the same indexing scheme that is used in C and C++.

Constructing and Traversing an
Array

Suppose you want to store some different temperature readings. You
could keep them in a series of variables:

double temperature1;

double temperature2;

double temperature3;

This isn’t a bad solution if you have just 3 temperatures, but suppose
you need to store 3000 temperatures. Then you would want a more
flexible way to store the values. You can instead store the
temperatures in an array.

When you use an array, you first need to declare a variable for it, so
you have to know what type to use. The type will depend on the type
of elements you want to have in your array. To indicate that you are
creating an array, follow the type name with a set of square brackets:
[] . If you are storing temperature values, you want a sequence of
values of type double , so you use the type double[] . Thus, you can
declare a variable for storing your array as follows:

double[] temperature;

Arrays are objects, which means that they must be constructed.
Simply declaring a variable isn’t enough to bring the object into
existence. In this case you want an array of three double values,
which you can construct as follows:

double[] temperature = new double[3];

This is a slightly different syntax than you’ve used previously to
create a new object. It is a special syntax for arrays only. Notice that
on the left-hand side you don’t put anything inside the square
brackets, because you’re describing a type. The variable
temperature can refer to any array of double values, no matter how
many elements it has. On the right-hand side, however, you have to
mention a specific number of elements because you are asking Java
to construct an actual array object and it needs to know how many
elements to include.

The general syntax for declaring and constructing an array is as
follows:

<element type>[] <name> = new <element type>[<length>];

You can use any type as the element type, although the left and right
sides of this statement have to match. For example, any of the
following lines of code would be legal ways to construct an array:

int[] numbers = new int[10]; // an array of 10 ints

char[] letters = new char[20]; // an array of 20 chars

boolean[] flags = new boolean[5]; // an array of 5 booleans

String[] names = new String[100]; // an array of 100 Strings

Color[] colors = new Color[50]; // an array of 50 Colors

Some special rules apply when you construct an array of objects
such as an array of Strings or an array of Colors , but we’ll discuss
those later in the chapter.

When it executes the line of code to construct the array of
temperatures, Java will construct an array of three double values,
and the variable temperature will refer to the array:

As you can see, the variable temperature is not itself the array.
Instead, it stores a reference to the array. The array indexes are
indicated in square brackets. To refer to an individual element of the
array, you combine the name of the variable that refers to the array
(temperature) with a specific index ([0] , [1] , or [2]). So, there is an
element known as temperature[0] , an element known as
temperature[1] , and an element known as temperature[2] .

In the temperature array diagram, each of the array elements has the
value 0.0 . This is a guaranteed outcome when an array is
constructed. Each element is initialized to a default value, a process
known as auto-initialization.

Auto-Initialization
The initialization of variables to a default value, such as
on an array’s elements when it is constructed.

When Java performs auto-initialization, it always initializes to the
zero-equivalent for the type. Table 7.1 indicates the zero-
equivalent values for various types. The special value null will be
explained later in this chapter.

Table 7.1 Zero-Equivalent Auto-Initialization Values

Notice that the zero-equivalent for type double is 0.0 , which is why
the array elements were initialized to that value. Using the indexes,
you can store the specific temperature values that are relevant to
this problem:

temperature[0] = 74.3;

temperature[1] = 68.4;

temperature[2] = 70.3;

This code modifies the array to have the following values:

Obviously an array isn’t particularly helpful when you have just three
values to store, but you can request a much larger array. For
example, you could request an array of 100 temperatures by writing
the following line of code:

double[] temperature = new double[100];

This is almost the same line of code you executed before. The
variable is still declared to be of type double[] , but in constructing
the array, you requested 100 elements instead of 3, which constructs
a much larger array:

Notice that the highest index is 99 rather than 100 because of zero-
based indexing.

You are not restricted to using simple literal values inside the
brackets. You can use any integer expression. This flexibility allows
you to combine arrays with loops, which greatly simplifies the code

you write. For example, suppose you want to read a series of
temperatures from a Scanner . You could read each value individually:

temperature[0] = input.nextDouble();

temperature[1] = input.nextDouble();

temperature[2] = input.nextDouble();

...

temperature[99] = input.nextDouble();

But since the only thing that changes from one statement to the next
is the index, you can capture this pattern in a for loop with a control
variable that takes on the values 0 to 99 :

for (int i = 0; i < 100; i++) {

 temperature[i] = input.nextDouble();

}

This is a very concise way to initialize all the elements of the array.
The preceding code works when the array has a length of 100, but
you can change this to accommodate an array of a different length.
Java provides a useful mechanism for making this code more
general. Each array keeps track of its own length. You’re using the
variable temperature to refer to your array, which means you can ask
for temperature.length to find out the length of the array. By using

temperature.length in the for loop test instead of the specific value
100, you make your code more general:

for (int i = 0; i < temperature.length; i++) {

 temperature[i] = input.nextDouble();

}

Notice that the array convention is different from the String
convention. When you are working with a String variable s , you ask
for the length of the String by referring to s.length() . When you are
working with an array variable, you don’t include the parentheses
after the word “length.” This is another one of those unfortunate
inconsistencies that Java programmers just have to memorize.

The previous code provides a pattern that you will see often with
array-processing code: a for loop that starts at 0 and that continues
while the loop variable is less than the length of the array, doing
something with element [i] in the body of the loop. The program
goes through each array element sequentially, which we refer to as
traversing the array.

Array Traversal

Processing each array element sequentially from the
first to the last.

This pattern is so useful that it is worth including it in a more general
form:

for (int i = 0; i < <array>.length; i++) {

 <do something with array[i]>;

}

We will see this traversal pattern repeatedly as we explore common
array algorithms.

Accessing an Array

As we discussed in the last section, we refer to array elements by
combining the name of the variable that refers to the array with an
integer index inside square brackets:

<array variable>[<integer expression>]

Notice in this syntax description that the index can be an arbitrary
integer expression. To explore this feature, let’s examine how we
would access particular values in an array of integers. Suppose that
we construct an array of length 5 and fill it up with the first five odd
integers:

int[] list = new int[5];

for (int i = 0; i < list.length; i++) {

 list[i] = 2 * i + 1;

}

The first line of code declares a variable list of type int[] that
refers to an array of length 5. The array elements are auto-initialized
to 0 :

Then the code uses the standard traversing loop to fill in the array
with successive odd numbers:

Suppose that we want to report the first, middle, and last values in
the list. From an examination of the preceding diagram, we can see
that these values occur at indexes 0, 2, and 4, which means we
could write the following code:

// works only for an array of length 5

System.out.println("first = " + list[0]);

System.out.println("middle = " + list[2]);

System.out.println("last = " + list[4]);

This technique works when the array is of length 5, but suppose that
we use an array of a different length? If the array has a length of 10,
for example, this code will report the wrong values. We need to
modify it to incorporate list.length , just as we modified the
standard traversing loop.

The first element of the array will always be at index 0, so the first
line of code doesn’t need to change. You might at first think that we
could fix the third line of code by replacing the 4 with list.length :

// doesn't work

System.out.println("last = " + list[list.length]);

However, this code doesn’t work. The culprit is zero-based indexing.
In our example, the last value is stored at index 4, not index 5, when

list.length is 5. More generally, the last value will be at index
list.length – 1 . We can use this expression directly in our println
statement:

// this one works

System.out.println("last = " + list[list.length – 1]);

Notice that what appears inside the square brackets is an integer
expression (the result of subtracting 1 from list.length).

A simple approach to finding the middle value is to divide the length
of the list in half:

// is this right?

System.out.println("middle = " + list[list.length / 2]);

When list.length is 5, this expression evaluates to 2 , which prints
the correct value. But what about when list.length is 10? In that
case the expression evaluates to 5 , and we would print list[5] . But
when the list has an even length, there are actually two values in the
middle. For a list of length 10, the two values are at list[4] and
list[5] . In general, the preceding expression always returns the
second of the two values in the middle when the list is of even
length.

If we wanted the code to return the first of the two values in the
middle instead, we could subtract 1 from the length before dividing it
in half. Here is a complete set of println statements that follows this
approach:

System.out.println("first = " + list[0]);

System.out.println("middle = " + list[(list.length – 1) / 2]);

System.out.println("last = " + list[list.length – 1]);

As you learn how to use arrays, you will find yourself wondering what
types of operations you can perform on an array element that you
are accessing. For example, for the array of integers called list ,
what exactly can you do with list[i]? The answer is that you can
do anything with list[i] that you would normally do with any
variable of type int . For example, if you have a variable called x of
type int , any of the following expressions are valid:

x = 3;

x++;

x *= 2;

x––;

That means that the same expressions are valid for list[i] if list
is an array of integers:

list[i] = 3;

list[i]++;

list[i] *= 2;

list[i]––;

From Java’s point of view, because list is declared to be of type
int[] , an array element like list[i] is of type int and can be
manipulated as such. For example, to increment every value in the
array, you could use the standard traversing loop:

for (int i = 0; i < list.length; i++) {

 list[i]++;

}

This code would increment each value in the array, turning the array
of odd numbers into an array of even numbers.

It is possible to refer to an illegal index of an array, in which case
Java throws an exception. For example, for an array of length 5, the
legal indexes are from 0 to 4. Any number less than 0 or greater than
4 is outside the bounds of the array:

When you are working with this sample array, if you attempt to refer
to list[-1] or list[5] , you are attempting to access an array
element that does not exist. If your code makes such an illegal
reference, Java will halt your program with an
ArrayIndexOutOfBoundsException .

Initializing Arrays

Java has a special syntax for initializing an array when you know
exactly what you want to put into it. For example, you could write the
following code to initialize an array of integers to keep track of the
number of days that are in each month (“Thirty days hath September
. . .”) and an array of Strings to keep track of the abbreviations for
the days of the week:

int[] daysIn = new int[12];

daysIn[0] = 31;

daysIn[1] = 28;

daysIn[2] = 31;

daysIn[3] = 30;

daysIn[4] = 31;

daysIn[5] = 30;

daysIn[6] = 31;

daysIn[7] = 31;

daysIn[8] = 30;

daysIn[9] = 31;

daysIn[10] = 30;

daysIn[11] = 31;

String[] dayNames = new String[7];

dayNames[0] = "Mon";

dayNames[1] = "Tue";

dayNames[2] = "Wed";

dayNames[3] = "Thu";

dayNames[4] = "Fri";

dayNames[5] = "Sat";

dayNames[6] = "Sun";

This code works, but it’s a rather tedious way to declare these
arrays. Java provides a shorthand:

int[] daysIn = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30,

31};

String[] dayNames = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat",

"Sun"};

The general syntax for array initialization is as follows:

<element type>[] <name> = {<value>, <value>, ..., <value>};

You use the curly braces to enclose a series of values that will be
stored in the array. The order of the values is important. The first
value will go into index 0, the second value will go into index 1, and
so on. Java counts how many values you include and constructs an
array that is just the right size. It then stores the various values into
the appropriate spots in the array.

This is one of only two examples we have seen in which Java will
construct an object without the new keyword. The other place we
saw this was with String literals, in which Java constructs String
objects without your having to call new . Both of these techniques are
conveniences for programmers. These tasks are so common that the
designers of the language wanted to make it easy to do them.

Declaring and manipulating arrays in JShell is a good way to try out
the syntax and learn about how arrays behave. The concise array
initialization syntax makes it easier to create and examine an array
containing a given set of elements.

jshell> int[] list = {1, 3, 5, 7, 9};

list ==> int[5] { 1, 3, 5, 7, 9 }

jshell> list[0]

$2 ==> 1

jshell> list[4]

$3 ==> 9

jshell> list.length

$4 ==> 5

jshell> list[list.length - 1]

$5 ==> 9

jshell> list[list.length / 2]

$6 ==> 5

jshell> list[5]

| java.lang.ArrayIndexOutOfBoundsException thrown: 5

| at (#7:1)

A Complete Array Program

Let’s look at a program in which an array allows you to solve a
problem that you couldn’t solve before. If you tune in to any local
news broadcast at night, you’ll hear them report the high
temperature for that day. It is usually reported as an integer, as in, “It
got up to 78 today.”

Suppose you want to examine a series of daily high temperatures,
compute the average high temperature, and count how many days
were above that average temperature. You’ve been using Scanners
to solve problems like this, and you can almost solve the problem
that way. If you just wanted to know the average, you could use a
Scanner and write a cumulative sum loop to find it:

 1 // Reads a series of high temperatures and reports the

average.

 2

 3 import java.util.*;

 4

 5 public class Temperature1 {

 6 public static void main(String[] args) {

 7 Scanner console = new Scanner(System.in);

 8 System.out.print("How many days' temperatures? ");

 9 int numDays = console.nextInt();

10 int sum = 0;

11 for (int i = 1; i <= numDays; i++) {

12 System.out.print("Day " + i + "'s high temp:

");

13 int next = console.nextInt();

14 sum += next;

15 }

16 double average = (double) sum / numDays;

17 System.out.println();

18 System.out.println("Average = " + average);

19 }

20 }

DID YOU KNOW?

Buffer Overruns

One of the earliest and still most common sources of
computer security problems is a buffer overrun (also known
as a buffer overflow). A buffer overrun is similar to an array
index out of bounds exception. It occurs when a program
writes data beyond the bounds of the buffer that is set aside
for that data.

For example, you might have space allocated for the String
“James T Kirk”, which is 12 characters long, counting the
spaces:

Suppose that you tell the computer to overwrite this buffer
with the String “Jean Luc Picard”. There are 15 letters in
Picard’s name, so if you write all of those characters into the
buffer, you “overrun” it by writing three extra characters:

The last three letters of Picard’s name (“ard”) are being
written to a part of memory that is beyond the end of the
buffer. This is a very dangerous situation, because it will
overwrite any data that is already there. An analogy would be
a fellow student grabbing three sheets of paper from you and
erasing anything you had written on them. You are likely to
have had useful information written on those sheets of paper,
so the overrun is likely to cause a problem.

When a buffer overrun happens accidentally, the program
usually halts with some kind of error condition. However,
buffer overruns are particularly dangerous when they are
done on purpose by a malicious program. If the attacker can
figure out just the right memory location to overwrite, the
attacking software can take over your computer and instruct it
to do things you haven’t asked it to do.

Three of the most famous Internet worms were built on buffer
overruns: the 1988 Morris worm, the 2001 Code Red worm,
and the 2003 SQL Slammer worm.

Buffer overruns are often written as array code. You might
wonder how such a malicious program could be written if the
computer checks the bounds when you access an array. The
answer is that older programming languages like C and C++

do not check bounds when you access an array. By the time
Java was designed in the early 1990s, the danger of buffer
overruns was clear and the designers of the language
decided to include array-bounds checking so that Java would
be more secure. Microsoft included similar bounds checking
when it designed the language C# in the late 1990s.

The preceding program does a pretty good job. Here is a sample
execution:

How many days' temperatures? 5

Day 1's high temp: 78

Day 2's high temp: 81

Day 3's high temp: 75

Day 4's high temp: 79

Day 5's high temp: 71

Average = 76.8

But how do you count how many days were above average? You
could try to incorporate a comparison to the average temperature
into the loop, but that won’t work. The problem is that you can’t figure
out the average until you’ve gone through all of the data. That means
you’ll need to make a second pass through the data to figure out
how many days were above average. You can’t do that with a
Scanner , because a Scanner has no “reset” option that allows you to

see the data a second time. You’d have to prompt the user to enter
the temperature data a second time, which would be silly.

Fortunately, you can solve the problem with an array. As you read
numbers in and compute the cumulative sum, you can fill up an array
that stores the temperatures. Then you can use the array to make
the second pass through the data.

In the previous temperature example you used an array of double
values, but here you want an array of int values. So, instead of
declaring a variable of type double[] , declare a variable of type
int[] . You’re asking the user how many days of temperature data to
include, so you can construct the array right after you’ve read that
information:

int numDays = console.nextInt();

int[] temps = new int[numDays];

Here is the old loop:

for (int i = 1; i <= numDays; i++) {

 System.out.print("Day " + i + "'s high temp: ");

 int next = console.nextInt();

 sum += next;

}

Because you’re using an array, you’ll want to change this to a loop
that starts at 0 to match the array indexing. But just because you’re
using zero-based indexing inside the program doesn’t mean that you
have to confuse the user by asking for “Day 0’s high temp.” You can
modify the println to prompt for day (i + 1) . Furthermore, you no
longer need the variable next because you’ll be storing the values in
the array instead. So, the loop code becomes

for (int i = 0; i < numDays; i++) {

 System.out.print("Day " + (i + 1) + "'s high temp: ");

 temps[i] = console.nextInt();

 sum += temps[i];

}

Notice that you’re now testing whether the index is strictly less than
numDays . After this loop executes, you compute the average as we
did before. Then you write a new loop that counts how many days
were above average using our standard traversing loop:

int above = 0;

for (int i = 0; i < temps.length; i++) {

 if (temps[i] > average) {

 above++;

 }

}

In this loop the test involves temps.length . You could instead have
tested whether the variable is less than numDays ; either choice works
in this program because they should be equal to each other.

If you put these various code fragments together and include code to
report the number of days that had an above-average temperature,
you get the following complete program:

 1 // Reads a series of high temperatures and reports the

 2 // average and the number of days above average.

 3

 4 import java.util.*;

 5

 6 public class Temperature2 {

 7 public static void main(String[] args) {

 8 Scanner console = new Scanner(System.in);

 9 System.out.print("How many days’ temperatures? ");

10 int numDays = console.nextInt();

11 int[] temps = new int[numDays];

12

13 // record temperatures and find average

14 int sum = 0;

15 for (int i = 0; i < numDays; i++) {

16 System.out.print("Day " + (i + 1) + "'s high

temp: ");

17 temps[i] = console.nextInt();

18 sum += temps[i];

19 }

20 double average = (double) sum / numDays;

21

22 // count days above average

23 int above = 0;

24 for (int i = 0; i < temps.length; i++) {

25 if (temps[i] > average) {

26 above++;

27 }

28 }

29

30 // report results

31 System.out.println();

32 System.out.println("Average = " + average);

33 System.out.println(above + " days above average");

34 }

35 }

Here is a sample execution of the program:

How many days' temperatures? 9

Day 1's high temp: 75

Day 2's high temp: 78

Day 3's high temp: 85

Day 4's high temp: 71

Day 5's high temp: 69

Day 6's high temp: 82

Day 7's high temp: 74

Day 8's high temp: 80

Day 9's high temp: 87

Average = 77.88888888888889

5 days above average

Random Access

Most of the algorithms we have seen so far have involved sequential
access.

Sequential Access
Manipulating values in a sequential manner from first
to last.

A Scanner object is often all you need for a sequential algorithm,
because it allows you to access data by moving forward from the first
element to the last. But as we have seen, there is no way to reset a
Scanner back to the beginning. The sample program we just studied
uses an array to allow a second pass through the data, but even this

is fundamentally a sequential approach because it involves two
forward passes through the data.

An array is a powerful data structure that allows a more flexible kind
of access known as random access:

Random Access
Manipulating values in any order whatsoever to allow
quick access to each value.

An array can provide random access because it is allocated as a
contiguous block of memory. The computer can quickly compute
exactly where a particular value will be stored, because it knows how
much space each element takes up in memory and it knows that all
the elements are allocated right next to one another in the array.

When you work with arrays, you can jump around in the array
without worrying about how much time it will take. For example,
suppose that you have constructed an array of temperature readings
that has 10,000 elements and you find yourself wanting to print a
particular subset of the readings with code like the following:

System.out.println("#1394 = " + temps[1394]);

System.out.println("#6793 = " + temps[6793]);

System.out.println("#72 = " + temps[72]);

This code will execute quickly even though you are asking for array
elements that are far apart from one another. Notice also that you
don’t have to ask for them in order. You can jump to element 1394,
then jump ahead to element 6793, and then jump back to element
72. You can access elements in an array in any order that you like,
and you will get fast access.

Later in the chapter we will explore several algorithms that would be
difficult to implement without fast random access.

COMMON PROGRAMMING ERROR

Off-by-One Bug

When you converted the Temperature1 program to one that
uses an array, you modified the for loop to start with an
index of 0 instead of 1. The original for loop was written the
following way:

for (int i = 1; i <= numDays; i++) {

 System.out.print("Day " + i + "'s high temp: ");

 int next = console.nextInt();

 sum += next;

}

Because you were storing the values into an array rather than
reading them into a variable called next , you replaced next
with temps[i] :

// wrong loop bounds

for (int i = 1; i <= numDays; i++) {

 System.out.print("Day " + i + "'s high temp: ");

 temps[i] = console.nextInt();

 sum += temps[i];

}

Because the array is indexed starting at 0, you changed the
bounds of the for loop to start at 0 and adjusted the print
statement. Suppose those were the only changes you made:

// still wrong loop bounds

for (int i = 0; i <= numDays; i++) {

 System.out.print("Day " + (i + 1) + "'s high temp:

");

 temps[i] = console.nextInt();

 sum += temps[i];

}

This loop generates an error when you run the program. The
loop asks for an extra day’s worth of data and then throws an
exception. Here’s a sample execution:

How many days' temperatures? 5

Day 1's high temp: 82

Day 2's high temp: 80

Day 3's high temp: 79

Day 4's high temp: 71

Day 5's high temp: 75

Day 6's high temp: 83

Exception in thread "main"

 java.lang.ArrayIndexOutOfBoundsException: 5

 at Temperature2.main(Temperature2.java:18)

The problem is that if you’re going to start the for loop
variable at 0 , you need to do a test to ensure that it is strictly
less than the number of iterations you want. You changed the
1 to a 0 but left the <= test. As a result, the loop is
performing an extra iteration and trying to make a reference
to an array element temps[5] that doesn’t exist.

This is a classic off-by-one error. The fix is to change the loop
bounds to use a strictly less-than test:

// correct bounds

for (int i = 0; i < numDays; i++) {

 System.out.print("Day " + (i + 1) + "'s high temp:

");

 temps[i] = console.nextInt();

 sum += temps[i];

}

Arrays and Methods

You will find that when you pass an array as a parameter to a
method, the method has the ability to change the contents of the
array. We’ll examine in detail later in the chapter why this occurs, but
for now, the important point is simply to understand that methods can
alter the contents of arrays that are passed to them as parameters.

Let’s explore a specific example to better understand how to use
arrays as parameters and return values for a method. Earlier in the

chapter, we saw the following code for constructing an array of odd
numbers and incrementing each array element:

int[] list = new int[5];

for (int i = 0; i < list.length; i++) {

 list[i] = 2 * i + 1;

}

for (int i = 0; i < list.length; i++) {

 list[i]++;

}

Let’s see what happens when we move the incrementing loop into a
method. It will need to take the array as a parameter. We’ll rename it
data instead of list to make it easier to distinguish it from the
original array variable. Remember that the array is of type int[] , so
we would write the method as follows:

public static void incrementAll(int[] data) {

 for (int i = 0; i < data.length; i++) {

 data[i]++;

 }

}

You might think this method will have no effect whatsoever, or that
we have to return the array to cause the change to be remembered.
But when we use an array as a parameter, this approach actually

works. We can replace the incrementing loop in the original code
with a call on our method:

int[] list = new int[5];

for (int i = 0; i < list.length; i++) {

 list[i] = 2 * i + 1;

}

incrementAll(list);

This code produces the same result as the original.

The key lesson to draw from this is that when we pass an array as a
parameter to a method, that method has the ability to change the
contents of the array. We don’t need to return the array to allow this
to happen.

To continue with this example, let’s define a method for the
initializing code that fills the array with odd numbers. We can
accomplish this by moving the initializing loop into a method that
takes the array as a parameter:

public static void fillWithOdds(int[] data) {

 for (int i = 0; i < data.length; i++) {

 data[i] = 2 * i + 1;

 }

}

We would then change our main method to call this fillWithOdds
method:

int[] list = new int[5];

fillWithOdds(list);

incrementAll(list);

Like the incrementAll method, this method would change the array
even though it does not return it. But this isn’t the best approach to
use in this situation. It seems odd that the fillWithOdds method
requires you to construct an array and pass it as a parameter. Why
doesn’t fillWithOdds construct the array itself? That would simplify
the call to the method, particularly if we ended up calling it multiple
times.

If fillWithOdds is going to construct the array, it will have to return a
reference to it. Otherwise, only the method will have a reference to
the newly constructed array. In its current form, the fillWithOdds
method assumes that the array has already been constructed, which
is why we wrote the following two lines of code in main :

int[] list = new int[5];

fillWithOdds(list);

If the method is going to construct the array, it doesn’t have to be
passed as a parameter, but it will have to be returned by the method.
Thus, we can rewrite these two lines of code from main as a single
line:

int[] list = fillWithOdds();

Now, however, we have a misleading method name. The method
isn’t just filling an existing array, it is constructing one. Also notice
that we can make the method more flexible by telling it how large to
make the array. So if we rename it and pass the size as a parameter,
then we’d call it this way:

int[] list = buildOddArray(5);

We can then rewrite the fillWithOdds method so that it constructs
and returns the array:

public static int[] buildOddArray(int size) {

 int[] data = new int[size];

for (int i = 0; i < data.length; i++) {

 data[i] = 2 * i + 1;

 }

 return data;

}

Pay close attention to the header of the preceding method. It no
longer has the array as a parameter, and its return type is int[]
rather than void . It also ends with a return statement that returns a
reference to the array that it constructs.

Putting this all together along with some code to print the contents of
the array, we end up with the following complete program:

 1 // Sample program with arrays passed as parameters

 2

 3 public class IncrementOdds {

 4 public static void main(String[] args) {

 5 int[] list = buildOddArray(5);

 6 incrementAll(list);

 7 for (int i = 0; i < list.length; i++) {

 8 System.out.print(list[i] + " ");

 9 }

10 System.out.println();

11 }

12

13 // returns array of given size composed of consecutive

odds

14 public static int[] buildOddArray(int size) {

15 int[] data = new int[size];

16 for (int i = 0; i < data.length; i++) {

17 data[i] = 2 * i + 1;

18 }

19 return data;

20 }

21

22 // adds one to each array element

23 public static void incrementAll(int[] data) {

24 for (int i = 0; i < data.length; i++) {

25 data[i]++;

26 }

27 }

28 }

The program produces the following output:

2 4 6 8 10

The For-Each Loop

Java has a loop construct that simplifies certain array loops. It is
known as the enhanced for loop, or the for-each loop. You can use
it whenever you want to examine each value in an array. For
example, the program Temperature2 had an array variable called
temps and the following loop:

for (int i = 0; i < temps.length; i++) {

 if (temps[i] > average) {

 above++;

 }

}

We can rewrite this as a for-each loop:

for (int n : temps) {

 if (n > average) {

 above++;

 }

}

This loop is normally read as, “For each int n in temps” The
basic syntax of the for-each loop is

for (<type> <name> : <array>) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

There is nothing special about the variable name, as long as you
keep it consistent within the body of the loop. For example, the
previous loop could be written with the variable x instead of the
variable n :

for (int x : temps) {

 if (x > average) {

 above++;

 }

}

The for-each loop is most useful when you simply want to examine
each value in sequence. There are many situations in which a for-
each loop is not appropriate. For example, the following loop would
double every value in an array called list :

for (int i = 0; i < list.length; i++) {

 list[i] *= 2;

}

Because the loop is changing the array, you can’t replace it with a
for-each loop:

for (int n : list) {

 n *= 2; // changes only n, not the array

}

As the comment indicates, the preceding loop doubles the variable n
without changing the array elements.

In some cases, the for-each loop isn’t the most convenient choice
even when the code involves examining each array element in
sequence. Consider, for example, the following loop that prints each
array index along with the array value separated by a tab character:

for (int i = 0; i < data.length; i++) {

 System.out.println(i + "\t" + data[i]);

}

A for-each loop could be used to replace the array access:

for (int n : data) {

 System.out.println(i + "\t" + n); // not quite legal

}

However, this loop would cause a problem. We want to print the
value of i , but we eliminated i when we converted the array access
to a for-each loop. We would have to add extra code to keep track of
the value of i :

// legal but clumsy

int i = 0;

for (int n : data) {

 System.out.println(i + "\t" + n);

 i++;

}

In this case, the for-each loop doesn’t really simplify things, and the
original version is probably clearer.

The Arrays Class

Arrays have some important limitations that you should understand.
Over the years Java has attempted to remedy these limitations by
providing various utility methods in a class called Arrays . This class
provides many methods that make it easier to work with arrays. The
Arrays class is part of the java.util package, so you would have to
include an import declaration in any program that uses it.

The first limitation you should be aware of is that you can’t change
the size of an array in the middle of program execution. Remember
that arrays are allocated as a contiguous block of memory, so it is
not easy for the computer to expand the array. If you find that you
need a larger array, you should construct a new array and copy the
values from the old array to the new array. The method

Arrays.copyOf provides exactly this functionality. For example, if you
have an array called data , you can create a copy that is twice as
large with the following line of code:

int[] newData = Arrays.copyOf(data, 2 * data.length);

If you want to copy only a portion of an array, there is a similar
method called Arrays.copyOfRange that accepts an array, a starting
index, and an ending index as parameters.

The second limitation is that you can’t print an array using a simple
print or println statement. You will get odd output when you do so.
JShell understands how to display arrays in a nice way, but in
general arrays do not know how to print themselves in a useful
format.

The Arrays class once again offers a solution: The method
Arrays.toString returns a conveniently formatted version of an array.
Consider, for example, the following three lines of code:

int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23};

System.out.println(primes);

System.out.println(Arrays.toString(primes));

It produces the following output:

[I@fee4648

[2, 3, 5, 7, 11, 13, 17, 19, 23]

Notice that the first line of output is not at all helpful. The second line,
however, allows us to see the list of prime numbers in the array
because we called Arrays.toString to format the array before
printing it.

The third limitation is that you can’t compare arrays for equality using
a simple == test. We saw that this was true of Strings as well. If you
want to know whether two arrays contain the same set of values, you
should call the Arrays.equals method:

int[] data1 = {1, 1, 2, 3, 5, 8, 13, 21};

int[] data2 = {1, 1, 2, 3, 5, 8, 13, 21};

if (Arrays.equals(data1, data2)) {

 System.out.println("They store the same data");

}

This code prints the message that the arrays store the same data. It
would not do so if we used a direct comparison with == .

The Arrays class provides other useful methods as well, including
methods for sorting the array and for filling it up with a specific value.

Table 7.2 contains a list of some of the most useful methods in
the Arrays class.

Table 7.2 Useful Methods of the Arrays Class

7.2 Array-Traversal Algorithms

The previous section presented two standard patterns for
manipulating an array. The first is the traversing loop, which uses a
variable of type int to index each array value:

for (int i = 0; i < <array>.length; i++) {

 <do something with array[i]>;

}

The second is the for-each loop:

for (<type> <name> : <array>) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

In this section we will explore some common array algorithms that
can be implemented with these patterns. Of course, not all array
operations can be implemented this way—the section ends with an
example that requires a modified version of the standard code.

We will implement each operation as a method. Java does not allow
you to write generic array code, so we have to pick a specific type.
We’ll assume that you are operating on an array of int values. If you
are writing a program to manipulate a different kind of array, you’ll
have to modify the code for the type you are using (e.g., changing
int[] to double[] if you are manipulating an array of double values).

Printing an Array

Suppose you have an array of int values like the following:

How would you go about printing the values in the array? For other
types of data, you can use a println statement:

System.out.println(list);

Unfortunately, as mentioned in the Arrays class section of this
chapter, with an array the println statement produces strange
output like the following:

[I@6caf43

This is not helpful output, and it tells us nothing about the contents of
the array. We saw that Java provides a solution to this problem in the
form of a method called Arrays.toString that converts the array into
a convenient text form. You can rewrite the println as follows to
include a call on Arrays.toString :

System.out.println(Arrays.toString(list));

This line of code produces the following output:

[17, −3, 42, 8, 12, 2, 103]

This is a reasonable way to show the contents of the array, and in
many situations it will be sufficient. However, for situations in which

you want something different, you can write your own method.

Suppose that you want to write each number on a line by itself. In
that case, you can use a for-each loop that does a println for each
value:

public static void print(int[] list) {

 for (int n : list) {

 System.out.println(n);

 }

}

You can then call this method with the variable list :

print(list);

This call produces the following output:

17

−3

42

8

12

2

103

In some cases, the for-each loop doesn’t get you quite what you
want, though. For example, consider how the Arrays.toString
method must be written. It produces a list of values that are
separated by commas, which is a classic fencepost problem (e.g.,
seven values separated by six commas). To solve the fencepost
problem, you’d want to use an indexing loop instead of a for-each
loop so that you can print the first value before the loop:

System.out.print(list[0]);

for (int i = 1; i < list.length; i++) {

 System.out.print(", " + list[i]);

}

System.out.println();

Notice that i is initialized to 1 instead of 0 because list[0] is
printed before the loop. This code produces the following output for
the preceding sample array:

17, −3, 42, 8, 12, 2, 103

Even this code is not correct, though, because it assumes that there
is a list[0] to print. It is possible for arrays to be empty, with a

length of 0, in which case this code will generate an
ArrayIndexOutOfBoundsException . The version of the method that
follows produces output that matches the String produced by
Arrays.toString . The printing statements just before and just after
the loop have been modified to include square brackets, and a
special case has been included for empty arrays:

public static void print(int[] list) {

 if (list.length == 0) {

 System.out.println("[]");

 } else {

 System.out.print("[" + list[0]);

 for (int i = 1; i < list.length; i++) {

 System.out.print(", " + list[i]);

 }

 System.out.println("]");

 }

}

Searching and Replacing

Often you’ll want to search for a specific value in an array. For
example, you might want to count how many times a particular value
appears in an array. Suppose you have an array of int values like
the following:

Counting occurrences is the simplest search task, because you
always examine each value in the array and you don’t need to
change the contents of the array. You can accomplish this task with a
for-each loop that keeps a count of the number of occurrences of the
value for which you’re searching:

public static int count(int[] list, int target) {

 int count = 0;

 for (int n : list) {

 if (n == target) {

 count++;

 }

 }

 return count;

}

You can use this method in the following call to figure out how many
8s are in the list:

int number = count(list, 8);

This call would set number to 3 for the sample array, because there
are three occurrences of 8 in the list. If you instead made the call

int number = count(list, 2);

number would be set to 0 , because there are no occurrences of 2 in
the list.

Sometimes you want to find out where a value is in a list. You can
accomplish this task by writing a method that will return the index of
the first occurrence of the value in the list. Because you don’t know
exactly where you’ll find the value, you might try using a while loop,
as in the following pseudocode:

int i = 0;

while (we haven´t found it yet) {

 i++;

}

However, there is a simpler approach. Because you’re writing a
method that returns a value, you can return the appropriate index as
soon as you find a match. That means you can use the standard
traversal loop to solve this problem:

for (int i = 0; i < list.length; i++) {

 if (list[i] == target) {

 return i;

 }

}

Remember that a return statement terminates a method, so you’ll
break out of this loop as soon as the target value is found. But what
if the value isn’t found? What if you traverse the entire array and find
no matches? In that case, the for loop will finish executing without
ever returning a value.

There are many things you can do if the value is not found. The
convention used throughout the Java class libraries is to return the
value -1 to indicate that the value is not anywhere in the list. So you
can add an extra return statement after the loop that will be
executed only when the target value is not found. Putting all this
together, you get the following method:

public static int indexOf(int[] list, int target) {

 for (int i = 0; i < list.length; i++) {

 if (list[i] == target) {

 return i;

 }

 }

 return –1;

}

You can use this method in the following call to find the first
occurrence of the value 7 in the list:

int position = indexOf(list, 7);

This call would set position to 1 for the sample array, because the
first occurrence of 7 is at index 1. There is another occurrence of 7
later in the array, at index 5, but this code terminates as soon as it
finds the first match.

If you instead made the call

int position = indexOf(list, 42);

position would be set to –1 because there are no occurrences of 42
in the list.

As a final variation, consider the problem of replacing all the
occurrences of a value with some new value. This is similar to the
counting task. You’ll want to traverse the array looking for a particular
value and replace the value with something new when you find it.
You can’t accomplish that task with a for-each loop, because

changing the loop variable has no effect on the array. Instead, use a
standard traversing loop:

public static void replaceAll(int[] list, int target, int

replacement) {

 for (int i = 0; i < list.length; i++) {

 if (list[i] == target) {

 list[i] = replacement;

 }

 }

}

Notice that even though the method is changing the contents of the
array, you don’t need to return it in order to have that change take
place.

As we noted at the beginning of this section, these examples involve
an array of integers, and you would have to change the type if you
were to manipulate an array of a different type (for example,
changing int[] to double[] if you had an array of double values).
But the change isn’t quite so simple if you have an array of objects,
such as Strings . In order to compare String values, you must make
a call on the equals method rather than using a simple ==
comparison. Here is a modified version of the replaceAll method
that would be appropriate for an array of Strings :

public static void replaceAll(String[] list, String target,

 String replacement) {

 for (int i = 0; i < list.length; i++) {

 if (list[i].equals(target)) {

 list[i] = replacement;

 }

 }

}

Testing for Equality

Because arrays are objects, testing them for equality is more
complex than testing primitive values like integers and doubles for
equality. Two arrays are equivalent in value if they have the same
length and store the same sequence of values. The method
Arrays.equals performs this test:

if (Arrays.equals(list1, list2)) {

 System.out.println("The arrays are equal");

}

Like the Arrays.toString method, often the Arrays.equals method
will be all you need. But sometimes you’ll want slight variations, so
it’s worth exploring how to write the method yourself.

The method will take two arrays as parameters and will return a
boolean result indicating whether or not the two arrays are equal. So,
the method will look like this:

public static boolean equals(int[] list1, int[] list2) {

 ...

}

When you sit down to write a method like this, you probably think in
terms of defining equality: “The two arrays are equal if their lengths
are equal and they store the same sequence of values.” But this isn’t
the easiest approach. For example, you could begin by testing that
the lengths are equal, but what would you do next?

public static boolean equals(int[] list1, int[] list2) {

 if (list1.length == list2.length) {

 // what do we do?

 ...

 }

 ...

}

Methods like this one are generally easier to write if you think in
terms of the opposite condition: What would make the two arrays
unequal? Instead of testing for the lengths being equal, start by
testing whether the lengths are unequal. In that case, you know

exactly what to do. If the lengths are not equal, the method should
return a value of false , and you’ll know that the arrays are not equal
to each other:

public static boolean equals(int[] list1, int[] list2) {

 if (list1.length != list2.length) {

 return false;

 }

 ...

}

If you get past the if statement, you know that the arrays are of
equal length. Then you’ll want to check whether they store the same
sequence of values. Again, test for inequality rather than equality,
returning false if there’s a difference:

public static boolean equals(int[] list1, int[] list2) {

 if (list1.length != list2.length) {

 return false;

 }

 for (int i = 0; i < list1.length; i++) {

 if (list1[i] != list2[i]) {

 return false;

 }

 }

 ...

}

If you get past the for loop, you’ll know that the two arrays are of
equal length and that they store exactly the same sequence of
values. In that case, you’ll want to return the value true to indicate
that the arrays are equal. This addition completes the method:

public static boolean equals(int[] list1, int[] list2) {

 if (list1.length != list2.length) {

 return false;

 }

 for (int i = 0; i < list1.length; i++) {

 if (list1[i] != list2[i]) {

 return false;

 }

 }

 return true;

}

This is a common pattern for a method like equals : You test all of the
ways that the two objects might not be equal, returning false if you
find any differences, and returning true at the very end so that if all
the tests are passed the two objects are declared to be equal.

Reversing an Array

As a final example of common operations, let’s consider the task of
reversing the order of the elements stored in an array. For example,
suppose you have an array that stores the following values:

One approach would be to create a new array and to store the
values from the first array into the second array in reverse order.
Although that approach would be reasonable, you should be able to
solve the problem without constructing a second array. Another
approach is to conduct a series of exchanges or swaps. For
example, the value 3 at the front of the list and the value 78 at the
end of the list need to be swapped:

After swapping that pair, you can swap the next pair in (the values at
indexes 1 and 4):

You can continue swapping until the entire list has been reversed.
Before we look at the code that will perform this reversal, let’s
consider the general problem of swapping two values.

Suppose you have two integer variables x and y that have the
values 3 and 78 :

int x = 3;

int y = 78;

How would you swap these values? A naive approach is to simply
assign the values to one another:

// will not swap properly

x = y;

y = x;

Unfortunately, this doesn’t work. You start out with the following:

When the first assignment statement is executed, you copy the value
of y into x :

You want x to eventually become equal to 78 , but if you attempt to
solve the problem this way, you lose the old value of x as soon as
you assign the value of y to it. The second assignment statement
then copies the new value of x , 78 , back into y , which leaves you
with two variables equal to 78 .

The standard solution is to introduce a temporary variable that you
can use to store the old value of x while you’re giving x its new
value. You can then copy the old value of x from the temporary
variable into y to complete the swap:

int temp = x;

x = y;

y = temp;

You start by copying the old value of x into temp :

Then you put the value of y into x :

Next, you copy the old value of x from temp to y :

At this point you have successfully swapped the values of x and y ,
so you don’t need temp anymore.

In some programming languages, you can define this as a swap
method that can be used to exchange two int values:

// this method won’t work

public static void swap(int x, int y) {

 int temp = x;

 x = y;

 y = temp;

}

As you’ve seen, this kind of method won’t work in Java because the
x and y that are swapped will be copies of any integer values
passed to them. But because arrays are stored as objects, you can
write a variation of this method that takes an array and two indexes
as parameters and swaps the values at those indexes:

public static void swap(int[] list, int i, int j) {

 int temp = list[i];

 list[i] = list[j];

 list[j] = temp;

}

The code in this method matches the code in the previous method,
but instead of using x and y it uses list[i] and list[j] . This
method will work because, instead of changing simple int variables,
the method is changing the contents of the array.

Given this swap method, you can fairly easily write a reversing
method. You just have to think about what combinations of values to
swap. Start by swapping the first and last values. The sample array
has a length of 6, which means that you will be swapping the values
at indexes 0 and 5. But you want to write the code so that it works for
an array of any length. In general, the first swap you’ll want to
perform is to swap element 0 with element (list.length − 1) :

swap(list, 0, list.length − 1);

Then you’ll want to swap the second value with the second-to-last
value:

swap(list, 1, list.length − 2);

Then you’ll swap the third value with the third-to-last value:

swap(list, 2, list.length − 3);

There is a pattern to these swaps that you can capture with a loop. If
you use a variable i for the first parameter of the call on swap and
introduce a local variable j to store an expression for the second
parameter to swap , each of these calls will take the following form:

int j = list.length – i – 1;

swap(list, i, j);

To implement the reversal, you could put the method inside the
standard traversal loop:

// doesn’t quite work

for (int i = 0; i < list.length; i++) {

 int j = list.length – i – 1;

 swap(list, i, j);

}

If you were to test this code, though, you’d find that it seems to have
no effect whatsoever. The list stores the same values after executing
this code as it stores initially. The problem is that this loop does too
much swapping. Here is a trace of the six swaps that are performed
on the list [3, 8, 7, −2, 14, 78], with an indication of the values of i
and j for each step:

The values of i and j cross halfway through this process. As a
result, the first three swaps successfully reverse the array, and then
the three swaps that follow undo the work of the first three. To fix this
problem, you need to stop it halfway through the process. This task
is easily accomplished by changing the test:

for (int i = 0; i < list.length / 2; i++) {

 int j = list.length – i – 1;

 swap(list, i, j);

}

In the sample array, list.length is 6 . Half of that is 3 , which means
that this loop will execute exactly three times. That is just what you
want in this case (the first three swaps), but you should be careful to
consider other possibilities. For example, what if list.length were
7? Half of that is also 3 , because of truncating division. Is three the
correct number of swaps for an odd-length list? The answer is yes. If
there are an odd number of elements, the value in the middle of the

list does not need to be swapped. So, in this case, a simple division
by 2 turns out to be the right approach.

Including this code in a method, you end up with the following overall
solution:

public static void reverse(int[] list) {

 for (int i = 0; i < list.length / 2; i++) {

 int j = list.length – i – 1;

 swap(list, i, j);

 }

}

String Traversal Algorithms

In Java we often think of a string as a chunk of text, but you can also
think of it as a sequence of individual characters. Viewed in this light,
a string is a lot like an array. Recall that the individual elements of a
string are of type char and that you can access the individual
character values by calling the charAt method.

The same techniques we have used to write array traversal
algorithms can be used to write string traversal algorithms. The
syntax is slightly different, but the logic is the same. Our array
traversal template looks like this:

for (int i = 0; i < <array>.length; i++) {

 <do something with array[i]>;

}

The corresponding string algorithm template looks like this:

for (int i = 0; i < <string>.length(); i++) {

 <do something with string.charAt(i)>;

}

Notice that with arrays you refer to length without using
parentheses, but with a string you do use parentheses. Notice also
that the array square bracket notation is replaced with a call on the
charAt method.

For example, you can count the number of occurrences of the letter
“i” in “Mississippi” with this code:

String s = "Mississippi";

int count = 0;

for (int i = 0; i < s.length(); i++) {

 if (s.charAt(i) == ’i’) {

 count++;

 }

}

This code would correctly compute that there are four occurrences of
“i” in the string. For another example, consider the task of computing
the reverse of a string. You can traverse the string building up a new
version that has the letters in reverse order by putting each new
character at the front of the string you are building up. Here is a
complete method that uses this approach:

public static String reverse(String text) {

 String result = "";

 for (int i = 0; i < text.length(); i++) {

 result = text.charAt(i) + result;

 }

 return result;

}

If you make the call reverse("Mississippi") , the method returns
"ippissis- siM" .

Functional Approach

Chapter 19 describes a different approach to manipulating arrays
that leads to code that looks quite different than the examples in this
section. It relies on features added to the Java programming
language starting with version 8 that allow you to manipulate arrays

and other data structures in a more declarative manner. Instead of
specifying exactly how to traverse an array, you can instead tell Java
what you want to do with the array elements and allow Java to figure
out how to do the traversal. The addition of the for-each loop starting
with version 5 of Java was an initial move in this direction, but the
new features go much further.

Suppose, for example, that you have an array of values defined as
follows:

int[] numbers = {8, 3, 2, 17};

Let’s look at the code you would write for two simple tasks: finding
the sum and printing the values. Using the standard traversal loops,
you would write the following code.

// sum an array of numbers and print them (for loop)

int sum = 0;

for (int i = 0; i < numbers.length; i++) {

 sum += numbers[i];

}

System.out.println("sum = " + sum);

for (int i = 0; i < numbers.length; i++) {

 System.out.println(numbers[i]);

}

This code produces the following output.

sum = 30

8

3

2

17

The for-each loop simplifies this code by specifying that you want to
manipulate each of the different values in the array in sequence, but
it doesn’t require you to include an indexing variable to say exactly
how that is done.

// sum an array of numbers and print them (for-each loop)

int sum = 0;

for (int n : numbers) {

 sum += n;

}

System.out.println("sum = " + sum);

for (int n : numbers) {

 System.out.println(n);

}

With the new Java 8 features, this becomes even simpler. The task
of finding the sum of a sequence of values is so common that there
is a built-in method that does it for you. And the task of printing each

value with a call on the println method of System.out can also be
expressed in a very concise manner.

// sum an array of numbers and print them (functional)

int sum = Arrays.stream(numbers).sum();

System.out.println("sum = " + sum);

Arrays.stream(numbers).forEach(System.out::println);

This code doesn’t at all describe how the traversal is to be
performed. Instead, you tell Java the operations you want to have
performed on the values in the array and leave it up to Java to
perform the traversal. See Chapter 19 for a more complete
explanation of this approach.

7.3 Reference Semantics
In Java, arrays are objects. We have been using objects since
Chapter 3 but we haven’t yet discussed in detail how they are
stored. It’s about time that we explored the details. Objects are
stored in the computer’s memory in a different way than primitive
data are stored. For example, when we declare the integer variable

int x = 8;

the variable stores the actual data. So, we’ve drawn pictures like the
following:

The situation is different for arrays and other objects. With regard to
objects, the variable doesn’t store the actual data. Instead, the data
are stored in an object and the variable stores a reference to the
location at which the object is stored. So, we have two different
elements in the computer’s memory: the variable and the object.
Thus, when we construct an array object such as

int[] list = new int[5];

we end up with the following:

As the diagram indicates, two different values are stored in memory:
the array itself, which appears on the right side of the diagram, and a
variable called list , which stores a reference to the array
(represented in this picture as an arrow). We say that list refers to
the array.

It may take some time for you to get used to the two different
approaches to storing data, but these approaches are so common
that computer scientists have technical terms to describe them. The
system for the primitive types like int is known as value semantics,
and those types are often referred to as value types. The system for
arrays and other objects is known as reference semantics, and those
types are often referred to as reference types.

Value Semantics (Value Types)

A system in which values are stored directly and
copying is achieved by creating independent copies of
values. Types that use value semantics are called
value types.

Reference Semantics (Reference
Types)
A system in which references to values are stored and
copying is achieved by copying these references.
Types that use reference semantics are called
reference types.

It will take us a while to explore all of the implications of this
difference. The key thing to remember is that when you are working
with objects, you are always working with references to data rather
than the data itself.

At this point you are probably wondering why Java has two different
systems. Java was designed for object-oriented programming, so the
first question to consider is why Sun decided that objects should
have reference semantics. There are two primary reasons:

Efficiency. Objects can be complex, which means that they can
take up a lot of space in memory. If we made copies of such
objects, we would quickly run out of memory. A String object that
stores a large number of characters might take up a lot of space
in memory. But even if the String object is very large, a
reference to it can be fairly small, in the same way that even a
mansion has a simple street address. As another analogy, think
how we use cell phones to communicate with people. The
phones can be very tiny and easy to transport because cell
phone numbers don’t take up much space. Imagine that, instead
of carrying around a set of cell phone numbers, you tried to carry
around the actual people!
Sharing. Often, having a copy of something is not good enough.
Suppose that your instructor tells all of the students in the class
to put their tests into a certain box. Imagine how pointless and
confusing it would be if each student made a copy of the box.
The obvious intent is that all of the students use the same box.
Reference semantics allows you to have many references to a
single object, which allows different parts of your program to
share a certain object.

Without reference semantics, Java programs would be more difficult
to write. Then why did Sun also decide to include primitive types that
have value semantics? The reasons are primarily historical. Sun
wanted to leverage the popularity of C and C++, which had similar
types, and to guarantee that Java programs would run quickly, which
was easier to accomplish with the more traditional primitive types. If
Java’s designers had a chance to redesign Java today, the company

might well get rid of the primitive types and use a consistent object
model with just reference semantics.

Multiple Objects

In the previous section, you saw how to manipulate a single array
object. In this section, we will delve deeper into the implications of
reference semantics by considering what happens when there are
multiple objects and multiple references to the same object.

Consider the following code:

int[] list1 = new int[5];

int[] list2 = new int[5];

for (int i = 0; i < list1.length; i++) {

 list1[i] = 2 * i + 1;

 list2[i] = 2 * i + 1;

}

int[] list3 = list2;

Each call on new constructs a new object and this code has two calls
on new , so that means we have two different objects. The code is
written in such a way that list2 will always have the exact same
length and sequence of values as list1 . After the two arrays are
initialized, we define a third array variable that is assigned to list2 .

This step creates a new reference but not a new object. After the
computer executes the code, memory would look like this:

We have three variables but only two objects. The variables list2
and list3 both refer to the same array object. Using the cell phone
analogy, you can think of this as two people who both have the cell
phone number for the same person. That means that either one of
them can call the person. Or, as another analogy, suppose that both
you and a friend of yours know how to access your bank information
online. That means that you both have access to the same account
and that either one of you can make changes to the account.

The implication of this method is that list2 and list3 are in some
sense both equally able to modify the array to which they refer. The
line of code

list2[2]++;

will have exactly the same effect as the line

list3[2]++;

Since both variables refer to the same array object, you can access
the array through either one.

Reference semantics help us to understand why a simple == test
does not give us what we might expect. When this test is applied to
objects, it determines whether two references are the same (not
whether the objects to which they refer are somehow equivalent). In
other words, when we test whether two references are equal, we are
testing whether they refer to exactly the same object.

The variables list2 and list3 both refer to the same array object.
As a result, if we ask whether list2 == list3 , the answer will be yes
(the expression evaluates to true). But if we ask whether list1 ==
list2 , the answer will be no (the expression evaluates to false)
even though we think of the two arrays as somehow being
equivalent.

Sometimes you want to know whether two variables refer to exactly
the same object, and for those situations, the simple == comparison
will be appropriate. But you’ll also want to know whether two objects

are somehow equivalent in value, in which case you should call
methods like Arrays.equals or the string equals method.

Understanding reference semantics also allows you to understand
why a method is able to change the contents of an array that is
passed to it as a parameter. Remember that earlier in the chapter we
considered the following method:

public static void incrementAll(int[] data) {

 for (int i = 0; i < data.length; i++) {

 data[i]++;

 }

}

We saw that when our variable list was initialized to an array of
odd numbers, we could increment all of the values in the array by
means of the following line:

incrementAll(list);

When the method is called, we make a copy of the variable list .
But the variable list is not itself the array; rather, it stores a
reference to the array. So, when we make a copy of that reference,
we end up with two references to the same object:

Because data and list both refer to the same object, when we
change data by saying data[i]++ , we end up changing the object to
which list refers. That’s why, after the loop increments each
element of data, we end up with the following:

The key lesson to draw from this discussion is that when we pass an
array as a parameter to a method, that method has the ability to
change the contents of the array.

Before we leave the subject of reference semantics, we should
describe in more detail the concept of the special value null . It is a
special keyword in Java that is used to represent “no object”.

null
A Java keyword signifying no object.

The concept of null doesn’t have any meaning for value types like
int and double that store actual values. But it can make sense to
set a variable that stores a reference to null . This is a way of telling
the computer that you want to have the variable, but you haven’t yet
come up with an object to which it should refer. So you can use null
for variables of any object type, such as a String or array:

String s = null;

int[] list = null;

There is a difference between setting a variable to an empty string
and setting it to null . When you set a variable to an empty string,
there is an actual object to which your variable refers (although not a
very interesting object). When you set a variable to null , the
variable doesn’t yet refer to an actual object. If you try to use the
variable to access the object when it has been set to null , Java will
throw a NullPointerException .

7.4 Advanced Array Techniques

In this section we’ll discuss some advanced uses of arrays, such as
algorithms that cannot be solved with straightforward traversals. we’ll
also see how to create arrays that store objects instead of primitive
values.

Shifting Values in an Array

You’ll often want to move a series of values in an array. For example,
suppose you have an array of integers that stores the sequence of
values [3, 8, 9, 7, 5] and you want to send the value at the front of
the list to the back and keep the order of the other values the same.
In other words, you want to move the 3 to the back, yielding the list
[8, 9, 7, 5, 3]. Let’s explore how to write code to perform that action.

Suppose you have a variable of type int[] called list of length 5
that stores the values [3, 8, 9, 7, 5] :

The shifting operation is similar to the swap operation discussed in
the previous section, and you’ll find that it is useful to use a
temporary variable here as well. The 3 at the front of the list is
supposed to go to the back of the list, and the other values are
supposed to rotate forward. You can make the task easier by storing
the value at the front of the list (3, in this example) into a local
variable:

int first = list[0];

With that value safely tucked away, you now have to shift the other
four values to the left by one position:

The overall task breaks down into four different shifting operations,
each of which is a simple assignment statement:

list[0] = list[1];

list[1] = list[2];

list[2] = list[3];

list[3] = list[4];

Obviously you’d want to write this as a loop rather than writing a
series of individual assignment statements. Each of the preceding
statements is of the form

list[i] = list[i + 1];

You’ll replace list element [i] with the value currently stored in list
element [i + 1] , which shifts that value to the left. You can put this
line of code inside a standard traversing loop:

for (int i = 0; i < list.length; i++) {

 list[i] = list[i + 1];

}

This loop is almost the right answer, but it has an off-by-one bug.
This loop will execute five times for the sample array, but you only
want to shift four values (you want to do the assignment for i equal
to 0 , 1 , 2 , and 3 , but not for i equal to 4). So, this loop goes one
too many times. On the last iteration of the loop, when i is equal to
4 , the loop executes the following line of code:

list[i] = list[i + 1];

This line becomes:

list[4] = list[5];

There is no value list[5] because the array has only five elements,
with indexes 0 through 4. So, this code generates an
ArrayIndexOutOfBoundsException . To fix the problem, alter the loop so
that it stops one iteration early:

for (int i = 0; i < list.length – 1; i++) {

 list[i] = list[i + 1];

}

In place of the usual list.length , use (list.length − 1) . You can
think of the minus one in this expression as offsetting the plus one in
the assignment statement.

Of course, there is one more detail you must address. After shifting
the values to the left, you’ve made room at the end of the list for the
value that used to be at the front of the list (which is currently stored
in a local variable called first). When the loop has finished
executing, you have to place this value at index 4:

list[list.length − 1] = first;

Here is the final method:

public static void rotateLeft(int[] list) {

 int first = list[0];

 for (int i = 0; i < list.length − 1; i++) {

 list[i] = list[i + 1];

 }

 list[list.length − 1] = first;

}

An interesting variation on this method is to rotate the values to the
right instead of rotating them to the left. To perform this inverse
operation, you want to take the value that is currently at the end of
the list and bring it to the front, shifting the remaining values to the
right. So, if a variable called list initially stores the values [3, 8, 9, 7,
5], it should bring the 5 to the front and store the values [5, 3, 8, 9,
7].

Begin by tucking away the value that is being rotated into a
temporary variable:

int last = list[list.length − 1];

Then shift the other values to the right:

In this case, the four individual assignment statements would be the
following:

list[1] = list[0];

list[2] = list[1];

list[3] = list[2];

list[4] = list[3];

A more general way to write this is the following line of code:

list[i] = list[i − 1];

If you put this code inside the standard for loop, you get the
following:

// doesn’t work

for (int i = 0; i < list.length; i++) {

 list[i] = list[i − 1];

}

There are two problems with this code. First, there is another off-by-
one bug. The first assignment statement you want to perform would
set list[1] to contain the value that is currently in list[0] , but this
loop sets list[0] to list[−1] . Java generates an
ArrayIndexOutOfBoundsException because there is no value list[−1] .
You want to start i at 1 , not 0 :

// still doesn’t work

for (int i = 1; i < list.length; i++) {

 list[i] = list[i − 1];

}

However, this version of the code doesn’t work either. It avoids the
exception, but think about what it does. The first time through the
loop it assigns list[1] to what is in list[0] :

What happened to the value 8? It’s overwritten with the value 3 . The
next time through the loop list[2] is set to be list[1] :

You might say, “Wait a minute . . . list[1] isn’t a 3 , it’s an 8 .” It was
an 8 when you started, but the first iteration of the loop replaced the
8 with a 3 , and now the 3 has been copied into the spot where 9
used to be.

The loop continues in this way, putting 3 into every cell of the array.
Obviously, that’s not what you want. To make this code work, you
have to run the loop in reverse order (from right to left instead of left
to right). So let’s back up to where we started:

We tucked away the final value of the list into a local variable. That
frees up the final array position. Now, assign list[4] to be what is in
list[3] :

This wipes out the 5 that was at the end of the list, but that value is
safely stored away in a local variable. And once you’ve performed
this assignment statement, you free up list[3] , which means you
can now set list[3] to be what is currently in list[2] :

The process continues in this manner, copying the 8 from index 1 to
index 2 and copying the 3 from index 0 to index 1, leaving you with
the following:

At this point, the only thing left to do is to put the 5 stored in the local
variable at the front of the list:

You can reverse the for loop by changing the i++ to i−− and
adjusting the initialization and test. The final method is as follows:

public static void rotateRight(int[] list) {

 int last = list[list.length − 1];

 for (int i = list.length − 1; i >= 1; i−−) {

 list[i] = list[i − 1];

 }

 list[0] = last;

}

Arrays of Objects

All of the arrays we have looked at so far have stored primitive
values like simple int values, but you can have arrays of any Java
type. Arrays of objects behave slightly differently, though, because
objects are stored as references rather than as data values.
Constructing an array of objects is usually a two-step process,
because you normally have to construct both the array and the
individual objects.

As an example, Java has a Point class as part of its java.awt
package. Each Point object is used for storing the ()
coordinates of a point in two-dimensional space. (We will discuss
this class in more detail in the next chapter, but for now we will just
construct a few objects from it.) Suppose that you want to construct
an array of Point objects. Consider the following statement:

Point[] points = new Point[3];

This statement declares a variable called points that refers to an
array of length 3 that stores references to Point objects. Using the
new keyword to construct the array doesn’t construct any actual
Point objects. Instead it constructs an array of length 3, each
element of which can store a reference to a Point . When Java
constructs the array, it auto-initializes these array elements to the
zero-equivalent for the type. The zero-equivalent for all reference
types is the special value null , which indicates “no object”:

x, y

The actual Point objects must be constructed separately with the
new keyword, as in the following code:

Point[] points = new Point[3];

points[0] = new Point(3, 7);

points[1] = new Point(4, 5);

points[2] = new Point(6, 2);

After these lines of code execute, your program will have created
individual Point objects referred to by the various array elements:

Notice that the new keyword is required in four different places,
because there are four objects to be constructed: the array itself and
the three individual Point objects. You could also use the curly brace
notation for initializing the array, in which case you don’t need the
new keyword to construct the array itself:

Point[] points = {new Point(3, 7), new Point(4, 5), new Point(6,

2)};

Command-Line Arguments

As you’ve seen since Chapter 1 , whenever you define a main
method, you’re required to include as its parameter String[] args ,
which is an array of String objects. Java itself initializes this array if
the user provides what are known as command-line arguments when
invoking Java. For example, the user could execute a Java class
called DoSomething from a command prompt or terminal by using a
command like:

java DoSomething

The user has the option to type extra arguments, as in the following:

java DoSomething temperature.dat temperature.out

In this case the user has specified two extra arguments that are file
names that the program should use (e.g., the names of an input and
output file). If the user types these extra arguments when starting up
Java, the String[] args parameter to main will be initialized to an
array of length 2 that stores these two strings :

Nested Loop Algorithms

All of the algorithms we have seen have been written with a single
loop. But many computations require nested loops. For example,
suppose that you were asked to print all inversions in an array of
integers. An inversion is defined as a pair of numbers in which the
first number in the list is greater than the second number.

In a sorted list such as [1, 2, 3, 4], there are no inversions at all and
there is nothing to print. But if the numbers appear instead in reverse
order, [4, 3, 2, 1], then there are many inversions to print. We would
expect output like the following:

(4, 3)

(4, 2)

(4, 1)

(3, 2)

(3, 1)

(2, 1)

Notice that any given number (e.g., 4 in the list above) can produce
several different inversions, because it might be followed by several
smaller numbers (1, 2, and 3 in the example). For a list that is
partially sorted, as in [3, 1, 4, 2], there are only a few inversions, so
you would produce output like this:

(3, 1)

(3, 2)

(4, 2)

This problem can’t be solved with a single traversal because we are
looking for pairs of numbers. There are many possible first values in

the pair and many possible second values in the pair. Let’s develop a
solution using pseudocode.

We can’t produce all pairs with a single loop, but we can use a single
loop to consider all possible first values:

for (every possible first value) {

 print all inversions that involve this first value.

}

Now we just need to write the code to find all the inversions for a
given first value. That requires us to write a second, nested loop:

for (every possible first value) {

 for (every possible second value) {

 if (first value > second value) {

 print(first, second).

 }

 }

}

This problem is fairly easy to turn into Java code, although the loop
bounds turn out to be a bit tricky. For now, let’s use our standard
traversal loop for each:

for (int i = 0; i < data.length; i++) {

 for (int j = 0; j < data.length; j++) {

 if (data[i] > data[j]) {

 System.out.println("(" + data[i] + ", " + data[j] +

")");

 }

 }

}

The preceding code isn’t quite right. Remember that for an inversion,
the second value has to appear after the first value in the list. In this
case, we are computing all possible combinations of a first and
second value. To consider only values that come after the given first
value, we have to start the second loop at i + 1 instead of starting
at 0 . We can also make a slight improvement by recognizing that
because an inversion requires a pair of values, there is no reason to
include the last number of the list as a possible first value. So the
outer loop involving i can end one iteration earlier:

for (int i = 0; i < data.length – 1; i++) {

 for (int j = i + 1; j < data.length; j++) {

 if (data[i] > data[j]) {

 System.out.println("(" + data[i] + ", " + data[j] +

")");

 }

 }

}

When you write nested loops like these, it is a common convention
to use i for the outer loop, j for the loop inside the outer loop, and
k if there is a loop inside the j loop.

7.5 Multidimensional Arrays
The array examples in the previous sections all involved what are
known as one-dimensional arrays (a single row or a single column of
data). Often, you’ll want to store data in a multidimensional way. For
example, you might want to store a two-dimensional grid of data that
has both rows and columns. Fortunately, you can form arrays of
arbitrarily many dimensions:

double: one double
double[]: a one-dimensional array of doubles
double[][]: a two-dimensional grid of doubles
double[][][]: a three-dimensional collection of doubles
...

Arrays of more than one dimension are called multidimensional
arrays.

Multidimensional Array
An array of arrays, the elements of which are accessed
with multiple integer indexes.

Rectangular Two-Dimensional
Arrays

The most common use of a multidimensional array is a two-
dimensional array of a certain width and height. For example,
suppose that on three separate days you took a series of five
temperature readings. You can define a two-dimensional array that
has three rows and five columns as follows:

double[][] temps = new double[3][5];

Notice that on both the left and right sides of this assignment
statement, you have to use a double set of square brackets. When
you are describing the type on the left, you have to make it clear that
this is not just a one-dimensional sequence of values, which would
be of type double[] , but instead a two-dimensional grid of values,
which is of type double[][] . On the right, when you construct the
array, you must specify the dimensions of the grid. The normal
convention is to list the row first followed by the column. The
resulting array would look like this:

As with one-dimensional arrays, the values are initialized to 0.0 and
the indexes start with 0 for both rows and columns. Once you’ve
created such an array, you can refer to individual elements by
providing specific row and column numbers (in that order). For
example, to set the fourth value of the first row to 98.3 and to set the
first value of the third row to 99.4 , you would write the following
code:

temps[0][3] = 98.3; // fourth value of first row

temps[2][0] = 99.4; // first value of third row

After the program executes these lines of code, the array would look
like this:

It is helpful to think of referring to individual elements in a stepwise
fashion, starting with the name of the array. For example, if you want
to refer to the first value of the third row, you obtain it through the
following steps:

temps the entire grid

temps[2] the entire third row

temps[2][0] the first element of the third row

You can pass multidimensional arrays as parameters just as you
pass one-dimensional arrays. You need to be careful about the type,
though. To pass the temperature grid, you would have to use a
parameter of type double[][] (with both sets of brackets). For
example, here is a method that prints the grid:

public static void print(double[][] grid) {

 for (int i = 0; i < grid.length; i++) {

 for (int j = 0; j < grid[i].length; j++) {

 System.out.print(grid[i][j] + " ");

 }

 System.out.println();

 }

}

Notice that to ask for the number of rows you ask for grid.length
and to ask for the number of columns you ask for grid[i].length .

The Arrays.toString method mentioned earlier in this chapter does
work on multidimensional arrays, but it produces a poor result. When
used with the preceding array temps , it produces output such as the
following:

[[D@14b081b, [D@1015a9e, [D@1e45a5c]

This poor output is because Arrays.toString works by concatenating
the String representations of the array’s elements. In this case the
elements are arrays themselves, so they do not convert into Strings
properly. To correct the problem you can use a different method
called Arrays.deepToString that will return better results for
multidimensional arrays:

System.out.println(Arrays.deepToString(temps));

The call produces the following output:

[[0.0, 0.0, 0.0, 98.3, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0],

[99.4, 0.0, 0.0, 0.0, 0.0]]

Arrays can have as many dimensions as you want. For example, if
you want a three-dimensional 4 by 4 by 4 cube of integers, you
would write the following line of code:

int[][][] numbers = new int[4][4][4];

The normal convention for the order of values is the plane number,
followed by the row number, followed by the column number,
although you can use any convention you want as long as your code
is written consistently.

Jagged Arrays

The previous examples have involved rectangular grids that have a
fixed number of rows and columns. It is also possible to create a
jagged array in which the number of columns varies from row to row.

To construct a jagged array, divide the construction into two steps:
Construct the array for holding rows first, and then construct each
individual row. For example, to construct an array that has two
elements in the first row, four elements in the second row, and three
elements in the third row, you can write the following lines of code:

int[][] jagged = new int[3][];

jagged[0] = new int[2];

jagged[1] = new int[4];

jagged[2] = new int[3];

This code would construct an array that looks like this:

We can explore this technique by writing a program that produces
the rows of what is known as Pascal’s triangle. The numbers in the
triangle have many useful mathematical properties. For example,
row of Pascal’s triangle contains the coefficients obtained when
you expand the equation:

Here are the results for between 0 and 4:

n

(x + y)n

n

If you pull out just the coefficients, you get the following values:

 1

 1 1

 1 2 1

 1 3 3 1

1 4 6 4 1

These rows of numbers form a five-row Pascal’s triangle. One of the
properties of the triangle is that if you are given any row, you can use
it to compute the next row. For example, let’s start with the last row
from the preceding triangle:

1 4 6 4 1

We can compute the next row by adding adjacent pairs of values
together. So, we add together the first pair of numbers then
the second pair of numbers and so on:

(x + y)0 = 1

(x + y)1 = x + y

(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(1 + 4),
(4 + 6),

5 10 10 5

Then we put a 1 at the front and back of this list of numbers, and we
end up with the next row of the triangle:

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

1 5 10 10 5 1

This property of the triangle provides a technique for computing it.
We can construct it row by row, computing each new row from the
values in the previous row. In other words, we write the following
loop (assuming that we have a two-dimensional array called
triangle in which to store the answer):

for (int i = 0; i < triangle.length; i++) {

 construct triangle[i] using triangle[i – 1].

}

(1 + 4) (4 + 6) (6 + 4) (4 + 4)

5 10 10 5

����� ����� ����� �����

We just need to flesh out the details of how a new row is
constructed. This is a jagged array because each row has a different
number of elements. Looking at the triangle, you’ll see that the first
row (row 0) has one value in it, the second row (row 1) has two
values in it, and so on. In general, row i has (i + 1) values, so we
can refine our pseudocode as follows:

for (int i = 0; i < triangle.length; i++) {

 triangle[i] = new int[i + 1];

 fill in triangle[i] using triangle[i – 1].

}

We know that the first and last values in each row should be 1 :

for (int i = 0; i < triangle.length; i++) {

 triangle[i] = new int[i + 1];

 triangle[i][0] = 1;

 triangle[i][i] = 1;

 fill in the middle of triangle[i] using triangle[i – 1].

}

And we know that the middle values come from the previous row. To
figure out how to compute them, let’s draw a picture of the array we
are attempting to build:

We have already written code to fill in the 1 that appears at the
beginning and end of each row. We now need to write code to fill in
the middle values. Look at row 5 for an example. The value 5 in
column 1 comes from the sum of the values 1 in column 0 and 4 in
column 1 in the previous row. The value 10 in column 2 comes from
the sum of the values in columns 1 and 2 in the previous row.

More generally, each of these middle values is the sum of the two
values from the previous row that appear just above and to the left of
it. In other words, for column j the values are computed as follows:

triangle[i][j] = (value above and left) + (value above).

We can turn this into actual code by using the appropriate array
indexes:

triangle[i][j] = triangle[i − 1][j − 1] + triangle[i − 1][j];

We need to include this statement in a for loop so that it assigns all
of the middle values. The for loop is the final step in converting our
pseudocode into actual code:

for (int i = 0; i < triangle.length; i++) {

 triangle[i] = new int[i + 1];

 triangle[i][0] = 1;

 triangle[i][i] = 1;

 for (int j = 1; j < i; j++) {

 triangle[i][j] = triangle[i − 1][j − 1] + triangle[i −

1][j];

 }

}

If we include this code in a method along with a printing method
similar to the grid-printing method described earlier, we end up with
the following complete program:

 1 // This program constructs a jagged two-dimensional array

 2 // that stores Pascal’s Triangle. It takes advantage of the

 3 // fact that each value other than the 1s that appear at

the

 4 // beginning and end of each row is the sum of two values

 5 // from the previous row.

 6

 7 public class PascalsTriangle {

 8 public static void main(String[] args) {

 9 int[][] triangle = new int[11][];

10 fillIn(triangle);

11 print(triangle);

12 }

13

14 public static void fillIn(int[][] triangle) {

15 for (int i = 0; i < triangle.length; i++) {

16 triangle[i] = new int[i + 1];

17 triangle[i][0] = 1;

18 triangle[i][i] = 1;

19 for (int j = 1; j < i; j++) {

20 triangle[i][j] = triangle[i − 1][j − 1]

21 + triangle[i − 1][j];

22 }

23 }

24 }

25

26 public static void print(int[][] triangle) {

27 for (int i = 0; i < triangle.length; i++) {

28 for (int j = 0; j < triangle[i].length; j++) {

29 System.out.print(triangle[i][j] + " ");

30 }

31 System.out.println();

32 }

33 }

34 }

This program produces the following output:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

7.6 Arrays of Pixels
Recall from Supplement 3G that images are stored on computers as
a two-dimensional grid of colored dots known as pixels. One of the
most common applications of two-dimensional (2D) arrays is for
manipulating the pixels of an image. Popular apps like Instagram
provide filters and options for modifying images by applying
algorithms to their pixels; for example, you can make an image
black-and-white, sharpen it, enhance the colors and contrast, or
make it look like an old faded photograph. The two-dimensional
rectangular nature of an image makes a 2D array a natural way to
represent its pixel data.

Supplement 3G introduced the DrawingPanel class that we use to
represent a window for drawing 2D shapes and colors. Recall that an
image is composed of pixels whose locations are specified with
integer coordinates starting from the top-left corner of the image at
(0, 0). The various drawing commands of the panel’s Graphics
object, such as drawRect and fillOval , change the color of regions
of pixels. Colors are usually specified by Color objects, but the full
range of colors comes from mixtures of red, green, and blue
elements specified by integers that range from 0 to 255 inclusive.
Each combination of three integers specifies a particular color and is
known as an RGB value.

The DrawingPanel includes several methods for getting and setting
the color of pixels, listed in Table 7.3 . You can interact with a
single pixel, or you can grab all of the pixels of the image as a 2D
array and manipulate the entire array. The array is in row-major
order; that is, the first index of the array is the -coordinate and the
second is the -coordinate. For example, a[r][] represents the
pixel at position (). For efficiency it is generally
recommended to use the array-based versions of the methods; the
individual-pixel methods run slowly when applied repeatedly over all
pixels of a large image.

Table 7.3 DrawingPanel methods related to pixels

The following DrawPurpleTriangle example program uses getPixels
and setPixels to fill a triangular region of the panel with a purple
color. Figure 7.1 shows the graphical output of the program.
Notice that you must call setPixels at the end to see the updated
image; changing the array will not produce any effect on the screen
until you tell the panel to update itself using the new contents of the
array.

Figure 7.1 Output of DrawPurpleTriangle

y

x c

x = c, y = r

 1 // This program demonstrates the DrawingPanel's

 2 // getPixels and setPixels methods for

 3 // manipulating pixels of an image.

 4

 5 import java.awt.*;

 6

 7 public class DrawPurpleTriangle {

 8 public static void main(String[] args) {

 9 DrawingPanel panel = new DrawingPanel(300, 200);

10 Color[][] pixels = panel.getPixels();

11 for (int row = 50; row <= 150; row++) {

12 for (int col = 50; col <= row; col++) {

13 pixels[row][col] = Color.MAGENTA;

14 }

15 }

16 panel.setPixels(pixels);

17 }

18 }

You can use getPixels and setPixels to draw a shape like our
purple triangle, but a more typical usage of these methods would be
to grab the panel’s existing state and alter it in some interesting way.
The following Mirror program demonstrates the use of a 2D array of
Color objects. The program’s mirror method accepts a DrawingPanel
parameter and flips the pixel contents horizontally, swapping each
pixel’s color with the one at the opposite horizontal location. The
code uses the dimensions of the array to represent the size of the
image; pixels.length is its height and pixels[0].length (the length
of the first row of the 2D array) is its width. Figure 7.2 shows the
program’s graphical output before and after mirror is called.

Figure 7.2 Output of Mirror before and after mirroring

 1 // This program contains a mirror method that flips the

appearance

 2 // of a DrawingPanel horizontally pixel-by-pixel.

 3

 4 import java.awt.*;

 5

 6 public class Mirror {

 7 public static void main(String[] args) {

 8 DrawingPanel panel = new DrawingPanel(300, 200);

 9 Graphics g = panel.getGraphics();

10 g.drawString("Hello, world!", 20, 50);

11 g.fillOval(10, 100, 20, 70);

12 mirror(panel);

13 }

14

15 // Flips the pixels of the given drawing panel

horizontally.

16 public static void mirror(DrawingPanel panel) {

17 Color[][] pixels = panel.getPixels();

18 for (int row = 0; row < pixels.length; row++) {

19 for (int col = 0; col < pixels[0].length / 2;

col++) {

20 // swap with pixel at "mirrored" location

21 int opposite = pixels[0].length - 1 - col;

22 Color px = pixels[row][col];

23 pixels[row][col] = pixels[row][opposite];

24 pixels[row][opposite] = px;

25 }

26 }

27 panel.setPixels(pixels);

28 }

29 }

Often you’ll want to extract the individual red, green, and blue
components of a color to manipulate them. Each pixel’s Color object
has methods to help you do this. The getRed , getGreen , and getBlue
methods extract the relevant components out of an RGB integer.
Table 7.4 lists the relevant methods.

Table 7.4 Color methods related to pixel RGB components

The following code shows a method that computes the negative of
an image, which is found by taking the opposite of each color’s RGB

values. For example, the opposite of (red = 255, green = 100, blue =
35) is (red = 0, green = 155, blue = 220). The simplest way to
compute the negative is to subtract the pixel’s RGB values from the
maximum color value of 255. Figure 7.3 shows an example
output.

Figure 7.3 Negative of an image (before and after)

// Produces the negative of the given image by inverting all

color

// values in the panel.

public static void negative(DrawingPanel panel) {

 Color[][] pixels = panel.getPixels();

 for (int row = 0; row < pixels.length; row++) {

 for (int col = 0; col < pixels[0].length; col++) {

 // extract red/green/blue components from 0-255

 int r = 255 - pixels[row][col].getRed();

 int g = 255 - pixels[row][col].getGreen();

 int b = 255 - pixels[row][col].getBlue();

 // update the pixel array with the new color value

 pixels[row][col] = new Color(r, g, b);

 }

 }

 panel.setPixels(pixels);

}

All of the previous examples have involved making changes to a 2D
pixel array in place. But sometimes you want to create an image with
different dimensions, or want to set each pixel based on the values
of pixels around it, and therefore you need to create a new pixel
array. The following example shows a stretch method that widens
the contents of a DrawingPanel to twice their current width. To do so,
it creates an array newPixels that is twice as wide as the existing
one. (Remember that the first index of the 2D array is y and the
second is x, so to widen the array, the code must double the array’s
second dimension.) The setPixels method will resize the panel if
necessary to accommodate our new larger array of pixels.

The loop to fill the new array sets the value at each index to the
value at half as large an x-index in the original array. So, for
example, the original array’s pixel value at (52, 34) is used to fill the
new array’s pixels at (104, 68) and (105, 68). Figure 7.4 shows
the graphical output of the stretched image.

Figure 7.4 Horizontally stretched image (before and after)

// Stretches the given panel to be twice as wide.

// Any shapes and colors drawn on the panel are stretched to

fit.

public static void stretch(DrawingPanel panel) {

 Color[][] pixels = panel.getPixels();

 Color[][] newPixels = new Color[pixels.length][2 *

pixels[0].length];

 for (int row = 0; row < pixels.length; row++) {

 for (int col = 0; col < 2 * pixels[0].length; col++) {

 newPixels[row][col] = pixels[row][col / 2];

 }

 }

 panel.setPixels(newPixels);

}

The pixel-based methods shown in this section are somewhat
inefficient because they create large arrays of Color objects, which
takes a lot of time and memory. These methods aren’t efficient
enough for an animation or a game. The DrawingPanel provides
some additional methods like getPixelsRGB that use specially packed
integers to represent red, green, and blue color information instead
of Color objects to improve the speed and memory usage at the cost
of a bit of code complexity. If you are interested, you can read about
these additional methods in the online DrawingPanel documentation
at buildingjavaprograms.com.

7.7 Case Study: Benford’s Law
Let’s look at a more complex program example that involves using
arrays. When you study real-world data you will often come across a
curious result that is known as Benford’s Law, named after a
physicist named Frank Benford who stated it in 1938.

Benford’s Law involves looking at the first digit of a series of
numbers. For example, suppose that you were to use a random
number generator to generate integers in the range of 100 to 999
and you looked at how often the number begins with 1, how often it
begins with 2, and so on. Any decent random number generator
would spread the answers out evenly among the nine different
regions, so we’d expect to see each digit about one-ninth of the time
(11.1%). But with a lot of real-world data, we see a very different
distribution.

When we examine data that matches the Benford distribution, we
see a first digit of 1 over 30% of the time (almost one third) and, at
the other extreme, a first digit of 9 only about 4.6% of the time (less
than one in twenty cases). Table 7.5 shows the expected
distribution for data that follows Benford’s Law.

Table 7.5 Expected Distribution under Benford’s Law

Why would the distribution turn out this way? Why so many 1s? Why
so few 9s? The answer is that exponential sequences have different
properties than simple linear sequences. In particular, exponential
sequences have a lot more numbers that begin with 1.

To explore this phenomenon, let’s look at two different sequences of
numbers: one that grows linearly and one that grows exponentially. If
you start with the number 1 and add 0.2 to it over and over, you get
the following linear sequence:

1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4, 4.2, 4.4, 4.6, 4.8, 5, 5.2,

5.4, 5.6, 5.8, 6, 6.2, 6.4, 6.6, 6.8, 7, 7.2, 7.4, 7.6, 7.8, 8, 8.2, 8.4, 8.6, 8.8, 9, 9.2, 9.4,

9.6, 9.8, 10

In this sequence there are five numbers that begin with 1, five
numbers that begin with 2, five numbers that begin with 3, and so on.
For each digit, there are five numbers that begin with that digit.
That’s what we expect to see with data that goes up by a constant
amount each time.

But consider what happens when we make it an exponential
sequence instead. Let’s again start with 1 and continue until we get
to 10, but this time let’s multiply each successive number by 1.05
(we’ll limit ourselves to displaying just two digits after the decimal,
but the actual sequence takes into account all of the digits):

1.00, 1.05, 1.10, 1.16, 1.22, 1.28, 1.34, 1.41, 1.48, 1.55, 1.63, 1.71, 1.80, 1.89, 1.98,

2.08, 2.18, 2.29, 2.41, 2.53, 2.65, 2.79, 2.93, 3.07, 3.23, 3.39, 3.56, 3.73, 3.92, 4.12,

4.32, 4.54, 4.76, 5.00, 5.25, 5.52, 5.79, 6.08, 6.39, 6.70, 7.04, 7.39, 7.76, 8.15, 8.56,

8.99, 9.43, 9.91, 10.40

In this sequence there are 15 numbers that begin with 1 (31.25%), 8
numbers that begin with 2 (16.7%), and so on. There are only 2
numbers that begin with 9 (4.2%). In fact, the distribution of digits is
almost exactly what you see in the table for Benford’s Law.

There are many real-world phenomena that exhibit an exponential
character. For example, population tends to grow exponentially in
most regions. There are many other data sets that also seem to
exhibit the Benford pattern, including sunspots, salaries,
investments, heights of buildings, and so on. Benford’s Law has
been used to try to detect accounting fraud under the theory that
when someone is making up data, they are likely to use a more
random process that won’t yield a Benford style distribution.

For our purposes, let’s write a program that reads a file of integers
and that shows the distribution of the leading digit. We’ll read the
data from a file and will run it on several sample inputs. First, though,
let’s consider the general problem of tallying.

Tallying Values

In programming we often find ourselves wanting to count the number
of occurrences of some set of values. For example, we might want to
know how many people got a 100 on an exam, how many got a 99,
how many got a 98, and so on. Or we might want to know how many
days the temperature in a city was above 100 degrees, how many
days it was in the 90s, how many days it was in the 80s, and so on.
The approach is very nearly the same for each of these tallying
tasks. Let’s look at a small tallying task in which there are only five
values to tally.

Suppose that a teacher scores quizzes on a scale of 0 to 4 and
wants to know the distribution of quiz scores. In other words, the
teacher wants to know how many scores of 0 there are, how many
scores of 1, how many scores of 2, how many scores of 3, and how
many scores of 4. Suppose that the teacher has included all of the
scores in a data file like the following:

1 4 1 0 3 2 1 4 2 0

3 0 2 3 0 4 3 3 4 1

2 4 1 3 1 4 3 3 2 4

2 3 0 4 1 4 4 1 4 1

The teacher could hand-count the scores, but it would be much
easier to use a computer to do the counting. How can you solve the
problem? First you have to recognize that you are doing five
separate counting tasks: You are counting the occurrences of the
number 0, the number 1, the number 2, the number 3, and the
number 4. You will need five counters to solve this problem, which
means that an array is a great way to store the data. In general,
whenever you find yourself thinking that you need of some kind of
data, you should think about using an array of length

Each counter will be an int , so you want an array of five int values:

int[] count = new int[5];

This line of code will allocate the array of five integers and will auto-
initialize each to 0 :

You’re reading from a file, so you’ll need a Scanner and a loop that
reads scores until there are no more scores to read:

n

n.

Scanner input = new Scanner(new File("tally.dat"));

while (input.hasNextInt()) {

 int next = input.nextInt();

 // process next

}

To complete this code, you need to figure out how to process each
value. You know that next will be one of five different values: 0 , 1 ,
2 , 3 , or 4 . If it is 0 , you want to increment the counter for 0 , which
is count[0] ; if it is 1 , you want to increment the counter for 1 , which
is count[1] , and so on. We have been solving problems like this one
with nested if/else statements:

if (next == 0) {

 count[0]++;

} else if (next == 1) {

 count[1]++;

} else if (next == 2) {

 count[2]++;

} else if (next == 3) {

 count[3]++;

} else { // next == 4

 count[4]++;

}

But with an array, you can solve this problem much more directly:

count[next]++;

This line of code is so short compared to the nested if/else
construct that you might not realize at first that it does the same
thing. Let’s simulate exactly what happens as various values are
read from the file.

When the array is constructed, all of the counters are initialized to 0 :

The first value in the input file is a 1 , so the program reads that into
next . Then it executes this line of code:

count[next]++;

Because next is 1 , this line of code becomes

count[1]++;

So the counter at index [1] is incremented:

Then a 4 is read from the input file, which means count[4] is
incremented:

Next, another 1 is read from the input file, which increments
count[1] :

Then a 0 is read from the input file, which increments count[0] :

Notice that in just this short set of data you’ve jumped from index 1
to index 4, then back down to index 1, then to index 0. The program
continues executing in this manner, jumping from counter to counter
as it reads values from the file. This ability to jump around in the data
structure is what’s meant by random access.

After processing all of the data, the array ends up looking like this:

After this loop finishes executing, you can report the total for each
score by using the standard traversing loop with a println :

for (int i = 0; i < count.length; i++) {

 System.out.println(i + "\t" + count[i]);

}

With the addition of a header for the output, the complete program is
as follows:

 1 // Reads a series of values and reports the frequency of

 2 // occurrence of each value.

 3

 4 import java.io.*;

 5 import java.util.*;

 6

 7 public class Tally {

 8 public static void main(String[] args)

 9 throws FileNotFoundException {

10 Scanner input = new Scanner(new File("tally.dat"));

11 int[] count = new int[5];

12 while (input.hasNextInt()) {

13 int next = input.nextInt();

14 count[next]++;

15 }

16 System.out.println("Value\tOccurrences");

17 for (int i = 0; i < count.length; i++) {

18 System.out.println(i + "\t" + count[i]);

19 }

20 }

21 }

Given the sample input file shown earlier, this program produces the
following output:

Value Occurrences

0 5

1 9

2 6

3 9

4 11

It is important to realize that a program written with an array is much
more flexible than programs written with simple variables and
if/else statements. For example, suppose you wanted to adapt this
program to process an input file with exam scores that range from 0
to 100. The only change you would have to make would be to
allocate a larger array:

int[] count = new int[101];

If you had written the program with an if/else approach, you would
have to add 96 new branches to account for the new range of
values. When you use an array solution, you just have to modify the
overall size of the array. Notice that the array size is one more than
the highest score (101 rather than 100) because the array is zero-
based and because you can actually get 101 different scores on the
test, including 0 as a possibility.

Completing the Program

Now that we’ve explored the basic approach to tallying, we can fairly
easily adapt it to the problem of analyzing a data file to find the
distribution of leading digits. As we stated earlier, we’re assuming

that we have a file of integers. To count the leading digits, we will
need to be able to get the leading digit of each. This task is
specialized enough that it deserves to be in its own method.

So let’s first write a method called firstDigit that returns the first
digit of an integer. If the number is a one-digit number, then the
number itself will be the answer. If the number is not a one-digit
number, then we can chop off its last digit because we don’t need it.
If we do the chopping in a loop, then eventually we’ll get down to a
one-digit number (the first digit). This leads us to write the following
loop:

while (result >= 10) {

 result = result / 10;

}

We don’t expect to get any negative numbers, but it’s not a bad idea
to make sure we don’t have any negatives. So putting this into a
method that also handles negatives, we get the following code:

public static int firstDigit(int n) {

 int result = Math.abs(n);

 while (result >= 10) {

 result = result / 10;

 }

 return result;

}

In the previous section we explored the general approach to tallying.
In this case we want to tally the digits 0 through 9, so we want an
array of length 10. Otherwise the solution is nearly identical to what
we did in the last section. We can put the tallying code into a method
that constructs an array and returns the tally:

public static int[] countDigits(Scanner input) {

 int[] count = new int[10];

 while (input.hasNextInt()) {

 int n = input.nextInt();

 count[firstDigit(n)]++;

 }

 return count;

}

Notice that instead of tallying n in the body of the loop, we are
instead tallying firstDigit(n) (just the first digit, not the entire
number).

The value 0 presents a potential problem for us. Benford’s Law is
meant to apply to data that comes from an exponential sequence.
But even if you are increasing exponentially, if you start with 0 , you

never get beyond 0 . As a result, it is best to eliminate the 0 values
from the calculation. Often they won’t occur at all.

When reporting results, then, let’s begin by reporting the excluded
zeros if they exist:

if (count[0] > 0) {

 System.out.println("excluding " + count[0] + " zeros");

}

For the other digits, we want to report the number of occurrences of
each and also the percentage of each. To figure the percentage,
we’ll need to know the sum of the values. This is a good place to
introduce a method that finds the sum of an array of integers. It’s a
fairly straightforward array traversal problem that can be solved with
a for-each loop:

public static int sum(int[] data) {

 int sum = 0;

 for (int n : data) {

 sum += n;

 }

 return sum;

}

Now we can compute the total number of digits by calling the method
and subtracting the number of 0s:

int total = sum(count) – count[0];

And once we have the total number of digits, we can write a loop to
report each of the percentages. To compute the percentages, we
multiply each count by 100 and divide by the total number of digits.
We have to be careful to multiply by 100.0 rather than 100 to make
sure that we are computing the result using double values.
Otherwise we’ll get truncated integer division and won’t get any digits
after the decimal point:

for (int i = 1; i < count.length; i++) {

 double pct = count[i] * 100.0 / total;

 System.out.println(i + " " + count[i] + " " + pct);

}

Notice that the loop starts at 1 instead of 0 because we have
excluded the zeros from our reporting.

Here is a complete program that puts these pieces together. It also
uses printf statements to format the output and includes a header
for the table and a total afterward:

 1 // This program finds the distribution of leading digits in

a set

 2 // of positive integers. The program is useful for

exploring the

 3 // phenomenon known as Benford’s Law.

 4

 5 import java.io.*;

 6 import java.util.*;

 7

 8 public class Benford {

 9 public static void main(String[] args)

10 throws FileNotFoundException {

11 Scanner console = new Scanner(System.in);

12 System.out.println("Let's count those leading

digits...");

13 System.out.print("input file name? ");

14 String name = console.nextLine();

15 Scanner input = new Scanner(new File(name));

16 int[] count = countDigits(input);

17 reportResults(count);

18 }

19

20 // Reads integers from input, computing an array of

counts

21 // for the occurrences of each leading digit (0–9).

22 public static int[] countDigits(Scanner input) {

23 int[] count = new int[10];

24 while (input.hasNextInt()) {

25 int n = input.nextInt();

26 count[firstDigit(n)]++;

27 }

28 return count;

29 }

30

31 // Reports percentages for each leading digit, excluding

zeros

32 public static void reportResults(int[] count) {

33 System.out.println();

34 if (count[0] > 0) {

35 System.out.println("excluding " + count[0] + "

zeros");

36 }

37 int total = sum(count) – count[0];

38 System.out.println("Digit Count Percent");

39 for (int i = 1; i < count.length; i++) {

40 double pct = count[i] * 100.0 / total;

41 System.out.printf("%5d %5d %6.2f\n", i,

count[i], pct);

42 }

43 System.out.printf("Total %5d %6.2f\n", total,

100.0);

44 }

45

46 // returns the sum of the integers in the given array

47 public static int sum(int[] data) {

48 int sum = 0;

49 for (int n : data) {

50 sum += n;

51 }

52 return sum;

53 }

54

55 // returns the first digit of the given number

56 public static int firstDigit(int n) {

57 int result = Math.abs(n);

58 while (result >= 10) {

59 result = result / 10;

60 }

61 return result;

62 }

63 }

Now that we have a complete program, let’s see what we get when
we analyze various data sets. The Benford distribution shows up
with population data because population tends to grow exponentially.
Let’s use data from the web page http://www.census.gov/popest/
which contains population estimates for various U.S. counties. The
data set has information on 3000 different counties with populations
varying from 100 individuals to over 9 million for the census year
2000. Here is a sample output of our program using these data:

Let's count those leading digits...

input file name? county.txt

Digit Count Percent

 1 970 30.90

 2 564 17.97

 3 399 12.71

 4 306 9.75

 5 206 6.56

 6 208 6.63

 7 170 5.24

 8 172 5.48

 9 144 4.59

Total 3139 100.00

These percentages are almost exactly the numbers predicted by
Benford’s Law.

Data that obey Benford’s Law have an interesting property. It doesn’t
matter what scale you use for the data. So if you are measuring
heights, for example, it doesn’t matter whether you measure in feet,
inches, meters, or furlongs. In our case, we counted the number of
people in each U.S. county. If we instead count the number of
human hands in each county, then we have to double each number.
Look at the preceding output and see if you can predict the result
when you double each number. Here is the actual result:

Let's count those leading digits...

input file name? county2.txt

Digit Count Percent

 1 900 28.67

 2 555 17.68

 3 415 13.22

 4 322 10.26

 5 242 7.71

 6 209 6.66

 7 190 6.05

 8 173 5.51

 9 133 4.24

Total 3139 100.00

Notice that there is very little change. Doubling the numbers has little
effect because if the original data is exponential in nature, then the
same will be true of the doubled numbers. Here is another sample
run that triples the county population numbers:

Let's count those leading digits...

input file name? county3.txt

Digit Count Percent

 1 926 29.50

 2 549 17.49

 3 385 12.27

 4 327 10.42

 5 258 8.22

 6 228 7.26

 7 193 6.15

 8 143 4.56

 9 130 4.14

Total 3139 100.00

Another data set that shows Benford characteristics is the count of
sunspots that occur on any given day. Robin McQuinn maintains a
web page at http://sidc.oma.be/html/sunspot.html that has daily
counts of sunspots going back to 1818. Here is a sample execution
using these data:

Let's count those leading digits...

input file name? sunspot.txt

excluding 4144 zeros

Digit Count Percent

 1 5405 31.24

 2 1809 10.46

 3 2127 12.29

 4 1690 9.77

 5 1702 9.84

 6 1357 7.84

 7 1364 7.88

 8 966 5.58

 9 882 5.10

Total 17302 100.00

Notice that on this execution the program reports the exclusion of
some 0 values.

Chapter Summary
An array is an object that groups multiple primitive values or objects
of the same type under one name. Each individual value, called an
element, is accessed with an integer index that ranges from 0 to one
less than the array’s length.

Attempting to access an array element with an index of less than 0
or one that is greater than or equal to the array’s length will cause
the program to crash with an ArrayIndexOutOfBoundsException .

Arrays are often traversed using for loops. The length of an array is
found by accessing its length field, so the loop over an array can
process indexes from 0 to length – 1 . Array elements can also be
accessed in order using a type of loop called a for-each loop.

Arrays have several limitations, such as fixed size and lack of
support for common operations like == and println . To perform
these operations, you must either use the Arrays class or write for
loops that process each element of the array.

Several common array algorithms, such as printing an array or
comparing two arrays to each other for equality, are implemented by
traversing the elements and examining or modifying each one.

Java arrays are objects and use reference semantics, in which
variables store references to values rather than to the actual values
themselves. This means that two variables can refer to the same
array or object. If the array is modified through one of its references,
the modification will also be seen in the other.

Arrays of objects are actually arrays of references to objects. A
newly declared and initialized array of objects actually stores null in
all of its element indexes, so each element must be initialized
individually or in a loop to store an actual object.

A multidimensional array is an array of arrays. These are often used
to store two-dimensional data, such as data in rows and columns or

 data in a two-dimensional space.

xy

Self-Check Problems

Section 7.1: Array Basics

1. Which of the following is the correct syntax to declare an array
of ten integers?

a. int a[10] = new int[10];
b. int[10] a = new int[10];
c. []int a = [10]int;
d. int a[10];
e. int[] a = new int[10];

2. What expression should be used to access the first element of
an array of integers called numbers? What expression should
be used to access the last element of numbers , assuming it
contains 10 elements? What expression can be used to
access its last element, regardless of its length?

3. Write code that creates an array of integers named data of
size 5 with the following contents:

4. Write code that stores all odd numbers between and 38
into an array using a loop. Make the array’s size exactly large
enough to store the numbers.

−6

Then, try generalizing your code so that it will work for any
minimum and maximum values, not just -6 and 38.

5. What elements does the array numbers contain after the
following code is executed?

int[] numbers = new int[8];

numbers[1] = 4;

numbers[4] = 99;

numbers[7] = 2;

int x = numbers[1];

numbers[x] = 44;

numbers[numbers[7]] = 11; // uses numbers[7] as index

6. What elements does the array data contain after the following
code is executed?

int[] data = new int[8];

data[0] = 3;

data[7] = -18;

data[4] = 5;

data[1] = data[0];

int x = data[4];

data[4] = 6;

data[x] = data[0] * data[1];

7. What is wrong with the following code?

int[] first = new int[2];

first[0] = 3;

first[1] = 7;

int[] second = new int[2];

second[0] = 3;

second[1] = 7;

// print the array elements

System.out.println(first);

System.out.println(second);

// see if the elements are the same

if (first == second) {

 System.out.println("They contain the same

elements.");

} else {

 System.out.println("The elements are different.");

}

8. Which of the following is the correct syntax to declare an array
of the given six integer values?

a. int[] a = {17, -3, 42, 5, 9, 28};
b. int a {17, -3, 42, 5, 9, 28};
c. int[] a = new int[6] {17, -3, 42, 5, 9, 28};
d. int[6] a = {17, -3, 42, 5, 9, 28};
e. int[] a = int [17, -3, 42, 5, 9, 28] {6};

9. Write a piece of code that declares an array called data with
the elements 7 , -1 , 13 , 24 , and 6 . Use only one statement to
initialize the array.

10. Write a piece of code that examines an array of integers and
reports the maximum value in the array. Consider putting your
code into a method called max that accepts the array as a
parameter and returns the maximum value. Assume that the
array contains at least one element.

11. Write a method called average that computes the average
(arithmetic mean) of all elements in an array of integers and
returns the answer as a double . For example, if the array
passed contains the values [1, –2, 4, –4, 9, –6, 16, –8, 25,
–10] , the calculated average should be 2.5 . Your method
accepts an array of integers as its parameter and returns the
average.

Section 7.2: Array-Traversal
Algorithms

12. What is an array traversal? Give an example of a problem that
can be solved by traversing an array.

13. Write code that uses a for loop to print each element of an
array named data that contains five integers:

element [0] is 14

element [1] is 5

element [2] is 27

element [3] is −3

element [4] is 2598

Consider generalizing your code so that it will work on an
array of any size.

14. What elements does the array list contain after the following
code is executed?

int[] list = {2, 18, 6, −4, 5, 1};

for (int i = 0; i < list.length; i++) {

 list[i] = list[i] + (list[i] / list[0]);

}

15. Write a piece of code that prints an array of integers in
reverse order, in the same format as the print method from
Section 7.2 . Consider putting your code into a method
called printBackwards that accepts the array as a parameter.

16. Describe the modifications that would be necessary to change
the count and equals methods developed in Section 7.2 to
process arrays of Strings instead of arrays of integers.

17. Write a method called allLess that accepts two arrays of
integers and returns true if each element in the first array is
less than the element at the same index in the second array.
Your method should return false if the arrays are not the
same length.

Section 7.3: Reference Semantics

18. Why does a method to swap two array elements work
correctly when a method to swap two integer values does
not?

19. What is the output of the following program?

public class ReferenceMystery1 {

 public static void main(String[] args) {

 int x = 0;

 int[] a = new int[4];

 x = x + 1;

 mystery(x, a);

 System.out.println(x + " " + Arrays.toString(a));

 x = x + 1;

 mystery(x, a);

 System.out.println(x + " " + Arrays.toString(a));

 }

 public static void mystery(int x, int[] a) {

 x = x + 1;

 a[x] = a[x] + 1;

 System.out.println(x + " " + Arrays.toString(a));

 }

}

20. What is the output of the following program?

public class ReferenceMystery2 {

 public static void main(String[] args) {

 int x = 1;

 int[] a = new int[2];

 mystery(x, a);

 System.out.println(x + " " + Arrays.toString(a));

 x−−;

 a[1] = a.length;

 mystery(x, a);

 System.out.println(x + " " + Arrays.toString(a));

 }

 public static void mystery(int x, int[] list) {

 list[x]++;

 x++;

 System.out.println(x + " " +

Arrays.toString(list));

 }

}

21. Write a method called swapPairs that accepts an array of
integers and swaps the elements at adjacent indexes. That is,
elements 0 and 1 are swapped, elements 2 and 3 are
swapped, and so on. If the array has an odd length, the final
element should be left unmodified. For example, the list [10,
20, 30, 40, 50] should become [20, 10, 40, 30, 50] after a
call to your method.

Section 7.4: Advanced Array
Techniques

22. What are the values of the elements in the array numbers after
the following code is executed?

int[] numbers = {10, 20, 30, 40, 50, 60, 70, 80, 90,

100};

for (int i = 0; i < 9; i++) {

 numbers[i] = numbers[i + 1];

}

23. What are the values of the elements in the array numbers after
the following code is executed?

int[] numbers = {10, 20, 30, 40, 50, 60, 70, 80, 90,

100};

for (int i = 1; i < 10; i++) {

 numbers[i] = numbers[i − 1];

}

24. Consider the following method, mystery :

public static void mystery(int[] a, int[] b) {

 for (int i = 0; i < a.length; i++) {

 a[i] += b[b.length − 1 – i];

 }

}

What are the values of the elements in array a1 after the
following code executes?

int[] a1 = {1, 3, 5, 7, 9};

int[] a2 = {1, 4, 9, 16, 25};

mystery(a1, a2);

25. Consider the following method, mystery2 :

public static void mystery2(int[] a, int[] b) {

 for (int i = 0; i < a.length; i++) {

 a[i] = a[2 * i % a.length] – b[3 * i % b.length];

 }

}

What are the values of the elements in array a1 after the
following code executes?

int[] a1 = {2, 4, 6, 8, 10, 12, 14, 16};

int[] a2 = {1, 1, 2, 3, 5, 8, 13, 21};

mystery2(a1, a2);

26. Consider the following method, mystery3 :

public static void mystery3(int[] data, int x, int y) {

 data[data[x]] = data[y];

 data[y] = x;

}

What are the values of the elements in the array numbers after
the following code executes?

int[] numbers = {3, 7, 1, 0, 25, 4, 18, −1, 5};

mystery3(numbers, 3, 1);

mystery3(numbers, 5, 6);

mystery3(numbers, 8, 4);

27. Consider the following method:

public static int mystery4(int[] list) {

 int x = 0;

 for (int i = 1; i < list.length; i++) {

 int y = list[i] - list[0];

 if (y > x) {

 x = y;

 }

 }

 return x;

}

What value does the method return when passed each of the
following arrays?

a. {5}
b. {3, 12}
c. {4, 2, 10, 8}
d. {1, 9, 3, 5, 7}
e. {8, 2, 10, 4, 10, 9}

28. Consider the following method:

public static void mystery5(int[] nums) {

 for (int i = 0; i < nums.length − 1; i++) {

 if (nums[i] > nums[i + 1]) {

 nums[i + 1]++;

 }

 }

}

What are the final contents of each of the following arrays if
each is passed to the above method?

a. {8}
b. {14, 7}
c. {7, 1, 3, 2, 0, 4}
d. {10, 8, 9, 5, 5}
e. {12, 11, 10, 10, 8, 7}

29. Write a piece of code that computes the average String
length of the elements of an array of Strings . For example, if
the array contains {"belt", "hat", "jelly", "bubble gum"} ,
the average length is 5.5 .

30. Write code that accepts an array of Strings as its parameter
and indicates whether that array is a palindrome—that is,
whether it reads the same forward as backward. For example,
the array {"alpha", "beta", "gamma", "delta", "gamma",
"beta", "alpha"} is a palindrome.

Section 7.5: Multidimensional
Arrays

31. What elements does the array numbers contain after the
following code is executed?

int[][] numbers = new int[3][4];

for (int r = 0; r < numbers.length; r++) {

 for (int c = 0; c < numbers[0].length; c++) {

 numbers[r][c] = r + c;

 }

}

32. Assume that a two-dimensional rectangular array of integers
called data has been declared with four rows and seven
columns. Write a loop to initialize the third row of data to store
the numbers 1 through 7.

33. Write a piece of code that constructs a two-dimensional array
of integers with 5 rows and 10 columns. Fill the array with a
multiplication table, so that array element [i][j] contains the
value i * j . Use nested for loops to build the array.

34. Assume that a two-dimensional rectangular array of integers
called matrix has been declared with six rows and eight
columns. Write a loop to copy the contents of the second
column into the fifth column.

35. Consider the following method:

public static void mystery2d(int[][] a) {

 for (int r = 0; r < a.length; r++) {

 for (int c = 0; c < a[0].length - 1; c++) {

 if (a[r][c + 1] > a[r][c]) {

 a[r][c] = a[r][c + 1];

 }

 }

 }

}

If a two-dimensional array numbers is initialized to store the
following integers, what are its contents after the call shown?

int[][] numbers = {{3, 4, 5, 6},

 {4, 5, 6, 7},

 {5, 6, 7, 8}};

mystery2d(numbers);

36. Write a piece of code that constructs a jagged two-
dimensional array of integers with five rows and an increasing
number of columns in each row, such that the first row has
one column, the second row has two, the third has three, and
so on. The array elements should have increasing values in
top-to-bottom, left-to-right order (also called row-major order).
In other words, the array’s contents should be the following:

1

2, 3

4, 5, 6

7, 8, 9, 10

11, 12, 13, 14, 15

Use nested for loops to build the array.
37. When examining a 2D array of pixels, how could you figure

out the width and height of the image even if you don’t have
access to the DrawingPanel object?

38. Finish the following code for a method that converts an image
into its red channel; that is, removing any green or blue from
each pixel and keeping only the red component.

public static void toRedChannel(DrawingPanel panel) {

 Color[][] pixels = panel.getPixels();

 for (int row = 0; row < pixels.length; row++) {

 for (int col = 0; col < pixels[0].length; col++)

{

 // your code goes here

 }

 }

 panel.setPixels(pixels);

}

39. What is the result of the following code? What will the image
look like?

public static void pixelMystery(DrawingPanel panel) {

 Color[][] pixels = panel.getPixels();

 for (int row = 0; row < pixels.length; row++) {

 for (int col = 0; col < pixels[0].length; col++)

{

 int n = Math.min(row + col, 255);

 pixels[row][col] = new Color(n, n, n);

 }

 }

 panel.setPixels(pixels);

}

Exercises
1. Write a method called lastIndexOf that accepts an array of

integers and an integer value as its parameters and returns
the last index at which the value occurs in the array. The
method should return –1 if the value is not found. For
example, in the array [74, 85, 102, 99, 101, 85, 56], the last
index of the value 85 is 5.

2. Write a method called range that returns the range of values
in an array of integers. The range is defined as 1 more than
the difference between the maximum and minimum values in
the array. For example, if an array called list contains the
values [36, 12, 25, 19, 46, 31, 22] , the call of range(list)
should return 35 (46 - 12 + 1). You may assume that the array
has at least one element.

3. Write a method called countInRange that accepts an array of
integers, a minimum value, and a maximum value as
parameters and returns the count of how many elements from
the array fall between the minimum and maximum (inclusive).
For example, in the array [14, 1, 22, 17, 36, 7, –43, 5] ,
for minimum value 4 and maximum value 17 , there are four
elements whose values fall between 4 and 17 .

4. Write a method called isSorted that accepts an array of real
numbers as a parameter and returns true if the list is in

sorted (nondecreasing) order and false otherwise. For
example, if arrays named list1 and list2 store [16.1, 12.3,
22.2, 14.4] and [1.5, 4.3, 7.0, 19.5, 25.1, 46.2]
respectively, the calls isSorted(list1) and isSorted(list2)
should return false and true respectively. Assume the array
has at least one element. A one-element array is considered
to be sorted.

5. Write a method called mode that returns the most frequently
occurring element of an array of integers. Assume that the
array has at least one element and that every element in the
array has a value between 0 and 100 inclusive. Break ties by
choosing the lower value. For example, if the array passed
contains the values [27, 15, 15, 11, 27] , your method
should return 15 . (Hint: You may wish to look at the Tally
program from this chapter to get an idea how to solve this
problem.) Can you write a version of this method that does
not rely on the values being between 0 and 100?

6. Write a method called stdev that returns the standard
deviation of an array of integers. Standard deviation is
computed by taking the square root of the sum of the squares
of the differences between each element and the mean,
divided by one less than the number of elements. (It’s just that
simple!) More concisely and mathematically, the standard
deviation of an array is written as follows:a

For example, if the array passed contains the values [1, –2,
4, –4, 9, –6, 16, –8, 25, –10] , your method should return
approximately 11.237 .

7. Write a method called kthLargest that accepts an integer k
and an array a as its parameters and returns the element
such that k elements have greater or equal value. If k = 0 ,
return the largest element; if k = 1 , return the second-largest
element, and so on. For example, if the array passed contains
the values [74, 85, 102, 99, 101, 56, 84] and the integer k
passed is 2 , your method should return 99 because there are
two values at least as large as 99 (101 and 102). Assume that
0 ≤ k < a.length . (Hint: Consider sorting the array or a copy
of the array first.)

8. Write a method called median that accepts an array of integers
as its parameter and returns the median of the numbers in the
array. The median is the number that appears in the middle of
the list if you arrange the elements in order. Assume that the
array is of odd size (so that one sole element constitutes the
median) and that the numbers in the array are between 0 and
99 inclusive. For example, the median of [5, 2, 4, 17, 55,

4, 3, 26, 18, 2, 17] is 5 and the median of [42, 37, 1, 97,

stdev(a) =

a.length−1

∑
i=0

(a[i] − average(a)2)

a. length − 1

��⎷

1, 2, 7, 42, 3, 25, 89, 15, 10, 29, 27] is 25 . (Hint: You may
wish to look at the Tally program from earlier in this chapter
for ideas.)

9. Write a method called minGap that accepts an integer array as
a parameter and returns the minimum difference or gap
between adjacent values in the array, where the gap is
defined as the later value minus the earlier value. For
example, in the array [1, 3, 6, 7, 12] , the first gap is

 the second gap is the third gap is
 and the fourth gap is So your

method should return 1 if passed this array. The minimum
gap could be a negative number if the list is not in sorted
order. If you are passed an array with fewer than two
elements, return 0 .

10. Write a method called percentEven that accepts an array of
integers as a parameter and returns the percentage of even
numbers in the array as a real number. For example, if the
array stores the elements [6, 2, 9, 11, 3] , then your
method should return 40.0 . If the array contains no even
elements or no elements at all, return 0.0 .

11. Write a method called isUnique that accepts an array of
integers as a parameter and returns a boolean value
indicating whether or not the values in the array are unique
(true for yes, false for no). The values in the list are
considered unique if there is no pair of values that are equal.
For example, if passed an array containing [3, 8, 12, 2, 9,

2 (3 − 1), 3 (6 − 3),
1 (7 − 6), 5 (12 − 7).

17, 43, –8, 46] , your method should return true , but if
passed [4, 7, 3, 9, 12, –47, 3, 74] , your method should
return false because the value 3 appears twice.

12. Write a method called priceIsRight that mimics the guessing
rules from the game show The Price Is Right. The method
accepts as parameters an array of integers representing the
contestants’ bids and an integer representing a correct price.
The method returns the element in the bids array that is
closest in value to the correct price without being larger than
that price. For example, if an array called bids stores the
values [200, 300, 250, 1, 950, 40] , the call of
priceIsRight(bids, 280) should return 250 , since 250 is the
bid closest to 280 without going over 280. If all bids are larger
than the correct price, your method should return –1 .

13. Write a method called longestSortedSequence that accepts an
array of integers as a parameter and returns the length of the
longest sorted (nondecreasing) sequence of integers in the
array. For example, in the array [3, 8, 10, 1, 9, 14, –3, 0,

14, 207, 56, 98, 12] , the longest sorted sequence in the
array has four values in it (the sequence 0, 14, 207), so
your method would return 4 if passed this array. Sorted
means nondecreasing, so a sequence could contain
duplicates. Your method should return 0 if passed an empty
array.

14. Write a method called contains that accepts two arrays of
integers and as parameters and that returns a boolean

−3,

a1 a2

value indicating whether or not the sequence of elements in
 appears in (true for yes, false for no). The sequence

must appear consecutively and in the same order. For
example, consider the following arrays:

int[] list1 = {1, 6, 2, 1, 4, 1, 2, 1, 8};

int[] list2 = {1, 2, 1};

The call of contains(list1, list2) should return true
because the sequence of values in list2 [1, 2, 1] is
contained in list1 starting at index 5. If list2 had stored the
values [2, 1, 2] , the call of contains(list1, list2) would
return false . Any two lists with identical elements are
considered to contain each other. Every array contains the
empty array, and the empty array does not contain any arrays
other than the empty array itself.

15. Write a method called collapse that accepts an array of
integers as a parameter and returns a new array containing
the result of replacing each pair of integers with the sum of
that pair. For example, if an array called list stores the
values [7, 2, 8, 9, 4, 13, 7, 1, 9, 10] , then the call of
collapse(list) should return a new array containing [9, 17,

17, 8, 19] . The first pair from the original list is collapsed into
 the second pair is collapsed into and

so on. If the list stores an odd number of elements, the final
element is not collapsed. For example, if the list had been

a2 a1

9 (7 + 2), 17 (8 + 9),

[1, 2, 3, 4, 5] , then the call would return [3, 7, 5] . Your
method should not change the array that is passed as a
parameter.

16. Write a method called append that accepts two integer arrays
as parameters and returns a new array that contains the
result of appending the second array’s values at the end of
the first array. For example, if arrays list1 and list2 store
[2, 4, 6] and [1, 2, 3, 4, 5] respectively, the call of
append(list1, list2) should return a new array containing
[2, 4, 6, 1, 2, 3, 4, 5] . If the call instead had been
append(list2, list1) , the method would return an array
containing [1, 2, 3, 4, 5, 2, 4, 6] .

17. Write a method called vowelCount that accepts a String as a
parameter and produces and returns an array of integers
representing the counts of each vowel in the string. The array
returned by your method should hold five elements: the first is
the count of As, the second is the count of Es, the third Is, the
fourth Os, and the fifth Us. Assume that the string contains no
uppercase letters. For example, the call vowelCount(" i

think, therefore i am ") should return the array [1, 3, 3,

1, 0] .
18. Write a method called evenBeforeOdd that accepts an array of

integers and rearranges its elements so that all even values
appear before all odds. For example, if the array is [5, 4, 2,
11, 9, 10, 4, 7, 3] , then after the method has been called,
one acceptable ordering of the elements would be [4, 2, 10,

4, 5, 11, 9, 7, 3] . The exact order of the elements does not
matter, so long as all even values appear before all odd
values. The array might contain no even elements or no odd
elements. Do not use any temporary arrays in your solution,
and do not call Arrays.sort .

19. Write a method called wordLengths that accepts a Scanner for
an input file as its parameter. Your method should open the
given file, count the number of letters in each token in the file,
and output a result diagram of how many words contain each
number of letters. For example, consider a file containing the
following text:

Before sorting:

13 23 480 –18 75

hello how are you feeling today

After sorting:

–18 13 23 75 480

are feeling hello how today you

Your method should produce the following output to the
console. Use tabs so that the stars line up:

1: 0

2: 6 ******

3: 10 **********

4: 0

5: 5 *****

6: 1 *

7: 2 **

8: 2 **

Assume that no token in the file is more than 80 characters in
length.

20. Write a method called matrixAdd that accepts a pair of two-
dimensional arrays of integers as parameters, treats the
arrays as two-dimensional matrixes, and returns their sum.
The sum of two matrixes A and B is a matrix C, where for
every row i and column j , You may
assume that the arrays passed as parameters have the same
dimensions.

21. Write a method called isMagicSquare that accepts a two-
dimensional array of integers as a parameter and returns
true if it is a magic square. A square matrix is a magic square

if all of its row, column, and diagonal sums are equal. For
example, [[2, 7, 6], [9, 5, 1], [4, 3, 8]] is a square
matrix because all eight of the sums are exactly 15.

22. Write a method grayscale that converts a color image into a
black-and-white image. This is done by averaging the red,
green, and blue components of each pixel. For example, if a
pixel has RGB values of (

), the average of the three components is
 so that pixel becomes (

).

Cij = Aij + Bij.

red = 100, green = 30
blue = 80
(100 + 30 + 80)/3 = 70,
red = 70, green = 70, blue = 70

23. Write a method transpose that accepts a DrawingPanel as a
parameter and inverts the image about both the and
axes. You may assume that the image is square, that is, that
its width and height are equal.

x y

24. Write a method zoomIn that accepts a DrawingPanel as a
parameter and converts it into an image twice as large in both
dimensions. Each pixel from the original image becomes a
cluster of 4 pixels (2 rows and 2 columns) in the new zoomed
image.

25. Write methods rotateLeft and rotateRight that rotate the
pixels of an image counter-clockwise or clockwise by 90

degrees respectively. You should not assume that the image
is square in shape; its width and height might be different.

26. Write a method blur that makes an image look “blurry” using
the following specific algorithm. Set each pixel to be the
average of itself and the 8 pixels around it. That is, for the
pixel at position (x, y), set its RGB value to be the average of
the RGB values at positions () through (

). Be careful not to go out of bounds near the edge of
the image; if a pixel lies along the edge of the image, average
whatever neighbors it does have.

x − 1, y − 1 x + 1,
y + 1

Programming Projects
1. Java’s type int has a limit on how large an integer it can

store. This limit can be circumvented by representing an
integer as an array of digits. Write an interactive program that
adds two integers of up to 50 digits each.

2. Write a game of Hangman using arrays. Allow the user to
guess letters and represent which letters have been guessed
in an array.

3. Write a program that plays a variation of the game of
Mastermind with a user. For example, the program can use
pseudorandom numbers to generate a four-digit number. The
user should be allowed to make guesses until she gets the
number correct. Clues should be given to the user indicating
how many digits of the guess are correct and in the correct
place and how many digits are correct but in the wrong place.

4. Write a program to score users’ responses to the classic
Myers–Briggs personality test. Assume that the test has 70
questions that determine a person’s personality in four
dimensions. Each question has two answer choices that we’ll
call the “A” and “B” answers. Questions are organized into 10
groups of seven questions, with the following repeating
pattern in each group:

The first question in each group (questions 1, 8, 15, 22,
etc.) tells whether the person is introverted or extroverted.

The next two questions (questions 2 and 3, 9 and 10, 16
and 17, 23 and 24, etc.) test whether the person is guided
by his or her senses or intuition.
The next two questions (questions 4 and 5, 11 and 12, 18
and 19, 25 and 26, etc.) test whether the person focuses
on thinking or feeling.
The final two questions in each group (questions 6 and 7,
13 and 14, 20 and 21, 27 and 28, etc.) test whether the
person prefers to judge or be guided by perception.

In other words, if we consider introversion/extraversion (I/E) to
be dimension 1, sensing/intuition (S/N) to be dimension 2,
thinking/feeling (T/F) to be dimension 3, and
judging/perception (J/P) to be dimension 4, the map of
questions to their respective dimensions would look like this:

122334412233441223344122334412233441223344122334412233441

2233441223344

BABAAAABAAAAAAABAAAABBAAAAAABAAAABABAABAAABABABAABAAAAAAB

AAAAAABAAAAAA

The following is a partial sample input file of names and
responses:

Betty Boop

BABAAAABAAAAAAABAAAABBAAAAAABAAAABABAABAAABABABAABAAAAAAB

AAAAAABAAAAAA

Snoopy

AABBAABBBBBABABAAAAABABBAABBAAAABBBAAABAABAABABAAAABAABBB

BAAABBAABABBB

If less than 50% of a person’s responses are B for a given
personality dimension, the person’s type for that dimension
should be the first of its two choices. If the person has 50% or
more B responses, the person’s type for that dimension is the
second choice. Your program should output each person’s
name, the number of A and B responses for each dimension,
the percentage of Bs in each dimension, and the overall
personality type. The following should be your program’s
output for the preceding input data:

Betty Boop:

1A–9B 17A–3B 18A–2B 18A–2B

[90%, 15%, 10%, 10%] = ISTJ

Snoopy:

7A–3B 11A–9B 14A–6B 6A–14B

[30%, 45%, 30%, 70%] = ESTP

5. Use a two-dimensional array to write a game of Tic-Tac-Toe
that represents the board.

6. Write a program that reads a file of DNA data and searches
for protein sequences. DNA data consists of long Strings of
the letters A, C, G, and T, corresponding to chemical
nucleotides called adenine, cytosine, guanine, and thymine.

Proteins can be identified by looking for special triplet
sequences of nucleotides that indicate the start and stop of a
protein range. Store relevant data in arrays as you make your
computation. See our textbook’s web site for example DNA
input files and more details about heuristics for identifying
proteins.

7. Write a basic Photoshop or Instagram-inspired program with a
menu of available image manipulation algorithms similar to
those described in the exercises in this chapter. The user can
load an image from a file and then select which manipulation
to perform, such as grayscale, zoom, rotate, or blur.

Chapter 8 Classes

8.1 Object-Oriented Programming
• Classes and Objects

• Point Objects

8.2 Object State and Behavior
• Object State: Fields

• Object Behavior: Methods

• The Implicit Parameter

• Mutators and Accessors

• The toString Method

8.3 Object Initialization: Constructors
• The Keyword this

• Multiple Constructors

8.4 Encapsulation
• Private Fields

• Class Invariants

• Changing Internal Implementations

8.5 Case Study: Designing a Stock Class
• Object-Oriented Design Heuristics

• Stock Fields and Method Headers

• Stock Method and Constructor Implementation

Introduction
Now that you’ve mastered the basics of
procedural-style programming in Java, you’re
finally ready to explore what Java was designed
for: object-oriented programming. This chapter
introduces the basic terminology that you should
use to talk about objects and shows you how to
declare your own classes to create your own
objects.

Objects are entities that contain state and
behavior and that can be used as parts of larger
programs. We’ll discuss the concepts of
abstraction and encapsulation, which allow you
to use objects at a high level without
understanding their inner details. We’ll also

discuss ideas for designing new classes of
objects and implementing the programs that
utilize them.

8.1 Object-Oriented Programming
Most of our focus so far has been on procedural decomposition, the
technique of breaking complex tasks into smaller subtasks. This is
the oldest style of programming, and even in a language like Java
we still use procedural techniques. But Java also provides a different
approach to programming that we call object-oriented programming.

Object-Oriented Programming
(OOP)
Reasoning about a program as a set of objects rather
than as a set of actions.

Object-oriented programming involves a particular view of
programming that has its own terminology. Let’s explore that
terminology with nonprogramming examples first. Recall the
definition of object from Chapter 3 .

Object
A programming entity that contains state (data) and
behavior (methods).

To truly understand this definition, you have to understand the terms
“state” and “behavior.” These are some of the most fundamental
concepts in object-oriented programming.

Let’s consider the class of objects we call radios. A radio can be in
different states. It can be turned on or turned off. It can be tuned to
one of many different stations, and it can be set to one of many
different volumes. Any given radio has to “know” what state it is in,
which means that it has to keep track of this information internally.
We call the collection of such internal values the state of an object.

State
A set of values (internal data) stored in an object.

What are the behaviors of a radio? The most obvious one is that it
produces sound when it is turned on and the volume is turned up.
But there are actions that you can perform on a radio that manipulate
its internal state. We can turn a radio on or off, and we can change
the station or volume. We can also check what station the radio is
set to right now. We call the collection of these operations the
behavior of an object.

Behavior
A set of actions an object can perform, often reporting
or modifying its internal state.

Objects themselves are not complete programs; they are
components that are given distinct roles and responsibilities. Objects
can be used as part of larger programs to solve problems. The
pieces of code that create and use objects are known as clients.

Client (or Client Code)
Code that interacts with a class or objects of that class.

Client programs interact with objects by sending messages to them
and asking them to perform behaviors. A major benefit of objects is
that they provide reusable pieces of code that can be used in many
client programs. You’ve already used several interesting objects,
such as those of type String , Scanner , Random , and File . In other
words, you and your programs have been clients of these objects.
Java’s class libraries contain thousands of existing classes of
objects.

As you write larger programs, however, you’ll find that Java doesn’t
always have a pre-existing object for the problem you’re solving. For
example, if you were creating a calendar application, you might want
to use objects to represent dates, contacts, and appointments. If you
were creating a three-dimensional graphical simulation, you might
want objects to represent three-dimensional points, vectors, and
matrices. If you were writing a financial program, you might want
classes to represent your various assets, transactions, and
expenses. In this chapter you’ll learn how to create your own classes
of objects that can be used by client programs like these.

Our definition of object-oriented programming is somewhat
simplified. A full exploration of this programming paradigm includes
other advanced concepts called polymorphism and inheritance that
will be discussed in the next chapter.

Classes and Objects

In the previous chapters, we’ve considered the words “class” and
“program” to be roughly synonymous. We wrote programs by
creating new classes and placing static main methods into them.

But classes have another use in Java: to serve as blueprints for new
types of objects. To create a new type of object in Java, we must
create a class and add code to it that specifies the following
elements:

The state stored in each object
The behavior each object can perform
How to construct objects of that type

Once we have written the appropriate code, we can use the class to
create objects of its type. We can then use those objects in our client
programs. We say that the created objects are instances of the class
because one class can be used to construct many objects. This is
similar to the way that a blueprint works: One blueprint can be used
to create many similar houses, each of which is an instance of the
original blueprint.

DID YOU KNOW?

Operating Systems History and

Objects

In 1983 the IBM PC and its “clones” dominated the PC
market, and most people ran an operating system called
DOS. DOS uses what we call a “command-line interface,” in
which the user types commands at a prompt. The console
window is a similar interface. To delete a file in DOS, for
example, you would give the command “del” (short for
“delete”) followed by the file name:

del data.txt

This interface can be described in simple terms as “verb
noun.” In fact, if you look at a DOS manual, you will find that it
is full of verbs. This structure closely parallels the procedural
approach to programming. When we want to accomplish
some task, we issue a command (the verb) and then mention
the object of the action (the noun, the thing we want to affect).

In 1984, Apple Computer released a new computer called a
Macintosh that used what we call a graphical user interface,
or GUI. The GUI interface uses a graphical “desktop”
metaphor that has become so well known that people now
tend to forget it is a metaphor. Later, Microsoft brought this
functionality to IBM PCs with its Windows operating system.

To delete a file on a Macintosh or on a Windows machine,
you locate the icon for the file and click on it. Then you have
several options. You can drag it to the trash/recycling bin, or
you can select a “delete” command from the menu. Either
way, you start with the object you want to delete and then
give the command you want to perform. This is a reversal of
the fundamental paradigm: With a GUI it’s “noun verb.” This
different method of interaction is the core of object-oriented
programming.

Most modern programs use GUIs because we have learned
that people find it more natural to work this way. We are used
to pointing at things, picking up things, grabbing things.
Starting with the object is very natural for us. This approach
has also proved to be a helpful way to structure our
programs, enabling us to divide our programs into different
objects that each can do a certain task, rather than dividing
up the central task into subtasks.

Point Objects

To learn about objects we will first examine an existing Java class,
and then we will implement our own version of that class from
scratch. The java.awt package has a class named Point . A Point
object stores the coordinates of a position in two-dimensional
space. These coordinates are expressed as integers, although there
are also variations for storing points using floating-point numbers.
Point objects are useful for applications that store many two-
dimensional locations, such as maps of cities, graphical animations,
and games.

Like most objects, Point objects have to be explicitly constructed by
calling a constructor. To construct a specific Point object, you have
to pass the values you want for x and y :

Point p = new Point(3, 8);

After the program executes the previous line of code, you have the
following situation:

(x, y)

Once you have constructed a Point object, what can you do with it?
One of the most common things you do with an object is print it to
the console. A Point object, like many Java objects, can be printed
with the println statement.

System.out.println(p);

The println statement produces the following output. The format is
a little ugly, but it lets you see the x and y values inside a given
Point .

java.awt.Point[x=3,y=8]

Point objects also have a method called translate that can be used
to shift the coordinates by a specific delta-x and delta-y, which are
passed as parameters. When you translate a Point , you shift its
location by the specified amount. For example, you might say:

p.translate(–1, –2); // subtract 1 from x, subtract 2 from y

Given that the Point started out with coordinates (3, 8), this
translation would leave the Point with coordinates (2, 6). Thus, after
this line of code is executed, you’d end up with the following
situation:

One of the other things you can do with a Point object is to refer to
its x and y values using the dot notation:

int sum = p.x + p.y;

System.out.println("Sum of coordinates = " + sum);

You can even change these internal values directly:

p.x = 12;

p.y = 15;

Table 8.1 includes some useful methods of each Point object.

Table 8.1 Useful Methods of Point Objects

Here is a complete program that constructs a Point object and
translates its coordinates, using println statements to examine the
coordinates before and after the call:

 1 // A client program that uses Point objects.

 2 import java.awt.*;

 3

 4 public class PointExample1 {

 5 public static void main(String[] args) {

 6 Point p = new Point(3, 8);

 7 System.out.println("initially p = " + p);

 8 p.translate(–1, –2);

 9 System.out.println("after translating p = " + p);

10 }

11 }

This code produces the following output:

initially p = java.awt.Point[x=3,y=8]

after translating p = java.awt.Point[x=2,y=6]

8.2 Object State and Behavior

In the next few sections, we’ll explore the structure of classes by
writing a new class incrementally. We’ll write our own version of the
Point class that was just described.

Here are the main components of a class that we’ll see in the
sections that follow:

Fields (the data stored in each object)
Methods (the behavior each object can execute)
Constructors (code that initializes an object as it is being
constructed with the new keyword)
Encapsulation (protects an object’s data from outside access)

We’ll focus on these concepts by creating several major versions of
the Point class. The first version will give us Point objects that

contain only data. The second version will add behavior to the
objects. The third version will allow us to construct Points at any
initial position. The finished code will encapsulate each Point
object’s internal data to protect it from unwanted outside access. The
early versions of the class will be incomplete and will be used to
illustrate each feature of a class in isolation. Only the finished
version of the Point class will be written in proper object-oriented
style.

Object State: Fields

The first version of our Point class will contain state only. To specify
each object’s state, we declare special variables inside the class
called fields. There are many synonyms for “field” that come from
other programming languages and environments, such as “instance
variable,” “data member,” and “attribute.”

Field
A variable inside an object that makes up part of its
internal state.

The syntax for declaring a field is the same as the syntax for
declaring normal variables: a type followed by a name and a
semicolon. But unlike normal variables, fields are declared directly
inside the { and } braces of your class. When we declare a field,
we’re saying that we want every object of this class to have that
variable inside it.

In previous chapters we’ve seen that every class should be placed
into its own file. The following code, written in the file Point.java ,
defines the first version of our Point class:

1 // A Point object represents a pair of (x, y) coordinates.

2 // First version: state only.

3

4 public class Point {

5 int x;

6 int y;

7 }

This code specifies that each Point object will contain two fields (an
integer called x and an integer called y). It may look as though the
code declares a pair of int variables, x and y . But actually it
indicates that each Point object will contain two int variables inside
it, called x and y . If we create 100 Point objects, we’ll have 100
pairs of x and y fields, one in each instance of the class.

The Point class isn’t itself an executable Java program; it simply
defines a new class of objects for client programs to use. The client
code that uses Point will be a separate class that we will store in a
separate file. Client programs can create Point objects using the
new keyword and empty parentheses:

Point origin = new Point();

When a Point object is constructed, its fields are given default initial
values of 0 , so a new Point object always begins at the origin of (0,
0) unless you change its x or y value. This is another example of
auto-initialization, similar to the way that array elements are
automatically given default values.

The following lines of code form the first version of a client program
that uses our Point class (the code is saved in a file called
PointMain.java , which should be in the same folder or project as
Point.java in order for the program to compile successfully):

 1 // A program that deals with points.

 2 // First version, to accompany Point class with state only.

 3

 4 public class PointMain {

 5 public static void main(String[] args) {

 6 // create two Point objects

 7 Point p1 = new Point();

 8 p1.x = 7;

 9 p1.y = 2;

10

11 Point p2 = new Point();

12 p2.x = 4;

13 p2.y = 3;

14

15 // print each point and its distance from the origin

16 System.out.println("p1 is (" + p1.x + ", " + p1.y +

")");

17 double dist1 = Math.sqrt(p1.x * p1.x + p1.y * p1.y);

18 System.out.println("distance from origin = " +

dist1);

19

20 System.out.println("p2 is (" + p2.x + ", " + p2.y +

")");

21 double dist2 = Math.sqrt(p2.x * p2.x + p2.y * p2.y);

22 System.out.println("distance from origin = " +

dist2);

23 System.out.println();

24

25 // translate each point to a new location

26 p1.x += 11;

27 p1.y += 6;

28 p2.x += 1;

29 p2.y += 7;

30

31 // print the points again

32 System.out.println("p1 is (" + p1.x + ", " + p1.y +

")");

33 System.out.println("p2 is (" + p2.x + ", " + p2.y +

")");

34 }

35 }

The code produces the following output:

p1 is (7, 2)

distance from origin = 7.280109889280518

p2 is (4, 3)

distance from origin = 5.0

p1 is (18, 8)

p2 is (5, 10)

The client program has some redundancy that we’ll eliminate as we
improve our Point class in the sections that follow.

Our initial Point class essentially serves as a way to group two int
values into one object. This technique is somewhat useful for the
client program, but the client could have been written using primitive
ints instead. Using Point objects is not yet substantially better than

using primitive int values, because our Point objects do not yet
have any behavior. An object that contains state, but no behavior, is
sometimes called a record or struct. In the sections that follow, we’ll
grow our Point class from a minimal implementation into a proper
Java class.

Object Behavior: Methods

The second version of our Point class will contain both state and
behavior. Behavior of objects is specified by writing instance
methods. The instance methods of an object describe the messages
to which that object can respond.

Instance Method
A method inside an object that operates on that object.

The objects introduced in previous chapters all contained instance
methods that represented their behavior. For example, a String
object has a length method and a Scanner object has a nextInt
method. We think of these methods as being stored inside the
object. As you recall, they use different call syntax than static

methods: You write the object’s name, then a dot, and then the
method’s name and parameters. Each object’s methods are able to
interact with the data stored inside that object.

The preceding client program translates the position of two Point
objects. It does this by manually adjusting their x and y values:

p1.x += 11; // client code translating a Point

p1.y += 6;

Since translating points is a common operation, we should represent
it as a method. One option would be to write a static translate
method in the client code that accepts a Point , a delta- x , and a
delta- y as parameters. Its code would look like the following:

// a static method to translate a Point;

// not a good choice in this case

public static void translate(Point p, int dx, int dy) {

 p.x += dx;

 p.y += dy;

}

A call to the static method would look like the following line of code:

translate(p1, 11, 6); // calling a translate static method

However, a static method isn’t the best way to implement the
behavior. The Point class is supposed to be reusable so that many
client programs can use it. If the translate method is placed into our
PointMain client, other clients won’t be able to use it without copying
and pasting its code redundantly. Also, one of the biggest benefits of
programming with objects is that we can put related data and
behavior together. The ability of a Point to translate data is closely
related to that Point object’s data, so it is better to specify
that each Point object will know how to translate itself. We’ll do this
by writing an instance method in the Point class.

We know from experience with objects that you can call an instance
method called translate using “dot notation”:

p1.translate(11, 6); // calling a translate instance method

Notice that the instance method needs just two parameters: dx and
dy . The client doesn’t pass the Point as a parameter, because the
call begins by indicating which Point object it wants to translate (p1).
In our example, the client is sending a translate message to the
object to which p1 refers .

(x, y)

Instance method headers do not have the static keyword found in
static method headers, but they still include the public keyword, the
method’s return type, its name, and any parameters that the method
accepts. Here’s the start of a Point class with a translate method,
with the header declared but the body blank:

public class Point {

 int x;

 int y;

 public void translate(int dx, int dy) {

 ...

 }

}

When we declare a translate method in the Point class, we are
saying that each Point object has its own copy of that method. Each
Point object also has its own x and y values. A Point object would
look like the following:

Whenever an instance method is called, it is called on a particular
object. So, when we’re writing the body of the translate method,
we’ll think of that code from the perspective of the particular Point
object that receives the message: “The client has given me a dx and
dy and wants me to change my x and y values by those amounts.”
Essentially, we need to write code to match the following
pseudocode:

public void translate(int dx, int dy) {

 add dx to this Point object’s x value.

 add dy to this Point object’s y value.

}

It’s helpful to know that an object’s instance methods can refer to its
fields. In previous chapters we’ve talked about scope, the range in
which a variable can be seen and used. The scope of a variable is
the set of braces in which it is declared. The same rule applies to
fields: Since they are declared directly inside a class, their scope is
the entire class.

This rule means that the translate method can directly refer to the
fields x and y . For example, the statement x += 3 ; would increase
the Point object’s x value by 3 .

Here is a working translate method that adjusts the Point object’s
location:

public void translate(int dx, int dy) {

 x += dx;

 y += dy;

}

The translate method can refer to x and y directly without being
more specific about which object it is affecting. It’s as though you
were riding inside a car and wanted the driver to turn left; you’d
simply say, “Turn left.” Though there are millions of cars in the world,
you wouldn’t feel a need to specify which car you meant. It is implied
that you mean the car you’re currently occupying. Similarly, in
instance methods we don’t need to specify which object’s x or y
we’re using, because it is implied that we want to use the fields of
the object that receives the message.

Here’s the complete Point class that contains the translate method.
The Java style guidelines suggest declaring fields at the top of the
class, with methods below, but in general it is legal for a class’s
contents to appear in any order.

public class Point {

 int x;

 int y;

 // shifts this point’s location by the given amount

 public void translate(int dx, int dy) {

 x += dx;

 y += dy;

 }

}

Here is the general syntax for instance methods:

public <type> <name>(<type> <name>, ..., <type> <name>) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

Methods like translate are useful because they give our objects
useful behavior that lets us write more expressive and concise client
programs. Having the client code manually adjust the x and y
values of Point objects to move them is tedious, especially in larger
client programs that translate many times. By adding the translate
method, we have provided a clean way to adjust the location of a
Point object in a single statement.

The Implicit Parameter

The code for an instance method has an implied knowledge of the
object on which it operates. This object is called the implicit
parameter.

Implicit Parameter
The object that is referenced during an instance
method call.

Let’s walk through an example to demonstrate exactly how instance
methods use the implicit parameter. The following client code
constructs two Point objects and sets initial locations for them:

// construct two Point objects

Point p1 = new Point();

p1.x = 7;

p1.y = 2;

Point p2 = new Point();

p2.x = 4;

p2.y = 3;

After the preceding code has executed, the variables and objects in
memory would appear as follows (remember that each object has its
own copy of the translate method):

Now we’ll call the translate method on each object. First, p1 is
translated. During this call, p1 ’s translate method is passed the
parameters 11 and 6 . The implicit parameter here is p1 ’s object, so
the statements x += dx ; and y += dy ; affect p1.x and p1.y :

During the second method call p2 ’s translate method is executed,
so the lines in the body of the translate method change p2.x and
p2.y :

Mutators and Accessors

The translate method is an example of a mutator.

Mutator
An instance method that modifies the object’s internal
state.

Generally, a mutator assigns a new value to one of the object’s
fields. Going back to the radio example, the mutators would be the
switches and knobs that turn the radio on and off or change the
station or volume.

It is a common convention for a mutator method’s name to begin
with “set,” as in setID or setTitle . Usually, a mutator method has a
void return type. Mutators often accept parameters that specify the
new state of the object or the amount by which to modify the object’s
current state.

Accessors form a second important category of instance methods.

Accessor
An instance method that provides information about
the state of an object without modifying it.

Generally, an accessor returns the value of one of the object’s fields.
Using our radio analogy, an accessor might return the current station
or volume. Examples of accessor methods you have seen in
previous chapters include the length and substring methods of
String objects and the exists method of File objects.

Our client program computes the distance of two Points from the
origin, (0, 0). Since this is a common operation related to the data in
a Point , let’s give each Point object an accessor called
distanceFromOrigin that computes and returns that Point object’s
distance from the origin. The method accepts no parameters and
returns the distance as a double .

The distance from the origin is computed using the Pythagorean
Theorem, taking the square root of the sum of the squares of the x
and y values. As we did when we used the translate method, we’ll
refer to the Point object’s x and y fields directly in our computation:

// returns the distance between this point and (0, 0)

public double distanceFromOrigin() {

 return Math.sqrt(x * x + y * y);

}

Note that the distanceFromOrigin method doesn’t change the Point
object’s x or y value. Accessors are not used to change the state of
the object—they only report information about the object. You can
think of accessors as read-only operations while mutators are
read/write operations.

A typical accessor will have no parameters and will not have a void
return type, because it must return a piece of information. An
accessor returns a value that is part of the state of the object or is

derived from it. The names of many accessors begin with “get” or
“is,” as in getBalance or isEmpty .

Here’s the complete second version of our Point class that now
contains both state and behavior:

 1 // A Point object represents a pair of (x, y) coordinates.

 2 // Second version: state and behavior.

 3

 4 public class Point {

 5 int x;

 6 int y;

 7

 8 // returns the distance between this point and (0, 0)

 9 public double distanceFromOrigin() {

10 return Math.sqrt(x * x + y * y);

11 }

12

13 // shifts this point’s location by the given amount

14 public void translate(int dx, int dy) {

15 x += dx;

16 y += dy;

17 }

18 }

The client program can now use the new behavior of the Point
class. The program produces the same output as before, but it is

shorter and more readable than the original. The following lines
show examples of the changes made to PointMain :

System.out.println("distance from origin = " +

p1.distanceFromOrigin());

...

p1.translate(11, 6);

The toString Method

The designers of Java felt that it was important for all types of values
to work well with Strings. You’ve seen that you can concatenate
Strings with any other type of value, such as primitive ints or other
objects.

Consider the following JShell interaction that creates some variables
of different types and then prints them to the console. In this case
JShell is acting as a client that uses the Point class we have written
in this chapter. To be able to access the Point class we must use the
/open command, which reads code from a file into JShell.

jshell> /open Point.java

jshell> int i = 42;

i ==> 42

jshell> String s = "hello";

s ==> "hello"

jshell> Point p = new Point();

p ==> Point@6a41eaa2

jshell> System.out.println("i is " + i);

i is 42

jshell> System.out.println("s is " + s);

s is hello

jshell> System.out.println("p is " + p);

p is Point@6a41eaa2

Notice that printing p generated a strange result. We’d rather have it
print the object’s state of (0, 0), but Java doesn’t know how to do so
unless we write a special method in our Point class.

When a Java program is printing an object or concatenating it with a
String , the program calls a special method called toString on the
object to convert it into a String . The toString method is an
instance method that returns a String representation of the object. A
toString method accepts no parameters and has a String return
type:

public String toString() {

 <code to produce and return the desired string>;

}

If you don’t write a toString method in your class, your class will use
a default version that returns the class name followed by an @ sign
and some letters and numbers related to the object’s address in
memory. If you define your own toString method, it replaces this
default version.

The following code, added to the Point class in Point.java ,
implements a toString method for our Point objects and returns a
String such as "(0, 0) ":

// returns a String representation of this point

public String toString() {

 return "(" + x + ", " + y + ")";

}

Now that our class has this method, client code such as the
preceding JShell interaction would produce the following output.

i is 42

s is hello

p is (0, 0)

Note that the client code didn’t explicitly call the toString method;
the compiler did it automatically because the Point object was being
concatenated with a String . The toString method is also implicitly
called when printing an object by itself, as in the following code:

System.out.println(p);

In order for this implicit calling behavior to work properly, your
toString method’s signature must exactly match the one shown in
this section. Changing the name or signature even slightly (for
example, naming the method ToString with a capital T, or
convertToString) will cause the class to produce the old output (e.g.,
" Point@119c082 "). The reason has to do with concepts called
inheritance and overriding that we will explore in the next chapter.

It is also legal to call toString explicitly if you prefer. The following
client code uses an explicit toString call and produces the same
output as the original client code:

System.out.println("p is " + p.toString());

The Java guidelines recommend writing a toString method in every
class you write.

COMMON PROGRAMMING ERROR

println Statement in toString

Method

Since the toString method is closely related to printing, some
students mistakenly think that they should place println
statements in their toString methods, as in the following
method:

// this toString method is flawed;

// it should return the String rather than printing it

public String toString() {

 System.out.println("(" + x + ", " + y + ")");

 return "";

}

A key idea to understand about toString is that it doesn’t
directly print anything: It simply returns a String that the client
can use in a println statement.

In fact, many well-formed classes of objects do not contain
any println statements at all. The inclusion of println
statements in a class binds that class to a particular style of
output. For example, the preceding code prints a Point object
on its own line, making the class unsuitable for a client that
doesn’t want the output to appear exactly this way (say, a
client that wants to print many Point objects on the same
line).

You may wonder why the designers of Java chose to use a
toString method rather than, say, a print method that would
output the object to the console. The reason is that toString
is more versatile. You can use toString to output the object to
a file, display it on a graphical user interface, or even send
the text over a network.

8.3 Object Initialization:
Constructors

Our third version of the Point class will include the ability to create
Point objects at any initial location. The initial state of objects is
specified by writing constructors, which were introduced in Chapter
3 . Recall that a constructor is a piece of code that initializes the
state of new objects as they are created.

A clumsy aspect of our existing client code is that it takes three lines
to create and initialize the state of one Point object:

// client needs 3 statements to initialize one Point object

Point p1 = new Point();

p1.x = 7;

p1.y = 2;

In general, when we have constructed objects, we have been able to
declare and initialize them in a single statement. We might expect
that we could initialize a Point by writing its initial values in
parentheses as we constructed it:

Point p1 = new Point(7, 2); // desired behavior

However, such a statement wouldn’t be legal for our Point class,
because we haven’t written any code specifying how to create a
Point with an initial location. We can specify how to do this
by writing a constructor in our Point class. The constructor executes
when the client uses the new keyword to create a new object. When
you write a constructor, you specify what parameters must be
passed when clients use the new keyword with your type and how
those parameters should be used to initialize the newly created
object.

A constructor’s header begins with the keyword public , followed by
the class’s name and any parameters. It looks like a method header
with the same name as the class, except that you do not specify a
return type. A constructor often has parameters that specify the
object’s initial state. Our constructor for the Point class will accept
initial x and y values as parameters and store them into the new
Point object’s x and y fields:

(x, y)

(x, y)

// constructs a new point with the given (x, y) location

public Point(int initialX, int initialY) {

 x = initialX;

 y = initialY;

}

Like instance methods, constructors execute on a particular object
(the one that’s being created with the new keyword) and can refer to
that object’s fields and methods directly. In this case, we store
initialX and initialY parameter values into the new Point object’s
x and y fields:

Now that we are exploring constructors, it makes sense to think
about the process of creating objects in more detail. When an
executing Java program reaches a statement that creates a new
Point object, several operations occur:

1. A new Point object is created and allocated in memory.
2. The Point constructor is called on the newly created object,

passing 7 and 2 as the initialX and initialY parameter
values.

3. A Point reference variable named p1 is created and set to
refer to the newly created object.

Here is the complete code for the third version of our Point class,
which now contains a constructor:

 1 // A Point object represents a pair of (x, y) coordinates.

 2 // Third version: state and behavior with constructor.

 3

 4 public class Point {

 5 int x;

 6 int y;

 7

 8 // constructs a new point with the given (x, y) location

 9 public Point(int initialX, int initialY) {

10 x = initialX;

11 y = initialY;

12 }

13

14 // returns the distance between this point and (0, 0)

15 public double distanceFromOrigin() {

16 return Math.sqrt(x * x + y * y);

17 }

18

19 // returns a String representation of this Point

20 public String toString() {

21 return "(" + x + ", " + y + ")";

22 }

23

24 // shifts this point's location by the given amount

25 public void translate(int dx, int dy) {

26 x += dx;

27 y += dy;

28 }

29 }

Calling a constructor with parameters is similar to ordering a car from
a factory: “I’d like the yellow one with power windows and leather
seats.” You might not need to specify every detail about the car, such
as the fact that it should have four wheels and headlights, but you do
specify some initial attributes that are important to you.

The general syntax for constructors is the following:

public <class name>(<type> <name>, ..., <type> <name>) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

When a class doesn’t have a constructor, as in our previous versions
of the Point class, Java automatically supplies a default constructor

with no parameters. That is why it was previously legal to construct a
new Point() . The default constructor auto-initializes all fields to zero-
equivalent values. However, Java doesn’t supply the default empty
constructor when we supply a constructor of our own, so it is illegal
to construct Point objects without passing in the initial x and y
parameters:

Point p1 = new Point(); // will not compile for this version

In the next sections, we’ll write additional code to restore this ability.

COMMON PROGRAMMING ERROR

Using void with a Constructor

Many new programmers accidentally include the keyword
void in the header of a constructor, since they’ve gotten used
to writing a return type for every method:

// this code has a bug

public void Point(int initialX, int initialY) {

 x = initialX;

 y = initialY;

}

This is actually a very tricky and annoying bug. Constructors
aren’t supposed to have return types. When you write a return
type such as void , what you’ve created is not a constructor,
but rather a normal instance method called Point that
accepts x and y parameters and has a void return type. This
error is tough to catch, because the Point.java file still
compiles successfully.

You will see an error when you try to call the constructor that
you thought you just wrote, though, because it isn’t actually a
constructor. The client code that tries to construct the Point
object will indicate that it can’t find an (int, int) constructor
for a Point :

PointMain.java:7: cannot find symbol

symbol: constructor Point(int, int)

location: class Point

 Point p1 = new Point(7, 2);

If you see “cannot find symbol” constructor errors and you
were positive that you wrote a constructor, double-check its
header to make sure there’s no return type.

COMMON PROGRAMMING ERROR

Redeclaring Fields in a Constructor

Another common bug associated with constructors occurs
when you mistakenly redeclare fields by writing their types.
Here’s an example that shows this mistake:

// this constructor code has a bug

public Point(int initialX, int initialY) {

 int x = initialX;

 int y = initialY;

}

The preceding code behaves in an odd way. It compiles
successfully, but when the client code constructs a Point

object its initial coordinates are always (0, 0), regardless of
the parameter values that are passed to the constructor:

// this client code will print that p1 is (0, 0)

Point p1 = new Point(7, 2);

System.out.println("p1 is " + p1);

The problem is that rather than storing initialX and initialY
in the Point object’s x and y fields, we’ve actually declared
local variables called x and y inside the Point constructor.
We store initialX and initialY in those local variables,
which are thrown away when the constructor finishes running.
No values are ever assigned to the x and y fields in the
constructor, so they are automatically initialized to 0 . We say
that these local x and y variables shadow our x and y fields
because they obscure the fields we intended to set.

If you observe that your constructor doesn’t seem to be
setting your object’s fields, check closely to make sure that
you didn’t accidentally declare local variables that shadow
your fields. The key thing is not to include a type at the front
of the statement when you assign a value to a field.

The Keyword this

When we discussed instance methods we mentioned that an object’s
instance methods can refer to its other methods and fields, because
the instance method code knows which object it’s operating on. We
called this idea the “implicit parameter.” Now we will explore the
mechanics behind the implicit parameter and introduce a keyword
that allows us to refer to it directly.

The implicit parameter is actually a special reference that is set each
time an instance method is called. You can access this reference in
your code using the keyword this .

this
A Java keyword that allows you to refer to the implicit
parameter inside a class.

When you refer to a field such as x in your code, you are actually
using shorthand. The compiler converts an expression such as x to
this.x . You can use the longer form in your code if you want to be
more explicit. For example, our translate method could be rewritten
as follows:

public void translate(int dx, int dy) {

 this.x += dx;

 this.y += dy;

}

The code behaves the same way as the original version of the
method. The explicit style is less common, but some programmers
prefer it because it’s clearer. It also more closely matches the style
used in client code, where all messages to objects begin with a
variable name and a dot.

The general syntax for using the keyword this to refer to fields is

this.<field name>

Similarly, when you call an instance method such as translate ,
you’re actually using shorthand for a call of this.translate . You can
use the longer form if you prefer. It has the following general syntax:

this.<method name>(<expression>, <expression>, ...,

<expression>);

When the implicit parameter was introduced, we diagrammed the
behavior of some method calls on two Point objects. Let’s revisit the

same example using the keyword this . Consider the following two
Point objects:

Point p1 = new Point(7, 2);

Point p2 = new Point(4, 3);

After constructing the Point objects, we make the following method
calls:

p1.translate(11, 6);

p2.translate(1, 7);

Essentially, the behavior of these two method calls is the following:

Set this to refer to the same object as p1 , and execute the
translate method with parameters (11, 6) .
Set this to refer to the same object as p2 , and execute the
translate method with parameters (1, 7) .

During the first call, this refers to the same object as p1 . Therefore,
the method call adjusts the (x, y) coordinates of p1 ’s object:

During the second method call this refers to the same object as p2 ,
so the lines in the body of the translate method change the x and y
fields of p2 ’s object:

One common usage of the keyword this is to deal with shadowed
variables. As described earlier, shadowing occurs when a field is
obscured by another variable with the same name. Shadowing can
happen when a field has the same name as a parameter or local
variable in a class. For example, the following is a legal header for
our Point method, even though our fields are also called x and y :

public Point(int x, int y) {

As explained at the beginning of this section, Java would normally
interpret the expression x to mean this.x . However, if a parameter
or local variable called x exists, the program will use that one
instead if you just write x, because the field x is shadowed by the
parameter/variable. If you write this.x , though, the program will
always use the field x .

public Point(int x, int y) {

 this.x = x;

 this.y = y;

}

Of course, you can avoid this situation by naming parameters and
local variables differently from fields. However, some programmers
prefer the style in which a variable takes the same name as a closely
related field, because it saves them from having to concoct separate
parameter names like initialX or newY .

In most cases, the compiler will not allow two variables to have the
same name at the same point in a program. Fields are a special
case that present the risk of shadowing. Java’s designers decided to
allow this risk so that parameter names could match their related
fields.

Multiple Constructors

A class can have multiple constructors to provide multiple ways for
clients to construct objects of that class. Each constructor must have
a different signature (i.e., number and type of parameters).

Our existing Point constructor requires two parameters (the Point
object’s initial - and -coordinates). Before we added the
constructor, we were able to construct Point objects at (0, 0) without
any parameters. When a class does not have a constructor, Java
provides a parameterless default constructor that initializes all of the
new object’s fields to a zero-equivalent value. But when we added
our two-parameter constructor, we lost the default constructor. This
is unfortunate, because the default provided a useful shorter notation
for constructing a Point at the origin. We can restore this ability by
adding a second, parameterless constructor to our Point class. Our
new constructor looks like this:

// constructs a Point object with location (0, 0)

public Point() {

 x = 0;

 y = 0;

}

Now it’s possible to construct Points in two ways:

x y

Point p1 = new Point(5, –2); // (5, –2)

Point p2 = new Point(); // (0, 0)

Returning to the analogy of purchasing cars, you can imagine that
some customers want to specify many details about their new cars
(e.g., “I’d like a yellow Civic with gold trim, upgraded stereo system,
and a sun roof”), while other customers want to specify fewer details
and want the car to contain default options instead. Having multiple
constructors gives clients similar flexibility when they ask for new
objects of your class.

Notice that both constructors perform similar actions; the only
difference is what initial values the x and y fields receive. Another
way of saying this is that the new constructor can be expressed in
terms of the old constructor. The following two lines construct
equivalent objects:

Point p1 = new Point(); // construct Point at (0, 0)

Point p2 = new Point(0, 0); // construct Point at (0, 0)

A common programming practice when writing classes with multiple
constructors is for one constructor to contain the true initialization
code and for all other constructors to call it. This means that every
object created passes through a common code path. This system
can be useful when you are testing and debugging your code later.
The syntax for one constructor to call another is to write the keyword

this , followed by the parameters to pass to the other constructor in
parentheses:

this(<expression>, <expression>, ..., <expression>);

This is really just the normal syntax for a method call, except that we
use the special keyword this where we would normally put the
name of a method. In our case, we want to pass parameter values of
0 and 0 to initialize each field:

// constructs a new point at the origin, (0, 0)

public Point() {

 this(0, 0); // calls Point(int, int) constructor

}

8.4 Encapsulation

Our next version of the Point class will protect its data from
unwanted access using a concept known as encapsulation.

Encapsulation
Hiding the implementation details of an object from the
clients of the object.

To understand the notion of encapsulation, recall the analogy of
radios as objects. Almost everyone knows how to use a radio, but
few people know how to build a radio or understand how the circuitry

inside a radio works. It is a benefit of the radio’s design that we don’t
need to know those details in order to use it.

The radio analogy demonstrates an important dichotomy of external
versus internal views of an object. From the outside, we just see
behavior. From the inside, we see the internal state that is used to
accomplish that behavior (Figure 8.1).

Figure 8.1 The internal and external views of a radio.

Focusing on the radio’s external behavior enables us to use it easily
while ignoring the details of its inner workings that are unimportant to
us. This is an example of an important computer science concept
known as abstraction.

Abstraction
Focusing on essential properties rather than inner
details.

In fact, a radio (like most other electronic devices) has a case or
chassis that houses all of the electronics so that we don’t see them
from the outside. Dials, buttons, and displays on the case allow us to
manipulate the radio without having to deal with all of the circuitry
that makes it work. In fact, you wouldn’t want someone to give you a
fully functional radio that had wires and capacitors hanging out of it,
because they would make the radio less pleasant to use.

In programming, the concept of hiding internal state from outside
view is called encapsulation. When an object is properly
encapsulated, its clients cannot directly access or modify its internal
workings, nor do they need to do so. Only the implementer of the
class needs to know about those details. Encapsulation leads to
abstraction; an encapsulated object presents a more pure
abstraction than one that has data which can be accessed directly.

In previous chapters you have already taken advantage of the
abstraction provided by well-encapsulated objects. For example, you
have used Scanner objects to read data from the console without
knowing exactly how the Scanner stores and tokenizes the input
data, and you have used Random objects to create random numbers
without knowing exactly what algorithm the random number
generator uses.

But so far, our Point class is not encapsulated. We’ve built a working
radio, but its wires (its x and y fields) are still hanging out. Using

encapsulation, we’ll put a casing around our Point objects so that
clients will only need to use the objects’ methods and will not access
the fields directly.

Private Fields

To encapsulate the fields of an object, we declare them to be private
by writing the keyword private at the start of the declaration of each
field. The fields of our Point class would be declared as follows:

// encapsulated fields of Point objects

private int x;

private int y;

We haven’t yet shown a syntax template for fields because we
wanted to show the preferred style with the fields private. The syntax
for declaring encapsulated fields is

private <type> <name>;

Fields can also be declared with an initial value:

private <type> <name> = <value>;

Declaring fields private encapsulates the state of the object, in the
same way that a radio’s casing keeps the user from seeing the wires
and circuitry inside it. Private fields are visible to all of the code
inside the Point class (i.e., inside the Point.java file), but not
anywhere else. This means that we can no longer directly refer to a
Point object’s x or y fields in our client code. The following client
code will not compile successfully:

// this client code doesn’t work with encapsulated points

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

The compiler produces error messages such as the following:

PointMain.java:11: x has private access in Point

PointMain.java:11: y has private access in Point

To preserve the functionality of our client program, we need to
provide a way for client code to access a Point object’s field values.
We will do this by adding some new accessor methods to the Point
class. If the value of an object’s field might be useful externally, it is
common to write an accessor to return that value. Here are the
methods that provide access to a Point object’s x and y fields:

// returns the x-coordinate of this point

public int getX() {

 return x;

}

// returns the y-coordinate of this point

public int getY() {

 return y;

}

The client code to print a Point object’s x and y values must be
changed to the following:

// this code works with our encapsulated Points

System.out.println("p1 is (" + p1.getX() + ", " + p1.getY() +

")");

It probably seems odd to grant access to a Point object’s x and y
fields when we said our goal was to encapsulate those fields, but
having accessors like getX and getY doesn’t actually violate the
encapsulation of the object. The accessor methods just return a copy
of the fields’ values to the client, so that the client can see the x or y
values but doesn’t have any way to change them. In other words,
these accessor methods give the client read-only access to the state
of the object.

One drawback of encapsulating the Point class is that it is no longer
easy for the client code to set a Point to a new location. For
convenience, we’ll add a new mutator to our encapsulated Point
class that sets both the x and y fields of the object to new values
passed as parameters:

// sets this point's (x, y) location to the given values

public void setLocation(int newX, int newY) {

 x = newX;

 y = newY;

}

Another way to set a Point to a new location would be to write
separate methods called setX and setY . We have chosen
setLocation partly for brevity and partly because it matches Java’s
actual Point class.

Notice that the Point class now has some redundancy between its
two-parameter constructor and its setLocation method. The two
bodies are essentially the same, setting the Point to have new -
and -coordinates. We can eliminate this redundancy by having the
constructor call setLocation rather than setting the field values
manually. It is legal for an object to call its own instance methods
from a constructor or another instance method:

x

y

// constructs a new point with the given (x, y) location

public Point(int x, int y) {

 setLocation(x, y);

}

We can eliminate a bit more redundancy using this technique.
Translating a Point can be thought of as setting its location to the
old location plus the dx and dy , so we can modify the translate
method to call the setLocation method:

// shifts this point's location by the given amount

public void translate(int dx, int dy) {

 setLocation(x + dx, y + dy);

}

DID YOU KNOW?

The Perils of Poor Encapsulation

Many novices (as well as many professional programmers)
do not fully appreciate the concepts of abstraction and
encapsulation. It is tempting to write classes that directly
expose their data for clients to use, since private fields
introduce some complexity and restrictions into a program.

However, there have been some famous examples where a
lack of proper encapsulation and abstraction caused a large
problem.

One such example is the “Y2K” (year 2000) or “millennium
bug” scare of late 1999. The issue arose because a large
number of computer programs represented years by using
only two digits, such as 72 for 1972. They followed this
convention largely to save memory, since many of them were
older programs written in a language called COBOL during a
time when memory was more scarce. Once the year became
2000, the programs would incorrectly think that the year was
1900, and this might cause them to fail.

Making matters worse was the fact that many of these
programs contained their own handwritten logic for
representing dates, which sometimes appeared in many
places in the code. In order for the program to represent a
year with more than two digits, many places in the code
needed to be changed. In total, over $300 billion was spent
on repairing old programs and systems to correct the Y2K
problem.

If the old programs had used an encapsulated Date class that
included a field representing the year, far less work would
have been needed to fix the Y2K bug. This Date class could
have been updated once and all the client code would have
received the benefits.

Surprisingly, Java’s class libraries also contain examples of
poorly encapsulated classes. In the java.awt package, for
example, the Point and Dimension classes have public fields.
(A Dimension object stores width and height fields to
represent the size of an onscreen region.) Many client
programs access the fields directly when they use these
objects. Java’s developers regret this decision:

Several classes in the Java platform libraries violate the advice that public

classes should not expose fields directly. Prominent examples include the

Point and Dimension classes in the java.awt package. Rather than

examples to be emulated, these classes should be regarded as cautionary

tales. [. . .] The decision to expose the internals of the Dimension class

resulted in a serious performance problem that could not be solved without

affecting clients.

—Joshua Bloch, Effective Java

Now that we’ve introduced all the major elements of a well-
encapsulated class, it’s time to look at a proper syntax template for
an entire class. The Java style guidelines suggest putting fields at
the top of the class, followed by constructors, followed by methods:

public class <class name> {

 // fields

 private <type> <name>;

 private <type> <name>;

 ...

 // constructors

 public <class name>(<type> <name>, ..., <type> <name>) {

 <statement>;

 <statement>;

 ...

 <statement>;

 }

 ...

 // methods

 public <type> <name>(<type> <name>, ..., <type> <name>) {

 <statement>;

 <statement>;

 ...

 <statement>;

 }

 ...

}

Here is the fourth complete version of our Point class, including
encapsulated fields and accessor methods getX and getY :

 1 // A Point object represents a pair of (x, y) coordinates.

 2 // Fourth version: encapsulated.

 3

 4 public class Point {

 5 private int x;

 6 private int y;

 7

 8 // constructs a new point at the origin, (0, 0)

 9 public Point() {

10 this(0, 0); // calls Point(int, int) constructor

11 }

12

13 // constructs a new point with the given (x, y) location

14 public Point(int x, int y) {

15 setLocation(x, y);

16 }

17

18 // returns the distance between this Point and (0, 0)

19 public double distanceFromOrigin() {

20 return Math.sqrt(x * x + y * y);

21 }

22

23 // returns the x-coordinate of this point

24 public int getX() {

25 return x;

26 }

27

28 // returns the y-coordinate of this point

29 public int getY() {

30 return y;

31 }

32

33 // sets this point's (x, y) location to the given values

34 public void setLocation(int x, int y) {

35 this.x = x;

36 this.y = y;

37 }

38

39 // returns a String representation of this point

40 public String toString() {

41 return "(" + x + ", " + y + ")";

42 }

43

44 // shifts this point's location by the given amount

45 public void translate(int dx, int dy) {

46 setLocation(x + dx, y + dy);

47 }

48 }

Here’s the corresponding final version of our client program, which
now uses the Point constructors and methods appropriately:

 1 // A program that deals with points.

 2 // Fourth version, to accompany encapsulated Point class.

 3

 4 public class PointMain {

 5 public static void main(String[] args) {

 6 // create two Point objects

 7 Point p1 = new Point(7, 2);

 8 Point p2 = new Point(4, 3);

 9

10 // print each point and its distance from the origin

11 System.out.println("p1 is " + p1);

12 System.out.println("distance from origin = " +

13 p1.distanceFromOrigin());

14 System.out.println("p2 is " + p2);

15 System.out.println("distance from origin = " +

16 p2.distanceFromOrigin());

17

18 // translate each point to a new location

19 p1.translate(11, 6);

20 p2.translate(1, 7);

21

22 // print the points again

23 System.out.println("p1 is " + p1);

24 System.out.println("p2 is " + p2);

25 }

26 }

Class Invariants

In this section we will develop another new class to illustrate a
particular benefit of encapsulation. Consider a program that
measures or deals with elapsed intervals of time, such as a program
for a stopwatch, a scheduler, a TV recorder, or an airline flight

system. A useful abstraction in such a program would be an object
representing an elapsed span of time.

Let’s write a class called TimeSpan , in which each TimeSpan object
represents an interval of elapsed hours and minutes. For example,
we could construct a TimeSpan representing an interval of 6 hours
and 15 minutes. We’ll represent only hours and minutes, ignoring
larger or smaller units such as days or seconds.

Since we’re representing intervals of hours and minutes, it seems
natural to use these two quantities as fields in our class. We will
encapsulate the class properly from the start by declaring the fields
as private :

// represents a time span of elapsed hours and minutes

public class TimeSpan {

 private int hours;

 private int minutes;

 ...

}

The constructor for a TimeSpan object will accept hours and minutes
as parameters and store the values into the object’s fields. However,
there is a potential problem: What should we do about values of
minutes that are 60 or greater? Should the client program be allowed
to construct a TimeSpan object representing 0 hours and 157

minutes? A more natural representation of this amount would be 2
hours and 37 minutes. And what about values for hours or minutes
that are negative? It doesn’t make sense to have a span of
hours or minutes. Ideally we should not allow a TimeSpan object
to store such a value.

Let’s make a design decision that we will allow TimeSpan objects to
store a value for minutes that is between 0 and 59 inclusive. If the
client tries to construct a TimeSpan object with a negative number of
hours or minutes, we could resolve the problem by printing an error
message or by setting the fields to 0. But in cases like this, the
negative value often comes from a bug or a mistake in the client’s
understanding of our class. The best way to handle a violation like
this is to throw an exception so that the client will know the
parameter values passed were illegal.

If the user tries to construct a TimeSpan object with more than 60
minutes, we will convert the excess minutes into hours. You might be
tempted to use an if/else statement or a loop to handle minutes
above 60, but there is a simpler solution. For a large number of
minutes such as 157, dividing by 60 will produce the hours (2) and
using the % operator by 60 will produce the remaining minutes (37).
The hours field should really store the hours parameter plus the
minutes parameter divided by 60, and the minutes field should store
the remaining minutes:

−2
−35

public TimeSpan(int hours, int minutes) {

 if (hours < 0 || minutes < 0) {

 throw new IllegalArgumentException();

 }

 this.hours = hours + minutes / 60;

 this.minutes = minutes % 60;

}

A useful behavior of a TimeSpan object would be the ability to add
more hours and minutes to the span. An airline scheduling program
might use this behavior to add the elapsed times for two back-to-
back flights to determine the total travel time for a passenger’s trip.
Let’s implement this behavior as a method called add that accepts
hours and minutes as parameters. Here’s an initial incorrect version
of that method:

// an incorrect version of an add method

public void add(int hours, int minutes) {

 this.hours += hours;

 this.minutes += minutes;

}

The problem with the preceding code is that it allows the client to put
the object into an invalid state. If the client passes a value of minutes

that is large enough to make the total minutes greater than 60, the
minutes field will have an invalid value. For example, if the client
adds 45 minutes to a time span of 1 hour and 30 minutes, the result
will be 1 hour and 75 minutes.

We decided that we wanted every TimeSpan object to store only valid
numbers of minutes between 0 and 59. We wrote code in our
constructor to ensure that this would be true of each object’s initial
state, but really we want to ensure that the condition is true for every
object throughout its entire lifespan, not just when it is initially
created. Such a property that is true of every object of a class is
called a class invariant.

Class Invariant
An assertion about an object’s state that is true for the
lifetime of that object.

Class invariants are related to preconditions, postconditions, and
assertions, as presented in Chapters 4 and 5 . We cannot allow
any mutator method such as add to break the invariants we have
decided upon; a class invariant should be treated as an implicit
postcondition of every method in the class. Enforcing an invariant

may cause you to add preconditions to the constructors and mutator
methods of your class.

We can write code at the end of the add method to deal with invalid
numbers of minutes and hours. First we want the program to throw
an exception if the hours or minutes that are passed are negative.
We will also make sure that we convert each group of 60 minutes
into an hour. The following code implements the behavior:

public void add(int hours, int minutes) {

 if (hours < 0 || minutes < 0) {

 throw new IllegalArgumentException();

 }

 this.hours += hours;

 this.minutes += minutes;

 // converts each 60 minutes into one hour

 this.hours += this.minutes / 60;

 this.minutes = this.minutes % 60;

}

The code now enforces its invariant in two places: the constructor
and add . It would be preferable to solve this problem in one place
rather than redundantly checking for it throughout the class. A more
elegant solution is to have the constructor initialize the fields to 0

and then call the add method, which performs the necessary
invariant checks and stores the values of hours and minutes :

public TimeSpan(int hours, int minutes) {

 this.hours = 0;

 this.minutes = 0;

 add(hours, minutes);

}

The fields would have been auto-initialized to 0 anyway, but many
programmers prefer to explicitly initialize field values for clarity.

Another useful operation for TimeSpan objects is the ability to print
them on the console. We’ll add this ability by including a toString
method that returns a String such as "2h 35m" for 2 hours and 35
minutes.

Here is the code for the complete TimeSpan class that enforces its
invariant:

 1 // Represents a time span of hours and minutes elapsed.

 2 // Class invariant: hours >= 0 && minutes >= 0 && minutes <

60

 3

 4 public class TimeSpan {

 5 private int hours;

 6 private int minutes;

 7

 8 // Constructs a time span with the given interval.

 9 // pre: hours >= 0 && minutes >= 0

10 public TimeSpan(int hours, int minutes) {

11 this.hours = 0;

12 this.minutes = 0;

13 add(hours, minutes);

14 }

15

16 // Adds the given interval to this time span.

17 // pre: hours >= 0 && minutes >= 0

18 public void add(int hours, int minutes) {

19 if (hours < 0 || minutes < 0) {

20 throw new IllegalArgumentException();

21 }

22

23 this.hours += hours;

24 this.minutes += minutes;

25

26 // converts each 60 minutes into one hour

27 this.hours += this.minutes / 60;

28 this.minutes = this.minutes % 60;

29 }

30

31 // returns a String for this time span, such as "6h 15m"

32 public String toString() {

33 return hours + "h " + minutes + "m";

34 }

35 }

Some additional features should be included in the class, such as
accessors for the field values, but these are left as exercises.

Invariants bring to light the importance of proper encapsulation. If the
TimeSpan class weren’t encapsulated, we would not be able to
properly enforce our invariant. A buggy or malicious client would be
able to make a TimeSpan object’s state invalid by setting its fields’
values directly. When the class is encapsulated, it has much better
control over how clients can use its objects, making it impossible for
a misguided client program to violate the class invariant.

Changing Internal
Implementations

Another important benefit of encapsulation is that it allows us to
make internal design changes to a class without affecting its clients.
A subtlety of classes is that the internal representation of a class
does not necessarily have to match the external view that the client
sees. A client of the TimeSpan class thinks of each time span as a
number of hours and a number of minutes. But the TimeSpan object
does not have to internally store its time using those two data fields.

In fact, the code for TimeSpan becomes simpler if we simply store a
single field for the total number of minutes. For example, we can
represent 2 hours and 15 minutes as 135 total minutes by converting
each hour into 60 minutes.

Let’s rewrite the TimeSpan class to use only a single total minutes
field:

// alternate implementation using only total minutes

public class TimeSpan {

 private int totalMinutes;

 ...

}

Because our class is encapsulated, as long as our methods still
produce the same results from an external point of view, we can
change the implementation of the object’s internal state and the
clients will not need to be modified. We can implement the same
constructor, add , and toString behavior using total minutes. For
example, the add method needs to combine the hours and minutes
together and add both of them into the totalMinutes . We’ll scale the
hours by 60 as we add them to the total:

public void add(int hours, int minutes) {

 if (hours < 0 || minutes < 0) {

 throw new IllegalArgumentException();

 }

 totalMinutes += 60 * hours + minutes;

}

Notice that this new implementation makes it easier to enforce our
class invariant about objects having valid state. We must still check
for negative parameters, but we no longer need to worry about
storing minutes of 60 or greater. All minutes added are properly
grouped into the common total.

The constructor and toString method also require minor
modifications to account for our new representation. Here is the
complete class, implemented with total minutes instead of hours and
minutes. This version is shorter and simpler than the original:

 1 // Represents a time span of elapsed hours and minutes.

 2 // Second implementation using a single field for total

minutes.

 3 // Class invariant: totalMinutes >= 0

 4

 5 public class TimeSpan {

 6 private int totalMinutes;

 7

 8 // Constructs a time span with the given interval.

 9 // pre: hours >= 0 && minutes >= 0

10 public TimeSpan(int hours, int minutes) {

11 totalMinutes = 0;

12 add(hours, minutes);

13 }

14

15 // Adds the given interval to this time span.

16 // pre: hours >= 0 && minutes >= 0

17 public void add(int hours, int minutes) {

18 if (hours < 0 || minutes < 0) {

19 throw new IllegalArgumentException();

20 }

21 totalMinutes += 60 * hours + minutes;

22 }

23

24 // returns a String for this time span, such as "6h 15m"

25 public String toString() {

26 return (totalMinutes / 60) + "h " +

27 (totalMinutes % 60) + "m";

28 }

29 }

As another example, we could revisit our encapsulated Point class
and change its internal structure without having to modify the client
code. For example, sometimes it is useful to express two-
dimensional points in polar coordinates in terms of a radius and an
angle theta. In this representation, the coordinates of a point
are not stored directly but can be computed as (cos(theta), r
sin(theta)). When the Point class is encapsulated, we can modify it
to use and theta fields internally, then modify getX , getY , and other

r

(x, y)
r

r

methods so that they still return appropriate values. The polar
representation would not reap the same benefits we saw in our
second implementation of TimeSpan , but it might make it easier for us
to add certain functionality to the Point class later.

8.5 Case Study: Designing a Stock
Class

So far we have written several classes, but we have not talked about how
to design a class or how to break apart a programming problem into
classes. In this section we’ll examine a larger programming problem and
design a class and client to solve it. We will create a class called Stock and
a client program that compares the performance of stocks that the user has
purchased.

Consider the task of writing a financial program to record purchases of
shares of two stocks and report which has the greatest profit. The investor
may have made several purchases of the same Stock at different times and
prices. The interaction with the program might look like this:

First stock's symbol: AMZN

How many purchases did you make? 2

1: How many shares, at what price per share? 50 35.06

2: How many shares, at what price per share? 25 38.52

What is today's price per share? 37.29

Net profit/loss: $80.75

Second stock's symbol: INTC

How many purchases did you make? 3

1: How many shares, at what price per share? 15 16.55

2: How many shares, at what price per share? 10 18.09

3: How many shares, at what price per share? 20 17.15

What is today's price per share? 17.82

Net profit/loss: $29.75

AMZN was more profitable than INTC.

The program must perform several actions: prompting the user for input,
calculating the amount spent on each purchase of stock, reporting profits,
and so on. The client program could perform all of these actions and could
keep track of the financial data using existing types such as doubles and
Strings . However, recall that we began this chapter by talking about object-
oriented reasoning. When you are studying complex programs, it is often
useful to think about the problem in terms of the relevant objects that could
solve it, rather than placing all behavior in the client program. In this
particular program, we must perform several computations that involve
keeping track of purchases of shares of a particular stock, so it would be
useful to store the purchase information in an object.

One possible design would be to create a Purchase class that records
information about a single purchase of shares of a particular stock. For
example, if the user specified three purchases, the program should

construct three Purchase objects. However, a more useful abstraction here
would be to hold the overall information about all purchases of one stock in
one place. The investor may make many purchases of the same stock, so
you want to have an easy way to accumulate these shares and their total
cost into a single object.

Therefore, instead of a Purchase class, we’ll write a Stock class. Each
Stock object will keep track of the investor’s accumulated shares of one
stock and can provide profit/loss information. Our Stock class will reside in
a file called Stock.java , and the client program itself will reside in a
separate file called StockMain.java .

Object-Oriented Design Heuristics

We now face the important task of deciding on the contents of our Stock
class. It can be tricky to choose a good set of classes and objects to solve
a complex programming problem. Chapter 4 ’s case study introduced a
set of procedural design heuristics, or guidelines for good design, for
effectively dividing a problem into methods. There are similar guidelines for
effectively breaking a large program into a set of classes and objects. The
heuristics we’ll discuss here are based on those listed in computer scientist
Arthur Riel’s influential book, Object-Oriented Design Heuristics.

First let’s look at the overall set of responsibilities, the things that a class
must know or do to solve the overall problem:

Prompt the user for each stock’s symbol and store the information
somewhere.

Prompt the user for the number of purchases of each stock.
Read each purchase (number of shares and price per share) from the
console and store the information somewhere.
Compute the total profit/loss of each stock.
Print the total profit/loss of each stock to the console.
Compare the two total profits/losses and print a message to the console
about which stock performed better.

It might be tempting to make most or all of these tasks responsibilities of
our Stock class. We could make a Stock object store all the purchases of
both stocks, prompt for information from the console, print the results, and
so on. But a key guideline when writing classes is that they should have
cohesion.

Cohesion
The extent to which the code for a class represents a single
abstraction.

Placing all the responsibilities in the Stock class would not allow that class
to represent a single clear abstraction. The abstraction we want to
represent in the Stock class is the accumulated purchases of a single
stock.

One set of responsibilities that Stock objects should not handle is
producing the console input and output. We need to prompt the user for
information and print messages, but these functions are specific to the

current client program. Objects are meant to be reusable pieces of
software, and other programs might want to track stock purchases without
using these exact messages or prompts. If the Stock class handles the
prompts and printing, it will be heavily intertwined with this client program
and will not be easily reusable by other clients.

In general, we want to reduce unnecessary dependencies among classes.
Dependencies among classes in an object-oriented program contribute to
coupling, the degree to which one part of a program depends on another.

Striving to avoid unnecessary coupling is a second design heuristic
commonly used in object-oriented programming. A design that avoids this
problem is sometimes said to have loose coupling.

Let’s divide some of the responsibilities now, based on our heuristics. Since
the StockMain client program will perform the console I/O, it should handle
the following responsibilities:

StockMain

Prompt for each stock’s symbol.
Prompt for the number of purchases of each stock.
Read each purchase (number of shares and price per share) from the
console.
Print the total profit/loss of each stock.
Compare the two total profits/losses and print a message about which
stock generated higher profits.

Since the StockMain client program will be performing the console I/O, it
might seem natural for it also to store the information about each stock

purchase (that is, the number of shares and the price paid). But our Stock
object should contain the functionality to compute a stock’s total profit or
loss, and it will need to have the data about all purchases to do so. This
leads us to a third design heuristic: Related data and behavior should be in
the same place. With that in mind, we can write out the responsibilities for
the Stock class as follows:

Stock

Store a stock’s symbol.
Store accumulated information about the investor’s purchases of the
stock.
Record a purchase of the stock.
Compute the total profit/loss for the stock.

When they are designing large object-oriented programs, many software
engineers write information about classes as we’ve done here. A common
technique to brainstorm ideas for classes is to write information on index
cards. Each card is called a CRC card and lists the Class, its
Responsibilities, and its Collaborators (other classes to which it is coupled).

The following list summarizes the design heuristics discussed in this
section:

A class should be cohesive, representing only one abstraction.
A class should avoid unnecessary coupling.
Related data and behavior should be in the same class.

Note that we began our design by looking at responsibilities rather than by
specifying fields as we did when we developed our Point class. We began

writing the Point class by discussing fields because the data associated
with a point is simple and more obvious than the data associated with stock
purchases. But in many larger problems like this one, working backward
from behavior and responsibilities is a better technique.

Stock Fields and Method Headers

In this section we’ll decide on a design for the method names and
signatures the Stock should use to implement its behavior. We’ll use this
design to determine which fields are required to implement the behavior.

We’ve decided that a Stock object should allow clients to record purchases
and request the total profit or loss. Each of these tasks can be represented
as a method. The recording of a purchase can be represented as a method
called purchase . The retrieval of the total profit or loss can be represented
as a method called getProfit .

The purchase method should record information about a single purchase. A
purchase consists of a number of shares that the user bought (which we
can assume is a whole number) and a price per share (which can include
real numbers with both dollars and cents). Our purchase method should
accept two parameters: an int for the number of shares bought and a
double for the price per share. The method can use a void return type,
since nothing needs to be returned after each purchase is recorded:

public void purchase(int shares, double pricePerShare)

The getProfit method will return the amount of money that the user made
or lost on all accumulated purchases of this stock. Consider an investor
who has made the following three purchases of a stock:

If today’s price per share is $22.00, the current market value of the
investor’s 50 shares is (50 * 22) or $1100. Since the investor paid $1000
total for the shares and they are now worth $1100, the investor has made

 of profit. The general formula for the profit is
the following:

The total number of shares and total cost figure needed for this calculation
are the accumulated information from all the purchases that have been
made of this stock. This means that information will need to be stored
during each call of the purchase method to be used later in the getProfit
method. A key observation is that we do not need to store the number of
shares, price per share, and cost for every purchase: We only need to store
cumulative sums of the total shares purchased so far and the total dollars
spent so far to acquire those values.

The third value we need in order to calculate the profit is the current share
price. We could choose to make this a field in the Stock class as well, but
the share price is a dynamic value that changes regularly. We use it during

Purchase #1 : 20 shares * $10 per share = $ 200 cost

Purchase #2 : 20 shares * $30 per share = $ 600 cost

Purchase #3 : 10 shares * $20 per share = $ 200 cost

50 total shares, $1000 total cost

($1100 − $1000) = $100

profit = ([total shares] * [current share price]) − (total cost)

a single call to the getProfit method, but the next call may come at a later
date when the price per share has changed.

This problem leads us to another design heuristic: Fields should represent
values of core importance to the object and values that are used in multiple
methods. Adding too many fields clutters a class and can make its code
harder to read. If a value is used in only one method of the class, it’s best to
make it a parameter to that method rather than a field. Therefore, we’ll
make the share price a parameter to the getProfit method.

public double getProfit(double currentPrice)

One piece of state that we haven’t discussed yet is that each stock has a
symbol, such as "AMZN" . We’ll store the symbol as a String field in each
Stock object.

Here’s a skeleton of our Stock class so far:

// incomplete Stock class

public class Stock {

 private String symbol;

 private int totalShares;

 private double totalCost;

 ...

 public double getProfit(double currentPrice) {

 ...

 }

 public void purchase(int shares, double pricePerShare) {

 ...

 }

}

Stock Method and Constructor
Implementation

Now that we’ve decided on some of the Stock ’s state and behavior, let’s
think about how to construct Stock objects. The client program will need the
ability to create two Stocks and record purchases of them.

It may be tempting to write a constructor that accepts three parameters: the
symbol, the total number of shares purchased, and the total cost. But our
Stock objects are accumulators of purchases, and we may want to be able
to create new Stock objects before the program records initial purchases.
Let’s design our class to require only the symbol as a parameter and
initialize the other fields to 0 :

// initializes a new Stock with no shares purchased

public Stock(String theSymbol) {

 symbol = theSymbol;

 totalShares = 0;

 totalCost = 0.0;

}

When a constructor takes an object as a parameter (such as the String
theSymbol), it might make sense to check that parameter’s value to make
sure it isn’t null . One possible way to handle this case would be to throw
an exception if a null symbol is passed when the program creates a Stock
object. We could do this by inserting the following lines at the start of the
Stock ’s constructor:

if (theSymbol == null) {

 throw new NullPointerException();

}

The Java convention is to throw a NullPointerException when a
parameter’s value is null but should not be. For other invalid parameter
values, throw an IllegalArgumentException .

Now let’s write the body of the purchase method. The task of recording the
purchase consists of adding the new number of shares to the total number
of shares and adding the new price paid for these shares to the total cost.
The price paid is equal to the number of shares times the price per share.
Here’s the code for the purchase method to implement this behavior:

// records a purchase of the given number of shares of this stock

// at the given price per share

public void purchase(int shares, double pricePerShare) {

 totalShares += shares;

 totalCost += shares * pricePerShare;

}

It might make sense here to check the parameters passed in to make sure
they are valid, as we did with the constructor. In this case, valid numbers of
shares and prices per share must not be negative numbers. To perform this
test, we can insert the following lines at the start of our purchase method:

if (shares < 0 || pricePerShare < 0) {

 throw new IllegalArgumentException();

}

Next, we’ll write the body of the getProfit method. As we noted previously,
the profit of a Stock is equal to its current market value minus the amount
that was paid for it:

We can implement this formula in a straightforward manner using the
totalShares and totalCost fields and the currentPrice parameter:

// Returns the total profit or loss earned on this stock,

// based on the given price per share.

public double getProfit(double currentPrice) {

 return totalShares * currentPrice – totalCost;

}

Note that parentheses are not needed in the code because multiplication
has a higher precedence than subtraction.

profit = ([total shares] * [current share price]) − (total cost)

As we did for the other methods, we should check for illegal parameter
values. In this case, we shouldn’t allow a negative current price per share.
To ensure that this doesn’t happen, we can place the following code at the
start of the method:

if (currentPrice < 0.0) {

 throw new IllegalArgumentException();

}

After we’ve written all the fields, the constructor, and the methods of our
Stock , the class will look like this:

 1 // A Stock object represents purchases of shares of a stock.

 2

 3 public class Stock {

 4 private String symbol; // stock symbol, e.g. "YHOO"

 5 private int totalShares; // total shares purchased

 6 private double totalCost; // total cost for all shares

 7

 8 // initializes a new Stock with no shares purchased

 9 // pre: symbol != null

10 public Stock(String theSymbol) {

11 if (theSymbol == null) {

12 throw new NullPointerException();

13 }

14

15 symbol = theSymbol;

16 totalShares = 0;

17 totalCost = 0.0;

18 }

19

20 // returns the total profit or loss earned on this stock,

21 // based on the given price per share

22 // pre: currentPrice >= 0.0

23 public double getProfit(double currentPrice) {

24 if (currentPrice < 0.0) {

25 throw new IllegalArgumentException();

26 }

27

28 double marketValue = totalShares * currentPrice;

29 return marketValue – totalCost;

30 }

31

32 // records purchase of the given shares at the given price

33 // pre: shares >= 0 && pricePerShare >= 0.0

34 public void purchase(int shares, double pricePerShare) {

35 if (shares < 0 || pricePerShare < 0.0) {

36 throw new IllegalArgumentException();

37 }

38

39 totalShares += shares;

40 totalCost += shares * pricePerShare;

41 }

42 }

Here’s the client code to use the Stock class:

 1 // This program tracks the user’s purchases of two stocks,

 2 // computing and reporting which stock was more profitable.

 3

 4 import java.util.*;

 5

 6 public class StockMain {

 7 public static void main(String[] args) {

 8 Scanner console = new Scanner(System.in);

 9

10 // first stock

11 System.out.print("First stock’s symbol: ");

12 String symbol1 = console.next();

13 Stock stock1 = new Stock(symbol1);

14 double profit1 = makePurchases(stock1, console);

15

16 // second stock

17 System.out.print("Second stock’s symbol: ");

18 String symbol2 = console.next();

19 Stock stock2 = new Stock(symbol2);

20 double profit2 = makePurchases(stock2, console);

21

22 // report which stock made more money

23 if (profit1>profit2) {

24 System.out.println(symbol1 + " was more " +

25 "profitable than" + symbol2 + ".");

26 } else if (profit2>profit1) {

27 System.out.println(symbol2 + " was more " +

28 "profitable than " + symbol1 + ".");

29 } else { // profit1 == profit2

30 System.out.println(symbol1 + " and " + symbol2 +

31 " are equally profitable.");

32 }

33 }

34

35 // make purchases of stock and return the profit

36 public static double makePurchases(Stock currentStock,

37 Scanner console) {

38 System.out.print("How many purchases did you make? ");

39 int numPurchases = console.nextInt();

40

41 // ask about each purchase

42 for (int i = 1; i <= numPurchases; i++) {

43 System.out.print(i +

44 ": How many shares, at what price per share? ");

45 int numShares = console.nextInt();

46 double pricePerShare = console.nextDouble();

47

48 // ask the Stock object to record this purchase

49 currentStock.purchase(numShares, pricePerShare);

50 }

51

52 // use the Stock object to compute profit

53 System.out.print("What is today’s price per share? ");

54 double currentPrice = console.nextDouble();

55

56 double profit = currentStock.getProfit(currentPrice);

57 System.out.println("Net profit/loss: $" + profit);

58 System.out.println();

59 return profit;

60 }

61 }

It would be useful to have a few other methods in our Stock objects. For
example, it would be good to implement accessors for the Stock ’s data (the
symbol, number of shares, and so on), and a toString method to easily
print Stock objects. We could even add a second constructor that would
accept an initial number of shares and cost. These features are left for you
to implement as exercises.

Chapter Summary
Object-oriented programming is a different philosophy of writing
programs that focuses on nouns or entities in a program, rather than
on verbs or actions of a program. In object-oriented programming,
state and behavior are grouped into objects that communicate with
each other.

A class serves as the blueprint for a new type of object, specifying
the object’s data and behavior. The class can be asked to construct
many objects (also called “instances”) of its type.

Java’s java.awt package has a class named Point . Each object
holds two int values, x and y . A Point can be constructed,
translated to a new location, and printed on the console.

The data for each object are specified using special variables called
fields.

The behavior of each object is specified by writing instance methods
in the class. Instance methods exist inside an object and can access
that object’s internal state.

To make objects easily printable, write a toString method that
returns the object’s text representation.

A class can define special code called a constructor that initializes
the state of new objects as they are created. The constructor will be
called when external client code creates a new object of your type
using the new keyword.

You can use the keyword this to have an object refer to itself. It is
also used when a class has multiple constructors and one
constructor wants to call another.

Objects can protect their internal data from unwanted external
modification by declaring them to be private , an action known as
encapsulation. Encapsulation provides abstraction so that clients can
use the objects without knowing about their internal implementation.

A class should represent only one key abstraction with related data
and behavior, and it should be independent from its clients.

Self-Check Problems

Section 8.1: Object-Oriented
Programming

1. Describe the difference between object-oriented programming
and procedural programming.

2. What is an object? How is an object different from a class?
3. What is the state of a String object? What is its behavior?
4. What is the output of the following program?

public class ReferenceMystery3 {

 public static void main(String[] args) {

 int a = 7;

 int b = 9;

 Point p1 = new Point(2, 2);

 Point p2 = new Point(2, 2);

 addToXTwice(a, p1);

 System.out.println(a + " " + b + " " + p1.x + " "

+ p2.x);

 addToXTwice(b, p2);

 System.out.println(a + " " + b + " " + p1.x + " "

+ p2.x);

 }

 public static void addToXTwice(int a, Point p1) {

 a = a + a;

 p1.x = a;

 System.out.println(a + " " + p1.x);

 }

}

5. Imagine that you are creating a class called Calculator . A
Calculator object could be used to program a simple
mathematical calculator device like the ones you have used in
math classes in school. What state might a Calculator object
have? What might its behavior be?

Section 8.2: Object State and
Behavior

6. Explain the differences between a field and a parameter.
What is the difference in their syntax? What is the difference
in their scope and the ways in which they may be used?

7. Create a class called Name that represents a person’s name.
The class should have fields representing the person’s first
name, last name, and middle initial. (Your class should
contain only fields for now.)

8. What is the difference between an accessor and a mutator?
What naming conventions are used with accessors and
mutators?

9. Suppose we have written a class called BankAccount with a
method inside it, defined as:

public double computeInterest(int rate)

If the client code has declared a BankAccount variable named
acct , which of the following would be a valid call to the above
method?

a. double result = computeInterest(acct, 42);
b. acct.computeInterest(42.0, 15);
c. int result = BankAccount.computeInterest(42);
d. double result = acct.computeInterest(42);

e. new BankAccount(42).computeInterest();

10. Add a new method to the Point class we developed in this
chapter:

public double distance(Point other)

Returns the distance between the current Point object and
the given other Point object. The distance between two points
is equal to the square root of the sum of the squares of the
differences of their - and -coordinates. In other words, the
distance between two points and can be
expressed as the square root of .
Two points with the same coordinates should return a
distance of 0.0 .

11. (You must complete Self-Check Problem 7 before
answering this question.)
Add two new methods to the Name class:

public String getNormalOrder()

Returns the person’s name in normal order, with the first
name followed by the middle initial and last name. For
example, if the first name is "John" , the middle initial is "Q" ,
and the last name is "Public" , returns "John Q. Public" .

public String getReverseOrder()

x y

(x1, y1) (x2, y2)

(x2 − x1)
2 + (y2 − y1)

2

(x, y)

Returns the person’s name in reverse order, with the last
name preceding the first name and middle initial. For
example, if the first name is "John" , the middle initial is "Q" ,
and the last name is "Public" , returns "Public, John Q." .

12. How do you write a class whose objects can easily be printed
on the console?

13. The following println statement (the entire line) is equivalent
to what?

Point p1 = new Point();

...

System.out.println(p1);

a. System.out.println(toString(p1));
b. p1.toString();
c. System.out.println(p1.toString());
d. System.out.println(p1.string());
e. System.out.println(Point.toString());

14. The Point class in the java.awt package has a toString
method that returns a String in the following format:

java.awt.Point[x=7,y=2]

Write a modified version of the toString method on our Point
class that returns a result in this format.

15. (You must complete Self-Check Problem 7 before
answering this question.)
Write a toString method for the Name class that returns a
String such as "John Q. Public" .

16. Finish the following client code so that it constructs two Point
objects, translates each, and then prints their coordinates.

// construct two Point objects, one at (8, 2) and one at

(4, 3)

System.out.println("p1 is " ...); // display the

objects' state

System.out.println("p2 is " ...);

System.out.println("p1's distance from origin is " ...);

// translate p1 to (9, 4) and p2 to (3, 13)

System.out.println("p1 is now " ...); // display state

again

System.out.println("p2 is now " ...);

Section 8.3: Object Initialization:
Constructors

17. What is a constructor? How is a constructor different from
other methods?

18. What are two major problems with the following constructor?

public void Point(int initialX, int initialY) {

 int x = initialX;

 int y = initialY;

}

19. (You must complete Self-Check Problem 7 before
answering this question.)
Add a constructor to the Name class that accepts a first name,
middle initial, and last name as parameters and initializes the
Name object’s state with those values.

20. What is the meaning of the keyword this? Describe three
ways that the keyword can be used.

21. Add a constructor to the Point class that accepts another
Point as a parameter and initializes this new Point to have
the same values. Use the keyword this in your
solution.

(x, y)

Section 8.4: Encapsulation

22. What is abstraction? How do objects provide abstraction?
23. What is the difference between the public and private

keywords? What items should be declared private?
24. When fields are made private, client programs cannot see

them directly. How do you allow classes access to read these
fields’ values, without letting the client break the object’s
encapsulation?

25. Add methods named setX and setY to the Point class that
allow clients to change a Point object’s - and -coordinates,
respectively.

26. (You must complete Self-Check Problem 7 before
answering this question.)
Encapsulate the Name class. Make its fields private and add
appropriate accessor methods to the class.

27. (You must complete Self-Check Problem 26 before
answering this question.)
Add methods called setFirstName , setMiddleInitial , and
setLastName to your Name class. Give the parameters the
same names as your fields, and use the this keyword in your
solution.

28. How does encapsulation allow you to change the internal
implementation of a class?

x y

Section 8.5: Case Study:
Designing a Stock Class

29. What is cohesion? How can you tell whether a class is
cohesive?

30. Why didn’t we choose to put the console I/O code into the
Stock class?

31. Add accessor methods to the Stock class to return the stock’s
symbol, total shares, and total cost.

Exercises
1. Add the following accessor method to the Point class:

public int quadrant()

Returns which quadrant of the x/y plane the current Point
object falls in. Quadrant 1 contains all points whose x and y
values are both positive. Quadrant 2 contains all points with
negative x but positive y . Quadrant 3 contains all points with
negative x and y values. Quadrant 4 contains all points with
positive x but negative y . If the point lies directly on the
and/or axis, return 0 .

2. Add the following mutator method to the Point class:

public void flip()

Negates and swaps the / coordinates of the Point object.
For example, if an object pt initially represents the point

, after a call of pt.flip(); the object should represent
. If the same object initially represents the point (4,

17), after a call to pt.flip(); the object should represent
.

3. Add the following accessor method to the Point class:

x

y

x y

(5, −3)

(3, −5)

(−17, −4)

public int manhattanDistance(Point other)

Returns the “Manhattan distance” between the current Point
object and the given other Point object. The Manhattan
distance refers to the distance between two places if one can
travel between them only by moving horizontally or vertically,
as though driving on the streets of Manhattan. In our case, the
Manhattan distance is the sum of the absolute values of the
differences in their coordinates; in other words, the difference
in x plus the difference in y between the points.

4. Add the following accessor method to the Point class:

public boolean isVertical(Point other)

Returns true if the given Point lines up vertically with this
Point , that is, if their -coordinates are the same.

5. Add the following accessor method to the Point class:

public double slope(Point other)

Returns the slope of the line drawn between this Point and
the given other Point . Use the formula
to determine the slope between two points and

. Note that this formula fails for points with identical

x

(y2 − y1)/(x2 − x1)

(x1, y1)
(x2, y2) x

-coordinates, so throw an IllegalArgumentException in this
case.

6. Add the following accessor method to the Point class:

public boolean isCollinear(Point p1, Point p2)

Returns whether this Point is collinear with the given two
other Points . Points are collinear if a straight line can be
drawn that connects them. Two basic examples are three
points that have the same - or -coordinate. The more
general case can be determined by calculating the slope of
the line between each pair of points and checking whether
this slope is the same for all pairs of points. Use the formula

 to determine the slope between two
points and . (Note that this formula fails for
points with identical -coordinates so this will have to be a
special case in your code.) Since Java’s double type is
imprecise, round all slope values to a reasonable accuracy
such as four digits past the decimal point before you compare
them.

7. Add the following mutator method to the TimeSpan class:

public void add(TimeSpan span)

Adds the given amount of time to this time span.
8. Add the following mutator method to the TimeSpan class:

x y

(y2 − y1)/(x2 − x1)
(x1, y1) (x2, y2)

x

public void subtract(TimeSpan span)

Subtracts the given amount of time from this time span.
9. Add the following mutator method to the TimeSpan class:

public void scale(int factor)

Scales this time span by the given factor. For example, 1 hour
and 45 minutes scaled by 2 equals 3 hours and 30 minutes.

10. Add the following mutator method to the Stock class:

public void clear()

Resets this Stock ’s number of shares purchased and total
cost to 0 .

11. Suppose the following BankAccount class has been created:

 1 // Each BankAccount object represents one user's

account

 2 // information including name and balance of money.

 3 public class BankAccount {

 4 String name;

 5 double balance;

 6

 7 public void deposit(double amount) {

 8 balance = balance + amount;

 9 }

10

11 public void withdraw(double amount) {

12 balance = balance - amount;

13 }

14 }

Add a field to the BankAccount class named transactionFee for
a real number representing an amount of money to deduct
every time the user withdraws money. The default value is
$0.00, but the client can change the value. Deduct the
transaction fee money during every withdraw call (but not
from deposits). Make sure that the balance cannot go
negative during a withdrawal. If the withdrawal (amount plus
transaction fee) would cause it to become negative, don’t
modify the balance at all.

12. Add a toString method to the BankAccount class from the
previous exercise. Your method should return a string that
contains the account’s name and balance separated by a
comma and space. For example, if an account object named
yana has the name "Yana" and a balance of 3.03 , the call
yana.toString() should return the string "Yana, $3.03" .

13. Add a transfer method to the BankAccount class from the
previous exercises. Your method should move money from
the current bank account to another account. The method
accepts two parameters: a second BankAccount to accept the
money, and a real number for the amount of money to

transfer. There is a $5.00 fee for transferring money, so this
much must be deducted from the current account’s balance
before any transfer. The method should modify the two
BankAccount objects such that “this” current object has its
balance decreased by the given amount plus the $5 fee, and
the other account’s balance is increased by the given amount.
If this account object does not have enough money to make
the full transfer, transfer whatever money is left after the $5
fee is deducted. If this account has under $5 or the amount is
0 or less, no transfer should occur and neither account’s state
should be modified. The following are some example calls to
the method:

BankAccount ben = new BankAccount();

ben.deposit(80.00);

BankAccount hal = new BankAccount();

hal.deposit(20.00);

ben.transfer(hal, 20.00); // ben $55, hal $40 (ben

-$25, hal +$20)

ben.transfer(hal, 10.00); // ben $40, hal $50 (ben

-$15, hal +$10)

hal.transfer(ben, 60.00); // ben $85, hal $ 0 (ben

+$45, hal -$50)

14. Write a class called Line that represents a line segment
between two Points . Your Line objects should have the
following methods:

public Line(Point p1, Point p2)

Constructs a new Line that contains the given two Points .

public Point getP1()

Returns this Line ’s first endpoint.

public Point getP2()

Returns this Line ’s second endpoint.

public String toString()

Returns a String representation of this Line , such as "[(22,
3), (4, 7)]" .

15. Add the following accessor method to your Line class:

public double getSlope()

Returns the slope of this Line . The slope of a line between
points and is equal to

. If equals the denominator is
zero and the slope is undefined, so you may throw an
exception in this case.

(x1, y1) (x2, y2)
(y2 − y1)/(x2 − x1) x2 x1

16. Add the following constructor to your Line class:

public Line(int x1, int y1, int x2, int y2)

Constructs a new Line that contains the given two Points .
17. Add the following accessor method to your Line class:

public boolean isCollinear(Point p)

Returns true if the given Point is collinear with the Points of
this Line—that is, if, when this Line is stretched infinitely, it
would eventually hit the given Point . Points are collinear if a
straight line can be drawn that connects them. Two basic
examples are three points that have the same - or -
coordinate. The more general case can be determined by
calculating the slope of the line between each pair of points
and checking whether this slope is the same for all pairs of
points. Use the formula to determine
the slope between two points and . (Note
that this formula fails for points with identical -coordinates,
so this will have to be a special case in your code.) Since
Java’s double type is imprecise, round all slope values to a
reasonable accuracy such as four digits past the decimal
point before you compare them.

18. Write a class called Rectangle that represents a rectangular
two-dimensional region. Your Rectangle objects should have
the following methods:

x y

(y2 − y1)/(x2 − x1)
(x1, y1) (x2, y2)

x

public Rectangle(int x, int y, int width, int height)

Constructs a new Rectangle whose top-left corner is specified
by the given coordinates and with the given width and
height . Throw an IllegalArgumentException on a negative
width or height .

public int getHeight()

Returns this Rectangle ’s height.

public int getWidth()

Returns this Rectangle ’s width.

public int getX()

Returns this Rectangle ’s -coordinate.

public int getY()

Returns this Rectangle ’s -coordinate.

public String toString()

x

y

Returns a String representation of this Rectangle , such as
"Rectangle[x=1,y=2,width=3, height=4]" .

19. Add the following constructor to your Rectangle class:

public Rectangle(Point p, int width, int height)

Constructs a new Rectangle whose top-left corner is specified
by the given Point and with the given width and height .

20. Add the following accessor methods to your Rectangle class:

public boolean contains(int x, int y)

public boolean contains(Point p)

Returns whether the given Point or coordinates lie inside the
bounds of this Rectangle .

21. Add the following method to your Rectangle class:

public Rectangle union(Rectangle rect)

Returns a new Rectangle that represents the area occupied
by the tightest bounding box that contains both this Rectangle
and the given other Rectangle .

22. Add the following method to your Rectangle class:

public Rectangle intersection(Rectangle rect)

Returns a new Rectangle that represents the largest
rectangular region completely contained within both this
Rectangle and the given other Rectangle . If the Rectangles do
not intersect at all, returns a Rectangle with width and height
both equal to 0 .

23. Add the following method to your Rectangle class:

public boolean contains(Rectangle rect)

Returns whether the given other rectangle lies entirely within
the bounds of this rectangle.

Programming Projects
1. Write a class called RationalNumber that represents a fraction

with an integer numerator and denominator. A RationalNumber
object should have the following methods:

public RationalNumber(int numerator, int denominator)

Constructs a new rational number to represent the ratio
(numerator/denominator). The denominator cannot be 0 , so
throw an IllegalArgumentException if 0 is passed.

public RationalNumber()

Constructs a new rational number to represent the ratio
.

public int getDenominator()

Returns this rational number’s denominator value; for
example, if the ratio is , returns 5 .

public int getNumerator()

(0/1)

(3/5)

Returns this rational number’s numerator value; for example, if
the ratio is , returns 3 .

public String toString()

Returns a String representation of this rational number, such
as "3/5" . You may want to omit denominators of 1 , returning
"4" instead of "4/1" .
An extra challenge would be to maintain your RationalNumber
objects in reduced form, avoiding rational numbers such as
3/6 in favor of 1/2 , or avoiding 2/–3 in favor of –2/3 . Another
possible extra feature would be methods to add, subtract,
multiply, and divide two rational numbers.

2. Write a class called Date that represents a date consisting of
a year, month, and day. A Date object should have the
following methods:

public Date(int year, int month, int day)

Constructs a new Date object to represent the given date.

public void addDays(int days)

Moves this Date object forward in time by the given number of
days.

(3/5)

public void addWeeks(int weeks)

Moves this Date object forward in time by the given number of
seven-day weeks.

public int daysTo(Date other)

Returns the number of days that this Date must be adjusted to
make it equal to the given other Date .

public int getDay()

Returns the day value of this date; for example, for the date
2006/07/22, returns 22 .

public int getMonth()

Returns the month value of this date; for example, for the date
2006/07/22, returns 7 .

public int getYear()

Returns the year value of this date; for example, for the date
2006/07/22, returns 2006 .

public boolean isLeapYear()

Returns true if the year of this date is a leap year. A leap year
occurs every four years, except for multiples of 100 that are
not multiples of 400. For example, 1956, 1844, 1600, and
2000 are leap years, but 1983, 2002, 1700, and 1900 are not.

public String toString()

Returns a String representation of this date in
year/month/day order, such as "2006/07/22" .

3. Write a class named GroceryList that represents a list of
items to buy from the market, and another class named
GroceryItemOrder that represents a request to purchase a
particular item in a given quantity (e.g., four boxes of cookies).
The GroceryList class should use an array field to store the
grocery items and to keep track of its size (number of items in
the list so far). Assume that a grocery list will have no more
than 10 items. A GroceryList object should have the following
methods:

public GroceryList()

Constructs a new empty grocery list.

public void add(GroceryItemOrder item)

Adds the given item order to this list if the list has fewer than
10 items.

public double getTotalCost()

Returns the total sum cost of all grocery item orders in this
list.
The GroceryItemOrder class should store an item quantity and
a price per unit. A GroceryItemOrder object should have the
following methods:

public GroceryItemOrder(String name, int quantity, double

pricePerUnit)

Constructs an item order to purchase the item with the given
name, in the given quantity, which costs the given price per
unit.

public double getCost()

Returns the total cost of this item in its given quantity. For
example, four boxes of cookies that cost 2.30 per unit have a
total cost of 9.20.

public void setQuantity(int quantity)

Sets this grocery item’s quantity to be the given value.

Chapter 9 Inheritance and
Interfaces

9.1 Inheritance Basics
• Nonprogramming Hierarchies

• Extending a Class

• Overriding Methods

• 9.2 Interacting with the Superclass
• Calling Overridden Methods

• Accessing Inherited Fields

• Calling a Superclass’s Constructor

• DividendStock Behavior

• The Object Class

• The equals Method

• The instanceof Keyword

9.3 Polymorphism
• Polymorphism Mechanics

• Interpreting Inheritance Code

• Interpreting Complex Calls

9.4 Inheritance and Design
• A Misuse of Inheritance

• Is-a Versus Has-a Relationships

• Graphics2D

9.5 Interfaces
• An Interface for Shapes

• Implementing an Interface

• Benefits of Interfaces

9.6 Case Study: Financial Class Hierarchy
• Designing the Classes

• Redundant Implementation

• Abstract Classes

Introduction

In this chapter, we will explore two of the most
important techniques the Java language
provides to help you write better structured
solutions. Inheritance allows you to share code
between classes to reduce redundancy and lets
you treat different classes of objects in the same
way. Interfaces allow you to treat several
different classes of objects the same way
without sharing code.

It is difficult to show the usefulness of
inheritance and interfaces in simple examples,
but in larger and more complex projects these
techniques are invaluable. The Java class
libraries make extensive use of these two
features. Inheritance and interfaces make it
possible to create well-structured code on a
scale that is as large as the entire Java class
libraries.

9.1 Inheritance Basics
We’ll begin our discussion of inheritance by exploring how the
concept originated and considering a nonprogramming example that
will lead us toward programming with inheritance in Java.

Large programs demand that we write versatile and clear code on a
large scale. In this textbook, we’ve examined several ways to
express programs more concisely and elegantly on a small scale.
Features like static methods, parameterization, loops, and classes
help us organize our programs and extract common features that
can be used in many places. This general practice is called code
reuse.

Code Reuse
The practice of writing program code once and using it
in many contexts.

DID YOU KNOW?

The Software Crisis

Software has been getting more and more complicated since
the advent of programming. By the early 1970s, teams writing
larger and more complex programs began to encounter some
common problems. Despite much effort, software projects
were running over budget and were not being completed on
time; also, the software often had bugs, didn’t do what it was
supposed to do, or was otherwise of low quality. In his 1975
book The Mythical Man-Month: Essays on Software
Engineering, software engineer Fred Brooks argued that
adding manpower to a late software project often made it
finish even later. Collectively, these problems came to be
called the “software crisis.”

A particularly sticky issue involved program maintenance.
Companies found that they spent much of their time not
writing new code but modifying and maintaining existing code
(also called legacy code). This proved to be a difficult task,
because it was easy to write disorganized and redundant
code. Maintenance of such code was likely to take a long time
and to introduce new bugs into the system.

The negative effects of the software crisis and maintenance
programming were particularly noticeable when graphical
user interfaces became prominent in the 1980s. User
interfaces in graphical systems like Microsoft Windows and
Apple’s Mac OS X were much more sophisticated than the

text interfaces that preceded them. The original graphical
programs were prone to redundancy because they had to
describe in detail how to implement buttons, text boxes, and
other onscreen components. Also, the graphical components
themselves contained a lot of common states and behavior,
such as particular sizes, shapes, colors, positions, or
scrollbars.

Object-oriented programming provides us with a feature called
inheritance that increases our ability to reuse code by allowing one
class to be an extension of another. Inheritance also allows us to
write programs with hierarchies of related object types.

Nonprogramming Hierarchies

In order to use inheritance, you’ll want to identify similarities between
different objects and classes in your programs. Let’s start by looking
at a nonprogramming example: a hierarchy of employees at a
company.

Imagine a large law firm that hires several classes of employees:
lawyers, general secretaries, legal secretaries, and marketers. The
company has a number of employee rules about vacation and sick
days, medical benefits, harassment regulations, and so on. Each
subdivision of the company also has a few of its own rules; for
example, lawyers may use a different form to ask for vacation leave
than do secretaries.

Suppose that all the employees attend a common orientation where
they learn the general rules. Each employee receives a 20-page
manual of these rules to read. A mixed group of employees could
attend the orientation together: Lawyers, secretaries, and marketers
all might sit in the same orientation group.

Afterward, the employees go to their subdivisions and receive
secondary, smaller orientations covering any rules specific to those
divisions. Each employee receives a smaller manual, two or three
pages in length, covering that subdivision’s specific rules. Some
rules are added to those in the general 20-page manual, and a few
are replaced. For example, one class of employees may get three
weeks of vacation instead of two, and one class may use a pink form
to apply for time off rather than the yellow form listed in the 20-page
manual. Each class has its own submanual with unique contents as
shown in Figure 9.1 .

Figure 9.1 A hierarchy of employee manuals

An alternative solution would be to give every employee a large
manual containing both the applicable general rules and the rules of
their subdivisions. For example, there might be a 22-page manual for
the lawyers, a 21-page manual for secretaries, and a 23-page
manual for marketers. The consolidation might even save a few
pages. So why does the company bother to generate two manuals
for every employee?

The main reason has to do with redundancy and maintenance. The
22-page lawyer manual contains a lot of the same text as the 21-

page secretary manual. If a common rule is changed under the one-
manual scenario, all the manuals need to be updated individually,
which is a tedious process. Making the same change to many
manuals is also likely to introduce errors, because it is easy to make
the change in one copy but forget to do it in another.

In addition, there’s a certain practical appeal to using the shorter,
more specific manuals. Someone who wants to know all the rules
that are specific to lawyers can simply read the 2-page lawyer
manual, rather than combing through a 22-page lawyer manual
trying to spot differences.

There are two key ideas here:

1. It’s useful to be able to specify a broad set of rules that will
apply to many related groups (the 20-page manual).

2. It’s also useful to be able to specify a smaller set of rules
specific to a particular group, and to be able to replace some
rules from the broad set (e.g., “use the pink form instead of
the yellow form”).

An important thing to notice about the categories is that they are
hierarchical. For example, every legal secretary is also a secretary,
and every marketer is also an employee. In a pinch, you could ask a
legal secretary to work as a standard secretary for a short period,
because a legal secretary is a secretary. We call such a connection
an is-a relationship.

Is-a Relationship
A hierarchical connection between two categories in
which one type is a specialized version of the other.

An is-a relationship is similar to the idea of a role. A legal secretary
can also fill the roles of a secretary and an employee. A lawyer can
also fill the role of an employee. A member of a subcategory can add
to or change behavior from the larger category. For example, a legal
secretary adds the ability to file legal briefs to the secretary role and
may change the way in which dictation is taken.

Each group of employees in our example is analogous to a class in
programming. The different employee groups represent a set of
related classes connected by is-a relationships. We call such a set of
classes an inheritance hierarchy.

Inheritance Hierarchy
A set of hierarchical relationships between classes of
objects.

As you’ll see, inheritance hierarchies are commonly used in Java to
group related classes of objects and reuse code between them.

Extending a Class

The previous section presented a nonprogramming example of
hierarchies. But as an exercise, we could write small Java classes to
represent those categories of employees. The code will be a bit silly
but will illustrate some important concepts.

Let’s imagine that we have the following rules for our employees:

Employees work 40 hours per week.
All employees earn a salary of $40,000 per year, with the
exception of marketers, who make $50,000 per year, and legal
secretaries, who make $45,000 per year.
Employees have two weeks of paid vacation leave per year, with
the exception of lawyers, who have three weeks of vacation
leave.
Employees use a yellow form to apply for vacation leave, with the
exception of lawyers, who use a special pink form.
Each type of employee has unique behavior: Lawyers know how
to handle lawsuits, marketers know how to advertise, secretaries
know how to take dictation, and legal secretaries know how to file
legal briefs.

Let’s write a class to represent the common behavior of all
employees. (Think of this as the 20-page employee manual.) We’ll
write methods called getHours , getSalary , getVacationDays , and
getVacationForm to represent these behaviors. To keep things simple,
each method will just return some value representing the default
employee behavior, such as the $40,000 salary and the yellow form
for vacation leave. We won’t declare any fields for now. Here is the
code for the basic Employee class:

 1 // A class to represent employees in general.

 2 public class Employee {

 3 public int getHours() {

 4 return 40;

 5 }

 6

 7 public double getSalary() {

 8 return 40000.0;

 9 }

10

11 public int getVacationDays() {

12 return 10;

13 }

14

15 public String getVacationForm() {

16 return "yellow";

17 }

18 }

Now let’s think about implementing the Secretary subcategory. As
we mentioned in the previous section, every Secretary is also an
Employee and, consequently, retains the abilities that Employees have.
Secretaries also have one additional ability: the ability to take
dictation. If we wrote Secretary as a standalone class, its code
would not reflect this relationship very elegantly. We would be forced
to repeat all of the same methods from Employee with identical
behavior. Here is the redundant class:

 1 // A redundant class to represent secretaries.

 2 public class Secretary {

 3 public int getHours() {

 4 return 40;

 5 }

 6

 7 public double getSalary() {

 8 return 40000.0;

 9 }

10

11 public int getVacationDays() {

12 return 10;

13 }

14

15 public String getVacationForm() {

16 return "yellow";

17 }

18

19 // this is the only added behavior

20 public void takeDictation(String text) {

21 System.out.println("Dictating text: " + text);

22 }

23 }

The only code unique to the Secretary class is its takeDictation
method. What we’d really like to do is to be able to copy the behavior
from class Employee without rewriting it in the Secretary class file.

public class Secretary {

 copy all the methods from the Employee class.

 // this is the only added behavior

 public void takeDictation() {

 System.out.println("I know how to take dictation.");

 }

}

Fortunately, Java provides a mechanism called inheritance that can
help us remove this sort of redundancy between similar classes of
objects. Inheritance allows the programmer to specify a relationship
between two classes in which one class includes (“inherits”) the state
and behavior of another.

Inheritance (Inherit)
A programming technique that allows a derived class
to extend the functionality of a base class, inheriting all
of its state and behavior.

The derived class, more commonly called the subclass, inherits all of
the state and behavior of its parent class, commonly called the
superclass.

Superclass
The parent class in an inheritance relationship.

Subclass
The child, or derived, class in an inheritance
relationship.

We say that the subclass extends the superclass because it not only
receives the superclass’s state and behavior but can also add new
state and behavior of its own. The subclass can also replace
inherited behavior with new behavior as needed, which we’ll discuss
in the next section.

A Java class can have only one superclass; it is not possible to
extend more than one class. This is called single inheritance. On the
other hand, one class may be extended by many subclasses.

To declare one class as the subclass of another, place the extends
keyword followed by the superclass name at the end of the subclass
header. The general syntax is the following:

public class <name> extends <superclass> {

 ...

}

We can rewrite the Secretary class to extend the Employee class.
This will create an is-a relationship in which every Secretary also is
an Employee . Secretary objects will inherit copies of the getHours ,
getSalary , getVacationDays , and getVacationForm methods, so we
won’t need to write these methods in the Secretary class. This will
remove the redundancy between the classes.

It’s legal and expected for a subclass to add new behavior that
wasn’t present in the superclass. We said previously that secretaries
add an ability not seen in other employees: the ability to take
dictation. We can add this to our otherwise empty Secretary class.
The following is the complete Secretary class:

1 // A class to represent secretaries.

2 public class Secretary extends Employee {

3 public void takeDictation(String text) {

4 System.out.println("Dictating text: " + text);

5 }

6 }

This concise new version of the Secretary class has the same
behavior as the longer class shown before. Like the two-page
specialized manual, this class shows only the features that are
unique to the specific job class. In this case, it is very easy to see
that the unique behavior of secretaries in our system is to take
dictation.

The following client code would work with our new Secretary class:

 1 // A client program to test the Employee classes.

 2 public class EmployeeMain {

 3 public static void main(String[] args) {

 4 System.out.print("Employee: ");

 5 Employee edna = new Employee();

 6 System.out.print(edna.getHours() + ", ");

 7 System.out.printf("$%.2f, ", edna.getSalary());

 8 System.out.print(edna.getVacationDays() + ", ");

 9 System.out.println(edna.getVacationForm());

10

11 System.out.print("Secretary: ");

12 Secretary stan = new Secretary();

13 System.out.print(stan.getHours() + ", ");

14 System.out.printf("$%.2f, ", stan.getSalary());

15 System.out.print(stan.getVacationDays() + ", ");

16 System.out.println(stan.getVacationForm());

17 stan.takeDictation("hello");

18 }

19 }

The code would produce the following output:

Employee: 40, $40000.00, 10, yellow

Secretary: 40, $40000.00, 10, yellow

Dictating text: hello

Notice that the first four methods produce the same output for both
objects, because Secretary inherits that behavior from Employee . The

fifth line of Secretary output reflects the new extended behavior of
the takeDictation method.

Overriding Methods

We can use inheritance in our other types of Employees , creating
Lawyer , LegalSecretary , and Marketer classes that are subclasses of
Employee . But while the Secretary class merely adds behavior to the
standard Employee behavior, these other classes also need to
replace some of the standard Employee behavior with their own.
Lawyers receive three weeks of vacation and use a pink form to
apply for vacation, and they know how to handle lawsuits. Legal
secretaries receive $45,000 a year (a $5,000 raise over the standard
amount), they know how to take dictation (like regular secretaries),
and they can file legal briefs. Marketers receive $50,000 a year (a
$10,000 raise over the standard amount), and they know how to
advertise.

We’d like these new classes to inherit most of the behavior from the
Employee class, but we need to change or replace certain parts of the
behavior. It’s legal to replace superclass behavior by writing new
versions of the relevant method(s) in the subclasses. The new
version in the subclass will replace the one inherited from Employee .
This idea of replacing behavior from the superclass is called
overriding.

Override
To implement a new version of a method to replace
code that would otherwise have been inherited from a
superclass.

To override a method, just write the method you want to replace in
the subclass. No special syntax is required, but the method’s name
and signature must exactly match those of the method from the
superclass.

Here is the Lawyer class that extends Employee and overrides the
relevant methods:

 1 // A class to represent lawyers.

 2 public class Lawyer extends Employee {

 3 // overrides getVacationDays from Employee class

 4 public int getVacationDays() {

 5 return 15;

 6 }

 7

 8 // overrides getVacationForm from Employee class

 9 public String getVacationForm() {

10 return "pink";

11 }

12

13 // this is the Lawyer's added behavior

14 public void sue() {

15 System.out.println("I'll see you in court!");

16 }

17 }

The LegalSecretary class could also be written to extend Employee ,
but it has more in common with Secretary . It is legal for a class to
extend a class that itself extends a class, creating a multi-level
hierarchy. So we will write the class for LegalSecretary as an
extension of the class Secretary so it inherits the ability to take
dictation:

 1 // A class to represent legal secretaries.

 2 public class LegalSecretary extends Secretary {

 3 // overrides getSalary from Employee class

 4 public double getSalary() {

 5 return 45000.0;

 6 }

 7

 8 // new behavior of LegalSecretary objects

 9 public void fileLegalBriefs() {

10 System.out.println("I could file all day!");

11 }

12 }

The following client program uses our Lawyer and LegalSecretary
classes. Notice that the legal secretary inherits not only the normal
employee behavior, but also the behavior to take dictation from the
standard secretary:

 1 // A client program to test Lawyer and LegalSecretary.

 2 public class EmployeeMain2 {

 3 public static void main(String[] args) {

 4 System.out.print("Lawyer: ");

 5 Lawyer lucy = new Lawyer();

 6 System.out.print(lucy.getHours() + ", ");

 7 System.out.printf("$%.2f, ", lucy.getSalary());

 8 System.out.print(lucy.getVacationDays() + ", ");

 9 System.out.println(lucy.getVacationForm());

10 lucy.sue();

11

12 System.out.print("Legal Secretary: ");

13 LegalSecretary leo = new LegalSecretary();

14 System.out.print(leo.getHours() + ", ");

15 System.out.printf("$%.2f, ", leo.getSalary());

16 System.out.print(leo.getVacationDays() + ", ");

17 System.out.println(leo.getVacationForm());

18 leo.takeDictation("neato");

19 leo.fileLegalBriefs();

20 }

21 }

The program produces the following output:

Lawyer: 40, $40000.00, 15, pink

I'll see you in court!

Legal Secretary: 40, $45000.00, 10, yellow

Dictating text: neato

I could file all day!

Be careful not to confuse overriding with overloading. Overloading,
introduced in Chapter 3 , occurs when one class contains multiple
methods that have the same name but different parameter
signatures. Overriding occurs when a subclass substitutes its own
version of an otherwise inherited method that uses exactly the same
name and the same parameters.

9.2 Interacting with the
Superclass

The classes in the previous sections demonstrated inheritance in
classes containing only methods. But you’ll want to write more
meaningful classes that use inheritance with fields, methods, and
constructors. These subclasses require more complex interaction
with the state and behavior they inherit from their superclass. To
show you how to perform this interaction properly, we’ll need to
introduce a new keyword called super .

Calling Overridden Methods

Suppose things are going well at our example legal firm, so the
company decides to give every employee a $10,000 raise. What is

the best way to enact this policy change in the code we’ve written?
We can edit the Employee class and change its getSalary method to
return 50000 instead of 40000. But some of the other types of
employees have salaries higher than the original $40,000 rate (legal
secretaries at $45,000 and marketers at $50,000), and these will
need to be raised as well. We’ll end up needing to change several
files to enact this single overall raise.

The problem is that our existing code does not represent the
relationship between the various salaries very well. For example, in
the LegalSecretary class, instead of saying that we want to return
45000, we’d like to return the Employee class’s salary plus $5000.
You may want to write code like the following, but it does not work,
because the getSalary method has overridden the one from the
superclass, meaning that the code that follows calls itself infinitely:

// flawed implementation of LegalSecretary salary code

public double getSalary() {

 return getSalary() + 5000;

}

You also can’t just call the Employee version of getSalary by writing
Employee.getSalary() , because that is the syntax for executing static
methods, not instance methods of objects. Instead, Java provides a
keyword super that refers to a class’s superclass. This keyword is
used when calling a superclass method or constructor. Here is the

general syntax for calling an overridden method using the super
keyword:

super.<method name>(<expression>, <expression>, ...,

<expression>)

The correct version of the legal secretary’s salary code is the
following. Writing the marketer’s version is left as an exercise.

// working LegalSecretary salary code

public double getSalary() {

 return super.getSalary() + 5000; // $5k more than general

employees

}

Accessing Inherited Fields

To examine the interactions of more complex classes in a hierarchy,
let’s shift to a more complex example than the employee classes
we’ve been using so far. In Chapter 8 ’s case study, we built a
Stock class representing purchased shares of a given stock. Here’s
the code for that class, which has been shortened a bit for this
section by removing tests for illegal arguments:

 1 // A Stock object represents purchases of shares of a

stock.

 2 public class Stock {

 3 private String symbol;

 4 private int totalShares;

 5 private double totalCost;

 6

 7 // initializes a new Stock with no shares purchased

 8 public Stock(String symbol) {

 9 this.symbol = symbol;

10 totalShares = 0;

11 totalCost = 0.0;

12 }

13

14 // returns the total profit or loss earned on this

stock

15 public double getProfit(double currentPrice) {

16 double marketValue = totalShares * currentPrice;

17 return marketValue – totalCost;

18 }

19

20 // records purchase of the given shares at the given

price

21 public void purchase(int shares, double pricePerShare)

{

22 totalShares += shares;

23 totalCost += shares * pricePerShare;

24 }

25 }

Now let’s imagine that you want to create a type of object for stocks
which pay dividends. Dividends are profit-sharing payments that a
corporation pays its shareholders. The amount that each
shareholder receives is proportional to the number of shares that
person owns. Not every stock pays dividends, so you wouldn’t want
to add this functionality directly to the Stock class. Instead, you
should create a new class called DividendStock that extends Stock
and adds this new behavior.

Each DividendStock object will inherit the symbol, total shares, and
total cost from the Stock superclass. You’ll simply need to add a field
to record the amount of the dividends paid:

public class DividendStock extends Stock {

 private double dividends; // amount of dividends paid

 ...

}

Using the dividends field, you can write a method in the
DividendStock class that lets the shareholder receive a per-share
dividend. Your first thought might be to write code like the following,
but this won’t compile:

// this code does not compile

public void payDividend(double amountPerShare) {

 dividends += amountPerShare * totalShares;

}

A DividendStock cannot access the totalShares field it has inherited,
because totalShares is declared private in Stock . A subclass may
not refer directly to any private fields that were declared in its
superclass, so you’ll get a compiler error like the following:

DividendStock.java:17: totalShares has private access in Stock

It may seem unnecessarily restrictive that a class isn’t able to
examine the fields it has inherited, since those fields are part of the
object. The reason Java is built this way is to prevent a subclass
from violating the encapsulation of the superclass. If a superclass
object held sensitive data and subclasses were allowed to access
that data directly, they could change it in malicious ways the
superclass did not intend.

The solution here is to use accessor or mutator methods associated
with our fields to access or change their values. The Stock class
doesn’t have a public accessor method for the totalShares field, but
you can now add a getTotalShares method to the Stock class:

// returns the total shares purchased of this stock

public int getTotalShares() {

 return totalShares;

}

Here is a corrected version of the payDividend method that uses the
getTotalShares method from Stock :

// records a dividend of the given amount per share

public void payDividend(double amountPerShare) {

 dividends += amountPerShare * getTotalShares();

}

The DividendStock subclass is allowed to call the public
getTotalShares method, so the code now behaves properly. If we
had a similar situation in which subclasses needed to modify total
shares from a stock, the Stock class would need to provide a
setTotalShares method or something similar.

Calling a Superclass’s Constructor

Unlike other behaviors, constructors are not inherited. You’ll have to
write your own constructor for the DividendStock class, and when

you do so the problem of the inability to access private fields will
arise again.

The DividendStock constructor should accept the same parameter as
the Stock constructor: the stock symbol. It should have the same
behavior as the Stock constructor but should also initialize the
dividends field to 0.0 . The following constructor implementation
might seem like a good start, but it is redundant with Stock ’s
constructor and won’t compile successfully:

// this constructor does not compile

public DividendStock(String symbol) {

 this.symbol = symbol;

 totalShares = 0;

 totalCost = 0.0;

 dividends = 0.0; // this line is the new code

}

The compiler produces four errors: one error for each line that tries
to access an inherited private field, and a message about a missing
Stock() constructor:

DividendStock.java:5: cannot find symbol

symbol: constructor Stock()

location: class Stock

public DividendStock(String symbol) {

 ^

DividendStock.java:6: symbol has private access in Stock

DividendStock.java:7: totalShares has private access in Stock

DividendStock.java:8: totalCost has private access in Stock

The first problem is that even though a DividendStock does contain
the symbol , totalShares , and totalCost fields by inheritance, it
cannot refer to them directly because they were declared private in
the Stock class.

The second problem—the missing Stock() constructor—is a subtle
and confusing detail of inheritance. A subclass’s constructor must
always begin by calling a constructor from the superclass. The
reason is that a DividendStock object partially consists of a Stock
object, and you must initialize the state of that Stock object first by
calling a constructor for it. If you don’t do so explicitly, the compiler
assumes that Stock has a parameterless Stock() constructor and
tries to initialize the Stock data by calling this constructor. Since the
Stock class doesn’t actually have a parameterless constructor, the
compiler prints a bizarre error message about a missing Stock()
constructor. (It’s a shame that the error message isn’t more
informative.)

The solution to this problem is to explicitly call the Stock constructor
that accepts a String symbol as its parameter. Java uses the
keyword super for a subclass to refer to behavior from its

superclass. To call a constructor of a superclass, write the keyword
super , followed by the constructor’s parameter values in
parentheses:

super(<expression>, <expression>, ..., <expression>);

In the case of the DividendStock constructor, the following code does
the trick. Use the super keyword to call the superclass constructor,
passing it the same symbol value that was passed to the
DividendStock constructor. This action will initialize the symbol ,
totalShares , and totalCost fields. Then set the initial dividends to
0.0 :

// constructs a new dividend stock with the given symbol

// and no shares purchased

public DividendStock(String symbol) {

 super(symbol); // call Stock constructor

 dividends = 0.0;

}

The call to the superclass’s constructor using super must be the first
statement in a subclass’s constructor. If you reverse the order of the
statements in DividendStock ’s constructor and set the dividends
before you call super , you’ll get a compiler error like the following:

Call to super must be first statement in constructor

 super(symbol); // call Stock constructor

 ^

Here’s the DividendStock class so far. The class isn’t complete yet
because you haven’t yet implemented the behavior to make dividend
payments:

// A DividendStock object represents a stock purchase that also

pays

// dividends.

public class DividendStock extends Stock {

 private double dividends; // amount of dividends paid

 // constructs a new dividend stock with the given symbol

 // and no shares purchased

 public DividendStock(String symbol) {

 super(symbol); // call Stock constructor

 this.dividends = 0.0;

 }

 ...

}

DividendStock Behavior

To implement dividend payments, we’ll begin by writing a method
called payDividend that accepts a dividend amount per share and
adds the proper amount to DividendStock ’s dividends field. The
amount per share should be multiplied by the number of shares the
shareholder owns:

// records a dividend of the given amount per share

public void payDividend(double amountPerShare) {

 dividends += amountPerShare * getTotalShares();

}

The dividend payments that are being recorded should be
considered to be profit for the stockholder. The overall profit of a
DividendStock object is equal to the profit from the stock’s price plus
any dividends. This amount is computed as the market value
(number of shares times current price) minus the total cost paid for
the shares, plus the amount of dividends paid.

Notice that you don’t need to use super.getTotalShares in the
preceding code. You have to use the super keyword only when you
are accessing overridden methods or constructors from the
superclass. DividendStock doesn’t override the getTotalShares
method, so you can call it without the super keyword.

Because the profit of a DividendStock object is computed differently
from that of a regular Stock object, you should override the

getProfit method in the DividendStock class to implement this new
behavior. An incorrect initial attempt might look like the following
code:

// this code does not compile

public double getProfit(double currentPrice) {

 double marketValue = totalShares * currentPrice;

 return marketValue – totalCost + dividends;

}

The preceding code has two problems. First, you can’t refer directly
to the various fields that were declared in Stock . To get around this
problem, you can add accessor methods for each field. The second
problem is that the code is redundant: It duplicates much of the
functionality from Stock ’s getProfit method, which was shown
earlier. The only new behavior is the adding of dividends into the
total.

To remove this redundancy, you can have DividendStock ’s getProfit
method call Stock ’s getProfit method as part of its computation.
However, since the two methods share the same name, you must
explicitly tell the compiler that you want to call Stock ’s version.
Again, you do this using the super keyword.

Here is the corrected code, which does compile and eliminates the
previous redundancy:

// returns the total profit or loss earned on this stock,

// including profits made from dividends

public double getProfit(double currentPrice) {

 return super.getProfit(currentPrice) + dividends;

}

And here is the code for the completed DividendStock class:

 1 // A DividendStock object represents a stock purchase that

also pays

 2 // dividends.

 3 public class DividendStock extends Stock {

 4 private double dividends; // amount of dividends paid

 5

 6 // constructs a new dividend stock with the given

symbol

 7 // and no shares purchased

 8 public DividendStock(String symbol) {

 9 super(symbol); // call Stock constructor

10 dividends = 0.0;

11 }

12

13 // returns the total profit or loss earned on this

stock,

14 // including profits made from dividends

15 public double getProfit(double currentPrice) {

16 return super.getProfit(currentPrice) + dividends;

17 }

18

19 // records a dividend of the given amount per share

20 public void payDividend(double amountPerShare) {

21 dividends += amountPerShare * getTotalShares();

22 }

23 }

It’s possible to have a deeper inheritance hierarchy with multiple
layers of inheritance and overriding. However, the super keyword
reaches just one level upward to the most recently overridden
version of the method. It’s not legal to use super more than once in a
row; you cannot make calls like super.super.getProfit . If you need
such a solution, you’ll have to find a workaround such as using
different method names.

The Object Class

A class called Object serves as the ultimate superclass for all other
Java classes, even those that do not declare explicit superclasses in
their headers. In fact, classes with headers that do not have extends
clauses are treated as though their headers say extends Object
when they are compiled. (You can explicitly write the extends Object
in a class header, but this is unnecessary and not a common style.)

The Object class contains methods that are common to all objects.
Table 9.1 summarizes the methods of the Object class. Note that
some of the methods are not public and therefore cannot be called
externally.

Table 9.1 Methods of the Object Class

In Chapter 8 , we mentioned that without a toString method in a
class, the objects will not print properly. For example, our Point
class printed Point@119c082 by default before we wrote its toString
method. This default message was the behavior of the Object
class’s toString method, which we inherited in our Point class. The
Object class provides a generic toString output that will work for
every class: the class name followed by some internal numeric
information about the object. When we wrote our own toString
method, we overrode this default behavior.

It is sometimes useful to refer to the Object class in your programs.
For example, if you wish to write a method that can accept any
object as a parameter, you can declare a parameter of type Object :

// this method can accept any object as its parameter

public static void myMethod(Object o) {

 ...

}

Of course, since your parameter can be anything, you are only
allowed to call the methods from the Object class on it, such as
toString or getClass . It is also legal to have a method whose return
type is Object .

The Object class is used extensively in the Java class libraries. For
example, the println method of the PrintStream class (the class of
which System.out is an instance) accepts a parameter of type
Object , which allows you to print any object to the console.

The equals Method

For several chapters now, you have used the == operator to
compare for equality. You have seen that this operator does not
behave as expected when used on objects, because it is possible to
have two distinct objects with equivalent states, such as two Point
objects with the coordinates (5, 2). This observation is a reminder
that an object has an identity and is distinct from other objects, even
if another object happens to have the same state.

A nonprogramming analogy would be if you and your friend both
purchased identical pairs of shoes. They are in some ways
equivalent, but you still consider them distinct and separate items.
You might not want to share them. And the items’ states are not
linked in any way. Over time, their state might become visibly

unequal, such as if one of you wore your new shoes more often than
the other.

The == operator does not behave as expected with objects because
it tests whether two objects have the same identity. The ==
comparison actually tests whether two variables refer to the same
object, not whether two distinct objects have the same state.
Consider the following three variable declarations:

Point p1 = new Point(7, 2);

Point p2 = new Point(7, 2);

Point p3 = p2;

The following diagram represents the state of these objects and the
variables that refer to them. Notice that p3 is not a reference to a
third object but a second reference to the object that was referred to
by p2 . This means that a change to p2 , such as a call of its
translate method, would also be reflected in p3 :

In the case of the preceding Point objects, the expression p1 == p2
would evaluate to false because p1 and p2 do not refer to the same
object. The object referred to by p1 has the same state as p2 ’s
object, but they have different identities. The expression p2 == p3
would evaluate to true , though, because p2 does refer to the same
object as p3 .

Often, when comparing two objects, we want to know whether the
objects have the same state. To perform such a comparison, we use
a special method called equals . Every Java object contains an
equals method that it uses to compare itself to other objects.

The previous section mentioned that a class without a toString
method receives a default version of the method. Similarly, a class
without an equals method receives a default version that uses the
most conservative definition of equality, considering two objects to

be equal only if they have the same identity. This means that the
default equals method behaves identically to the == operator. If you
want a method that will behave differently, you must write your own
equals method to replace the default behavior.

A proper equals method performs a comparison of two objects’
states and returns true if the states are the same. With the
preceding Point objects, we’d like the expressions p1.equals(p2) ,
p1.equals(p3) , and p2.equals(p3) to evaluate to true because the
Points all have the same () coordinates.

You can imagine a piece of client code that examines two Point
objects to see whether they have the same x and y field values:

if (p1.getX() == p2.getX() && p1.getY() == p2.getY()) {

 // the objects have equal state

 ...

}

But the equals functionality should actually be implemented in the
Point class itself, not in the client code. Rather than having two
Points , p1 and p2 , the equals method considers the first object to
be the “implicit parameter” and accepts the second object as a
parameter. It returns true if the two objects are equal.

x, y

The following code is an initial implementation of the equals method
that has several flaws:

// a flawed implementation of an equals method

public boolean equals(Point p2) {

 if (x == p2.getX() && y == p2.getY()) {

 return true;

 } else {

 return false;

 }

}

An initial flaw we can correct is that the preceding code doesn’t
make good use of “Boolean Zen,” described in Chapter 5 . Recall
that when your code uses an if/else statement to return a boolean
value of true or false , often you can directly return the value of the
if statement’s condition:

return x == p2.getX() && y == p2.getY();

It’s legal for the equals method to access p2 ’s fields directly, so we
can optionally modify this further. Private fields are visible to their
entire class, including other objects of that same class, so it is legal
for one Point object to examine the fields of another:

return x == p2.x && y == p2.y;

Some programmers respect p2 ’s encapsulation even against other
Point objects and therefore would not make the preceding change.

To keep our equals method consistent with other Java classes, we
must also make a change to its header. The equals method’s
parameter should not be of type Point . The method must instead
accept a parameter of type Object :

public boolean equals(Object o)

A variable or parameter of type Object can refer to any Java object,
which means that any object may be passed as the parameter to the
equals method. Thus, we can compare Point objects against any
type of object, not just other Points . For example, an expression
such as p1.equals("hello ") would now be legal. The equals
method should return false in such a case because the parameter
isn’t a Point .

You might think that the following code would correctly compare the
two Point objects and return the proper result. Unfortunately, it does
not even compile successfully:

 return x == o.x && y == o.y; // does not compile

The Java compiler doesn’t allow us to write an expression such as
o.x because it doesn’t know ahead of time whether o ’s object will
have a field called x . The preceding code produces errors such as
the following for each of o ’s fields that we try to access:

Point.java:36: cannot find symbol

symbol : variable x

location: class java.lang.Object

If we want to treat o as a Point object, we must cast it from type
Object to type Point . We’ve already discussed typecasting to
convert between primitive types, such as casting double to int .
Casting between object types has a different meaning. A cast of an
object is a promise to the compiler. The cast is your assurance that
the reference actually refers to a different type and that the compiler
can treat it as that type. In our method, we’ll write a statement that
casts o into a Point object so the compiler will trust that we can
access its x and y fields:

// returns whether the two Points have the same (x, y) values

public boolean equals(Object o) {

 Point other = (Point) o;

 return x == other.x && y == other.y;

}

Don’t forget that if your object has fields that are objects themselves,
such as a string or Point as a field, then those fields should be
compared for equality using their equals method and not using the
== operator.

The instanceof Keyword

By changing our equals method’s parameter to type Object , we have
allowed objects that are not Points to be passed. However, our
method still doesn’t behave properly when clients pass these
objects. An expression in client code such as p.equals("hello ") will
produce an exception like the following at runtime:

Exception in thread "main"

java.lang.ClassCastException: java.lang.String

 at Point.equals(Point.java:25)

 at PointMain.main(PointMain.java:25)

The exception occurs because it is illegal to cast a String into a
Point ; these are not compatible types of objects. To prevent the

exception, our equals method will need to examine the type of the
parameter and return false if it isn’t a Point . The following
pseudocode shows the pattern that the code should follow:

public boolean equals(Object o) {

 if (o is a Point object) {

 compare the x and y values.

 } else {

 return false, because o is not a Point object.

 }

}

An operator called instanceof tests whether a variable refers to an
object of a given type. An instanceof test is a binary expression that
takes the following form and produces a boolean result:

<expression> instanceof <type>

The following JShell interaction shows some example expressions
using instanceof and their results. We declare the variables as type
Object to illustrate that an Object variable can refer to any type of
Java object.

jshell> import java.awt.*;

jshell> Object s = "carrot";

s ==> "carrot"

jshell> Object p = new Point(8, 1);

p ==> java.awt.Point[x=8,y=1]

jshell> s instanceof String

$4 ==> true

jshell> s instanceof Point

$5 ==> false

jshell> s instanceof String

$6 ==> true

jshell> s instanceof Point

$7 ==> false

jshell> "hello" instanceof String

$8 ==> true

jshell> null instanceof Point

$9 ==> false

The instanceof operator is unusual because it looks like the name of
a method but is used more like a relational operator such as > or == .
It is separated from its operands by spaces but doesn’t require
parentheses, dots, or any other notation. The operand on the left
side is generally a variable, and the operand on the right is the name
of the class against which you wish to test.

We must examine the parameter o in our equals method to see
whether it is a Point object. The following code uses the instanceof
keyword to implement the equals method correctly:

// returns whether o refers to a Point with the same (x, y)

// coordinates as this Point

public boolean equals(Object o) {

 if (o instanceof Point) {

 Point other = (Point) o;

 return x == other.x && y == other.y;

 } else { // not a Point object

 return false;

 }

}

You might think that our instanceof test would allow us to remove
the type cast below it. After all, the instanceof test ensures that the
comparison occurs only when o refers to a Point object. However,

the type cast cannot be removed because the compiler doesn’t allow
the code to compile without it.

A nice side benefit of the instanceof operator is that it produces a
false result when o is null . Thus, if the client code contains an
expression such as p1.equals(null) , it will correctly return false
rather than throwing a NullPointerException .

Many classes implement an equals method like ours, so much of the
preceding equals code can be reused as boilerplate code. The
following is a template for a well-formed equals method. The
instanceof test and type cast are likely the first two things you’ll want
to do in any equals method that you write:

public boolean equals(Object o) {

 if (o instanceof <type>) {

 <type> <name> = (<type>) o;

 <compare the data and return the result.>

 } else {

 return false;

 }

}

9.3 Polymorphism

One of the most powerful benefits of inheritance is that it allows
client code to treat different kinds of objects in the same way. For
example, with the employee class hierarchy described earlier, it’s
possible for client code to create an array or other data structure that
contains both lawyers and legal secretaries, and then perform
operations on each element of that array. The client code will behave
differently depending on the type of object that is used, because
each subclass overrides and changes some of the behavior from the
superclass. This ability for the same code to be used with several
different types of objects is called polymorphism.

Polymorphism

The ability for the same code to be used with several
different types of objects and for the code to behave
differently depending on the actual type of object used.

Polymorphism is made possible by the fact that the type of a
reference variable (one that refers to an object) does not have to
exactly match the type of the object it refers to. More specifically, it is
legal for a superclass variable to refer to an object of its subclass.
The following is a legal assignment statement:

Employee ed = new Lawyer();

When we were studying the primitive types, we saw cases in which a
variable of one type could store a value of another type (for example,
an int value can be stored in a double variable). In the case of
primitive values, Java converts variables from one type to another:
int values are automatically converted to doubles when they are
assigned.

When a subclass object is stored in a superclass variable, no such
conversion occurs. The object referred to by ed really is a Lawyer
object, not an Employee object. If we call methods on it, it will behave
like a Lawyer object. For example, the call of ed.getVacationForm()
returns "pink" , which is the Lawyer ’s behavior, not the Employee ’s.

This ability for variables to refer to subclass objects allows us to write
flexible code that can interact with many types of objects in the same
way. For example, we can write a method that accepts an Employee
as a parameter, returns an Employee , or creates an array of Employee
objects. In any of these cases, we can substitute a Secretary ,
Lawyer , or other subclass object of Employee , and the code will still
work. Even more importantly, code will actually behave differently
depending on which type of object is used, because each subclass
overrides and changes some of the behavior from the superclass.
This is polymorphism at work.

Here is an example test file that uses Employee objects
polymorphically as parameters to a static method:

 1 // Demonstrates polymorphism by passing many types of

employees

 2 // as parameters to the same method.

 3 public class EmployeeMain3 {

 4 public static void main(String[] args) {

 5 Employee edna = new Employee();

 6 Lawyer lucy = new Lawyer();

 7 Secretary stan = new Secretary();

 8 LegalSecretary leo = new LegalSecretary();

 9

10 printInfo(edna);

11 printInfo(lucy);

12 printInfo(stan);

13 printInfo(leo);

14 }

15

16 // Prints information about any kind of employee.

17 public static void printInfo(Employee e) {

18 System.out.print(e.getHours() + ", ");

19 System.out.printf("$%.2f, ", e.getSalary());

20 System.out.print(e.getVacationDays() + ", ");

21 System.out.print(e.getVacationForm() + ", ");

22 System.out.println(e); // toString representation of

employee

23 }

24 }

Notice that the method lets us pass many different types of
Employees as parameters, and it produces different behavior
depending on the type that is passed. Polymorphism gives us this
flexibility. The last token of output printed for each employee is the
employee object itself, which calls the toString method on the
object. Our classes don’t have toString methods, so the program
uses the default behavior, which prints the class name plus some
extra hexadecimal characters. This allows us to distinguish the
classes in the output. The program produces output such as the
following:

40, $40000.00, 10, yellow, Employee@10b30a7

40, $40000.00, 15, pink, Lawyer@1a758cb

40, $40000.00, 10, yellow, Secretary@1b67f74

40, $45000.00, 10, yellow, LegalSecretary@69b332

The word “polymorphism” comes from the Greek words “poly” and
“morph,” which mean “many” and “forms,” respectively. The lines of
code in the printInfo method are polymorphic because their
behavior will take many forms depending on what type of employee
is passed as the parameter.

The program doesn’t know which getSalary or getVacationForm
method to call until it’s actually running. When the program reaches
a particular call to an object’s method, it examines the actual object
to see which method to call. This concept has taken many names
over the years, such as late binding, virtual binding, and dynamic
dispatch.

When you send messages to an object stored in a variable of a
superclass type, it is legal only to call methods that are known to the
superclass. For example, the following code will not compile
because the Employee class does not have a takeDictation or
fileLegalBriefs method:

Employee ed = new LegalSecretary();

ed.takeDictation("Hello!"); // compiler error

ed.fileLegalBriefs(); // compiler error

The compiler does not allow this code because the variable ed could
theoretically refer to any kind of employee, including one that does
not know how to take dictation or file legal briefs. Even though we
know it must refer to a LegalSecretary because the code is so
simple, the compiler enforces this rule strictly and returns an error
message. The same thing happens if you write a method that
accepts an Employee as a parameter; you cannot call subclass-only
methods such as takeDictation , sue , or fileLegalBriefs on the
object that is passed in, even if the actual object might have those
methods.

The variable’s type can be any type equal or higher in the
inheritance hierarchy compared to the actual object. So we could
store a legal secretary in a variable of type Secretary , which would
allow us to execute any standard secretary behavior, including taking
dictation:

Secretary steve = new LegalSecretary();

steve.takeDictation("Hello!"); // OK

steve.fileLegalBriefs(); // compiler error

It is legal to cast a variable into a different type of reference in order
to make a call on it. This does not change the type of the object, but
it promises the compiler that the variable really refers to an object of
the other type. For example, the following code works successfully:

Employee ed = new Secretary();

((Secretary) ed).takeDictation("Hello!"); // OK

You can only cast a reference to a compatible type, one above or
below it in its inheritance hierarchy. The preceding code will compile,
but it would crash at runtime if the variable ed did not actually refer
to an object of type Secretary or one of its subclasses.

Polymorphism Mechanics

Inheritance and polymorphism introduce some complex new
mechanics and behavior into programs. One useful way to get the
hang of these mechanics is to perform exercises to interpret the
behavior of programs with inheritance. The main goal of these
exercises is to help you understand in detail what happens when a
Java program with inheritance executes.

The EmployeeMain3 program developed in the previous section serves
as a template for inheritance questions of the following form: Given a
certain hierarchy of classes, what behavior would result if we created
several objects of the different types and called their various
methods on them?

In order to use polymorphism and keep our program compact, we’ll
store the objects in an array. In the case of the Employee hierarchy,

it’s legal for an object of class Lawyer , Secretary , or any other
subclass of Employee to reside as an element of an Employee[] .

The following program produces the same output as the
EmployeeMain3 program from the previous section:

 1 // Demonstrates polymorphism in an array of objects.

 2 public class EmployeeMain4 {

 3 public static void main(String[] args) {

 4 Employee[] employees = {new Employee(), new

Lawyer(),

 5 new Secretary(), new LegalSecretary()};

 6

 7 // print information about each employee

 8 for (Employee e: employees) {

 9 System.out.print(e.getHours() + ", ");

10 System.out.printf("$%.2f, ", e.getSalary());

11 System.out.print(e.getVacationDays() + ", ");

12 System.out.print(e.getVacationForm() + ", ");

13 System.out.println(e); // calls toString

14 }

15 }

16 }

Even if you didn’t understand inheritance, you might be able to
deduce some things about the hierarchy from the classes’ names
and the relationships among employees in the real world. So let’s

take this exercise one step further. Instead of using descriptive
names for the classes, we’ll use letters so that you have to read the
code in order to determine the class relationships and behavior.

Assume that the following classes have been defined:

 1 public class A {

 2 public void method1() {

 3 System.out.println("A 1");

 4 }

 5

 6 public void method2() {

 7 System.out.println("A 2");

 8 }

 9

10 public String toString() {

11 return "A";

12 }

13 }

 1 public class B extends A {

 2 public void method2() {

 3 System.out.println("B 2");

 4 }

 5 }

 1 public class C extends A {

 2 public void method1() {

 3 System.out.println("C 1");

 4 }

 5

 6 public String toString() {

 7 return "C";

 8 }

 9 }

 1 public class D extends C {

 2 public void method2() {

 3 System.out.println("D 2");

 4 }

 5 }

Consider the following client code that uses these classes. It takes
advantage of the fact that every other class extends class A (either
directly or indirectly), so the array can be of type A[] . When you call
methods on the elements of the array, polymorphic behavior will
result:

 1 // Client program to use the A, B, C, and D classes.

 2 public class ABCDMain {

 3 public static void main(String[] args) {

 4 A[] elements = {new A(), new B(), new C(), new

D()};

 5

 6 for (int i = 0; i < elements.length; i++) {

 7 System.out.println(elements[i]);

 8 elements[i].method1();

 9 elements[i].method2();

10 System.out.println();

11 }

12 }

13 }

It’s difficult to interpret such code and correctly determine its output.
In the next section we’ll present techniques for doing so.

Interpreting Inheritance Code

To determine the output of a polymorphic program like the one in the
previous section, you must determine what happens when each
element is printed (i.e., when its toString method is called) and
when its method1 and method2 methods are called. You can draw a
diagram of the classes and their methods to see the hierarchy
ordering and see which methods exist in each class. Draw each
class as a box listing its methods, and connect subclasses to their
superclasses with arrows, as shown in Figure 9.2 . (This is a

simplified version of a common design document called a UML class
diagram.)

Figure 9.2 Hierarchy of classes A, B, C, and D

A good second step is to write a table that lists each class and its
methods’ output. Write the output not just for the methods defined in
each class, but also for the ones that the class inherits. Since the A
class is at the top of the hierarchy, we’ll start there.

When someone calls method1 on an A object, the resulting output is
"A 1" . When someone calls method2 on an A object, the resulting
output is "A 2" . When someone prints an A object with toString , the
resulting output is "A" . We can fill in the first column of our table as
shown in Table 9.2 .

Table 9.2 Method Output for Class A

The next layer in the hierarchy is the B class, which inherits all the
behavior from A , except that it overrides the method2 output to be "B
2" . That means you can fill in the B output on your table identically
to the A output, except that you replace "A 2" with "B 2" . Table
9.3 shows the table so far.

Table 9.3 Method Output for Classes A and B

The C class also inherits all the behavior from A , but it overrides the
method1 output to be "C 1" and it overrides the toString method to
return "C" . Thus, the C output in the table will have the same
second line as the A output, but we replace "A 1" with "C 1" and
"A" with "C" . Table 9.4 shows the updated table.

Table 9.4 Method Output for Classes A , B , and C

The D class inherits all the behavior from C , except that it overrides
the method2 output to say "D 2" . The final output data are shown in

Table 9.5 .

Table 9.5 Method Output for Classes A , B , C , and D

Once you’ve created your table, you can find the output of the client
code. The array contains an A object, a B object, a C object, and a
D object. For each of these it prints the toString output, then calls
method1 , then calls method2 , then prints a blank line. When a method
gets called on an object, you can look up the output of that method
for that type in the table. The following is the complete output for the
exercise:

A

A 1

A 2

A

A 1

B 2

C

C 1

A 2

C

C 1

D 2

Interpreting Complex Calls

In a more complicated version of the previous inheritance exercise, a
class’s methods might call each other or interact with the superclass.
Consider the following classes. Notice that they are listed in random
order and that their methods’ behavior is more complicated than the
previous example:

 1 public class E extends F {

 2 public void method2() {

 3 System.out.print("E 2 ");

 4 method1();

 5 }

 6 }

 1 public class F extends G {

 2 public String toString() {

 3 return "F";

 5 }

 6

 7 public void method2() {

 8 System.out.print("F 2 ");

 9 super.method2();

10 }

11 }

 1 public class G {

 2 public String toString() {

 3 return "G";

 5 }

 6

 7 public void method1() {

 8 System.out.print("G 1 ");

 9 }

10

11 public void method2() {

12 System.out.print("G 2 ");

13 }

14 }

 1 public class H extends E {

 2 public void method1() {

 3 System.out.print("H 1 ");

 5 }

 6 }

In order to determine the best order in which to examine the classes,
you could draw a diagram like the one in Figure 9.2 . Then make a
table and fill in each class’s behavior from top to bottom in the
hierarchy. First identify the top class in the hierarchy. Look for the
one whose header has no extends clause. In this example, that is
the G class. Its methods have simple behavior, so we can fill in that
row of the table immediately, as shown in Table 9.6 .

Table 9.6 Method Output for Class G

The next class in the hierarchy is F , which extends G . The method1
is not overridden, so its output is "G 1 " as it was in the superclass.
F does override toString to return "F" . It also overrides method2 to
print "F 2 " and then call the superclass’s (G ’s) version of method2 .
When there is a call to a superclass’s method, we can evaluate its
output immediately and put it into our table by looking at the
superclass. This means that the F class’s method2 prints "F 2 G 2" .
Table 9.7 shows this information.

Table 9.7 Method Output for Classes F and G

The next class to tackle is E , which extends F . It does not override
method1 or toString , so these methods produce the same output as
they do in superclass F . Class E does override method2 to print "E 2
" and then call method1 . Since method1 prints "G 1 " , calling method2
on an E object prints "E 2 G 1 " .

But here’s where things get tricky: You shouldn’t write this output in
your table. The reason will become clear when we look at the H
class, which is a subclass of E that overrides method1 . Because of
polymorphism, if you call method2 on an H object, when it makes the
inner call to method1 , it will use the version from the H class. What
you should write into your table for E ’s method2 output is that it prints
"E 2 " and then calls method1 . Table 9.8 shows the information
for class E .

Table 9.8 Method Output for Classes E , F , and G

Lastly we will examine class H , which extends E . It does not
override toString , so it produces the same output as in superclass
E . It overrides only method1 to print "H 1 " . These methods are
simple (they don’t call any others), so we can write the toString and
method1 output into the table immediately.

Class H doesn’t override method2 , so you may think that you can
copy over its output from superclass E . But remember that the
inherited method2 prints "E 2 " and then calls method1 . In this case,
we are thinking from the perspective of an H object. So that inner
call to method1 now prints "H 1 " instead of the old output. This
means that calling method2 on an H object actually prints "E 2 H 1 " .
Table 9.9 shows the final output for all methods.

Table 9.9 Method Output for Classes E , F , G , and H

9.4 Inheritance and Design
Inheritance affects the thought processes you should use when
designing object-oriented solutions to programming problems. You
should be aware of similarities between classes and potentially
capture those similarities with inheritance relationships and
hierarchies. The designers of the Java class libraries have followed
these principles, as we’ll see when we examine a graphical subclass
in this section.

However, there are also situations in which using inheritance seems
like a good choice but turns out to produce poor results. Misuse of
inheritance can introduce some pitfalls and problems that we’ll now
examine.

A Misuse of Inheritance

Imagine that you want to write a program that deals with points in
three-dimensional space, such as a three-dimensional game,
rendering program, or simulation. A Point3D class would be useful
for storing the positions of objects in such a program.

This seems to be a case in which inheritance will be useful to extend
the functionality of existing code. Many programmers would be

tempted to have Point3D extend Point and simply add the new code
for the -coordinate. Here’s a quick implementation of a minimal
Point3D class that extends Point :

 1 // A Point3D object represents an (x, y, z) location.

 2 // This is not a good design to follow.

 3

 4 public class Point3D extends Point {

 5 private int z;

 6

 7 // constructs a new 3D point with the given coordinates

 8 public Point3D(int x, int y, int z) {

 9 super(x, y);

10 this.z = z;

11 }

12

13 // returns the z-coordinate of this Point3D

14 public int getZ() {

15 return z;

16 }

17 }

On the surface, this seems to be a reasonable implementation.
However, consider the equals method defined in the Point class. It
compares the - and -coordinates of two Point objects and returns
true if they are the same:

z

x y

// returns whether o refers to a Point with the same

// (x, y) coordinates as this Point

public boolean equals(Object o) {

 if (o instanceof Point) {

 Point other = (Point) o;

 return x == other.x && y == other.y;

 } else { // not a Point object

 return false;

 }

}

You might also want to write an equals method for the Point3D class.
Two Point3D objects are equal if they have the same -, -, and -
coordinates. The following is a working implementation of equals
that is correct but stylistically unsatisfactory:

public boolean equals(Object o) {

 if (o instanceof Point3D) {

 Point3D p = (Point3D) o;

 return getX() == p.getX() && getY() == p.getY() && z ==

p.z;

 } else {

 return false;

 }

}

x y z

The preceding code compiles and runs correctly in many cases, but
it has a subtle problem that occurs when you compare Point objects
to Point3D objects. The Point class’s equals method tests whether
the parameter is an instance of Point and returns false if it is not.
However, the instanceof operator will return true not only if the
variable refers to that type, but also if it refers to any of its
subclasses. Consider the following test in the equals method of the
Point class:

if (o instanceof Point) {

 ...

}

The test will evaluate to true if o refers to a Point object or a
Point3D object. The instanceof operator is like an is-a test, asking
whether the variable refers to any type that can fill the role of a
Point . By contrast, Point3D ’s equals method tests whether the
parameter is an instance of Point3D and rejects it if it is not. A Point
cannot fill the role of a Point3D (not every Point is a Point3D), so the
method will return false if the parameter is of type Point .

Consequently, the equals behavior is not symmetric when it is used
with a mixture of Point and Point3D objects. The following client
code demonstrates the problem:

Point p = new Point(12, 7);

Point3D p3d = new Point3D(12, 7, 11);

System.out.println("p.equals(p3d) is " + p.equals(p3d));

System.out.println("p3d.equals(p) is " + p3d.equals(p));

The code produces the output that follows. The first test returns true
because a Point can accept a Point3D as the parameter to equals ,
but the second test returns false because a Point3D cannot accept
a Point as its parameter to equals :

p.equals(p3d) is true

p3d.equals(p) is false

This is a problem, because the contract of the equals method
requires it to be a symmetric operation. You’d encounter other
problems if you added more behavior to Point3D , such as a
setLocation or distance method.

Proper object-oriented design would not allow Point3D to extend
Point , because any code that asks for a Point object should be able
to work correctly with a Point3D object as well. We call this principle
substitutability. (It is also sometimes called the Liskov substitution

principle, in honor of the Turing Award–winning author of a 1993
paper describing the idea.)

Substitutability
The ability of an object of a subclass to be used
successfully anywhere an object of the superclass is
expected.

Fundamentally, a Point3D isn’t the same thing as a Point , so an is-a
relationship with inheritance is the wrong choice. In this case, you’re
better off writing Point3D from scratch and avoiding these thorny
issues.

Is-a Versus Has-a Relationships

There are ways to connect related objects without using inheritance.
Consider the task of writing a Circle class, in which each Circle
object is specified by a center point and a radius. It might be
tempting to have Circle extend Point and add the radius field.
However, this approach is a poor choice because a class is only

supposed to capture one abstraction, and a circle simply isn’t a
point.

A point does make up a fundamental part of the state of each Circle
object, though. To capture this relationship in the code, you can have
each Circle object hold a Point object in a field to represent its
center. One object containing another as state is called a has-a
relationship.

Has-a Relationship
A connection between two objects where one has a
field that refers to the other. The contained object acts
as part of the containing object’s state.

Has-a relationships are preferred over is-a relationships in cases in
which your class cannot or should not substitute for the other class.
As a nonprogramming analogy, people occasionally need legal
services in their lives, but most of them will choose to have a lawyer
handle the situation rather than to be a lawyer themselves.

The following code presents a potential initial implementation of the
Circle class:

 1 // Represents circular shapes.

 2 public class Circle {

 3 private Point center;

 4 private double radius;

 5

 6 // constructs a new circle with the given radius

 7 public Circle(Point center, double radius) {

 8 this.center = center;

 9 this.radius = radius;

10 }

11

12 // returns the area of this circle

13 public double getArea() {

14 return Math.PI * radius * radius;

15 }

16 }

This design presents a Circle object as a single clear abstraction
and prevents awkward commingling of Circle and Point objects.

Graphics2D

Use of inheritance is prevalent in the Java class libraries. One
notable example is in the drawing of two-dimensional graphics. In

this section we’ll discuss a class that uses inheritance to draw
complex two-dimensional shapes and to assign colors to them.

In the Chapter 3 supplement on graphics, we introduced an
object called Graphics which acts like a pen that you can use to draw
shapes and lines onto a window. When Java’s designers wanted
additional graphical functionality, they extended the Graphics class
into a more powerful class called Graphics2D . This is a good example
of one of the more common uses of inheritance: to extend and reuse
functionality from a powerful existing object.

Why didn’t the designers of Java simply add the new methods into
the existing Graphics class? The Graphics class already worked
properly, so they decided it was best not to perform unnecessary
surgery on it. John Vlissides, part of a famous foursome of software
engineers affectionately called the “Gang of Four,” once described
the idea this way: “A hallmark—if not the hallmark—of good object-
oriented design is that you can modify and extend a system by
adding code rather than by hacking it. In short, change is additive,
not invasive.”

Making Graphics2D extend Graphics retains backward compatibility.

Backward compatibility is the ability of new code to work correctly
with old code without modifying the old code. Leaving Graphics
untouched ensured that old programs would keep working properly
and gave new programs the option to use the new Graphics2D
functionality.

The documentation for Graphics2D describes the purpose of the
class as follows. “This Graphics2D class extends the Graphics class
to provide more sophisticated control over geometry, coordinate
transformations, color management, and text layout. This is the
fundamental class for rendering 2-dimensional shapes, text, and
images on the Java platform.” To be specific, Graphics2D adds the
ability to perform transformations such as scaling and rotation when
you’re drawing. These capabilities can lead to some fun and
interesting images on the screen.

If you used the DrawingPanel class from Chapter 3 ’s graphical
supplement, you previously wrote statements like the following to get
access to the panel’s Graphics object:

Graphics g = panel.getGraphics();

Actually, the getGraphics method doesn’t return a Graphics object at
all, but rather a Graphics2D object. Because of polymorphism,
though, it is legal for your program to treat it as a Graphics object,
because every Graphics2D object “is” a Graphics object. To use it as
a Graphics2D object instead, simply write the following line of code:

Graphics2D g2 = panel.getGraphics();

Table 9.10 lists some of Graphics2D ’s extra methods.

Table 9.10 Useful Methods of Graphics2D Objects

The following program demonstrates Graphics2D . The rotate
method’s parameter is an angle of rotation measured in radians
instead of degrees. Rather than memorizing the conversion between
degrees and radians, we can use a static method from the Math
class called toRadians that converts a degree value into the
equivalent radian value:

 1 // Draws a picture of rotating squares using Graphics2D.

 2

 3 import java.awt.*;

 4

 5 public class FancyPicture {

 6 public static void main(String[] args) {

 7 DrawingPanel panel = new DrawingPanel(250, 220);

 8 Graphics2D g2 = panel.getGraphics();

 9 g2.translate(100, 120);

10 g2.fillRect(–5, –5, 10, 10);

11

12 for (int i = 0; i <= 12; i++) {

13 g2.setColor(Color.BLUE);

14 g2.fillRect(20, 20, 20, 20);

15

16 g2.setColor(Color.BLACK);

17 g2.drawString("" + i, 20, 20);

18

19 g2.rotate(Math.toRadians(30));

20 g2.scale(1.1, 1.1);

21 }

22 }

23 }

Figure 9.3 shows the program’s output.

Figure 9.3 Output of FancyPicture

9.5 Interfaces

Inheritance is a very useful tool because it enables polymorphism
and code sharing, but it does have several limitations. Because Java
uses single inheritance, a class can extend only one superclass.
This makes it impossible to use inheritance to set up multiple is-a
relationships for classes that share multiple characteristics, such as
an employee who is both part-time and a secretary. (Some
languages, such as C++, do allow multiple inheritance, but this can
be complicated and cause subtle problems, so the designers of Java
left it out of the language.) There are also situations in which you
want is-a relationships and polymorphism but you don’t want to
share code, in which case inheritance isn’t the right tool for the job.

To this end, Java provides a feature called an interface that can
represent a common supertype between several classes without
code sharing.

Interface
A type that consists of a set of method declarations;
when classes promise to implement an interface, you
can treat those classes similarly in your code.

An interface is like a class, but it contains only method headers
without bodies. A class can promise to implement an interface,
meaning that the class promises to provide implementations of all
the methods that are declared in the interface. Classes that
implement an interface form an is-a relationship with that interface.
In a system with an interface that is implemented by several classes,
polymorphic code can handle objects from any of the classes that
implement that interface.

A nonprogramming analogy for an interface is a professional
certification. It’s possible for a person to become certified as a
teacher, nurse, accountant, or doctor. To do this, the person must
demonstrate certain abilities required of members of those
professions. When employers hire someone who has received the
proper certification, they expect that the person will be able to
perform certain job duties. An interface acts as a certification that
classes can meet by implementing all the behavior described in the
interface. Code that receives an object implementing an interface
can rely on the object having certain behavior.

Interfaces are also used to define roles that objects can play; for
example, a Date class might implement the Comparable interface to
indicate that Date objects can be compared to each other, or a Point
class might implement the Cloneable interface to indicate that a
Point object can be replicated.

Interfaces are used in many other places in Java’s class libraries.
Here are just a few of Java’s important interfaces:

The ActionListener interface in the java.awt package is used to
assign behavior to events when a user clicks on a button or other
graphical control.
The Serializable interface in the java.io package denotes
classes whose objects may be saved to files and transferred over
a network.
The Comparable interface allows you to describe how to compare
objects of your type to determine which are less than, greater
than, or equal to each other. This technique can be used to
search or sort a collection of objects.
The Formattable interface lets objects describe different ways
that they can be printed by the System.out.printf command.
The Runnable interface is used for multithreading, which allows a
program to execute two pieces of code at the same time.
Interfaces such as List , Set , Map , and Iterator in the java.util
package describe data structures that you can use to store
collections of objects.

We will cover some of these interfaces in later chapters.

Beginning with Java 8, interfaces are now allowed to contain
implementations of “default” methods and static methods, but we will
not explore those features in this chapter.

An Interface for Shapes

In this section, we’ll use an interface to define a polymorphic
hierarchy of shape classes without sharing code between them.
Imagine that we are creating classes to represent many different
types of shapes, such as rectangles, circles, and triangles. We might
be tempted to use inheritance with these shape classes because
they seem to share some common behavior (all shapes have an
area and a perimeter, for example).

There is an is-a relationship here, because a rectangle, a circle, and
a triangle are all shapes. But code sharing isn’t useful in this case
because each class implements its behavior differently. As depicted
in Figure 9.4 and Table 9.11 , each shape computes its area
and perimeter in a totally different way. The and represent the
rectangle’s width and height; the represents the circle’s radius; and
the and represent the lengths of the triangle’s three sides.

Figure 9.4 Three types of shapes

w h

r

a, b, c

Table 9.11 Formulas for Area and Perimeter of Each Shape Type

Since no code is shared among these classes, we should not create
a common superclass to represent their is-a relationship. Java uses
single inheritance, and we don’t want to use up our only potential
inheritance relationship here. A better solution would be to write an
interface called Shape to represent the common functionality of all
shapes: the ability to ask for an area and a perimeter. Our various
shape classes will implement this interface.

To write an interface, we create a new file with the same name as
the interface’s name; our Shape interface, for example, would be
stored in Shape.java . We give the interface a header with the
keyword interface in place of the word class :

public interface Shape {

 ...

}

Inside the interface, we write headers for each method that we want
a Shape to contain. But instead of writing method bodies with braces,
we simply place a semicolon at the end of each header. We don’t
specify how the methods are implemented. Instead, we’re requiring
that any class that wants to be considered a shape must implement
these methods. In fact, it isn’t legal for an interface to contain method
bodies; an interface can only contain method headers and class
constants.

The following is the complete code for our Shape interface. It
declares that shapes have methods to compute their areas and
perimeters as type double :

1 // A general interface for shape classes.

2 public interface Shape {

3 public double getArea();

4 public double getPerimeter();

5 }

The methods of an interface are sometimes called abstract methods
because we only declare their names and signatures; we don’t
specify how they will be implemented.

Abstract Method

A method that is declared (as in an interface) but not
implemented. Abstract methods represent the behavior
that a class promises to implement when it implements
an interface.

Writing the public keyword on an interface’s method headers is
optional. We chose to include the public keyword so that the
declarations in the interface would match the headers of the method
implementations in the classes. The general syntax we’ll use for
declaring an interface is the following:

public interface <name> {

 public <type> <name>(<type> <name>, . . . , <type> <name>);

 public <type> <name>(<type> <name>, . . . , <type> <name>);

 ...

 public <type> <name>(<type> <name>, . . . , <type> <name>);

}

Although superficially, classes and interfaces look alike, an interface
cannot be instantiated; that is, you cannot create objects of its type.
In our case, any code trying to create a new Shape() would not
compile. It is, however, legal to declare variables of type Shape that
can refer to any object that implements the Shape interface, as we’ll
explore in a moment.

Implementing an Interface

Now that we’ve written a Shape interface, we want to connect the
various classes of shapes to it. To connect a class to our interface
with an is-a relationship, we must do two things:

1. Declare that the class “implements” the interface.
2. Implement each of the interface’s methods in the class.

The general syntax for declaring that a class implements an interface
is the following:

public class <name> implements <interface> {

 ...

}

We must modify the headers of our various shape classes to indicate
that they implement all of the methods in the Shape interface. The file
Rectangle.java , for example, should begin like this:

public class Rectangle implements Shape {

 ...

}

When we claim that our Rectangle class implements Shape , we are
promising that the Rectangle class will contain implementations of
the getArea and getPerimeter methods. If a class claims to
implement Shape but does not have a suitable getArea or
getPerimeter method, it will not compile. For example, if we leave the
body of our Rectangle class empty and try to compile it, the compiler
will give errors like the following:

Rectangle.java:2: Rectangle is not abstract and does not

override abstract

 method getPerimeter()

public class Rectangle implements Shape {

 ^

1 error

In order for the code to compile, we must implement the getArea and
getPerimeter methods in our Rectangle class. We’ll define a
Rectangle object by a width and a height. Since the area of a
rectangle is equal to its width times its height, we’ll implement the
getArea method by multiplying its fields. We’ll then use the perimeter
formula 2 * (w + h) to implement getPerimeter . Here is the
complete Rectangle class that implements the Shape interface:

 1 // Represents rectangular shapes.

 2 public class Rectangle implements Shape {

 3 private double width;

 4 private double height;

 5

 6 // constructs a new rectangle with the given dimensions

 7 public Rectangle(double width, double height) {

 8 this.width = width;

 9 this.height = height;

10 }

11

12 // returns the area of this rectangle

13 public double getArea() {

14 return width * height;

15 }

16

17 // returns the perimeter of this rectangle

18 public double getPerimeter() {

19 return 2.0 * (width + height);

20 }

21 }

The other classes of shapes are implemented in a similar fashion.
We’ll define a Circle object to have a field called radius . (We’ll
abandon the center Point object used in the Circle class earlier in
the chapter, since we don’t need it here.) We can determine the area
by multiplying by the radius squared. To find the perimeter, we’ll
use the equation 2 * * r . Notice that there is no common code

π

π

between Circle and Rectangle , so inheritance is unnecessary. Here
is the complete Circle class:

 1 // Represents circular shapes.

 2 public class Circle implements Shape {

 3 private double radius;

 4

 5 // constructs a new circle with the given radius

 6 public Circle(double radius) {

 7 this.radius = radius;

 8 }

 9

10 // returns the area of this circle

11 public double getArea() {

12 return Math.PI * radius * radius;

13 }

14

15 // returns the perimeter of this circle

16 public double getPerimeter() {

17 return 2.0 * Math.PI * radius;

18 }

19 }

Finally, we’ll specify a triangle’s shape by its three side lengths,
and The perimeter of the triangle is simply the sum of the three
side lengths. The getArea method is a bit trickier, but there is a
useful geometric formula called Heron’s formula which says that the

a, b,
c.

area of a triangle with sides of lengths and is related to a
value that is equal to half the triangle’s perimeter:

Here is a complete version of the Triangle class:

 1 // Represents triangular shapes.

 2 public class Triangle implements Shape {

 3 private double a;

 4 private double b;

 5 private double c;

 6

 7 // constructs a new triangle with the given side

lengths

 8 public Triangle(double a, double b, double c) {

 9 this.a = a;

10 this.b = b;

11 this.c = c;

12 }

13

14 // returns this triangle's area using Heron's formula

15 public double getArea() {

16 double s = (a + b + c) / 2.0;

17 return Math.sqrt(s * (s – a) * (s – b) * (s – c));

18 }

19

a, b, c

s

area = √s(s − a)(s − b)(s − c) where s =
a + b + c

2

20 // returns the perimeter of this triangle

21 public double getPerimeter() {

22 return a + b + c;

23 }

24 }

Using these shape classes and their common interface, a client
program can now construct an array of shapes, write a method that
accepts a general shape as a parameter, and otherwise take
advantage of polymorphism.

Benefits of Interfaces

Classes that implement a common interface form a type hierarchy
similar to those created by inheritance. The interface serves as a
parent type for the classes that implement it. The following diagram
represents our type hierarchy after our modifications. The way we
represent an interface is similar to the way we represent a class, but
we use the word “interface” for clarity. The methods are italicized to
emphasize that they are abstract. Figure 9.5 shows our use of
dashed lines to connect the classes and the interface they
implement.

Figure 9.5 Hierarchy of shape classes

The major benefit of interfaces is that we can use them to achieve
polymorphism. We can create an array of Shapes , pass a Shape as a
parameter to a method, return a Shape from a method, and so on.
The following program uses the shape classes in an example that is
similar to the polymorphism exercises in Section 9.3 :

 1 // Demonstrates shape classes.

 2 public class ShapesMain {

 3 public static void main(String[] args) {

 4 Shape[] shapes = new Shape[3];

 5 shapes[0] = new Rectangle(18, 18);

 6 shapes[1] = new Triangle(30, 30, 30);

 7 shapes[2] = new Circle(12);

 8

 9 for (int i = 0; i < shapes.length; i++) {

10 System.out.println("area = " +

shapes[i].getArea() +

11 ", perimeter = " +

12 shapes[i].getPerimeter());

13 }

14 }

15 }

This program produces the following output:

area = 324.0, perimeter = 72.0

area = 389.7114317029974, perimeter = 90.0

area = 452.3893421169302, perimeter = 75.39822368615503

It would be fairly easy to modify our client program if another shape
class, such as Hexagon or Ellipse , were added to the hierarchy. This
is another example of the desired property of “additive, not invasive”
change that we mentioned earlier in this chapter.

It may seem odd that we can have interface variables, arrays, and
parameters when it isn’t possible to construct an object of an
interface type, but all this capacity means is that any object of a type
which implements that interface may be used. In our case, any type
that implements Shape (such as Circle , Rectangle , or Triangle) may
be used.

Also recall that interfaces help us cope with the limitations of single
inheritance. A class may extend only one superclass but may
implement arbitrarily many interfaces. The following is the general
syntax for headers of classes that extend a superclass and
implement one or more interfaces:

public class <name> extends <superclass>

 implements <interface>, <interface>, ..., <interface>

{

 ...

}

Many classes in the Java class libraries both extend a superclass
and implement one or more interfaces. For example, the PrintStream
class (of which System.out is an instance) has the following header:

public class PrintStream extends FilterOutputStream

 implements Appendable, Closeable

9.6 Case Study: Financial Class
Hierarchy
As you write larger and more complex programs, you will end up with
more classes and more opportunities to use inheritance and
interfaces. It is important to practice devising sensible hierarchies of
types, so that you will be able to solve large problems by breaking
them down into good classes in the future.

When you are designing an object-oriented system, you should ask
yourself the following questions:

What classes of objects should I write?
What behavior does the client want each of these objects to
have?
What data do the objects need to store in order to implement this
behavior?
Are the classes related? If so, what is the nature of the
relationships?

Having good answers to these questions, along with a good
knowledge of the necessary Java syntax, is a good start toward
designing an object-oriented system. Such a process is called
object-oriented design. We discussed some object-oriented design
heuristics in the case study of Chapter 8 .

Object-Oriented Design (OOD)
Modeling a program or system as a collection of
cooperating objects, implemented as a set of classes
using class hierarchies.

Let’s consider the problem of gathering information about a person’s
financial investments. We’ve already explored a Stock example in
this chapter and the previous chapter, as well as a DividendStock
class to handle stocks that pay dividends. But stocks are not the only
type of asset that investors might have in their financial portfolios.
Other investments might include mutual funds, real estate, or cash.

How would you design a complete portfolio system? What new types
of objects would you write? Take a moment to consider the problem.
We’ll discuss an example design next.

Designing the Classes

Each type of asset deserves its own class. We already have the
Stock class from the last chapter and its DividendStock subclass
from earlier in this chapter, and we can add classes like MutualFund

and Cash . Each object of each of these types will represent a single
investment of that type. For example, a MutualFund object will
represent a purchase of a mutual fund, and a Cash object will
represent a sum of money in the user’s portfolio. The available types
are shown in Figure 9.6 . What data and behavior are necessary
in each of these types of objects? Take a moment to consider it.

Figure 9.6 Financial classes

Though each type of asset is unique, the types do have some
common behavior: Each asset should be able to compute its current
market value and profit or loss, if any. These values are computed in
different ways for different asset types, though. For instance, a
stock’s market value is the total number of shares that the
shareholder owns, times the current price per share, while cash is
always worth exactly its own amount.

In terms of data, we decided previously that a Stock object should
store the stock’s symbol, the number of shares purchased, the total
cost paid for all shares, and the current price of the stock. Dividend
stocks also need to store the amount of dividends paid. A MutualFund
object should store the same data as a Stock object, but mutual
funds can hold partial shares. Cash only needs to store its own
amount. Figure 9.7 updates our diagram of types to reflect this
data and behavior.

Figure 9.7 Financial classes with state and behavior

The asset types are clearly related. Perhaps we’d want to gather and
store a person’s portfolio of assets in an array. It would be
convenient to be able to treat any asset the same way, insofar as
they share similar functionality. For example, every asset has a
market value, so it would be nice to be able to compute the total
market value of all assets in an investor’s portfolio, without worrying
about the different types of assets.

Because different assets compute their market values in different
ways, we should consider using an interface to represent the notion
of an asset and have every class implement the asset interface. Our
interface will demand that all assets have methods to calculate the
market value and profit. The interface is a way of saying, “Classes
that want to consider themselves assets must have getMarketValue
and getProfit methods.” Our interface for financial assets would be
saved in a file called Asset.java and would look like this:

1 // Represents financial assets that investors hold.

2 public interface Asset {

3 // how much the asset is worth

4 public double getMarketValue();

5

6 // how much money has been made on this asset

7 public double getProfit();

8 }

We’ll have our various classes certify that they are assets by making
them implement the Asset interface. For example, let’s look at the
Cash class. We didn’t write a getProfit method in our previous
diagram of Cash , because the value of cash doesn’t change and
therefore it doesn’t have a profit. To indicate this quality, we can write
a getProfit method for Cash that returns 0.0 . The Cash class should
look like this:

 1 // A Cash object represents an amount of money held by an

investor.

 2 public class Cash implements Asset {

 3 private double amount; // amount of money held

 4

 5 // constructs a cash investment of the given amount

 6 public Cash(double amount) {

 7 this.amount = amount;

 8 }

 9

10 // returns this cash investment's market value, which

11 // is equal to the amount of cash

12 public double getMarketValue() {

13 return amount;

14 }

15

16 // since cash is a fixed asset, it never has any profit

17 public double getProfit() {

18 return 0.0;

19 }

20

21 // sets the amount of cash invested to the given value

22 public void setAmount(double amount) {

23 this.amount = amount;

24 }

25 }

As we discussed earlier in this chapter, a DividendStock is very
similar to a normal Stock , but it has a small amount of behavior
added. Let’s display DividendStock as a subclass of Stock through
inheritance, matching the design from earlier in the chapter. Figure
9.8 shows how our hierarchy should now look.

Figure 9.8 Financial class hierarchy

What about the similarity between mutual funds and stocks? They
both store assets that are based on shares, with a symbol, total cost,
and current price. It wouldn’t work very well to make one of them a
subclass of the other, though, because the type of shares (integer or

real number) isn’t the same, and also because it’s not a sensible is-a
relationship: stocks aren’t really mutual funds, and vice versa. It
might seem excessive to have a separate class for mutual funds
when the only difference is the existence of partial shares. But
conceptually, these are separate types of investments, and many
investors want to keep them separate. Also, there are some aspects
of mutual funds, such as tax ramifications and Morningstar ratings,
that are unique and that we might want to add to the program later.

Let’s modify our design by making a new superclass called
ShareAsset which represents any asset that has shares and that
contains the common behavior of Stock and MutualFund . Then we
can have both Stock and MutualFund extend ShareAsset , to reduce
redundancy.

Our previous versions of the Stock and DividendStock classes each
had a getProfit method that required a parameter for the current
price per share. In order to implement the Asset interface with its
parameterless getMarketValue and getProfit methods, we’ll change
our design and create a field for the current price. We’ll also add
methods to get and set the value of the current price. The updated
type hierarchy is shown in Figure 9.9 .

Figure 9.9 Updated financial class hierarchy

This practice of redesigning code to meet new requirements is
sometimes called refactoring.

Refactoring
Changing a program’s internal structure without
modifying its external behavior to improve simplicity,
readability, maintainability, extensibility, performance,
etc.

Redundant Implementation

Here’s some potential code for the ShareAsset class:

 1 // A ShareAsset object represents a general asset that has a

symbol

 2 // and holds shares. Initial version.

 3 public class ShareAsset {

 4 private String symbol;

 5 private double totalCost;

 6 private double currentPrice;

 7

 8 // constructs a new share asset with the given symbol

 9 // and current price

10 public ShareAsset(String symbol, double currentPrice) {

11 this.symbol = symbol;

12 this.currentPrice = currentPrice;

13 totalCost = 0.0;

14 }

15

16 // adds a cost of the given amount to this asset

17 public void addCost(double cost) {

18 totalCost += cost;

19 }

20

21 // returns the price per share of this asset

22 public double getCurrentPrice() {

23 return currentPrice;

24 }

25

26 // returns this asset's total cost for all shares

27 public double getTotalCost() {

28 return totalCost;

29 }

30

31 // sets the current share price of this asset

32 public void setCurrentPrice(double currentPrice) {

33 this.currentPrice = currentPrice;

34 }

35 }

We stole some code from the Stock class and then made a few
changes so that the code would fit this interface. Our Stock code
accepted the current share price as a parameter to its getProfit
method. Since the getProfit method cannot accept any parameters
if we wish to implement the interface, we’ll instead store the current
share price as a field in the ShareAsset class and supply a
setCurrentPrice mutator method that can be called to set its proper
value. We also include a constructor that can initialize a Stock object
with any number of shares and a total cost.

One last modification we made in creating ShareAsset was to include
an addCost method, which we’ll use to add a given amount to the
asset’s total cost. We will need this because purchases of Stocks
and MutualFunds need to update the totalCost field, but they cannot
do so directly because it is private.

The Stock class can now extend ShareAsset to implement its
remaining functionality. Notice that we both extend ShareAsset and
implement the Asset interface in the class’s header:

 1 // A Stock object represents purchases of shares of a

stock.

 2 // Initial version.

 3 public class Stock extends ShareAsset implements Asset {

 4 private int totalShares;

 5

 6 // constructs a new Stock with the given symbol and

 7 // current price per share

 8 public Stock(String symbol, double currentPrice) {

 9 super(symbol, currentPrice);

10 totalShares = 0;

11 }

12

13 // returns the market value of this stock, which is

14 // the number of total shares times the share price

15 public double getMarketValue() {

16 return totalShares * getCurrentPrice();

17 }

18

19 // returns the total number of shares purchased

20 public int getTotalShares() {

21 return totalShares;

22 }

23

24 // returns the profit made on this stock

25 public double getProfit() {

26 return getMarketValue() – getTotalCost();

27 }

28

29 // records a purchase of the given number of shares of

30 // the stock at the given price per share

31 public void purchase(int shares, double pricePerShare)

{

32 totalShares += shares;

33 addCost(shares * pricePerShare);

34 }

35 }

The MutualFund class receives similar treatment, but with a double
for its total shares (the two classes are highly redundant; we’ll
improve them in the next section):

 1 // A MutualFund object represents a mutual fund asset.

 2 // Initial version.

 3 public class MutualFund extends ShareAsset implements Asset

{

 4 private double totalShares;

 5

 6 // constructs a new MutualFund investment with the

given

 7 // symbol and price per share

 8 public MutualFund(String symbol, double currentPrice) {

 9 super(symbol, currentPrice);

10 totalShares = 0.0;

11 }

12

13 // returns the market value of this mutual fund, which

14 // is the number of shares times the price per share

15 public double getMarketValue() {

16 return totalShares * getCurrentPrice();

17 }

18

19 // returns the number of shares of this mutual fund

20 public double getTotalShares() {

21 return totalShares;

22 }

23

24 // returns the profit made on this mutual fund

25 public double getProfit() {

26 return getMarketValue() – getTotalCost();

27 }

28

29 // records purchase of the given shares at the given

price

30 public void purchase(double shares, double

pricePerShare) {

31 totalShares += shares;

32 addCost(shares * pricePerShare);

33 }

34 }

The DividendStock simply adds an amount of dividend payments to a
normal Stock , which affects its market value. We don’t need to
override the getProfit method in DividendStock , because
DividendStock already inherits a getProfit method with the following
body:

return getMarketValue() – getTotalCost();

Notice that getProfit ’s body calls getMarketValue . The DividendStock
class overrides the getMarketValue method, with the convenient side
effect that any other method that calls getMarketValue (such as
getProfit) will also behave differently. This occurs because of
polymorphism; since getMarketValue is overridden, getProfit calls
the new version of the method. The profit will be correctly computed
with dividends because the dividends are added to the market value.

The following code implements the DividendStock class:

 1 // A DividendStock object represents a stock purchase that

also pays

 2 // dividends.

 3 public class DividendStock extends Stock {

 4 private double dividends; // amount of dividends paid

 5

 6 // constructs a new DividendStock with the given symbol

 7 // and no shares purchased

 8 public DividendStock(String symbol, double currentPrice)

{

 9 super(symbol, currentPrice); // call Stock

constructor

10 dividends = 0.0;

11 }

12

13 // returns this DividendStock's market value, which is

14 // a normal stock's market value plus any dividends

15 public double getMarketValue() {

16 return super.getMarketValue() + dividends;

17 }

18

19 // records a dividend of the given amount per share

20 public void payDividend(double amountPerShare) {

21 dividends += amountPerShare * getTotalShares();

22 }

23 }

Abstract Classes

So far we have written classes, which are concrete implementations
of state and behavior, and interfaces, which are completely abstract
declarations of behavior. There is an entity that exists between these
two extremes, allowing us to define some concrete state and
behavior while leaving some abstract, without defined method
bodies. Such an entity is called an abstract class.

Abstract Class

A Java class that cannot be instantiated, but that
instead serves as a superclass to hold common code
and declare abstract behavior.

You probably noticed a lot of redundancy between the Stock and
MutualFund code in the last section. For example, although the
getMarketValue and getProfit methods have identical code, they
can’t be moved up into the ShareAsset superclass because they
depend on the number of shares, which is different in each child
class. Ideally, we should get rid of this redundancy somehow.

There is also a problem with our current ShareAsset class. A
ShareAsset isn’t really a type of asset that a person can buy; it’s just
a concept that happens to be represented in our code. It would be
undesirable for a person to actually try to construct a ShareAsset
object—we wrote the class to eliminate redundancy, not for clients to
instantiate it.

We can resolve these issues by designating the ShareAsset class as
abstract. Writing abstract in a class’s header will modify the class in
two ways. First, the class becomes noninstantiable, so client code
will not be allowed to construct an object of that type with the new
keyword. Second, the class is enabled to declare abstract methods
without bodies. Unlike an interface, though, an abstract class can

also declare fields and implement methods with bodies, so the
ShareAsset class can retain its existing code.

The general syntax for declaring an abstract class is

public abstract class <name> {

 ...

}

Thus, our new ShareAsset class header will be

public abstract class ShareAsset {

 ...

}

An attempt to create a ShareAsset object will now produce a compiler
error such as the following:

ShareAsset is abstract; cannot be instantiated

 ShareAsset asset = new ShareAsset("MSFT", 27.46);

 ^

1 error

Really, the Employee class introduced earlier in this chapter should
also have been an abstract class. We did not especially want client
code to construct Employee objects. No one is just an employee; the
Employee class merely represented a general category that we
wanted the other classes to extend.

Abstract classes are allowed to implement interfaces. Rather than
requiring all subclasses of ShareAsset to implement the Asset
interface, we can specify that ShareAsset implements Asset :

public abstract class ShareAsset implements Asset {

 ...

}

This indication will save ShareAsset subclasses from having to write
implements Asset in their class headers.

ShareAsset does not implement the getMarketValue method required
by Asset ; that functionality is left for its subclasses. We can instead
declare getMarketValue as an abstract method in the ShareAsset
class. Abstract methods declared in abstract classes need to have
the keyword abstract in their headers in order to compile properly.
Otherwise, the syntax is the same as when we declare an abstract
method in an interface, with a semicolon replacing the method’s
body:

// returns the current market value of this asset

public abstract double getMarketValue();

The general syntax for an abstract method declaration in an abstract
class is the following:

public abstract <type> <name> (<type> <name>, ..., <type>

<name>);

Another benefit of this design is that code in the abstract class can
actually call any of its abstract methods, even if they don’t have
implementations in that class. This is allowed because the abstract
class can count on its subclasses to implement the abstract
methods. Now that ShareAsset implements Asset , we can move the
common redundant getProfit code up to ShareAsset and out of
Stock and MutualFund :

// returns the profit earned on shares of this asset

public double getProfit() {

 // calls an abstract getMarketValue method

 // (the subclass will provide its implementation)

 return getMarketValue() – totalCost;

}

ShareAsset objects can call getMarketValue from their getProfit
methods even though that method isn’t present in ShareAsset . The
code compiles because the compiler knows that whatever class
extends ShareAsset will have to implement getMarketValue .

The following is the final version of the ShareAsset abstract class:

 1 // A ShareAsset represents a general asset that has a symbol

and

 2 // holds shares.

 3 public abstract class ShareAsset implements Asset {

 4 private String symbol;

 5 private double totalCost;

 6 private double currentPrice;

 7

 8 // constructs a new share asset with the given symbol

 9 // and current price

10 public ShareAsset(String symbol, double currentPrice) {

11 this.symbol = symbol;

12 this.currentPrice = currentPrice;

13 totalCost = 0.0;

14 }

15

16 // adds a cost of the given amount to this asset

17 public void addCost(double cost) {

18 totalCost += cost;

19 }

20

21 // returns the price per share of this asset

22 public double getCurrentPrice() {

23 return currentPrice;

24 }

25

26 // returns the current market value of this asset

27 public abstract double getMarketValue();

28

29 // returns the profit earned on shares of this asset

30 public double getProfit() {

31 // calls an abstract getMarketValue method

32 // (the subclass will provide its implementation)

33 return getMarketValue() – totalCost;

34 }

35

36 // returns this asset's total cost for all shares

37 public double getTotalCost() {

38 return totalCost;

39 }

40

41 // sets the current share price of this asset

42 public void setCurrentPrice(double currentPrice) {

43 this.currentPrice = currentPrice;

44 }

45 }

An abstract class is a useful hybrid that can contain both abstract
and nonabstract methods. All methods in the interfaces we have
written in this chapter have been implicitly abstract; we could have
declared them with the abstract keyword. Declaring them without
the abstract keyword as we have done in this chapter is a
commonly used shorthand for the longer explicit form. Unfortunately,
abstract classes disallow this shorthand to avoid ambiguity.

Nonabstract classes like Stock and MutualFund are sometimes called
concrete classes to differentiate them from abstract classes. We can
modify the Stock and MutualFund classes to take advantage of
ShareAsset and reduce redundancy. The following are the final
versions of the Stock and MutualFund classes. (DividendStock is
unmodified.) Notice that the subclasses of ShareAsset must
implement getMarketValue , or we’ll receive a compiler error:

 1 // A Stock object represents purchases of shares of a

stock.

 2 public class Stock extends ShareAsset {

 3 private int totalShares;

 4

 5 // constructs a new Stock with the given symbol and

 6 // current price per share

 7 public Stock(String symbol, double currentPrice) {

 8 super(symbol, currentPrice);

 9 totalShares = 0;

10 }

11

12 // returns the market value of this stock, which is

13 // the number of total shares times the share price

14 public double getMarketValue() {

15 return totalShares * getCurrentPrice();

16 }

17

18 // returns the total number of shares purchased

19 public int getTotalShares() {

20 return totalShares;

21 }

22

23 // records a purchase of the given number of shares of

24 // the stock at the given price per share

25 public void purchase(int shares, double pricePerShare)

{

26 totalShares += shares;

27 addCost(shares * pricePerShare);

28 }

29 }

 1 // A MutualFund object represents a mutual fund asset.

 2 public class MutualFund extends ShareAsset {

 3 private double totalShares;

 4

 5 // constructs a new MutualFund investment with the

given

 6 // symbol and price per share

 7 public MutualFund(String symbol, double currentPrice) {

 8 super(symbol, currentPrice);

 9 totalShares = 0.0;

10 }

11

12 // returns the market value of this mutual fund, which

13 // is the number of shares times the price per share

14 public double getMarketValue() {

15 return totalShares * getCurrentPrice();

16 }

17

18 // returns the number of shares of this mutual fund

19 public double getTotalShares() {

20 return totalShares;

21 }

22

23 // records purchase of the given shares at the given

price

24 public void purchase(double shares, double

pricePerShare) {

25 totalShares += shares;

26 addCost(shares * pricePerShare);

27 }

28 }

Abstract classes can do everything interfaces can do and more, but
this does not mean that it is always better to use them than
interfaces. One important difference between interfaces and abstract
classes is that a class may choose to implement arbitrarily many
interfaces, but it can extend just one abstract class. That is why an
interface often forms the top of an inheritance hierarchy, as our
Asset interface did in this design. Such placement allows classes to
become part of the hierarchy without having it consume their only
inheritance relationships.

Chapter Summary
Inheritance is a feature of Java programs that allows the creation of
a parent–child relationship between two types.

The child class of an inheritance relationship (commonly called a
subclass) will receive a copy of (“inherit”) every field and method
from the parent class (superclass). The subclass “extends” the
superclass, because it can add new fields and methods to the ones it
inherits from the superclass.

A subclass can override a method from the superclass by writing its
own version, which will replace the one that was inherited.

Treating objects of different types interchangeably is called
polymorphism.

Subclasses can refer to the superclass’s constructors or methods
using the super keyword.

The Object class represents the common superclass of all objects
and contains behavior that every object should have, such as the
equals and toString methods.

Inheritance provides an “is-a” relationship between two classes. If
the two classes are not closely related, inheritance may be a poor
design choice and a “has-a” relationship between them (in which one
object contains the other as a field) may be better.

An interface is a list of method declarations. An interface specifies
method names, parameters, and return types but does not include
the bodies of the methods. A class can implement (i.e., promise to
implement all of the methods of) an interface.

Interfaces help us achieve polymorphism so that we can treat
several different classes in the same way. If two or more classes
both implement the same interface, we can use either of them
interchangeably and can call any of the interface’s methods on them.

An abstract class cannot be instantiated. No objects of the abstract
type can be constructed. An abstract class is useful because it can
be used as a superclass and can also define abstract behavior for its
subclasses to implement.

An abstract class can contain abstract methods, which are declared
but do not have bodies. All subclasses of an abstract class must
implement the abstract superclass’s abstract methods.

Self-Check Problems

Section 9.1: Inheritance Basics

1. What is code reuse? How does inheritance help achieve code
reuse?

2. What is the difference between overloading and overriding a
method?

3. Which of the following is the correct syntax to indicate that
class A is a subclass of B?

a. public class B extends A {
b. public class A : super B {
c. public A(super B) {
d. public class A extends B {
e. public A implements B {

Section 9.2: Interacting with the
Superclass

4. Explain the difference between the this keyword and the
super keyword. When should each be used?

5. For the next three problems, consider the following class:

 1 // Represents a university student.

 2 public class Student {

 3 private String name;

 4 private int age;

 5

 6 public Student(String name, int age) {

 7 this.name = name;

 8 this.age = age;

 9 }

10

11 public void setAge(int age) {

12 this.age = age;

13 }

14 }

Also consider the following partial implementation of a
subclass of Student to represent undergraduate students at a
university:

public class UndergraduateStudent extends Student {

 private int year;

 ...

}

Can the code in the UndergraduateStudent class access the
name and age fields it inherits from Student? Can it call the
setAge method?

6. Write a constructor for the UndergraduateStudent class that
accepts a name as a parameter and initializes the
UnderGraduateStudent ’s state with that name, an age value of
18 , and a year value of 0 .

7. Write a version of the setAge method in the
UndergraduateStudent class that not only sets the age but also
increments the year field’s value by one.

8. Consider the following two automobile classes:

public class Car {

 public void m1() {

 System.out.println("car 1");

 }

 public void m2() {

 System.out.println("car 2");

 }

 public String toString() {

 return "vroom";

 }

}

public class Truck extends Car {

 public void m1() {

 System.out.println("truck 1");

 }

}

Given the following declared variables, what is the output from
the following statements?

Car mycar = new Car();

Truck mytruck = new Truck();

System.out.println(mycar);

mycar.m1();

mycar.m2();

System.out.println(mytruck);

mytruck.m1();

mytruck.m2();

9. Suppose the Truck code from the previous problem changes
to the following:

public class Truck extends Car {

 public void m1() {

 System.out.println("truck 1");

 }

 public void m2() {

 super.m1();

 }

 public String toString() {

 return super.toString() + super.toString();

 }

}

Using the same variables from the previous problem, what is
the output from the following statements?

System.out.println(mytruck);

mytruck.m1();

mytruck.m2();

Section 9.3: Polymorphism

10. Consider the following classes:

public class Vehicle {...}

public class Car extends Vehicle {...}

public class SUV extends Car {...}

Which of the following are legal statements?
a. Vehicle v = new Car();
b. Vehicle v = new SUV();
c. Car c = new SUV();
d. SUV s = new SUV();
e. SUV s = new Car();
f. Car c = new Vehicle();

11. Using the A , B , C , and D classes from this section, what is
the output of the following code fragment?

public static void main(String[] args) {

 A[] elements = {new B(), new D(), new A(), new C()};

 for (int i = 0; i < elements.length; i++) {

 elements[i].method2();

 System.out.println(elements[i]);

 elements[i].method1();

 System.out.println();

 }

}

12. Assume that the following classes have been defined:

 1 public class Flute extends Blue {

 2 public void method2() {

 3 System.out.println("flute 2");

 4 }

 5

 6 public String toString() {

 7 return "flute";

 8 }

 9 }

 1 public class Blue extends Moo {

 2 public void method1() {

 3 System.out.println("blue 1");

 4 }

 5 }

 1 public class Shoe extends Flute {

 2 public void method1() {

 3 System.out.println("shoe 1");

 4 }

 5 }

 1 public class Moo {

 2 public void method1() {

 3 System.out.println("moo 1");

 4 }

 5

 6 public void method2() {

 7 System.out.println("moo 2");

 8 }

 9

10 public String toString() {

11 return "moo";

12 }

13 }

What is the output produced by the following code fragment?

public static void main(String[] args) {

 Moo[] elements = {new Shoe(), new Flute(), new Moo(),

new Blue()};

 for (int i = 0; i < elements.length; i++) {

 System.out.println(elements[i]);

 elements[i].method1();

 elements[i].method2();

 System.out.println();

 }

}

13. Using the classes from the previous problem, write the output
that is produced by the following code fragment.

public static void main(String[] args) {

 Moo[] elements = {new Blue(), new Moo(), new Shoe(),

new Flute()};

 for (int i = 0; i < elements.length; i++) {

 elements[i].method2();

 elements[i].method1();

 System.out.println(elements[i]);

 System.out.println();

 }

}

14. Assume that the following classes have been defined:

 1 public class Mammal extends SeaCreature {

 2 public void method1() {

 3 System.out.println("warm-blooded");

 4 }

 5 }

 1 public class SeaCreature {

 2 public void method1() {

 3 System.out.println("creature 1");

 4 }

 5

 6 public void method2() {

 7 System.out.println("creature 2");

 8 }

 9

10 public String toString() {

11 return "ocean-dwelling";

12 }

13 }

1 public class Whale extends Mammal {

2 public void method1() {

3 System.out.println("spout");

4 }

5

6 public String toString() {

7 return "BIG!";

8 }

9 }

1 public class Squid extends SeaCreature {

2 public void method2() {

3 System.out.println("tentacles");

4 }

5

6 public String toString() {

7 return "squid";

8 }

9 }

What output is produced by the following code fragment?

public static void main(String[] args) {

 SeaCreature[] elements = {new Squid(), new Whale(),

 new SeaCreature(), new

Mammal()};

 for (int i = 0; i < elements.length; i++) {

 System.out.println(elements[i]);

 elements[i].method1();

 elements[i].method2();

 System.out.println();

 }

}

15. Using the classes from the previous problem, write the output
that is produced by the following code fragment:

public static void main(String[] args) {

 SeaCreature[] elements = {new SeaCreature(),

 new Squid(), new Mammal(),

new Whale()};

 for (int i = 0; i < elements.length; i++) {

 elements[i].method2();

 System.out.println(elements[i]);

 elements[i].method1();

 System.out.println();

 }

}

16. Assume that the following classes have been defined:

1 public class Bay extends Lake {

2 public void method1() {

3 System.out.print("Bay 1 ");

4 super.method2();

5 }

6 public void method2() {

7 System.out.print("Bay 2 ");

8 }

9 }

 1 public class Pond {

 2 public void method1() {

 3 System.out.print("Pond 1 ");

 4 }

 5 public void method2() {

 6 System.out.print("Pond 2 ");

 7 }

 8 public void method3() {

 9 System.out.print("Pond 3 ");

10 }

11 }

1 public class Ocean extends Bay {

2 public void method2() {

3 System.out.print("Ocean 2 ");

4 }

5 }

1 public class Lake extends Pond {

2 public void method3() {

3 System.out.print("Lake 3 ");

4 method2();

5 }

6 }

What output is produced by the following code fragment?

Pond[] ponds = {new Ocean(), new Pond(), new Lake(), new

Bay()};

for (Pond p : ponds) {

 p.method1();

 System.out.println();

 p.method2();

 System.out.println();

 p.method3();

 System.out.println("\n");

}

17. Suppose that the following variables referring to the classes
from the previous problem are declared:

Pond var1 = new Bay();

Object var2 = new Ocean();

Which of the following statements produce compiler errors?
For the statements that do not produce errors, what is the
output of each statement?

((Lake) var1).method1();

((Bay) var1).method1();

((Pond) var2).method2();

((Lake) var2).method2();

((Ocean) var2).method3();

Section 9.4: Inheritance and
Design

18. What is the difference between an is-a and a has-a
relationship? How do you create a has-a relationship in your
code?

19. Imagine a Rectangle class with objects that represent two-
dimensional rectangles. The Rectangle has width and height
fields with appropriate accessors and mutators, as well as
getArea and getPerimeter methods.
You would like to add a Square class into your system. Is it a
good design to make Square a subclass of Rectangle? Why or
why not?

20. Imagine that you are going to write a program to play card
games. Consider a design with a Card class and 52
subclasses, one for each of the unique playing cards (for
example, NineOfSpades and JackOfClubs). Is this a good
design? If so, why? If not, why not, and what might be a better
design?

21. In Section 9.2 we discussed adding functionality for
dividend payments to the Stock class. Why was it preferable
to create a DividendStock class rather than editing the Stock
class and adding this feature directly to it?

Section 9.5: Interfaces

22. What is the difference between implementing an interface and
extending a class?

23. Consider the following interface and class:

public interface I {

 public void m1();

 public void m2();

}

public class C implements I {

 // code for class C

}

What must be true about the code for class C in order for that
code to compile successfully?

24. What’s wrong with the code for the following interface? What
should be changed to make a valid interface for objects that
have colors?

public interface Colored {

 private Color color;

 public Color getColor() {

 return color;

 }

}

25. Modify the Point class from Chapter 8 so that it
implements the Colored interface and Points have colors.
(You may wish to create a ColoredPoint class that extends
Point .)

26. Declare a method called getSideCount in the Shape interface
that returns the number of sides that the shape has.
Implement the method in all shape classes. A circle is defined
to have 0 sides.

Section 9.6: Case Study:
Financial Class Hierarchy

27. What is an abstract class? How is an abstract class like a
normal class, and how does it differ? How is it like an
interface?

28. Consider the following abstract class and its subclass. What
state and behavior do you know for sure will be present in the
subclass? How do you know?

public abstract class Ordered {

 private String[] data;

 public void getElement(int i) {

 return data[i];

 }

 public abstract void arrange();

}

public class OrderedByLength extends Ordered {

 ...

}

29. Consider writing a program to be used to manage a collection
of movies. There are three kinds of movies in the collection:
dramas, comedies, and documentaries. The collector would
like to keep track of each movie’s title, the name of its director,
and the year the movie was made. Some operations are to be

implemented for all movies, and there will also be special
operations for each of the three different kinds of movies. How
would you design the class(es) to represent this system of
movies?

Exercises
1. Write the class Marketer to accompany the other law firm

classes described in this chapter. Marketers make $50,000
($10,000 more than general employees) and have an
additional method called advertise that prints "Act now, while
supplies last!" Make sure to interact with the superclass as
appropriate.

2. Write a class Janitor to accompany the other law firm classes
described in this chapter. Janitors work twice as many hours
per week as other employees (80 hours/week), they make
$30,000 ($10,000 less than general employees), they get half
as much vacation as other employees (only 5 days), and they
have an additional method clean that prints "Workin ' for the
man." Make sure to interact with the superclass as
appropriate.

3. Write a class HarvardLawyer to accompany the other law firm
classes described in this chapter. Harvard lawyers are like
normal lawyers, but they make 20% more money than a
normal lawyer, they get 3 days more vacation, and they have
to fill out four of the lawyer’s forms to go on vacation. That is,
the getVacationForm method should return "pinkpinkpinkpink" .
Make sure to interact with the superclass as appropriate.

4. Write a class MonsterTruck that relates to the Car and Truck
classes from Self-Check Problems 9 and 10 and whose

methods have the following behavior. Whenever possible, use
inheritance to reuse behavior from the superclasses.

5. For the next four problems, consider the task of representing
types of tickets to campus events. Each ticket has a unique
number and a price. There are three types of tickets: walk-up
tickets, advance tickets, and student advance tickets. Figure
9.10 illustrates the types:
Figure 9.10 Classes of tickets that are available to
campus events

Walk-up tickets are purchased the day of the event and
cost $50.
Advance tickets purchased 10 or more days before the
event cost $30, and advance tickets purchased fewer than
10 days before the event cost $40.
Student advance tickets are sold at half the price of normal
advance tickets: When they are purchased 10 or more
days early they cost $15, and when they are purchased
fewer than 10 days early they cost $20.

Implement a class called Ticket that will serve as the
superclass for all three types of tickets. Define all common
operations in this class, and specify all differing operations in
such a way that every subclass must implement them. No
actual objects of type Ticket will be created: Each actual
ticket will be an object of a subclass type. Define the following
operations:

The ability to construct a ticket by number.
The ability to ask for a ticket’s price.
The ability to println a ticket object as a String . An
example String would be "Number: 17, Price: 50.0" .

6. Implement a class called WalkupTicket to represent a walk-up
event ticket. Walk-up tickets are also constructed by number,
and they have a price of $50.

7. Implement a class called AdvanceTicket to represent tickets
purchased in advance. An advance ticket is constructed with
a ticket number and with the number of days in advance that

the ticket was purchased. Advance tickets purchased 10 or
more days before the event cost $30, and advance tickets
purchased fewer than 10 days before the event cost $40.

8. Implement a class called StudentAdvanceTicket to represent
tickets purchased in advance by students. A student advance
ticket is constructed with a ticket number and with the number
of days in advance that the ticket was purchased. Student
advance tickets purchased 10 or more days before the event
cost $15, and student advance tickets purchased fewer than
10 days before the event cost $20 (half of a normal advance
ticket). When a student advance ticket is printed, the String
should mention that the student must show his or her student
ID (for example, "Number: 17, Price: 15.0 (ID required)").

9. MinMaxAccount . A company has written a large class
BankAccount with many methods including:

Design a new class MinMaxAccount whose instances can be
used in place of a bank account but include new behavior of
remembering the minimum and maximum balances ever
recorded for the account. The class should have a constructor
that accepts a Startup parameter. The bank account’s
constructor sets the initial balance on the basis of the startup
information. Assume that only debits and credits change an
account’s balance. Include these new methods in your class:

10. DiscountBill . Suppose a class GroceryBill keeps track of a
list of items being purchased at a market:

Grocery bills interact with Item objects, each of which has the
public methods that follow. A candy bar item might cost 1.35
with a discount of 0.25 for preferred customers, meaning that
preferred customers get it for 1.10. (Some items will have no
discount, 0.0.) Currently the preceding classes do not
consider discounts. Every item in a bill is charged full price,
and item discounts are ignored.

Define a class DiscountBill that extends GroceryBill to
compute discounts for preferred customers. Its constructor
accepts a parameter for whether the customer should get the
discount. Your class should also adjust the total reported for
preferred customers. For example, if the total would have
been $80 but a preferred customer is getting $20 in discounts,
then getTotal should report the total as $60 for that customer.
Also keep track of the number of items on which a customer is
getting a nonzero discount and the sum of these discounts,
both as a total amount and as a percentage of the original bill.
Include the extra methods that follow, which allow a client to
ask about the discount. Return 0.0 if the customer is not a
preferred customer or if no items were discounted.

11. FilteredAccount . A cash processing company has a class
called Account used to process transactions:

Account objects interact with Transaction objects, which have
many methods including

Design a new class called FilteredAccount whose instances
can be used in place of normal accounts but which include the
extra behavior of not processing transactions with a value of
0. More specifically, the new class should indicate that a zero-
valued transaction was approved but shouldn’t call the
process method for it. Your class should have a single
constructor that accepts a parameter of type Client , and it
should include the following method:

12. Add an equals method to the TimeSpan class introduced in
Chapter 8 . Two time spans are considered equal if they
represent the same number of hours and minutes.

13. Add an equals method to the Cash class introduced in this
chapter. Two cash objects are considered equal if they
represent the same amount of money.

14. Add an equals method to each of the Rectangle , Circle , and
Triangle classes introduced in this chapter. Two shapes are
considered equal if their fields have equivalent values.

15. Write a class named Octagon whose objects represent regular
octagons (eight-sided polygons). Your class should implement
the Shape interface defined in this chapter, including methods
for its area and perimeter. An Octagon object is defined by its
side length. (You may need to search online to find formulas
for the area and perimeter of a regular octagon.)

16. Write a class named Hexagon whose objects represent regular
hexagons (6-sided polygons). Your class should implement
the Shape interface defined in this chapter.

17. Write a class named Dodecagon whose objects represent
regular dodecagons (12-sided polygons). Your class should
implement the Shape interface defined in this chapter. A
Dodecagon object is defined by its side length as passed to its
constructor. The common formulas for the area and perimeter
of a regular dodecagon are based on its circumradius, which
is the radius of the smallest circle that would fully contain the
dodecagon. We suggest reading about these formulas on a
web site such as Wikipedia or Wolfram MathWorld.

18. Declare an interface called Incrementable which represents
items that store an integer that can be incremented in some
way. The interface has a method called increment that
increments the value and a method called getValue that
returns the value. Once you have written the interface, write
two classes called SequentialIncrementer and
RandomIncrementer that implement the interface. The
SequentialIncrementer begins its value at 0 and increases it
by 1 each time it is incremented. The RandomIncrementer
begins its value at a random integer and changes it to a new
random integer each time it is incremented.

Programming Projects
1. Write an inheritance hierarchy of three-dimensional shapes.

Make a top-level shape interface that has methods for getting
information such as the volume and surface area of a three-
dimensional shape. Then make classes and subclasses that
implement various shapes such as cubes, rectangular prisms,
spheres, triangular prisms, cones, and cylinders. Place
common behavior in superclasses whenever possible, and
use abstract classes as appropriate. Add methods to the
subclasses to represent the unique behavior of each three-
dimensional shape, such as a method to get a sphere’s
radius.

2. Write a set of classes that define the behavior of certain
animals. They can be used in a simulation of a world with
many animals moving around in it. Different kinds of animals
will move in different ways (you are defining those
differences). As the simulation runs, animals can “die” when
two or more of them end up in the same location, in which
case the simulator randomly selects one animal to survive the
collision. See your course web site or
www.buildingjavaprograms.com for supporting files to run
such a simulation.
The following is an example set of animals and their
respective behavior:

Your classes should be stored in files called Bird.java,
Frog.java, Mouse.java, Rabbit.java, Snake.java, Turtle.java,
and Wolf.java.

3. Write an inheritance hierarchy that stores data about sports
players. Create a common superclass and/or interface to
store information common to any player regardless of sport,
such as name, number, and salary. Then create subclasses
for players of your favorite sports, such as basketball, soccer,
or tennis. Place sport-specific information and behavior (such
as kicking or vertical jump height) into subclasses whenever
possible.

4. Write an inheritance hierarchy to model items at a library.
Include books, magazines, journal articles, videos, and
electronic media such as CDs. Include in a superclass and/or
interface common information that the library must have for
every item, such as a unique identification number and title.
Place behavior and information that is specific to items, such
as a video’s runtime length or a CD’s musical genre, into the
subclasses.

Chapter 10 ArrayLists

10.1 ArrayLists
• Basic ArrayList Operations

• ArrayList Searching Methods

• A Complete ArrayList Program

• Adding to and Removing from an ArrayList

• Initializing an ArrayList

• Using the For-Each Loop with ArrayLists

• Wrapper Classes

10.2 The Comparable Interface
• Natural Ordering and compareTo

• Implementing the Comparable Interface

10.3 Case Study: Ranked Choice Voting
• Ballot Class

• Counting Votes

• Multiple Rounds

Introduction
One of the most fundamental data structures
you will encounter in programming is a list. You’ll
want to store lists of words, lists of numbers,
lists of names, and so on. Chapter 7
demonstrated using arrays to store sequences
of values, but arrays are fixed-size structures
that require you to declare in advance exactly
how many elements you want to store. In this
chapter we’ll explore a new structure, known as
an ArrayList , that provides more flexibility than
an array. An ArrayList is a dynamic structure
with a variable length, so it can grow and shrink
as the program executes.

The ArrayList structure is the first example we
have discussed of a generic structure that can
be used to store values of different types. As a
result, we will need to explore some issues
related to generic structures in this chapter. We
will also look at how to use primitive data with
such structures, using what are known as the

wrapper classes. Finally, we will demonstrate
how to use the Comparable interface to put
values of a particular type into sorted order and
how to write classes that implement the
Comparable interface.

10.1 ArrayLists
In our daily lives, we often manipulate lists of one kind or another.
For example, on social networking sites like Facebook.com, people
list the bands they like. Suppose someone listed the following bands:

Tool, U2, Phish, Pink Floyd, Radiohead

You saw in Chapter 7 that you can declare an array to store a
sequence of values. For example, to store the preceding list, you
could declare an array of Strings of length 5. But what happens if
you want to change the list later (say, to remove Tool and U2 from
the list)? You would have to shift values over, and you’d be left with
empty array slots at the end. And what if you wanted to add to the
list, so that it ended up with more than five names? You wouldn’t
have room to store more than five values in the original array, so you
would have to construct a new array with a larger size to store the
list.

Most of us think of lists as being more flexible than that. We don’t
want to have to worry about the kind of low-level details that come
up in the course of manipulating an array. We want to be able to just
say, “Add something to the list” or “Remove this value from the list,”
and we want the lists to grow and shrink over time as we add or

remove values. Computer scientists would say that we have in mind
a list abstraction that enables us to specify certain operations to be
performed (add, remove) without having to worry about the details of
how those operations are performed (shifting, constructing new
arrays).

Java provides this functionality in a class called ArrayList . Internally,
each ArrayList object uses an array to store its values. As a result,
an ArrayList provides the same fast random access as an array. But
unlike with an array, with an ArrayList you can make simple
requests to add or remove values, and the ArrayList takes care of
all of the details for you: If you add values to the list it makes the
array bigger, and if you remove values it handles any shifting that
needs to be done.

Remember that you can declare arrays of different types. If you want
an array of int values, you declare a variable of type int[] . For an
array of String values, you use the type String[] . This is a special
syntax that works just for arrays, but the ArrayList class has almost
the same flexibility. If you read the API documentation for ArrayList ,
you’ll see that it is actually listed as ArrayList<E> . This is an example
of a generic class in Java.

Generic Class (Generic)

A class such as ArrayList<E> that takes a type
parameter to indicate what kind of values it will use.

The “E” in ArrayList<E> is short for “Element,” and it indicates the
type of elements that will be included in the ArrayList . Generic
classes are similar to parameterized methods. Remember from
Chapter 3 that you can use a parameter to define a family of
related tasks that differ just by a particular characteristic like height
or width. In this case, the parameter is a type and it is used to
declare another type. The type ArrayList<E> represents a family of
types that differ just by the type of element they store. You would use
ArrayList<String> to store a list of Strings , ArrayList<Point> to store
a list of Points , ArrayList<Color> to store a list of Colors , and so on.
Notice that you would never actually declare something to be of type
ArrayList<E> . As with any parameter, you have to replace the E with
a specific value to make it clear which of the many possible
ArrayList types you are using.

Basic ArrayList Operations

The ArrayList class is part of the java.util package, so to include it
in a program, you must include an import declaration:

import java.util.*; // for ArrayList

The syntax for constructing an ArrayList is more complicated than
what we’ve seen before because of the required type parameter. For
example, you could construct an ArrayList of Strings as follows:

// construct a list of strings (long form)

ArrayList<String> list = new ArrayList<String>();

This code constructs an empty list of strings. The syntax is
complicated, but it will be easier to remember if you keep in mind
that the <String> notation is actually part of the type: This isn’t
simply an ArrayList , it is an ArrayList<String> , often read as “an
ArrayList of String .” Notice how the type appears on both sides of
the = sign, when you declare the variable and when you call the
constructor.

If you think in terms of the type being ArrayList<String> , you’ll see
that this line of code isn’t all that different from the code used to
construct an object like a Point . In both cases, you write the
variable’s type on the left side of the = sign before its name and after
the = sign and the keyword new (which calls that type’s constructor
to create an object of that type):

// construct a normal object

Point p = new Point();

It can be cumbersome to list the element type <String> twice, so
Java version 7 introduced a new shorter syntax for declaring
collections called the “diamond operator” whereby the element type
may be omitted on the right side of the statement and replaced by
<> , such as:

// construct a list of strings (short form with diamond

operator)

ArrayList<String> list = new ArrayList<>();

The diamond operator syntax is shorter and more convenient, and its
behavior is identical to that of the longer code. So we will use the
short form for the rest of our examples in this text.

In the rest of this section we’ll manipulate a list of a person’s favorite
music groups represented as strings. Once you’ve constructed an
ArrayList , you can add values to it by calling its add method:

// add values to a list

ArrayList<String> bands = new ArrayList<>();

bands.add("Tool");

bands.add("Phish");

bands.add("Pink Floyd");

When you ask an ArrayList to add a new value to the list, it appends
the new value to the end of the list. Unlike with a simple array, an
ArrayList can be thought of as having a dynamic size that grows
and shrinks to fit the elements you put inside it. So you can think of
the add method as performing two major tasks: expanding the list’s
size by one to accommodate the new element, and placing the new
element at the end of the list. Figure 10.1 shows the state of our
list of bands after each of the preceding three elements is added:

Figure 10.1 Adding elements to a list

Java will make sure that you add values of an appropriate type. In
this case, because you requested an ArrayList<String> , you can
add String elements to the list. If you try to add a value of a different
type, such as an integer or Point , the code will generate a compiler
error.

Unlike with simple arrays, printing an ArrayList is straightforward
because the ArrayList class overrides Java’s toString method. The
ArrayList version of toString constructs a string that includes the
contents of the list inside square brackets with the values separated
by commas. Remember that the toString method is called when you

print an object or concatenate an object to a string. As a result, you
can print an ArrayList with a simple println statement:

System.out.println("My fave bands: " + bands);

For example, you can add println statements as you add each
element to the list. Or if you are testing ArrayList features in JShell,
you can just type the list’s name to print its contents, as in the
following interaction:

jshell> ArrayList<String> bands = new ArrayList<>();

bands ==> []

jshell> bands.add("Tool");

jshell> bands

bands ==> [Tool]

jshell> bands.add("Phish");

jshell> bands

bands ==> [Tool, Phish]

jshell> bands.add("Pink Floyd");

jshell> bands

bands ==> [Tool, Phish, Pink Floyd]

Notice that you can print the list even when it is empty and each time
that new values are added to the end of the list. The ArrayList class
also provides an overloaded version of the add method for adding a
value at a particular index in the list. It preserves the order of the
other list elements, shifting values to the right to make room for the
new value. This version of add takes two parameters: an index and a
value to insert. ArrayLists use zero-based indexing, just as arrays
and strings do. For example, given the preceding list, consider the
effect of inserting a value at index 1:

jshell> bands

bands ==> [Tool, Phish, Pink Floyd]

jshell> bands.add(1, "U2");

jshell> bands

bands ==> [Tool, U2, Phish, Pink Floyd]

The call on add instructs the list to insert the new element at index 1.
Therefore, the old value at index 1 and everything that follows it gets
shifted to the right. You can think of this method as performing three

operations: expanding the list’s size by 1, shifting elements right to
make room for a new element, and inserting the new element.
Figure 10.2 shows the state of our list before and after inserting
U2 at index 1.

Figure 10.2 Inserting an element at a given index

The ArrayList also has a remove method that accepts an integer
index as a parameter and removes the value at that index. The
method preserves the order of the list by shifting values to the left to
fill in any gap. For example, consider what happens to the previous
list if we remove the value at position 0 and then remove the value at
position 1:

jshell> System.out.println("before remove bands = " + bands);

before remove bands = [Tool, U2, Phish, Pink Floyd]

jshell> bands.remove(0);

jshell> bands.remove(1);

jshell> System.out.println("after remove bands = " + bands);

after remove bands = [U2, Pink Floyd]

This result is a little surprising. We asked the list to remove the value
at position 0 and then to remove the value at position 1. You might
imagine that this would get rid of the strings "Tool" and "U2" , since
they were at positions 0 and 1, respectively, before this code was
executed. However, an ArrayList is a dynamic structure whose
values move around and shift into new positions in response to your
commands. The order of events is demonstrated more clearly if we
include a third println statement in the code:

jshell> System.out.println("before remove bands = " + bands);

before remove bands = [Tool, U2, Phish, Pink Floyd]

jshell> bands.remove(0);

jshell> System.out.println("after 1st remove bands = " +

bands);

after 1st remove bands = [U2, Phish, Pink Floyd]

jshell> bands.remove(1);

jshell> System.out.println("after 2nd remove bands = " +

bands);

after 2nd remove bands = [U2, Pink Floyd]

The first call on remove removes "Tool" because it’s the value
currently in position 0. But once that value has been removed,
everything else shifts over: The element "U2" moves to the front (to
position 0), the element "Phish" shifts into position 1, and the
element "Pink Floyd" moves into position 2. So, when the second
call on remove is performed, Java removes "Phish" from the list
because it is the value that is in position 1 at that point in time.
Figure 10.3 depicts the two removals from the list.

Figure 10.3 Removing an element from a given index

If you want to find out the number of elements in an ArrayList , you
can call its size method. If you want to obtain an individual item from
the list, you can call its get method, passing it a specific index.
These two methods are often used together. For example, the
following loop would add up the lengths of the strings in the
preceding list of bands:

// loop over the elements of a list

int sum = 0;

for (int i = 0; i < bands.size(); i++) {

 String s = bands.get(i);

 sum += s.length();

}

System.out.println("Total of lengths = " + sum);

This loop looks similar to the kind of loop you would use to access
the various elements of an array, but instead of asking for the
bands.length as you would for an array, you ask for bands.size() ,
and instead of asking for bands[i] as you would with an array, you
ask for bands.get(i) .

Calling add and remove can be expensive in terms of time because
the computer has to shift the values around. If all you want to do is to
replace a value, you can use the list’s set method, which takes an
index and a value and replaces the value at the given index with the
given value without doing any shifting. For example, you could
replace the value at the front of the sample list by writing the
following line of code:

// modify an existing element value

bands.set(0, "The Violent Femmes");

As noted earlier, when you construct an ArrayList it will initially be
empty. After you have added values to a list, you can remove them
one at a time. But what if you want to remove all of the values from
the list? In that case, you can call the list’s clear method.

// remove all element values

bands.clear();

Table 10.1 summarizes the ArrayList operations introduced in
this section. A more complete list can be found in the online Java
documentation.

Table 10.1 Basic ArrayList Methods

ArrayList Searching Methods

Once you have built up an ArrayList , you might be interested in
searching for a specific value in the list. The ArrayList class
provides several mechanisms for doing so. If you just want to know
whether or not something is in the list, you can call the contains
method, which returns a Boolean value. For example, suppose you
have an input file of names that has some duplicates, and you want
to get rid of the duplicates. The file might look like this:

Maria Derek Erica

Livia Jack Anita

Kendall Maria Livia Derek

Jamie Jack

Erica

You can construct an ArrayList<String> to hold these names and
use the contains method to ensure that there are no duplicates:

// removes duplicates from a list

Scanner input = new Scanner(new File("names.txt"));

ArrayList<String> list = new ArrayList<>();

while (input.hasNext()) {

 String name = input.next();

 if (!list.contains(name)) {

 list.add(name);

 }

}

System.out.println("list = " + list);

Given the sample input file, this code produces the following output:

list = [Maria, Derek, Erica, Livia, Jack, Anita, Kendall, Jamie]

Notice that only 8 of the original 13 names appear in this list,
because the various duplicates have been eliminated.

Sometimes it is not enough to know that a value appears in the list.
You may want to know exactly where it occurs. For example,
suppose you want to write a method to replace the first occurrence
of one word in an ArrayList<String> with another word. You can call
the set method to replace the value, but you have to know where it
appears in the list. You can find out the location of a value in the list
by calling the indexOf method.

The indexOf method takes a particular value and returns the index of
the first occurrence of the value in the list. If it doesn’t find the value,
it returns –1 . So, you could write a replace method as follows:

public static void replace(ArrayList<String> list,

 String target, String replacement) {

 int index = list.indexOf(target);

 if (index >= 0) {

 list.set(index, replacement);

 }

}

Notice that the return type of this method is void , even though it
changes the contents of an ArrayList object. Some novices think
that you have to return the changed ArrayList , but the method
doesn’t actually create a new ArrayList ; it merely changes the
contents of the list. As you’ve seen with arrays and other objects, a

parameter is all you need to be able to change the current state of
an object because objects involve reference semantics in which the
method is passed a reference to the object.

You can test the method with the following code:

ArrayList<String> list = new ArrayList<>();

list.add("to");

list.add("be");

list.add("or");

list.add("not");

list.add("to");

list.add("be");

System.out.println("initial list = " + list);

replace(list, "be", "beep");

System.out.println("final list = " + list);

This code produces the following output:

initial list = [to, be, or, not, to, be]

final list = [to, beep, or, not, to, be]

There is also a variation of indexOf known as lastIndexOf . As its
name implies, this method returns the index of the last occurrence of
a value. There are many situations where you might be more
interested in the last occurrence rather than the first occurrence. For
example, if a bank finds a broken automated teller machine, it might
want to find out the name and account number of the last customer
to use that machine. Table 10.2 summarizes the ArrayList
searching methods.

Table 10.2 ArrayList Searching Methods

All of the ArrayList searching methods call the equals method for
comparing values. The method names are fairly standard and
appear elsewhere in the Java class libraries. For example, the
String class also has methods called indexOf and lastIndexOf that
allow you to search for the position of a character or substring inside
a string.

A Complete ArrayList Program

Before we go further, let’s look at a complete ArrayList program.
Search engines like Google ignore the stop words in users’ queries.
The idea is that certain words like “a” and “the” appear so often that
they aren’t worth indexing. Google won’t disclose the exact list of
words it uses, although a few examples are listed on the web site
and people have speculated about what they think is on the list.

Google’s full list of stop words is believed to have at least 35 entries,
but we’ll settle for 15 of the most obvious choices. To explore how
removing stop words can affect a text, our program will read a file
called speech.txt that contains the first part of Hamlet’s famous
speech:

To be or not to be – that is the question:

Whether 'tis nobler in the mind to suffer

The slings and arrows of outrageous fortune

Or to take arms against a sea of troubles,

And by opposing end them.

The program constructs a list of stop words and then reads the file
word by word, printing every word that is not a stop word. To avoid
issues of case, the stop words are all in lowercase and the call on
contains is passed a lowercase version of each word from the input
file. Here is the complete program:

 1 // This program constructs a list of stop words and echoes

 2 // Hamlet's famous speech with the stop words removed.

 3

 4 import java.util.*;

 5 import java.io.*;

 6

 7 public class StopWords {

 8 public static void main(String[] args)

 9 throws FileNotFoundException {

10 // build the list of stop words

11 ArrayList<String> stopWords = new ArrayList<>();

12 stopWords.add("a");

13 stopWords.add("be");

14 stopWords.add("by");

15 stopWords.add("how");

16 stopWords.add("in");

17 stopWords.add("is");

18 stopWords.add("it");

19 stopWords.add("of");

20 stopWords.add("on");

21 stopWords.add("or");

22 stopWords.add("that");

23 stopWords.add("the");

24 stopWords.add("this");

25 stopWords.add("to");

26 stopWords.add("why");

27

28 // process the file, printing all but stop words

29 Scanner input = new Scanner(new

File("speech.txt"));

30 while (input.hasNext()) {

31 String next = input.next();

32 if (!stopWords.contains(next.toLowerCase())) {

33 System.out.print(next + " ");

34 }

35 }

36 }

37 }

The program produces the following output:

not – question: Whether 'tis nobler mind suffer slings and

arrows outrageous fortune take arms against sea troubles,

And opposing end them.

This output represents the search view of the original text (the core
set of words that will be used by a search engine).

Adding to and Removing from an
ArrayList

In this section, we will explore some of the issues that come up when
you dynamically add values to or remove values from the middle of
an ArrayList . The results are often surprising, so it is worth
exploring the common pitfalls.

Consider the following code, which creates an ArrayList and stores
several words in it:

ArrayList<String> words = new ArrayList<>();

words.add("four");

words.add("score");

words.add("and");

words.add("seven");

words.add("years");

words.add("ago");

System.out.println("words = " + words);

This code produces the following output:

words = [four, score, and, seven, years, ago]

We’ll explore the problem of inserting a tilde (“~”) in front of each
word, doubling the size of the list. Inserting tildes isn’t the most
exciting operation you can imagine doing with a list, but we want to
keep things simple so we can focus on the programming issues, and
you’ll find that you often want to perform operations like this. For
example, if you put a tilde in front of a search term, Google does a
different search that includes synonyms of the word. Searching for
“~four ~score” yields more than 10 times as many pages as
searching for just “four score.”

In our case, we want to keep the tildes separate from the words
themselves, so we want to insert a new String containing just a tilde
in front of each word in the list. Here is a first attempt that makes
sense intuitively but doesn’t work:

// doesn't work properly

for (int i = 0; i < words.size(); i++) {

 words.add(i, "~");

}

System.out.println("after loop words = " + words);

This for loop is a slight variation of the standard array-traversal
loop. It has an index variable i whose value starts at 0 and goes up
by one each time. In this case, the loop is inserting a tilde at position

i each time it executes the loop. The problem is that the loop never
terminates. (If you’re patient enough, you will find that the program
does eventually terminate with an “out of memory” error.)

The loop fails to terminate because the ArrayList structure is
dynamic in nature. Let’s think about this carefully to see what’s
happening. Initially we have the following list, with the String " four "
in position 0:

[four, score, and, seven, years, ago]

The first time the program executes the loop, it inserts a tilde at
position 0. To make room for the tilde at position 0, the ArrayList
has to shift all the other values one place to the right. As a result, the
String " four " ends up in position 1:

[~, four, score, and, seven, years, ago]

Then we come around the for loop, increment i to be 1 , and insert
a tilde at position 1. But because the word " four " is currently at
position 1, this second tilde also goes in front of the word " four ",
shifting it into position 2:

[~, ~, four, score, and, seven, years, ago]

We then go around the loop again, incrementing i to be 2 and
inserting a tilde at that position, which is once again in front of the
word " four ":

[~, ~, ~, four, score, and, seven, years, ago]

This loop continues indefinitely, because we keep inserting tildes in
front of the first word in the list. The for loop test compares i to the
size of the list, but because the list is growing, the size keeps going
up. So, this process continues until all the computer’s available
memory is exhausted.

To fix this loop, we have to take into account the fact that inserting a
tilde at position i is going to shift everything one place to the right.
So, on the next iteration of the loop, we will want to insert the tilde in
the position that is two to the right, not one to the right. We can fix
the code simply by changing the update part of the for loop to add 2
to i instead of adding 1 to i :

for (int i = 0; i < words.size(); i += 2) {

 words.add(i, "~");

}

System.out.println("after loop words = " + words);

When we execute this version of the code, we get the following
output:

after loop words = [~, four, ~, score, ~, and, ~, seven, ~,

years, ~, ago]

As another example, let’s consider what code we would need to
write to undo this operation. We want to write code that will remove
every other value from the list, starting with the first value—in other
words, the values that are currently at indexes 0, 2, 4, 6, 8, and 10.
We might write code like the following:

// doesn't work properly

for (int i = 0; i < words.size(); i += 2) {

 words.remove(i);

}

System.out.println("after second loop words = " + words);

Looking at the loop, you can see that i starts at 0 and goes up by 2
each time, which means it produces a sequence of even values (0 ,
2 , 4 , and so on). That seems to be what we want, given that the
values to be removed are at those indexes. But this code doesn’t
work. It produces the following output:

after second loop words = [four, ~, ~, and, seven, ~, ~, ago]

Again, the problem comes from the fact that in the ArrayList values
are shifted dynamically from one location to another. The first tilde
we want to remove is at index 0:

[~, four, ~, score, ~, and, ~, seven, ~, years, ~, ago]

But once we remove the tilde at position 0, everything is shifted one
position to the left. The second tilde moves into index 1:

[four, ~, score, ~, and, ~, seven, ~, years, ~, ago]

So the second remove should be at index 1, not index 2. And once
we perform that second remove, the third tilde will be in index 2:

[four, score, ~, and, ~, seven, ~, years, ~, ago]

In this case, we don’t want to increment i by 2 each time through
the loop. Here, the simple loop that increments by 1 is the right
choice:

for (int i = 0; i < words.size(); i++) {

 words.remove(i);

}

System.out.println("after second loop words = " + words);

After the program executes this code, it produces the following
output:

after second loop words = [four, score, and, seven, years, ago]

Putting all of these pieces together gives us the following complete
program:

 1 // Builds up a list of words, adds tildes, and removes

them.

 2

 3 import java.util.*;

 4

 5 public class TildeFun {

 6 public static void main(String[] args) {

 7 // construct and fill up ArrayList

 8 ArrayList<String> words = new ArrayList<>();

 9 words.add("four");

10 words.add("score");

11 words.add("and");

12 words.add("seven");

13 words.add("years");

14 words.add("ago");

15 System.out.println("words = " + words);

16

17 // insert one tilde in front of each word

18 for (int i = 0; i < words.size(); i += 2) {

19 words.add(i, "~");

20 }

21 System.out.println("after loop words = " + words);

22

23 // remove tildes

24 for (int i = 0; i < words.size(); i++) {

25 words.remove(i);

26 }

27 System.out.println("after second loop words = " +

words);

28 }

29 }

If we want to write the loops in a more intuitive manner, we can run
them backwards. The loops we have written go from left to right,
from the beginning of the list to the end of the list. We could instead
go from right to left, from the end of the list to the beginning of the
list. By going backward, we ensure that any changes we are making
occur in parts of the list that we have already visited.

For example, we found that the following loop did not work properly
even though it seemed like the intuitive approach:

// doesn't work properly

for (int i = 0; i < words.size(); i++) {

 words.add(i, "~");

}

But if we turn this loop around and have it iterate backward rather
than going forward, it does work properly:

// works properly because loop goes backwards

for (int i = words.size() – 1; i >= 0; i--) {

 words.add(i, "~");

}

The problem with the original code was that we were inserting a
value into the list and then moving our index variable onto that spot
in the list. If instead we work backward, the changes that we make
affect only those parts of the list that we have already processed.

Similarly, we tried to write the second loop as follows:

// doesn't work properly

for (int i = 0; i < words.size(); i += 2) {

 words.remove(i);

}

Again, the problem was that we were changing a part of the list that
we were about to process. We can keep the overall structure intact
by running the loop backward:

// works properly because loop goes backwards

for (int i = words.size() – 2; i >= 0; i –= 2) {

 words.remove(i);

}

Initializing an ArrayList

In Chapter 7 we saw different ways to construct arrays and
initialize the values of each element of an array. We saw the typical
syntax for creating an array of a given length and setting each of its
elements was the following:

// create an array of names of days of the week

String[] dayNames = new String[7];

dayNames[0] = "Mon";

dayNames[1] = "Tue";

dayNames[2] = "Wed";

dayNames[3] = "Thu";

dayNames[4] = "Fri";

dayNames[5] = "Sat";

dayNames[6] = "Sun";

If we wanted an ArrayList of these elements rather than an array,
the corresponding code would be the following:

// create an ArrayList of names of days of the week

ArrayList<String> dayNames = new ArrayList<>();

dayNames.add("Mon");

dayNames.add("Tue");

dayNames.add("Wed");

dayNames.add("Thu");

dayNames.add("Fri");

dayNames.add("Sat");

dayNames.add("Sun");

It can be tedious to set up an array or list of values in the preceding
way because it takes so many lines to store the element values. In
Chapter 7 we also showed a syntax for quickly initializing an array
from a given list of element values:

// create an array of names of days of the week (shorter)

String[] dayNames = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat",

"Sun"};

Unfortunately the ArrayList does not support the {} syntax we used
with arrays. But there is a static method called List.of that accepts
any number of element values as parameters and returns a list
object containing those elements. We can then pass this to the
constructor of an ArrayList to quickly initialize the ArrayList to store
the values we want:

// create an ArrayList of names of days of the week (shorter)

ArrayList<String> dayNames = new ArrayList<>(

 List.of("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"));

Previous versions of Java used a method called Arrays.asList that
behaves much the same way as List.of . But as of Java 8 the latter
method is preferred, partly because it is shorter to type and partly
because it is more consistent with methods for creating other types
of collections. In the next chapter we will learn about collections
called sets and maps, and those collection types have methods
called Set.of and Map.of that help you create collections. Using a
consistent convention like this makes the method names easier to
remember.

Using the For-Each Loop with
ArrayList s

You saw in Chapter 7 that you can use a for-each loop to iterate
over the elements of an array. You can do the same with an
ArrayList . For example, earlier we mentioned that the following
code could be used to add up the lengths of the Strings stored in an
ArrayList<String> called list :

int sum = 0;

for (int i = 0; i < list.size(); i++) {

 String s = list.get(i);

 sum += s.length();

}

System.out.println("Total of lengths = " + sum);

We can simplify this code with a for-each loop. Remember that the
syntax of this kind of loop is as follows:

for (<type> <name>: <structure>) {

 <statement>;

 <statement>;

 ...

 <statement>;

}

Thus, the preceding loop to add up the lengths of the Strings can be
rewritten as follows:

int sum = 0;

for (String s: list) {

 sum += s.length();

}

System.out.println("Total of lengths = " + sum);

This loop is another way of saying, “For each String s contained in
list ”

Because the for-each loop has such a simple syntax, you should use
it whenever you want to process each value stored in a list
sequentially. You will find, however, that the for-each loop is not
appropriate for more complex list problems. For example, there is no
simple way to skip around in a list using a for-each loop. You must
process the values in sequence from first to last. Also, you cannot
modify the list while you are iterating over it.

Consider, for example, the following sample code:

// this doesn't work

for (String s: words) {

 System.out.println(s);

 words.remove(0);

}

This code prints a String from the list and then attempts to remove
the value at the front of the list. When you execute this code, the
program halts with a ConcurrentModificationException . Java is letting
you know that you are not allowed to iterate over the list and to
modify the list at the same time (concurrently). Because of this
limitation, neither of the problems discussed in the previous section
could be solved using a for-each loop.

Chapter 7 also mentioned that starting with version 8 of Java,
there is a different approach to manipulating structures like arrays
and lists that allows you to write more concise code. The following
two lines of code perform the same task as the two loop versions
above.

int sum = list.stream().mapToInt(String::length).sum();

System.out.println("Total of lengths = " + sum);

You can read more about this approach in Chapter 19 .

Wrapper Classes

So far, all of the ArrayList examples we have studied have involved
ArrayLists of String objects. What if you wanted to form a list of
integers? Given that ArrayList<E> is a generic class, you’d think that
Java would allow you to define an ArrayList<int> , but that is not the
case. The E in ArrayList<E> can be filled in with any object or
reference type (i.e., the name of a class). The primitive types (e.g.,
int , double , char , and boolean), cannot be used as type parameters
for an ArrayList .

Instead, Java defines a series of wrapper classes that allow you to
store primitive data as objects.

Wrapper Class
A class that “wraps” (stores) primitive data as an
object.

To understand the role of a wrapper class, think of a piece of candy
packaged in a wrapper. Pieces of candy can be sticky and
inconvenient to handle directly, so we put them inside wrappers that
make handling them more convenient. When we want to eat the
actual candy, we open up the wrapper to get the candy out. The
Java wrapper classes fill a similar role.

For example, consider simple integers, which are of type int , a
primitive type. Primitive types are not objects, so we can’t use values
of type int in an object context. To allow such use, we must wrap up
each int into an object of type Integer . Integer objects are very
simple. They have just one field: an int value. When we construct
an Integer , we pass an int value to be wrapped; when we want to
get the int back, we call a method called intValue that returns the
int .

To understand the distinction between int and Integer , consider the
following variable declarations:

int x = 38;

Integer y = new Integer(38);

This code leads to the following situation in memory:

Primitive data is stored directly, so the variable x stores the actual
value 38 . Objects, by contrast, are stored as references, so the
variable y stores a reference to an object that contains 38 .

If we later want to get the 38 out of the object (to unwrap it and
remove the candy inside), we call the method intValue :

int number = y.intValue();

The wrapper classes are of particular interest in this chapter
because when you use an ArrayList<E> , the E needs to be a
reference type. You can’t make an ArrayList<int> , but you can form
an ArrayList<Integer> . For example, you can write code like the
following that enters several integer values into a list and adds them
together:

ArrayList<Integer> list = new ArrayList<>();

list.add(13);

list.add(47);

list.add(15);

list.add(9);

int sum = 0;

for (int n: list) {

 sum += n;

}

System.out.println("list = " + list);

System.out.println("sum = " + sum);

This code produces the following output:

list = [13, 47, 15, 9]

sum = 84

The code takes advantage of a mechanism that Java provides for
simplifying code which involves the use of wrapper classes. For
example, Java will convert between Integer values and int values
for you when your intent seems clear. Given the declaration of the
variable list as an ArrayList<Integer> , Java would normally expect
you to add values of type Integer to the list. But in the preceding
code you were adding simple int values, as in:

list.add(13);

When it reaches this line of code, Java sees that you are adding an
int to a structure that is expecting an Integer . Because Java
understands the relationship between int and Integer (each
Integer is simply an int wrapped up as an object), it will
automatically convert the int value into a corresponding Integer
object. This process is known as boxing.

Boxing
An automatic conversion from primitive data to a
wrapped object of the appropriate type (e.g., an int
boxed to form an Integer).

Similarly, you don’t have to do anything special to unwrap an Integer
to get the int inside. You could write code like the following:

int product = list.get(0) * list.get(1);

This code multiplies two values from the ArrayList<Integer> and
stores the result in a variable of type int . The calls on get will return
an Integer object, so normally these values would be incompatible.
However, because Java understands the relationship between int
and Integer it will unwrap the Integer objects for you and give you
the int values stored inside. This process is known as unboxing.

Unboxing
An automatic conversion from a wrapped object to its
corresponding primitive data (e.g., an Integer unboxed
to yield an int).

Notice that you can write a for-each loop to use a variable of type
int even though the ArrayList stores values of type Integer . Java
will unbox the objects and perform the appropriate conversions for
you.

Because Java has boxing and unboxing, the only place you
generally need to use the wrapper class is when you describe a type
like ArrayList<Integer> . You can’t actually declare it to be of type
ArrayList<int> , but you can manipulate it as if it is of type
ArrayList<int> .

Table 10.3 lists the major primitive types and their corresponding
wrapper classes.

Table 10.3 Common Wrapper Classes

10.2 The Comparable Interface
The method Collections.sort can be used to sort an ArrayList . It is
part of the java.util package. The following short program
demonstrates how to use Collections.sort :

 1 // Constructs an ArrayList of Strings and sorts it.

 2

 3 import java.util.*;

 4

 5 public class SortExample {

 6 public static void main(String[] args) {

 7 ArrayList<String> words = new ArrayList<>();

 8 words.add("four");

 9 words.add("score");

10 words.add("and");

11 words.add("seven");

12 words.add("years");

13 words.add("ago");

14

15 // show list before and after sorting

16 System.out.println("before sort, words = " +

words);

17 Collections.sort(words);

18 System.out.println("after sort, words = " +

words);

19 }

20 }

This program produces the following output:

before sort, words = [four, score, and, seven, years, ago]

after sort, words = [ago, and, four, score, seven, years]

In Chapter 13 , we will explore how this sorting method actually
works. For now we are simply going to be clients of the method
without worrying about how it works.

If you try to make a similar call to an ArrayList<Point> , you will find
that the program does not compile. Why is it possible to sort a list of
String objects but not a list of Point objects? The answer is that the
String class implements the Comparable interface, while the Point
class does not. In this section we will explore the details of the
Comparable interface and explain how to write classes that implement
it.

DID YOU KNOW?

Controversy over Boxing and

Unboxing

Not all software developers are happy with the decision to
add boxing and unboxing to the Java language. The ability to
manipulate an ArrayList<Integer> almost as if it were an
ArrayList<int> can simplify code, and everyone agrees that
simplification is good. The disagreement comes from the fact
that it is almost like an ArrayList<int> . Some argue that
“almost” isn’t good enough. Because it comes close,
programmers are likely to use it and eventually come to count
on it. That can prove disastrous when “almost” isn’t “always.”

As an analogy, suppose someone told you that you could use
a device that is almost like a potholder to pick up hot objects.
In most cases, it will protect your hand from heat. So you start
using it, and while you might be nervous at first, you soon find
that it seems to work just fine. And then one day you pick up
a new object and you get burned. You can think of similar
analogies with aircraft landing gear that almost works or vests
that are almost bulletproof.

For a programming example, consider the following code:

int n = 420;

ArrayList<Integer> list = new ArrayList<>();

list.add(n);

list.add(n);

if (list.get(0) == list.get(1)) {

 System.out.println("equal");

} else {

 System.out.println("unequal");

}

It’s difficult to know exactly what this code will do. If you
assume that ArrayList<Integer> is “almost” like an
ArrayList<int> , you’d probably think that the code would print
the message that the two values are equal. In fact, there is no
guarantee as to what it will do. In the current version of Java,
it prints the message “unequal.”

Remember that testing for object equality is not as simple as
testing for equality of primitive data. Two Strings might store
the same text but might not be the same object, which is why
we call the equals method to compare Strings. The same
principle applies here: The two list elements might store the
same int but might not be the same object. The code prints
“unequal” in the current release of Java because the program
creates two different Integer objects that each store the value

420 . However, to add to the confusion, if we change the value
from 420 to 42 , the program will print that the two values are
equal.

The Java Language Specification guarantees that this code
will work for any value of n between –128 and 127 , but it
provides no guarantee as to how the code will behave for
other values of n . For those other values, it could print either
message, and this might change from one implementation of
Java to another. It might be that in the next version of Java
released, the code will print “equal” for 420 but not for a value
like 420000 .

Some people have argued that because boxing and unboxing
cover up what is happening underneath, it is better not to use
them at all. Boxing and unboxing don’t necessarily simplify
anything if they work only “sometimes,” because you have to
be able to understand the cases in which they don’t work.

Natural Ordering and compareTo

We are all familiar with many kinds of data that can be sorted. For
example, we are used to putting numbers in order from lowest to
highest or alphabetizing lists of names. We describe types that can
be sorted as having a natural ordering of values. To have such an

ordering of values, a type needs to have a well-defined comparison
function that indicates the relationship between any pair of values.

Comparison Function
A well-defined procedure for deciding, given a pair of
values, the relative order of the two values (less than,
equal to, or greater than).

Natural Ordering
The order imposed on a type by its comparison
function.

Not all types have natural orderings because not all types have
comparison functions. For example, in this chapter we have been
exploring how to construct a variety of ArrayList objects. How would
you compare two ArrayList objects to determine whether one is less
than another? What would it mean for one ArrayList to be less than
another? You might decide to use the lengths of the lists to

determine which one is less, but what would you do with two
ArrayList objects of equal length that store different values? You
wouldn’t want to describe them as “equal.” There is no agreed-upon
way of ordering ArrayLists, and therefore there is no comparison
function for this type. As a result, we say that the ArrayList type
does not have a natural ordering.

Java has a convention for indicating the natural ordering of a type.
Any type that has such an ordering should implement the Comparable
interface:

public interface Comparable<T> {

 public int compareTo(T other);

}

This interface provides a second example of a generic type in Java.
In the case of ArrayList , Java uses the letter “E,” which is short for
“Element.” In the case of Comparable , Java uses the letter “T,” which
is short for “Type.”

The compareTo method is the comparison function for the type. A
boolean return type can’t be used because there are three possible
answers: less than, equal to, or greater than. The convention for
compareTo is that an object should return one of the following results:

A negative number to indicate a less-than relationship
0 to indicate equality
A positive number to indicate a greater-than relationship

Let’s look at a few examples to help you understand this concept.
We have seen that Java has Integer objects that serve as wrappers
for individual int values. We know how to compare int values to
determine their relative order, so it is not surprising that the Integer
class implements the Comparable interface. Consider the following
code:

Integer x = 7;

Integer y = 42;

Integer z = 7;

System.out.println(x.compareTo(y));

System.out.println(x.compareTo(z));

System.out.println(y.compareTo(x));

This code begins by constructing three Integer objects:

Then it includes a series of println statements that report the results
of various pairwise comparisons. In the first println statement, we
compare x to y , which involves comparing the int value 7 to the
int value 42 . This pair has a less-than relationship because x is
less than y , so the method call returns a negative integer. In the
second println statement, we compare x to z , which involves
comparing one occurrence of the int value 7 with another
occurrence of the int value 7 . This second pair has an equality
relationship because x equals z , so the method call returns 0 . In
the final println statement, we compare y to x , which involves
comparing the int value 42 to the int value 7 . This final pair has a
greater-than relationship because y is greater than x , so the
method call returns a positive integer.

Here is the actual output of the code:

–1

0

1

The values –1 , 0 , and 1 are the standard values returned, but the
compareTo method is not required to return these specific values. For
example, consider a similar piece of code that compares String
values:

String x = "hello";

String y = "world";

String z = "hello";

System.out.println(x.compareTo(y));

System.out.println(x.compareTo(z));

System.out.println(y.compareTo(x));

The compareTo method of the String class compares strings
alphabetically, so there are similar relationships in this code: x is
less than y because in an alphabetical list "hello" comes before
"world" , x is equal to z because the two occurrences of "hello" are
equal, and y is greater than x because in an alphabetical list

"world" comes after "hello" . But the output produced is slightly
different from that produced by the Integer example:

–15

0

15

Instead of –1 and 1 , we get –15 and 15 . You don’t really need to
know where these numbers come from—the only important fact is
whether they are negative or positive—but for those of you who are
curious, the –15 and 15 represent the distance between the
positions of the characters 'h' and 'w' in type char . 'w' appears
15 positions later than 'h' .

So while the values –1 and 1 are often returned by a comparison
function, that won’t always be the case. The important thing to
remember is that “less-than” relationships are indicated by a
negative number and “greater-than” relationships are indicated by a
positive number.

Also keep in mind that the relationship operators that we’ve been
using since Chapter 4 have a different syntax. For example,
you’ve seen that if two variables x and y are of type int or double ,
you can compare them by using operators like < and > :

int x = 7;

int y = 42;

if (x < y) {

 System.out.println("x less than y");

}

Even though the String class implements the Comparable interface,
you can’t use the relational operators to compare Strings . The
following code will not compile:

// illegal--can't compare objects this way

String s1 = "hello";

String s2 = "world";

if (s1 < s2) {

 System.out.println("s1 less than s2");

}

Instead, call the compareTo method, as in:

String s1 = "hello";

String s2 = "world";

if (s1.compareTo(s2) < 0) {

 System.out.println("s1 less than s2");

}

You can use a relational operator in this context because the
compareTo method returns an int . Notice that the specific value of –
1 isn’t used for compareTo because you are only guaranteed to get a
negative value for a less-than relationship. Table 10.4
summarizes the standard way to compare objects that implement the
Comparable interface.

Table 10.4 Comparing Values Summary

Implementing the Comparable
Interface

Many of the standard Java classes, such as String , implement the
Comparable interface. You can have your own classes implement the

interface as well. Implementing the Comparable interface will open up
a wealth of off-the-shelf programming solutions that are included in
the Java class libraries. For example, there are built-in methods for
sorting lists and for speeding up searches. Many of these features
will be discussed in the next chapter.

As a fairly simple example, let’s explore a class that can be used to
keep track of a calendar date. The idea is to keep track of a
particular month and day, but not the year. For example, the United
States celebrates its independence on July 4 each year. Similarly, an
organization might want a list of its employees’ birthdays that doesn’t
indicate how old they are.

DID YOU KNOW?

Why Not –1 , 0 , and 1 for

compareTo?

As we discussed earlier, some types like Integer return the
values –1 , 0 , and 1 when you call compareTo . These are the
canonical values for compareTo to return, because they
correspond to a function in mathematics known as the signum
function (sometimes abbreviated “sgn”). However, other types
like String do not return the standard values. You might

wonder why Java doesn’t require that all classes return –1 ,
0 , and 1 when you call compareTo .

One answer to this question is that Java doesn’t have a
convenient ternary type. For any binary decision, we can use
boolean as the return type. But what type do we use if we
want to return exactly one of three different values? There is
no predefined type that has just three values, so it’s more
honest in a sense to use the rule that any negative number
will do and any positive number will do. Suppose that Java
said that compareTo should return only –1 , 0 , and 1 . What
should happen when someone writes a compareTo that returns
something else? Ideally, any code calling that particular
compareTo would throw an exception when it gets an illegal
return value, but that would require programmers to write a lot
of error-checking code. By saying that all negatives will be
interpreted one way, all positives will be interpreted a second
way, and 0 will be interpreted a third way, Java provides a
complete definition for all values of type int , which makes it
easier for programmers to work with the compareTo method.

A second reason for having compareTo behave this way is that
it then is easy to express many comparison tasks directly. It is
often convenient to express the comparison as a difference
between two values. This pattern occurs in many places. For
example, the String class uses lexicographic order (also
called “dictionary” or “alphabetic” order). To determine the
relationship between two Strings , you scan through them

until you find the first pair of letters that differ. For example, if
you were comparing "nattering" and "nabobs" , you’d find
that the first pair of characters that differ is the third pair
("nat..." versus "nab..."). You would then return the
difference between the character values ('t' – ' b '). If you
don’t find such a pair, then you return the difference between
the lengths. For example, " nattering " is considered greater
than " nat " on the basis of length.

The compareTo behavior for the String class can be described
with the following pseudocode:

search for a pair of characters in corresponding

positions that differ.

if (such a pair exists) {

 return the difference between the two characters.

} else {

 return the difference between the two lengths.

}

Notice that this approach returns 0 in just the right case,
when there are no character pairs that differ and when the
strings have the same length. Having the flexibility to return
any negative integer for “less than” and any positive integer
for “greater than” makes it easier to implement this approach.

The final reason not to specify the return values for compareTo
is efficiency. By having a less strict rule, Java allows
programmers to write faster compareTo methods. The
compareTo method in the String class is one of the most
frequently called methods. All sorts of data comparisons are
built on String comparisons, and performing a task like
sorting thousands of records will lead to thousands of calls on
the String class’s compareTo method. As a result, it’s
important for the method to run quickly. We wouldn’t want to
unnecessarily complicate the code by requiring that it always
return –1 , 0 , or 1 .

We can implement this class of dates with two fields to store the
month and day:

public class CalendarDate {

 private int month;

 private int day;

 public CalendarDate(int month, int day) {

 this.month = month;

 this.day = day;

 }

 // other methods

}

Remember that to implement an interface, you include an extra
notation in the class header. Implementing the Comparable interface
is a little more challenging because it is a generic interface
(Comparable<T>). We can’t simply write code like the following:

// not correct

public class CalendarDate implements Comparable {

 ...

}

We have to replace the <T> in Comparable<T> . Whenever you
implement Comparable , you compare pairs of values from the same
class. So a class called CalendarDate should implement
Comparable<CalendarDate> . If you look at the header for the Integer
class, you will find that it implements Comparable<Integer> . Likewise,
the String class implements Comparable<String> . So we need to
change the header to the following one:

public class CalendarDate implements Comparable<CalendarDate> {

 ...

}

Of course, claiming to implement the interface is not enough. We
also have to include appropriate methods. In this case, the
Comparable interface includes just a single method:

public interface Comparable<T> {

 public int compareTo(T other);

}

Because we are using CalendarDate in place of T , we need to write a
compareTo method that takes a parameter of type CalendarDate :

public int compareTo(CalendarDate other) {

 ...

}

Now we have to figure out how to compare two dates. Each
CalendarDate object will contain fields that store the month and day.
With calendars, the month takes precedence over the day. If we
want to compare January 31 (1/31) with April 5 (4/5), we don’t care
that 5 comes before 31; we care instead that January comes before
April. So, as a first attempt, consider the following method that
compares only the months:

// compares only the months

public int compareTo(CalendarDate other) {

 if (month < other.month) {

 return –1;

 } else if (month == other.month) {

 return 0;

 } else { // month > other.month

 return 1;

 }

}

We need to consider more than just the month, but before we do
that, we can improve on what we have here. This code uses a
nested if/else construct to return the standard values of –1 , 0 , and
1 , but a simpler option is available. We can simply return the
difference between month and other.month , because it will be
negative when month is less than other.month , it will be 0 when they
are equal, and it will be positive when month is greater than
other.month . So, we can simplify the code as follows:

// still uses only the month, but more compact

public int compareTo(CalendarDate other) {

 return month – other.month;

}

It is a good idea to keep things simple when you can, so this version
is preferable to the original one. It returns slightly different values
than the earlier version, but it satisfies the contract of the Comparable
interface just as well. However, the code still has a problem.

Consider, for example, a comparison of April 1 (4/1) and April 5 (4/5).
The current version of compareTo would subtract the months and
return a value of 0 , indicating that these two dates are equal.
However, the dates aren’t equal: April 1 comes before April 5.

The day of the month becomes important only when the months are
equal. If the months differ, we can use the months to determine
order. Otherwise (when the months are equal), we must use the day
of the month to determine order. This common ordering principle is
present in many tasks. We can implement it as follows:

public int compareTo(CalendarDate other) {

 if (month != other.month) {

 return month – other.month;

 } else {

 return day – other.day;

 }

}

It is still possible for this code to return 0 . Suppose that we have two
CalendarDate objects that both store the date April 5 (4/5). The
months are equal, so the program returns the difference between the
days. That difference is 0, so the program returns 0 , which correctly
indicates that the two dates are equal.

Here is a complete CalendarDate class with the compareTo method,
two accessor methods, and a toString method:

 1 // The CalendarDate class stores information about a single

 2 // calendar date (month and day but no year).

 3

 4 public class CalendarDate implements

Comparable<CalendarDate> {

 5 private int month;

 6 private int day;

 7

 8 public CalendarDate(int month, int day) {

 9 this.month = month;

10 this.day = day;

11 }

12

13 // Compares this calendar date to another date.

14 // Dates are compared by month and then by day.

15 public int compareTo(CalendarDate other) {

16 if (month != other.month) {

17 return month – other.month;

18 } else {

19 return day – other.day;

20 }

21 }

22

23 public int getMonth() {

24 return month;

25 }

26

27 public int getDay() {

28 return day;

29 }

30

31 public String toString() {

32 return month + "/" + day;

33 }

34 }

One of the major benefits of implementing the Comparable interface is
that it gives you access to built-in utilities like Collections.sort . As
we mentioned previously, you can use Collections.sort to sort an
ArrayList<String> but not to sort an ArrayList<Point> , because the
Point class does not implement Comparable . The CalendarDate class
implements the Comparable interface, so, as the following short
program demonstrates, we can use Collections.sort for an
ArrayList<CalendarDate> :

 1 // Short program that creates a list of the birthdays of

the

 2 // first 5 U.S. Presidents and that puts them into sorted

order.

 3

 4 import java.util.*;

 5

 6 public class CalendarDateTest {

 7 public static void main(String[] args) {

 8 ArrayList<CalendarDate> dates = new ArrayList<>();

 9 dates.add(new CalendarDate(2, 22)); // Washington

10 dates.add(new CalendarDate(10, 30)); // Adams

11 dates.add(new CalendarDate(4, 13)); // Jefferson

12 dates.add(new CalendarDate(3, 16)); // Madison

13 dates.add(new CalendarDate(4, 28)); // Monroe

14

15 System.out.println("birthdays = " + dates);

16 Collections.sort(dates);

17 System.out.println("birthdays = " + dates);

18 }

19 }

This program produces the following output:

birthdays = [2/22, 10/30, 4/13, 3/16, 4/28]

birthdays = [2/22, 3/16, 4/13, 4/28, 10/30]

Notice that the dates appear in increasing calendar order after the
call on Collections.sort .

10.3 Case Study: Ranked Choice
Voting
In this section, we will use ArrayLists to solve a complex problem.
We will develop a program that implements what is known as ranked
choice voting. Ranked choice voting has been getting more attention
in the United States in recent years with cities like San Francisco
and Minneapolis using it along with the state of Maine.

Ranked choice voting (also called “instant runoff”) allows voters to
specify what order they prefer for various candidates. Suppose that
you have eight voters and four candidates. To keep things simple,
we will refer to candidates using the letters A, B, C, and D. Below is
a list of voting preferences. Each line has a ranked list of the four
candidates and represents a single voter’s preferences.

A D C B

A C B D

B D C A

C D B A

C B A D

A C D B

D C B A

B C A D

The usual voting procedure is to tally the first choice of each voter,
which means looking at the votes in the first column. If you tally
those votes, nobody ends up with a clear majority. Candidate A has
three votes or 37.5% of the eight total votes. In ranked choice voting
when no candidate has a majority, we eliminate the candidate with
the lowest vote total, which in this case is candidate D. That leaves
us with these preferences:

A C B

A C B

B C A

C B A

C B A

A C B

C B A

B C A

There is still no candidate with a majority, so we eliminate the one
with the low vote total, which is candidate B leaving us with:

A C

A C

C A

C A

C A

A C

C A

C A

Now we see that candidate C has five votes and wins the election.
Notice that in the first round of voting, candidate C was tied for
second place. But more voters liked candidate C as a substitute if
they couldn’t get the candidates they preferred more.

We are going to develop a program that performs the ranked choice
voting algorithm assuming we have complete preferences from each
voter. As with other case studies, we will develop it in stages:

1. We will develop a class called Ballot to store information
about one voter’s preferences.

2. We will write a program that reads an input file of voter
preferences and that tallies the results for each voter’s first
choice pick.

3. We will introduce code to repeatedly eliminate the candidate
with the lowest vote total until some candidate gets a majority
or we end up with a tie with two candidates each with the
same vote total.

Ballot Class

In solving this problem, you can identify two kinds of data: the data
for a single voter which we are calling a ballot, and the list of ballots.
It makes sense to introduce a class for storing the information for a
single ballot.

// A class for storing one voter's preferences.

public class Ballot {

 ...

}

Assume that as with the lists shown previously, each voter’s
preferences will be listed as a single line of data with the candidates
listed from most desirable to least desirable. One common way to
store a file with text like this is to separate the different names with a
tab character. Spreadsheet programs have an option to save data as
a tab-delimited file that would have this structure. You will see that it
is fairly easy to break up such a string into an array of strings. It
makes sense, then, to assume the constructor will take an array of
strings as a parameter:

public Ballot(String[] names) {

 ...

}

You need to store this sequence of names. You could use an array,
but you know that the algorithm involves eliminating candidates who
get lower vote totals. It would be better to store the names in an
ArrayList that can be stored as a field of the class:

private ArrayList<String> preferences;

To complete the constructor, you need to construct this list and add
each name to your list. This is a nice place to use a for-each loop:

// constructs a ballot with the given candidate names in order

public Ballot(String[] names) {

 preferences = new ArrayList<>();

 for (String next : names) {

 preferences.add(next);

 }

}

The ballot includes all of the candidates, but the code that processes
a ballot needs to know which candidate is the current top choice.

That will always be the first element of your list, the one located at
index 0. You can therefore provide a method for requesting the
current choice of candidate by looking at the first element of the list:

// returns the current first choice for this ballot

public String getCandidate() {

 return preferences.get(0);

}

As noted earlier, this approach will work only if each ballot contains
information for all candidates. If you don’t have complete information,
then eventually the list of candidates can become empty. This case
study assumes complete information, but you could extend the code
to deal with incomplete information (e.g., when a voter doesn’t want
to include some candidate).

Another important behavior you have to implement is to eliminate a
candidate from consideration. The ArrayList comes in handy for this
because you can simply call its remove method to remove a value:

// eliminates the given candidate from consideration

public void eliminate(String name) {

 preferences.remove(name);

}

You need one final behavior for this class. To make it easier to count
votes, it would be helpful if a list of ballots could be sorted by
candidate name. That way all of the votes for a given candidate will
be grouped together. That means that you need to have the Ballot
class implement the Comparable interface. The idea is to make it
easier to count votes, so you want to use the candidate names to put
them in order. The names are stored as strings and the String class
implements Comparable . That means you can use the compareTo
method of the individual strings that represent the candidate names
to perform this comparison:

// compares ballots alphabetically by first choice candidate

public int compareTo(Ballot other) {

 return getCandidate().compareTo(other.getCandidate());

}

Putting all of these pieces together, you end up with the following
complete class:

 1 // A class for storing one voter's preferences.

 2 import java.util.*;

 3

 4 public class Ballot implements Comparable<Ballot> {

 5 private ArrayList<String> preferences;

 6

 7 // constructs a ballot with candidate names in order

 8 public Ballot(String[] names) {

 9 preferences = new ArrayList<>();

10 for (String next: names) {

11 preferences.add(next);

12 }

13 }

14

15 // returns the current first choice for this ballot

16 public String getCandidate() {

17 return preferences.get(0);

18 }

19

20 // eliminates the given candidate from consideration

21 public void eliminate(String name) {

22 preferences.remove(name);

23 }

24

25 // compares this ballot to another in order

26 // alphabetically by first choice candidate

27 public int compareTo(Ballot other) {

28 return

getCandidate().compareTo(other.getCandidate());

29 }

30 }

Counting Votes

Now that we have code to represent a ballot, we can turn to writing
the overall program in a separate file called TallyVotes.java .
Assume that votes are stored in a file called vote.txt . The first
version of your program is supposed to read the information from
this file to create an ArrayList of Ballot objects. You can then sort
the list by candidate name and count the votes. As with the calendar
sample program, you can call Collections.sort to sort the list. The
reading and vote counting operations deserve to be written as
methods. That leads to the following main method:

public class TallyVotes {

 public static void main(String[] args)

 throws FileNotFoundException {

 Scanner input = new Scanner(new File("vote.txt"));

 ArrayList<Ballot> ballots = readFile(input);

 Collections.sort(ballots);

 oneRound(ballots);

}

...

The readFile method involves reading the input file line by line and
adding Ballot objects to an ArrayList . The Ballot constructor

expects an array of strings to specify the candidate choice. Recall
that the plan is to have each input line list the candidates with tabs
between candidate names. The String class has a method called
split that provides a convenient way to break up this string into the
individual names. It takes a parameter that specifies what separator
or delimiter to use. The reading method, then, can be written as
follows:

// Reads a data file of voter preferences, returning a list

// of the resulting ballots.

public static ArrayList<Ballot> readFile(Scanner input) {

 ArrayList<Ballot> result = new ArrayList<>();

 while (input.hasNextLine()) {

 String text = input.nextLine();

 result.add(new Ballot(text.split("\t")));

 }

 return result;

}

The oneRound method takes a bit more effort to complete. The main
method calls Collections.sort to put the ballots in order by
candidate name. That means that all of the votes for a particular
candidate will be grouped together. If you use simple names like A,
B, C, and D for candidates, then all of the votes for candidate A will
come first followed by all of the votes for candidate B, and so on.

This problem involves two levels of structure that can be useful to
separate into different methods. You need an outer loop that
processes the first candidate, then the second candidate, and so on.
For each candidate, you need to count how many votes that
candidate got.

If you use the sample set of eight votes mentioned in the beginning
of the section and you store them in an ArrayList ordered by the
name of the candidate, you end up with the sequence shown in
Figure 10.4 .

Figure 10.4 ArrayList of eight ballots

The list elements 0 through 2 represent votes for candidate A, which
means that A got 3 votes. The list elements 3 through 4 represent
votes for candidate B, which is two votes. To process this list
candidate by candidate, you can keep track of a current index and
then compute the number of votes for the next candidate. This vote
count can then added to the index to position to the beginning of the
votes for the next candidate. For example, you can start the index at
0 for the first candidate and given that the first candidate got 3 votes,
you know to increase the index to 3 to process votes for the second
candidate.

In counting the votes, you need access to the list of ballots and you
also need to know which index to start at. It isn’t a bad idea to also
provide the name of the candidate. The following code implements
this strategy:

// Performs one round of ranked choice voting.

public static void oneRound(ArrayList<Ballot> ballots) {

 int index = 0;

 while (index < ballots.size()) {

 String next = ballots.get(index).getCandidate();

 int count = processVotes(next, index, ballots);

 index += count;

 }

}

The second level of structure is to implement the processVotes
method that counts the votes for a single candidate. Remember that
the method is passed the starting index, candidate name, and list of
ballots as parameters:

// Counts and reports the votes for the next candidate

// starting at the given index in the ballots list.

public static int processVotes(String name, int index,

 ArrayList<Ballot> ballots) {

 ...

}

It needs to have a loop that increments the index while the next
name in the list matches the given candidate, counting as it goes.
The following first attempt is not quite right:

int count = 0;

while (ballots.get(index).getCandidate().equals(name)) {

 index++;

 count++;

}

To see the bug in the preceding code, ask yourself, what happens
when you reach the last candidate? You can’t count on finding

another element of the list with a different name. That means you
need an additional test to make sure the index hasn’t become too
high. You have to put the new test first so that you avoid getting an
IndexOutOfBoundsException :

int count = 0;

while (index < ballots.size() &&

 ballots.get(index).getCandidate().equals(name)) {

 index++;

 count++;

}

Once you know the count for this candidate, you can compute and
report their percentage of the vote. Since we want to round the
results, this is a good place to use a printf statement:

double percent = 100.0 * count / ballots.size();

System.out.printf("%d votes for %s (%4.1f%%)\n", count,

 name, percent);

The final step for the method is to return the count. Putting these
pieces together, you get the following complete program:

 1 // This program reads a data file and counts candidates'

votes.

 2

 3 import java.util.*;

 4 import java.io.*;

 5

 6 public class TallyVotes1 {

 7 public static void main(String[] args)

 8 throws FileNotFoundException {

 9 Scanner input = new Scanner(new File("vote.txt"));

10 ArrayList<Ballot> ballots = readFile(input);

11 Collections.sort(ballots);

12 oneRound(ballots);

13 }

14

15 // Reads a data file of voter preferences, returning a

list

16 // of the resulting ballots. Candidate names are listed

in

17 // order of preference with tabs separating choices.

18 public static ArrayList<Ballot> readFile(Scanner input)

{

19 ArrayList<Ballot> result = new ArrayList<>();

20 while (input.hasNextLine()) {

21 String text = input.nextLine();

22 result.add(new Ballot(text.split("\t")));

23 }

24 return result;

25 }

26

27 // Counts and reports votes for each candidate. Assumes

the

28 // list is in order by candidate name.

29 public static void oneRound(ArrayList<Ballot> ballots)

{

30 int index = 0;

31 while (index < ballots.size()) {

32 String next =

ballots.get(index).getCandidate();

33 int count = processVotes(next, index, ballots);

34 index += count;

35 }

36 }

37

38 // Counts and reports the votes for the next candidate

39 // starting at the given index in the ballots list.

40 public static int processVotes(String name, int index,

41 ArrayList<Ballot>

ballots) {

42 int count = 0;

43 while (index < ballots.size() &&

44

ballots.get(index).getCandidate().equals(name)) {

45 index++;

46 count++;

47 }

48 double percent = 100.0 * count / ballots.size();

49 System.out.printf("%d votes for %s (%4.1f%%)\n",

count,

50 name, percent);

51 return count;

52 }

53 }

When you run the program using the short input file of eight votes,
you get the following output:

3 votes for A (37.5%)

2 votes for B (25.0%)

2 votes for C (25.0%)

1 votes for D (12.5%)

The program does not yet eliminate candidates to find the overall
election winner, but we’ll add that functionality in the next section.

Multiple Rounds

The current version of the program counts the votes for each
candidate and returns those counts to the method called oneRound .
The remainder of the program involves multiple rounds where
candidates are eliminated until a winner is found. You can modify the
oneRound method to return a boolean value indicating whether or not
the voting has ended. If you add some code for reporting the round
number and include a line of dashes to separate the different rounds
of output, you end up with the following modifications to our
TallyVotes program’s main method. Notice that we have to sort the
ballots after each round to order them by each voter’s next preferred
candidate:

public static void main(String[] args)

 throws FileNotFoundException {

 Scanner input = new Scanner(new File("vote.txt"));

 ArrayList<Ballot> ballots = readFile(input);

 int round = 1;

 boolean done = false;

 while (!done) {

 System.out.println("Round #" + round);

 Collections.sort(ballots);

 done = oneRound(ballots);

 System.out.println("------------------------------");

 round++;

 }

}

The header of the oneRound method will have to be changed to
reflect the fact that it returns a boolean result.

public static boolean oneRound(ArrayList<Ballot> ballots) {

 ...

}

The method has a loop that processes one candidate at a time. To
determine whether there is a winner, you need to know which
candidate got the most votes. If there is no winner, you have to
eliminate the candidate with the lowest vote total, which means you
would need to also know which candidate got the lowest number of
votes. These are classic max/min computations. You need to know
both the candidate names and their vote totals, so there are a lot of
variables involved, but otherwise this is a straightforward task of
including the standard max/min code to the existing loop. You can
initialize the minimum to one more than the total number of ballots
and initialize the maximum to 0, and you can initialize the candidate
names to null , which leads to the following code:

// oneRound implementation (partial)

String top = null;

String bottom = null;

int topCount = 0;

int bottomCount = ballots.size() + 1;

int index = 0;

while (index < ballots.size()) {

 String next = ballots.get(index).getCandidate();

 int count = processVotes(next, index, ballots);

 if (count > topCount) {

 topCount = count;

 top = next;

 }

 if (count < bottomCount) {

 bottomCount = count;

 bottom = next;

 }

 index += count;

}

There are three possible outcomes. If the count for the top candidate
is more than 50%, then that candidate has won. Otherwise you
normally would eliminate the candidate with the lowest vote total. But
there is one special case that is important to consider. When you get
down to just two candidates, there might be a tie where each of the
remaining candidates earns exactly 50% of the vote. In that case,
there is no winner and you would want to stop the algorithm from
continuing. The task of eliminating a candidate deserves to be its
own method. The rest of the code can be written as a nested
if/else that distinguishes these three cases, producing an

appropriate message and returning either true or false depending
upon whether the voting has ended. That leads to the following code:

// determining a winner

if (topCount == bottomCount) {

 System.out.println("Election has no winner");

 return true;

} else if (topCount > ballots.size() / 2.0) {

 System.out.println("Winner is " + top);

 return true;

} else {

 System.out.println("no winner, eliminating " + bottom);

 eliminate(bottom, ballots);

 return false;

}

The task of eliminating a candidate simply involves calling the Ballot
object’s eliminate method for each of the ballots in the list. This is a
good place to use a for-each loop:

// Eliminates the given candidate from all ballots.

public static void eliminate(String candidate,

 ArrayList<Ballot> ballots) {

 for (Ballot b: ballots) {

 b.eliminate(candidate);

 }

}

Putting these pieces together, you get the following complete
program:

 1 // Program to perform ranked choice voting algorithm

 2 // using a data file of voting preferences.

 3

 4 import java.util.*;

 5 import java.io.*;

 6

 7 public class TallyVotes2 {

 8 public static void main(String[] args)

 9 throws FileNotFoundException {

10 Scanner input = new Scanner(new File("vote.txt"));

11 ArrayList<Ballot> ballots = readFile(input);

12 int round = 1;

13 boolean done = false;

14 while (!done) {

15 System.out.println("Round #" + round);

16 Collections.sort(ballots);

17 done = oneRound(ballots);

18 System.out.println("----------------------------

--");

19 round++;

20 }

21 }

22

23 // Reads a data file of voter preferences, returning a

list

24 // of the resulting ballots. Candidate names are listed

in

25 // order of preference with tabs separating choices.

26 public static ArrayList<Ballot> readFile(Scanner input)

{

27 ArrayList<Ballot> result = new ArrayList<>();

28 while (input.hasNextLine()) {

29 String text = input.nextLine();

30 result.add(new Ballot(text.split("\t")));

31 }

32 return result;

33 }

34

35 // Performs one round of ranked choice voting. The

candidate

36 // with the lowest vote total is eliminated until some

37 // candidate gets a majority or until we reach a tie

between

38 // only two candidates. Assumes the list is in order

by

39 // candidate name.

40 public static boolean oneRound(ArrayList<Ballot>

ballots) {

41 String top = null;

42 String bottom = null;

43 int topCount = 0;

44 int bottomCount = ballots.size() + 1;

45 int index = 0;

46 while (index < ballots.size()) {

47 String next =

ballots.get(index).getCandidate();

48 int count = processVotes(next, index, ballots);

49 if (count > topCount) {

50 topCount = count;

51 top = next;

52 }

53 if (count < bottomCount) {

54 bottomCount = count;

55 bottom = next;

56 }

57 index += count;

58 }

59 if (topCount == bottomCount) {

60 System.out.println("Election has no winner");

61 return true;

62 } else if (topCount > ballots.size() / 2.0) {

63 System.out.println("Winner is " + top);

64 return true;

65 } else {

66 System.out.println("no winner, eliminating " +

bottom);

67 eliminate(bottom, ballots);

68 return false;

69 }

70 }

71

72 // Counts and reports the votes for the next candidate

73 // starting at the given index in the ballots list.

74 public static int processVotes(String name, int index,

75 ArrayList<Ballot>

ballots) {

76 int count = 0;

77 while (index < ballots.size() &&

78

ballots.get(index).getCandidate().equals(name)) {

79 index++;

80 count++;

81 }

82 double percent = 100.0 * count / ballots.size();

83 System.out.printf("%d votes for %s (%4.1f%%)\n",

count,

84 name, percent);

85 return count;

86 }

87

88 // Eliminates the given candidate from all ballots.

89 public static void eliminate(String candidate,

90 ArrayList<Ballot> ballots)

{

91 for (Ballot b: ballots) {

92 b.eliminate(candidate);

93 }

94 }

95 }

Given the previous short input file of eight votes, it produces the
following output:

Round #1

3 votes for A (37.5%)

2 votes for B (25.0%)

2 votes for C (25.0%)

1 votes for D (12.5%)

no winner, eliminating D

Round #2

3 votes for A (37.5%)

2 votes for B (25.0%)

3 votes for C (37.5%)

no winner, eliminating B

Round #3

3 votes for A (37.5%)

5 votes for C (62.5%)

Winner is C

Chapter Summary
The ArrayList class in Java’s java.util package represents a
growable list of objects implemented using an array. You can use an
ArrayList to store objects in sequential order. Each element has a
zero-based index.

ArrayList is a generic class. A generic class accepts a data type as
a parameter when it is created, like ArrayList<String> .

An ArrayList maintains its own size for you; elements can be added
to or removed from any position up to the size of the list. Other
ArrayList operations include get , set , clear , and toString .

ArrayLists can be searched using methods named contains ,
indexOf , and lastIndexOf .

Java’s for-each loop can be used to examine each element of an
ArrayList . The list cannot be modified during the execution of the
for-each loop.

When you are storing primitive values such as ints or doubles into
an ArrayList , you must declare the list with special wrapper types
such as Integer and Double .

The Comparable interface defines a natural ordering for the objects of
a class. Objects that implement Comparable can be placed into an
ArrayList and sorted. Many common types (such as String and
Integer) implement Comparable .

You can implement the Comparable interface in your own classes by
writing a method compareTo .

Self-Check Problems

Section 10.1: ArrayLists

1. What is an ArrayList? In what cases should you use an
ArrayList rather than an array?

2. Which of the following is the correct syntax to construct an
ArrayList to store integers?

a. ArrayList list = new ArrayList();
b. ArrayList[int] list = new ArrayList[int]();
c. ArrayList list<> = new ArrayList<integer>();
d. ArrayList<Integer> list = new ArrayList();
e. ArrayList<Integer> list = new ArrayList<>();

3. The next five questions refer to the following String elements:

["It", "was", "a", "stormy", "night"]

Write the code to declare an ArrayList containing these
elements. What is the size of the list? What is its type?

4. Write code to insert two additional elements, " dark " and
" and ", at the proper places in the list to produce the following
ArrayList as the result:

["It", "was", "a", "dark", "and", "stormy", "night"]

5. Write code to change the second element’s value to " IS ",
producing the following ArrayList as the result:

["It", "IS", "a", "dark", "and", "stormy", "night"]

6. Write code to remove from the list any Strings that contain
the letter " a ". The following should be the list’s contents after
your code has executed:

["It", "IS", "stormy", "night"]

7. Write code to declare an ArrayList holding the first 10
multiples of 2: 0, 2, 4,..., 18. Use a loop to fill the list with the
proper elements.

8. Write a method called maxLength that takes an ArrayList of
Strings as a parameter and that returns the length of the
longest String in the list. If your method is passed an empty
ArrayList , it should return 0 .

9. Write code to print out whether or not a list of Strings
contains the value " IS ". Do not use a loop.

10. Given the ArrayList from problem 4, write code to print out
the index at which your list contains the value " stormy " and
the index at which it contains " dark ". Do not use a loop.

11. Given the ArrayList from problem 4, write a for-each loop that
prints the uppercase version of each String in the list on its
own line.

12. When the code that follows runs on an ArrayList of Strings,
it throws an exception. Why?

for (String s: words) {

 System.out.println(s);

 if (s.equals("hello")) {

 words.add("goodbye");

 }

}

13. The code that follows does not compile. Why not? Explain
how to fix it.

ArrayList<int> numbers = new ArrayList<>();

numbers.add(7);

numbers.add(19);

System.out.println(numbers);

14. What is a wrapper class? Describe the difference between an
int and an Integer .

15. Write the output produced when the following method is
passed each of the following lists:

public static void mystery1(ArrayList<Integer> list) {

 for (int i = list.size() - 1; i > 0; i--) {

 if (list.get(i) < list.get(i - 1)) {

 int element = list.get(i);

 list.remove(i);

 list.add(0, element);

 }

 }

 System.out.println(list);

}

a. [2, 6, 1, 8]
b. [30, 20, 10, 60, 50, 40]
c. [-4, 16, 9, 1, 64, 25, 36, 4, 49]

16. Write the output produced when the following method is
passed each of the following lists:

public static void mystery2(ArrayList<Integer> list) {

 for (int i = list.size() - 1; i >= 0; i--) {

 if (i % 2 == 0) {

 list.add(list.get(i));

 } else {

 list.add(0, list.get(i));

 }

 }

 System.out.println(list);

}

a. [10, 20, 30]
b. [8, 2, 9, 7, 4]
c. [-1, 3, 28, 17, 9, 33]

17. Write the output produced when the following method is
passed each of the following lists:

public static void mystery3(ArrayList<Integer> list) {

 for (int i = list.size() - 2; i > 0; i--) {

 int a = list.get(i);

 int b = list.get(i + 1);

 list.set(i, a + b);

 }

 System.out.println(list);

}

a. [72, 20]
b. [1, 2, 3, 4, 5, 6]
c. [10, 20, 30, 40]

18. Write the output produced when the following method is
passed each of the following lists:

public static void mystery4(ArrayList<Integer> list) {

 for (int i = 0; i < list.size(); i++) {

 int element = list.get(i);

 list.remove(i);

 list.add(0, element + 1);

 }

 System.out.println(list);

}

a. [10, 20, 30]
b. [8, 2, 9, 7, 4]
c. [-1, 3, 28, 17, 9, 33]

Section 10.2: The Comparable
Interface

19. Describe how to arrange an ArrayList into sorted order. What
must be true about the type of elements in the list in order to
sort it?

20. What is a natural ordering? How do you define a natural
ordering for a class you’ve written?

21. Consider the following variable declarations:

Integer n1 = 15;

Integer n2 = 7;

Integer n3 = 15;

String s1 = "computer";

String s2 = "soda";

String s3 = "pencil";

Indicate whether the result of each of the following
comparisons is positive, negative, or 0 :

a. n1.compareTo(n2)
b. n3.compareTo(n1)
c. n2.compareTo(n1)
d. s1.compareTo(s2)
e. s3.compareTo(s1)

f. s2.compareTo(s2)

22. Use the compareTo method to write code that reads two names
from the console and prints the one that comes first in
alphabetical order. For example, the program’s output might
look like the following:

Type a name: Tyler Durden

Type a name: Marla Singer

Marla Singer goes before Tyler Durden

23. Write code to read a line of input from the user and print the
words of that line in sorted order, without removing duplicates.
For example, the program output might look like the following:

Type a message to sort: to be or not to be that is the

question

Your message sorted: be be is not or question that the to

to

Exercises
1. Write a method called averageVowels that takes an ArrayList

of strings as a parameter and returns the average number of
vowel characters (a, e, i, o, u) in all Strings in the list. If your
method is passed an empty ArrayList , it should return 0.0 .

2. Write a method called swapPairs that switches the order of
values in an ArrayList of strings in a pairwise fashion. Your
method should switch the order of the first two values, then
switch the order of the next two, then the next two, and so on.
If the number of values in the list is odd, the method should
not move the final element. For example, if the list initially
stores ["to", "be", "or", "not", "to", "be", "hamlet"] , your
method should change the list’s contents to ["be", "to",
"not", "or", "be", "to", "hamlet"] .

3. Write a method called removeEvenLength that takes an
ArrayList of strings as a parameter and removes all of the
strings of even length from the list.

4. Write a method called doubleList that takes an ArrayList of
strings as a parameter and replaces every string with two of
that same string. For example, if the list stores the values
["how", "are", "you?"] before the method is called, it should
store the values ["how", "how", "are", "are", "you?", "you?"]
after the method finishes executing.

5. Write a method called scaleByK that takes an ArrayList of
integers as a parameter and replaces every integer of value
with copies of itself. For example, if the list stores the values
[4, 1, 2, 0, 3] before the method is called, it should store
the values [4, 4, 4, 4, 1, 2, 2, 3, 3, 3] after the method
finishes executing. Zeroes and negative numbers should be
removed from the list by this method.

6. Write a method called minToFront that takes an ArrayList of
integers as a parameter and moves the minimum value in the
list to the front, otherwise preserving the order of the
elements. For example, if a variable called list stores [3, 8,
92, 4, 2, 17, 9] , the value 2 is the minimum, so your method
should modify the list to store the values [2, 3, 8, 92, 4, 17,
9] .

7. Write a method called removeDuplicates that takes as a
parameter a sorted ArrayList of strings and eliminates any
duplicates from the list. For example, if the list stores the
values ["be", "be", "is", "not", "or", "question", "that",
"the", "to", "to"] before the method is called, it should store
the values ["be", "is", "not", "or", "question", "that",
"the", "to"] after the method finishes executing. Because the
values will be sorted, all of the duplicates will be grouped
together. Assume that the ArrayList contains only String
values, but keep in mind that it might be empty.

8. Write a method called removeZeroes that takes as a parameter
an ArrayList of integers and eliminates any occurrences of

k

k

the number 0 from the list. For example, if the list stores the
values [0, 7, 2, 0, 0, 4, 0] before the method is called, it
should store the values [7, 2, 4] after the method finishes
executing.

9. Write a method called rangeBetweenZeroes that takes as a
parameter an ArrayList of integers and returns the number of
indexes apart the two farthest occurrences of the number 0
are. For example, if the list stores the values [7, 2, 0, 0, 4,
0, 9, 0, 6, 4, 8] when the method is called, it should return
6 , because the occurrences of 0 that are farthest apart are at
indexes 2 and 7, and the range 2 through 7 has six elements.
If only one 0 occurs in the list, your method should return 1 . If
no 0s occur, your method should return 0 .

10. Write a method called removeInRange that accepts three
parameters, an ArrayList of strings, a beginning string, and
an ending string, and removes from the list any strings that fall
alphabetically between the start and end strings. For example,
if the method is passed a list containing the elements ["to",
"be", "or", "not", "to", "be", "that", "is", "the",

"question"] , "free" as the start String, and "rich" as the end
String, the list’s elements should be changed to ["to", "be",
"to", "be", "that", "the"] . The "or", "not", "is", and
"question" should be removed because they occur
alphabetically between " free" and " rich" . You may assume
that the start string alphabetically precedes the ending string.

11. Write a method called stutter that accepts an ArrayList of
strings and an integer as parameters and that replaces
every string with copies of that string. For example, if the list
stores the values ["how", "are", "you?"] before the method is
called and is 4, it should store the values ["how", "how",
"how", "how", "are", "are", "are", "are", "you?", "you?",

"you?", "you?"] after the method finishes executing. If is 0
or negative, the list should be empty after the call.

12. Write a method called markLength4 that accepts an ArrayList
of strings as a parameter and that places a string of four
asterisks " **** " in front of every string of length 4. For
example, suppose that a variable called list contains the
values ["this", "is", "lots", "of", "fun", "for", "Java",
"coders"] . The call of markLength4(list); should change the
list to store the values ["****", "this", "is", "****", "lots",
"of", "fun", "for", "****", "Java", "coders"] .

13. Write a method called reverse3 that accepts an ArrayList of
integer values as a parameter and reverses each successive
sequence of three values in the list. If the list has extra values
that are not part of a sequence of three, those values are
unchanged. For example, if a list stores values [3, 8, 19, 42,
7, 26, 19, -8] , after the call the list should store the values
[19, 8, 3, 26, 7, 42, 19, -8] . The first sequence of three
(3, 8, 19) has been reversed to be (19, 8, 3) . The second
sequence (42, 7, 26) has been reversed to be (26, 7, 42) ,

k

k

k

k

and so on. Notice that 19 and –8 are unchanged because
they were not part of a sequence of three values.

14. Write a method called removeShorterStrings that accepts an
ArrayList of strings as a parameter and removes from each
pair of values the shorter string in the pair. If the list is of odd
length, the final element is unchanged. For example, suppose
that a list contains [" four " , " score " , " and " , " seven " ,
" years " , " ago " , " our "] . In the first pair (" four " and
" score ") the shorter string is " four ". In the second pair
(" and " and " seven ") the shorter string is " and ". In the third
pair (" years " and " ago ") the shorter string is " ago ". Your
method should remove these shorter strings, changing the list
to store [" score " , " seven " , " years " , " our "]. If both strings
in a pair have the same length, remove the first string in the
pair.

15. Write a method called filterRange that accepts an ArrayList
of integers and two integer values min and max as
parameters and removes all elements whose values are in the
range min through max (inclusive). For example, if a variable
called list stores the values [4, 7, 9, 2, 7, 7, 5, 3, 5, 1,
7, 8, 6, 7] , the call of filterRange(list, 5, 7); should
remove all values between 5 and 7 , changing the list to store
[4, 9, 2, 3, 1, 8] . If no elements in range min-max are
found in the list, or if the list is initially empty, the list’s contents
are unchanged.

16. Write a method called clump that accepts an ArrayList of
strings as a parameter and replaces each pair of strings with
a single string that consists of the two original strings in
parentheses separated by a space. If the list is of odd length,
the final element is unchanged. For example, suppose that a
list contains [" four " , " score " , " and " , " seven " , " years " ,
" ago " , " our "]. Your method should change the list to store
[" (four score) " , (" and seven "), (" years ago "), " our "].

17. Write a method called interleave that accepts two ArrayLists
of integers a1 and a2 as parameters and inserts the elements
of a2 into a1 at alternating indexes. If the lists are of unequal
length, the remaining elements of the longer list are left at the
end of a1. For example, if a1 stores [10, 20, 30] and a2

stores [4, 5, 6, 7, 8] , the call of interleave(a1, a2); should
change a1 to store [10, 4, 20, 5, 30, 6, 7, 8] . If a1 had
stored [10, 20, 30, 40, 50] and a2 had stored [6, 7, 8] , the
call of interleave(a1, a2); would change a1 to store [10, 6,
20, 7, 30, 8, 40, 50] .

18. Write a method called mirror that accepts an ArrayList of
strings as a parameter and produces a mirrored copy of the
list as output, with the original values followed by those same
values in the opposite order. For example, if an ArrayList
variable called list contains the values ["a", "b", "c"] , after
a call of mirror(list) ; it should contain ["a", "b", "c", "c",
"b", "a"] .

19. Modify the Point class from Chapter 8 so that it defines a
natural ordering by implementing the Comparable interface.
Compare the Points by -major order; that is, points with
smaller -coordinate values should come before those with
higher -coordinate values. Break ties by comparing -
coordinate values.

20. Modify the TimeSpan class from Chapter 8 to include a
compareTo method that compares time spans by their length. A
time span that represents a shorter amount of time is
considered to be “less than” one that represents a longer
amount of time. For example, a span of 3 hours and 15
minutes is greater than a span of 1 hour and 40 minutes.

21. Modify the CalendarDate class from this chapter to include a
year field, and modify its compareTo method to take years into
account when making comparisons. Years take precedence
over months, which take precedence over days. For example,
July 18, 1995, comes before March 2, 2001.

y

y

y x

Programming Projects
1. Write classes to model a shopping list. Make an Item class

that represents a grocery item’s name and price, such as
tissues for $3. Also implement an ItemOrder class that
represents a shopper’s desire to purchase a given item in a
given quantity, such as five boxes of tissues. You might wish
to implement bulk-discounted items, such as two boxes of
tissues for $4, which would bring the cost of the given item
order of boxes of tissues to or

 Lastly, implement a ShoppingCart class that stores
ItemOrders in an ArrayList and allows item orders to be
added to, removed from, or searched for in the cart. The cart
should be able to report the total price of all item orders it
currently carries.

2. Write a program to reverse the lines of a file and also to
reverse the order of the words in each line of the file. Use
ArrayLists to help you.

3. Write a family database program. Create a class to represent
a person and to store references to the person’s mother,
father, and any children the person has. Read a file of names
to initialize the name and parent–child relationships of each
Person . (You might wish to create a file representing your own
family tree.) Store the overall list of Persons as an ArrayList .

2 + 2 + 1 $4 + $4 + $3,

$11.00.

Write an overall main user interface that asks for a name and
prints the maternal and paternal family line for that person.
Here’s a hypothetical execution of the program, using as an
input file the line of English Tudor monarchs:

Person's name? Henry VIII

Maternal line:

 Henry VIII

 Elizabeth of York

Paternal line:

 Henry VIII

 Henry VII

Children:

 Mary I

 Elizabeth I

 Edward VI

4. Write a class that models a list of possibly overlapping
rectangular two-dimensional window regions, like the windows
for the programs open on your computer. The order of the
rectangles in the list implies the order in which they would
display on the screen (sometimes called the “ -order”), from
0 on the bottom to size() – 1 on the top.
Each rectangle stores its () position, width, and height.
Your rectangle list class should have a method that takes a
Point as a parameter, treats it as though the user clicked that

z

x, y

Point on the screen, and moves the topmost rectangle
touching that Point to the front of the list.

5. Extend the ranked choice voting case study to allow for
incomplete preferences. Voters are normally allowed to fill out
the ballot in an incomplete manner. For example, with the
sample ballots with four candidates, you might have ballots
that specify only a first choice or only two choices. When you
have partial information, you can end up with empty ballots
because the voter might have chosen candidates who are all
eliminated.
Modify the Ballot class to have an isEmpty method that
indicates that there are no candidates left. (Modify the
getCandidate method to return "none" in this case.) Then
modify the TallyVotes program to account for potentially

empty ballots. It is possible that the input file will contain blank
lines because a voter didn’t pick any candidates, so include a
test that ignores blank lines in the input file. Modify the code
that eliminates candidates so that it removes from the list of
ballots any ballots that become empty. That way the
percentages will be reported correctly on the next round of
tallying.

Chapter 11 Java Collections
Framework

11.1 Lists
• Collections

• LinkedList versus ArrayList

• Iterators

• Abstract Data Types (ADTs)

• LinkedList Case Study: Sieve

11.2 Sets
• Set Concepts

• TreeSet versus HashSet

• Set Operations

• Set Case Study: Lottery

11.3 Maps
• Basic Map Operations

• Map Views (keySet and values)

• TreeMap versus HashMap

• Map Case Study: WordCount

• Collection Overview

Introduction
The previous chapter explored the ArrayList
class. An ArrayList is one of many ways to
store data in Java. In this chapter we’ll explore
Java’s framework of collections, including lists,
sets, and maps. We’ll see how to use these
structures together to manipulate and examine
data in many ways to solve programming
problems. This chapter will examine a trio of
smaller interesting programs as case studies
rather than presenting a unified case study at
the end of the chapter.

We’ll introduce a new type of list called a linked
list that stores its data differently from an
ArrayList but supports the same operations.
We’ll also discuss collections called sets that
don’t allow duplicate elements and that are easy

to search. Another collection type we’ll explore
is the map, which creates associations between
pairs of data values. We’ll also delve into the
notion of abstract data types as a way to
separate the capabilities of a collection from the
details of its implementation.

11.1 Lists

The ArrayList class from Chapter 10 has several advantages
over an array: It keeps track of its own size for you, it allows you to
insert and remove data at arbitrary places in the array, and it resizes
itself for you if it gets full.

In this section we’ll learn about an object called a LinkedList , which
is similar to an ArrayList . We’ll also look at generalizing collections
and discuss a useful object called an iterator that lets you examine
the elements of any collection.

Collections

In Chapters 7 and 8 , we discussed ways to use arrays and
classes to store data. The notion of organizing and structuring data

is an important one that helps us solve complex problems. Entities
that store and manage data are also called data structures. Data
structures can be used to implement sophisticated data storage
objects called collections.

Collection
An object that stores a group of other objects, called its
elements.

An ArrayList is an example of a collection. A collection uses a data
structure internally to store its elements, such as an array or a set of
objects that refer to one another. For example, an ArrayList is
implemented using an array as its data structure, and a TreeSet (a
collection introduced later in this chapter) is implemented using a
data structure called a binary search tree.

Collections are categorized by the types of elements they store, the
operations they allow you to perform on those elements, and the
speed or efficiency of those operations. Here are some examples of
collections:

List: An ordered collection of elements, often accessed by
integer indexes or by iteration.

Stack: A collection in which the last element added is the first
one to be removed.
Queue: A collection in which elements are removed in the same
order in which they were added.
Set: A collection of elements that is guaranteed to contain no
duplicates.
Map: A collection of key/value pairs in which each key is
associated with a corresponding value.

Java provides a large group of useful collections that allow you to
store, access, search, sort, and manipulate data in a variety of ways.
Together, these collections and classes are known as the Java
Collections Framework. This framework is largely contained in the
package java.util .

The java.util package contains an interface called Collection that
is implemented by all collections except Map . This interface specifies
the operations that most collections support. Table 11.1 lists those
operations.

Table 11.1 Useful Methods of the Collection Interface

The Collection interface is extended and implemented by the other
interfaces and classes in the Java Collections Framework. Figure
11.1 summarizes the various interfaces and the classes that
implement them, all of which will be discussed in this chapter.

Figure 11.1 An abridged view of the Java Collections
Framework

LinkedList versus ArrayList

Now we’ll look at a collection called LinkedList and compare and
contrast it with ArrayList .

ArrayList is a powerful and useful collection, but there are some
cases in which using an ArrayList isn’t ideal. For example, suppose
we want to write a program to remove each String of even length
from an ArrayList of Strings . We can do this by using a loop that

examines each element of the list and either removes it if its length is
even or advances to the next string if its length is odd:

// Removes all strings of even length from the given list.

public static void removeEvenLength(ArrayList<String> list) {

 int i = 0;

 while (i < list.size()) {

 String element = list.get(i);

 if (element.length() % 2 == 0) {

 list.remove(i);

 } else {

 i++; // skip to next element

 }

}

}

The preceding code is correct, but it doesn’t perform well when the
list has a lot of elements. On a relatively modern machine, it can take
several minutes to process a list of a million elements. The reason it
is so slow is that every time we remove an element from the list, we
have to shift all subsequent elements to the left by one. This
repeated shifting results in a slow program.

Another case in which an ArrayList behaves slowly is when it’s used
to model a waiting line or queue, where elements (customers) are
always added to the end of the list (line) and always removed from
the front. As customers arrive, they are added to the end of the list.

Customers are removed from the front of the list and processed in
turn. Removing an element from the front of a large ArrayList is a
slow operation because all the other elements have to be shifted to
the left.

Another type of collection, called a linked list, can give better
performance in problems like these that involve a lot of additions to
or removals from the front or middle of a list. A linked list provides
the same operations as an array list, such as add , remove , isEmpty ,
size , and contains . But a linked list stores its elements in a
fundamentally different way. Elements of a linked list are stored in
small individual containers called nodes. The nodes are “linked”
together, each node storing a reference to the next node in the list.
The overall linked list object keeps references to the front and back
nodes.

Linked List
A collection that stores a list of elements in small object
containers called nodes, which are linked together.

You can envision a linked list as an array list that’s been “broken
apart,” with each element then stored in a small box (a node)
connected to its neighboring box by an arrow.

One major advantage of using a linked list is that elements can
generally be added at the front of the list quickly, because rather
than shifting all the elements in an array, the list just creates a new
node object and links it with the others in the list. We don’t have to
do this ourselves; we simply call methods on the list, which takes
care of it for us internally. Figure 11.2 shows what happens inside
a linked list when an element is added at the front.

Figure 11.2 Adding an element to the front of a linked list

To use a linked list in Java, create an object of type LinkedList
instead of type ArrayList . A LinkedList object has the same
methods you’ve used when working with ArrayList :

LinkedList<String> words = new LinkedList<>();

words.add("hello");

words.add("goodbye");

words.add("this");

words.add("that");

We could write a version of our removeEvenLength method that
accepts a LinkedList<String> as its parameter rather than an
ArrayList<String> . However, this change alone won’t have much
impact on performance. Since the removeEvenLength method
examines each element of the list in sequential order, we can make
the code more efficient by employing another type of object called an
iterator.

Iterators

As we discussed in Chapter 7 , arrays provide a nice property
called random access, meaning that we can efficiently access or
modify arbitrary array elements in any order. This access is possible
because arrays are stored as large contiguous blocks of memory, so
the computer can quickly compute the memory location of any of the
array’s elements. Linked lists, unfortunately, do not provide fast
random access. A linked list is made up of many small node objects
and generally keeps a direct reference only to one or two particular
elements, such as the front and back elements. Therefore it is not
possible to quickly access arbitrary elements of the list. A linked list
is somewhat like a VHS tape or audio cassette tape in this way; if we
wish to access an element, we must “fast-forward” or “rewind”
through the list to the proper position.

When you call a method like get , set , add , or remove on a linked list,
the code internally creates a temporary reference that begins at the
front of the list and traverses the links between nodes until it reaches
the desired index. The amount of time that this takes depends on the
index you chose: If you ask for the element at index 5 it will be
returned quickly, but if you ask for the element at index 9,000 the
loop inside the get method must advance through 9,000 nodes,
which will take much longer.

These methods tend to be slow when you use them on a linked list,
especially if you call them many times or call them on a list with
many elements. Imagine that after the preceding example call of
get(9000) you decided to call get(9001) . The linked list doesn’t
remember its previous position, so it starts from the front again and
advances 9,001 times. The only case in which the methods run
quickly is when you pass an index near the front or back of the list.

Earlier in this chapter, we wrote a method to remove strings of even
length from an ArrayList . If we adapted this code to use a
LinkedList and made no other modifications we would find that it still
runs very slowly on large lists, because it calls the get and remove
methods many times:

// performs poorly on a linked list

public static void removeEvenLength(LinkedList<String> list) {

 int i = 0;

 while (i < list.size()) {

 String element = list.get(i); // slow

 if (element.length() % 2 == 0) {

 list.remove(i); // slow

 } else {

 i++;

 }

 }

}

However, there’s an efficient way to examine every element of a
linked list if we want sequential access (i.e., if we want to examine
each element in order from the front to the back). To perform this
task, we can use a special object called an iterator that keeps track
of our current position in the list.

Iterator
An object that allows the efficient retrieval of the
elements of a list in sequential order.

Using an iterator, when we move from one element to the next, we
don’t have to go back to the beginning of the list at each call and
follow the links all the way from the front of the list to the desired
index. As we’ll see in this chapter, iterators are central to the Java

Collections Framework. Every collection provides iterators to access
its elements. In other words, there’s a familiar interface for examining
the elements of any collection.

An iterator object has the methods listed in Table 11.2 . The
methods next and hasNext should be familiar from the Scanner class
that you have already studied, and their behavior is similar here.

Table 11.2 Methods of Iterator Objects

To get an iterator from most collections, such as an ArrayList or a
LinkedList , you call the method iterator on the list, which returns
an object of type Iterator for examining that list’s elements. (You
don’t use the new keyword.) Generally, a variable named list
storing elements of type E uses an iterator in the following way:

Iterator<E> itr = list.iterator();

while (itr.hasNext()) {

 <do something with itr.next()>;

}

The example of removing strings that have even length from a
collection can be implemented much more efficiently using an
iterator:

// removes all strings of even length from the given linked

list

public static void removeEvenLength(LinkedList<String> list) {

 Iterator<String> i = list.iterator();

 while (i.hasNext()) {

 String element = i.next();

 if (element.length() % 2 == 0) {

 i.remove();

 }

 }

}

Whereas the original ArrayList version required up to several
minutes to process a list of one million elements on a modern
computer, this new code finishes a million-element list in under one-
tenth of a second. It performs so quickly because the iterator retains
the current position in the list between calls to get or remove
elements.

Iterators are also used internally by Java’s for-each loop. When you
use a for-each loop like the following, Java is actually accessing the
elements using an iterator under the hood:

for (String word : list) {

 System.out.println(word + " " + word.length());

}

COMMON PROGRAMMING ERROR

Calling next on an Iterator Too

Many Times

Iterators can be a bit confusing to new programmers, so you
have to be careful to use them correctly. The following code
attempts to use an iterator to find and return the longest string
in a linked list, but it has a bug:

// returns the longest string in the list (does not

work!)

public static String longest(LinkedList<String> list) {

 Iterator<String> itr = list.iterator();

 String longest = itr.next(); // initialize to first

element

 while (itr.hasNext()) {

 if (itr.next().length() > longest.length()) {

 longest = itr.next();

 }

 }

 return longest;

}

The problem with the previous code is that its loop calls the
next method on the iterator in two places: once when it tests
the length of the string, and again when it tries to store the
string as the longest. Each time you call next , the iterator
advances by one position, so if it’s called twice in the loop,
you’ll skip an element when you find a match. For example, if
the list contains the elements ("oh" , "hello" , "how" , "are" ,
"you"), the program might see the "hello" and intend to store
it, but the second call to next would actually cause it to store
the element that follows "hello" , namely, "how" .

The solution is to save the result of the itr.next() call into a
variable. The following code would replace the while loop in
the previous code:

// this version of the code is correct

while (itr.hasNext()) {

 String current = itr.next();

 if (current.length() > longest.length()) {

 longest = current;

 }

}

As the compiler processes the for-each loop, it essentially converts
the loop into the following code:

Iterator<String> i = list.iterator();

while (i.hasNext()) {

 String word = i.next();

 System.out.println(word + " " + word.length());

}

There’s a more advanced version of Iterator called ListIterator
that works only on lists. A ListIterator provides operations like
adding elements, setting element values, and reversing iteration
from back to front. Because it is more complex, we won’t discuss
ListIterator in detail in this book. You can read more about it online
in the Java API and Java Tutorial pages.

In summary, the following table compares the major benefits of
ArrayList and LinkedList :

Java 8 has introduced some powerful new features for processing
lists and other collections. The following Java 8 code would produce
a new list that does not contain any even-length strings:

public static List<String> removeEvenLength(List<String> list)

{

 return list.stream()

 .filter(s -> s.length() % 2 != 0)

 .collect(Collectors.toList());

}

You can read more about this approach in Chapter 19 .

Abstract Data Types (ADTs)

It’s no accident that the LinkedList collection provides the same
methods as the ArrayList . They both implement the same kind of
collection: a list. At a high level, the most important thing isn’t the
way the list is implemented internally, but the operations we can
perform on it. This set of operations is an example of an abstract
data type, or ADT.

Abstract Data Type (ADT)
A specification of a type of data and the operations that
can be performed on it.

An ADT specifies operations that can be performed on data without
specifying exactly how those operations are implemented. Linked
lists and array lists are both examples of the list ADT because they

both provide the same operations, such as storing data by index,
adding and removing data at particular indexes, and so on.

In Java, ADTs are specified by interfaces. Each ADT’s operations
are specified by the methods of its interface. For example, both
LinkedList and ArrayList implement an interface in the java.util
package called List . The List interface declares all the common
methods that both types of lists implement.

It’s a good practice to declare any variables and parameters of a
collection type using the appropriate interface type for that ADT
rather than the actual class’s type. For example, the following code
constructs a LinkedList object but stores it in a variable of type List :

List<Integer> list = new LinkedList<>();

Joshua Bloch, one of the authors of the Java Collections Framework,
says that this programming practice is “strongly recommended”
because “it gives you the flexibility to change implementations.” Note
that you cannot create an object of type List , but you can use List
as the type of a variable.

You can also use the interface types for ADTs like List when you
declare parameters, return types, or fields. Doing so is useful when
you’re writing a method that accepts a collection as a parameter,
because it means that the method will be able to operate

successfully on any collection that implements that ADT’s interface.
For example, the following method can accept a LinkedList<String>
or an ArrayList<String> as its actual parameter:

// returns the longest string in the given list

// pre: list.size() > 0

public static String longest(List<String> list) {

 Iterator<String> i = list.iterator();

 String result = i.next();

 while (i.hasNext()) {

 String next = i.next();

 if (next.length() > result.length()) {

 result = next;

 }

 }

 return result;

}

It works with either type of list and is efficient for both. This flexibility
is another benefit of polymorphism (discussed in Chapter 9). In
fact, you could make the method even more general by having it
accept a parameter of type Collection rather than List , since every
collection has an iterator method.

The java.util package has a class called Collections that contains
several useful methods related to all collections. (Note that this class

is not the same as the Collection interface that many collection
classes implement.) The Collections class contains static methods
that operate on lists. These methods’ headers specify parameters of
type List rather than LinkedList or ArrayList . The methods perform
common tasks on lists, such as sorting, shuffling, and searching.
Table 11.3 presents a short list of useful methods from the
Collections class that operate on lists.

Table 11.3 Useful Static Methods of the Collections Class

Notice that these methods are static, so they must be called by
writing the word Collections followed by a dot and the method’s
name. For example, if you had a LinkedList variable called list and
you wanted to reverse the list’s contents, you’d write

Collections.reverse(list);

Since Java 8, the List interface contains some useful static
methods for creating and manipulating lists. Perhaps the most useful
is the of method, which takes element values as parameters and
returns a fixed-length list containing those elements, similar to the
Arrays.asList method shown in Chapter 10 . This is a nice syntax
for quickly creating a list of elements. The following JShell interaction
creates such a list:

jshell> List<Integer> nums = List.of(10, 20, 30, 40);

nums ==> [10, 20, 30, 40]

jshell> nums.size()

$2 ==> 4

The list returned by List.of is a special list that cannot be changed.
Your program will crash if you try to modify the list:

jshell> nums.remove(0);

| java.lang.UnsupportedOperationException thrown

| at AbstractList.remove (AbstractList.java:167)

| at (#3:1)

If you want a modifiable version of such a list, create a regular
LinkedList or ArrayList and pass the result of List.of as the
parameter to its constructor. Doing so will make a copy of the result
of List.of that is able to be changed, as shown in the following
JShell interaction:

jshell> List<Integer> nums2 = new LinkedList<>(

 ...> List.of(10, 20, 30, 40));

nums2 ==> [10, 20, 30, 40]

jshell> nums2.remove(0);

$4 ==> 10

jshell> nums2

nums2 ==> [20, 30, 40]

There are similar methods Set.of and Map.of for the Set and Map
collections we’ll see later in this chapter.

In addition to List , there are several other interfaces, such as Queue ,
Set , and Map , representing ADTs in the Java Collections Framework.
We’ll explore several of them in this chapter.

LinkedList Case Study: Sieve

Consider the task of finding all prime numbers up to a given
maximum. Prime numbers are integers that have no factors other
than 1 and themselves. The number 2 is the smallest prime number.

To build a list of prime numbers, you could just write a brute-force
solution using for loops:

for (each number from 2 to maximum) {

 if (number is prime) {

 add number to list of prime numbers.

 }

}

But you would need a way to figure out whether each number is
prime. One option would be to write another for loop that tested all
lower integers to see whether they were factors of that number.
However, there’s an easier way.

The sieve of Eratosthenes, named for the Ancient Greek
mathematician who devised it, is a classic algorithm for finding prime
numbers. The sieve algorithm starts by creating two lists of numbers:
one list of numbers to process (some of which may be prime), and
another list of numbers known to be prime. Initially, the list of
numbers to process can contain every number from 2 to the
maximum, while the list of primes will be empty. Here are the initial
two lists for a maximum of 25:

numbers: [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19,

 20, 21, 22, 23, 24, 25]

primes: []

The sieve algorithm begins by removing the first element from the
numbers list and adding it to the primes list. This number is found to
be prime because of the nature of the algorithm. Next, the algorithm
filters out all the other elements from the numbers list that are

multiples of this prime number. On the first pass of the algorithm, for
example, the program selects 2 from the numbers list, places it into
the primes list, and removes all multiples of 2 from the numbers list.
Now the number at the front of the numbers list is 3. This number will
be placed into the primes list during the next pass of the algorithm,
and all the multiples of 3 that appear in the numbers list will be
removed.

The numbers taken from the front of the numbers list are guaranteed
to be prime. A nonprime number cannot reach the front of the
numbers list because every nonprime number must be a multiple of
some prime number, and any such multiples will have been removed
by a previous pass of the algorithm.

Here are the two lists after the first three passes of the algorithm:

numbers: [3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25]

primes: [2]

numbers: [5, 7, 11, 13, 17, 19, 23, 25]

primes: [2, 3]

numbers: [7, 11, 13, 17, 19, 23]

primes: [2, 3, 5]

Now let’s implement the sieve algorithm. We’ll use LinkedLists to
represent the lists of numbers and primes. This tool is preferable to
ArrayLists because, as we discussed previously, removing elements
from the front of an ArrayList is inefficient.

First we’ll create an empty list of primes and a list of all the numbers
up to the given maximum. Since we’ve discussed ADTs and the List
interface, we’ll declare our variables as the ADT interface type
List<Integer> :

List<Integer> primes = new LinkedList<>();

List<Integer> numbers = new LinkedList<>();

for (int i = 2; i <= max; i++) {

 numbers.add(i);

}

Next, we’ll process the list of numbers. We’ll use an iterator to make
passes over the numbers list and remove elements that are multiples
of the front element:

while (!numbers.isEmpty()) {

 // remove a prime number from the front of the list

 int front = numbers.remove(0);

 primes.add(front);

 // remove all multiples of this prime number

 Iterator<Integer> itr = numbers.iterator();

 while (itr.hasNext()) {

 int current = itr.next();

 if (current % front == 0) {

 itr.remove();

 }

 }

}

The lines of code that follow are the complete program. The most
significant addition is a main method that prompts the user for the
maximum number:

 1 // Uses a linked list to implement the sieve of

 2 // Eratosthenes algorithm for finding prime numbers.

 3

 4 import java.util.*;

 5

 6 public class Sieve {

 7 public static void main(String[] args) {

 8 System.out.println("This program will tell you all

prime");

 9 System.out.println("numbers up to a given

maximum.");

10 System.out.println();

11

12 Scanner console = new Scanner(System.in);

13 System.out.print("Maximum number? ");

14 int max = console.nextInt();

15

16 List<Integer> primes = sieve(max);

17 System.out.println("Prime numbers up to " + max +

":");

18 System.out.println(primes);

19 }

20

21 // Returns a list of all prime numbers up to given max

22 // using the sieve of Eratosthenes algorithm.

23 public static List<Integer> sieve(int max) {

24 List<Integer> primes = new LinkedList<>();

25

26 // add all numbers from 2 to max to a list

27 List<Integer> numbers = new LinkedList<>();

28 for (int i = 2; i <= max; i++) {

29 numbers.add(i);

30 }

31

32 while (!numbers.isEmpty()) {

33 // remove a prime number from the front of the

list

34 int front = numbers.remove(0);

35 primes.add(front);

36

37 // remove all multiples of this prime number

38 Iterator<Integer> itr = numbers.iterator();

39 while (itr.hasNext()) {

40 int current = itr.next();

41 if (current % front == 0) {

42 itr.remove();

43 }

44 }

45 }

46

47 return primes;

48 }

49 }

The following is a sample log of execution of the program:

This program will tell you all prime

numbers up to a given maximum.

Maximum number? 50

Prime numbers up to 50:

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

Our version of the sieve algorithm has been simplified. The real
algorithm stops when the first element of the numbers list is greater
than the square root of the maximum, because any number this
large that remains in the list cannot have any multiples remaining in
the list. For example, when the maximum is 25, once the item at the

front of the numbers list exceeds 5, all remaining numbers in the list
are known to be prime and can be placed in the primes list.

The algorithm can be improved in other ways. For example, the
initial list of numbers doesn’t need to store every integer from 2
through the maximum. It can instead store 2 and each odd integer
up to the maximum, because no other even numbers are prime. This
modification makes the algorithm more efficient because fewer
numbers need to be processed. These two improvements to the
algorithm are left as an exercise.

11.2 Sets

A major limitation of both linked and array lists is that searching them
takes a long time. Generally, if you want to search a list, you have to
look at each element sequentially to see whether you’ve found the
target. This can take a long time for a large list.

Another limitation of lists is that it’s not easy to prevent a list from
storing duplicate values. In many cases this isn’t a problem, but if, for
example, you are storing a collection to count the number of unique
words in a book, you don’t want any duplicates to exist. To prevent
duplicates in a list, you have to sequentially search the list every time
you add to it, in order to make sure you aren’t adding a word that’s
already present.

When you want to maintain a collection of elements that can be
searched quickly and that prevents duplicates, you’re better off using
another abstract data type called a set.

Set
A collection that cannot contain duplicates.

The Set collection is very much like the mathematical notion of a set.
Sets do not support all the operations you can perform on lists
(namely, any operation that requires an index), but they do offer the
benefits of fast searching and effortless elimination of duplicates.

Set Concepts

The two primary implementations of the Java Collections
Framework’s Set interface are called HashSet and TreeSet . HashSet
is the general-purpose set class, whereas TreeSet offers a few
advantages that will be discussed later. If you wanted to store a set
of String values, you could write code like the following:

Set<String> stooges = new HashSet<>();

stooges.add("Larry");

stooges.add("Moe");

stooges.add("Curly");

stooges.add("Moe"); // duplicate, won't be added

stooges.add("Shemp");

stooges.add("Moe"); // duplicate, won't be added

After the code executes, the set will contain only four elements,
because "Moe" will be placed into the set only once. Notice that, as
with lists, you can declare your collection variable to be of the
interface type rather than the class type (type Set rather than type
HashSet).

A Set provides all of the operations from the Collection interface
introduced earlier in this chapter, such as add , contains , and remove .
It’s generally assumed that the Set performs these operations
efficiently, so you can add many elements to a Set and search it
many times without experiencing poor performance. A Set also
provides a toString method that lets you see its elements. Printing
the preceding stooges set would produce the following output:

[Moe, Shemp, Larry, Curly]

One of the most important benefits of using a Set such as HashSet is
that it can be searched incredibly quickly. Recall that the contains
method of an ArrayList or LinkedList must examine every element
of the list in order until it finds the target value. By contrast, the
contains method of a HashSet is implemented in such a way that it

often needs to examine just one element, making it a much more
efficient operation.

A HashSet is implemented using a special internal array called a
hash table that places elements into specific positions based upon
integers called hash codes. (Every Java object has a hash code that
can be accessed through its hashCode method.) You don’t need to
understand the details of HashSet ’s implementation to use it—the
bottom line is that it’s implemented in such a way that you can add,
remove, and search for elements very quickly. We will discuss hash
set implementations in detail in Chapter 18 .

One drawback of HashSet is that it stores its elements in an
unpredictable order. The elements of the stooges set were not
alphabetized, nor did they match the order in which they were
inserted. This storage practice is a tradeoff for the HashSet ’ s fast
performance. (Java now includes a variation called LinkedHashSet
that is almost as fast as HashSet but stores its elements in the order
they were inserted.)

Sets allow you to examine lots of data while ignoring duplicates. For
example, if you wanted to see how many unique words appear in the
book Moby-Dick, you could write code such as the following:

Set<String> words = new HashSet<>();

Scanner in = new Scanner(new File("mobydick.txt"));

while (in.hasNext()) {

 String word = in.next();

 word = word.toLowerCase();

 words.add(word);

}

System.out.println("Number of unique words = " + words.size());

This code produces the following output when run on the text of
Moby-Dick (available from http://www.gutenberg.org):

Number of unique words = 30368

The HashSet class has a convenient constructor that accepts another
collection as a parameter and puts all the unique elements from that
collection into the Set . One clever usage of this constructor is to find
out whether a List contains any duplicates. To do so, simply
construct a HashSet from the list and see whether the sizes differ:

// returns true if the given list contains any duplicate

elements

public static boolean hasDuplicates(List<Integer> list) {

 Set<Integer> set = new HashSet<>(list);

 return set.size() < list.size();

}

One drawback of a Set is that it doesn’t store elements by indexes.
The following loop doesn’t compile on a Set , because it doesn’t have
a get method:

// this code does not compile

for (int i = 0; i < words.size(); i++) {

 String word = words.get(i); // error –– no get method

 System.out.println(word);

}

Instead, if you want to loop over the elements of a Set , you must use
an iterator. Like other collections, a Set has an iterator method that
creates an Iterator object to examine its elements. You can then
use the familiar hasNext/next loop to examine each element:

// this code works correctly

Iterator<String> itr = words.iterator();

while (itr.hasNext()) {

 String word = itr.next();

 System.out.println(word);

}

A shorter alternative to the preceding code is to use a for-each loop
over the elements of the set . As mentioned previously, the code

behaves the same way but is easier to write and read than the
version with the while loop:

for (String word : words) {

 System.out.println(word);

}

TreeSet versus HashSet

The examples in the preceding section used HashSet , but there’s
another class called TreeSet that also implements the Set interface.
A TreeSet uses an internal linked data structure called a binary

search tree to store its elements in sorted order. We will discuss
binary tree implementations in detail in Chapter 17 . A TreeSet is
efficient for adding, removing, and searching, though it is a bit slower
than a HashSet .

A TreeSet can be useful if you want to print the set and have the
output ordered. For example, the following code displays the sorted
set of all three-letter words in Moby Dick that start with “a”:

Set<String> words = new TreeSet<>();

Scanner in = new Scanner(new File("mobydick.txt"));

while (in.hasNext()) {

 String word = in.next();

 word = word.toLowerCase();

 if (word.startsWith("a") && word.length() == 3) {

 words.add(word);

 }

}

System.out.println("Three-letter 'a' words = " + words);

The code produces the following output:

Three-letter 'a' words = [act, add, ado, aft, age, ago, ah!,

ah,, aid, aim, air, alb, ale, ali, all, am,, am-, am:, and,

ant, any, apt, arc, are, ark, arm, art, as,, as-, as., ash,

ask, ass, at,, at., at;, at?, ate, awe, axe, aye]

A TreeSet can be used with data that has a natural ordering. This
means that it will work if its elements are of any type that implements
the Comparable interface, such as Integer or String . You can also
provide your own object that specifies how to compare elements,
called a comparator. Comparators will be discussed in Chapter
13 when we cover searching and sorting.

You should not try to construct a TreeSet of objects without a natural
ordering, such as Point objects:

// this code compiles but will lead to a runtime error

Set<Point> points = new TreeSet<>();

The preceding code compiles (unfortunately), but it generates an
exception when you run it because it doesn’t know how to order the
Point objects in the TreeSet :

Exception in thread "main"

 java.lang.ClassCastException: java.awt.Point

 at java.util.TreeMap.compare(Unknown Source)

 at java.util.TreeMap.put(Unknown Source)

 at java.util.TreeSet.add(Unknown Source)

You’d be better off using a HashSet in this case.

In summary, the following are some of the major differences between
HashSet and TreeSet :

Set Operations

Consider the task of figuring out how many unique elements appear
in two given sets. You cannot just add the sets’ sizes, since they

might have some elements in common that should not be counted
twice in your total. Instead, you could count all elements from the
first set and then count only the unique elements of the second, by
checking to see whether each element from the second is also in the
first:

// Returns the number of unique elements contained

// in either set1 or set2. Not a good model to follow.

public static int totalElements(Set<String> set1, Set<String>

set2) {

 int count = set1.size();

 for (String element : set2) {

 if (!set1.contains(element)) {

 count++;

 }

 }

 return count;

}

However, a more elegant way to perform this calculation is to
compute a union between the sets. The union of two sets A and B is
the set of all elements contained in either A, B, or both. Union is an
example of a set operation. Other examples of set operations are
intersection (the set of all elements that are in both A and B) and
difference (the set of all elements that are in A but not in B). Many
set operations combine two sets to produce a new set as their result.

Set operations are often depicted by drawings called Venn diagrams,
which depict sets as circles and set operations as shaded
overlapping between the circles. Figure 11.3 shows some
examples.

Figure 11.3 Set operation Venn diagrams

You can write code to perform set operations by calling methods
whose names end with “All” using the relevant pair of sets. Table

11.4 summarizes which methods correspond to which set
operations.

Table 11.4 Common Set Operations, Given Two Sets A and B

For example, we could rewrite the totalElements code to use a union
with the addAll method:

// returns the number of elements contained in both set1 and

set2

public static int totalElements(Set<String> set1, Set<String>

set2) {

 Set<String> union = new HashSet<>(set1);

 union.addAll(set2);

 return union.size();

}

It’s important to note that the set operations in Java modify the
existing sets on which you call them, rather than creating new sets
for you. Notice that in the preceding code, we initialize a new
HashSet that contains all the elements from set1 and then add the
contents of set2 to the new set, rather than combining set1 and
set2 directly. We do this because the caller might not want us to
disturb the sets’ original contents.

Set Case Study: Lottery

Consider the task of writing a lottery program. The program should
randomly generate a winning lottery ticket, then prompt the player to
enter lotto numbers. Depending on how many numbers match, the
player wins various prizes.

Sets make excellent collections for storing the winning lotto numbers
and the player’s numbers. They prevent duplicates, and they allow
us to efficiently test whether a number in one set exists in the other.
These features will help us to count the number of winning numbers
the player has entered.

The following code uses a Random object to initialize a set of six
winning lottery numbers between 1 and 40. The code uses a while
loop because the same number might be randomly generated more
than once:

Set<Integer> winningNumbers = new TreeSet<>();

Random r = new Random();

while (winningNumbers.size() < 6) {

 int number = r.nextInt(40) + 1;

 winningNumbers.add(number);

}

Once the program has generated the winning number set, we’ll read
the player’s lottery numbers into a second set. To figure out how
many numbers the player has chosen correctly, we could search the
winning number set to see whether it contains each number from the
ticket. However, a more elegant way to perform this test is to
determine the intersection between the winning numbers set and the
player’s ticket set. The following code creates the intersection of the
player’s ticket and the winning numbers by copying the ticket and
then removing any elements from it that aren’t winning numbers:

// find the winning numbers from the user's ticket

Set<Integer> intersection = new TreeSet<>(ticket);

intersection.retainAll(winningNumbers);

Once we have the intersection, we can ask for its size to see how
many of the player’s numbers were winning numbers; we can then
calculate the appropriate cash prize amount for the player on the
basis of that number. (Our version starts with a $100 prize and
doubles that figure for each winning number.)

Here is a complete implementation of the lottery program. We’ve
created a few static methods for structure and added a few
constants to represent the number of numbers, maximum number,
and lotto prize amounts:

 1 // Plays a lottery game with the user, reading

 2 // the user's numbers and printing how many matched.

 3

 4 import java.util.*;

 5

 6 public class Lottery {

 7 public static final int NUMBERS = 6;

 8 public static final int MAX_NUMBER = 40;

 9 public static final int PRIZE = 100;

10

11 public static void main(String[] args) {

12 // get winning number and ticket sets

13 Set<Integer> winning = createWinningNumbers();

14 Set<Integer> ticket = getTicket();

15 System.out.println();

16

17 // keep only winning numbers from user's ticket

18 Set<Integer> matches = new TreeSet<>(ticket);

19 matches.retainAll(winning);

20

21 // print results

22 System.out.println("Your ticket was: " + ticket);

23 System.out.println("Winning numbers: " + winning);

24 if (matches.size() > 0) {

25 double prize = PRIZE * Math.pow(2,

matches.size());

26 System.out.println("Matched numbers: " +

matches);

27 System.out.printf("Your prize is $%.2f\n",

prize);

28 }

29 }

30

31 // generates a set of the winning lotto numbers

32 public static Set<Integer> createWinningNumbers() {

33 Set<Integer> winning = new TreeSet<>();

34 Random r = new Random();

35 while (winning.size() < NUMBERS) {

36 int number = r.nextInt(MAX_NUMBER) + 1;

37 winning.add(number);

38 }

39 return winning;

40 }

41

42 // reads the player's lottery ticket from the console

43 public static Set<Integer> getTicket() {

44 Set<Integer> ticket = new TreeSet<>();

45 Scanner console = new Scanner(System.in);

46 System.out.print("Type " + NUMBERS + " lotto

numbers: ");

47 while (ticket.size() < NUMBERS) {

48 int number = console.nextInt();

49 ticket.add(number);

50 }

51 return ticket;

52 }

53 }

Here’s one example output from running the program:

Type 6 lotto numbers: 2 8 15 18 21 32

Your ticket was: [2, 8, 15, 18, 21, 32]

Winning numbers: [1, 3, 15, 16, 18, 39]

Matched numbers: [15, 18]

Your prize is $400.00

11.3 Maps

Consider the task of writing a telephone book program that allows
users to type a person’s name and search for that person’s phone
number. You could store the data in an array, a list, or a set. Perhaps
you’d make a small class called PhoneBookRecord that stores a
person’s name and phone number and a list to contain the
PhoneBookRecord objects. When you want to search for a phone
number, you’d traverse the list, looking for the PhoneBookRecord that
matches the name entered by the user, and return the associated
phone number.

A solution such as the one just described isn’t very practical. If the
list of records is large, it would take the program a long time to look
at each one to find the right record to retrieve the phone number.

In many data-processing tasks, it’s useful to link pairs of objects
(such as a name and a telephone number). We often find ourselves
saying, “I’d like to associate every A with a B.” Perhaps we’d like to
associate names with addresses so that when the user types a
name, we can quickly look up that person’s address. Or perhaps we
want to count the number of occurrences of every word in a book by
associating each word with its count of occurrences.

The abstract data type map describes a collection that allows you to
create one-way associations between pairs of objects to solve these
kinds of problems.

Map
A collection that associates objects called keys with
objects called values.

Maps can be used to solve a surprisingly large number of problems.
A map can group all the words in a book by length and report how
many words there are of each length. Maps can associate chat users
with their set of friends and buddies. Maps can even represent a
family tree associating each person with his or her mother and
father.

A map associates keys with values. You can store a key/value pair
into a map; later in your code, if you supply just the key to the map, it
will give you back the value associated with that key. A key can map
to only one value, but it’s possible for multiple keys to map to the
same value. The Java Collections Framework includes an interface
called Map representing this ADT.

You can think of a map as a pair of connected collections: a set of
keys and a collection of values associated with those keys. Figure
11.4 is an example of this idea that maps first names to last
names.

Figure 11.4 Mapping keys (first names) to values (last names)

Basic Map Operations

The two primary classes that implement the Map interface are called
HashMap and TreeMap . These class names parallel the ones used in
the set collections, because the maps and sets have similar internal

implementations. HashMap is the more general-purpose map; a
TreeMap stores comparable keys in sorted order.

A Map is constructed with not one but two generic type parameters,
separated by a comma. The first type parameter represents the type
of the keys, and the second represents the type of the values. The
inclusion of two parameters makes the declaration line in your code
lengthy. The line of code that follows is an example of constructing a
salary map that associates people’s names with their salaries. Notice
that we have to use the wrapper type Double rather than the primitive
type double :

Map<String, Double> salaryMap = new HashMap<>();

Notice the use of the diamond operator as discussed in Chapter
10 . The operator will infer the type of the keys and values from the
two types given on the left side of the statement.

Key/value pairings are added to a map using its put method, which
is roughly similar to the add method of most other collections. The
put method accepts a key and a value as parameters and stores a
mapping between the key and value in the map. If the key was
previously associated with some other value, the new association
replaces the old one. We can add key/value pairs to our salary map
using code like the following:

salaryMap.put("Stuart Reges", 10000.00);

salaryMap.put("Marty Stepp", 95500.00);

salaryMap.put("Jenny", 86753.09);

Once you’ve added key/value pairs to a map, you can look up a
value later by calling the map’s get method, which accepts a key as
a parameter and returns the value associated with that key:

double jenSalary = salaryMap.get("Jenny");

System.out.printf("Jenny's salary is $%.2f\n", jenSalary);

To see whether a map contains a mapping for a given key, you can
use the containsKey method, or you can call the get method and test
for a null result:

Scanner console = new Scanner(System.in);

System.out.print("Type a person's name: ");

String name = console.nextLine();

// search the map for the given name

if (salaryMap.containsKey(name)) {

 double salary = salaryMap.get(name);

 System.out.printf("%s's salary is $%.2f\n", name, salary);

} else {

 System.out.println("I don't have a record for " + name);

}

Table 11.5 lists several useful Map methods.

Table 11.5 Useful Methods of Maps

A Map ’s toString method displays a comma-separated list of its
key/value pairs. The order in which the keys appear depends on the
type of map used, which we’ll discuss in a moment. Here’s what the
salary map declared previously would look like when the program
prints it:

{Jenny=86753.09, Stuart Reges=10000.0, Marty Stepp=95500.0}

Map Views (keySet and values)

Unlike most collections, a map doesn’t have an iterator method,
because it wouldn’t be clear what you wanted to examine. The keys?
The values? Both? Instead, maps have a pair of methods called
keySet and values that respectively return a Set of all keys in the
map and a Collection of all values in the map. These are sometimes
called collection views of a map because each is a collection that
exists conceptually within the map.

For example, consider a map that associates people’s social security
numbers with their names. In other words, the map’s keys are nine-
digit social security numbers and its values are names. We could
create the map with the following code:

Map<Integer, String> ssnMap = new HashMap<>();

ssnMap.put(867530912, "Jenny");

ssnMap.put(239876305, "Stuart Reges");

ssnMap.put(504386382, "Marty Stepp");

If we wanted to write a loop that printed the social security numbers
of every person in the map, we could then call the keySet method on
the map. This method returns a Set containing every key from the
hash table—in this case, every int for a person’s number. If you
store the keySet in a variable, you should declare that variable as
type Set , with the type of the map’s keys between the < and >
brackets:

Set<Integer> ssnSet = ssnMap.keySet();

for (int ssn : ssnSet) {

 System.out.println("SSN: " + ssn);

}

The preceding code would produce the following output (the keys
are in an unpredictable order since a HashMap is used):

SSN: 239876305

SSN: 867530912

SSN: 504386382

If we instead wanted to loop over every name (every value) stored in
the map, we’d call the values method on the map. The values
method returns a reference of type Collection , not of type Set ,
because the values may contain duplicates (it’s legal for two keys to
map to the same value). If you store the values result in a variable,
you should declare that variable as type Collection , with the type of
the map’s values between the < and > :

Collection<String> names = ssnMap.values();

for (String name : names) {

 System.out.println("name: " + name);

}

The preceding code would produce output such as the following:

name: Stuart Reges

name: Jenny

name: Marty Stepp

You can combine the keys and the values by looping over the keys
and then getting the value for each key:

for (int ssn : ssnMap.keySet()) {

 String name = ssnMap.get(ssn);

 System.out.println(name + "'s SSN is " + ssn);

}

Notice that this code doesn’t declare a variable to store the key set,
but instead calls keySet directly in the for-each loop. The code
produces the following output:

Stuart Reges's SSN is 239876305

Jenny's SSN is 867530912

Marty Stepp's SSN is 504386382

A related method called entrySet returns objects of a type called
Map.Entry that represents key/value pairs, but we won’t explore this
method here.

TreeMap versus HashMap

Just as there are two set implementations, HashSet and TreeSet ,
there are two flavors of Map collections in Java: HashMap and
TreeMap . A HashMap performs a bit faster than a TreeMap and can
store any type of data, but it keeps its keys in a somewhat
haphazard order. A TreeMap can store only comparable data and
performs a bit slower, but it keeps its keys in sorted order.

We could store the social security number information from the
previous section in a TreeMap as follows:

Map<Integer, String> ssnMap = new TreeMap<>();

ssnMap.put(867530912, "Jenny");

ssnMap.put(239876305, "Stuart Reges");

ssnMap.put(504386382, "Marty Stepp");

System.out.println(ssnMap);

The keys would be ordered differently, leading to the following output
when printing the map:

{239876305=Stuart Reges, 504386382=Marty Stepp,

867530912=Jenny}

Notice that the social security numbers (the map’s keys) are sorted
in numeric order. This sorting can be useful for certain applications,
but HashMap is still recommended for general use over TreeMap . Many

applications don’t care about the order of the keys and benefit from
the better performance of HashMap . HashMap works even on data that
does not have a natural ordering.

Map Case Study: WordCount

In an earlier example, we counted the number of unique words in the
book Moby Dick. What if we wanted to find the words that occur
most frequently in the book? To do this, we should count how many
times each word in the book occurs, then examine all of those
counts and print the ones with the largest values.

Maps are very useful for solving these kinds of problems. We can
create a word-count map in which each key is a word and its
associated value is the number of occurrences of that word in the
book:

wordCountMap = empty.

for (each word from file) {

 if (I have never seen this word before) {

 set this word's count to 1.

 } else {

 increase this word's count by one.

 }

}

We’ll need a Scanner to read the appropriate file and a Map to store
the word counts. We’ll use a TreeMap so that the frequently used
words will be shown in alphabetical order:

Map<String, Integer> wordCountMap = new TreeMap<>();

Scanner in = new Scanner(new File("mobydick.txt"));

We can now read the file’s contents and store each word that the
program encounters in the map. If we come across a word that we
have already seen, we retrieve its old count value, increment it by 1,
and put the new value back into the map. Recall that when you put a
key/value mapping into a map that already contains that key, the old
mapping is replaced. For example, if the word "ocean" was mapped
to the number 25 and we put in a new mapping from "ocean" to 26,
the old mapping from "ocean" to 25 would be replaced; we don’t
have to remove it manually. Here’s the code to build up the map:

while (in.hasNext()) {

 String word = in.next().toLowerCase();

 if (wordCountMap.containsKey(word)) { // seen before

 int count = wordCountMap.get(word);

 wordCountMap.put(word, count + 1);

 } else { // never seen before

 wordCountMap.put(word, 1);

 }

}

Once we’ve built the word-count map, if we want to print all words
that appear more than, say, 2,000 times in the book, we can write
code like the following:

for (String word : wordCountMap.keySet()) {

 int count = wordCountMap.get(word);

 if (count > 2000) {

 System.out.println(word + " occurs " + count + "

times.");

 }

}

Here’s the complete program, with a method added for structure and
a constant added for the number of occurrences that are needed for
a word to be considered among the most frequent:

 1 // Uses maps to implement a word count, so that the user

 2 // can see which words occur the most in the book Moby-

Dick.

 3

 4 import java.io.*;

 5 import java.util.*;

 6

 7 public class WordCount {

 8 // minimum number of occurrences needed to be printed

 9 public static final int OCCURRENCES = 2000;

10

11 public static void main(String[] args)

12 throws FileNotFoundException {

13 System.out.println("This program displays the

most");

14 System.out.println("frequently occurring words

from");

15 System.out.println("the book Moby Dick.");

16 System.out.println();

17

18 // read the book into a map

19 Scanner in = new Scanner(new File("mobydick.txt"));

20 Map<String, Integer> wordCountMap =

getCountMap(in);

21

22 for (String word: wordCountMap.keySet()) {

23 int count = wordCountMap.get(word);

24 if (count > OCCURRENCES) {

25 System.out.println(word + " occurs " +

26 count + " times.");

27 }

28 }

29 }

30

31 // Reads book text and returns a map from words to

counts.

32 public static Map<String, Integer> getCountMap(Scanner

in) {

33 Map<String, Integer> wordCountMap = new TreeMap<>

();

34

35 while (in.hasNext()) {

36 String word = in.next().toLowerCase();

37 if (wordCountMap.containsKey(word)) {

38 // seen this word before; increment count

39 int count = wordCountMap.get(word);

40 wordCountMap.put(word, count + 1);

41 } else {

42 // never seen this word before

43 wordCountMap.put(word, 1);

44 }

45 }

46

47 return wordCountMap;

48 }

49 }

The program produces the following output for Moby-Dick:

This program displays the most

frequently occurring words from

the book Moby-Dick.

a occurs 4509 times.

and occurs 6138 times.

his occurs 2451 times.

in occurs 3975 times.

of occurs 6405 times.

that occurs 2705 times.

the occurs 13991 times.

to occurs 4433 times.

Collection Overview

We’ve discussed three major abstract data types in this chapter:
lists, sets, and maps. It’s important to understand the differences
between them and to know when each should be used. Table
11.6 summarizes the different types of collections and their pros
and cons.

Table 11.6 Comparison of Lists, Sets, and Maps

When you approach a new programming problem involving data, you
can ask yourself questions to decide what type of collection is most
appropriate. Here are some examples:

What are you going to do with the data? Do you intend to add
and remove many elements, search the data many times, or
connect this data to other data?

Do you plan to search the data? If so, how? If you want to
examine elements in order of insertion, you want a list. If you
intend to search for arbitrary elements, a set may be better. If you
need to find an object, given partial information about it (for
example, a PIN or ID number, to find a user’s bank account
object), a map may be best.
In what order should the elements be stored? Lists hold their
elements in order of insertion, whereas the tree collections
(TreeSet and TreeMap) order elements by their natural ordering. If
order doesn’t matter, you may want a hash table collection such
as a HashSet .

Chapter Summary
A collection is an object that stores a group of other objects.
Examples of collections are ArrayList , HashSet , and TreeMap .
Collections are used to structure, organize, and search data.

A linked list is a collection that’s similar to an ArrayList but that is
implemented internally by storing each element in a small container
object called a node. Linked lists can perform certain operations
faster than array lists, such as adding data to and removing data
from the front or middle of the list.

An iterator is an object that keeps track of the current position in a
list and expedites the examination of its elements in sequential order.
Linked lists are often used with iterators for increased efficiency.

An abstract data type (ADT) is a specification of the operations that
can be performed on data. Two examples of ADTs are List and Set .
ADTs in the Java Collections Framework are represented as
interfaces (e.g., the List interface, which is implemented both by
LinkedList and by ArrayList).

A set is a collection that doesn’t allow duplicates. Sets generally can
be searched very quickly to see whether they contain a particular
element value. The Set interface represents sets.

There are two major set classes in Java: TreeSet and HashSet . A
TreeSet holds Comparable data in a sorted order; a HashSet can hold
any data and can be searched faster, but its elements are stored in
an unpredictable order.

A map is a collection that associates key objects with value objects.
Maps are used to create relationships of association between pieces
of data, such as a person’s name and phone number.

There are two major map classes in Java: TreeMap and HashMap . A
TreeMap holds Comparable keys in a sorted order; a HashMap can hold
any data as its keys and performs value lookups faster, but its keys
are stored in an unpredictable order.

Self-Check Problems

Section 11.1: Lists

1. When should you use a LinkedList instead of an ArrayList?
2. Would a LinkedList or an ArrayList perform better when run

on the following code? Why?

public static int min(List<Integer> list) {

 int min = list.get(0);

 for (int i = 1; i < list.size(); i++) {

 if (list.get(i) < min) {

 min = list.get(i);

 }

 }

 return min;

}

3. What is an iterator? Why are iterators often used with linked
lists?

4. Write a piece of code that counts the number of duplicate
elements in a linked list, that is, the number of elements
whose values are repeated at an earlier index in the list.
Assume that all duplicates in the list occur consecutively. For
example, the list [1, 1, 3, 5, 5, 5, 5, 7, 7, 11] contains five
duplicates: one duplicate of element value 1 , three duplicates
of element value 5 , and one duplicate of element value 7 .

5. Write a piece of code that inserts a String into an ordered
linked list of Strings , maintaining sorted order. For example,
for the list [" Alpha" , " Baker" , " Foxtrot" , " Tango" ,

" Whiskey"] , inserting "Charlie" in order would produce the
list [" Alpha" , " Baker" , " Charlie" , " Foxtrot" , " Tango" ,

" Whiskey"] .
6. Write a method called removeAll that accepts a linked list of

integers as a parameter and removes all occurrences of a
particular value. You must preserve the original relative order
of the remaining elements of the list. For example, the call
removeAll(list, 3) would change the list [3, 9, 4, 2, 3, 8,
17, 4, 3, 18, 2, 3] to [9, 4, 2, 8, 17, 4, 18, 2] .

7. Write a method called wrapHalf that accepts a linked list of
integers as a parameter and moves the first half of the list to
the back of the list. If the list contains an odd number of
elements, the smaller half is wrapped (in other words, for a list
of size N, the middle element, N/2, becomes the first element
in all cases). For example, calling wrapHalf on the list [1, 2,
3, 4, 5, 6] , would change that list into [4, 5, 6, 1, 2, 3] .
For the list [5, 6, 7, 8, 9] , the result would be [7, 8, 9, 5,
6] .

8. What is an abstract data type (ADT)? What ADT does a linked
list implement?

9. Self-Check Problem 4 asked you to write code that would
count the duplicates in a linked list. Rewrite your code as a

method called countDuplicates that will allow either an
ArrayList or a LinkedList to be passed as the parameter.

Section 11.2: Sets

10. A List has every method that a Set has, and more. So why
would you use a Set rather than a List?

11. When should you use a TreeSet , and when should you use a
HashSet?

12. A Set doesn’t have the get and set methods that an
ArrayList has. How do you examine every element of a Set?

13. What elements are contained in the following set after this
code executes?

Set<Integer> set = new HashSet<>();

set.add(74);

set.add(12);

set.add(74);

set.add(74);

set.add(43);

set.remove(74);

set.remove(999);

set.remove(43);

set.add(32);

set.add(12);

set.add(9);

set.add(999);

14. How do you perform a union operation on two sets? An
intersection? Try to give an answer that doesn’t require any
loops.

15. Write the output produced when the following method is
passed each of the following lists:

public static void mystery(List<String> list) {

 Set<String> result = new TreeSet<>();

 for (String element : list) {

 if (element.compareTo(list.get(0)) < 0) {

 result.add(element);

 } else {

 result.clear();

 }

 }

 System.out.println(result);

}

a. [marty, stuart, helene, jessica, amanda]
b. [sara, caitlin, janette, zack, riley]
c. [zorah, alex, tyler, roy, roy, charlie, phil, charlie,

tyler]

Section 11.3: Maps

16. Write the code to declare a Map that associates people’s
names with their ages. Add mappings for your own name and
age, as well as those of a few friends or relatives.

17. A Map doesn’t have the get and set methods that an
ArrayList has. It doesn’t even have an iterator method like a
Set does, nor can you use a for-each loop on it directly. How
do you examine every key (or every value) of a Map?

18. What keys and values are contained in the following map after
this code executes?

Map<Integer, String> map = new HashMap<>();

map.put(8, "Eight");

map.put(41, "Forty-one");

map.put(8, "Ocho");

map.put(18, "Eighteen");

map.put(50, "Fifty");

map.put(132, "OneThreeTwo");

map.put(28, "Twenty-eight");

map.put(79, "Seventy-nine");

map.remove(41);

map.remove(28);

map.remove("Eight");

map.put(50, "Forty-one");

map.put(28, "18");

map.remove(18);

19. Write the output produced when the following method is
passed each of the following maps:

public static void mystery(Map<String, String> map) {

 Map<String, String> result = new TreeMap<>();

 for (String key : map.keySet()) {

 if (key.compareTo(map.get(key)) < 0) {

 result.put(key, map.get(key));

 } else {

 result.put(map.get(key), key);

 }

 }

 System.out.println(result);

}

a. {two=deux, five=cinq, one=un, three=trois,
four=quatre}

b. {skate=board, drive=car, program=computer,
play=computer}

c. {siskel=ebert, girl=boy, H=T, ready=begin, first=last,
begin=end}

d. {cotton=shirt, tree=violin, seed=tree, light=tree,
rain=cotton}

20. Write the output produced when the following method is
passed each of the following maps:

public static void mystery(Map<String, String> m) {

 Set<String> s = new TreeSet<>();

 for (String key : m.keySet()) {

 if (!m.get(key).equals(key)) {

 s.add(m.get(key));

 } else {

 s.remove(m.get(key));

 }

 }

 System.out.println(s);

}

a. {sheep=wool, house=brick, cast=plaster, wool=wool}
b. {ball=blue, winkie=yellow, corn=yellow, grass=green,

emerald=green}

c. {pumpkin=peach, corn=apple, apple=apple, pie=fruit,
peach=peach}

d. {lab=ipl, lion=cat, corgi=dog, cat=cat, emu=animal,
nyan=cat}

21. Write the map returned when the following method is passed
the following maps:

public Map<String, String> mystery(Map<String, Integer>

map1,

 Map<Integer, String>

map2) {

 Map<String, String> result = new TreeMap<>();

 for (String s1 : map1.keySet()) {

 if (map2.containsKey(map1.get(s1))) {

 result.put(s1, map2.get(map1.get(s1)));

 }

 }

 return result;

}

a. map1: {bar=1, baz=2, foo=3, mumble=4},
map2: {1=earth, 2=wind, 3=air, 4=fire}

b. map1: {five=105, four=104, one=101, six=106,
three=103, two=102},

map2: {99=uno, 101=dos, 103=tres, 105=quatro}

c. map1: {a=42, b=9, c=7, d=15, e=11, f=24, g=7},
map2: {1=four, 3=score, 5=and, 7=seven, 9=years,

11=ago}

22. Modify the WordCount program so that it prints the most
frequently occurring words sorted by number of occurrences.
To do this, write code at the end of the program to create a
reverse map from counts to words that is based on the
original map. Assume that no two words of interest occur the
exact same number of times.

Exercises
1. Modify the Sieve program developed in Section 11.1 to

make two optimizations. First, instead of storing all integers
up to the maximum in the numbers list, store only 2 and all odd
numbers from 3 upward. Second, write code to ensure that if
the first number in the numbers list ever reaches the square
root of the maximum, all remaining values from the numbers
list are moved into the primes list. (Why is this a valid
operation?)

2. Write a method called alternate that accepts two Lists as its
parameters and returns a new List containing alternating
elements from the two lists, in the following order:

First element from first list
First element from second list
Second element from first list
Second element from second list
Third element from first list
Third element from second list
. . .

If the lists do not contain the same number of elements, the
remaining elements from the longer list should be placed
consecutively at the end. For example, for a first list of [1, 2,
3, 4, 5] and a second list of [6, 7, 8, 9, 10, 11, 12] , a call

of alternate(list1, list2) should return a list containing [1,
6, 2, 7, 3, 8, 4, 9, 5, 10, 11, 12] .

3. Write a method called removeInRange that accepts four
parameters: a LinkedList , an element value, a starting index,
and an ending index.The method’s behavior is to remove all
occurrences of the given element that appear in the list
between the starting index (inclusive) and the ending index
(exclusive). Other values and occurrences of the given value
that appear outside the given index range are not affected.
For example, for the list [0, 0, 2, 0, 4, 0, 6, 0, 8, 0, 10,
0, 12, 0, 14, 0, 16] , a call of removeInRange(list, 0, 5, 13)
should produce the list [0, 0, 2, 0, 4, 6, 8, 10, 12, 0, 14,
0, 16] . Notice that the zeros located at indexes between 5
inclusive and 13 exclusive in the original list (before any
modifications were made) have been removed.

4. Write a method called partition that accepts a list of integers
and an integer value E as its parameter, and rearranges
(partitions) the list so that all the elements with values less
than E occur before all elements with values greater than E .
The exact order of the elements is unimportant, so long as all
elements less than E appear before all elements greater than
E . For example, for the linked list [15, 1, 6, 12, –3, 4, 8,
21, 2, 30, –1, 9] , one acceptable ordering of the list after a
call of partition(list, 5) would be [–1, 1, 2, 4, –3, 12, 8,
21, 6, 30, 15, 9] . You may assume that the list contains no
duplicates and does not contain the element value E .

5. Write a method called sortAndRemoveDuplicates that accepts a
list of integers as its parameter and rearranges the list’s
elements into sorted ascending order, as well as removing all
duplicate values from the list. For example, the list [7, 4, –9,
4, 15, 8, 27, 7, 11, –5, 32, –9, –9] would become [–9, –5,
4, 7, 8, 11, 15, 27, 32] after a call to your method. Use a
Set as part of your solution.

6. Write a method countUnique that accepts a list of integers as a
parameter and returns the number of unique integer values in
the list. Use a set as auxiliary storage to help you solve this
problem. For example, if a list contains the values [3, 7, 3, –
1, 2, 3, 7, 2, 15, 15] , your method should return 5 . The
empty list contains 0 unique values.

7. Write a method countCommon that accepts two lists of integers
as parameters and returns the number of unique integers that
occur in both lists. Use one or more sets as storage to help
you solve this problem. For example, if one list contains the
values [3, 7, 3, –1, 2, 3, 7, 2, 15, 15] and the other list
contains the values [–5, 15, 2, –1, 7, 15, 36] , your method
should return 4 because the elements –1, 2, 7, and 15
occur in both lists.

8. Write a method maxLength that accepts a set of strings as a
parameter and that returns the length of the longest string in
the list. If your method is passed an empty set, it should return
0 .

9. Write a method hasOdd that accepts a set of integers as a
parameter and returns true if the set contains at least one
odd integer and false otherwise. If passed the empty set,
your method should return false .

10. Write a method removeEvenLength that accepts a set of strings
as a parameter and that removes all of the strings of even
length from the set.

11. Write a method called symmetricSetDifference that accepts
two Sets as parameters and returns a new Set containing
their symmetric set difference (that is, the set of elements
contained in either of the two sets but not in both). For
example, the symmetric difference between the sets [1, 4, 7,
9] and [2, 4, 5, 6, 7] is [1, 2, 5, 6, 9] .

12. Write a method contains3 that accepts a list of strings as a
parameter and returns true if any single string occurs at least
3 times in the list, and false otherwise. Use a map as
auxiliary storage.

13. Write a method isUnique that accepts a map whose keys and
values are strings as a parameter and returns true if no two
keys map to the same value (and false if any two or more
keys do map to the same value). For example, if the map
contains the following key/value pairs, your method would
return true : {Marty=Stepp, Stuart=Reges, Jessica=Miller,
Amanda=Camp, Hal=Perkins} . But calling it on the following map
would return false , because of two mappings for Perkins and

Reges : { Kendrick=Perkins, Stuart=Reges, Jessica=Miller,
Bruce=Reges, Hal=Perkins} .

14. Write a method intersect that accepts two maps whose keys
are strings and whose values are integers as parameters and
returns a new map containing only the key/value pairs that
exist in both of the parameter maps. In order for a key/value
pair to be included in your result, not only do both maps need
to contain a mapping for that key, but they need to map it to
the same value. For example, if the two maps passed are
{Janet=87, Logan=62, Whitaker=46, Alyssa=100, Stefanie=80,

Jeff=88, Kim=52, Sylvia=95} and {Logan=62, Kim=52,
Whitaker=52, Jeff=88, Stefanie=80, Brian=60, Lisa=83,

Sylvia=87} , your method would return the following new map
(the order of the key/value pairs does not matter): {Logan=62,
Stefanie=80, Jeff=88, Kim=52} .

15. Write a method maxOccurrences that accepts a list of integers
as a parameter and returns the number of times the most
frequently occurring integer (the “mode”) occurs in the list.
Solve this problem using a map as auxiliary storage. If the list
is empty, return 0 .

16. Write a method called is1to1 that accepts a map whose keys
and values are strings as its parameter and returns true if no
two keys map to the same value. For example, {Marty=206–
9024, Hawking=123–4567, Smith=949–0504, Newton=123–4567}

should return false , but {Marty=206–9024, Hawking=555–1234,

Smith=949–0504, Newton=123–4567} should return true . The
empty map is considered 1-to-1 and returns true .

17. Write a method called subMap that accepts two maps from
strings to strings as its parameters and returns true if every
key in the first map is also contained in the second map and
maps to the same value in the second map. For example,
{Smith=949–0504, Marty=206–9024} is a submap of {Marty=206–
9024, Hawking=123–4567, Smith=949–0504, Newton=123–4567} .
The empty map is a submap of every map.

18. Write a method called reverse that accepts a map from
strings to strings as a parameter and returns a new map that
is the reverse of the original. The reverse of a map is a new
map that uses the values from the original as its keys and the
keys from the original as its values. Since a map’s values
need not be unique but its keys must be, you should have
each value map to a set of keys. In other words, if the original
map maps keys of type to values of type , the new map
should map keys of type to values that are Sets containing
elements of type . For example, the map {42 = Marty,

81 = Sue, 17 = Ed, 31=Dave, 56=Ed, 3=Marty, 29 = Ed} has a
reverse of {Marty=[42, 3], Sue = [81], Ed = [17, 56, 29],

Dave = [31]} . (The order of the keys and values does not
matter.)

19. Write a method called rarest that accepts a map whose keys
are strings and whose values are integers as a parameter and
returns the integer value that occurs the fewest times in the

K V
V

K

map. If there is a tie, return the smaller integer value. If the
map is empty, throw an exception.

20. Write a modified version of the Vocabulary program developed
in Chapter 10 that uses sets rather than ArrayLists to
store its words. (The program will be noticeably shorter and
will run faster!)

21. Write a method called pairCounts that accepts a list of strings
representing individual words and counts the number of
occurrences of all 2-character sequences of letters in those
words. For example, suppose the list contains ["banana",
"bends", "i", "mend", "sandy"] . This list contains the following
two-character pairs: "ba", "an", "na", "an", "na" from
"banana"; "be", "en", "nd", "ds" from "bends"; "me", "en",
"nd" from "mend" ; and "sa", "an", "nd", "dy" from "sandy" .
(Note that "i" is only one character long, so it contains no
pairs.) Your method should count the occurrences of these
pairs of letters and return the counts as a Map . In this case
you would return {an=3, ba=1, be=1, ds=1, dy=1, en=2, me=1,
na=2, nd=3, sa=1} .
Notice that pairings that occur more than once in the same
word should be counted as separate occurrences. For
example, "an" and "na" each occur twice in "banana" .

Programming Projects
1. Write a program that computes the edit distance (also called

the Levenshtein distance, for its creator Vladimir Levenshtein)
between two words. The edit distance between two strings is
the minimum number of operations that are needed to
transform one string into the other. For this program, an
operation is a substitution of a single character, such as from
“brisk” to “brick”. The edit distance between the words “dog”
and “cat” is 3, following the chain of “dot”, “cot”, and “cat” to
transform “dog” into “cat”. When you compute the edit
distance between two words, each intermediate word must be
an actual valid word. Edit distances are useful in applications
that need to determine how similar two strings are, such as
spelling checkers.
Read your input from a dictionary text file. From this file,
compute a map from every word to its immediate neighbors,
that is, the words that have an edit distance of 1 from it. Once
this map is built, you can walk it to find paths from one word to
another.
A good way to process paths to walk the neighbor map is to
use a linked list of words to visit, starting with the beginning
word, such as “dog”. Your algorithm should repeatedly remove
the front word of the list and add all of its neighbors to the end
of the list, until the ending word (such as “cat”) is found or until

the list becomes empty, which indicates that no path exists
between the two words.

2. Write a program that solves the classic “stable marriage”
problem. This problem deals with a group of men and a group
of women. The program tries to pair them up so as to
generate as many stable marriages as possible. A set of
marriages is unstable if you can find a man and a woman who
would rather be married to each other than to their current
spouses (in which case the two would be inclined to divorce
their spouses and marry each other).
The input file for the program will list all of the men, one per
line, followed by a blank line, followed by all of the women,
one per line. The men and women are numbered according to
their positions in the input file (the first man is #1, the second
man is #2, and so on; the first woman is #1, the second
woman is #2, and so on). Each input line (except for the blank
line separating men from women) lists the person’s name,
followed by a colon, followed by a list of integers. These
integers are the marriage partner preferences of this particular
person. For example, see the following input line in the men’s
section:

Joe: 10 8 35 9 20 22 33 6 29 7 32 16 18 25

This line indicates that the person is named “Joe” and that his
first choice for marriage is woman #10, his second choice is
woman #8, and so on. Any women not listed are considered
unacceptable to Joe.

The stable marriage problem is solved by the following
algorithm:

assign each person to be free.

while (some man M with a nonempty preference list is

free) {

 W = first woman on M's list.

 if (some man P is engaged to W) {

 assign P to be free.

 }

 assign M and W to be engaged to each other.

 for (each successor Q of M who is on W's list) {

 delete W from Q's preference list.

 delete Q from W's preference list.

 }

}

Consider the following input:

Man 1: 4 1 2 3

Man 2: 2 3 1 4

Man 3: 2 4 3 1

Man 4: 3 1 4 2

Woman 1: 4 1 3 2

Woman 2: 1 3 2 4

Woman 3: 1 2 3 4

Woman 4: 4 1 3 2

The following is a stable marriage solution for this input:

Man 1 and Woman 4

Man 3 and Woman 2

Man 2 and Woman 3

Man 4 and Woman 1

3. Write a program that solves the classic “random writer”
problem. This problem deals with reading input files of text
and examining the frequencies of characters. On the basis of
those frequencies, you can generate randomized output that
appears to match the writing style of the original document.
The longer the chains you link together, the more accurate the
random text will sound. For example, level 4 random text (text
with chains of 4 letters long) generated from Tom Sawyer
might look like this: “en themself, Mr. Welshman, but him
awoke, the balmy shore. I’ll give him that he couple overy
because in the slated snufflindeed structure’s kind was rath.
She said that the wound the door a fever eyes that WITH
him.” Level 10 random text from the same source might look
like this: “you understanding that they don’t come around in
the cave should get the word beauteous was over-fondled,
and that together and decided that he might as we used to do
—it’s nobby fun. I’ll learn you.” Search the Internet for
“Random Writer” to learn more about this problem, such as
the specification posed by computer scientist Joseph Zachary.

Chapter 12 Recursion

12.1 Thinking Recursively
• A Nonprogramming Example

• An Iterative Solution Converted to Recursion

• Structure of Recursive Solutions

12.2 A Better Example of Recursion
• Mechanics of Recursion

12.3 Recursive Functions and Data
• Integer Exponentiation

• Greatest Common Divisor

• Directory Crawler

• Helper Methods

12.4 Recursive Graphics

12.5 Recursive Backtracking
• A Simple Example: Traveling North/East

• 8 Queens Puzzle

• Solving Sudoku Puzzles

12.6 Case Study: Prefix Evaluator
• Infix, Prefix, and Postfix Notation

• Evaluating Prefix Expressions

• Complete Program

Introduction
This chapter focuses on a programming
technique known as recursion that allows us to
solve certain complex problems in a highly
elegant manner. The chapter begins by
comparing recursion with the problem-solving
techniques you already know. Then it discusses
the low-level mechanics that make recursion
work in Java. Finally, we examine a number of
problems that are easily expressed using this
technique.

Recursion turns out to have a surprising range
of useful applications, including recursive
graphics that are known as fractals. But
programming recursively also requires some

special techniques that we’ll have to explore.
Recursive programming also requires a different
mind-set in general, so the chapter explores a
large set of example problems to reinforce this
new way of thinking.

12.1 Thinking Recursively
The problem-solving techniques we have employed so far fall under
the heading of classical iteration, also known as the iterative
approach.

Iteration (Iterative)
A programming technique in which you describe
actions to be repeated using a loop.

In this chapter, we will explore a new technique known as recursion.

Recursion (Recursive)
A programming technique in which you describe
actions to be repeated using a method that calls itself.

You have spent so much time writing solutions iteratively that it will
take a while to get used to thinking about problems recursively. This
chapter will help you get acclimated.

A Nonprogramming Example

If you’re standing in line, you might wonder what position you’re in.
Are you number 10 in the line? Number 20? How would you find
out?

Most people would solve this problem iteratively, by counting the
people in the line: one, two, three, and so on. This approach is like a
while loop that continues while there are more people left to count.
The iterative approach is a natural one, but it has some limitations.
For example, what if the person in front of you is taller than you? Will
you be able to see past that person to count all the people in front of
him? And what if the line goes around the block and you can’t see
around the corner to count the people there?

Can you think of another way to determine your position in the line?
To think about the problem recursively, you have to imagine that all
the people standing in line work together to solve the problem:
Instead of having one person do all of the counting, each person is
responsible for a little piece.

One cooperative approach would be to ask the person in front of you
what your place in line is. That person might ask another person,

who might ask another person. But that doesn’t help much, because
it just leads to a bunch of people saying, “This guy wants to know
what place he is in line. Does anyone know?” Someone would
probably eventually start counting and solve the problem iteratively.

You have to make the problem simpler. Instead of asking the person
in front of you what place you are in line, ask that person what place
he or she is in line:

The key difference is that the person in front of you is closer to the
front of the line. Suppose, for example, that you’re 4th in line. The
person in front of you is 3rd in line, which is closer to the front. But

notice that you’re asking the person in front of you to think about the
exact same kind of question you’re considering: You’re both trying to
figure out your places in line. That’s where recursion comes in—the
problem recurs because each of you wants to answer the same
question.

The idea is to set up a chain reaction of people, all asking the person
in front the same question:

This process has to end eventually, when someone asks the person
who is first in line:

At this point you’ve reached what is sometimes referred to as the
bottom of the recursion. You’ve gotten a bunch of people involved in
collectively solving the problem, and you’ve finally reached a point
where you can start assembling the answer. The person at the front
is in position 1. That means the person just before is at position 2,
and the person just before that person is at position 3, and so on.
Once you reach the bottom of the recursion, you unwind it to figure
out the answer to your initial problem:

These diagrams included just 4 individuals for the sake of brevity, but
this process would still work even if there were 30 or even 300
people in the line.

One of the key aspects to notice here is that recursion involves many
cooperating entities, each of which solves a little bit of the problem.
Instead of one person doing all of the counting, each individual asks
one question as we go toward the front of the line and answers one
question as we come back down the line.

In programming, the iterative solution of having one person do all the
counting is like having a loop that repeats some action. The
recursive solution of having many people each do a little bit of work
translates into many different method calls, each of which performs a
little bit of work. Let’s look at an example of how a simple iterative
solution can be turned into a recursive solution.

An Iterative Solution Converted to
Recursion

As a first example, we will explore a problem that has a simple
iterative solution. It won’t be a very impressive use of recursion
because the problem is easily solved with iteration. But exploring a
problem that has a straightforward iterative solution allows us to
compare the two solutions.

Suppose you want to create a method called writeStars that will
take an integer parameter n and will produce a line of output with

exactly n stars on it. You can solve this problem with a simple for
loop:

public static void writeStars(int n) {

 for (int i = 1; i <= n; i++) {

 System.out.print("*");

 }

 System.out.println();

}

The action being repeated here is the call on System.out.print that
prints a star. To write the stars recursively, you need to think about
different cases. You might ask the method to produce a line with 10
stars, 20 stars, or 50 stars. Of all of the possible star-writing tasks
you might ask it to perform, which is the simplest?

Students often answer that printing a line of one star is very easy
and they’re right that it’s easy. But there is a task that is even easier.
Printing a line of zero stars requires almost no work at all. You can
create such a line by calling System.out.println , so you can begin
your recursive definition with a test for this case:

public static void writeStars(int n) {

 if (n == 0) {

 System.out.println();

 } else {

 ...

 }

}

The code in the else part will deal with lines that have more than
zero stars on them. Your instinct will probably be to fill in the else
part with the for loop shown earlier, but you’ll have to fight the
instinct to solve the entire problem that way. To solve this second
part of the problem, it is important to think about how you can do just
a small amount of work that will get you closer to the solution. If the
number of stars is greater than zero, you know you have to print at
least one star, so you can add that action to the code:

public static void writeStars(int n) {

 if (n == 0) {

 System.out.println();

 } else {

 System.out.print("*");

 // what is left to do?

 ...

 }

}

At this point in the process you have to make a leap of faith: You
have to believe that recursion actually works. Once you’ve printed a
single star, what’s left to do? The answer is that you want to write (n

– 1) more stars, along with a println . In other words, after writing
one star, the task that remains is to write a line of (n – 1) stars. You
may think, “If only I had a method that would produce a line of (n –
1) stars, I could call that method.” But you do have such a method—
the method you’re writing. So, after your method writes a single star,
you can call the writeStars method itself to complete the line of
output:

public static void writeStars(int n) {

 if (n == 0) {

 System.out.println();

 } else {

 System.out.print("*");

 writeStars(n – 1);

 }

}

Many novices complain that this seems like cheating. You’re
supposed to be writing the method called writeStars , so how can
you call writeStars from inside writeStars? Welcome to the world of
recursion.

In the earlier example, we talked about people standing in a line and
solving a problem together. To understand a recursive method like
writeStars , it is useful to imagine that each method invocation is like
a person in the line. The key insight is that there isn’t just one person

who can do the writeStars task; there’s an entire army of people,
each of whom can do the task.

Let’s think about what happens when you call the method and
request a line of three stars:

writeStars(3);

Imagine that you’re calling up the first person from the writeStars
army and saying, “I want a line of three stars.” That person looks at
the code in the method and sees that the way to write a line of three
stars is to execute the following lines:

System.out.print("*");

writeStars(2);

In other words, the first member of the army writes a star and calls
up the next member of the army to write a line of two stars, and so
on down the line. Just as in the earlier example you had a series of
people figuring out their places in line, now you have a series of
people each printing one star and then calling on someone else to
write the rest of the line. In the line example, you eventually reached
the person at the front of the line. In this case, you eventually reach
a request to write a line of zero stars, which leads you into the if

branch rather than the else branch. At this point, you complete the
task with a simple println .

Here is a trace of the calls that would be made to print the line:

writeStars(3); // n > 0, execute else

 System.out.print("*");

 writeStars(2); // n > 0, execute else

 System.out.print("*");

 writeStars(1); // n > 0, execute else

 System.out.print("*");

 writeStars(0); // n == 0, execute if

 System.out.println();

A total of four different calls are made on the method. Continuing the
analogy, you could say that four members of the army are called up
to solve the task together. Each one solves a star-writing task, but
the tasks are slightly different (three stars, two stars, one star, zero
stars). This is similar to the example in which the various people
standing in line were all answering the same question but were
solving slightly different problems because their positions in line
were different.

Structure of Recursive Solutions

Writing recursive solutions requires you to make a certain leap of
faith, but there is nothing magical about recursion. Let’s look a bit
more closely at the structure of a recursive solution. The following
method is not a solution to the task of writing a line of n stars:

// does not work

public static void writeStars(int n) {

 writeStars(n);

}

This version never finishes executing, a phenomenon called infinite
recursion. For example, if you ask the method to write a line of 10
stars, it tries to accomplish that by asking the method to write a line
of 10 stars, which asks the method to write a line of 10 stars, which
asks the method to write a line of 10 stars, and so on. This solution
is the recursive equivalent of an infinite loop.

Every recursive solution that you write will have two key ingredients:
a base case and a recursive case.

Base Case
A case within a recursive solution that is so simple that
it can be solved directly without a recursive call.

Recursive Case
A case within a recursive solution that involves
reducing the overall problem to a simpler problem of
the same kind that can be solved by a recursive call.

Here is the writeStars method again, with comments indicating the
base case and recursive case:

public static void writeStars(int n) {

 if (n == 0) {

 // base case

 System.out.println();

 } else {

 // recursive case

 System.out.print("*");

 writeStars(n – 1);

 }

}

The base case is the task of writing a line of zero stars. This task is
so simple that it can be done immediately. The recursive case is the

task of writing lines with one or more stars. To solve the recursive
case, you begin by writing a single star, which reduces the remaining
task to that of writing a line of (n – 1) stars. This is the task that the
writeStars method is designed to solve and it is simpler than the
original task, so you can solve it by making a recursive call.

As an analogy, suppose you’re at the top of a ladder with n rungs on
it. If you have a way to get from one rung to the one below and if you
can recognize when you’ve reached the ground, you can handle a
ladder of any height. Stepping from one rung to the one below is like
the recursive case in which you perform some small amount of work
that reduces the problem to a simpler one of the same form (get
down from rung (n – 1) versus get down from rung n). Recognizing
when you reach the ground is like the base case that can be solved
directly (stepping off the ladder).

Some problems involve multiple base cases and some problems
involve multiple recursive cases, but there will always be at least one
of each case in a correct recursive solution. If you are missing either,
you run into trouble. Without the ability to step down from one rung
to the one below, you’d be stuck at the top of the ladder. Without the
ability to recognize when you reach the ground, you’d keep trying to
step down onto another rung even when there were no rungs left in
the ladder.

Keep in mind that your code can have infinite recursion even if it has
a proper recursive case. Consider, for example, this version of
writeStars :

// does not work

public static void writeStars(int n) {

 System.out.print("*");

 writeStars(n – 1);

}

This version correctly reduces from the case of n to the case of n –
1 , but it has no base case. As a result, it goes on infinitely. Instead of
stopping when it reaches the task of writing zero stars, it instead
recursively tries to write stars, then stars, then stars, and
so on.

Because recursive solutions include some combination of base
cases and recursive cases, you will find that they are often written
with if/else statements, nested if statements, or some minor
variation thereof. You will also find that recursive programming
generally involves a case analysis, in which you categorize the
possible forms the problem might take into different cases and write
a solution for each case.

−1 −2 −3

12.2 A Better Example of
Recursion
Solving the writeStars task with recursion may have been an
interesting exercise, but it isn’t a very compelling example. Let’s look
in detail at a problem in which recursion simplifies the work to be
done.

Suppose you have a Scanner that is tied to an external input file and
you want to print the lines of the file in reverse order. For example,
the file might contain the following four lines of text:

this

is

fun

no?

Printing these lines in reverse order would produce this output:

no?

fun

is

this

To perform this task iteratively, you’d need some kind of data
structure for storing the lines of text, such as an ArrayList<String> .
However, recursion allows you to solve the problem without using a
data structure.

Remember that recursive programming involves thinking about
cases. What would be the simplest file to reverse? A one-line file
would be fairly easy to reverse, but it would be even easier to
reverse an empty file. So, you can begin writing your method as
follows:

public static void reverse(Scanner input) {

 if (!input.hasNextLine()) {

 // base case (empty file)

 ...

 } else {

 // recursive case (nonempty file)

 ...

 }

}

In this problem, the base case is so simple that there isn’t anything
to do. An empty file has no lines to reverse. Thus, in this case it

makes more sense to turn around the if/else statement so that you
test for the recursive case. That way you can write a simple if
statement that has an implied “ else there is nothing to do”:

public static void reverse(Scanner input) {

 if (input.hasNextLine()) {

 // recursive case (nonempty file)

 ...

 }

}

Again, the challenge is to solve only a little bit of the problem. How
do you take just one step that will get you closer to completing the
task? You can read one line of text from the file:

public static void reverse(Scanner input) {

 if (input.hasNextLine()) {

 // recursive case (nonempty file)

 String line = input.nextLine();

 ...

 }

}

For the sample file, this code would read the line "this" into the
variable line and leave you with the following three lines of text in

the Scanner :

is

fun

no?

Recall that your aim is to produce the following overall output:

no?

fun

is

this

You might be asking yourself questions like, “Is there another line of
input to process?” But that’s not recursive thinking. If you’re thinking
recursively, you’ll be thinking about what a call on the method will get
you. Since the Scanner is positioned in front of the three lines "is" ,
"fun" , and "no?" , a call on reverse should read in those lines and
produce the first three lines of output that you’re looking for. If that
works, you’ll only have to write out the line "this" afterward to
complete the output.

This is where the leap of faith comes in—you have to believe that the
reverse method actually works. If it does, this code can be
completed as follows:

public static void reverse(Scanner input) {

 if (input.hasNextLine()) {

 // recursive case (nonempty file)

 String line = input.nextLine();

 reverse(input);

 System.out.println(line);

 }

}

This code does work. To reverse a sequence of lines, simply read in
the first one, reverse the others, and then write out the first one.

Mechanics of Recursion

Novices seem to understand recursion better when they know more
about the underlying mechanics that make it work. Before we
examine a recursive method in detail, let’s review how nonrecursive
methods work. Consider the following simple program:

 1 // Simple program that draws three triangles.

 2 public class DrawTriangles {

 3 public static void main(String[] args) {

 4 drawTriangle();

 5 drawTwoTriangles();

 6 }

 7

 8 public static void drawTriangle() {

 9 System.out.println(" *");

10 System.out.println(" ***");

11 System.out.println("*****");

12 System.out.println();

13 }

14

15 public static void drawTwoTriangles() {

16 drawTriangle();

17 drawTriangle();

18 }

19 }

The program prints three triangles:

 *

 *

 *

How do we describe the method calls that take place in this
program? Imagine that each method call has been written on a
different piece of paper. We begin program execution with the main
method, so imagine that we’re grabbing the sheet of paper with main
on it:

We then execute each of the statements in main in turn, from first to
last. First, we execute the call on drawTriangle :

We know that at this point, the computer stops executing main and
turns its attention to the drawTriangle method. This step is analogous
to picking up the piece of paper with drawTriangle written on it and
placing it over the piece of paper with main on it:

Now we execute each of the statements in drawTriangle from first to
last, then go back to main , removing the drawTriangle sheet. When
we go back to main we will have finished the call on drawTriangle , so
the next step is the call on drawTwoTriangles :

So we grab the piece of paper with drawTwoTriangles on it and place
it over the paper with main on it:

The first thing to do here is the first call on drawTriangle:

To execute this method, we take out the sheet of paper with
drawTriangle on it and place it on top of the drawTwoTriangles sheet:

This diagram makes it clear that we started with the method main ,
which called the method drawTwoTriangles , which called the method
drawTriangle . So, at this moment in time, three different methods are
active. The one on top is the one that we are actively executing.

Once we complete it, we’ll go back to the one underneath, and once
we finish that one, we’ll go back to main . We could continue with this
example, but you probably get the idea by now.

The idea of representing each method call as a piece of paper and
putting each one on top of the others as it is called is a metaphor for
Java’s call stack.

Call Stack
The internal structure that keeps track of the sequence
of methods that have been called.

If you envision the call stack as a stack of papers with the most
recently called method on top, you’ll have a pretty good idea of how
it works.

Let’s use the idea of the call stack to understand how the recursive
file-reversing method works. To visualize the call stack, we need to
put the method definition on a piece of paper:

Notice that the paper includes a place to store the value of the local
variable line . This is an important detail.

Suppose that we call this method with the earlier sample input file,
which contains the following four lines of text:

this

is

fun

no?

When we call the method, it reads the first line of text into its line
variable, and then it reaches the recursive call on reverse :

Then what happens? In the DrawTriangles program, we took the
sheet of paper for the method being called and placed it on top of the
current sheet of paper. But here we have the method reverse calling
the method reverse . To understand what happens, you have to
realize that each method invocation is independent of the others. We
don’t have only a single sheet of paper with the reverse method
written on it; we have as many copies as we want. So, we can grab a
second copy of the method definition and place it on top of the
current one:

This new version of the method has a variable of its own, called
line , in which it can store a line of text. Even though the previous
version (the one underneath this one) is in the middle of its
execution, this new one is at the beginning of its execution. Think
back to the analogy of being able to employ an entire army of people
to write out a line of stars. Just as you could call on as many people
as you needed to solve that problem, you can bring up as many
copies of the reverse method as you need to solve this problem.

The second call on reverse reads another line of text (the second
line, "is"). After the program reads the second line, it makes
another recursive call on reverse :

So Java sets aside this version of the method as well and brings up
a third version:

Again, notice that this version has its own variable called line that is
independent of the other variables called line . This version of the
method also reads in a line (the third line, "fun") and reaches a
recursive call on reverse :

This brings up a fourth version of the method:

This version finds a fourth line of input ("no?"), so it reads that in and
reaches the recursive call:

This call brings up a fifth version of the method:

This version turns out to have the easy task, like the final person
who was asked to print a line of zero stars. This time around the
Scanner is empty (input.hasNextLine() returns false). The program
has reached the very important base case that stops this process
from going on indefinitely. This version of the method recognizes that
there are no lines to reverse, so it simply terminates.

Then what? Having completed this call, we throw it away and return
to where we were just before executing the call:

We’ve finished the call on reverse and are positioned at the println
right after it, so we print the text in the line variable ("no?") and
terminate. Where does that leave us? This method has been
executed and we return to where we were just before:

We then print the current line of text, which is "fun" , and this version
also goes away:

Now we execute this println , for the text "is" , and eliminate one
more call:

Notice that we’ve written out three lines of text so far:

no?

fun

is

Our leap of faith was justified. The recursive call on reverse read in
the three lines of text that followed the first line of input and printed
them in reverse order. We complete the task by printing the first line
of text, which leads to this overall output:

no?

fun

is

this

Then this version of the method terminates, and the program has
finished executing.

12.3 Recursive Functions and
Data

Both of the examples of recursion we have studied so far have been
action-oriented methods with a return type of void . In this section,
we will examine some of the issues that arise when you want to write
methods that compute values and return a result. Such methods are
similar to mathematical functions in that they accept a set of input
values and produce a set of possible results. We’ll also explore an
example that involves manipulating recursive data and an example
that requires a helper method.

Integer Exponentiation

Java provides a method called Math.pow that allows you to compute
an exponent. If you want to compute the value of you can call
Math.pow(x, y) . Let’s consider how we could implement the pow
method. To keep things simple, we’ll limit ourselves to the domain of
integers. But because we are limiting ourselves to integers, we have
to recognize an important precondition of our method: We won’t be
able to compute negative exponents because the results would not
be integers.

The method we want to write will look like the following:

// pre : y >= 0

// post: returns x^y

public static int pow(int x, int y) {

 ...

}

We could obviously solve this problem by writing a loop, but we want
to explore how to write the method recursively. Again, we should
start by thinking about different cases. What would be the easiest
exponent to compute? It’s pretty easy to compute so that’s a
good candidate, but there is an even more basic case. The simplest
possible exponent is 0. By definition, any integer to the 0 power is
considered to be 1. So we can begin our solution with the following
code:

xy,

x
1,

public static int pow(int x, int y) {

 if (y == 0) {

 // base case with y == 0

 return 1;

 } else {

 // recursive case with y > 0

 ...

 }

}

In the recursive case, we know that y is greater than 0 . In other
words, there will be at least one factor of x in the result. We know
from mathematics that

This equation expresses x to the y power in terms of x to a smaller
power, (y – 1) . Therefore, it can serve as our recursive case. All we
have to do is to translate it into its Java equivalent:

public static int pow(int x, int y) {

 if (y == 0) {

 // base case with y == 0

 return 1;

 } else {

 // recursive case with y > 0

x
y = x ⋅ x

y−1

 return x * pow(x, y – 1);

 }

}

This is a complete recursive solution. Tracing the execution of a
recursive function is a little more difficult than using a void method,
because we have to keep track of the values that are returned by
each recursive call. The following is a trace of execution showing
how we would compute :35

Notice that we make a series of six recursive calls in a row until we
reach the base case of computing 3 to the 0 power. That call returns
the value 1 and then the recursion unwinds, computing the various
answers as it returns from each method call.

It is useful to think about what will happen if someone violates the
precondition by asking for a negative exponent. For example, what if
someone asked for pow(3, –1)? The method would recursively ask
for pow(3, –2) , which would ask for pow(3, –3) , which would ask for
pow(3, –4) , and so on. In other words, it would lead to an infinite
recursion. In a sense, it’s okay for this to occur, because the person
calling the method should pay attention to the precondition and
should not enter a negative exponent. But it’s not much work for us
to handle this case in a more elegant manner. Our solution is
structured as a series of cases, so we can simply add a new case for
illegal exponents:

public static int pow(int x, int y) {

 if (y < 0) {

 throw new IllegalArgumentException("negative exponent: "

+ y);

 } else if (y == 0) {

 // base case with y == 0

 return 1;

 } else {

 // recursive case with y > 0

 return x * pow(x, y – 1);

 }

}

One of the advantages of writing functions recursively is that if we
can identify other cases, we can potentially make the function more
efficient. For example, suppose that you want to compute In its
current form, the method will multiply 2 by 2 by 2 a total of 16 times.
But we can do better than that. If y is an even exponent, then

So instead of computing we can compute which is simpler.
Adding this case to our method is relatively easy:

public static int pow(int x, int y) {

 if (y < 0) {

 throw new IllegalArgumentException("negative exponent: "

+ y);

 } else if (y == 0) {

 // base case with y == 0

 return 1;

 } else if (y % 2 == 0) {

 // recursive case with y > 0, y even

 return pow(x * x, y / 2);

 } else {

 // recursive case with y > 0, y odd

 return x * pow(x, y – 1);

216.

x
y = (x

2)
y

2

216, 48,

 }

}

This version of the method is more efficient than the original. The
following is a trace of execution for computing :

Without the special case for even exponents, this call would have
required 17 different calls on pow (16 recursive cases and one base
case).

Greatest Common Divisor

216

In mathematics, we often want to know the largest integer that goes
evenly into two different integers, which is known as the greatest
common divisor (or GCD) of the two integers. Let’s explore how to
write a GCD method recursively.

For now, let’s not worry about negative values of x and y . We want
to write the following method:

// pre: x >= 0, y >= 0

// post: returns the greatest common divisor of x and y

public static int gcd(int x, int y) {

 ...

}

To introduce some variety, let’s try to figure out the recursive case
first and then figure out the base case. Suppose, for example, that
we are asked to compute the GCD of 20 and 132. The GCD is 4,
because 4 is the largest integer that goes evenly into both numbers.

There are many ways to compute the GCD of two numbers. One of
the most efficient algorithms dates back at least to the time of Euclid
and perhaps even farther. This algorithm eliminates any multiples of
the smaller integer from the larger integer. In the case of 20 and 132,
we know that

132 = 20 ⋅ 6 + 12

There are six multiples of 20 in 132, with a remainder of 12. Euclid’s
algorithm says that we can ignore the six multiples of 20 and just
focus on the value 12. In other words, we can replace 132 with 12:

gcd(132, 20) = gcd(12, 20)

We haven’t figured out the base case yet, but no matter what the
base case ends up being, we’re making progress if we can reduce
the numbers using Euclid’s algorithm. When you’re dealing with
nonnegative integers, you can’t reduce them forever.

The proof of this principle is beyond the scope of this book, but that
is the basic idea. This algorithm is easy to express in Java terms
because the mod operator gives us the remainder when one number
is divided by another. Expressing this principle in general terms, we
know that

gcd(x, y) = gcd(x % y, y) when y > 0

Again, the proof is beyond the scope of this book, but given this
basic principle we can produce a recursive solution to the problem.
We might try to write the method as follows:

public static int gcd(int x, int y) {

 if (...) {

 // base case

 ...

 } else {

 // recursive case

 return gcd(x % y, y);

 }

}

This isn’t a bad first attempt, but it has a problem: It’s not enough for
the solution to be mathematically correct; we also need our recursive
solution to keep reducing the overall problem to a simpler problem. If
we start with the numbers 132 and 20, the method makes progress
on the first call, but then it starts repeating itself:

gcd(132, 20) = gcd(12, 20)

 gcd(12, 20) = gcd(12, 20)

 gcd(12, 20) = gcd(12, 20)

 gcd(12, 20) = gcd(12, 20)

 ...

This pattern will lead to infinite recursion. The Euclidean trick helped
the first time around, because for the first call x was greater than y
(132 is greater than 20). But the algorithm makes progress only if the
first number is larger than the second number.

Here is the line of code that is causing the problem:

return gcd(x % y, y);

When we compute (x % y) , we are guaranteed to get a result that is
smaller than y . That means that on the recursive call, the first value
will always be smaller than the second value. To make the algorithm
work, we need the opposite to be true. We can achieve this goal
simply by reversing the order of the arguments:

return gcd(y, x % y);

On this call, we are guaranteed to have a first value that is larger
than the second value. If we trace this version of the method for
computing the GCD of 132 and 20, we get the following sequence of
calls:

gcd(132, 20) = gcd(20, 12)

 gcd(20, 12) = gcd(12, 8)

 gcd(12, 8) = gcd(8, 4)

 gcd(8, 4) = gcd(4, 0)

 ...

At this point we have to decide what the GCD of 4 and 0 is. It may
seem strange, but the answer is 4. In general, gcd(n, 0) is n .
Obviously, the GCD can’t be any larger than n , and n goes evenly

into n . But n also goes evenly into 0 , because 0 can be written as
an even multiple of n : (0 * n) = 0 .

This observation leads us to the base case. If y is 0 , the GCD is x :

public static int gcd(int x, int y) {

 if (y == 0) {

 // base case with y == 0

 return x;

 } else {

 // recursive case with y > 0

 return gcd(y, x % y);

 }

}

This base case also solves the potential problem that the Euclidean
formula depends on y not being 0 . However, we still have to think
about the case in which either or both of x and y are negative. We
could keep the precondition and throw an exception when this
occurs, but it is more common in mathematics to return the GCD of
the absolute value of the two values. We can accomplish this by
including one extra case for negatives:

public static int gcd(int x, int y) {

 if (x < 0 || y < 0) {

 // recursive case with negative value(s)

 return gcd(Math.abs(x), Math.abs(y));

 } else if (y == 0) {

 // base case with y == 0

 return x;

 } else {

 // recursive case with y > 0

 return gcd(y, x % y);

 }

}

COMMON PROGRAMMING ERROR

Infinite Recursion

Everyone who uses recursion to write programs eventually
accidentally writes a solution that leads to infinite recursion.
For example, the following is a slight variation of the gcd
method that doesn’t work:

// flawed definition

public static int gcd(int x, int y) {

 if (x <= 0 || y <= 0) {

 // recursive case with negative value(s)

 return gcd(Math.abs(x), Math.abs(y));

 } else if (y == 0) {

 // base case with y == 0

 return x;

 } else {

 // recursive case with y > 0

 return gcd(y, x % y);

 }

}

This solution is just slightly different than the one we wrote
previously. In the test for negative values, this code tests
whether x and y are less than or equal to 0 . The original
code tests whether they are strictly less than 0 . It doesn’t
seem like this variation should make much difference, but it
does. If we execute this version of the code to solve our
original problem of finding the GCD of 132 and 20, the
program produces many lines of output that look like the
following:

at Bug.gcd(Bug.java:9)

at Bug.gcd(Bug.java:9)

at Bug.gcd(Bug.java:9)

at Bug.gcd(Bug.java:9)

at Bug.gcd(Bug.java:9)

at Bug.gcd(Bug.java:9)

at Bug.gcd(Bug.java:9)

The first time you see this, you are likely to think that
something has broken on your computer because you will get

so many lines of output. The number of lines of output will
vary from one system to another, but it’s likely to be
hundreds, if not thousands. If you scroll all the way back up,
you’ll see that the output begins with this message:

Exception in thread "main" java.lang.StackOverflowError

 at Bug.gcd(Bug.java:9)

 at Bug.gcd(Bug.java:9)

 at Bug.gcd(Bug.java:9)

 ...

Java is letting you know that the call stack has gotten too big.
Why did this happen? Remember the trace of execution for
this case:

gcd(132, 20) = gcd(20, 12)

 gcd(20, 12) = gcd(12, 8)

 gcd(12, 8) = gcd(8, 4)

 gcd(8, 4) = gcd(4, 0)

 ...

Consider what happens at this point, when we call gcd(4, 0) .
The value of y is 0 , which is our base case, so normally we
would expect the method to return the value 4 and terminate.
But the method begins by checking whether either x or y is
less than or equal to 0 . Since y is 0 , this test evaluates to

true , so the method makes a recursive call with the absolute
values of x and y . But the absolute values of 4 and 0 are 4
and 0. So the method decides that gcd(4, 0) must be equal
to gcd(4, 0) , which must be equal to gcd(4, 0) :

gcd(132, 20) = gcd(20, 12)

 gcd(20, 12) = gcd(12, 8)

 gcd(12, 8) = gcd(8, 4)

 gcd(8, 4) = gcd(4, 0)

 gcd(4, 0) = gcd(4, 0)

 gcd(4, 0) =

gcd(4, 0)

 gcd(4, 0)

= gcd(4, 0)

...

In other words, this version generates infinitely many
recursive calls. Java allows you to make a lot of recursive
calls, but eventually it runs out of space. When it does, it
gives you a back trace to let you know how you got to the
error. In this case, the back trace is not nearly as helpful as
usual because almost all of the calls will involve the infinite
recursion.

Again, think in terms of stacking pieces of paper on top of
each other as methods are called. You’d wind up with a stack
containing hundreds or even thousands of sheets, and you

would have to look back through all of these to find the
problem.

To handle these situations, you have to look closely at the line
number to see which line of your program generated the
infinite recursion. In this simple case, we know that it is the
recursive call for negative x and y values. That alone might
be enough to allow us to pinpoint the error. If the problem isn’t
obvious, though, you might need to include println
statements to figure out what is going on. For example, in this
code, we could add a println just before the recursive call:

public static int gcd(int x, int y) {

 if (x <= 0 || y <= 0) {

 // recursive case with negative value(s)

 System.out.println("x = " + x + " and y = " +

y);

 return gcd(Math.abs(x), Math.abs(y));

 } else if (y == 0) {

 ...

}

When we run the program with that println in place, the code
produces hundreds of lines of output of the form:

x = 4 and y = 0

If we examine that case closely, we’ll see that we don’t have
negative values and will realize that we have to fix the test we
are using.

Directory Crawler

Recursion is particularly useful when you’re working with data that is
itself recursive. For example, consider how files are stored on a
computer. Each file is kept in a folder or directory. But directories can
contain more than just files: Directories can contain other directories,
those inner directories can contain directories, and even those
directories can contain directories. Directories can be nested to an
arbitrary depth. This storage system is an example of recursive data.

In Chapter 6 , you learned to use File objects to keep track of
files stored on your computer. For example, if you have a file called
data.txt , you can construct a File object that can be used to get
information about that file:

File f = new File("data.txt");

Several useful methods for the File class were introduced in
Chapter 6 . For example, the exists method indicates whether or

not a certain file exists, and the isDirectory method indicates
whether or not the name supplied corresponds to a file or a directory.

Let’s write a program that will prompt the user for the name of a file
or directory and recursively explore all the files that can be reached
from that starting point. If the user provides the name of a file, the
program should simply print the name. But if the user gives the name
of a directory, the program should print the directory name and list all
the directories and files inside that directory.

We can write a fairly simple main method that prompts for a file or
directory name and checks to make sure it exists. If it does not, the
program tells the user that there is no such file or directory. If it does
exist, the program calls a method to print the information for that
File object:

public static void main(String[] args) {

 Scanner console = new Scanner(System.in);

 System.out.print("directory or file name?");

 String name = console.nextLine();

 File f = new File(name);

 if (!f.exists()) {

 System.out.println("No such file/directory");

 } else {

 print(f);

 }

}

Our job will be to write the print method. The method should begin
by printing the name of the file or directory:

public static void print(File f) {

 System.out.println(f.getName());

 ...

}

If the File object f represents a simple file, we have completed the
task. But if f represents a directory, we also want to print the names
of all the files contained in the directory:

public static void print(File f) {

 System.out.println(f.getName());

 if (f.isDirectory()) {

 // print contents of directory

 }

}

We can accomplish this task with the listFiles method, which
returns an array of File objects that represent the contents of the
directory. We can use a for-each loop to process each object:

public static void print(File f) {

 System.out.println(f.getName());

 if (f.isDirectory()) {

 for (File subF : f.listFiles()) {

 // print information for subF

 }

 }

}

To complete the method, we have to figure out how to print
information about each of the individual subF objects in the directory.
An obvious approach is to simply print the names of the subfiles:

// not quite right

public static void print(File f) {

 System.out.println(f.getName());

 if (f.isDirectory()) {

 for (File subF : f.listFiles()) {

 System.out.println(subF.getName());

 }

 }

}

This method works in that it prints the names of the subfiles inside
the directory. But remember that there can be directories inside this
directory, so some of those subfiles might actually be directories

whose contents also need to be printed. We could try to fix our code
by adding a test:

// getting worse, not better

public static void print(File f) {

 System.out.println(f.getName());

 if (f.isDirectory()) {

 for (File subF: f.listFiles()) {

 System.out.println(subF.getName());

 if (subF.isDirectory()) {

 // print contents of subdirectory

 }

 }

 }

}

But even this won’t work, because there might be directories within
those inner directories, and those directories might have
subdirectories. There is no simple way to solve this problem with
standard iterative techniques.

The solution is to think recursively. You might be tempted to envision
many different cases: a file, a directory with files, a directory with
subdirectories, a directory with subdirectories that have
subdirectories, and so on. However, there are really only two cases
to consider: Each object is either a file or a directory. If it’s a file, we
simply print its name. If it’s a directory, we print its name and then

print information about every file and directory inside of it. How do
we get the code to recursively explore all of the possibilities? We call
our own print method to process whatever appears inside a
directory:

public static void print(File f) {

 System.out.println(f.getName());

 if (f.isDirectory()) {

 for (File subF : f.listFiles()) {

 print(subF);

 }

 }

}

This version of the code recursively explores the structure. Each
time the method finds something inside a directory, it makes a
recursive call that can handle either a file or a directory; that
recursive call might make yet another recursive call to handle either
a file or directory, and so on.

If we run this version of the method, we’ll get output like the
following:

homework

assignments.doc

hw1

Song.java

Song.class

hw2

DrawRocket.java

DrawRocket.class

The problem with this output is that it doesn’t indicate the structure to
us. We know that the first line of output is the name of the starting
directory (homework) and that everything that follows is inside that
directory, but we can’t easily see the substructure. It would be more
convenient if the output used indentation to indicate the inner
structure, as in the following lines of output:

homework

 assignments.doc

 hw1

 Song.java

 Song.class

 hw2

 DrawRocket.java

 DrawRocket.class

In this output, we can more clearly see that the directory called
homework contains three elements, two of which are directories that
have their own files (hw1 and hw2). We can get this output by
including an extra parameter in the print method that indicates the
desired level of indentation. On the initial call in main , we can pass
the method an indentation of 0. On each recursive call, we can pass
it a value one higher than the current level. We can then use that
parameter to print some extra spacing at the beginning of the line to
generate the indentation.

Here is our program, including the new version of the method with
indentation:

 1 // This program prompts the user for a file or directory

namec

 2 // and shows a listing of all files and directories that can

be

 3 // reached from it (including subdirectories).

 4

 5 import java.io.*;

 6 import java.util.*;

 7

 8 public class DirectoryCrawler {

 9 public static void main(String[] args) {

10 Scanner console = new Scanner(System.in);

11 System.out.print("directory or file name?");

12 String name = console.nextLine();

13 File f = new File(name);

14 if (!f.exists()) {

15 System.out.println("No such file/directory");

16 } else {

17 print(f, 0);

18 }

19 }

20

21 // Prints information for the given file/directory using

the

22 // given level of indentation

23 public static void print(File f, int level) {

24 for (int i = 0; i < level; i++) {

25 System.out.print(" ");

26 }

27 System.out.println(f.getName());

28 if (f.isDirectory()) {

29 for (File subF : f.listFiles()) {

30 print(subF, level + 1);

31 }

32 }

33 }

34 }

Helper Methods

Sometimes when you solve a problem recursively, you need to
introduce an extra method to solve the problem. We call such
methods helper methods.

For example, consider the task of writing a method called sum that
takes an array of integers as a parameter and that returns the sum of
the numbers in the array. Even though this is a fairly simple task, it
turns out to be challenging to implement it using recursion. We could
make a base case for an empty array (an array of length 0):

public static int sum(int[] list) {

 if (list.length == 0) {

 return 0;

 } else {

 ...

 }

}

If we write the code this way, what would we use for a recursive
case? Suppose, for example, that we are asked to work with an
array of length 10. How do we simplify an array of length 10 to bring
it closer to being an empty array? The only way to do that would be
to construct a new array with a shorter length, but that would be
wasteful.

It is useful to consider how you would solve this iteratively. Here is
an iterative version that follows a classic cumulative sum approach:

int sum = 0;

for (int i = 0; i < list.length; i++) {

 sum += list[i];

}

The key to the iterative approach is to work with an index variable
that starts at 0 and continues iterating until it equals the length of the
array. We can apply this same idea to a recursive solution.
Remember that you want to think about how to pick off some small
piece of the problem. Consider the following line of pseudocode:

sum(entire list) = list[0] + sum(list starting at 1)

This code states that we have to add in list[0] . That leaves us with
the task of adding up the remaining values of the list (the values
starting at index 1). And how would we do that? We can similarly say
that:

sum(list starting at 1) = list[1] + sum(list starting at 2)

This approach leads to a series of recursive calls, each of which
handles one element of the array:

sum(entire list) = list[0] + sum(list starting at 1)

 sum(list starting at 1) = list[1] + sum(list starting at 2)

 sum(list starting at 2) = list[2] + sum(list starting at

3)

 ...

When does this process end? We could end when we get to the last
element of the array:

sum(list starting at list.length - 1) = list[list.length - 1]

Unfortunately, this choice of ending point assumes that a last
element exists. That won’t be true of an array of length 0. An easier
approach is to end when we reach an index beyond the last element
of the array. The for loop version of this method executes for as
long as the index is less than the length of the array. Once the index
becomes equal to the length of the array, it stops. Our recursion can
similarly stop when the index becomes equal to the length of the
array. And what does that add up to? It adds up to 0:

sum(list starting at list.length) = 0

Returning 0 in this case is the recursive equivalent of initializing the
cumulative sum to 0.

We are almost ready to write the recursive method, but to express
this idea as a method, we have to pass the method both the array
and the starting index. So we want our method to look like the
following:

// computes the sum of the list starting at the given index

public static int sum(int[] list, int index) {

 ...

}

Using those two parameters, you’ll find that the code is fairly simple
to write using the approach described before:

// computes the sum of the list starting at the given index

public static int sum(int[] list, int index) {

 if (index == list.length) {

 return 0;

 } else {

 return list[index] + sum(list, index + 1);

 }

}

Of course, there’s the issue of that extra parameter. We were asked
to write a method that is passed just the array. We could complain
that we were asked to solve the wrong problem, but that’s a bad
attitude to have. We should allow a client to call methods using

parameters that are convenient. We need the second parameter to
write our recursive solution, but we shouldn’t burden the client with
the need to understand that detail.

This is a common situation. We often find ourselves wanting to write
a recursive method that has extra parameters relative to the public
method we are being asked to implement. The solution is to
introduce a private method that has the parameter passing we want.
So the client gets the convenient public method with the kind of
parameter passing that the client wants, and we get our convenient
private method with the kind of parameter passing that we want. We
call the private method a helper method because it helps us to write
the public method we’ve been asked to implement.

Here is the code that includes the private method:

// returns the sum of the numbers in the given array

public static int sum(int[] list) {

 return sum(list, 0);

}

// computes the sum of the list starting at the given index

private static int sum(int[] list, int index) {

 if (index == list.length) {

 return 0;

 } else {

 return list[index] + sum(list, index + 1);

 }

}

The public method simply calls the private method, passing it an
appropriate value for the second parameter. Both methods can be
called sum because they have different signatures (one parameter
versus two). We make the second method a private method because
we don’t want to clutter up the public interface seen by the client.

There is a final benefit to this two-method approach. Sometimes you
want to perform an action once, either before or after the recursive
method executes. By dividing the recursive method into a public and
a private method, you can include this one-time code in the public
method either just before or just after the call on the private method.

12.4 Recursive Graphics
There has been a great deal of interest in the past 30 years about an
emerging field of mathematics called fractal geometry. A fractal is a
geometric object that is recursively constructed or self-similar. A
fractal shape contains smaller versions of itself, so that it looks
similar at all magnifications.

Benoit Mandelbrot founded the field of fractals in 1975 with his first
publication about these intriguing objects, particularly a specific
fractal that has come to be known as the Mandelbrot set. The most
impressive aspect of fractal geometry is that extremely intricate and
complex phenomena can be described with a simple set of rules.
When Mandelbrot and others began drawing pictures of their
fractals, they were an instant hit.

Many fractals can be described easily with recursion. As an
example, we will explore a recursive method for drawing what is
known as the Sierpinski triangle. We can’t draw the actual fractal,
because it is composed of infinitely many subtriangles. Instead, we
will write a method that produces various levels that approximate the
actual fractal.

At level 1, we draw an equilateral triangle as shown in Figure
12.1 :

Figure 12.1 Sierpinski triangle, level 1

Proceeding to level 2, we draw three smaller triangles that are
contained within the original triangle (see Figure 12.2):

Figure 12.2 Sierpinski triangle, level 2

We apply this principle in a recursive manner. Just as we replaced
the original triangle with three inner triangles, we replace each of
these three triangles with three inner triangles to obtain Figure
12.3 with nine triangles in level 3:

Figure 12.3 Sierpinski triangle, level 3

This process continues indefinitely, making a more intricate pattern
at each new level. Figure 12.4 shows the result at level 7:

Figure 12.4 Sierpinski triangle, level 7

We can solve this problem using the DrawingPanel class from
Supplement 3G. We’ll pass the Graphics object for the panel to the
method that is to draw the triangles. The method will also need to
know the level to use and the three vertices of the triangle, which we
can pass as Point objects. Our method will look like this:

public static void drawFigure(int level, Graphics g,

 Point p1, Point p2, Point p3) {

 ...

}

Our base case will be to draw the basic triangle for level 1. The
Graphics class has methods for filling rectangles and ovals, but not
for filling triangles. Fortunately, there is a Polygon class in the
java.awt package. We can construct a Polygon and then add a
series of points to it. Once we’ve specified the three vertices, we can
use the fillPolygon method of the Graphics class to fill the polygon.
Our base case will look like this:

public static void drawFigure(int level, Graphics g,

 Point p1, Point p2, Point p3) {

 if (level == 1) {

 // base case: simple triangle

 Polygon p = new Polygon();

 p.addPoint(p1.x, p1.y);

 p.addPoint(p2.x, p2.y);

 p.addPoint(p3.x, p3.y);

 g.fillPolygon(p);

 } else {

 // recursive case, split into 3 triangles

 ...

 }

}

Most of the work happens in the recursive case. We have to split the
triangle into three smaller triangles. We’ll label the vertices of the
overall triangle (see Figure 12.5).

Figure 12.5 Triangle before splitting

We then need to compute three new points that are the midpoints of
the three sides of this triangle as shown in Figure 12.6 .

Figure 12.6 Triangle split into subtriangles

From Figure 12.6 , we see that

p4 is the midpoint of p1 and p2
p5 is the midpoint of p2 and p3
p6 is the midpoint of p1 and p3

Once we have computed those points, we can describe the smaller
triangles as follows:

In the lower-left corner is the triangle formed by p1, p4, and p6.
On top is the triangle formed by p4, p2, and p5.
In the lower-right corner is the triangle formed by p6, p5, and p3.

There are three different midpoint computations involved here, so
clearly it will be helpful to first write a method that will compute the
midpoint of a segment given two endpoints. Computing the
midpoints involves finding the arithmetic average (halfway point) of
the x values and the y values:

public static Point midpoint(Point p1, Point p2) {

 return new Point((p1.x + p2.x) / 2, (p1.y + p2.y) / 2);

}

Given this method, we can easily compute the three midpoints.

The final detail we have to think about is the level. If you look again
at the level 2 version of the figure (Figure 12.2), you will notice
that it is composed of three simple triangles. In other words, the level
2 figure is composed of three level 1 figures. Similarly, the level 3
figure is composed of three level 2 figures, each of which in turn is
composed of three level 1 figures. In general, if we are asked to
draw a level n figure, we do so by drawing three level (n – 1)
figures.

We can turn these observations into code to complete the recursive
method:

// Draws a Sierpinski Triangle figure with the given number of

// levels bounded by the given three endpoints.

public static void drawFigure(int level, Graphics g,

 Point p1, Point p2, Point p3) {

 if (level == 1) {

 // base case: simple triangle

 Polygon p = new Polygon();

 p.addPoint(p1.x, p1.y);

 p.addPoint(p2.x, p2.y);

 p.addPoint(p3.x, p3.y);

 g.fillPolygon(p);

 } else {

 // recursive case, split into 3 triangles

 Point p4 = midpoint(p1, p2);

 Point p5 = midpoint(p2, p3);

 Point p6 = midpoint(p1, p3);

 // recurse on 3 triangular areas

 drawFigure(level – 1, g, p1, p4, p6);

 drawFigure(level – 1, g, p4, p2, p5);

 drawFigure(level – 1, g, p6, p5, p3);

 }

}

There is a limit to the number of levels down that we can go. The
DrawingPanel has a finite resolution, so at some point we won’t be
able to subdivide our triangles any further. Also bear in mind that at
each new level the number of triangles that we draw triples, which
means that the number of triangles increases exponentially with the
level.

The complete program is available from
http://www.buildingjavaprograms.com. Remember that you need to
also download DrawingPanel.java to execute the program.

12.5 Recursive Backtracking
Many programming problems can be solved by systematically
searching a set of possibilities. For example, if you want to find a
path through a maze from a starting point to an exit point, you can
explore all possible paths through the maze until you find one that
works. For many games like tic-tac-toe, you can explore all possible
moves and countermoves to see if there is some move that
guarantees that you win.

Many of these exhaustive search problems can be solved with an
approach called backtracking. It is a particular approach to problem
solving that is nicely expressed using recursion. As a result, it is
sometimes referred to as recursive backtracking.

(Recursive) Backtracking
A general algorithm for finding solutions to a problem
by exploring possible candidate solutions and
abandoning (“backtracking”) once a given candidate is
deemed unsuitable.

Backtracking involves searching all possibilities, so it can be an
expensive technique to use. But many problems are small enough in
scope that they are nicely solved with a backtracking approach.

A Simple Example: Traveling
North/East

To introduce the basic concepts and terminology of backtracking,
let’s explore a simple example. Consider a standard Cartesian plane
with () coordinates. Suppose that you start at the origin, (0, 0),
and you are allowed to repeatedly make one of these three moves:

You can move North (abbreviated “N”), which will increase your
-coordinate by 1.
You can move East (abbreviated “E”), which will increase your -
coordinate by 1.
You can move Northeast (abbreviated “NE”), which will increase
both your -coordinate and -coordinate by 1.

Starting from the origin, these three different moves would leave you
in the locations shown in Figure 12.7 . We can think of this as a
traveling problem where we can make a series of moves that take us
from the origin to some other () point. For example, the
sequence of moves N, NE, N would leave us at (1, 3).

Figure 12.7 Traveling north, east, or northeast from the origin

x, y

y

x

x y

x, y

Every backtracking problem involves a solution space of possible
answers that you want to explore. We try to view the problem as a
sequence of choices, which allows us to think of the solution space
as a decision tree. For our traveling problem the choices are the
sequence of moves that we make. Figure 12.8 shows a decision
tree showing all of the possible ways to make two moves and where
each sequence leaves us. These decision trees can be quite large
even for a small problem like this.

Figure 12.8 Decision tree for two moves

Consider the problem of traveling from the origin to the point (1, 2).
What are the possible sequences of moves that would get you
there? People are fairly good at solving problems like these, so you
can probably pretty easily come up with all five of the possibilities:

N, N, E
N, E, N
N, NE
E, N, N
NE, N

How would we write a computer program to find these solutions? For
this simple problem, we could devise a specialized algorithm that

takes into account the properties of these paths, but backtracking
provides a convenient way to exhaustively search all possibilities.

For most backtracking solutions we end up writing two methods. We
generally want a public method that is passed the details of the
problem to be solved. But we almost always need extra parameters
for the backtracking, so we almost always have an extra private
method that does the actual backtracking.

The basic form that our backtracking solution will take is a method to
explore all possible choices recursively:

private static void explore(a scenario) {

 ...

}

Because we are using recursion, we need to identify base cases and
recursive cases. Backtracking solutions generally involve two
different base cases. You tend to stop the backtracking when you
find a solution, so that becomes one of our base cases. Often what
you want to do when you find a solution is to report it:

private static void explore(a scenario) {

 if (this is a solution) {

 report it.

 } else {

 ...

 }

}

We don’t want to search forever, so we also have to be on the
lookout for what is called a dead-end. We might make a set of
choices that lead us to a scenario where it is clear that no solution is
possible with this set of choices. We make this a base case in our
recursion so that we stop exploring when we reach a dead-end:

private static void explore(a scenario) {

 if (this is a solution) {

 report it.

 } else if (this is not a dead-end) {

 ...

 }

}

If our backtracking search has led us to a scenario where we haven’t
yet solved the problem and haven’t yet reached a dead-end, then we
want to explore each possible choice available to us. For each
possible choice, we recursively explore the scenario of making that
choice:

private static void explore(a scenario) {

 if (this is a solution) {

 report it.

 } else if (this is not a dead-end) {

 use recursive calls to explore each available choice.

 }

}

This pseudocode captures the essence of the backtracking
approach. Not all backtracking solutions will take exactly this form,
but they will all have some variation of each of these elements.

We can flesh out the pseudocode a bit by filling in some details for
this particular problem. We are considering the problem of moving
from a current position to a target position, both specified with ()
coordinates. And we have three available moves from any given
position: N, E, and NE:

private static void explore(current (x, y) and target (x, y)) {

 if (this is a solution) {

 report it.

 } else if (this is not a dead-end) {

 explore(moving N).

 explore(moving E).

 explore(moving NE).

x, y

 }

}

Often it can be challenging to figure out what parameters to pass to
the exploration method. In this case, we need a current and and
a target and We also need some way of keeping track of the
choices that we have made so that we can report the path that we
have taken. There are many ways to do this, but for simplicity, let’s
build up a string that stores the sequence of moves.

We can test whether we have a solution by testing whether the
current and target coordinates match. But how do we test for a dead-
end? In this problem, our -coordinates and -coordinates never go
down. If we reach a point where the current is greater than the
target or the current is greater than the target then we know
that we have traveled too far in that direction and we will never reach
the target.

Putting these details together, we end up with the following
exploration method:

private static void explore(int targetX, int targetY,

 int currX, int currY, String path)

{

 if (currX == targetX && currY == targetY) {

 System.out.println(path);

 } else if (currX <= targetX && currY <= targetY) {

x y

x y.

x y

x

x y y,

 explore(targetX, targetY, currX, currY + 1, path + "

N");

 explore(targetX, targetY, currX + 1, currY, path + "

E");

 explore(targetX, targetY, currX + 1, currY + 1, path + "

NE");

 }

}

We can complete the solution by providing a public method that
starts the recursive search by passing the initial coordinates (0, 0)
and an appropriate value to appear at the front of the string that
stores the path:

public static void travel(int targetX, int targetY) {

 explore(targetX, targetY, 0, 0, "moves:");

}

If we ask the method to find all ways of traveling to (1, 2), it produces
the following output:

moves: N N E

moves: N E N

moves: N NE

moves: E N N

moves: NE N

Figure 12.9 shows the complete decision tree that is explored by
this particular call with the five solutions shaded.

Figure 12.9 Complete decision tree for paths to (1, 2)

Notice that the tree does not contain all of the possible combinations
of three moves. That is because we don’t explore past a solution and
we don’t explore past a dead-end (such as (2, 1)).

It is useful to consider the order in which the recursive method
searches these possibilities. In general, as with most recursive
solutions, the recursive calls lead to a depth-first traversal. From the
starting point at the top of the tree it first considers moving North to
(0, 1). That entire branch of the tree is explored before any other
branches are explored. The next call considers moving North again
to (0, 2). Then it considers another move North to (0, 3). So the initial
sequence of calls leads it down to the leftmost node of the three.
This is a dead-end, so it stops exploring. At that point, it returns to
where it last had another choice to consider. It backs up to where it
had chosen two North moves in a row (N N) and it considers moving
East instead of moving North. That turns out to be a solution (N N E),
so it reports a success. Then it backs up again to where it last had
another choice to make and it considers the remaining possibilities.

This property of going back to where it still has other choices to
explore is the source of the term “backtracking.” As it finds solutions
and dead-ends, it goes back (backtracks) to where it last had some
other move to consider. It continues to search until it has exhausted
all possible sequences of choices.

8 Queens Puzzle

A classic puzzle that backtracking solves well is to find a way to
place 8 queens on a chessboard so that no two queens threaten
each other. Because queens can move horizontally, vertically, or
diagonally, it is a challenge to find a way to put 8 different queens on
the board so that no two of them are in the same row, column, or
diagonal. Figure 12.10 shows one example placement.

Figure 12.10 The 8 queens problem

To solve this problem with backtracking, we have to think of it in
terms of a sequence of choices. The simplest way to do this is to

think in terms of choosing where the first queen goes, then choosing
where the second queen goes, and so on. There are 64 places to
put the first queen because the chessboard is an 8-by-8 board. At
the top of the tree, there are 64 different choices you could make for
placing the first queen. Then once you’ve placed one queen, there
are 63 squares left to choose from for the second queen, then 62
squares for the third queen, and so on.

Because backtracking searches all possibilities, it can take a long
time to execute as there are many possibilities to explore. If we
explore them all, we’ll need to look at 64 * 63 * 62 * . . . * 57 states,
which is too many even for a fast computer. We need to be as smart
as we can about the choices we explore. In the case of 8 queens, we
can do better than to consider 64 choices followed by 63 choices
followed by 62 choices, and so on. We know that most of these
aren’t worth exploring.

One approach is to observe that if there is any solution at all to this
problem, then the solution will have exactly one queen in each row
and exactly one queen in each column. That’s because you can’t
have two in the same row or two in the same column and there are 8
of them on an 8-by-8 board. We can search more efficiently if we go
row-by-row or column-by-column. It doesn’t matter which choice we
make, so let’s explore column by column. Eliminating undesirable
candidates from being explored is also called pruning the decision
tree.

In this new way of looking at the search space, the first choice is for
column 1. We have 8 different rows where we could put a queen in
column 1. At the next level we consider all of the places to put a
queen in column 2, and so on. Figure 12.11 shows the top of our
decision tree.

Figure 12.11 Decision tree for first column

There are eight different branches for each column. Under each of
these branches, we have eight branches for each of the possible
rows where we might place a queen in column 2. For example, if we
think just about the possibility of placing the first queen in column 1
and row 5 and then think about all of the ways to place a second
queen, we end up with an extra level of the tree as shown in Figure
12.12 .

Figure 12.12 A decision tree for second column

These pictures don’t capture the whole story because the tree is so
large. There are eight branches at the top. From each of these eight
branches there are eight branches. And from each of those branches
there are eight branches. This continues eight levels deep (one level
for each column of the board).

It’s clear that the eight choices could be coded fairly nicely in a for
loop, something along the lines of:

for (int row = 1; row <= 8; row++) {

But what we need for backtracking is something more like a deeply
nested for loop:

for (int row = 1; row <= 8; row++) { // explore column 1

 for (int row = 1; row <= 8; row++) { // explore column 2

 for (int row = 1; row <= 8; row++) { // explore column

3

 for (int row = 1; row <= 8; row++) { // explore

column 4

That’s not a bad way to think of what backtracking does, although we
will use recursion to write this in a more elegant way.

Before we explore the backtracking code, we need to consider the
low-level details of how to keep track of a board that allows us to
place queens in specific locations. It is helpful to split off the low-
level details into a separate class. Let’s plan on writing a Board class
that allows us to construct a Board object to keep track of the state of
the chessboard.

What kind of methods would we want to have for a Board object?
Obviously it would need some kind of constructor. We want to pass it
an integer so we could solve the more general “ queens”
problem with an -by- board. We need to be able to test whether
it’s safe to place a queen at a particular location. We need a way to
place a queen on the board. We need a way to remove a queen
because the backtracking involves trying different possibilities. We
need a way to display output showing where the queens have been
placed. Lastly, we’d like to be able to ask the board what size it is.

n n

n n

These can be implemented as the following constructor and
methods:

public Board(int size)

public boolean isSafe(int row, int column)

public void place(int row, int column)

public void remove(int row, int column)

public void print()

public int size()

Let’s assume that we have a Board class that implements all of these
methods. That’s not the interesting code. The interesting code is the
backtracking code which, given this class, we can now write in a very
straightforward manner.

Once again we will introduce a public/private pair of methods to
perform the backtracking. The public method can be passed a Board
object and it will call the private recursive method that performs the
backtracking:

public static void solve(Board b) {

 ...

}

Recall that we had this general pseudocode for backtracking
solutions:

private static void explore(a scenario) {

 if (this is a solution) {

 report it.

 } else if (this is not a dead-end) {

 use recursive calls to explore each available choice.

 }

}

The 8-queens backtracking problem differs in several important ways
from the simple backtracking we saw before. Let’s consider each of
the differences and see how to adapt our pseudocode for each of
them.

In the traveling problem we had just three possibilities to consider, so
it made sense to write three recursive calls to explore each
possibility. Here we have eight possibilities for the 8-queens problem
and potentially a different number of possibilities if the board size is
something other than 8. In this case, we want to use a loop to
consider the different possibilities. Many backtracking problems will
require using a loop instead of individual calls; it is useful to adapt
our pseudocode to fit that approach.

private static void explore(a scenario) {

 if (this is a solution) {

 report it.

 } else {

 for (each available choice) {

 if (this is not a dead-end) {

 use a recursive call to explore that choice.

 }

 }

 }

}

We can also be more specific about what it means to explore a
choice. In our simple example, we were building up a string that
stored the path. That meant that we didn’t have to undo a choice to
move on to the next choice. More complex backtracking problems
require a cleanup step where you undo a choice. That will be true of
8-queens. We will place a queen on the board to explore that branch
and when we come back from the recursive exploration, we will need
to remove the queen to get ready to explore the next possible
choice. So the pseudocode can be expanded to include the pattern
of making a choice, recursively exploring, and then undoing the
choice:

private static void explore(a scenario) {

 if (this is a solution) {

 report it.

 } else {

 for (each available choice) {

 if (this is not a dead-end) {

 make the choice.

 recursively explore subsequent choices.

 undo the choice.

 }

 }

 }

}

This pseudocode is general enough that it can be used for many
backtracking problems. Some programmers refer to this as the
“choose, explore, un-choose” pattern for backtracking.

This is appropriate code to use if you want to search all possibilities.
In the case of 8-queens, there are many solutions (over 90 different
solutions). We don’t really want to see all of these solutions. We’re
happy to have just one. For this backtracking problem, we will
consider a variation that stops when it finds a solution. That means
that our recursive method will need to have a way to let us know
whether a certain path worked out or whether it turned out to be a
dead-end. A good way to do this is to have a boolean return type and
to have the method return true if it succeeds, false if it is a dead-
end.

private static boolean explore(a scenario) {

 if (this is a solution) {

 report it.

 return true;

 } else {

 for (each available choice) {

 if (this is not a dead-end) {

 make the choice.

 if (recursive call to explore subsequent

choices) {

 return true;

 }

 undo the choice.

 }

 }

 return false;

}

This pseudocode is also general enough that it can be used for
many backtracking problems when you want to stop the process
after finding a solution.

We can adapt this to the 8-queens problem by filling in the details.
What parameters will it need to specify a scenario? It certainly needs
the Board object. Recall that each level of the decision tree involves
a different column of the board. The first invocation will handle
column 1, the second will handle column 2, and so on. Therefore, in
addition to the board, the method also needs to know the column to
work on. That leaves us with this header:

private static boolean explore(Board b, int col) {

 ...

}

How do we know if we’ve found a solution? This backtracking code
doesn’t explore dead-ends. As a result, it has the following
precondition:

// pre: queens have been safely placed in previous columns

What would be a nice column to get to? A tempting answer is 8. It
would be nice to get to column 8 because it would mean that 7 of the
8 queens have been placed properly. But an even better answer is 9,
because the precondition tells us that if we ever reach column 9,
then queens have been safely placed in each of the first 8 columns.

This turns out to be our test for whether we have found a solution:

private static boolean explore(Board b, int col) {

 if (col > b.size()) {

 return true;

 } else {

 ...

 }

}

The pseudocode indicates that we should print the answer before
returning true. We could do that, but because the solution is stored in
the Board object, we can simply return and allow the calling method
to print out the solution.

Now we have to fill in the details of the for loop that explores the
various possibilities. We have eight possibilities to explore (the eight
rows of this column where we might place a queen). A for loop
works nicely to explore the different row numbers. The pseudocode
indicates that we should test to make sure it is not a dead-end. We
can do that by making sure that it is safe to place a queen in that row
and column:

for (int row = 1; row <= b.size(); row++) {

 if (b.isSafe(row, col)) {

 ...

 }

}

We now need to fill in the three steps that are involved in exploring a
choice: making the choice, recursively exploring subsequent
choices, and undoing the choice. We make the choice by telling the
board to place a queen in that row and column:

for (int row = 1; row <= b.size(); row++) {

 if (b.isSafe(row, col)) {

 b.place(row, col);

 ...

 }

}

Then we recursively explore subsequent choices (later columns) and
return true to stop the process if it finds a solution:

for (int row = 1; row <= b.size(); row++) {

 if (b.isSafe(row, col)) {

 b.place(row, col);

 if (explore(b, col + 1)) {

 return true;

 }

 ...

 }

}

Finally, we have to undo our choice in case that turns out to be a
dead-end:

for (int row = 1; row <= b.size(); row++) {

 if (b.isSafe(row, col)) {

 b.place(row, col);

 if (explore(b, col + 1)) {

 return true;

 }

 b.remove(row, col);

 }

}

Putting it all together we get:

private static boolean explore(Board b, int col) {

 if (col > b.size()) {

 return true;

 } else {

 for (int row = 1; row <= b.size(); row++) {

 if (b.isSafe(row, col)) {

 b.place(row, col);

 if (explore(b, col + 1)) {

 return true;

 }

 b.remove(row, col);

 }

 }

 return false;

 }

}

We need some code in the solve method that starts the recursion in
column 1 and that either prints the solution or a message about there

not being solutions:

public static void solve(Board solution) {

 if (explore(solution, 1)) {

 System.out.println("One solution is as follows:");

 solution.print();

 } else {

 System.out.println("No solution.");

 }

}

On our web site http://www.buildingjavaprograms.com/ you will find
the Board class and a full runnable version of the program that you
can run to see that it finds a solution to 8 queens, 4 queens, and so
on. In the case of 2 queens, there are no solutions. Our graphical
variation of the program includes an animation generated by the
backtracking itself.

Solving Sudoku Puzzles

Let’s look at one more example of backtracking. Sudoku puzzles
have become very popular. The puzzle involves a 9-by-9 grid that is
to be filled in with the digits 1 through 9. Each row and column is
required to have exactly one occurrence of each of the nine digits.
The grid is further divided into nine 3-by-3 grids, and each grid is

also required to have exactly one occurrence of each of the nine
digits. A specific Sudoku puzzle will fill in some of the cells of the grid
with specific digits, such as the puzzle shown in Figure 12.13 .

Figure 12.13 A Sudoku board

When people play Sudoku, they use all sorts of heuristics and
intuitions to find a way to fill in the empty cells of the grid while still
meeting the constraints. With a backtracking approach, we just use
brute force to try all possibilities.

The choices involved are what digit to put in each of the unoccupied
cells of the grid. There are nine possibilities to explore for each
empty cell (the digits 1 through 9). This approach to Sudoku is not
necessarily going to run quickly, but backtracking provides a
framework for quickly writing a complete solution.

As with many backtracking tasks, the real work involves keeping
track of the details of this particular scenario. With the 8-queens
problem we introduced a Board class to keep track of the
chessboard. In this case we should develop a Grid class that keeps
track of the state of the Sudoku grid.

In the case of the Sudoku grid, we have to start with some of the
cells filled in. That will mean that our Grid class will need to read the
initial configuration. Let’s assume that each puzzle is stored in a text
file with a 9-by-9 grid of numbers and dashes, as in:

3 - 6 5 - 8 4 - -

5 2 - - - - - - -

- 8 7 - - - - 3 1

- - 3 - 1 - - 8 -

9 - - 8 6 3 - - 5

- 5 - - 9 - 6 - -

1 3 - - - - 2 5 -

- - - - - - - 7 4

- - 5 2 - 6 3 - -

That means that our Grid class constructor will need to read the
initial configuration:

public Grid(Scanner input)

We immediately run into another problem. If some of the cells are
filled in, then it’s not as simple as the 8-queens case where we could
just systematically explore each different cell of an empty board. In
the Sudoku case, we have to figure out which cell to explore first,
which cell to go to after that, and so on. There are many ways we
could approach this, but the simplest is to give this responsibility to
the Grid class. We can introduce a method that allows us to ask the
grid to give us the next unassigned location in the grid.

Then we are faced with the question of how to specify a grid
location. An obvious approach would be to give row and column
numbers, but a method can return only one value. If the grid is going
to identify the unassigned locations, then we don’t really need to
keep track of rows and columns ourselves. To keep thing simple,
let’s assume that the grid returns a cell number as a simple int :

public int getUnassignedLocation()

Eventually the grid will fill up, so we have to adopt a convention for
what happens when there is no unassigned location left. Let’s

assume that the method returns -1 in that case to indicate that the
grid is full.

In addition to these methods, we will want similar methods to the
ones we had in 8-queens. We want to be able to test whether it’s
safe to set a particular cell to a particular digit. This is the method
that will make sure that the grid we are building up is legal. So it will
have to check to see if this new digit doesn’t already appear in the
given row, column, or subgrid. We’ll need a method to set a cell to a
specific digit. An “undo” method to remove a digit from a cell will be
necessary. We will also want a method to print our solution. These
are implemented as the following methods, respectively:

public boolean noConflicts(int cellNumber, int n)

public void place(int cellNumber, int n)

public void remove(int cellNumber)

public void print()

As with 8-queens, we’ll want to stop searching once we find a
solution, so we start with the standard pseudocode for the single-
solution backtracking:

private static boolean explore(a scenario) {

 if (this is a solution) {

 report it.

 return true;

 } else {

 for (each available choice) {

 if (this is not a dead-end) {

 make the choice.

 if (recursive call to explore subsequent

choices) {

 return true;

 }

 undo the choice.

 }

 }

 return false;

 }

}

In this case, the information about a scenario is stored in the grid
object. We know that we have a solution if we manage to fill every
cell of the grid. To test whether we have a solution we can ask the
grid to give us the next unassigned location and see if the method
returns -1 (the value that signals that the grid is full):

private static boolean explore(Grid g) {

 int cellNumber = g.getUnassignedLocation();

 if (cellNumber == -1) {

 return true;

 } else {

 ...

 }

}

The available choices are the digits 1 through 9 and we have
methods for performing each of the operations described in the
pseudocode, so we can fill in the blanks to complete the method as
follows:

private static boolean explore(Grid g) {

 int cellNumber = g.getUnassignedLocation();

 if (cellNumber == -1) {

 return true;

 } else {

 for (int n = 1; n <= 9; n++) {

 if (g.noConflicts(cellNumber, n)) {

 g.place(cellNumber, n);

 if (explore(g)) {

 return true;

 }

 g.remove(cellNumber);

 }

 }

 return false;

 }

}

You will find the Grid class and a full runnable version of this
program on our web site http://www.buildingjavaprograms.com/
along with a graphical version that shows the choices as they are
being considered by the backtracking.

12.6 Case Study: Prefix Evaluator

In this section, we will explore the use of recursion to evaluate
complex numeric expressions. First, we will examine the different
conventions for specifying numeric expressions and then we will see
how recursion makes it relatively easy to implement one of the
standard conventions.

Infix, Prefix, and Postfix Notation

When we write numeric expressions in a Java program, we typically
put numeric operators like + and * between the two operands, as in
the following:

3.5 + 8.2

9.1 * 12.7

7.8 * (2.3 + 2.5)

Putting the operator between the operands is a convention known as
infix notation. A second convention is to put the operator in front of
the two operands, as in the following examples:

+ 3.5 8.2

* 9.1 12.7

* 7.8 + 2.3 2.5

Putting the operator in front of the operands is a convention known
as prefix notation. Prefix notation looks odd for symbols like + and
* , but it resembles mathematical function notation, in which the
name of the function goes first. For example, if we were calling
methods instead of using operators, we would write

plus(3.5, 8.2)

times(9.1, 12.7)

times(7.8, plus(2.3, 2.5))

There is also a third convention, in which the operator appears after
the two operands, as in the following examples:

3.5 8.2 +

9.1 12.7 *

7.8 2.3 2.5 + *

This convention is known as postfix notation. It is also sometimes
referred to as reverse Polish notation, or RPN. For many years
Hewlett-Packard has sold scientific calculators that use RPN rather
than normal infix notation.

We are so used to infix notation that it takes a while to get used to
the other two conventions. One of the interesting facts you will
discover if you take the time to learn the prefix and postfix
conventions is that infix is the only notation that requires
parentheses. The other two notations are unambiguous.

Table 12.1 summarizes the three notations.

Table 12.1 Arithmetic Notations

Evaluating Prefix Expressions

Of the three standard notations, prefix notation is most easily
implemented with recursion. In this section, we will write a method
that reads a prefix expression from a Scanner and computes its
value. Our method will look like this:

// pre : input contains a legal prefix expression

// post : expression is consumed and the result is returned

public static double evaluate(Scanner input) {

 ...

}

Before we can begin writing the method, we have to consider the
kind of input that we are going to get. As the precondition indicates,
we will assume that the Scanner contains a legal prefix expression.
The simplest possible expression would be a number like

38.9

There isn’t much to evaluate in this case—we can simply read and
return the number. More complex prefix expressions will involve one
or more operators. Remember that the operator goes in front of the
operands in a prefix expression. A slightly more complex expression
would be two numbers as operands with an operator in front:

+ 2.6 3.7

This expression could itself be an operand in a larger expression.
For example, we might ask for

* + 2.6 3.7 + 5.2 18.7

At the outermost level, we have a multiplication operator with two
operands:

In other words, this expression is computing the product of two
sums. Here is the same expression written in the more familiar infix
notation:

(2.6 + 3.7) * (5.2 + 18.7)

These expressions can become arbitrarily complex. The key
observation to make about them is that they all begin with an
operator. In other words, every prefix expression is of one of two
forms:

A simple number
An operator followed by two operands

This observation will become a road map for our recursive solution.
The simplest prefix expression will be a number, and we can

distinguish it from the other case because any other expression will
begin with an operator. So we can begin our recursive solution by
checking whether the next token in the Scanner is a number. If it is,
we have a simple case and we can simply read and return the
number:

public static double evaluate(Scanner input) {

 if (input.hasNextDouble()) {

 // base case with a simple number

 return input.nextDouble();

 } else {

 // recursive case with an operator and two operands

 ...

 }

}

Turning our attention to the recursive case, we know that the input
must be an operator followed by two operands. We can begin by
reading the operator:

public static double evaluate(Scanner input) {

 if (input.hasNextDouble()) {

 // base case with a simple number

 return input.nextDouble();

 } else {

 // recursive case with an operator and two operands

 String operator = input.next();

 ...

 }

}

At this point, we reach a critical decision. We have read in the
operator, and now we need to read in the first operand and then the
second operand. If we knew that the operands were simple
numbers, we could write code like the following:

// not the right approach

public static double evaluate(Scanner input) {

 if (input.hasNextDouble()) {

 // base case with a simple number

 return input.nextDouble();

 } else {

 // recursive case with an operator and two operands

 String operator = input.next();

 double operand1 = input.nextDouble();

 double operand2 = input.nextDouble();

 ...

 }

}

But we have no guarantee that the operands are simple numbers.
They might be complex expressions that begin with operators. Your
instinct might be to test whether or not the original operator is

followed by another operator (in other words, whether the first
operand begins with an operator), but that reasoning won’t lead you
to a satisfactory outcome. Remember that the expressions can be
arbitrarily complex, so either of the operands might contain dozens
of operators to be processed.

The solution to this puzzle involves recursion. We need to read two
operands from the Scanner , and they might be very complex. But we
know that they are in prefix form and we know that they aren’t as
complex as the original expression we were asked to evaluate. The
key is to recursively evaluate each of the two operands:

public static double evaluate(Scanner input) {

 if (input.hasNextDouble()) {

 // base case with a simple number

 return input.nextDouble();

 } else {

 // recursive case with an operator and two operands

 String operator = input.next();

 double operand1 = evaluate(input);

 double operand2 = evaluate(input);

 ...

 }

}

This simple solution works. Of course, we still have the task of
evaluating the operator. After the two recursive calls have executed,

we will have an operator and two numbers (say, + , 3.4 , and 2.6). It
would be nice if we could just write a statement like the following:

 return operand1 operator operand2; // does not work

Unfortunately, Java doesn’t work that way. We have to use a nested
if/else statement to test what kind of operator we have and to
return an appropriate value:

if (operator.equals("+")) {

 return operand1 + operand2;

} else if (operator.equals("–")) {

 return operand1 – operand2;

} else if (operator.equals("*")) {

 ...

We can include this code in its own method so that our recursive
method stays fairly short:

public static double evaluate(Scanner input) {

 if (input.hasNextDouble()) {

 // base case with a simple number

 return input.nextDouble();

 } else {

 // recursive case with an operator and two operands

 String operator = input.next();

 double operand1 = evaluate(input);

 double operand2 = evaluate(input);

 return apply(operator, operand1, operand2);

 }

}

Complete Program

When you program with recursion, you’ll notice two things. First, the
recursive code that you write will tend to be fairly short, even though
it might be solving a very complex task. Second, most of your
program will generally end up being supporting code for the
recursion that does low-level tasks. For our current task of evaluating
a prefix expression, we have a short and powerful prefix evaluator,
but we need to include some supporting code that explains the
program to the user, prompts for a prefix expression, and reports the
result. We also found that we needed a method that would apply an
operator to two operands. The nonrecursive parts of the program are
fairly straightforward, so they are included in the following code
without detailed discussion:

 1 // This program prompts for and evaluates a prefix

expression.

 2

 3 import java.util.*;

 4

 5 public class PrefixEvaluator {

 6 public static void main(String[] args) {

 7 Scanner console = new Scanner(System.in);

 8 System.out.println("This program evaluates

prefix");

 9 System.out.println("expressions that include the");

10 System.out.println("operators +, –, *, / and %");

11 System.out.print("expression? ");

12 double value = evaluate(console);

13 System.out.println("value = " + value);

14 }

15

16 // pre : input contains a legal prefix expression

17 // post: expression is consumed and the result is

returned

18 public static double evaluate(Scanner input) {

19 if (input.hasNextDouble()) {

20 return input.nextDouble();

21 } else {

22 String operator = input.next();

23 double operand1 = evaluate(input);

24 double operand2 = evaluate(input);

25 return apply(operator, operand1, operand2);

26 }

27 }

28

29 // pre : operator is one of +, –, *, / or %

30 // post: returns the result of applying the given

operator

31 // to the given operands

32 public static double apply(String operator, double

operand1,

33 double operand2) {

34 if (operator.equals("+")) {

35 return operand1 + operand2;

36 } else if (operator.equals("–")) {

37 return operand1 – operand2;

38 } else if (operator.equals("*")) {

39 return operand1 * operand2;

40 } else if (operator.equals("/")) {

41 return operand1 / operand2;

42 } else if (operator.equals("%")) {

43 return operand1 % operand2;

44 } else {

45 throw new IllegalArgumentException("bad

operator: "

46 + operator);

47 }

48 }

49 }

The program can handle simple numbers, as in the following sample
execution:

This program evaluates prefix

expressions that include the

operators +, –, *, / and %

expression? 38.9

value = 38.9

It can also handle expressions with a single operator, as in the
following execution:

This program evaluates prefix

expressions that include the

operators +, –, *, / and %

expression? + 2.6 3.7

value = 6.300000000000001

And it handles the case we considered that involved a product of two
sums:

This program evaluates prefix

expressions that include the

operators +, –, *, / and %

expression? * + 2.6 3.7 + 5.2 18.7

value = 150.57000000000002

In fact, it can handle arbitrarily complex expressions, as in the
following sample execution:

This program evaluates prefix

expressions that include the

operators +, –, *, / and %

expression? / + * – 17.4 8.9 – 3.9 4.7 18.4 – 3.8 * 7.9 2.3

value = –0.8072372999304106

The expression being computed in the previous example is the prefix
equivalent of the following infix expression:

((17.4 – 8.9) * (3.9 – 4.7) + 18.4) / (3.8 – 7.9 * 2.3)

Chapter Summary
Recursion is an algorithmic technique in which a method calls itself.
A method that uses recursion is called a recursive method.

Recursive methods include two cases: a base case that the method
can solve directly without recursion, and a recursive case in which
the method reduces a problem into a simpler problem of the same
kind using a recursive call.

Recursive method calls work internally by storing information about
each call into a structure called a call stack. When the method calls
itself, information about the call is placed on top of the stack. When a
method call finishes executing, its information is removed from the
stack and the program returns to the call underneath.

A recursive method without a base case, or one in which the
recursive case doesn’t properly transition into the base case, can
lead to infinite recursion.

A helper method is written to help solve a subtask of an overall
problem. Recursive helper methods often have parameters in

addition to the ones passed to the overall recursive method that calls
them, to allow them to more easily implement the overall recursive
solution.

Recursion can be used to draw graphical figures in complex
patterns, including fractal images. Fractals are images that are
recursively self-similar, and they are often referred to as “infinitely
complex.”

Self-Check Problems

Section 12.1: Thinking
Recursively

1. What is recursion? How does a recursive method differ from a
standard iterative method?

2. What are base cases and recursive cases? Why does a
recursive method need to have both?

3. Consider the following method:

public static void mystery1(int n) {

 if (n <= 1) {

 System.out.print(n);

 } else {

 mystery1(n / 2);

 System.out.print(", " + n);

 }

}

For each of the following calls, indicate the output that is
produced by the method:

a. mystery1(1);
b. mystery1(2);
c. mystery1(3);
d. mystery1(4);
e. mystery1(16);

f. mystery1(30);
g. mystery1(100);

4. Consider the following method:

public static void mystery2(int n) {

 if (n > 100) {

 System.out.print(n);

 } else {

 mystery2(2 * n);

 System.out.print(", " + n);

 }

}

For each of the following calls, indicate the output that is
produced by the method:

a. mystery2(113);
b. mystery2(70);
c. mystery2(42);
d. mystery2(30);
e. mystery2(10);

5. Consider the following method:

public static void mystery3(int n) {

 if (n <= 0) {

 System.out.print("*");

 } else if (n % 2 == 0) {

 System.out.print("(");

 mystery3(n – 1);

 System.out.print(")");

 } else {

 System.out.print("[");

 mystery3(n – 1);

 System.out.print("]");

 }

}

For each of the following calls, indicate the output that is
produced by the method:

a. mystery3(0);
b. mystery3(1);
c. mystery3(2);
d. mystery3(4);
e. mystery3(5);

6. Consider the following method:

public void mysteryXY(int x, int y) {

 if (y == 1) {

 System.out.print(x);

 } else {

 System.out.print(x * y + ", ");

 mysteryXY(x, y - 1);

 System.out.print(", " + x * y);

 }

}

For each of the following calls, indicate the output that is
produced by the method:

a. mysteryXY(4, 1);
b. mysteryXY(4, 2);
c. mysteryXY(8, 2);
d. mysteryXY(4, 3);
e. mysteryXY(3, 4);

7. Convert the following iterative method into a recursive
method:

// Prints each character of the string reversed twice.

// doubleReverse("hello") prints oolllleehh

public static void doubleReverse(String s) {

 for (int i = s.length() – 1; i >= 0; i--) {

 System.out.print(s.charAt(i));

 System.out.print(s.charAt(i));

 }

}

Section 12.2: A Better Example of
Recursion

8. What is a call stack, and how does it relate to recursion?
9. What would be the effect if the code for the reverse method

were changed to the following?

public static void reverse(Scanner input) {

 if (input.hasNextLine()) {

 // recursive case (nonempty file)

 String line = input.nextLine();

 System.out.println(line); // swapped order

 reverse(input); // swapped order

 }

}

10. What would be the effect if the code for the reverse method
were changed to the following?

public static void reverse(Scanner input) {

 if (input.hasNextLine()) {

 // recursive case (nonempty file)

 reverse(input); // moved

this line

 String line = input.nextLine();

 System.out.println(line);

 }

}

Section 12.3: Recursive Functions
and Data

11. The following method is an attempt to write a recursive pow
method to compute exponents. What is wrong with the code?
How can it be fixed?

public static int pow(int x, int y) {

 return x * pow(x, y - 1);

}

12. What are the differences between the two versions of the pow
method shown in Section 12.3 ? What advantage does the
second version have over the first version? Are both versions
recursive?

13. Consider the following method:

public static int mystery4(int x, int y) {

 if (x < y) {

 return x;

 } else {

 return mystery4(x – y, y);

 }

}

For each of the following calls, indicate the value that is
returned:

a. mystery4(6, 13)
b. mystery4(14, 10)
c. mystery4(37, 10)
d. mystery4(8, 2)
e. mystery4(50, 7)

14. Consider the following method:

public static int mystery5(int x, int y) {

 if (x < 0) {

 return –mystery5(–x, y);

 } else if (y < 0) {

 return –mystery5(x, –y);

 } else if (x == 0 && y == 0) {

 return 0;

 } else {

 return 100 * mystery5(x / 10, y / 10) + 10 * (x %

10) + y % 10;

 }

}

For each of the following calls, indicate the value that is
returned:

a. mystery5(5, 7)
b. mystery5(12, 9)

c. mystery5(-7, 4)
d. mystery5(– 23, –48)

e. mystery5(128, 343)

15. Consider the following method:

public static int mystery6(int n, int k) {

 if (k == 0 || k == n) {

 return 1;

 } else if (k > n) {

 return 0;

 } else {

 return mystery6(n - 1, k - 1) + mystery6(n - 1,

k);

 }

}

For each of the following calls, indicate the value that is
returned:

a. mystery6(7, 1)
b. mystery6(4, 2)
c. mystery6(4, 3)
d. mystery6(5, 3)
e. mystery6(5, 4)

16. Convert the following iterative method into a recursive
method:

// Returns n!, such as 5! = 1*2*3*4*5

public static int factorial(int n) {

 int product = 1;

 for (int i = 1; i <= n; i++) {

 product *= i;

 }

 return product;

}

17. The following method has a bug that leads to infinite
recursion. What correction fixes the code?

// Adds the digits of the given number.

// Example: digitSum(3456) returns 3+4+5+6 = 18

public static int digitSum(int n) {

 if (n > 10) {

 // base case (small number)

 return n;

 } else {

 // recursive case (large number)

 return n % 10 + digitSum(n / 10);

 }

}

18. Sometimes the parameters that a client would like to pass to a
method don’t match the parameters that are best for writing a

recursive solution to the problem. What should a programmer
do to resolve this issue?

19. The Fibonacci sequence is a sequence of numbers in which
the first two numbers are 1 and each subsequent number is
the sum of the previous two Fibonacci numbers. The
sequence is 1, 1, 2, 3, 5, 8, 13, 21, 34, and so on. The
following is a correct, but inefficient, method to compute the
th Fibonacci number:

public static int fibonacci(int n) {

 if (n <= 2) {

 return 1;

 } else {

 return fib(n – 1) + fib(n - 2);

 }

}

The code shown runs very slowly for even relatively small
values of n ; it can take minutes or hours to compute even the
40th or 50th Fibonacci number. The code is inefficient
because it makes too many recursive calls. It ends up
recomputing each Fibonacci number many times. Write a new
version of this method that is still recursive and has the same
header but is more efficient. Do this by creating a helper
method that accepts additional parameters, such as previous
Fibonacci numbers, that you can carry through and modify
during each recursive call.

n

Section 12.4: Recursive Graphics

20. What is a fractal image? How does recursive programming
help to draw fractals?

21. Write Java code to create and draw a regular hexagon (a type
of polygon).

Section 12.5: Recursive
Backtracking

22. Why is recursion an effective way to implement a
backtracking algorithm?

23. What is a decision tree? How are decision trees important for
backtracking?

24. Draw the decision tree that would have resulted for Figure
12.9 if the backtracking solution had explored NE first
instead of last in the recursive explore method. (Hint: the tree
changes at every level.)

25. The original North/East backtracking solution printed the
following ways of traveling to (1, 2) in this order. In what order
would they be printed if the solution had explored NE first
instead of last?

moves: N N E

moves: N E N

moves: N NE

moves: E N N

moves: NE N

26. Figure 12.12 shows only part of the decision tree for the
first two levels. How many entries are there at the second
level of the full tree? How many are at level 3 of the full tree?

27. If our 8 Queens algorithm tried every possible square on the
board for placing each queen, how many entries are there at
the 8th and final level of the full tree? What does our algorithm
do to avoid having to explore so many possibilities?

28. The 8 Queens explore method stops once it finds one
solution to the problem. What part of the code causes the
algorithm to stop once it finds a solution? How could the code
be modified so that it would find and output every solution to
the problem?

Exercises
1. Write a recursive method called starString that accepts an

integer as a parameter and prints to the console a string of
stars (asterisks) that is (i.e., 2 to the power) long. For
example,

starString(0) should print * (because)
starString(1) should print ** (because)
starString(2) should print **** (because)
starString(3) should print ******** (because)
starString(4) should print **************** (because

)

The method should throw an IllegalArgumentException if
passed a value less than 0 .

2. Write a method called writeNums that takes an integer n as a
parameter and prints to the console the first integers
starting with 1 in sequential order, separated by commas. For
example, consider the following calls:

writeNums(5);

System.out.println(); // to complete the line of output

writeNums(12);

System.out.println(); // to complete the line of output

2n
n

th

20 == 1

21 == 2

22 == 4

23 == 8

24 == 16

n

These calls should produce the following output:

1, 2, 3, 4, 5

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Your method should throw an IllegalArgumentException if
passed a value less than 1 .

3. Write a method called writeSequence that accepts an integer
as a parameter and prints to the console a symmetric
sequence of numbers composed of descending integers
that ends in 1, followed by a sequence of ascending integers
that begins with 1. The following table indicates the output
that should be produced for various values of :

Method call Output produced

writeSequence(1); 1

writeSequence(2); 1 1

writeSequence(3); 2 1 2

writeSequence(4); 2 1 1 2

writeSequence(5); 3 2 1 2 3

writeSequence(6); 3 2 1 1 2 3

writeSequence(7); 4 3 2 1 2 3 4

writeSequence(8); 4 3 2 1 1 2 3 4

writeSequence(9); 5 4 3 2 1 2 3 4 5

writeSequence(10); 5 4 3 2 1 1 2 3 4 5

n

n

n

Notice that when is odd the sequence has a single 1 in the
middle, whereas for even values it has two 1s in the middle.
Your method should throw an IllegalArgumentException if it is
passed a value less than 1 .

4. Write a recursive method called doubleDigits that accepts an
integer as a parameter and returns the integer obtained by
replacing every digit of with two of that digit. For example,
doubleDigits(348) should return 334488 . The call
doubleDigits(0) should return 0 . Calling doubleDigits on a
negative number should return the negation of calling
doubleDigits on the corresponding positive number; for
example, doubleDigits(–789) should return –778899 .

5. Write a recursive method called writeBinary that accepts an
integer as a parameter and writes its binary representation to
the console. For example, writeBinary(44) should print
101100 .

6. Write a recursive method called writeSquares that accepts an
integer parameter and prints the first squares separated
by commas, with the odd squares in descending order
followed by the even squares in ascending order. For
example, writeSquares(8); prints the following output:

49, 25, 9, 1, 4, 16, 36, 64

A call of writeSquares(1); prints 1 . The method should throw
an IllegalArgumentException if it is passed a value less than 1.

n

n

n

n n

7. Write a recursive method called writeChars that accepts an
integer parameter and that prints out a total of
characters. The middle character of the output should always
be an asterisk ("*"). If you are asked to write out an even
number of characters, then there will be two asterisks in the
middle ("**"). Before the asterisk(s) you should write out
less-than characters ("<"). After the asterisk(s) you should
write out greater-than characters (">"). Your method should
throw an IllegalArgumentException if it is passed a value less
than 1. For example, the following calls produce the following
output:

8. Write a recursive method called multiplyEvens that returns the
product of the first even integers. For example,
multiplyEvens(1) returns 2 and multiplyEvens(4) returns 384
(because). The method should throw an
IllegalArgumentException if it is passed a value less than or
equal to 0.

9. Write a recursive method called sumTo that accepts an integer
parameter and returns a real number representing the sum
of the first reciprocals. In other words, sumTo(n) returns (

). For example, sumTo(2)
should return 1.5 . The method should return 0.0 if it is
passed the value 0 and throw an IllegalArgumentException if it
is passed a value less than 0.

n n

n

2 * 4 * 6 * 8 = 384

n

n

1 + 1/2 + 1/3 + 1/4+. . . +1/n

10. Write a recursive method called digitMatch that accepts two
nonnegative integers as parameters and that returns the
number of digits that match between them. Two digits match if
they are equal and have the same position relative to the end
of the number (i.e., starting with the ones digit). In other
words, the method should compare the last digits of each
number, the second-to-last digits of each number, the third-to-
last digits of each number, and so forth, counting how many
pairs match. For example, for the call of
digitMatch(1072503891, 62530841) , the method would compare
as follows, and return 4 because four of the pairs match (2-2,
5-5, 8-8, and 1-1).

1 0 7 2 5 0 3 8 9 1

 | | | | | | | |

 6 2 5 3 0 8 4 1

11. Write a recursive method called repeat that accepts a string
and an integer as parameters and that returns
concatenated together times. For example,
repeat("hello ", 3) returns "hellohellohello" , and
repeat("ok ", 1) returns "ok" , and repeat("bye ", 0) returns
"" . String concatenation is an expensive operation, so for an
added challenge try to solve this problem while performing
fewer than concatenations.

12. Write a recursive method called isReverse that accepts two
strings as parameters and returns true if the two strings

s

n s

n

n

contain the same sequence of characters as each other but in
the opposite order (ignoring capitalization), and false
otherwise. For example, the call of isReverse("hello ",

"eLLoH ") would return true . The empty string, as well as any
one-letter string, is considered to be its own reverse.

13. Write a recursive method called indexOf that accepts two
strings as parameters and that returns the starting index of
the first occurrence of the second string inside the first string
(or if not found). For example, the call of indexOf("Barack

Obama ", "bam ")would return 8. (Strings already have an
indexOf method, but you may not call it in your solution.)

14. Write a recursive method called dedup that takes a string as a
parameter and that returns a new string obtained by replacing
every sequence of repeated adjacent letters with just one of
that letter. For example, the string "bookkkkkeeper" has three
repeated adjacent letters ("oo", "kkkkk", and "ee"), so the call
of dedup("bookkkkkeeper") should return "bokeper" . Do not call
the string replace or split methods in your solution.

15. Write a recursive method vowelsToEnd that takes a string as a
parameter and returns a string in which all of the vowels have
been moved to the end. The vowels should appear in reverse
order of what they were in the original word. For example, the
call of vowelsToEnd("beautifully") should return
"btfllyuiuae" .

16. Write a recursive method called evenDigits that accepts an
integer parameter and that returns the integer formed by

−1

removing the odd digits from it. For example,
evenDigits(8342116) returns 8426 and evenDigits (-34512)
returns -42 . If the number is 0 or has no even digits, such as
35159 or 7, return 0 . Leading zeros in the result should be
ignored.

17. Write a recursive method called permut that accepts two
integers and as parameters and returns the number of
unique permutations of items from a group of items. For
given values of and this value () can be computed
as follows:

For example, permut(7, 4) should return 840 . It may be
helpful to note that permut(6, 3) returns 120 , or 840 / 7.

18. The Sierpinski carpet is a fractal that is defined as follows:
The construction of the Sierpinski carpet begins with a
square. The square is cut into nine congruent subsquares in a
3-by-3 grid, with the central subsquare removed. The same
process is then applied recursively to the eight other
subsquares. Figure 12.14 shows the first few iterations of
the carpet.
Figure 12.14 Sierpinski carpet

n r

r n

n r, P n, r

P(n, r) =
n!

(n − r)!

Write a program to draw the carpet on a DrawingPanel
recursively.

19. The Cantor set is a fractal that is defined by repeatedly
removing the middle thirds of line segments as shown in
Figure 12.15 .
Figure 12.15 Cantor set

Write a program to draw the Cantor set on a DrawingPanel
recursively.

20. Write a recursive method called waysToClimb that takes a
positive integer value representing a number of stairs and
prints each unique way to climb a staircase of that height,
taking strides of one or two stairs at a time. Do not use any
loops. Output each way to climb the stairs on its own line,
using a 1 to indicate a small stride of 1 stair, and a 2 to
indicate a large stride of 2 stairs. The order in which you
output the possible ways to climb the stairs is not important,
so long as you list the right overall set of ways. For example,
the call waysToClimb(3) ; should produce the following output:

[1, 1, 1]

[1, 2]

[2, 1]

The call waysToClimb(4) ; should produce the following output:

[1, 1, 1, 1]

[1, 1, 2]

[1, 2, 1]

[2, 1, 1]

[2, 2]

21. Write a recursive method called countBinary that accepts an
integer as a parameter and that prints all binary numbersn

that have exactly digits in ascending order, each on its own
line. All digits should be shown for all numbers, including
leading zeros if necessary. Assume that is nonnegative. If
is 0, a blank line should be produced.

22. Write a recursive method called subsets to find every possible
sub-list of a given list. A sub-list of a list contains 0 or more
of ’s elements. Your method should accept a list of strings
as its parameter and print every sub-list that could be created
from elements of that list, one per line. For example, if the list
stores [Janet, Robert, Morgan, Char] , the output from your
method would be:

[Janet, Robert, Morgan, Char]

[Janet, Robert, Morgan]

[Janet, Robert, Char]

[Janet, Robert]

[Janet, Morgan, Char]

[Janet, Morgan]

[Janet, Char]

[Janet]

[Robert, Morgan, Char]

[Robert, Morgan]

[Robert, Char]

[Robert]

[Morgan, Char]

[Morgan]

n

n

n n

L

L

[Char]

[]

The order in which you show the sub-lists does not matter,
and the order of the elements of each sub-list also does not
matter. The key thing is that your method should produce the
correct overall set of sub-lists as its output. Notice that the
empty list is considered one of these sub-lists. You may
assume that the list passed to your method is not null and that
the list contains no duplicates. Do not use any loops.

23. Write a recursive method called maxSum that accepts a list of
integers, and an integer limit as parameters and uses
backtracking to find the maximum sum that can be generated
by adding elements of that do not exceed For example,
if you are given the list [7, 30, 8, 22, 6, 1, 14] and the limit
of 19, the maximum sum that can be generated that does not
exceed is 16, achieved by adding 7, 8, and 1. If the list is
empty, or if the limit is not a positive integer, or all of ’s
values exceed the limit, return 0 .
Each index’s element in the list can be added to the sum only
once, but the same number value might occur more than once
in a list, in which case each occurrence might be added to the
sum. For example, if the list is [6, 2, 1] you may use up to
one 6 in the sum, but if the list is [6, 2, 6, 1] you may use
up to two sixes.

L, n

L n.

L

L

You may assume that all values in the list are nonnegative.
Your method may alter the contents of the list as it
executes, but should be restored to its original state before
your method returns. Do not use any loops.

24. Write a recursive method called printSquares to find all ways
to express an integer as a sum of squares of unique positive
integers. For example, the call printSquares(200); should
produce the following output:

1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 8^2 + 9^2

1^2 + 2^2 + 3^2 + 4^2 + 7^2 + 11^2

1^2 + 2^2 + 5^2 + 7^2 + 11^2

1^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2

1^2 + 3^2 + 4^2 + 5^2 + 7^2 + 10^2

2^2 + 4^2 + 6^2 + 12^2

2^2 + 14^2

3^2 + 5^2 + 6^2 + 7^2 + 9^2

6^2 + 8^2 + 10^2

Some numbers (such as 128 or 0) cannot be represented as
a sum of squares, in which case your method should produce
no output. Keep in mind that the sum has to be formed with
unique integers. Otherwise you could always find a solution
by adding together until you got to whatever number you
are working with.
As with any backtracking problem, this one amounts to a set
of choices, one for each integer whose square might or might
not be part of your sum. You may generate the choices by

L

L

12

doing a for loop over an appropriate range of numbers. Note
that the maximum possible integer that can be part of a sum
of squares for an integer is the square root of n n.

Programming Projects
1. Write a recursive program to solve the “Missionaries and

Cannibals” problem. Three missionaries and three cannibals
come to a river and find a boat that holds two. If the cannibals
ever outnumber the missionaries on either bank, the
missionaries will be eaten. How might they cross safely?
Your output should include the initial problem, the moves you
make, and a “picture” of the current state of the puzzle after
each move. Your final output should produce only the moves
and the picture for the states that are on the solution path.

2. Write a recursive program to solve the Towers of Hanoi
puzzle. The puzzle involves manipulating disks that you can
move between three different towers. You are given a certain
number of disks (four in this example) stacked on one of the
three towers. The disks have decreasing diameters, with the
smallest disk on the top (see Figure 12.16).
Figure 12.16 Towers of Hanoi

The object of the puzzle is to move all of the disks from one
tower to another (say, from A to B). The third tower is
provided as a temporary storage space as you move disks
around. You are allowed to move only one disk at a time, and
you are not allowed to place a disk on top of a smaller one
(i.e., one with a smaller diameter).
Examine the rather simple solutions for one, two, and three
disks, and see if you can discern a pattern. Then write a
program that will solve the Towers of Hanoi puzzle for any
number of disks. (Hint: Moving four disks is a lot like moving
three disks, except that one additional disk is on the bottom.)

3. Write a recursive program to generate random sentences
from a given BNF grammar. A BNF grammar is a recursively
defined file that defines rules for creating sentences from
tokens of text. Rules can be recursively self-similar. The
following grammar can generate sentences such as “Fred
honored the green wonderful child”:

<s>::=<np> <vp>

<np>::=<dp> <adjp> <n>|<pn>

<dp>::=the|a

<adjp>::=<adj>|<adj> <adjp>

<adj>::=big|fat|green|wonderful|faulty|subliminal|pretent

ious

<n>::=dog|cat|man|university|father|mother|child|televisi

on

<pn>::=John|Jane|Sally|Spot|Fred|Elmo

<vp>::=<tv> <np>|<iv>

<tv>::=hit|honored|kissed|helped

<iv>::=died|collapsed|laughed|wept

4. The Koch snowflake is a fractal that is created by starting with
a line segment, then recursively altering it as follows:

1. Divide the line segment into three segments of equal
length.

2. Draw an equilateral triangle that has the middle
segment from step 1 as its base.

3. Remove the line segment that is the base of the
triangle from step 2.

Figure 12.17 shows the first several iterations of the
snowflake.
Figure 12.17 Koch snowflake

Write a program to draw the Koch snowflake on a
DrawingPanel recursively.

5. Write a program that uses recursive backtracking to generate
all anagrams from a phrase typed by the user. An anagram is
a word or phrase made by rearranging the letters of another
word or phrase. For example, the words “midterm” and
“trimmed” are anagrams. If you ignore spaces and
capitalization and allow multiple words, a multi-word phrase
can be an anagram of some other word or phrase. For

example, the phrases “Clint Eastwood” and “old west action”
are anagrams. Your program will read a dictionary file of
words and search for all words that can be formed using the
letters in the user’s phrase. Use backtracking to choose each
word, explore what can be made out of the remaining letters,
then un-choose the word afterward. Here is a possible
example dialogue:

Phrase to search? barbara bush

Max words to use? 3

[abash, bar, rub]

[abash, rub, bar]

[bar, abash, rub]

[bar, rub, abash]

[rub, abash, bar]

[rub, bar, abash]

6. Write a program that uses recursive backtracking to play the
game of Boggle. Boggle is a word game played on a
grid where the player tries to find all valid dictionary words
that can be made by tracing a path between adjacent letters
from the board. Each link in the path can be horizontal,
vertical, or diagonal. Figure 12.18 shows an example path
to form the word “ensure”. Use recursive backtracking to
explore each possible word that can be made using the letters
on the board. Your algorithm should choose a starting square,
explore what can be made from there, and un-choose the

4 × 4

square afterward. (Hint: You will need a way to “mark”
squares as being chosen or not chosen.)
Figure 12.18 An example Boggle board

7. Write a program that uses recursive backtracking to find all
ancestors and descendants of a person given a file of familial
relationships. For ancestors it must show all parents, all
grandparents, all great grandparents, etc. For descendants it
must show all children, all grandchildren, all great
grandchildren, etc. The program also must use indentation to
make it clear who is a parent of whom and who is a child of
whom. Write two recursive methods that use backtracking to
explore for ancestors and descendants respectively. Here is a
possible example dialogue:

Input file? tudor.dat

Whose info? Margaret

Ancestors:

 Margaret

 Elizabeth of York

 Henry VII

Descendants:

 Margaret

 James V

 Mary, Queen of Scots

 James VI & I

 Margaret Stuart

 Henry, Lord Darnley

 James VI & I

Chapter 13 Searching and Sorting

13.1 Searching and Sorting in the Java Class Libraries
• Binary Search

• Sorting

• Shuffling

• Custom Ordering with Comparators

13.2 Program Complexity
• Empirical Analysis

• Complexity Classes

13.3 Implementing Searching and Sorting Algorithms
• Sequential Search

• Binary Search

• Recursive Binary Search

• Searching Objects

• Selection Sort

13.4 Case Study: Implementing Merge Sort
• Splitting and Merging Arrays

• Recursive Merge Sort

• Complete Program

Introduction
When you are dealing with large amounts of
data, you’ll often want to search the data for
particular values. For example, you might want
to search the Internet for a web page that
contains a certain keyword, or you might want to
search a phone book for a person’s phone
number.

It’s also useful to be able to rearrange a
collection of data into sorted order. For example,
you might want to sort a list of students’ course
grade data by name, student ID, or grade.

In this chapter we’ll look at ways to use Java’s
class libraries to search and sort data. We’ll
practice implementing some searching and
sorting algorithms and talk more generally about

how to observe and analyze the runtimes of
algorithms.

13.1 Searching and Sorting in the
Java Class Libraries
To search an ArrayList or LinkedList , you can call its indexOf
method. This method examines each element of the list, looking for a
target value. It returns the first index at which the target value occurs
in the list, or –1 if the target doesn’t occur.

Imagine a large List containing all the words in a book. The
following code could read a large text file into such a list:

// reads the text of the given file into a list

public static List<String> readBook(String filename)

 throws FileNotFoundException {

 List<String> words = new ArrayList<>();

 Scanner in = new Scanner(new File(filename));

 while (in.hasNext()) {

 words.add(in.next());

 }

 return words;

}

You could use the indexOf method to see whether a given word
appears in the book and, if so, at what index the word appears:

System.out.print("Your word? ");

Scanner console = new Scanner(System.in);

String word = console.nextLine();

// search list for a word using indexOf

List<String> words = readBook("mobydick.txt");

int index = words.indexOf(word);

if (index >= 0) {

 System.out.println(word + " is word #" + index);

} else {

 System.out.println(word + " is not found.");

}

The indexOf method performs a sequential search, examining each
element of the list in sequence until it finds the one that the user is
looking for. If it reaches the end of the list without finding the
requested word, it returns –1 . When it searches a 1,000,000-
element list for an element at index 675,000, a sequential search
would have to examine all 675,000 elements that came before the
desired element.

If you have an array of data instead of a list, there’s no prewritten
method to sequentially search the array. You’ll have to write the code

yourself (as we’ll do later in this chapter) or put the array’s elements
into a List first and search the List with indexOf .

Binary Search

Sometimes you’ll want to search through elements of an array or list
that you know is in sorted order. For example, if you wanted to know
whether “queasy” was a real English word, you could search the
contents of an alphabetized dictionary text file. Likewise, you might
find yourself looking for a book written by Robert Louis Stevenson in
a list of books sorted by the author’s last name. If the dictionary is
large or the list of books is long, you probably won’t want to
sequentially examine all the items it contains.

There’s a better algorithm called binary search that searches sorted
data much faster than a sequential search. A normal sequential
search of a million-element array may have to examine all the
elements, but a binary search will need to look at only around 20 of

them. Java’s class libraries contain methods that implement the
binary search algorithm for arrays and lists.

Binary Search
An algorithm that searches for a value in a sorted list
by repeatedly dividing the search space in half.

The binary search algorithm begins by examining the center element
of the array or list. If the center element is smaller than the target
you’re searching for, there’s no reason to examine any elements to
the left of the center (at lower indexes). If the center element is larger
than the target you’re searching for, there’s no reason to examine
any elements to the right of the center (at greater indexes). Each
pass of the algorithm eliminates half the search space from
consideration, so in most cases the algorithm finds the target value
much faster than a sequential search would have found it.

The logic of the binary search algorithm is similar to the strategy that
people use in a high/low guessing game in which the computer
generates a random number between 1 and 100 and the user tries to
guess it. After each incorrect guess, the program gives a hint about
whether the user’s guess was too high or too low. A poor algorithm
for this game is to guess 1, 2, 3, and so on. A smarter algorithm is to

guess the middle number and cut the range in half each time on the
basis of whether the guess was too high or too low. Figure 13.1
shows how this works.

Figure 13.1 Passes of a binary search for a number between 1
and 100

A binary search uses this same approach when it searches a sorted
array for a target value. The algorithm scales extremely well to large
input data. The Arrays class in the java.util package contains a
static method called binarySearch that implements the binary search
algorithm. It accepts an array of any suitable type and a target value
as its parameters and returns the index where you can find the target
element. If the element isn’t found, the method returns a negative
index.

The following code uses the Arrays.binarySearch method to find a
number in an array of integers. It needs to examine only indexes 4,
6, and then 5 in order to find the target value at index 5:

// binary search on an array

int[] numbers = {–3, 2, 8, 12, 17, 29, 44, 58, 79};

int index = Arrays.binarySearch(numbers, 29);

System.out.println("29 is found at index " + index);

If you’re using a list such as an ArrayList instead, you can call the
static method Collections.binarySearch to search the list of
elements. If you had an ArrayList called list containing the same
elements as the array in the previous example, the following code
would similarly search the elements at indexes 4, 6, and then 5
before assigning the value 5 to the variable index :

// binary search on an ArrayList

int index = Collections.binarySearch(list, 29);

System.out.println("29 is found at index " + index);

If you want to use the binarySearch method on either an array or a
list, the data must be in sorted order, because the method relies on
the ordering to quickly find the target value. If you call binarySearch
on unsorted data, the results are undefined and the algorithm
doesn’t guarantee that it will return the right answer.

Let’s look at a short program that benefits from the speed of binary
search. In the game of Scrabble, players form words on a board
using letter tiles to earn points. Sometimes a player tries to spell a
word that is not a legal word in the dictionary, so another player
“challenges” the word. The challenger looks up the word in the
dictionary, and depending on whether it is found, the move may be
revoked from the board. The following program helps resolve
Scrabble word challenges by performing binary searches for words

in a dictionary file. The input file’s words occur in sorted order, so the
list can be properly searched using Collections.binarySearch . (If the
file had not been sorted, we could have sorted it with
Collections.sort).

 1 // Searches for words in a dictionary text file

 2 // and reports each word’s position in the file.

 3

 4 import java.io.*;

 5 import java.util.*;

 6

 7 public class WordChallenge {

 8 public static void main(String[] args)

 9 throws FileNotFoundException {

10 System.out.println("Welcome to Scrabble word

challenge!");

11

12 // read a sorted dictionary file into a List

13 Scanner in = new Scanner(new File("words.txt"));

14 List<String> words = new ArrayList<>();

15 while (in.hasNext()) {

16 String word = in.next();

17 words.add(word);

18 }

19

20 // binary search the list for words

21 Scanner console = new Scanner(System.in);

22 System.out.print("Word to challenge (Enter to quit)?

");

23 String target = console.nextLine();

24 while (target.length() > 0) {

25 int index = Collections.binarySearch(words,

target);

26 if (index >= 0) {

27 System.out.println("\"" + target + "\" is

word #"

28 + index + " of " + words.size());

29 } else {

30 System.out.println("\"" + target + "\" is

not found");

31 }

32

33 System.out.print("Word to challenge (Enter to

quit)? ");

34 target = console.nextLine();

35 }

36 }

37 }

Here is a sample execution of the program and its resulting output,
using a Scrabble players’ dictionary that contains 172,823 words:

Welcome to Scrabble word challenge!

Word to challenge (Enter to quit)? queazy

"queazy" is word #121788 of 172823

Word to challenge (Enter to quit)? kwyjibo

"kwyjibo" is not found

Word to challenge (Enter to quit)? building

"building" is word #18823 of 172823

Word to challenge (Enter to quit)? java

"java" is word #79156 of 172823

Word to challenge (Enter to quit)? programs

"programs" is word #118860 of 172823

Word to challenge (Enter to quit)?

Sorting

When you use a computer, you often need to sort data. When you
browse your hard drive, for example, you might sort your files by file
name, extension, and date. When you play music, you might sort
your song collection by artist, year, or genre. You might also want to
sort arrays and lists so that they can be searched efficiently with the
binary search algorithm.

The Java class libraries provide sorting methods for arrays and lists.
You can sort an array with the Arrays.sort method:

// demonstrate the Arrays.sort method

String[] strings = {"c", "b", "g", "h", "d", "f", "e", "a"};

Arrays.sort(strings);

System.out.println(Arrays.toString(strings));

The preceding code produces the following output:

[a, b, c, d, e, f, g, h]

Java 8 introduced a new sorting method called Arrays.parallelSort
that generally runs faster than Arrays.sort . It takes advantage of
computers with multiple processors or multi-core processors to sort
multiple portions of the array at the same time, leading to faster

performance. To use it, just write parallelSort instead of sort in
your code. Other new features of Java 8 are discussed in more detail
in Chapter 19 .

Arrays.parallelSort(strings);

The array must be of a type that can be compared—that is, a type
that stores either primitives or objects that implement the Comparable
interface discussed in Chapter 10 . For example, you can sort an
array of integers or Strings , but you can’t easily sort an array of
Point objects or Color objects because those classes don’t
implement the Comparable interface.

To sort a list you can use the Collections.sort method, discussed
briefly in Chapter 10 , which accepts a list such as an ArrayList
as a parameter and puts its elements into sorted order. The following
code produces the same output as the preceding array code:

// demonstrate the Collections.sort method

List<String> list = new ArrayList<>();

list.add("c");

list.add("b");

list.add("g");

list.add("h");

list.add("d");

list.add("f");

list.add("e");

list.add("a");

Collections.sort(list);

System.out.println(list);

When the Arrays.sort method is used with primitive data, it uses an
algorithm called quicksort. Collections.sort and Arrays.sort use a
different algorithm, called merge sort, when they deal with object
data. We’ll discuss the implementation of merge sort in detail later in
this chapter.

Shuffling

The task of shuffling data, or rearranging the elements into a random
order, is perhaps the opposite of sorting. Why would one want to do
this?

One application for shuffling is a card game program. You might
have a card deck stored as a list of Card objects. If the cards are in a
predictable order, the game will be boring. You’d like to shuffle the
deck of cards, rearranging them into a random ordering each time.
This is a case in which chaos is preferable to order.

Another application is a situation in which you want a random
permutation of a list of numbers. You can acquire a random
permutation of the numbers from 1 through 5, for example, by storing
those numbers into a list and shuffling the list.

The Collections class has a method called shuffle that accepts a
list as its parameter and rearranges its elements randomly. The
following example creates a deck of card strings, shuffles it, and
examines the card at the top of the deck:

String[] ranks = {"2", "3", "4", "5", "6", "7", "8", "9",

 "10", "Jack", "Queen", "King", "Ace"};

String[] suits = {"Clubs", "Diamonds", "Hearts", "Spades"};

List<String> deck = new ArrayList<>();

for (String rank : ranks) { // build sorted deck

 for (String suit : suits) {

 deck.add(rank + " of " + suit);

 }

}

Collections.shuffle(deck);

System.out.println("Top card = " + deck.get(0));

The code randomly produces output such as the following, with
different outputs on different runs:

Top card = 10 of Spades

Table 13.1 briefly summarizes the useful static methods in Java’s
class libraries for searching, sorting, and shuffling.

Table 13.1 Searching and Sorting in Java’s Class Libraries

Custom Ordering with
Comparators

Sometimes you’ll want to search or sort a collection of objects in an
ordering that is different from that of its Comparable implementation.
For example, consider the following code, which sorts an array of
Strings and prints the result:

String[] strings = {"Foxtrot", "alpha", "echo", "golf",

 "bravo", "hotel", "Charlie", "DELTA"};

Arrays.sort(strings);

System.out.println(Arrays.toString(strings));

This code produces the following output, which may not be what you
expected:

[Charlie, DELTA, Foxtrot, alpha, bravo, echo, golf, hotel]

Notice that the elements are in case-sensitive alphabetical ordering,
with all the uppercase strings placed before the lowercase ones.

Recall from Chapter 10 that many types (including String) have
natural orderings that are defined by comparison functions,
implemented as the compareTo method from the Comparable interface.
The compareTo method of String objects uses a case-sensitive
ordering, but in this case we would prefer a case-insensitive
comparison. We might also want an option to sort in other orders,
such as by length or in reverse alphabetical order.

In situations such as these, you can define your own external
comparison functions with an object called a comparator.
Comparators perform comparisons between pairs of objects. While a
class can have only one natural ordering, arbitrarily many
comparators can be written to describe other ways to order the
class’s objects. A comparator can also supply an external ordering
on a class that does not implement a natural ordering of its own. The
Arrays.sort , Collections.sort , and Arrays.binarySearch methods all
have variations that accept a comparator as an additional parameter
and use the comparator to guide the searching or sorting process.

Comparators are implemented as classes that implement the
interface Comparator in the java.util package. This interface has a
method called compare that accepts a pair of objects as parameters
and compares them. Like compareTo , the compare method returns a
negative number, zero, or a positive number to indicate a less-than,
equal-to, or greater-than relationship, respectively:

public interface Comparator<T> {

 public int compare(T o1, T o2);

}

Implementing Comparator is like implementing the Comparable
interface, except that instead of placing the code inside the class to
be compared, you write a separate comparator class. The compare
method is similar to the compareTo method from the Comparable
interface, except that it accepts both of the objects to compare as
parameters. (The compareTo method accepts only one object as a
parameter because the other object compared is the implicit
parameter.)

Like Comparable , Comparator is actually a generic interface
Comparator<T> that requires you to specify the type of objects you’ll
be comparing. For example, if you wish to write a comparison
function for Strings , you must write a class that implements
Comparator<String> .

Before we implement a comparator of our own, let’s use one that is
part of Java’s class libraries. If you want to sort Strings in case-
insensitive alphabetical order, you can use a constant Comparator in
the String class called CASE_INSENSITIVE_ORDER . The following code
uses it to sort an array of mixed-case strings:

// sort Strings using case-insensitive Comparator

String[] strings = {"Foxtrot", "alpha", "echo", "golf",

 "bravo", "hotel", "Charlie", "DELTA"};

Arrays.sort(strings, String.CASE_INSENSITIVE_ORDER);

System.out.println(Arrays.toString(strings));

This code produces the following output:

[alpha, bravo, Charlie, DELTA, echo, Foxtrot, golf, hotel]

Now let’s write a Comparator that orders strings by their lengths. Our
compare method should return a negative number if the first string is
shorter than the second, 0 if they are equal in length, and a positive
number if the first string is longer than the second. Recall from
Chapter 10 that a compareTo method examining integer data can
often simply subtract one number from the other and return the
result. The following compare method is also based on this idea:

 1 import java.util.*;

 2

 3 // compares String objects by length

 4 public class LengthComparator implements Comparator<String>

{

 5 public int compare(String s1, String s2) {

 6 return s1.length() – s2.length();

 7 }

 8 }

Now that we’ve written a length comparator, we can pass one when
we sort an array or list of String objects:

// sort array of strings by length using Comparator

Arrays.sort(strings, new LengthComparator());

System.out.println(Arrays.toString(strings));

Here’s the output when we run this code on the String array from
earlier in this section:

[echo, golf, alpha, bravo, hotel, DELTA, Foxtrot, Charlie]

Notice that the strings appear in order of increasing length.

Sometimes you’ll want to search or sort a collection of objects that
don’t implement the Comparable interface. For example, the Point
class doesn’t implement Comparable , but you might want to sort an
array of Point objects by -coordinate, using the -coordinate to
break ties. The following code is an example Comparator that
compares Point objects in this way:

 1 import java.awt.*;

 2 import java.util.*;

 3

 4 // compares Point objects by x-coordinate and then by y-

coordinate

 5 public class PointComparator implements Comparator<Point> {

 6 public int compare(Point p1, Point p2) {

 7 int dx = p1.x – p2.x;

 8 if (dx == 0) {

 9 int dy = p1.y – p2.y;

10 return dy;

11 } else {

12 return dx;

13 }

14 }

15 }

x y

It’s important to understand that we are creating a separate class as
our comparator; we are not modifying the Point class itself. This is
one of the main benefits of comparators: you don’t need to modify
the class being ordered. The following code uses the
PointComparator to sort an array of four Point objects:

Point[] points = {

 new Point(4, –2),

 new Point(3, 9),

 new Point(–1, 15),

 new Point(3, 7)

};

Arrays.sort(points, new PointComparator());

This code sorts the points into the following order: (–1, 15), (3, 7), (3,
9), (4, –2). This comparator also allows you to use Point objects in
the “tree” collections that depend on ordering, TreeSet and TreeMap .
Both of these collections have constructors that accept a comparator
as a parameter and use it to order their elements internally.

If you have a group of objects with a natural ordering and you want
to sort them in reverse order, you can call the method
Collections.reverseOrder to receive a Comparator that inverts the
objects’ natural ordering. For example, the following code would sort

the array of Strings that was used earlier in reverse alphabetical
order:

Arrays.sort(strings, Collections.reverseOrder());

For types that do not have a natural ordering, you can ask for the
reverse of a Comparator ’s order by calling Collections.reverseOrder
and passing the Comparator to be reversed. For example, the
following code would sort the array of Point objects by decreasing
-coordinate:

Arrays.sort(points, Collections.reverseOrder(new

PointComparator()));

The resulting order would be as follows: (4, –2), (3, 9), (3, 7), (–1,
15).

Table 13.2 summarizes several useful places that comparators
appear in the Java class libraries.

Table 13.2 Useful Comparators and Methods

x

13.2 Program Complexity

In Chapter 8 , we talked about client code, the code that interacts
with a class or object. In this chapter, we’ve studied how to be a
client of Java’s methods for searching and sorting data. Since
searching and sorting are important programming ideas, it’s
worthwhile to understand how they are implemented. But before we
dive into this, let’s discuss some background ideas about how to
analyze the efficiency of code.

As you progress in this textbook, you’re writing increasingly complex
programs. You’re also seeing that there are often many ways to
solve the same problem. How do you compare different solutions to
the same problem to see which is better?

We desire algorithms that solve problems quickly or with high
efficiency. The technical term that refers to algorithms’ runtime is

complexity. An algorithm with higher complexity uses more time or
resources to solve a problem.

Complexity
A measure of the computing resources that are used
by a piece of code, such as time, memory, or disk
space.

Usually when we talk about the efficiency of a program we are
talking about how long the program takes to run, or its time
complexity. The time complexity for a program to be “fast enough”
depends on the task. A program running on a modern computer that
requires five minutes to look up a dictionary word is probably too
slow. An algorithm that renders a complex three-dimensional movie
scene in five minutes is probably very fast.

One way to determine an algorithm’s approximate time complexity is
to program it, run the program, and measure how long it takes to run.
This is sometimes called an empirical analysis of the algorithm. For
example, consider two algorithms to search an array: one that
sequentially searches for the desired target element, and one that
first sorts the array and then performs a binary search on the sorted

array. You could empirically analyze the algorithms by writing both as
programs, running them on the same input, and timing them.

But empirically analyzing an algorithm isn’t a very reliable measure,
because on a different computer with a different processor speed
and more or less memory the program might not take the same
amount of time. Also, in order to empirically test an algorithm, you
must write it and time it, which can be a chore.

A more neutral way to measure a program’s performance is to
examine its code or pseudocode and roughly count the number of
statements that are executed. This is a form of algorithm analysis,
the practice of applying techniques to mathematically approximate
the performance of various computing algorithms. Algorithm analysis
is an important tool in computer science. One of the fundamental
principles of science in general is that we can make predictions and
hypotheses using formal models, which we can then test by
experimentation.

Not all statements require the same amount of time to execute. For
example, a CPU can handle addition faster than multiplication, and a
method call generally takes more time than a statement that
evaluates the Boolean test of an if/else statement. But for the
purposes of simplification, let’s assume that the following actions
require an equal and fixed amount of time to execute:

Variable declarations and assignments
Evaluating mathematical and logical expressions

Accessing or modifying an individual element of an array
Simple method calls (where the method does not perform a loop)

One kind of variable that does not require a fixed amount of time to
initialize is an array. When an array is constructed, Java zeroes each
array element, which takes more time for longer arrays. Some types
of objects also have lengthy code in their constructors that makes
them take longer to construct.

From the preceding simple rules, we can extrapolate the runtimes of
larger and more complex pieces of code. For example, the runtime
of a group of statements in sequential order is the sum of the
individual runtimes of the statements:

The runtime of a loop is roughly equal to the runtime of its body
times the number of iterations of the loop. For example, a loop with a
body that contains simple statements and that repeats times
will have a runtime of roughly :

K N

(K * N)

The runtime of multiple loops placed sequentially (not nested) with
other statements is the sum of the loops’ runtimes and the other
statements’ runtimes:

The runtime of a loop containing a nested loop is roughly equal to
the runtime of the inner loop multiplied by the number of repetitions

of the outer loop:

Normally, the loops in long-running algorithms are processing some
kind of data. Many algorithms run very quickly if the input dataset is
small, so we generally worry about the performance only for large
datasets. For example, consider the following set of loops that
process an array of elements:N

When we analyze code like this, we often think about which line is
most frequently executed in the code. In programs with several
sequential blocks of code that all relate to some common value
(such as the size of an input dataset), the block raised to the highest
power of usually dominates the overall runtime. In the preceding
code, the first loop executes its statement far more times than
the second loop executes its two statements. For example, if
is 1000, statement1 executes or 1,000,000 times,
while statement2 and statement3 each execute only 1000 times.

When we perform algorithm analysis, we often ignore all but the
most frequently executed part of the code, because the runtime of
this statement will outweigh the combined runtimes of the other parts
of the code. For example, we might refer to the preceding code as
being “on the order of” ignoring the extra statements
altogether. We’ll revisit this idea later in the chapter.

N

N

N
2

N N

(1000 * 1000)

N
2, 2N

One key concept to take away from this brief discussion of algorithm
analysis is how expensive it is to perform nested loops over large
sets of input data. Algorithms that make many nested passes over a
very large dataset tend to perform poorly, so it’s important to come
up with efficient algorithms that don’t loop over data needlessly.

Now let’s take a look at algorithm complexity in action, observing the
runtimes of some actual algorithms that can be used to solve a
programming problem on a large dataset.

Empirical Analysis

Consider the task of computing the range of numbers in an array.
The range is the difference between the lowest and highest numbers
in the array. An initial solution might use nested loops to examine
every pair of elements in the array, computing their difference and
remembering the largest difference found:

max = 0.

for (each index i) {

 for (each index j) {

 update max, if elements i and j differ by more than

max.

 }

}

The following code implements the range method as described:

// returns the range of numbers in the given array

public static int range(int[] numbers) {

 int maxDiff = 0;

 for (int i = 0; i < numbers.length; i++) {

 for (int j = 0; j < numbers.length; j++) {

 int diff = Math.abs(numbers[j] – numbers[i]);

 maxDiff = Math.max(maxDiff, diff);

 }

 }

 return maxDiff;

}

Since the code has two nested for loops, each of which processes
the entire array, we can hypothesize that the algorithm executes
roughly statements, or some multiple thereof.

We can measure the speed of this range algorithm in milliseconds by
calling range on various arrays and measuring the time elapsed. We
measure the time by acquiring the current time before and after
calling range on a large array and subtracting the start time from the
end time.

N
2

As you can see in Figure 13.2 , as the input size doubles, the
runtime of the range method approximately quadruples. This is
consistent with our hypothesis. If the algorithm takes statements
to run and we increase the input size to the new runtime is
roughly or which is four times as long as the original
runtime.

Figure 13.2 Runtimes for first version of range algorithm

Our code isn’t very efficient for a large array. It requires over 12
seconds to examine 32,000 integers on a modern computer. In real-
world data-processing situations, we would expect to see far larger
input datasets than this, so this runtime isn’t acceptable for general
use.

N

N
2

2N ,

(2N)2 4N 2,

Studying a piece of code and trying to figure out how to speed it up
can be deceptively difficult. It’s tempting to approach the problem by
looking at each line of code and trying to reduce the amount of
computation it performs. For example, you may have noticed that our
range method actually examines every pair of elements in the array
twice: For unique integers i and j , we examine the pair of elements
at indexes (i , j) as well as the pair at (j , i).

We can perform a minor modification to our range method’s code by
starting each inner j loop ahead of i , so that we won’t examine any
pair (i , j) where i ≥ j . Performing minor modifications like this is
sometimes called tweaking an algorithm. The following code
implements our tweaked version of the range algorithm:

public static int range2(int[] numbers) {

 int maxDiff = 0;

 for (int i = 0; i < numbers.length; i++) {

 for (int j = i + 1; j < numbers.length; j++) {

 int diff = Math.abs(numbers[j] – numbers[i]);

 maxDiff = Math.max(maxDiff, diff);

 }

 }

 return maxDiff;

}

Since about half of the possible pairs of i / j values are eliminated
by this tweak, we’d hope that the code would run about twice as fast.
Figure 13.3 shows its actual measured runtime. As we estimated,
the second version is about twice as fast as the first. We could
implement other minor tweaks, such as replacing the Math.max call
with a simple if test (which would speed up the algorithm by around
10% more), but there’s a more important point to be made. When the
input size doubles, the runtime of either version of the algorithm
roughly quadruples. Consequently, regardless of which version we
use, if the input array is very large the method will be too slow.

Figure 13.3 Runtimes for second version of range algorithm

Rather than trying to further tweak our nested loop solution, let’s try
to think of a more efficient algorithm. As we noted earlier, the range

of values in an array is the difference between the array’s largest
and smallest elements. We don’t really need to examine all pairs of
values to find this range; we just need to discover the pair
representing the largest and smallest values. We can discover both
of these values in a single loop over the array by using a min/max
loop, discussed in Chapter 4 . The following new algorithm
demonstrates this idea:

public static int range3(int[] numbers) {

 int max = numbers[0];

 int min = max;

 for (int i = 1; i < numbers.length; i++) {

 if (numbers[i] > max) {

 max = numbers[i];

 } else if (numbers[i] < min) {

 min = numbers[i];

 }

 }

 return max – min;

}

Since this algorithm passes over the array only once, we’d hope that
its runtime would be proportional to the array’s length. If the array
length doubles, the runtime should double, not quadruple. Figure
13.4 shows its runtime.

Figure 13.4 Runtimes for third version of range algorithm

Our runtime predictions were roughly correct. As the size of the array
doubles, the runtime of this new range algorithm approximately
doubles as well. The overall runtime of this algorithm is much better;
we can examine over a hundred million integers in less than a
second.

There are some important observations to take away from this
exercise:

Tweaking an algorithm’s code often isn’t as powerful an
optimization as finding a better algorithm.
An algorithm’s rate of growth, or the amount by which its runtime
increases as the input dataset grows, is the standard measure of
the complexity of the algorithm.

Complexity Classes

We categorize rates of growth on the basis of their proportion to the
input data size N. We call these categories complexity classes or
growth rates.

Complexity Class
A set of algorithms that have a similar relationship
between input data size and resource consumption.

The complexity class of a piece of code is determined by looking at
the most frequently executed line of code, determining the number of
times it is executed, and extracting the highest power of N. For
example, if the most frequent line executes times,
the algorithm is in the “order ” complexity class, or for

(2N 3 + 4N)
N

3 O(N 3)

short. The shorthand notation with the capital O is called big-Oh
notation and is used commonly in algorithm analysis.

Here are some of the most common complexity classes, listed in
order from slowest to fastest growth (i.e., from lowest to highest
complexity):

Constant-time, or O(1), algorithms have runtimes that don’t
depend on input size. Some examples of constant-time
algorithms would be code to convert Fahrenheit temperatures to
Celsius or numerical functions such as Math.abs .
Logarithmic, or O(log), algorithms typically divide a problem
space in half repeatedly until the problem is solved. Binary
search is an example of a logarithmic-time algorithm.
Linear, or O(), algorithms have runtimes that are directly
proportional to (i.e., roughly they double when doubles).
Many algorithms that process each element of a data set are
linear, such as algorithms that compute the count, sum, average,
maximum, or range of a list of numbers.
Log-linear, or O(log), algorithms typically perform a
combination of logarithmic and linear operations, such as
executing a logarithmic algorithm over every element of a dataset
of size N. Many efficient sorting algorithms, such as merge sort
(discussed later in this chapter), are log-linear.

DID YOU KNOW?

N

N

N N

N N

Timing Code and the Epoch

Java’s method System.currentTimeMillis returns the number
of milliseconds that have passed since 12:00 AM on January
1, 1970. This method can be used to measure the runtime of
an algorithm. Over one trillion milliseconds have passed since
the indicated time, so the value is too large to store in a
simple int value. The milliseconds are instead returned as a
value of type long , which is a primitive type that’s similar to
int but that is capable of holding much larger values. A long
can store any number up to 9,223,372,036,854,775,807, or
roughly

The following lines of code show how a piece of code can be
timed:

long startTime = System.currentTimeMillis();

<code to be timed>

long endTime = System.currentTimeMillis();

System.out.println("Elapsed time (ms): " + (endTime –

startTime));

The choice of January 1, 1970, as the point of reference for
system times is an example of an epoch, or an instant chosen
as the origin of a particular time scale. This particular epoch

263.

was chosen because it matches the epochs of many popular
operating systems, including Unix.

For historical reasons, many older Unix operating systems
store the time that has passed since the epoch as a 32-bit
integer value. However, unspecified problems may occur
when this number exceeds its capacity, which is not
necessarily a rare event. The clocks of some Unix systems
will overflow on January 19, 2038, creating a Year 2038
problem similar to the famous Year 2000 (Y2K) problem.

Quadratic, or algorithms have runtimes that are
proportional to the square of the input size. This means that
quadratic algorithms’ runtimes roughly quadruple when
doubles. The initial versions of the range algorithm developed in
the previous section were quadratic algorithms.
Cubic, or algorithms have runtimes that are
proportional to the cube of the input size. Such algorithms often
make triply nested passes over the input data. Code to multiply
two matrices or to count the number of colinear trios of
points in a large Point array would be examples of cubic
algorithms.
Exponential, or algorithms have runtimes that are
proportional to 2 raised to the power of the input size. This means
that if the input size increases by just one, the algorithm will take
roughly twice as long to execute. One example would be code to
print the “power set” of a dataset, which is the set of all possible

O(N 2),

N

O(N 3),

N × N

O(2N),

subsets of the data. Exponential algorithms are so slow that they
should be executed only on very small input datasets.

Table 13.3 presents several hypothetical algorithm runtimes as
the input size grows, assuming that each algorithm requires 100
ms to process 100 elements. Notice that even though they all start at
the same runtime for a small input size, as grows the algorithms
in higher complexity classes become so slow that they would be
impractical.

Table 13.3 Algorithm Runtime Comparison Chart

When you look at the numbers in Table 13.3 , you might wonder
why anyone bothers to use or algorithms when
O(1) and O() algorithms are so much faster. The answer is that
not all problems can be solved in O(1) or even O() time. Computer
scientists have been studying classic problems such as searching
and sorting for many years, trying to find the most efficient
algorithms possible. However, there will likely never be a constant-
time algorithm that can sort 1,000,000 elements as quickly as it can
sort 10 elements.

For large datasets it’s very important to choose the most efficient
algorithms possible (i.e., those with the lowest complexity classes).
Algorithms with complexity classes of or worse will take a
long time to run on extremely large datasets. Keeping this in mind,
we’ll now examine algorithms to search and sort data.

N

N

O(N 3) O(2N),

N

N

O(N 2)

13.3 Implementing Searching and
Sorting Algorithms
In this section, we’ll implement methods that search and sort data.
We’ll start by writing code to search for an integer in an array of
integers and return the index where it is found. If the integer doesn’t
appear in the array, we’ll return a negative number. We’ll examine
two major searching algorithms, sequential and binary search, and
discuss the tradeoffs between them.

There are literally hundreds of algorithms to sort data; we’ll cover two
in detail in this chapter. The first, seen later in this section, is one of
the more intuitive algorithms, although it performs poorly on large
datasets. The second, examined as a case study in the next section,
is one of the fastest general-purpose sorting algorithms that is used
in practice today.

Sequential Search

Perhaps the simplest way to search an array is to loop over the
elements of the array and check each one to see if it is the target
number. As we mentioned earlier, this is called a sequential search
because it examines every element in sequence.

We implemented a sequential search of an array of integers in
Chapter 7 . The code uses a for loop and is relatively
straightforward. The algorithm returns –1 if the loop completes
without finding the target number:

// Sequential search algorithm.

// Returns the index at which the given target number first

// appears in the given input array, or –1 if it is not found.

public static int indexOf(int[] list, int target) {

 for (int i = 0; i < list.length; i++) {

 if (list[i] == target) {

 return i;

 }

 }

 return –1; // not found

}

Using the rules stated in the previous section, we predict that the
sequential search algorithm is a linear O() algorithm because it
contains one loop that traverses at most elements in an array.
(We say “at most” because if the algorithm finds the target element,
it stops and immediately returns the index.) Next, we’ll time it to
verify our prediction.

Figure 13.5 shows actual results of running the sequential search
algorithm on randomly generated arrays of integers. Searches were

N

N

conducted for a value known to be in the array and for a value not in
the array.

Figure 13.5 Runtimes for sequential search algorithm

When the algorithm searches for an integer that isn’t in the array, it
runs somewhat slower, because it can’t exit its loop early by finding
the target. This scenario raises the question of whether we should
judge the algorithm by its fastest or slowest runtime. Often what’s
most important is the expected behavior for a typical input, or the
average of its runtime over all possible inputs. This is called an
average case analysis. But under certain conditions, we also care

about the fastest possible outcome, the best case analysis, and/or
the slowest possible outcome, the worst case analysis. In this
algorithm, the average search looks at approximately half of the
array, which is linear or O().

Binary Search

Consider a modified version of the searching problem, in which we
can assume that the elements of the input array are in sorted order.
Does this ordering affect our algorithm? Our existing algorithm will
still work correctly, but now we know that we can stop the search if
we ever get to a number larger than our target without finding the
target. For example, if we’re searching an array containing the
elements [1, 4, 5, 7, 7, 9, 10, 12, 56] for the target value 8 , we
can stop searching once we see the 9 .

We might think that such a modification to our sequential search
algorithm would significantly speed up the algorithm, but in actuality
it doesn’t make much difference. The only case in which it speeds up
the algorithm noticeably is when it is searching for a relatively small
value that isn’t found in the array. In fact, when the modified
algorithm is searching for a large value that requires the code to
examine most or all of the array elements, the algorithm actually
performs slower than the original because it has to perform a few
more Boolean tests. Most importantly, the algorithm is still O(),
which isn’t the optimal solution.

N

N

Once again, tweaking the algorithm won’t make as much difference
as finding another, more efficient algorithm. If the input array is in
sorted order, a sequential search isn’t the best choice. If you had to
instruct a robot how to look up a person’s phone number in a phone
book, would you tell the robot to read through all the entries on the
first page, then the second, and so on until it found the person’s
name? Not unless you wanted to torture the poor robot. You know
that the entries are sorted by name, so you’d tell the robot to flip
open the book to somewhere near the middle, then narrow its search
toward the first letter of the person’s name.

The binary search algorithm discussed previously in this chapter
takes advantage of the ordering of the array. A binary search keeps
track of the range of the array that is currently of interest. (Initially,
this range is the whole array.) The algorithm repeatedly examines
the center element of the array and uses its value to eliminate half of
the range of interest. If the center element is smaller than the target,
the lower half of the range is eliminated; if the center element is
larger than the target, the upper half is eliminated.

As the algorithm runs, we must keep track of three indexes:

The minimum index of interest (min)
The maximum index of interest (max)
The middle index, halfway between the minimum and maximum,
which will be examined during each pass of the algorithm (mid)

The algorithm repeatedly examines the element at the middle index
and uses it to trim the range of indexes of interest in half. If we
examine the middle element and find it’s too small, we will eliminate
all elements between min and mid from consideration. If the middle
element is too large, we will eliminate all elements between mid and
max from consideration.

Consider the following array:

Let’s run a binary search on the array for a target value of 77 . We’ll
start at the middle element, which is at index or 7. The
following diagrams show the min , mid , and max at each step of the
algorithm:

14/2,

What about when we’re searching for an element that isn’t found in
the array? Let’s say we’re searching for the value 78 instead of 77 .
The steps of the algorithm will be the same, except that on the fourth
pass the algorithm will reach 77 instead of the desired value, 78 .
The algorithm will have eliminated the entire range without finding
the target and will know that it should stop. Another way to describe
the process is that the algorithm loops until the min and max have
crossed each other.

The following code implements the binary search algorithm. Its loop
repeats until the target is found or until the min and max have
crossed:

// Binary search algorithm.

// Returns an index at which the target

// appears in the given input array, or –1 if not found.

// pre: array is sorted.

public static int binarySearch(int[] numbers, int target) {

 int min = 0;

 int max = numbers.length – 1;

 while (min <= max) {

 int mid = (max + min) / 2;

 if (numbers[mid] == target) {

 return mid; // found it!

 } else if (numbers[mid] < target) {

 min = mid + 1; // too small

 } else { // numbers[mid] > target

 max = mid – 1; // too large

 }

 }

 return –1; // not found

}

We won’t bother to show a runtime chart for the binary search
algorithm, because there would be nothing to draw on the chart. This
algorithm is so fast that the computer’s clock has trouble measuring
its runtime. On a modern computer, even an array of over
100,000,000 elements registers as taking 0 ms to search!

While this is an impressive result, it makes it harder for us to
empirically examine the runtime. What is the complexity class of the
binary search algorithm? The fact that it finishes so quickly tempts us

to conclude that it’s a constant-time, or O(1), algorithm. But it doesn’t
seem right that a method with a loop in it would take a constant
amount of time to execute. There is a relation between the runtime
and the input size, because the larger the input is, the more times we
must divide our min–max range in half to arrive at a single element.
We could say that 2 raised to the number of repetitions is
approximately equal to the input size N:

Using some algebra and taking a logarithm base-2 of both sides of
the equation, we find that

We conclude that the binary search algorithm is in the logarithmic
complexity class, or O(log).

The runtime of the binary search algorithm doesn’t differ much
between the best and worst cases. In the best case, the algorithm
finds its target value in the middle on the first check. In the worst
case, the code must perform the full (log) comparisons. But since
logarithms are small numbers (is roughly 20), the
performance is still excellent in the worst case.

Recursive Binary Search

2repetitions ≅N

repetitions ≅log
2
N

N

N

log2 1, 000, 000

In the previous section, binary search was implemented using an
iterative algorithm with a while loop. But the algorithm can also be
implemented elegantly using the concept of recursion introduced in
Chapter 12 . The recursive version of the method should accept
the same parameters as the standard binary search:

public static int binarySearchR(int[] numbers, int target) {

 ...

}

But this header will not make it easy to write a recursive solution to
the problem. Recall that the essence of a recursive solution is to
break down the problem into smaller pieces and then solve the sub-
problem(s). In this algorithm, the way to shrink the problem is to
examine a smaller and smaller portion of the array until we find the
right index. To do this, we can change our method to accept
additional parameters for the range of indexes (min and max) that
currently are being examined. Rather than changing the header just
shown, we can add a private recursive helper with the additional
parameters as described in Chapter 12 . The public method can
start the recursive process by calling the helper with 0 and length –
1 as its minimum and maximum indexes to examine, respectively:

// Recursive binary search algorithm.

// Returns an index at which the target

// appears in the given input array, or –1 if not found.

// pre: array is sorted.

public static int binarySearchR(int[] numbers, int target) {

 return binarySearchR(numbers, target, 0, numbers.length –

1);

}

// private recursive helper to implement binary search

private static int binarySearchR(int[] numbers, int target,

 int min, int max) {

 ...

}

Our recursive binary search method accepts the minimum and
maximum indexes of interest as parameters. On each pass of the
recursive algorithm, the code examines the middle element. If this
element is too small, the code recursively examines only the right
half of the array. If the middle element is too large, the code
recursively examines only the left half. This process repeats,
recursively calling itself with different values of min and max , until it
finds the target or until the entire array has been eliminated from
consideration. The following code implements the algorithm:

// Recursive binary search algorithm.

// Returns an index at which the target

// appears in the given input array, or –1 if not found.

// pre: array is sorted.

private static int binarySearchR(int[] numbers, int target,

 int min, int max) {

 // base case

 if (min > max) {

 return –1; // not found

 } else {

 // recursive case

 int mid = (max + min) / 2;

 if (numbers[mid] == target) {

 return mid;

 } else if (numbers[mid] < target) {

 return binarySearchR(numbers, target, mid + 1,

max);

 } else {

 return binarySearchR(numbers, target, min, mid –

1);

 }

 }

}

Some instructors don’t like recursive versions of methods like binary
search because there is a nonrecursive solution that’s fairly easy to
write and because recursion tends to have poor runtime
performance because of the extra method calls it generates.
However, that doesn’t pose a problem here. The runtime of the
recursive version of our binary search method is still O(log),N

because it’s essentially performing the same computation; it’s still
cutting the input in half at each step. In fact, the recursive version is
fast enough that the computer still can’t time it accurately. It
produces a runtime of 0 ms even on arrays of tens of millions of
integers.

In general, analyzing the runtimes of recursive algorithms is tricky.
Recursive runtime analysis often requires a technique called
recurrence relations, which are mathematical relations that describe
an algorithm’s runtime in terms of itself. That’s a complex topic for a
later course that won’t be covered in this textbook.

DID YOU KNOW?

Binary Search Details

There are a few interesting things about Java’s
implementation of binary search in Arrays.binarySearch and
Collections.binarySearch that we haven’t mentioned yet. Take
a look at this text from the Javadoc documentation of the
binarySearch method:

The array must be sorted (as by the sort method, above) prior to making

this call. If it is not sorted, the results are undefined. If the array contains

multiple elements with the specified value, there is no guarantee which one will

be found.

Binary search depends on the array being sorted. If it isn’t
sorted, the documentation says the results are undefined.
What does that mean? Why doesn’t the algorithm just sort the
array for you if it’s unsorted?

There are two problems with that idea, both essentially
related to runtime performance. For one, sorting takes much
longer (O(log) time) than a binary search (O(log)
time). Second, to even discover that you need to sort the
array, you’d need to look at each element to determine
whether they’re in order, which takes O() time. Essentially,
the cost of examining the array and sorting it if necessary
would be too great.

Even if the cost of sorting the array weren’t so large, the client
of the binarySearch method probably won’t want its array
modified by the binarySearch method. Searching is supposed
to be a read-only operation, not one that rearranges the array.

Let’s look at the other part of the previous quote: “If the array
contains multiple elements with the specified value, there is
no guarantee which one will be found.” We didn’t mention this
earlier when we were discussing the algorithm, but in the
case of duplicates, binary search isn’t guaranteed to find the
first occurrence of the element, because the moment it finds
an occurrence it stops.

Here’s another interesting blurb from the binarySearch
documentation:

N N N

N

Returns: index of the search key, if it is contained in the list; otherwise, (–

(insertion point) – 1) . The insertion point is defined as the point at

which the key would be inserted into the list: the index of the first element

greater than the key, or list.size() , if all elements in the list are less than

the specified key. Note that this guarantees that the return value will be >= 0

if and only if the key is found.

Rather than returning –1 for an unsuccessful search, the
Arrays.binarySearch and Collections.binarySearch methods
return (–index – 1), where index is the last index the
algorithm examined before giving up, which is also the index
of the first element whose value is greater than the target.
The documentation for these methods calls this value the
insertion point because if you wanted to add the target to the
array in sorted position, you’d place it at that index. For
example, because a binary search of the following array for
the value 45 would finish at index 5, the algorithm would
return –6 :

If you were maintaining this sorted array and wanted to add
45 to it at the proper index to retain the sorted order, you
could call Arrays.binarySearch , get the result of –6 , negate it,
and subtract 1 from it to get the index at which you should
insert the value. This is much faster than linearly searching

for the place to add the value or adding the value at the end
and resorting the array.

We could modify our own binary search code to match this
behavior by changing the last line of the method’s body to the
following line:

return -min – 1; // not found

Searching Objects

Searching for a particular object in an array of objects requires a few
modifications to our searching code from the previous sections. Let’s
look at a sequential object search first, because it will work with any
type of object. The most important modification to make to the code
is to ensure that it uses the equals method to compare objects for
equality:

// Sequential search algorithm.

// Returns the index at which the target first

// appears in the given input array, or –1 if not found.

public static int indexOf(Object[] objects, Object target) {

 for (int i = 0; i < objects.length; i++) {

 if (objects[i].equals(target)) {

 return i; // found it!

 }

 }

 return –1; // not found

}

If we want to do a binary search on objects, the objects must have
an ordering (in other words, must be of a type that implements the
Comparable interface or must be provided with a comparator) and the
elements in the array or collection must be in sorted order. One
common example would be an array of Strings . Since we can’t use
relational operators like < and >= on objects, we must call the
compareTo method on pairs of String objects and examine the value
it returns. The following code implements a binary search on an
array of Strings:

// Binary search algorithm that works with Strings.

// Returns an index at which the given target String

// appears in the given input array, or –1 if not found.

// pre: array is sorted

public static int binarySearch(String[] strings, String target)

{

 int min = 0;

 int max = strings.length – 1;

 while (min <= max) {

 int mid = (max + min) / 2;

 int compare = strings[mid].compareTo(target);

 if (compare == 0) {

 return mid; // found it!

 } else if (compare < 0) {

 min = mid + 1; // too small

 } else { // compare > 0

 max = mid – 1; // too large

 }

 }

 return –1; // not found

}

Selection Sort

Selection sort is a well-known sorting algorithm that makes many
passes over an input array to put its elements into sorted order. Each
time it runs through a loop, it selects the smallest value and puts it in
the proper place near the front of the array. Consider the following
array:

int[] nums = {12, 123, 1, 28, 183, 16};

How would you put its elements into order from smallest to largest?
The selection sort algorithm conceptually divides the array into two
pieces: sorted elements at the front and unsorted elements at the
end. The first step of the selection sort makes a pass over the array
and finds the smallest number. In the sample array, the smallest is
nums[2] , which equals 1 . The algorithm then swaps the smallest
value with the value in the first position in the array, so that the
smallest value will be at the front of the array. In this case, nums[0]
and nums[2] are swapped:

The element at index 0 now has the right value, and only the
elements at indexes 1 through 5 remain to be ordered. The algorithm
repeats the process of scanning the unsorted portion of the array
and looking for the smallest element. On the second pass, it scans
the remaining five elements and finds that nums[2] , which equals 12 ,

is the smallest element. The program swaps this value with nums[1] .
After this swap, the sorted area of the array consists of its first two
indexes:

Now nums[0] and nums[1] have the correct values. The third pass of
the algorithm scans the remaining four unsorted elements and finds
that the smallest one is nums[5] , which equals 16 . It swaps this
element with nums[2] .

The algorithm continues this process until all the elements have the
proper values. Each pass involves a scan followed by a swap. The
scan/swap occurs five times to process six elements. You don’t need

to perform a sixth scan/swap because, if the first five elements have
the correct values, the sixth element will be correct as well.

Here is a pseudocode description of the execution of the selection
sort algorithm over an array nums that has six elements:

for (each i from 0 to 4) {

 scan nums[i] through nums[5] for the smallest value.

 swap nums[i] with the smallest element found in the scan.

}

You can write pseudocode like the following for the scan:

smallest = lowest array index of interest.

for (all other index values of interest) {

 if (nums[index] < nums[smallest]) {

 smallest = index.

 }

}

You can then incorporate this pseudocode into your larger
pseudocode as follows:

for (each i from 0 to 4) {

 smallest = i.

 for (each index between (i + 1) and 5) {

 if (nums[index] < nums[smallest]) {

 smallest = index.

 }

 }

 swap nums[i] with nums[smallest].

}

You can translate this pseudocode almost directly into Java, except
for the swap process. In Chapter 7 , we wrote a swap method to
swap two elements of an array. We can reuse it here:

public static void swap(int[] list, int i, int j) {

 int temp = list[i];

 list[i] = list[j];

 list[j] = temp;

}

We can also modify the code to work with arrays of any size. The
following code implements the overall selection sort algorithm:

// places the elements of the given array into sorted order

// using the selection sort algorithm

// post: array is in sorted (nondecreasing) order

public static void selectionSort(int[] a) {

 for (int i = 0; i < a.length – 1; i++) {

 // find index of smallest element

 int smallest = i;

 for (int j = i + 1; j < a.length; j++) {

 if (a[j] < a[smallest]) {

 smallest = j;

 }

 }

 swap(a, i, smallest); // swap smallest to front

 }

}

Since selection sort makes roughly passes over an array of
elements, its performance is Technically, it examines

 elements, because
each pass starts one index ahead of where the last one started.
Chapter 3 mentioned a mathematical identity which states that
the sum of all integers from 1 to any maximum value equals

 which is just over Figure 13.6 supports
this analysis, because the runtime quadruples every time the input
size is doubled, which is characteristic of an algorithm. The

N N

O(N 2).
N + (N − 1) + (N − 2)+. . .+3 + 2 + 1

N

(N)(N + 1)/2, ½N 2.

N N
2

algorithm becomes impractically slow once the number of elements
reaches tens of thousands.

Figure 13.6 Runtimes for selection sort algorithm

The current selectionSort code will sort arrays of integer values, but
you could adapt it to sort Comparable objects such as Strings using
the techniques covered in the previous section on searching objects.
For example, you could use the compareTo and equals methods to
compare objects rather than relational operators like < and >= .

13.4 Case Study: Implementing
Merge Sort
There are other algorithms similar to selection sort that make many
passes over the array and swap various elements on each pass. An
algorithm that searches for inverted pairs of elements and swaps
them into order in this way cannot run faster than on
average. However, there is a better algorithm that breaks this barrier.

The merge sort algorithm is named for the observation that if you
have two sorted subarrays, you can easily merge them into a single
sorted array. For example, consider the following array:

int[] list = {14, 32, 67, 76, 23, 41, 58, 85};

You can think of it as two subarray halves, each of which (because
of the element values we chose) happens to be sorted:

O(N 2),

The following pseudocode provides the basic idea of the merge sort
algorithm:

split the array into two halves.

sort the left half.

sort the right half.

merge the two halves.

Let’s look at splitting the array and merging halves first; then we’ll
talk about the sorting.

Splitting and Merging Arrays

Splitting one array into its two halves is relatively straightforward.
We’ll set a midpoint at one half of the length of the array and
consider everything before this midpoint to be part of the “left” half
and everything that follows it to be in the “right” half. We can use the

method Arrays.copyOfRange to extract the halves of an array as new
arrays. The “left” half is from range 0 to half the length, and the
“right” half is from half the length to the full length:

// split array into two halves

int[] left = Arrays.copyOfRange(a, 0, a.length / 2);

int[] right = Arrays.copyOfRange(a, a.length / 2, a.length);

We will need to sort these left/right halves, then merge them into a
sorted whole. For now, let’s think about how we would merge two
sorted subarrays. (We’ll come back to sorting them later.) Suppose
that you have two stacks of exam papers, each sorted alphabetically
by name, and you need to combine them into a single stack sorted
by name. The simplest algorithm is to place both stacks in front of
you, look at the top paper of each stack, pick up the paper that
comes first in alphabetical order, and put it face down into a third
pile. You then repeat this process, comparing the papers on the top
of each stack and placing the one that comes first face down on the
merged stack, until one of your two original stacks is empty. Once
one is empty, you just grab the entire remaining stack and place it on
your merged pile.

The idea behind merging two sorted arrays is similar, except that
instead of physically removing papers (integers) from the piles
(subarrays), we’ll keep an index for each subarray and increment

that index as we process a given element. Here is a pseudocode
description of the merging algorithm:

i1 = 0. // left index

i2 = 0. // right index

for (number of elements in entire array) {

 if (left value at i1 <= right value at i2) {

 include value from left array in new array.

 i1++;

 } else {

 include value from right array in new array.

 i2++;

 }

}

Here is a trace of the eight steps to merge the two subarrays into a
sorted array:

The following code is an initial attempt to implement the merge
algorithm that was just described:

// initial incorrect attempt

public static void merge(int[] result, int[] left, int[] right)

{

 int i1 = 0; // index into left array

 int i2 = 0; // index into right array

 for (int i = 0; i < result.length; i++) {

 if (left[i1] <= right[i2]) {

 result[i] = left[i1]; // take from left

 i1++;

 } else {

 result[i] = right[i2]; // take from right

 i2++;

 }

 }

}

The preceding code is incorrect and will cause an out-of-bounds
exception. After the program completes the seventh step of the
preceding diagram, all of the elements in the left subarray will have
been consumed and the left index i1 will run off the end of the
subarray. Then, when the code tries to access element left[i1] , it
will crash. A similar problem would occur if the right index i2
exceeded the bounds of the right array.

We need to modify our code to remain within the bounds of the
arrays. The if/else logic needs to ensure that the index i1 or i2 is

within the array bounds before the program attempts to access the
appropriate element. The simple test in the pseudocode needs to be
expanded:

if (i2 has passed the end of the right array, or

 left element at i1 <= right element at i2) {

 take from left.

} else {

 take from right.

}

The following second version of the code correctly implements the
merging behavior. The preconditions and postconditions of the
method are documented in comments:

// Merges the given left and right arrays into the given

// result array. Second, working version.

// pre : result is empty; left/right are sorted

// post: result contains result of merging sorted lists.

public static void merge(int[] result, int[] left, int[] right)

{

 int i1 = 0; // index into left array

 int i2 = 0; // index into right array

 for (int i = 0; i < result.length; i++) {

 if (i2 >= right.length || (i1 < left.length &&

 left[i1] <= right[i2])) {

 result[i] = left[i1]; // take from left

 i1++;

 } else {

 result[i] = right[i2]; // take from right

 i2++;

 }

 }

}

Recursive Merge Sort

We’ve written the code to split an array into halves and to merge the
sorted halves into a sorted whole. The overall merge sort method
now looks like this:

public static void mergeSort(int[] a) {

 // split array into two halves

 int[] left = Arrays.copyOfRange(a, 0, a.length / 2);

 int[] right = Arrays.copyOfRange(a, a.length / 2,

a.length);

 // sort the two halves

 ...

 // merge the sorted halves into a sorted whole

 merge(a, left, right);

}

The last piece of our program is the code to sort each half of the
array. How can we sort the halves? We could call the selectionSort
method created earlier in this chapter on the two halves. But in the
previous chapter we discussed the recursive “leap of faith,” the belief
that our own method will work properly to solve a smaller version of
the same problem. In this case, a better approach is to merge sort
the two smaller halves. We can recursively call our own mergeSort
method on the array halves, and if it’s written correctly, it’ll put each
of them into sorted order. Our original pseudocode can now be
rewritten as the following pseudocode:

split the array into two halves.

merge sort the left half.

merge sort the right half.

merge the two halves.

If we’re making our merge sort algorithm recursive, it needs to have
a base case and a recursive case. The preceding pseudocode
specifies the recursive case, but for the base case, what are the
simplest arrays to sort? An array with either no elements or just one

element doesn’t need to be sorted at all. At least two elements must
be present in order for them to appear in the wrong order, so the
simple case would be an array with a length less than 2. This means
that our final pseudocode for the merge sort method is the following:

if (array length is more than 1) {

 split the array into two halves.

 merge sort the left half.

 merge sort the right half.

 merge the two halves.

}

No else case is needed because if the array size is 0 or 1, we don’t
need to do anything to the array. This recursive algorithm has an
empty base case.

The following method implements the complete merge sort
algorithm:

// Places the elements of the given array into sorted order

// using the merge sort algorithm.

// post: array is in sorted (nondecreasing) order

public static void mergeSort(int[] a) {

 if (a.length > 1) {

 // split array into two halves

 int[] left = Arrays.copyOfRange(a, 0, a.length / 2);

 int[] right = Arrays.copyOfRange(a, a.length / 2,

a.length);

 // recursively sort the two halves

 mergeSort(left);

 mergeSort(right);

 // merge the sorted halves into a sorted whole

 merge(a, left, right);

 }

}

To get a better idea of the algorithm in action, we’ll temporarily insert
a few println statements into its code and run the method on the
eight-element sample array shown previously in this section. We’ll
insert the following println statement at the start of the mergeSort
method:

// at start of mergeSort method

System.out.println("sorting " + Arrays.toString(a));

We’ll also put the following println statement at the start of the
merge method:

// at start of merge method

System.out.println("merging " + Arrays.toString(left) +

 " and " + Arrays.toString(right));

Here is the output from running mergeSort on the example array:

sorting [14, 32, 67, 76, 23, 41, 58, 85]

sorting [14, 32, 67, 76]

sorting [14, 32]

sorting [14]

sorting [32]

merging [14] and [32]

sorting [67, 76]

sorting [67]

sorting [76]

merging [67] and [76]

merging [14, 32] and [67, 76]

sorting [23, 41, 58, 85]

sorting [23, 41]

sorting [23]

sorting [41]

merging [23] and [41]

sorting [58, 85]

sorting [58]

sorting [85]

merging [58] and [85]

merging [23, 41] and [58, 85]

merging [14, 32, 67, 76] and [23, 41, 58, 85]

It’s also important to test the code on an array that doesn’t divide into
subarrays of exactly equal size (i.e., one whose overall length is not
a power of 2). Because it employs integer division, our code makes
the left subarray one element smaller than the right subarray when
the size is odd. Given an initial five-element list of [14, 32, 67, 76,
23] the algorithm prints the following output:

sorting [14, 32, 67, 76, 23]

sorting [14, 32]

sorting [14]

sorting [32]

merging [14] and [32]

sorting [67, 76, 23]

sorting [67]

sorting [76, 23]

sorting [76]

sorting [23]

merging [76] and [23]

merging [67] and [23, 76]

merging [14, 32] and [23, 67, 76]

Complete Program

The complete program containing the merge sort code follows. Its
main method constructs a sample array and sorts it using the
algorithm:

 1 // This program implements merge sort for arrays of

integers.

 2 import java.util.*;

 3

 4 public class MergeSort {

 5 public static void main(String[] args) {

 6 int[] list = {14, 32, 67, 76, 23, 41, 58, 85};

 7 System.out.println("before: " +

Arrays.toString(list));

 8 mergeSort(list);

 9 System.out.println("after : " +

Arrays.toString(list));

10 }

11

12 // Places the elements of the given array into sorted

order

13 // using the merge sort algorithm.

14 // post: array is in sorted (nondecreasing) order

15 public static void mergeSort(int[] a) {

16 if (a.length > 1) {

17 // split array into two halves

18 int[] left = Arrays.copyOfRange(a, 0, a.length /

2);

19 int[] right = Arrays.copyOfRange(a, a.length /

2,

20 a.length);

21

22 // recursively sort the two halves

23 mergeSort(left);

24 mergeSort(right);

25

26 // merge the sorted halves into a sorted whole

27 merge(a, left, right);

28 }

29 }

30

31 // Merges the given left and right arrays into the

given

32 // result array.

33 // pre : result is empty; left/right are sorted

34 // post: result contains result of merging sorted

lists;

35 public static void merge(int[] result, int[] left, int[]

right) {

36 int i1 = 0; // index into left array

37 int i2 = 0; // index into right array

38 for (int i = 0; i < result.length; i++) {

39 if (i2 >= right.length || (i1 < left.length &&

40 left[i1] <=

right[i2])) {

41 result[i] = left[i1]; // take from left

42 i1++;

43 } else {

44 result[i] = right[i2]; // take from

right

45 i2++;

46 }

47 }

48 }

49 }

The program produces the following output:

before: [14, 32, 67, 76, 23, 41, 58, 85]

after: [14, 23, 32, 41, 58, 67, 76, 85]

Figure 13.7 demonstrates the performance of our merge sort
algorithm on a modern computer. The merge sort algorithm’s
performance is much better than that of the selection sort algorithm.
For example, whereas our selection sort test run needed over 41
seconds to sort 128,000 elements, the merge sort algorithm handled
the same job in a blistering 47 milliseconds. But what is merge sort’s
complexity class? It looks almost like an O() algorithm, becauseN

the runtime only slightly more than doubles when we double the
array size.

Figure 13.7 Runtimes for merge sort algorithm

However, merge sort is actually an O(log) algorithm. A formal
proof of this statement is beyond the scope of this book, but a
common-sense chain of reasoning is as follows: We have to split the
array in half repeatedly until we hit the algorithm’s base case, in
which the subarrays each contain 1 element. For an array of size
we must split the array times. At each of those log steps,

N N

N ,

log2 N N

we have to do a linear operation of order (merging the halves
after they’re sorted). Multiplying these operations’ runtimes together
produces a O(log) overall runtime.

The preceding algorithm runtime analysis is informal and not
rigorous. As with other recursive algorithms, a precise analysis of
merge sort’s performance is complicated and requires mathematical
techniques such as recurrence relations, which are not discussed in
this book.

DID YOU KNOW?

Cost of Java Array Allocation

Earlier in the chapter, we mentioned that variable declaration
and assignment can be thought of as taking some constant
amount of time. That is usually true, but there is one
important exception: initializing arrays. Suppose you were to
execute this line of code:

int[] list = new int[n];

Executing this line of code requires the computer to allocate a
block of memory for the array. That can generally be done in
a constant amount of time. But Java also insists on auto-

N

N N

initializing all array elements to 0 and that takes time
proportional to n .

This subtlety of Java has stung several textbook authors who
were translating textbooks from C and C++ into Java. When
they were writing a solution to the merge sort algorithm, they
included code that would allocate a temporary array as large
as the entire array every time they did a merging operation.

For an array of size n , there are n different merging
operations. If each one requires the computer to auto-initialize
an array of length n , then the overall sorting algorithm
becomes an) algorithm. That is considerably slower
than the O(log) behavior that we expect for a merge
sort algorithm.

The authors made this mistake because C and C++ don’t
auto-initialize arrays. That means that their code ran fast in
those languages, and when they tested their code they found
that it behaved as expected. They apparently translated their
code into Java without retesting whether it was fast. More
than one textbook author has made this mistake, but out of
respect for our fellow authors (and recognizing that we make
mistakes ourselves), we won’t name any names!

O(N 2)
N N

Chapter Summary
Searching is the task of attempting to find a particular target value in
a collection or array.

Sorting is the task of arranging the elements of a list or array into a
natural ordering.

Java’s class libraries contain several methods for searching and
sorting arrays and lists, such as Arrays.binarySearch and
Collections.sort .

A Comparator object describes a customized way to compare objects,
enabling arrays or lists of these objects to be searched and sorted in
many orders.

Empirical analysis is the technique of running a program or algorithm
to determine its runtime. Algorithm analysis is the technique of
examining an algorithm’s code or pseudocode to make inferences
about its complexity.

Algorithms are grouped into complexity classes, which are often
described using big-Oh notation such as O() for a linear algorithm.

Sequential search is an O() searching algorithm that looks at
every element of a list until it finds the target value.

Binary search is an O(log) searching algorithm that operates on a
sorted dataset and successively eliminates half of the data until it
finds the target element.

Selection sort is an sorting algorithm that repeatedly finds
the smallest unprocessed element of the array and moves it to the
frontmost remaining slot of the array.

Merge sort is an O(log) sorting algorithm, often implemented
recursively, that successively divides the input dataset into two
halves, recursively sorts the halves, and then merges the sorted
halves into a sorted whole.

N

N

N

O(N 2)

N N

Self-Check Problems

Section 13.1: Searching and
Sorting in the Java Class Libraries

1. Describe two ways to search an unsorted array of String
objects using the Java class libraries.

2. If you perform a binary search on an array of one million
integers, which of the following is closest to the number of
elements that the search algorithm will need to examine?

a. all 1,000,000 of the integers
b. roughly 3/4 (750,000) of the integers
c. roughly half (500,000) of the integers
d. roughly 1/10 (100,000)
e. less than 1% (10,000 or fewer)

3. Should you use a sequential or binary search on an array of
Point objects, and why?

4. Under what circumstances can the Arrays.binarySearch and
Collections.binarySearch methods be used successfully?

5. In what order does the Collections.sort method arrange a list
of strings? How could you arrange them into a different order?

6. Why wouldn’t the Collections.sort method work when used
on a list of Point objects? How can you make it so that the
sort method can be used on Points or any other type of
objects?

7. The following Comparator class is attempting to arrange
BankAccount objects by account name, breaking ties by
account balance. But the code has some syntax errors and
some logic errors. What is wrong with the code? How would
you correct it?

 1 import java.util.*;

 2 public class AccountComparator extends Comparator {

 3 public int compareTo(BankAccount account2) {

 4 if

(!this.getName().equals(account2.getName())) {

 5 return

this.getName().compareTo(account2.getName());

 6 } else {

 7 return this.getBalance() -

account2.getBalance();

 8 }

 9 }

10 }

8. In this section, we wrote a LengthComparator that would allow a
list or array of strings to be sorted in ascending order by
length. How could we easily sort the collection in descending
order by length, from longest to shortest, without modifying
the code of LengthComparator?

Section 13.2: Program Complexity

9. Approximate the runtime of the following code fragment, in
terms of :

int sum = 0;

int j = 1;

while (j <= n) {

 sum++;

 j = j * 2;

}

10. Approximate the runtime of the following code fragment, in
terms of :

int sum = 0;

for (int j = 1; j < n; j++) {

 sum++;

 if (j % 2 == 0) {

 sum++;

 }

}

11. Approximate the runtime of the following code fragment, in
terms of :

n

n

n

int sum = 0;

for (int i = 1; i <= n * 2; i++) {

 for (int j = 1; j <= n; j++) {

 sum++;

 }

}

for (int j = 1; j < 100; j++) {

 sum++;

 sum++;

}

12. Approximate the runtime of the following code fragment, in
terms of :

int sum = 0;

for (int i = 1; i <= n; i++) {

 for (int j = 1; j <= i; j += 2) {

 sum += 4;

 }

}

for (int k = –50; k <= –1; k++) {

 sum--;

}

n

13. Approximate the runtime of the following code fragment, in
terms of :

int sum = 0;

for (int i = 1; i <= n; i++) {

 for (int j = 1; j <= 1000000; j++) {

 sum += 10;

 }

}

sum += 9999;

14. Determine the complexity classes of the algorithms that could
be used to perform the following tasks:

a. Finding the average of the numbers in an array of
integers

b. Finding the closest distance between any pair of points
in an array of Points

c. Finding the maximum value in an array of real numbers
d. Counting the median length of the Strings in an array

e. Raising an integer to a power—for example,
f. Examining an array of Points to see how many trios of

points are colinear—that is, how many groups of three
points could be connected by a straight line

g. Counting the number of lines in a file
h. Determining whether a given integer representing a

year stores a leap year (a year divisible by 4, but not
divisible by 100 unless also divisible by 400)

n

AB

15. Suppose an algorithm takes exactly the given number of
statements for each value below, in terms of an input size
Give a tight big-Oh bound for each algorithm, representing the
closest complexity class for that algorithm based on that
runtime.

a.
b.
c.
d.
e.
f.

g.

N .

½N log N + log N
N

2 − (N + N log N + 1000)
N

2 log N + 2N

½(3N + 5 + N)
(2N + 5 + N

4)/N

log (2N)
N ! + 2N

Section 13.3: Implementing
Searching and Sorting Algorithms

16. What is the runtime complexity class of a sequential search
on an unsorted array? What is the runtime complexity class of
the modified sequential search on a sorted array?

17. Why does the binary search algorithm require the input to be
sorted?

18. How many elements (at most) does a binary search examine
if the array contains 60 elements?

19. What indexes will be examined as the middle element by a
binary search for the target value 8 when the search is run on
the following input arrays? What value will the binary search
algorithm return?

a. int[] numbers = {1, 3, 6, 7, 8, 10, 15, 20, 30};
b. int[] numbers = {1, 2, 3, 4, 5, 7, 8, 9, 10};
c. int[] numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9};
d. int[] numbers = {8, 9, 12, 14, 15, 17, 19, 25, 31};

20. What indexes will be examined as the middle element by a
binary search for the target value 8 when the search is run on
the following input array? Notice that the input array isn’t in
sorted order. What can you say about the binary search
algorithm’s result?

int[] numbers = {6, 5, 8, 19, 7, 35, 22, 11, 9};

21. Consider the following sorted array of integers. When a binary
search is performed on this array for each of the following
integer values, what indexes are examined in order? What
result value is returned?

// index 0 1 2 3 4 5 6 7 8 9

10 11 12 13 14

int[] numbers = {–1, 3, 5, 8, 15, 18, 22, 39, 40, 42,

50, 57, 71, 73, 74};

a. 42
b. 11
c. 74
d. 30

22. Consider the following sorted array of integers. When a binary
search is performed on this array for each of the following
integer values, what indexes are examined in order? What
result value is returned?

// index 0 1 2 3 4 5 6 7 8 9

10 11 12 13

int[] numbers = {–30, –9, –6, –4, –2, –1, 0, 2, 4, 10,

12, 17, 22, 30};

a. –5
b. 0
c. 11
d. –100

23. What modifications would you have to make to the
selectionSort method to cause it to sort an array of double
values rather than one of integer values?

24. Consider the following array:

int[] numbers = {29, 17, 3, 94, 46, 8, –4, 12};

After a single pass of the selection sort algorithm (a single
swap), what would be the state of the array?

a. {–4, 29, 17, 3, 94, 46, 8, 12}
b. {29, 17, 3, 94, 46, 8, 12}
c. {–4, 29, 17, 3, 94, 46, 8, –4, 12}
d. {–4, 17, 3, 94, 46, 8, 29, 12}
e. {3, 17, 29, 94, –4, 8, 46, 12}

25. Trace the execution of the selection sort algorithm as shown
in this section when run on the following input arrays. Show
each element that will be selected by the algorithm and where
it will be moved, until the array is fully sorted.

a. {29, 17, 3, 94, 46, 8, –4, 12}
b. {33, 14, 3, 95, 47, 9, –42, 13}

c. {7, 1, 6, 12, –3, 8, 4, 21, 2, 30, –1, 9}
d. {6, 7, 4, 8, 11, 1, 10, 3, 5, 9}

Section 13.4: Case Study:
Implementing Merge Sort

26. How many calls on the mergeSort method are generated by a
call to sort a list of length 32?

27. Consider the following array of int elements:

int[] numbers = {7, 2, 8, 4, 1, 11, 9, 5, 3, 10};

a. Show the state of the elements after five passes of the
outermost loop of selection sort have occurred.

b. Show a trace that is two levels deep of the merge sort
algorithm. Show the splitting of the overall array, plus
one level of the recursive calls.

28. Consider the following array of int elements:

int[] numbers = {7, 1, 6, 12, –3, 8, 4, 21, 2, 30, –1,

9};

a. Show the state of the elements after five passes of the
outermost loop of selection sort have occurred.

b. Show a trace that is two levels deep of the merge sort
algorithm. Show the splitting of the overall array, plus
one level of the recursive calls.

29. Which one of the following statements about sorting and big-
Oh is true?

a. Selection sort can sort an array of integers in O()
time.

b. Merge sort achieves an O(log) runtime by
dividing the array in half at each step and then
recursively sorting and merging the halves back
together.

c. Merge sort runs faster than selection sort because it is
recursive, and recursion is faster than loops.

d. Selection sort runs in O() time if the array is already
sorted to begin with, or if it is not.

e. Sorting algorithms that rely on comparing elements can
only be used with type int , because values from other
types of data cannot be compared to each other.

30. Trace the complete execution of the merge sort algorithm
when called on each array below. Show the sub-arrays that
are created by the algorithm and show the merging of sub-
arrays into larger sorted arrays.

a. {29, 17, 3, 94, 46, 8, –4, 12}
b. {6, 5, 3, 7, 1, 8, 4, 2}
c. {33, 14, 3, 95, 47, 9, –42, 13}

N

N N

N

O(N
2)

Exercises
1. Suppose the following array has been declared:

// index 0 1 2 3 4 5 6 7 8 9

int[] list = {–2, 8, 13, 22, 25, 25, 38, 42, 51, 103};

What indexes will be examined as the middle element by a
binary search for each of the following target values? What
value will be returned?

a. 103
b. 30
c. 8
d. –1

2. Suppose the following array has been declared:

// index 0 1 2 3 4 5 6 7 8 9

10 11

int[] numbers = {–1, 3, 5, 8, 15, 18, 22, 39, 40, 42,

50, 57};

What indexes will be examined as the middle element by a
binary search for each of the following target values? What
value will be returned?

a. 13
b. 39
c. 50
d. 2

3. Suppose the following array has been declared:

// index 0 1 2 3 4 5 6 7 8 9

10 11 12 13 14

int[] numbers = {0, 0, 5, 10, 15, 40, 55, 60, 65, 70,

80, 85, 90, 95, 300};

What indexes will be examined as the middle element by a
binary search for each of the following target values? What
value will be returned?

a. 65
b. 9
c. 90
d. 147

4. To which complexity class does the following algorithm
belong? Consider to be the length or size of the array or
collection passed to the method. Explain your reasoning.

N

public static int[] mystery1(int[] list) {

 int[] result = new int[2 * list.length];

 for (int i = 0; i < list.length; i++) {

 result[2 * i] = list[i] / 2 + list[i] % 2;

 result[2 * i + 1] = list[i] / 2;

 }

 return result;

}

5. To which complexity class does the following algorithm
belong?

public static void mystery2(int[] list) {

 for (int i = 0; i < list.length / 2; i++) {

 int j = list.length – 1 – i;

 int temp = list[i];

 list[i] = list[j];

 list[j] = temp;

 }

}

6. To which complexity class does the following algorithm
belong?

public static void mystery3(List<String> list) {

 for (int i = 0; i < list.size() – 1; i += 2) {

 String first = list.remove(i);

 list.add(i + 1, first);

 }

}

7. To which complexity class does the following algorithm
belong?

public static void mystery4(List<String> list) {

 for (int i = 0; i < list.size() – 1; i += 2) {

 String first = list.get(i);

 list.set(i, list.get(i + 1));

 list.set(i + 1, first);

 }

}

8. Write the state of the elements of each of the following arrays
after each pass of the outermost loop of the selection sort
algorithm has occurred (after each element is selected and
moved into place).

int[] numbers1 = {63, 9, 45, 72, 27, 18, 54, 36};

int[] numbers2 = {37, 29, 19, 48, 23, 55, 74, 12};

9. Using the same arrays from the previous problem, trace the
complete execution of the merge sort algorithm when called
on each array. Show the subarrays that are created by the
algorithm and show the merging of subarrays into larger
sorted arrays.

10. Write the state of the elements of each of the following arrays
after each pass of the outermost loop of the selection sort
algorithm has occurred (after each element is selected and
moved into place).

int[] numbers3 = {8, 5, –9, 14, 0, –1, –7, 3};

int[] numbers4 = {15, 56, 24, 5, 39, –4, 27, 10};

11. Using the same arrays from the previous problem, trace the
complete execution of the merge sort algorithm when called
on each array. Show the subarrays that are created by the
algorithm and show the merging of subarrays into larger
sorted arrays.

12. Write the state of the elements of each of the following arrays
after each pass of the outermost loop of the selection sort
algorithm has occurred (after each element is selected and
moved into place).

int[] numbers5 = {22, 44, 11, 88, 66, 33, 55, 77};

int[] numbers6 = {–3, -6, -1, -5, 0, -2, -4, -7};

13. Using the same arrays from the previous problem, trace the
complete execution of the merge sort algorithm when called
on each array. Show the subarrays that are created by the
algorithm and show the merging of subarrays into larger
sorted arrays.

14. Write code to read a dictionary from a file, then prompt the
user for two words and tell the user how many words in the
dictionary fall between those two words. Here is a sample run
of the program:

Type two words: goodbye hello

There are 4418 words between goodbye and hello

Use the binary search algorithm in your solution.
15. Write a Comparator that compares Point objects by their

distance from the origin of (0, 0). Points that are closer to the
origin are considered to come before those which are further
from the origin.

16. Write a Comparator that compares String objects by the
number of words they contain. Consider any nonwhitespace
string of characters to be a word. For example, “hello” comes
before “I see”, which comes before “You can do it”.

17. Write a Comparator that compares String objects of a
particular format. Each string is of a form such as "123456

Seattle, WA" , beginning with a numeric token that is followed
by additional text tokens. Your job is to treat the first tokens as
integers and compare them in numerical order. You cannot
simply compare them by using the strings’ compareTo method,
since it would treat the numbers as text and not as integers.
For example, "276453 Helena, MT" is greater than "9847 New
York, NY" . Use a Scanner to tokenize the strings while
comparing them.

18. Write a modified version of the selection sort algorithm that
selects the largest element each time and moves it to the end
of the array, rather than selecting the smallest element and
moving it to the beginning. Will this algorithm be faster than
the standard selection sort? What will its complexity class
(big-Oh) be?

19. Write a modified “dual” version of the selection sort algorithm
that selects both the largest and smallest elements on each
pass and moves each of them to the appropriate end of the
array. Will this algorithm be faster than the standard selection
sort? What predictions would you make about its performance
relative to the merge sort algorithm? What will its complexity
class (big-Oh) be?

20. Implement an algorithm to shuffle an array of numbers or
objects. The algorithm for shuffling should be the following:

for (each index i) {

 choose a random index j where j >= i.

 swap the elements at indexes i and j.

}

(The constraint about j being greater than or equal to i is
actually quite important, if you want your shuffling algorithm to
shuffle fairly. Why?)

21. Implement a “bogus” sorting algorithm called bogo sort that
uses your shuffling algorithm from the previous exercise to
sort an array of numbers. The bogo sort algorithm is the
following:

while (array is not sorted) {

 shuffle array.

}

Obviously, this is not a very efficient sorting algorithm, but it
eventually does shuffle the array into order if you let it run
long enough. Try running it on a very small array, such as 8 or
10 elements, to examine its runtime. What is your best guess
about the complexity class (big-Oh) of this silly algorithm?

Programming Projects
1. Write a program that reads a series of input lines and sorts

them into alphabetical order, ignoring the case of words. The
program should use the merge sort algorithm so that it
efficiently sorts even a large file.

2. Perform a “Sort Detective” challenge to run several sorting
algorithms without knowing which is which. Try to figure out
which sorting algorithm is which on the basis of the runtime
and characteristics of each algorithm. Search the web for “sort
detective” for more ideas on such a project.

3. Write a program that processes a data file of students’ course
grade data. The data arrive in random order; each line stores
information about a student’s last name, first name, student ID
number, grade as a percentage, and letter grade. For
example, here are a few lines of data:

Smith Kelly 438975 98.6 A

Johnson Gus 210498 72.4 C

Reges Stu 098736 88.2 B

Smith Marty 346282 84.1 B

Reges Abe 298575 78.3 C

Your program should be able to sort the data by any of the
columns. Use Comparators to achieve the sort orderings. Make

the data sortable by last name, student ID, and grade
percentage in ascending and descending order. For example,
here are the lines of student data sorted a few different ways:

Student data, by last name:

Johnson Gus 210498 72.4 C

Reges Stu 098736 88.2 B

Reges Abe 298575 78.3 C

Smith Kelly 438975 98.6 A

Smith Marty 346282 84.1 B

Student data, by student ID:

Reges Stu 098736 88.2 B

Johnson Gus 210498 72.4 C

Reges Abe 298575 78.3 C

Smith Marty 346282 84.1 B

Smith Kelly 438975 98.6 A

4. Write a program that discovers all anagrams of all words
listed in an input file that stores the entries in a large
dictionary. An anagram of a word is a rearrangement of its
letters into a new legal word. For example, the anagrams of
“share” include “shear”, “hears”, and “hares”. Assume that you
have a file available to you that lists many words, one per line.
Your program should first read in the dictionary file and sort it,
but instead of sorting in alphabetical order it should sort
according to each word’s canonical form. The canonical form

of a word contains the same letters as the original, but in
sorted order. Thus, the canonical form of “computer” is
“cemoprtu”, and the canonical form of “program” is “agmoprr”.
When your dictionary file is sorted, the word “program” would
be placed before the word “computer”, because its canonical
form comes first in alphabetical order. Write code to retrieve a
word’s canonical form and a Comparator that compares words
by using their canonical forms.

Chapter 14 Stacks and Queues

14.1 Stack/Queue Basics
• Stack Concepts

• Queue Concepts

14.2 Common Stack/Queue Operations
• Transferring between Stacks and Queues

• Sum of a Queue

• Sum of a Stack

14.3 Complex Stack/Queue Operations
• Removing Values from a Queue

• Comparing Two Stacks for Similarity

14.4 Case Study: Expression Evaluator
• Splitting into Tokens

• The Evaluator

Introduction
In Chapter 11 , we saw that the Java
Collections Framework incorporates the idea of
an abstract data type (ADT) with interfaces
defined for the most fundamental ADTs and a
variety of implementations for each. In this
chapter we are going to explore two of the most
fundamental ADTs in computer science, called
stacks and queues. They are so simple that they
almost seem not worth studying. They are like
the programming equivalent of drawers and
shelves. Drawers and shelves are very simple
and, therefore, sort of boring, and yet we find
uses for them everywhere we turn.

It is useful to study stacks and queues as a way
to understand a minimal kind of data structure.
We’ll find, for example, that they are less
powerful than the list structures we have been
looking at. But we often find ourselves wanting
to think in terms of the simplest possible solution
to a problem, as in “Could you solve that with
just a stack?” They are also part of the basic
culture of computer science, so you will find it
helpful to practice using these primitive

structures and learning the terminology
associated with each.

14.1 Stack/Queue Basics
Like a list, a stack or queue stores an ordered sequence of values. A
minimal set of operations for such a structure would require at least:

some way to put values into the structure (an “add” operation)
a way to take values out (a “remove” operation)
a way to test whether there is anything left in the structure (is the
structure empty?)

These three operations are the bare bones that you’d need for such
a structure and in their purest form, stacks and queues have just
these three operations. Java’s version of these also includes a size
method that lets you ask for the number of elements in the structure
and a peek method that lets you examine the next value to be
removed without actually removing the value.

Stacks and queues are similar in that they each store a sequence of
values in a particular order. Stacks are LIFO structures (Last-In,
First-Out), meaning that the most recently inserted element is the
one that can be accessed first. Queues are FIFO structures (First-In,
First-Out), meaning that the first inserted element is the one that can
be accessed first.

Stack Concepts

With a stack, all of the action occurs at one end of the structure that
we refer to as the top of the stack, as shown in Figure 14.1 . The
adding operation is called a push and the removing operation is
called a pop. We push values onto the top and we pop them off the
top. A good analogy for stacks is to think of a cafeteria and how trays
are stacked up for the customers. When you go to get a tray, you
take the one on the top of the stack. You don’t bother to try to get the
one on the bottom, because you’d have to move a lot of trays to get
to it. Similarly, if someone brings clean trays to add to the stack, they
are added on the top rather than on the bottom. The result is that
stacks tend to reverse things. Each new value goes to the top of the
stack, and when we take them values back out, we draw from the
top, so they come back out in reverse order.

Figure 14.1 A stack

There are also methods for testing whether the stack is empty,
requesting the current size of the stack, and peeking at the next
value to be removed. The basic operations for the Stack class are
listed in Table 14.1 .

Table 14.1 Useful Methods of the Stack Class

Stacks are generic structures like the other collections we have
seen, so it is really Stack<E> , where E is filled in with some type. The
Stack class is one of the oldest classes in the Java Collections
Framework. It was included with the original release of Java. As a
result, it was not designed as well as the later ADTs in the

framework. In particular, there is no separate interface that specifies
the ADT. Instead, it extends a class called Vector , which is an early
version of the ArrayList class. Because of this inheritance
relationship, you can treat the stack like a list. For example, you can
add and remove values in the middle.

Stack
An ordered collection that allows adding and removing
the “top” element, providing Last-In, First-Out (LIFO)
access.

Even though it is badly designed, we think it is important to use the
built-in version of this class. We highly recommend that you restrict
yourself to the stack-like methods of Table 14.1 and not use other
methods that would allow you to treat the stack like a list. The
following StackExample is a complete program that shows basic
manipulations of a stack.

 1 // A program that demonstrates basic stack operations.

 2

 3 import java.util.*;

 4

 5 public class StackExample {

 6 public static void main(String[] args) {

 7 String[] data = {"to", "be", "or", "not", "to",

"be"};

 8 Stack<String> s = new Stack<>();

 9

10 for (String str : data) {

11 s.push(str);

12 }

13

14 System.out.println("stack = " + s);

15 System.out.println("size = " + s.size());

16 System.out.println("peek = " + s.peek());

17 while (!s.isEmpty()) {

18 System.out.print(s.pop() + " ");

19 }

20 System.out.println();

21 }

22 }

It produces the following output:

stack = [to, be, or, not, to, be]

size = 6

peek = be

be to not or be to

You can see from the first line of output that the Stack class has a
toString method that formats the contents the same way a list is
formatted. The first value listed inside brackets is the value at the
bottom of the stack.

The second line of output uses the size method to report that there
are 6 values in the stack. The third line of output uses the peek
method to report that the top of the stack is "be" . Keep in mind that
this peeking operation does not change the stack. The final line of
output shows the sequence of values obtained by popping the stack
until it becomes empty. Notice that the values come out in reverse
order relative to the order in which they were added.

Queue Concepts

For a queue we manipulate both ends of the structure, adding new
values at the back of the queue and removing values from the front,
as shown in Figure 14.2 . Queues have the same basic operations
that stacks have, but they have different names. The adding and
removing operations are simply called add and remove, although
sometimes we use the more formal terms enqueueing and
dequeueing to describe these.

Figure 14.2 A queue

A good analogy for queues is to think about standing in line at the
grocery store. As new people arrive, they are told to go to the back
of the line. When the store is ready to help another customer, the
person at the front of the line is helped. In fact, the British use the
word “queue” the way Americans use the word “line,” telling people
to “queue up” or to “go to the back of the queue.” Table 14.2
includes the five fundamental operations we will use for manipulating
queues.

Table 14.2 Useful Methods of the Queue Interface

Queues were added to the Java Collections Framework later and
they were properly designed. There is a separate Queue<E> interface
that describes the ADT and various implementations. We will use the
LinkedList<E> implementation for all of the queues that we construct.

Queue
An ordered collection that allows adding the “back”
element and removing the “front” element, providing
First-In, First-Out (FIFO) access.

The following QueueExample is a simple client program that uses an
array of String data to initialize and manipulate a queue. The
program’s output is similar to the earlier StackExample program,
except for the order in which the elements are printed.

 1 // A program that demonstrates basic queue operations.

 2

 3 import java.util.*;

 4

 5 public class QueueExample {

 6 public static void main(String[] args) {

 7 String[] data = {"to", "be", "or", "not", "to",

"be"};

 8 Queue<String> q = new LinkedList<>();

 9

10 for (String str : data) {

11 q.add(str);

12 }

13

14 System.out.println("queue = " + q);

15 System.out.println("size = " + q.size());

16 System.out.println("peek = " + q.peek());

17 while (!q.isEmpty()) {

18 System.out.print(q.remove() + " ");

19 }

20 System.out.println();

21 }

22 }

The queue example produces the following output:

queue = [to, be, or, not, to, be]

size = 6

peek = to

to be or not to be

In the first line of output you can see that the first value inside
brackets is the value at the front of the queue. That is why the peek
method returns "to" . And notice that the final line of output lists the
values in the same order in which they were added to the structure.

14.2 Common Stack/Queue
Operations

In this section we will become more familiar with stacks and queues
by writing some client code for manipulating stacks and queues of
int values. Recall that we have to use the Integer wrapper class to
do so by constructing values of type Stack<Integer> and
Queue<Integer> . Let’s write some code that would add 10 random
values between 0 and 99 to a queue using a Random object:

Queue<Integer> q = new LinkedList<>();

Random r = new Random();

for (int i = 0; i < 10; i++) {

 q.add(r.nextInt(100));

}

System.out.println("q = " + q);

Notice that our variable is of type Queue<Integer> (using the
interface). We only use the name of the implementation (LinkedList)
when we are constructing a new object with the new keyword. All
variables, parameters, and return types should be defined using the
interface.

This produces output like the following:

q = [25, 19, 83, 0, 70, 52, 76, 33, 81, 54]

We can put this code for generating a queue with random values into
a method. It’s helpful to have a size parameter indicating how many
values to add to the queue. The return type for the method should be
Queue<Integer> :

public static Queue<Integer> makeRandomQueue(int size) {

 Queue<Integer> q = new LinkedList<>();

 Random r = new Random();

 for (int i = 0; i < size; i++) {

 q.add(r.nextInt(100));

 }

 return q;

}

We can change our client code to call this method and print the
result:

Queue<Integer> q = makeRandomQueue(10);

System.out.println("q = " + q);

We can create a variation of makeRandomQueue called makeRandomStack
for making a stack of random values. This is a fairly straightforward
modification where we simply switch queue operations with stack
operations:

public static Stack<Integer> makeRandomStack(int size) {

 Random r = new Random();

 Stack<Integer> s = new Stack<>();

 for (int i = 0; i < size; i++) {

 s.push(r.nextInt(100));

 }

 return s;

}

Transferring between Stacks and
Queues

Consider the task of writing a method to transfer all values from a
queue to a stack. We would need a loop that will remove values from
the queue as long as there are more values left to remove. We can
accomplish this with a while loop and the isEmpty and remove
methods:

public static void queueToStack(Queue<Integer> q, Stack<Integer>

s) {

 while (!q.isEmpty()) {

 int n = q.remove();

 ...

 }

}

Notice that the parameters are of type Queue<Integer> and
Stack<Integer> .

This code removes values from the queue, but to add them to the
stack, we have to include a call on push inside the loop. The
following is an incorrect attempt:

public static void queueToStack(Queue<Integer> q, Stack<Integer>

s) {

 while (!q.isEmpty()) {

 int n = q.remove();

 s.push(q.remove());

 }

}

The problem with this version is that it calls remove twice each time
through the loop. It should be calling push with the value of n :

public static void queueToStack(Queue<Integer> q, Stack<Integer>

s) {

 while (!q.isEmpty()) {

 int n = q.remove();

 s.push(n);

 }

}

We could eliminate the line that involves n altogether and have just
the second line of code:

s.push(q.remove());

The following client code reports what was in the stack and queue
after calling queueToStack :

Queue<Integer> q = makeRandomQueue(10);

Stack<Integer> s = new Stack<>();

System.out.println("queue = " + q);

System.out.println("stack = " + s);

queueToStack(q, s);

System.out.println("after queueToStack:");

System.out.println("queue = " + q);

System.out.println("stack = " + s);

It produces output like the following:

queue = [75, 76, 53, 82, 88, 77, 63, 28, 86, 7]

stack = []

after queueToStack:

queue = []

stack = [75, 76, 53, 82, 88, 77, 63, 28, 86, 7]

We can write a similar method stackToQueue :

public static void stackToQueue(Stack<Integer> s, Queue<Integer>

q) {

 while (!s.isEmpty()) {

 int n = s.pop();

 q.add(n);

 }

}

Sum of a Queue

How would we write a method to find the sum of the values in a
queue? It is a cumulative sum task, which involves initializing a sum
variable to 0 outside the loop and then adding each value to the sum
as we progress through the loop. A first attempt might look like this:

public static int sum(Queue<Integer> q) {

 int sum = 0;

 while (!q.isEmpty()) {

 int n = q.remove();

 sum += n;

 }

 return sum;

}

If you call this version of the method and print the queue afterward,
you’ll find that the queue is empty. As a side effect of calculating the

sum, we are destroying the contents of the queue. This is generally
not acceptable behavior.

So how do we examine each of the queue elements while preserving
the state of the structure? You could ask the queue for an iterator or
use a for-each loop to get each value from the structure, but we are
interested in understanding the queue in its most basic form, so we
aren’t going to use either iterators or for-each loops when working
with stacks and queues.

The only other way to find out what is in a queue is to remove each
of the values. We just need to find a way to do that while restoring
the queue to its original form when we are done. One solution is to
use a second queue as auxiliary storage:

// Improved version that uses auxiliary queue for storage

// so that it does not destroy the queue passed in.

public static int sum(Queue<Integer> q) {

 int sum = 0;

 Queue<Integer> temp = new LinkedList<>();

 while (!q.isEmpty()) {

 int n = q.remove();

 sum += n;

 temp.add(n);

 }

 while (!temp.isEmpty()) { // restore the queue

 q.add(temp.remove());

 }

 return sum;

}

This approach works, but there is an easier way. Why not use the
original queue itself? As we remove values to be processed, we can
add them back into the queue at the end. Think of it as cycling
through values where the value at the front goes to the back.

Of course, then the queue never becomes empty. So instead of a
while loop looking for an empty queue, we would write a for loop
using the size of the queue:

// Best version that re-adds elements to the queue passed in

// so that it does not destroy the contents of the queue.

public static int sum(Queue<Integer> q) {

 int sum = 0;

 for (int i = 0; i < q.size(); i++) {

 int n = q.remove();

 sum += n;

 q.add(n);

 }

 return sum;

}

Sum of a Stack

Now let’s write a sum method for stacks:

public static int sum(Stack<Integer> s) {

 ...

}

This method can also be called sum because the two methods have
different signatures. Remember that a signature of a method is its
name plus its parameters. These are both called sum and they both
have just a single parameter, but the parameter types are different,
so this is okay.

So how do we write the sum method for stacks? We can start out by
trying to simply substitute stack operations for queue operations:

public static int sum(Stack<Integer> s) {

 int sum = 0;

 for (int i = 0; i < s.size(); i++) {

 int n = s.pop();

 sum += n;

 s.push(n);

 }

 return sum;

}

Unfortunately, this code doesn’t work. We’d see output like this when
we test it:

stack = [42, 19, 78, 87, 14, 41, 57, 25, 96, 85]

sum = 850

The sum of these numbers is not 850. We’re getting that sum
because the loop pops the value 85 off the stack 10 different times
and then pushes it back onto the top of the stack. With a queue,
values go in at one end and come out the other end. But with a
stack, all the action is at one end of the structure (the top). So this
approach isn’t going to work.

In fact, you can’t solve this in a simple way with just a stack. You’d
need something extra like an auxiliary structure. Consider how we
could solve it if we were allowed to use one queue available (and
only one queue; no other auxiliary structures) as temporary storage.
Then we can put things into the queue as we take them out of the
stack and after we have computed the sum, we can transfer things
from the queue back to the stack using our queueToStack method.
Here is a second attempt:

public static int sum(Stack<Integer> s) {

 int sum = 0;

 Queue<Integer> q = new LinkedList<>();

 for (int i = 0; i < s.size(); i++) {

 int n = s.pop();

 sum += n;

 q.add(n);

 }

 queueToStack(q, s);

 return sum;

}

This also doesn’t work. Here is a sample execution:

initial stack = [32, 15, 54, 91, 47, 45, 88, 89, 13, 0]

sum = 235

after sum stack = [32, 15, 54, 91, 47, 0, 13, 89, 88, 45]

There are two problems here. Only half of the values were removed
from the stack and those values now appear in reverse order. Why
only half? We are using a for loop that compares a variable i
against the size of the stack. The variable i is going up by 1 while
the size is going down by 1 every time. The result is that halfway
through the process, i is large enough relative to size to stop the
loop. This is a case where we want a while loop instead of a for
loop:

public static int sum(Stack<Integer> s) {

 int sum = 0;

 Queue<Integer> q = new LinkedList<>();

 while (!s.isEmpty()) {

 int n = s.pop();

 sum += n;

 q.add(n);

 }

 queueToStack(q, s);

 return sum;

}

Even this is not correct. It finds the right sum, but it ends up
reversing the values in the stack. If we could use a stack instead of a
queue as auxiliary storage, then this problem would go away. In
many of our sample problems, we purposely restrict you to a
particular kind of structure so that you can practice working within
constraints. It becomes almost a brain teaser to think of how to solve
the problem with a given structure. A stack would be more
convenient, but that doesn’t mean that you have to use a stack to
solve the problem.

The problem is that by transferring the data from the stack into the
queue and then back into the stack, we have reversed the order. The
fix is to do it again so that it goes back to the original order. So we
add two extra calls at the end of the method that move values from

the stack back into the queue and then from the queue back into the
stack:

public static int sum(Stack<Integer> s) {

 int sum = 0;

 Queue<Integer> q = new LinkedList<>();

 while (!s.isEmpty()) {

 int n = s.pop();

 sum += n;

 q.add(n);

 }

 queueToStack(q, s);

 stackToQueue(s, q);

 queueToStack(q, s);

 return sum;

}

This is not the most efficient way to solve the problem, but it
demonstrates that it can be done with a queue.

14.3 Complex Stack/Queue
Operations

In this section, we will examine two harder stack/queue problems
that allow us to explore some of the issues and common bugs that
come up when manipulating these structures.

Removing Values from a Queue

Consider the task of removing all occurrences of a certain value from
a queue of integers. For example, suppose that a variable called q
stores a reference to the following queue:

[18, 4, 7, 42, 9, 33, −8, 0, 14, 42, 7, 42, 42, 19]

and we make the following call:

removeAll(q, 42);

We would want the queue to store the following values after the call:

[18, 4, 7, 9, 33, −8, 0, 14, 7, 19]

This seems like a fairly straightforward task, but it leads to a subtle
bug if we aren’t careful. This task would be easier to solve if we
could use a second queue. Then we could copy the values we want
to keep from the first queue to the second and then copy them back
when we are done. But this problem can be solved without an
auxiliary data structure.

We saw that we can cycle through the elements of a queue by
repeatedly removing the front value and then adding it back at the
end of the queue. For example, the following loop cycles through the
values in the queue exactly once:

for (int i = 0; i < q.size(); i++) {

 int n = q.remove();

 q.add(n);

}

As a first attempt, we could modify this loop so that it doesn’t add the
value back if it is the value we want to remove:

public static void removeAll(Queue<Integer> q, int value) {

 for (int i = 0; i < q.size(); i++) {

 int n = q.remove();

 if (n != value) {

 q.add(n);

 }

 }

}

This version doesn’t work. For the sample queue, if we remove 42 ,
we end up with these values in the queue after the method finishes
executing:

[42, 19, 18, 4, 7, 9, 33, –8, 0, 14, 7]

It’s obvious that it didn’t work because the queue now starts with a
42 . Even worse, the order of the elements has been damaged. The
original queue started with the value 18 , which is now the third value
in the queue. So it didn’t finish the task and it has changed the order
of the elements in the queue.

The problem is that our loop is using a counter to keep track of how
many times to execute and it is comparing the counter against the
size of the queue. But the size is changing. As we come across
values to be removed, we skip them rather than adding them back
into the queue, which makes the queue size go down by 1.

What happened in this specific case is that we came across two
values of 42 that weren’t added back in. That reduced the queue
size by 2. As a result, the final two values from the original queue
were never processed. That allowed a 42 to get past our filtering
process, and it changed the order of the values in the queue
because we didn’t make a full pass through the data.

This is a subtle bug that can come up often when working with
queues. You may think that you are making a complete cycle
through the values when you are actually off by some amount that
causes you to cycle either too little or too much.

In case the bug still isn’t clear, let’s look at a more extreme case.
Suppose the queue consists entirely of six occurrences of the value
21 :

[21, 21, 21, 21, 21, 21]

If we call removeAll and pass this queue and the value 21 , the code
should completely empty the queue. But the loop continues until the

counter i reaches the queue’s size . The algorithm goes through the
following iterations:

[21, 21, 21, 21, 21, 21], i = 0, size() = 6

[21, 21, 21, 21, 21], i = 1, size() = 5

[21, 21, 21, 21], i = 2, size() = 4

[21, 21, 21], i = 3, size() = 3

After three loop iterations and elements removed, the value of i has
reached the size value of 3 , so the loop stops executing. The
problem is that the queue is shrinking, so the size method will return
different values on different iterations of the loop. Regardless of how
many elements are removed, we always want the loop to repeat
once for each element in the original queue. So we need to store the
initial size of the queue in a variable and use that to control the loop:

public static void removeAll(Queue<Integer> q, int value) {

 int oldSize = q.size();

 for (int i = 0; i < oldSize; i++) {

 int n = q.remove();

 if (n != value) {

 q.add(n);

 }

 }

}

This version works properly.

Comparing Two Stacks for
Similarity

Consider the task of comparing two stacks of integers to see if they
have the same pattern of parity (odd versus even). In other words,
we want to test whether two stacks have even numbers and odd
numbers in the same positions. To be considered equivalent, we will
also require that the stacks have the same size. For example,
suppose variables called s1 and s2 store these values:

[1, 2, 3, 4, 5, 7, 9, 11]

[13, 4, 17, 8, 1, 91, 81, 71]

We expect the call of sameParityPattern(s1, s2) to return true
because both stacks store values with an (odd, even, odd, even, ...)
parity pattern. To solve this problem, we will need an auxiliary data
structure. It would be most convenient to have two auxiliary stacks,
but suppose that we have been restricted to one auxiliary stack. The
basic form of our method will be to set up our auxiliary stack and
examine values until we find a solution. We can also add some code
to make sure that the two stacks are of the same size. We can begin
our solution with this code:

public static boolean sameParityPattern(Stack<Integer> s1,

 Stack<Integer> s2) {

 if (s1.size() != s2.size()) {

 return false;

 } else {

 Stack<Integer> s3 = new Stack<>();

 ...

 }

}

Our task is to remove values from the two stacks and make sure
they have the same parity. But we also have to be able to restore the
two stacks to their original state. We have to use the third stack to
store the values that we remove from the other two. If we find a pair
of values that have different parity, then we would want to stop
examining values. You might imagine writing code like the following:

while (!s1.isEmpty()) {

 int num1 = s1.pop();

 int num2 = s2.pop();

 if (num1 % 2 != num2 % 2) {

 return false;

 }

 s3.push(num1);

 s3.push(num2);

}

The preceding approach won’t work. The code properly removes one
value from each stack and stores the values into the third stack. But
it returns from the method when it finds a difference. You have to be
careful that you don’t exit the method prematurely. Remember that
we have to restore the stacks to their original state. So even though
we know that we want to return false , we have to be careful to
restore the stacks before we exit. We can accomplish this by
introducing a boolean flag to keep track of whether we have seen a
difference and stopping the loop when a difference has been
encountered:

boolean same = true;

while (same && !s1.isEmpty()) {

 int num1 = s1.pop();

 int num2 = s2.pop();

 if (num1 % 2 != num2 % 2) {

 same = false;

 }

 s3.push(num1);

 s3.push(num2);

}

Now we need a loop that will restore the stacks to their original state.
Our third stack has pairs of values that were originally in the other
two stacks. We can repeatedly put each pair of values back to the
appropriate stacks. In each pair, we first pushed a value from s1 and

then pushed a value from s2 , so you might think that the correct loop
to write is:

while (!s3.isEmpty()) {

 s1.push(s3.pop());

 s2.push(s3.pop());

}

The problem with this is that even though we pushed a value from
s1 and then a value from s2 , they will come back out of the stack in
the opposite order. So we need to reverse the order of the two lines
inside our loop:

while (!s3.isEmpty()) {

 s2.push(s3.pop());

 s1.push(s3.pop());

}

This completes our method other than the return statement. Once
we have restored the stacks, we can use our boolean flag to report
whether or not the stacks had the same pattern. The following is a
complete solution to the method:

public static boolean sameParityPattern(Stack<Integer> s1,

 Stack<Integer> s2) {

 if (s1.size() != s2.size()) {

 return false;

 } else {

 Stack<Integer> s3 = new Stack<>();

 boolean same = true;

 while (same && !s1.isEmpty()) {

 int num1 = s1.pop();

 int num2 = s2.pop();

 if (num1 % 2 != num2 % 2) {

 same = false;

 }

 s3.push(num1);

 s3.push(num2);

 }

 while (!s3.isEmpty()) {

 s2.push(s3.pop());

 s1.push(s3.pop());

 }

 return same;

 }

}

14.4 Case Study: Expression
Evaluator
In Chapter 12 , we saw how to write a program that uses recursion
to evaluate prefix expressions. We also saw that recursive solutions
take advantage of the method call stack. But what if you didn’t have
recursion available to you? It turns out that many problems that are
easily solved with recursion are also easily solved with a stack.

We are going to write a program that evaluates fully parenthesized
arithmetic expressions using the standard operators for addition,
subtraction, multiplication, and division, and a special operator for
exponentiation ("^").

For example, if we wanted to evaluate this expression:

We would write it as a fully parenthesized expression as:

(18.4–((2.3*8.5)/(19.5+(2.7^4.9))))

18.4 −
2.3 × 8.5

19.5 + 2. 74.9

We have conventions that allow us to leave out many of the
parentheses in this expression, but it is very challenging to process
such expressions because then we have to handle precedence
issues. We will keep it simple by always requiring parentheses for
every operator.

In the Chapter 12 case study, we assumed that spaces would be
used to separate all of the individual tokens. That allowed us to use
a Scanner for reading the tokens, but it can be very annoying to have
to include spaces for each individual element. For example, the
expression above would have to be rewritten as:

(18.4 - ((2.3 * 8.5) / (19.5 + (2.7 ^ 4.9))))

It turns out that separating a string like this into tokens leads to an
interesting application for a queue. So we will write a more
sophisticated version this time that allows you to have as little or as
much spacing as you’d like.

We also should be careful to report most errors if the user leaves off
parentheses or doesn’t have them matched properly. This error
checking is a nice complement to the other operations we will be
performing to evaluate these expressions.

But we will avoid one thorny issue. We won’t allow numbers to have
a minus sign in front of them. So even though it makes sense to form
an expression like this:

(-2.5/4.5)

We won’t allow that minus sign in front of the 2.5 . Instead you’d
have to form an expression like:

((0-2.5)/4.5)

Splitting into Tokens

We have seen that the Scanner class can be used to tokenize a
string using whitespace, but we want to allow a user to leave out the
whitespace and still have his or her input properly tokenized. We are
going to build a supporting class called StringSplitter that will solve
this fairly specialized task. It will behave somewhat like a Scanner ,
but it won’t require whitespace to break apart the string.

We can use the standard method names from the Scanner class for
getting a next token and asking if there is another token. We should
also introduce a peek method that allows the client to ask about the
next token without actually reading it. And we will need a constructor
that takes the string to split as a parameter. So the public methods
will be:

public StringSplitter(String line)

public boolean hasNext()

public String next()

public String peek()

This task is going to involve scanning through the letters of a string
from beginning to end and returning to the client of the class the
individual tokens that we find. Our class has to keep track of what
has been read already and what it has left to read. It will also require
a lot of peeking ahead to figure out how to separate the individual
characters into tokens. For example, if the string is "(2.3*4.8)" , we
will want to produce this sequence of tokens:

"(", "2.3", "*", "4.8", ")"

As we are reading a number like 2.3 , we will need to peek ahead to
see what comes next so that we can recognize the end of the
number.

It turns out that a queue is a great structure for solving this problem.
It allows us to examine all of the characters from beginning to end
and it keeps track of what we have already looked at and what we
have left to look at. It also allows us to peek ahead.

The big difference between our splitter and a simple Scanner is that
we need to recognize certain special characters as being tokens. If
we encounter a parenthesis or one of the arithmetic operators, we
have to make that a token whether or not it is surrounded by
whitespace. It is best to include these special characters in a string
constant for the class.

In terms of fields, since we are reading a character at a time, we will
want a Queue<Character> to store the individual characters of the
string and a field for storing the next token. Because we want to
allow the client to peek ahead, we should have the field for the token
always store the next token to be processed (that way we can allow
the client to peek at it as much as he or she wants without actually
reading anything).

We have to provide the client with a way to ask whether there is a
next token to be processed. We could use an extra field for this, but
we could also just set the token field to null when there are no
tokens left to process.

Here is a basic outline of our class including our two fields, our
special constant, and a constructor that adds the letters of the string
to our queue of characters:

public class StringSplitter {

 private Queue<Character> characters;

 private String token;

 public static final String SPECIAL_CHARACTERS = "()+-*/^";

 public StringSplitter(String line) {

 characters = new LinkedList<>();

 for (int i = 0; i < line.length(); i++) {

 characters.add(line.charAt(i));

 }

 findNextToken();

 }

 ...

}

Notice that the constructor ends with a call on a method called
findNextToken . The idea is that we want a private method that will
process the queue and give an appropriate value to the field called
token . Most of the work of writing this class is to write that method.

To write the findNextToken method, we have to consider all of the
possible cases and make sure that we handle each one. We want to
skip whitespace just as the Scanner does, so we will have to include
code to do that. After skipping any leading whitespace, we would
normally be ready to build up the next token. But we have to
consider the case where we run out of characters, in which case
there are no more tokens to produce. If we do have a token to
produce, we’ll have to remove characters one at a time from the
queue and add them to the token that we are building up. The basic
approach can be described with the following pseudocode:

skip whitespace.

if (nothing left) {

 token = null;

} else {

 initialize token to the next queue character.

 while (next queue character is part of this token) {

 token = token + (next character from the queue).

 }

}

To skip the leading whitespace, we can peek ahead in the queue to
see if the next character is a whitespace character. We’ll utilize a
helpful static method from the Character wrapper class called
isWhitespace that returns true if a given character is whitespace
such as a space, tab, or line break. But we have to keep in mind we
can’t peek ahead when the queue is empty, so we have to include a
special test for that as well:

while (!characters.isEmpty() &&

 Character.isWhitespace(characters.peek())) {

 characters.remove();

}

if (characters.isEmpty()) {

 token = null;

} else {

 ...

}

Now we need to write the code for building up a token character by
character. We can initialize the token to the next character in the
queue by saying:

token = "" + characters.remove();

Then we run into the problem of knowing how many more characters
to include in this token. We have a set of special characters that are
supposed to be one-character tokens, so if the token is any of those,
then we need to stop adding characters to the token. We can use
our string constant and a call on contains to handle that special
case:

if (!SPECIAL_CHARACTERS.contains(token)) {

 ...

}

Now we need a loop that will append characters to the current token
until it finds something that isn’t part of the token. We would want to
stop if we came across a whitespace character. But we would also
want to stop if we came across any of the special characters. And

we have an extra problem in that we might run out of characters
completely if this is the last token to be processed.

The logic gets fairly complicated in this case, so it is helpful to
introduce a boolean variable that keeps track of whether or not we
are done:

boolean done = false;

while (!characters.isEmpty() && !done) {

 char ch = characters.peek();

 if (Character.isWhitespace(ch) ||

 SPECIAL_CHARACTERS.indexOf(ch) >= 0) {

 done = true;

 } else {

 token = token + characters.remove();

 }

}

This completes the private method for finding the next token. As
mentioned earlier, the other parts of the class are fairly
straightforward. The following is the complete class definition. Notice
that the class has an extra private method called checkToken that
throws a NoSuchElementException if the client calls the peek or next
methods when there are no more tokens left.

 1 // This class breaks up a string into a sequence of tokens

using

 2 // both whitespace and a list of special characters that are

each

 3 // considered tokens. The special characters in this case

are

 4 // used to tokenize an arithmetic expression. For example,

the

 5 // expression:

 6 // 2*3.8/(4.95−7.8)

 7 // would be tokenized as 2 * 3.8 / (4.95 − 7.8) even

though it

 8 // has no whitespace to separate these tokens.

 9

10 import java.util.*;

11

12 public class StringSplitter {

13 private Queue<Character> characters;

14 private String token;

15

16 public static final String SPECIAL_CHARACTERS = "()+

−*/^";

17

18 public StringSplitter(String line) {

19 characters = new LinkedList<>();

20 for (int i = 0; i < line.length(); i++) {

21 characters.add(line.charAt(i));

22 }

23 findNextToken();

24 }

25

26 // post: Returns true if there is another token

27 public boolean hasNext() {

28 return token != null;

29 }

30

31 // pre : there is another token to return (throws

32 // NoSuchElementException if not)

33 // post: returns and consumes the next token

34 public String next() {

35 checkToken();

36 String result = token;

37 findNextToken();

38 return result;

39 }

40

41 // pre : there is another token to return (throws

42 // NoSuchElementException if not)

43 // post: returns the next token without consuming it

44 public String peek() {

45 checkToken();

46 return token;

47 }

48

49 // post: finds the next token, if any

50 private void findNextToken() {

51 while (!characters.isEmpty() &&

52 Character.isWhitespace(characters.peek())) {

53 characters.remove();

54 }

55 if (characters.isEmpty()) {

56 token = null;

57 } else {

58 token = "" + characters.remove();

59 if (!SPECIAL_CHARACTERS.contains(token)) {

60 boolean done = false;

61 while (!characters.isEmpty() && !done) {

62 char ch = characters.peek();

63 if (Character.isWhitespace(ch) ||

64 SPECIAL_CHARACTERS.indexOf(ch) >= 0)

{

65 done = true;

66 } else {

67 token = token +

characters.remove();

68 }

69 }

70 }

71 }

72 }

73

74 // post: throws an exception if there is no token left

75 private void checkToken() {

76 if (!hasNext()) {

77 throw new NoSuchElementException();

78 }

79 }

80 }

The Evaluator

Now that we have a support class that will allow us to read the
tokens of a string, we can work on the code that will evaluate the
tokens that we find in a fully parenthesized expression. We are going
to implement a variation of a famous algorithm known as the
shunting-yard algorithm that was invented by Edsger Dijkstra. It uses
two stacks to save intermediate results. One stack stores numbers
and the other stack stores symbols.

The basic idea is that we store values in the two stacks until we are
ready to process them. As we see left parentheses and operators,
we push them onto the symbol stack. As we see numbers, we push
them onto the number stack. And when we see a right parenthesis,
we know we have all of the information for a given sub-expression
and we go ahead and evaluate it. We then push the result back onto
the number stack.

Consider a simple case of evaluating "(2+3)" . Table 14.3 shows
how the initially empty stacks have elements added to them until we

encounter the right parenthesis, at which point we evaluate the sum
and push the result onto the number stack.

Table 14.3 Evaluation of "(2+3)"

Notice that the overall value is the one and only value stored in the
number stack when we are done and the symbol stack is empty
when we are done. If there are other values left in either stack, then
we know that we had an illegal expression.

This seems like a lot of work to do for a fairly simple computation.
But remember that we can form complex sub-expressions that need
to be evaluated as well. For example, what if the expression to
evaluate had been "((4/2)+(7−4))"? This expression will have the
same value because (4/2) evaluates to 2 and (7−4) evaluates to 3 .
With the two stack approach, we can keep track of each part of this
expression until we are ready to process it. Table 14.4 shows the
evaluation of the more complex expression.

Table 14.4 Evaluation of "((4/2)+(7-4))"

To write the code, we just have to implement the algorithm. It is
easiest if we assume the input has no errors, but it’s better to
recognize errors when we can. We can’t really recover from an error
and it can get complex to report the nature of each error. So let’s
strike a middle ground of recognizing as many errors as we can, but
giving just a simple error message if we encounter a mistake.

We know that we want to process tokens until we either encounter
an error or run out of tokens. It is helpful to introduce a boolean flag
that keeps track of whether an error has been seen. We expect to
reach a point where the symbol stack is empty and the number stack
has exactly one value in it. In that case, we could report that one
number as the overall result. The basic structure of our solution is:

StringSplitter data = new StringSplitter(line);

Stack<String> symbols = new Stack<>();

Stack<Double> values = new Stack<>();

boolean error = false;

while (!error && data.hasNext()) {

 ...

}

if (error || values.size() != 1 || !symbols.isEmpty()) {

 System.out.println("illegal expression");

} else {

 System.out.println(values.pop());

}

Our remaining task is to fill in the body of the while loop for
processing tokens. Two of the cases are relatively simple. When we
see a left parenthesis or operator, we push it on the symbol stack.
When we see a number, we push it on the number stack. The hard
part is when we see a right parenthesis. The body of our while loop
will look like this:

String next = data.next();

if (next.equals(")")) {

 // process)

} else if ("(+−*/^".contains(next)) {

 symbols.push(next);

} else { // it should be a number

 values.push(Double.parseDouble(next));

}

Notice that in the final case we call the method Double.parseDouble to
convert the token from a string into a double . As noted above, two
out of three of these cases are simple. The third case is the hard
one. How do we process a right parenthesis?

If an expression is legal, then we should have encountered a left
parenthesis at the beginning of it and two numbers to work with and
an operator to evaluate. So we expect that the symbol stack will
have an operator on the top of the stack and a left parenthesis just
below it. The two values should be on the number stack. In general
we will remove the operator and left parenthesis, remove the two
numbers, and then apply the operator. What makes this complicated
is that there might be all sorts of errors. We have to be careful to
check at every step that we have what we are supposed to have.

One thing we know is that the only values that are pushed onto the
symbol stack are legal operators and left parentheses. We can use
the stack sizes for several of our tests, but we have to make sure

that we have an operator and not a left parenthesis and that below it
on the stack is a left parenthesis. The following code checks for
these errors and evaluates one operator, pushing the result back
onto the numbers stack:

if (symbols.size() < 2 || symbols.peek().equals("(")) {

 error = true;

} else {

 String operator = symbols.pop();

 if (!symbols.peek().equals("(")) {

 error = true;

 } else {

 symbols.pop(); // to remove the "("

 double op2 = values.pop();

 double op1 = values.pop();

 double value = evaluate(operator, op1, op2);

 values.push(value);

 }

}

The code above involves a call on a method called evaluate . We
wrote this method for the Chapter 12 case study. It takes an
operator and two operands and returns the result of applying that
operator to the two operands. Putting all of this together, we end up
with the following complete program:

 1 // This program prompts for fully parenthesized arithmetic

 2 // expressions and it evalues each expression. It uses two

 3 // stacks to evaluate the expressions.

 4

 5 import java.util.*;

 6

 7 public class Evaluator {

 8 public static void main(String[] args) {

 9 System.out.println("This program evaluates fully");

10 System.out.println("parenthesized expressions with

the");

11 System.out.println("operators +, −, *, /, and ^");

12 System.out.println();

13 Scanner console = new Scanner(System.in);

14 System.out.print("expression (return to quit)? ");

15 String line = console.nextLine().trim();

16 while (line.length() > 0) {

17 evaluate(line);

18 System.out.print("expression (return to quit)?

");

19 line = console.nextLine().trim();

20 }

21 }

22

23 // pre : line contains a fully parenthesized expression

24 // post: prints the value of the expression or an error

25 // message if the expression is not legal

26 public static void evaluate(String line) {

27 StringSplitter data = new StringSplitter(line);

28 Stack<String> symbols = new Stack<>();

29 Stack<Double> values = new Stack<>();

30 boolean error = false;

31 while (!error && data.hasNext()) {

32 String next = data.next();

33 if (next.equals(")")) {

34 if (symbols.size() < 2 ||

35 symbols.peek().equals("(")) {

36 error = true;

37 } else {

38 String operator = symbols.pop();

39 if (!symbols.peek().equals("(")) {

40 error = true;

41 } else {

42 symbols.pop(); // to remove the "("

43 double op2 = values.pop();

44 double op1 = values.pop();

45 double value = evaluate(operator,

op1, op2);

46 values.push(value);

47 }

48 }

49 } else if ("(+−*/^".contains(next)) {

50 symbols.push(next);

51 } else { // it should be a number

52 values.push(Double.parseDouble(next));

53 }

54 }

55 if (error || values.size() != 1 ||

!symbols.isEmpty()) {

56 System.out.println("illegal expression");

57 } else {

58 System.out.println(values.pop());

59 }

60 }

61

62 // pre : operator is one of +, −, *, /, or ^

63 // post: returns the result of applying the given

operator to

64 // the given operands

65 public static double evaluate(String operator, double

operand1,

66 double operand2) {

67 if (operator.equals("+")) {

68 return operand1 + operand2;

69 } else if (operator.equals("−")) {

70 return operand1 – operand2;

71 } else if (operator.equals("*")) {

72 return operand1 * operand2;

73 } else if (operator.equals("/")) {

74 return operand1 / operand2;

75 } else if (operator.equals("^")) {

76 return Math.pow(operand1, operand2);

77 } else {

78 throw new RuntimeException(

79 "illegal operator " + operator);

80 }

81 }

82 }

Below is a sample log of execution:

This program evaluates fully

parenthesized expressions with the

operators +, −, *, /, and ^

expression (return to quit)? (2+3)

5.0

expression (return to quit)? ((4–2)+(7–4))

5.0

expression (return to quit)? (2+3–4)

illegal expression

expression (return to quit)? (19.4–3.8))

illegal expression

expression (return to quit)? ((7.5/(2.3^7.2))–(9.4–3.8)) –

5.581352490199907

expression (return to quit)?

This program is fairly robust. The one bit of error checking it doesn’t
do is to handle illegal tokens. Any illegal tokens will be assumed to
be numbers. The main token-processing loop includes a call on

Double.parseDouble that will throw a NumberFormatException if it
encounters such a token. This could be fixed by adding a try/catch
block that sets the error flag to true if the NumberFormatException is
thrown.

Chapter Summary
A stack is a collection that allows you to add and remove elements
from its top, providing “Last-In, First-Out” (LIFO) access.

The common operations of a stack include adding (“push”), removing
(“pop”), testing whether the stack is empty, asking for the stack’s
size, and “peeking” at the top element without removing it.

A queue is a collection that allows you to add elements to the back
and remove elements from the front, providing “First-In, First-Out”
(FIFO) access.

The common operations of a queue include adding (“enqueue”),
removing (“dequeue”), testing whether the queue is empty, asking for
the queue’s size, and “peeking” at the front element without
removing it.

To process all elements of a stack, the collection must be emptied. If
you want to examine the contents without damaging the collection,
you must keep a backup and restore the data afterward.

To process all elements of a queue, you must either backup and
restore the data or cycle values to the end of the queue as you
process them.

The size of a stack or queue changes as its elements are processed
and removed, so many algorithms to process these collections need
to keep track of the collection’s size separately to avoid common
bugs and pitfalls.

Self-Check Problems

Section 14.1: Stack/Queue Basics

1. Which of the following statements about stacks and queues is
true?

a. Stacks and queues can store only integers as their
data.

b. A stack returns elements in the same order as they
were added (first-in, first-out).

c. A queue’s remove method removes and returns the
element at the front of the queue.

d. Stacks and queues are similar to lists, but less efficient.
e. The peek method allows access to the element at the

bottom of a stack.

2. What is a real-world example of data that could be modeled
using a stack? Using a queue?

3. When you call push on a stack, where is the new element
placed relative to the other elements in the stack? When you
call pop , which element from the stack is returned?

4. When you call add on a queue, where is the new element
placed relative to the other elements in the queue? When you
call remove , which element from the queue is returned?

5. If you create a new empty stack and push the values 1, 2, and
3 in that order, and call pop on the stack once, what value will
be returned?

6. If you create a new empty queue and add the values 1, 2, and
3 in that order, and call remove on the queue once, what value
will be returned?

7. The following piece of code incorrectly attempts to declare a
queue of integers. What is wrong with the code, and how
would you fix it?

Queue<Integer> q = new Queue<>();

8. Write a piece of code that declares a stack of strings and fills
it with the following contents, such that "howdy" is at the top of
the stack and "hello" is at the bottom: [hello, hi, goodbye,
howdy] . You can print the stack to verify its state.

9. Write a piece of code that declares a stack of integers and
uses a loop to fill it with the multiples of 2 from 0 through 100
inclusive, such that 0 is at the top of the stack and 100 is at
the bottom: [100, 98, 96, ..., 4, 2, 0] . You can print the
stack to verify its state.

10. Write a piece of code that declares a queue of strings and fills
it with the following contents, such that "alpha" is at the front
of the queue and "delta" is at the back: [alpha, beta, gamma,
delta] . You can print the queue to verify its state.

Section 14.2: Common
Stack/Queue Operations

11. Stacks and queues do not have index-based methods such
as get from ArrayList . How can you access elements in the
middle of a stack or queue?

12. Stacks and queues have less functionality than other similar
collections like lists and maps. Why are they still useful
despite lacking functionality? What possible advantages are
there of using a less powerful collection?

13. What is the output of the following code?

Stack<String> s = new Stack<>();

Queue<String> q = new LinkedList<>();

s.push("how");

s.push("are");

s.push("you");

while (!s.isEmpty()) {

 q.add(s.pop());

}

System.out.println(q);

14. What is the output of the following code?

Stack s = new Stack<>();

s.push(7);

s.push(10);

System.out.println(s.pop());

System.out.println(s.peek());

s.push(3);

s.push(5);

System.out.println(s.pop());

System.out.println(s.isEmpty());

System.out.println(s.size());

System.out.println(s.peek());

s.push(8);

System.out.println(s.pop());

System.out.println(s.pop());

15. What is the output of the following code?

Queue<Integer> q = new LinkedList<>();

q.add(10);

q.add(4);

System.out.println(q.size());

System.out.println(q.peek());

q.add(6);

System.out.println(q.remove());

q.add(3);

System.out.println(q.remove());

System.out.println(q.peek());

System.out.println(q.remove());

q.add(7);

System.out.println(q.peek());

16. Write the output produced when the following method is
passed each of the following stacks:

public static void mystery1(Stack<Integer> s) {

 Queue<Integer> q = new LinkedList<>();

 while (!s.isEmpty()) {

 int n = s.pop();

 q.add(n);

 q.add(n);

 }

 while (!q.isEmpty()) {

 s.push(q.remove());

 }

 System.out.println(s);

}

a. [2, 6, 1]
b. [42, −3, 4, 15, 9]
c. [30, 20, 10, 60, 50, 40]

Section 14.3: Complex
Stack/Queue Operations

17. Write the output produced when the following method is
passed each of the following queues:

public static void mystery2(Queue<Integer> q) {

 Stack<Integer> s = new Stack<>();

 int size = q.size();

 for (int i = 0; i < size; i++) {

 int n = q.remove();

 if (n % 2 == 0) {

 s.push(n);

 } else {

 q.add(n);

 }

 }

 System.out.println(q + " " + s);

}

a. [1, 2, 3, 4, 5, 6]
b. [42, −3, 4, 15, 9, 71]
c. [30, 20, 10, 60, 50, 40, 3, 0]

18. Write the output produced when the following method is
passed each of the following queues:

public static void mystery3(Queue<Integer> q) {

 int size = q.size();

 for (int i = 0; i < size; i++) {

 int n = q.remove();

 if (n > 0) {

 q.add(−n);

 }

 }

 System.out.println(q);

}

a. [1, −2, 3, −4, 5, −6]
b. [42, −3, 4, −15, −9, 71]
c. [−30, −20, 10, 60, 50, −40, −3, 0]

19. The following piece of code incorrectly attempts to find the
largest value in a queue of integers. What is wrong with the
code, and how would you fix it?

int largest = q.remove();

for (int i = 0; i < q.size(); i++) {

 largest = Math.max(largest, q.remove());

}

20. The following piece of code incorrectly attempts to compute
the sum of all positive values in a queue of integers. What is

wrong with the code, and how would you fix it?

int sum = 0;

while (!q.isEmpty()) {

 if (q.remove() > 0) {

 sum += q.remove();

 }

}

21. The following piece of code incorrectly attempts to remove all
even values from a stack of integers. What is wrong with the
code, and how would you fix it?

while (!s.isEmpty()) {

 int n = s.pop();

 if (n % 2 != 0) {

 s.push(n); // put back in stack if odd

 }

}

22. Write a piece of code that prints the elements of a queue of
integers, one per line. When your code is done running, the
queue should still contain the same contents as it had at the
start. In other words, don’t destroy the queue as you print it. If
you like, put your code into a method called print that
accepts the queue as a parameter.

23. Write a piece of code that finds and prints the longest string in
a stack of strings. For example, in the stack [hello, hi,

goodbye, howdy] , the longest string is "goodbye" . When your
code is done running, the stack should still contain the same
contents as it had at the start. In other words, if you destroy
the stack as you examine it, restore its state afterward. If you
like, put your code into a method called printLongest that
accepts the stack as a parameter.

Exercises
Each problem will indicate what kind of structure to use as auxiliary
storage. You should not use any other auxiliary data structures to
solve the problems, although you can create as many simple
variables as you’d like.

It is the authors’ intent that you use stacks/queues in stack/queue-
like ways only when solving these problems. For example, you
should not call index-based methods such as get , search , or set (or
use a for-each loop) on a stack/queue. You may call only add ,
remove , push , pop , peek , isEmpty , and size . It is also possible to
solve all of the exercises without using peek if you want an extra
challenge.

For problems that accept a stack or queue as a parameter, unless
otherwise specified, you should make sure that your method does
not damage the state of the parameter. That is, if you modify the
parameter stack or queue’s elements in your method, you should
restore the parameter collection to its original state before your
method returns.

Some of these problems have elegant recursive solutions, but the
authors’ intent is generally that you should not solve these problems

recursively, because recursion can circumvent some of the tricky
stack/queue manipulation that you are supposed to practice.

1. Write a method called splitStack that accepts a stack of
integers as a parameter and rearranges its elements so that
all the negatives appear on the bottom of the stack and all the
nonnegatives appear on the top. If after this method is called
you were to pop numbers off the stack, you would first get all
the nonnegative numbers and then get all the negative
numbers. It does not matter what order the numbers appear in
as long as all the negatives appear lower in the stack than all
the nonnegatives. For example, if the stack stores [3, −5, 1,
2, −4] , an acceptable result from your method would be [−5,
−4, 3, 1, 2] . Use a single queue as auxiliary storage.

2. Write a method called stutter that accepts a stack of integers
as a parameter and replaces every value in the stack with two
occurrences of that value. Preserve the original relative order.
For example, if the stack stores [3, 7, 1, 14, 9] , your
method should change it to store [3, 3, 7, 7, 1, 1, 14, 14,
9, 9] . Use a single queue as auxiliary storage.

3. Write a method called copyStack that accepts a stack of
integers as a parameter and returns a copy of the original
stack (i.e., a new stack with the same values as the original,
stored in the same order as the original). Your method should
create the new stack and fill it up with the same values that
are stored in the original stack. When your method is done

executing, the original stack must be restored to its original
state. Use one queue as auxiliary storage.

4. Write a method called collapse that accepts a stack of
integers as a parameter and that collapses it by replacing
each successive pair of integers with the sum of the pair. For
example, if the stack stores [7, 2, 8, 9, 4, 11, 7, 1, 42] ,
the first pair should be collapsed into , the second
pair should be collapsed into , and so on. If the
stack stores an odd number of elements, such as the 42 at
the end of our example stack, the final element is not
collapsed. So for this stack your method would yield [9, 17,
15, 8, 42] . Use one queue as auxiliary storage.

5. Write a method called equals that accepts two stacks of
integers as parameters and returns true if the two stacks
store exactly the same sequence of integer values in the
same order. Your method must restore the two stacks to their
original state before returning. Use one stack as auxiliary
storage.

6. Write a method called rearrange that accepts a queue of
integers as a parameter and rearranges the order of the
values so that all of the even values appear before the odd
values and that otherwise preserves the original order of the
queue. For example, if the queue stores [3, 5, 4, 17, 6, 83,
1, 84, 16, 37] , your method should rearrange it to store [4,
6, 84, 16, 3, 5, 17, 83, 1, 37] . Notice that all of the evens
appear at the front followed by the odds and that the relative

9(7 + 2)
17(8 + 9)

order of the evens and odds is the same as in the original.
Use one stack as auxiliary storage.

7. Write a method called reverseHalf that accepts a queue of
integers as a parameter and reverses the order of all the
elements in odd-numbered positions (position 1, 3, 5, etc.),
assuming that the first value in the queue has position 0. For
example, if the queue stores [1, 8, 7, 2, 9, 18, 12, 0] , your
method should change it to store [1, 0, 7, 18, 9, 2, 12, 8] .
Notice that numbers in even positions (positions 0, 2, 4, 6)
have not moved. That subsequence of integers is still (1, 7, 9,
12). But notice that the numbers in odd positions (positions 1,
3, 5, 7) are now in reverse order relative to the original. In
other words, the original subsequence (8, 2, 18, 0) has
become (0, 18, 2, 8). Use a single stack as auxiliary storage.

8. Write a method called isPalindrome that accepts a queue of
integers as a parameter and returns true if the numbers in
the queue are the same in reverse order. For example, if the
queue stores [3, 8, 17, 9, 17, 8, 3] , your method should
return true because this sequence is the same in reverse
order. If the queue stores [3, 17, 9, 4, 17, 3] , your method
would return false because this sequence is not the same in
reverse order (the 9 and 4 in the middle don’t match). The
empty queue should be considered a palindrome. Your
method must restore the parameter queue to its original state
before returning. Use one stack as auxiliary storage.

9. Write a method called switchPairs that accepts a stack of
integers as a parameter and swaps neighboring pairs of

numbers starting at the bottom of the stack. For example, if
the stack initially stores [1, 2, 8, 6, −1, 15, 7] , your method
should swap the first pair (1, 2), the second pair (8, 6), the
third pair (, 15), and so on. If the stack contains an odd
number of elements, the element at the top should remain
unmodified. So the final state of the stack would be [2, 1, 6,
8, 15, −1, 7] . Use one queue as auxiliary storage.

10. Write a method called isConsecutive that accepts a stack of
integers as a parameter and that returns true if the stack
contains a sequence of consecutive integers starting from the
bottom of the stack. Consecutive integers are integers that
come one after the other, as in 3, 4, 5, etc. If the stack stores
[5, 6, 7, 8, 9, 10] , your method should return true . If the
stack had instead contained [7, 8, 9, 10, 12] , your method
should return false because the numbers 10 and 12 are not
consecutive. Notice that we look at the numbers starting at
the bottom of the stack. Any stack with fewer than two values
should be considered to be a list of consecutive integers. Your
method must restore the parameter stack to its original state
before returning. Use one queue as auxiliary storage.

11. Write a method called reorder that accepts a queue of
integers as a parameter and that puts the integers into sorted
(nondecreasing) order, assuming that the queue is already
sorted by absolute value. For example, if the queue stores [1,
2, −2, 4, −5, 8, −8, 12, −15] , notice that the values appear
in sorted order if you ignore the sign of the numbers. Your
method should reorder the values so that the queue stores

−1

[−15, −8, −5, −2, 1, 2, 4, 8, 12] . Use one stack as auxiliary
storage.

12. Write a method called shift that accepts a stack of integers
and an integer as parameters and that shifts values from
the bottom of the stack to the top of the stack. For example, if
the stack named s stores [1, 2, 3, 4, 5, 6, 7, 8] , and we
make the call shift(s, 3); your method should shift the three
values at the bottom of the stack to the top of the stack and
leave the other values in the same order, producing [4, 5, 6,
7, 8, 3, 2, 1] . Notice that the value that was at the bottom of
the stack is now at the top, the value that was second from
the bottom is now second from the top, the value that was
third from the bottom is now third from the top, and that the
five values not involved in the shift are now at the bottom of
the stack in their original order. Use one queue as auxiliary
storage. You may assume that the parameter is and
not larger than the number of elements in the stack.

13. Write a method called expunge that accepts a stack of integers
as a parameter and makes sure that the stack’s elements are
in nondecreasing order from top to bottom, by removing from
the stack any element that is smaller than any element(s) on
top of it. For example, if the stack stores [4, 20, 15, 15, 8,
5, 7, 12, 3, 10, 5, 1] , the element values 3, 7, 5, 8, and
4 should be removed because each has an element above it
with a larger value. So your method should change the stack
to store [20, 15, 15, 12, 10, 5, 1] . Notice that now the
elements are in nondecreasing order from top to bottom. If the

n n

n ≥ 0

stack is empty or has just one element, nothing changes. Use
one queue or stack (but not both) as auxiliary storage.

14. Write a method called reverseFirstK that accepts an integer
and a queue of integers as parameters and reverses the order
of the first elements of the queue, leaving the other
elements in the same relative order. For example, if a queue
named q stores [10, 20, 30, 40, 50, 60, 70, 80, 90] , the
call of reverseFirstK(4, q); should change the queue to store
[40, 30, 20, 10, 50, 60, 70, 80, 90] . If is 0 or negative, no
change should be made. If the queue does not contain at
least elements, your method should throw an
IllegalArgumentException . Use one queue or stack (but not
both) as auxiliary storage.

15. Write a method called isSorted that accepts a stack of
integers as a parameter and returns true if the elements in
the stack occur in ascending (nondecreasing) order from top
to bottom. That is, the smallest element should be on top,
growing larger toward the bottom. For example, if the stack
stores [20, 20, 17, 11, 8, 8, 3, 2] , your method should
return true . An empty or one-element stack is considered to
be sorted. Your method must restore the parameter stack to
its original state before returning. Use one queue or stack (but
not both) as auxiliary storage.

16. Write a method called mirror that accepts a stack of integers
as a parameter and replaces the stack contents with itself
plus a mirrored version of itself (the same elements in the
opposite order). For example, if the stack stores [10, 53, 19,

k

k

k

k

24] , your method should change it to store [10, 53, 19, 24,
24, 19, 53, 10] . If passed an empty stack, your result should
be an empty stack. Use one stack or one queue (but not both)
as auxiliary storage to solve this problem.

17. Write a method called compressDuplicates that accepts a stack
of integers as a parameter and that replaces each sequence
of duplicates with a pair of values: a count of the number of
duplicates, followed by the actual duplicated number. For
example, if the stack stores [2, 2, 2, 2, 2, −4, −4, −4, 82,
6, 6, 6, 6, 17, 17] , your method should change it to store
[5, 2, 3, −4, 1, 82, 4, 6, 2, 17] . This new stack indicates
that the original had 5 occurrences of 2 at the bottom of the
stack followed by 3 occurrences of −4 followed by 1
occurrence of 82, and so on. If the stack is empty, your
method should not change it. Use one queue as auxiliary
storage.

18. Write a method called mirrorHalves that accepts a queue of
integers as a parameter and replaces each half of that queue
with itself plus a mirrored version of itself (the same elements
in the opposite order). For example, if the queue stores [10,
50, 19, 54, 30, 67] , your method should change it to store
[10, 50, 19, 19, 50, 10, 54, 30, 67, 67, 30, 54] . If your
method is passed an empty queue, the result should be an
empty queue. If your method is passed a queue whose size is
not even, throw an IllegalArgumentException . Use one stack
or one queue (but not both) as auxiliary storage.

19. Write a method called removeMin that accepts a stack of
integers as a parameter and removes and returns the
smallest value from the stack. For example, if the stack stores
[2, 8, 3, 19, 2, 3, 2, 7, 12, −8, 4] , your method should
remove and return −8 , leaving the stack storing [2, 8, 3, 19,
2, 3, 2, 7, 12, 4] . If the minimum value appears more than
once, all occurrences of it should be removed. For example,
given the same stack, if we again call removeMin on it, the
method would return 2 and leave the stack storing [8, 3, 19,
3, 7, 12, 4] . Use one queue as auxiliary storage.

20. Write a method called interleave that accepts a queue of
integers as a parameter and rearranges the elements by
alternating the elements from the first half of the queue with
those from the second half of the queue. For example, if the
queue stores [2, 8, −5, 19, 7, 3, 24, 42] , your method
should change it to store [2, 7, 8, 3, −5, 24, 19, 42] . To
understand the result, consider the two halves of this queue.
The first half is [2, 8, −5, 19] and the second half is [7, 3,
24, 42] . These are combined in an alternating fashion to form
a sequence of pairs: the first values from each half (2 and 7),
then the second values from each half (8 and 3), and so on.
Your method should throw an IllegalArgumentException if the
queue does not have an even size. Use one stack as auxiliary
storage.

21. Write a method called maxToTop that takes a stack of integers
as a parameter and moves the largest value in the stack to

the top of the stack, leaving all other values in their original
order. You may assume that the stack does not contain any
duplicates. For example, if a stack s stores [27, 5, 42, -11,
0, 19] , the call of maxToTop(s) should change it to store [27,
5, -11, 0, 19, 42] . If the stack is empty, your method should
not change it. Use one queue as auxiliary storage.

Programming Projects
1. Write a Primes program that finds prime numbers using the

Sieve of Eratosthenes, an algorithm devised by a Greek
mathematician of the same name who lived in the third
century BC. The algorithm finds all prime numbers up to some
maximum value , as described by the following pseudocode:

create a queue of numbers to process.

fill the queue with the integers 2 through n inclusive.

create an empty result queue to store primes.

repeat the following steps:

 obtain the next prime p by removing the first value

 from the queue of numbers.

 put p into the result queue of primes.

 loop through the queue of numbers,

 eliminating all numbers that are divisible by p.

while (p is less than the square root of n).

all remaining values in the numbers queue are prime,

 so transfer them to the result primes queue.

Several web sites have nice descriptions and animations of
this algorithm in action; consider searching for “Sieve of
Eratosthenes” in your web browser.

n

2. Write an HTML Validator program that reads files of HTML
data and uses stacks and queues to verify whether the tags in
the file are properly matched. A tag consists of a named
element between less-than, < , and greater-than, > , symbols.
Many tags apply to a range of text, in which case a pair of
tags is used: an opening tag indicating the start of the range
and a closing tag with a slash indicating the end of the range.
For example, you can make some text bold like this .
Tags can be nested to combine effects, <i>bold italic </i>

 . Some tags, such as the br tag for inserting a line break
or img for inserting an image, do not cover a range of text and
are considered to be “self-closing.” Self-closing tags do not
need a closing tag; for a line break, only a tag of
 is
needed. Some web developers write self-closing tags with an
optional / before the > , such as
 .
The following HTML file has some errors: the <title> tag is
not closed; the </head> tag appears twice; an extraneous
</br> tag appears; and the <body> tag is not properly closed.

<!DOCTYPE html>

<html>

 <!—— This is a comment ——>

 <head>

 <title>Turtles are cool

 </head>

 </head>

<body>

 <p>Turtles swim in the ocean.

</p>

 </br>

 <p>Some turtles are over 100 years old.

 Here is a picture of a turtle:

 </p>

</html>

3. Modify the expression evaluator case study program from this
chapter to make a new program that accepts as input a fully
parenthesized infix expression and returns a string
representing an equivalent postfix expression. Postfix
expressions are ones where each operator follows its two
operands, such as 1 2 + rather than 1 + 2 . Postfix
expressions are elegant in that they do not need parentheses.
For example, the given infix expression:

(9 + (8 * 7 - (6 / 5 ^ 4) * 3) * 2))

is equivalent to the following postfix expression:

9 8 7 * 6 5 4 ^ / 3 * - 2 * +

Your algorithm should read the expression token by token,
using a stack to store operators. (You don’t need the values
stack from the original case study anymore.) Instead, each

time a number is encountered, append it to a string that you
are building up. Each time a right parenthesis is encountered,
pop the stack to get an operator and append it to the string
you are building up. Leave in place the rest of the code to
preserve the error checking. Return the string " illegal

expression " if an error is encountered.
4. Write a Maze Explorer program that uses stacks and queues

to implement an algorithm to escape from a maze. The overall
pseudocode of the algorithm is the following. The algorithm
can be implemented using a stack or a queue. What are the
pros and cons of each?

create an empty stack of locations to explore.

push the start location onto the stack.

while (stack is not empty) {

 pop a location L from the stack.

 if we have we pulled L from the stack before:

 no need to explore it again, so skip L.

 if L is the end location:

 the end was reachable!

 else, L is a new reachable non-finish location, so

explore it:

 add all non-wall adjacent maze locations to the

stack.

 record the fact that we have explored L.

}

if the stack is empty, the finish is unreachable.

5. Write a Guitar Hero program that uses a queue to simulate
the creation of guitar notes. When a guitar string is plucked, it
vibrates to generate sound. The sound starts from the note’s
initial note pitch or frequency, then it undergoes a wave-like
oscillation and gradually fades in volume over time.
The oscillation and fading of notes can be computed using an
algorithm called Karplus-Strong. The algorithm represents
sound as time slices called samples (44,100 samples per
second, in this case). You can compute samples that sound
similar to the vibrations of a real guitar as displacements from
the guitar string’s original frequency. First create a queue of
random displacements between ½ and ½. The length of the
queue should be the sampling rate, 44,100, divided by the
note’s frequency. Then repeatedly remove the first queue
element, average it with the next front element, slightly fade
the volume by multiplying it by 0.996, then add the result back
into the queue as shown in Figure 14.3 .
Figure 14.3 Karplus-Strong algorithm samples

−

This program requires support code to send output to your
computer’s sound card. The code is provided on our web site
at http://buildingjavaprograms.com/.

Chapter 15 Implementing a
Collection Class

15.1 Simple ArrayIntList
• Adding and Printing

• Thinking about Encapsulation

• Dealing with the Middle of the List

• Another Constructor and a Constant

• Preconditions and Postconditions

15.2 A More Complete ArrayIntList
• Throwing Exceptions

• Convenience Methods

15.3 Advanced Features
• Resizing When Necessary

• Adding an Iterator

15.4 ArrayList<E>

Introduction
In Chapters 10 , 11 , and 14 we saw how to
use various data structures that are part of the
collections framework. As a Java programmer,
you will find it useful to have these off-the-shelf
solutions available to you, but you can learn a
lot from examining how these structures are
implemented. In this chapter we will explore in
detail how to implement one such structure.

Our goal is to understand the ArrayList class
that was described in detail in Chapter 10 .
Recall that ArrayList is a generic class that is
best described as ArrayList<E> , where E is
filled in with a specific element type. Because
generic classes are not easy to implement, we
will first explore the implementation of a class
called ArrayIntList that can be used to store a
list of simple integer values. There aren’t a lot of
applications for a simple ArrayIntList object,
but the code we write for it will be similar to the
code we need for the generic version. The
chapter ends with a section that explores how to

turn the more specific ArrayIntList into a
generic ArrayList<E> .

15.1 Simple ArrayIntList
In this section, we will develop an initial version of the ArrayIntList
class that contains appropriate fields for storing a list and a minimal
set of operations for manipulating it.

Recall from Chapter 8 that there are two important perspectives
of any class. The first is the external view that a client of the class
will have. Clients in general don’t want to understand all of the
internal details of the class. They just want to know what it does. As
a result, we want to have a clear specification for the client of what
the ArrayIntList class is supposed to do. We think of this as a
contract that we have with the client.

Contract
A clear specification that tells a client how an object
behaves without describing the details of how it is
implemented.

The second view is the internal view of the implementer. We have to
figure out how to make the object work—how to satisfy the contract.

When we are thinking as an implementer, we will consider the nitty-
gritty details of the innards of an object.

It is sometimes confusing to switch between these two different
perspectives, but you will get better at it as you practice.

Adding and Printing

Let’s start by developing a version of the class which has a single
mutator method that will append values to the end of the list and a
single accessor method that will display the contents of the list.
Assume that the client code will look something like the following:

 1 // A basic client that uses the ArrayIntList class.

 2 public class Client1 {

 3 public static void main(String[] args) {

 4 // construct two lists

 5 ArrayIntList list1 = new ArrayIntList();

 6 ArrayIntList list2 = new ArrayIntList();

 7

 8 // add 1, 82, 97 to list1

 9 list1.add(1);

10 list1.add(82);

11 list1.add(97);

12

13 // add 7, –8 to list2

14 list2.add(7);

15 list2.add(–8);

16

17 // report results

18 System.out.println("list1 = " + list1);

19 System.out.println("list2 = " + list2);

20 }

21 }

The preceding code will produce the following output:

list1 = [1, 82, 97]

list2 = [7, –8]

You must implement three methods in this program: the constructor,
the add method, and the toString method that println will call. First
you have to figure out what kind of fields you need. We are trying to
emulate the ArrayList class, which is built on top of a simple array,
so you should do the same thing for your ArrayIntList class. All of
the examples of arrays in Chapter 7 involved what could be called
filled arrays in which each element of the array is in use. A filled
array works fine in many applications, but this is not one of them.
You are implementing a dynamic structure that will grow and shrink

as the client adds and removes values, so you don’t want to be
forced to use an array that is exactly the same size as your list.

Instead, you should use an unfilled array in which some of the array
elements are in use and some are not. This approach is similar to
the way that a hotel is run. A hotel might have 100 guest rooms, but
they don’t all have to be occupied at once. There might be 90 rooms
currently in use by customers and 10 vacant rooms that are available
for later use.

This concept raises the question of how to distinguish between
occupied cells and vacant cells in the array. One simple approach is
to maintain a size variable that keeps track of the number of
occupied cells and use the front of the array for cells that are
currently in use and the back of the array for cells that are vacant.
Unlike a hotel that has vacant occupied rooms interspersed, this kind
of unfilled array groups all of the occupied cells together at the front
of the array and all of the vacant cells at the end of the array.

For example, the sample client code at the beginning of this section
constructs a list and adds the values 1 , 82 , and 97 to the list. That
would mean that three of the array cells are occupied and any other
cells are vacant. Suppose that you construct an array variable called
elementData and you add these three values as the first three entries
in the array:

While it’s true that the first vacant cell has the value 0 stored in it,
you wouldn’t want to count on this being the case because the client
might want to store the value 0 in the list. Without a size variable,
you wouldn’t know for sure whether this list ends with 97 or whether
it ends with one of the zeros. With the size variable, you can keep
track of exactly how many cells are occupied and you know that all
others are vacant:

In the preceding example, the array has a length of 10. We refer to
this length as the capacity of the list. In our hotel analogy, the hotel
has 100 rooms, which means that it has the capacity to rent up to
100 rooms. But often the hotel is not filled to capacity. The same will
be true for your list. The size variable keeps track of how much of
the list is currently occupied whereas the capacity tells you how large
the list can grow.

The fields you want to declare for your class are an array and a size
variable:

public class ArrayIntList {

 private int[] elementData;

 private int size;

 ...

}

Your constructor should initialize these fields. The array in the
preceding example had a capacity of 10, but let’s increase it to 100:

public class ArrayIntList {

 private int[] elementData;

 private int size;

 public ArrayIntList() {

 elementData = new int[100];

 size = 0;

 }

 ...

}

Recall from Chapter 8 that fields are initialized to the zero-
equivalent for the type, which means that the size field will be

initialized to 0 with or without the line of code in the constructor.
Some Java programmers prefer to leave out the line of code
because they are familiar with the default initialization. Others prefer
to be more explicit about the initialization. This is somewhat a matter
of personal taste.

Now that you have the fields and constructor defined, you can turn
your attention to the add method. It takes an integer as a parameter.
The idea is that you should append the given value to the end of the
list. The method will look like this:

public void add(int value) {

 ...

}

This turns out to be a fairly simple method to implement. Suppose,
for example, that the list stores the values [3, 6, 9, 12, 15]:

As indicated in the preceding figure, the current size of the list is 5. If
you wanted to add the value 18 to the end of this list, you’d store it in
the first vacant array element, which has index 5. In other words,
when the list has a size of 5, you append the next value into index 5.
And once you’ve added that value into index 5, then the list will have
a size of 6 and the next vacant element will be at index 6.

Generally speaking, the size of the list will always match the index of
the first vacant cell. This seems a bit odd, but it is a result of zero-
based indexing. Because the first value is stored in index 0, the last
value of a sequence of length will be stored in index

Therefore you should begin the add method by appending the given
value at index size :

public void add(int value) {

 elementData[size] = value;

 ...

}

Storing the value into the array isn’t enough. You have to increment
the size to keep track of the fact that one more cell is now occupied:

public void add(int value) {

 elementData[size] = value;

n n − 1.

 size++;

}

If your program did not increment size , it would keep adding values
in the same index of the array. This would be like our hypothetical
hotel checking every customer into the same hotel room because the
hotel didn’t keep track of which rooms are occupied.

It seems likely that this method will work, but so far the program
doesn’t have a good way of verifying it. You need some kind of
method for displaying the contents of the list.

Chapter 7 explored the following code for printing the contents of
an array of integers:

public static void print(int[] list) {

 if (list.length == 0) {

 System.out.println("[]");

 } else {

 System.out.print("[" + list[0]);

 for (int i = 1; i < list.length; i++) {

 System.out.print(", " + list[i]);

 }

 System.out.println("]");

 }

}

The code involves a fencepost loop because we use commas to
separate values. If there are numbers, they will be separated by

 commas. The code uses the classic fencepost solution of
printing the first value before the loop. The if/else is used because
there is a special case if the array is empty. This code can be fairly
easily adapted to your ArrayIntList class. You have to convert the
static method into an instance method. As a result, instead of having
a parameter called list , you refer to the field called elementData .
You also want to modify the code so that it uses the size of the list
rather than the length of the array:

public void print() {

 if (size == 0) {

 System.out.println("[]");

 } else {

 System.out.print("[" + elementData[0]);

 for (int i = 1; i < size; i++) {

 System.out.print(", " + elementData[i]);

 }

 System.out.println("]");

 }

}

But you don’t want a method to print the list. If you want to make a
truly useful class, you should provide flexible mechanisms that will
work in a wide variety of situations. A better solution is to return a
string representation of the list rather than printing it. As we saw in

n

n − 1

Chapter 8 , Java has a standard name for such a method:
toString . So you should rewrite the preceding method to construct
and return a string representation of the list:

public String toString() {

 if (size == 0) {

 return "[]";

 } else {

 String result = "[" + elementData[0];

 for (int i = 1; i < size; i++) {

 result += ", " + elementData[i];

 }

 result += "]";

 return result;

 }

}

Here is the complete class:

 1 public class ArrayIntList {

 2 private int[] elementData;

 3 private int size;

 4

 5 public ArrayIntList() {

 6 elementData = new int[100];

 7 size = 0;

 8 }

 9

10 public void add(int value) {

11 elementData[size] = value;

12 size++;

13 }

14

15 public String toString() {

16 if (size == 0) {

17 return "[]";

18 } else {

19 String result = "[" + elementData[0];

20 for (int i = 1; i < size; i++) {

21 result += ", " + elementData[i];

22 }

23 result += "]";

24 return result;

25 }

26 }

27 }

This version of the class correctly executes the sample client
program, producing the correct output.

Thinking about Encapsulation

When we declared the fields for ArrayIntList , we followed the usual
convention of declaring them to be private. This can cause a
problem for a client of the class. Suppose that the client has made a
series of calls on the add method and wants to know how many
elements are in the list. For example, the client might want to write
code like the following:

Scanner input = new Scanner(new File("data.txt"));

ArrayIntList list = new ArrayIntList();

while (input.hasNextInt()) {

 list.add(input.nextInt());

}

System.out.println(list);

// report the size of the list, but how?

The information the client wants is stored internally in the field called
size . But because the field is declared to be private, the client can’t
access the value.

There are several clumsy ways to solve this problem. One solution
would be to change the field from private to public, but as we saw in
Chapter 8 , making the field public breaks encapsulation and
leaves the list object open to unwanted modifications. It’s not a
problem to allow the client to examine the value of the field, but
suppose the client tried to set it to an illegal value, as in the following
two examples:

list.size = –38;

list.size = 5000;

Allowing the client to reach into the object opens the door for the
client to put the object into a bad state.

Another solution would be to force the client to keep track of the size,
but that is a rather silly solution. Why should both the object and the
client keep track of this information? It puts an undue burden on the
client and it leads to unnecessary duplication of effort.

The right solution is to keep the field private, but to introduce an
accessor method that allows the client to examine the value of the
size field:

public int size() {

 return size;

}

Then the client can write code like the following:

System.out.println("size = " + list.size());

This line of code looks fairly similar to code that accesses the field
directly. The difference here is that we are calling a method called
size . The method allows the client to examine the field without
giving the client the ability to change the value of the field.

A client will also want the ability to access individual elements of the
list. Internally, you access the list elements by referring to the array
called elementData . Again, you don’t want to break encapsulation by
giving a client direct access to this field. Instead you can introduce
another accessor method for examining the value stored at a given
index:

public int get(int index) {

 return elementData[index];

}

Eventually, we want to make sure that this method can’t be used by
a client to access any of the vacant array elements (elements
beyond the size of the list), but this simple version will do for now.

Dealing with the Middle of the List

So far we have explored how to add a value at the end of a list, but
often a client is interested in dealing with values in the middle of the
list. The client might want to search for the location of values or add
them to or remove them from the middle of the list.

Let’s begin with the task of searching for the location of a value in a
list. The client could use the size and get methods to locate a
value. But if it seems likely that a client will want to perform frequent
searches for the locations of values, then it makes more sense to
include the ability to do this as a method inside the class. That way, it
will be readily available to all clients of the class.

In Chapter 7 , we wrote the following code to find the index of the
first occurrence of a value in an array of integers:

public static int indexOf(int[] list, int target) {

 for (int i = 0; i < list.length; i++) {

 if (list[i] == target) {

 return i;

 }

 }

 return –1;

}

This method is fairly easily converted from a static method to an
instance method, as you did with print . To achieve the conversion,
replace the array parameter with references to the elementData field
and, instead of using the length of the array as a loop bound, use the
size field so that the method searches only elements of the array
that are currently in use:

public int indexOf(int value) {

 for (int i = 0; i < size; i++) {

 if (elementData[i] == value) {

 return i;

 }

 }

 return –1;

}

You haven’t yet given the client the ability to remove a value from the
list. Let’s call the method remove . It should take as a parameter the
index of the value to be removed:

public void remove(int index) {

 ...

}

Suppose, for example, that a list contains the five values [12, 19, 8,
73, 14] :

Suppose that you want to remove the value 19 , which is stored at
index 1. This action will create a gap in the list unless you shift
values over to fill in the gap. The three values that come after the
value 19 each have to be shifted down by one position:

In order to shift the values over, you obviously need some kind of
loop. You want to shift a value into index 1, another value into index
2, and another value into index 3. Why start at index 1? Because
that’s the target index, the index of the value you’ve been asked to
remove. And why stop at index 3? Because that’s when you run out
of occupied cells to shift. The following code is a good first guess at
the loop bounds:

for (int i = index; i < size; i++) {

 ...

}

We saw in Chapter 7 that we can use code like the following to
accomplish the shifting task:

for (int i = index; i < size; i++) {

 elementData[i] = elementData[i + 1];

}

This code is almost correct. The problem is that the loop executes
once too often. As we have noted, you want to shift values into
indexes 1, 2, and 3. But when the size is 5 , as in our example, the
loop will do one extra shift, shifting a value into index 4. You want to
stop the loop one step earlier so that it won’t perform this final shift.
You can accomplish that by subtracting one from the final loop
bound:

for (int i = index; i < size – 1; i++) {

 elementData[i] = elementData[i + 1];

}

This modification almost completes the method. The only other detail
you need to worry about is that once you have removed this value,
you need to decrement the size of the list. Here is the complete
method:

public void remove(int index) {

 for (int i = index; i < size – 1; i++) {

 elementData[i] = elementData[i + 1];

 }

 size––;

}

Let’s take a look at the final state of the list in our example. After we
have removed the value at index 1, shifted three values left, and
decremented the size, we end up with the following list:

Notice that the first cell among the vacant cells has the value 14 in it.
You might imagine that you have to set it back to 0 . In general, this
isn’t necessary for your ArrayIntList . Because the value is among
the vacant cells, you know that it isn’t a real value of the list. And if
you ever need to use that cell again, you’ll overwrite the 14 with
some new value. It doesn’t matter whether you overwrite a 14 or
overwrite a 0 . In fact, in the final version of our program, we’ll make
sure that a client can’t ever see that extra value of 14 . The situation
is slightly different when you deal with the generic ArrayList , but
we’ll save that discussion for the end of the chapter.

Another operation that a client is likely to want to perform is to add a
value in the middle of a list. You already wrote a simple add method
that appends at the end of the list:

public void add(int value) {

 ...

}

You can call the new method add as well, but it will have different
parameters. You will still need to know the value to add, as with the
appending method. But this new method will also need to know the
index where the new value is to be added. Thus, it will look like the
following:

public void add(int index, int value) {

 ...

}

Implementing this method is more complicated than appending a
value at the end of the list because you have to shift values over to
make room for the value to be inserted. Suppose, for example, that
your list contains the five values [3, 6, 9, 12, 15] :

Suppose that you want to insert the value 7 at index 2. That
insertion will require you to shift each of the values that are currently
in indexes 2 through 4 to the right by one:

This insertion is similar to the remove operation. You want to deal
with cells between the target index (where the new value is to be
added) and the end of the sequence of occupied cells. Therefore,
you know that the loop bounds will be something like the following:

for (int i = index; i < size; i++) {

 ...

}

We saw in Chapter 7 that you can shift values to the right by
writing code like the following:

for (int i = index; i < size; i++) {

 elementData[i] = elementData[i – 1];

}

There are several problems with this code. First, it starts too early. In
the example, you are trying to shift values so that you can add a new
value at index 2. The first shift you want to do is to shift the value
that is currently at index 2 into index 3. But the preceding loop will
first shift the value at index 1 into index 2. The loop needs to start
one index later:

for (int i = index + 1; i < size; i++) {

 elementData[i] = elementData[i – 1];

}

Even after you make this change, the loop bounds are still not
correct. In the sample for a list of 5 elements, the final shift moved a
value into the cell with index 5. The preceding code will stop the loop

once i is 4 (while it is still strictly less than the size). The loop needs
to allow i to be equal to the size:

for (int i = index + 1; i <= size; i++) {

 elementData[i] = elementData[i – 1];

}

The final problem, as described in detail in Chapter 7 , is that this
loop has to be run backward rather than forward. Otherwise you
overwrite your list values with the value that is stored at the target
index:

for (int i = size; i >= index + 1; i––) {

 elementData[i] = elementData[i – 1];

}

This modification completes the shifting, but you also have to store
the new value at the target index now that there is room for it, and
you have to increment the size of the list:

public void add(int index, int value) {

 for (int i = size; i >= index + 1; i––) {

 elementData[i] = elementData[i – 1];

 }

 elementData[index] = value;

 size++;

}

Another Constructor and a
Constant

The ArrayIntList class is shaping up nicely, but so far you have just
a single constructor that constructs a list with a capacity of 100:

public ArrayIntList() {

 elementData = new int[100];

 size = 0;

}

This constructor isn’t very flexible. What if clients want to manipulate
a list of 200 values? What are they supposed to do? You don’t want
to force them to rewrite the code just to use your class. That would
be like having to open up a radio and rewire the insides just to
change the volume or the station. If there is some value like the
capacity that the client is likely to want to change, then you want to
be sure to build in the flexibility to allow the client to do so.

You can accomplish this flexibility by changing the constructor to
take a parameter that specifies the capacity of the list. You can then

use that value when you construct the array:

public ArrayIntList(int capacity) {

 elementData = new int[capacity];

 size = 0;

}

This modification allows a client to write lines of code like the
following:

ArrayIntList list1 = new ArrayIntList(200);

Unfortunately, if this is your only constructor, then the client loses the
ability to write lines of code like the following:

ArrayIntList list2 = new ArrayIntList();

You could include both constructors, but then you have redundant
code. As we saw in Chapter 8 , you can avoid the duplication by
having one constructor call the other. The constructor that takes the
capacity is the more general constructor, so you can have the
constructor that takes no arguments call it using the this(...)
notation:

public ArrayIntList() {

 this(100);

}

public ArrayIntList(int capacity) {

 elementData = new int[capacity];

 size = 0;

}

You might wonder how Java can tell the two constructors apart. The
answer is that they have different signatures. One constructor takes
no arguments, whereas the second constructor takes an integer as
an argument. When Java sees the call on this(100) in the first
constructor, it knows that it is calling the second constructor because
the call includes an integer value as a parameter.

Another improvement we can make is to introduce a constant for the
rather arbitrary value of 100 :

public static final int DEFAULT_CAPACITY = 100;

It is a good idea to make this constant public because the client
might want to be able to refer to the value to know what capacity a
list has if the client doesn’t specify a specific value to use. You would
then rewrite the first constructor to use the constant instead of the
specific value:

public ArrayIntList() {

 this(DEFAULT_CAPACITY);

}

Preconditions and Postconditions

We are almost ready to put all of these pieces together into a
complete class. But before we do so, we should consider the issue
of documentation. When you document the class, you want to think
in terms of important information that should be conveyed to the
client of the class. You want to describe what each method does and
you want to describe any limitations of each method. This is a great
place to use preconditions and postconditions, as described in
Chapter 4 .

Recall from Chapter 4 that preconditions are assumptions the
method makes. They are a way of describing any dependencies that

the method has (“this has to be true in order for me to do my work”).
Also, recall that postconditions describe what the method
accomplishes, assuming that the preconditions are met (“I’ll do this
as long as the preconditions are met”). The combination of
preconditions and postconditions is a way of describing the contract
that a method has with the client.

Consider, for example, the get method. It is a fairly simple method
that allows the client to access individual elements of the list:

public int get(int index) {

 return elementData[index];

}

This method makes sense only if the value of index is in the range of
occupied cells. In other words, it has to be greater than or equal to 0
and it has to be less than the size of the list. We can describe these
constraints in a precondition comment:

// pre : 0 <= index < size()

public int get(int index) {

 return elementData[index];

}

The postcondition should describe what the method accomplishes,
assuming that the precondition is met. You can do that with a short
description of the method’s behavior:

// pre : 0 <= index < size()

// post: returns the integer at the given index in the list

public int get(int index) {

 return elementData[index];

}

There are quite a few preconditions for the methods you have
written. All of the methods that take an index as a parameter assume
that it is a legal index. The constructor that takes a capacity can’t
work with a negative value. And there is another important
precondition lurking out there. Remember that your list has a fixed
capacity. What happens if the client calls the add method so many
times that the capacity is exceeded? You should warn the client
about that scenario to make the contract clear.

In the next section we’ll examine how to handle bad values more
directly, but for now we’ll settle for documenting the various
preconditions.

It is worth noting that the method comments for this class do not
contain comments about implementation. For example, we wouldn’t
mention that the remove method shifts values in the array. That’s a
detail of the implementation that won’t generally interest the client. If

you think that the implementation is complicated enough to deserve
comments, then include those comments with the code itself inside
the method. The comment on the method itself should be written
from the client perspective, not from the perspective of the
implementer.

Professional Java programmers write their comments in Javadoc
format so that they can be extracted from the actual program files
and published as html files. If you’ve been referring to the Java API
documentation, then you’ve been reading such comments. We don’t
use Javadoc format for our comments, but you can read about it in
Appendix B .

Here is a complete version of the ArrayIntList class incorporating all
of the pieces discussed in this section:

 1 // Class ArrayIntList can be used to store a list of

integers.

 2

 3 public class ArrayIntList {

 4 private int[] elementData; // list of integers

 5 private int size; // number of elements in the

list

 6

 7 public static final int DEFAULT_CAPACITY = 100;

 8

 9 // post: constructs an empty list of default capacity

10 public ArrayIntList() {

11 this(DEFAULT_CAPACITY);

12 }

13

14 // pre : capacity >= 0

15 // post: constructs an empty list with the given

capacity

16 public ArrayIntList(int capacity) {

17 elementData = new int[capacity];

18 size = 0;

19 }

20

21 // post: returns the current number of elements in the

list

22 public int size() {

23 return size;

24 }

25

26 // pre : 0 <= index < size()

27 // post: returns the integer at the given index in the

list

28 public int get(int index) {

29 return elementData[index];

30 }

31

32 // post: returns comma-separated, bracketed version of

list

33 public String toString() {

34 if (size == 0) {

35 return "[]";

36 } else {

37 String result = "[" + elementData[0];

38 for (int i = 1; i < size; i++) {

39 result += ", " + elementData[i];

40 }

41 result += "]";

42 return result;

43 }

44 }

45

46 // post : returns the position of the first occurrence of

the

47 // given value (–1 if not found)

48 public int indexOf(int value) {

49 for (int i = 0; i < size; i++) {

50 if (elementData[i] == value) {

51 return i;

52 }

53 }

54 return –1;

55 }

56

57 // pre : size() < capacity

58 // post: appends the given value to the end of the list

59 public void add(int value) {

60 elementData[size] = value;

61 size++;

62 }

63

64 // pre : size() < capacity && 0 <= index <= size()

65 // post: inserts the given value at the given index,

shifting

66 // subsequent values right

67 public void add(int index, int value) {

68 for (int i = size; i >= index + 1; i––) {

69 elementData[i] = elementData[i – 1];

70 }

71 elementData[index] = value;

72 size++;

73 }

74

75 // pre : 0 <= index < size()

76 // post: removes value at the given index, shifting

77 // subsequent values left

78 public void remove(int index) {

79 for (int i = index; i < size – 1; i++) {

80 elementData[i] = elementData[i + 1];

81 }

82 size––;

83 }

84 }

15.2 A More Complete
ArrayIntList

In this section, we will extend the ArrayIntList class to throw
exceptions when preconditions are violated and to include a more
inclusive set of methods that parallel the methods available for the
built-in ArrayList<E> .

Throwing Exceptions

In the previous version of ArrayIntList , we documented the various
preconditions of the methods. It is a good practice to clearly specify
the contract with potential clients, but you shouldn’t assume that
clients will always obey the preconditions. As we saw in Chapter

4 , the convention in Java is to throw an exception when a
precondition is violated.

For example, consider the constructor that takes a capacity as a
parameter:

// pre : capacity >= 0

// post: constructs an empty list with the given capacity

public ArrayIntList(int capacity) {

 elementData = new int[capacity];

 size = 0;

}

The precondition indicates that the capacity is not supposed to be
negative. You can go further than just documenting it by adding code
to throw an exception. In this case, it is appropriate to throw an
IllegalArgumentException :

if (capacity < 0) {

 throw new IllegalArgumentException();

}

You have the option to include a string that will be displayed with the
exception. In this case, it would be useful to tell the client the value
that was being passed for capacity :

if (capacity < 0) {

 throw new IllegalArgumentException("capacity: " +

capacity);

}

You should also mention the exception in the comments for the
method. It is important to mention exactly which type of exception
will be thrown and under what circumstances. Here, then, is the final
version of the method with the extra code to throw an exception
when the precondition is violated:

// pre : capacity >= 0 (throws IllegalArgumentException if not)

// post: constructs an empty list with the given capacity

public ArrayIntList(int capacity) {

 if (capacity < 0) {

 throw new IllegalArgumentException("capacity: " +

capacity);

 }

 elementData = new int[capacity];

 size = 0;

}

In order to construct an exception object to be thrown, you have to
decide what type of exception to use. All of the examples we have
seen so far have constructed exceptions of type
IllegalArgumentException . This is a kind of generic exception that is

used to indicate that some value passed as an argument was not
legal. But there are other exception types that you can use. The
convention in Java is to pick the most specific exception that you
can. Table 15.1 lists of some of the most common exception
types.

Table 15.1 Common Exception Types

NullPointerException and ArrayIndexOutOfBoundsException are thrown
by Java automatically, so you don’t generally write code to specify
those exceptions. Java programmers often use the other four
exceptions, however.

Both of the add methods in your ArrayIntList class have a
precondition that the size of the list must be strictly less than the
capacity. Otherwise you will attempt to store a value in an array
index that doesn’t exist. This is an appropriate situation for an
IllegalStateException . It is not appropriate to add values to the list
once it has reached its capacity. In this case, you want to let the
client know that the problem doesn’t come from the values passed
as arguments, but rather, that the add method was called at an
inappropriate time.

You could add code to each of the add methods to check for this
exception, but to avoid redundancy, it is better to introduce a private
method that each of the methods calls. You’ll be introducing some
other methods that add more than one value at a time, so it will be
useful to write the private method in a fairly flexible way. You can

write a method that takes a required capacity as a parameter and
that checks to make sure that the array has that capacity. In other
words, you’ll tell the method, “I need room for this many elements,”
and it will test whether the array has that much room. If it does not,
the method throws an IllegalStateException :

// post: checks that the underlying array has the given

capacity,

// throwing an IllegalStateException if it does not

private void checkCapacity(int capacity) {

 if (capacity > elementData.length) {

 throw new IllegalStateException("exceeds list

capacity");

 }

}

You can add the following line of code to each of the add methods to
check that the array has the capacity to add one more value to the
list:

checkCapacity(size + 1);

You also need to modify the comments to indicate that this exception
is thrown. For example, here is the rewritten appending add method:

// pre : size() < capacity (throws IllegalStateException if

not)

// post: appends the given value to the end of the list

public void add(int value) {

 checkCapacity(size + 1);

 elementData[size] = value;

 size++;

}

Several methods specify the index of a value. The get method, for
example, is supposed to return the value at a particular index. If you
provide a value that is outside the bounds of the underlying array,
then the method will throw an ArrayIndexOutOfBoundsException . This
exception is better than nothing, but it doesn’t cover all cases. For
example, your list might have a capacity of 100 but have only 10
values stored in it. The client might try to access a value at index 10
or 11 or 50, and your method will return a result when you’d prefer it
to throw an exception to let the client know that the index is not legal
for a list of 10 elements.

In this case, it is better to throw an IndexOutOfBoundsException and to
include the illegal index to let the client see exactly what bad value
was passed as a parameter. There are multiple methods that refer to
index values, so it is again useful to introduce a private method that
can be called by each method:

// post: throws an IndexOutOfBoundsException if the given index

is

// not a legal index of the current list

private void checkIndex(int index) {

 if (index < 0 || index >= size) {

 throw new IndexOutOfBoundsException("index: " + index);

 }

}

This private method will properly throw an exception for get and
remove . It isn’t quite the right test to use for the add method that
takes an index as a parameter, because add has a slightly different
precondition than the other methods. Normally, it doesn’t make
sense to refer to a value at index size because that index is beyond
the last value stored in the list. For example, if the list stores 10
values, then you don’t want to call get or remove for a nonexistent
value at index 10. But for add , it makes sense to refer to this index. If
there are currently 10 values in the list, then you would be allowed to
add a new value at index 10 because it is a new value not currently
in the list. Instead of calling the private method, the add method will
have its own code for checking the index and throwing an
IndexOutOfBoundsException .

There is a further benefit to adding all of this code to throw
exceptions: Adding the code will ensure that your object is never in a
corrupt state. It will always satisfy certain data invariants. (Data

invariants were described in Chapter 8 .) In particular, you know
that

size <= elementData.length always (your calls on checkCapacity
make sure of that)
the array elements that you examine are always in the range of 0
to size – 1 (your calls on checkIndex make sure of that)
your code will never generate an ArrayIndexOutOfBoundsException

It is extremely useful to know that your class will always satisfy these
constraints. This knowledge is an added benefit of encapsulation. If
a client could reach in and change the size or elementData fields,
then you couldn’t make these kind of guarantees.

Convenience Methods

The built-in ArrayList<E> class has many other methods besides the
ones we have implemented so far, so it makes sense to go ahead
and add some of those methods to your ArrayIntList class. These
methods are largely for the convenience of the client, since you
could achieve the same functionality by calling existing methods on
the list.

Your class has a method called indexOf that can be used to search
for the location of a value in the list. Sometimes, though, a client just
wants to ask the simpler question of whether a particular value

appears in the list somewhere. The convention in Java is to use a
method called contains for this purpose. It has a boolean return type:

public boolean contains(int value) {

 ...

}

How do you write this method? You don’t want to duplicate the code
that you included in indexOf , so instead you’ll call indexOf .
Remember that it returns a value of –1 if the value is not found, so
you can test whether or not indexOf returned an index that is greater
than or equal to 0 :

public boolean contains(int value) {

 if (indexOf(value) >= 0) {

 return true;

 } else {

 return false;

 }

}

This version violates Boolean Zen, which was covered in Chapter
5 . You can simply return the value of the expression, rather than
including it in an if/else statement:

return indexOf(value) >= 0;

Thus, the method ends up being a single line of code:

public boolean contains(int value) {

 return indexOf(value) >= 0;

}

Another common method in the Java Collections Framework is
called isEmpty . It returns a boolean value indicating whether or not
the list is empty. This is another method that can be written concisely
as a one-line method using the value of the size field:

public boolean isEmpty() {

 return size == 0;

}

Again, you don’t need an if/else statement; you can simply return
the value of the Boolean expression.

So far you have included methods to add values to and remove
values from the list, but sometimes you simply want to replace the
value at a certain location with some new value. This operation is
referred to as the set method and is easy to implement. You have to

remember to include a call on checkIndex because the method has a
precondition that is similar to that of get and remove :

public void set(int index, int value) {

 checkIndex(index);

 elementData[index] = value;

}

Providing this method is important because it allows a client to avoid
unnecessary inefficiency. For example, suppose that the list has
10,000 values stored in it and the client wants to replace the first
value with something new. The set method does it very quickly. The
alternative would be to call remove , which would shift over the other
9999 values, and then to call add , which would shift the other 9999
values back to where they were earlier. Using set is much more
efficient.

You might think that the introduction of the set method breaks
encapsulation, because it allows a client to change a value in the
array. But it doesn’t really break encapsulation because you force
the client to get this access by calling a method. This fact allows your
method to be in control of the client request. So, for example, you
can call the checkIndex method to ensure that the array index is
legal.

Another common operation that a client might wish to perform is to
empty the structure of all values. This is referred to as the clear
operation and can be accomplished quickly by resetting the size
field back to its original value of 0 :

public void clear() {

 size = 0;

}

You might imagine that you have to reset all of the array elements
back to 0 , but that’s not necessary. You have written the code in
such a way that a client can only get access to array elements 0
through size – 1 . When size is reset to 0 , the client can’t access
any of the array elements. The only way those array elements will be
used again is if the client makes calls on the add method, in which
case the old values will be overwritten with new values supplied by
the client. But just as with the remove method, you will find at the end
of the chapter that you solve this problem slightly differently for the
generic ArrayList class.

The last method we will add is a “bulk add” method called addAll
that adds all of the values from a second ArrayIntList . It may seem
a little odd to have one ArrayIntList deal with another ArrayIntList ,
but this actually happens fairly often. The idea is that the first
ArrayIntList is supposed to add all of the values from the second

ArrayIntList , which means that the header for the method looks like
the following:

public void addAll(ArrayIntList other) {

 ...

}

You can call the appending add method to add values to the list. You
just need a loop that iterates over the values in the second list. You
also need to call your checkCapacity method to make sure that the
array has sufficient capacity to store these new values:

public void addAll(ArrayIntList other) {

 checkCapacity(size + other.size);

 for (int i = 0; i < other.size; i++) {

 add(other.elementData[i]);

 }

}

This code refers to other.size and other.elementData , which you
might imagine would generate an error because they are private
fields. In fact, the code does not generate an error. Recall from the
Chapter 8 examples that the word “private” means that it is
“private to the class.” This is not the way that we as humans
understand the meaning of private. (If something is private to me,

then it shouldn’t be available to other humans.) But in Java, one
ArrayIntList object can access private elements of another
ArrayIntList object because they both belong to the same class.

You can find the complete third version of the ArrayIntList class on
the web page http://buildingjavaprograms.com.

15.3 Advanced Features
In this section, we explore adding some extra advanced functionality
to the ArrayIntList class. First we will see how to implement the
class so that it has no fixed capacity and will grow larger if
necessary. Then we will learn how to provide an iterator over the list.

Resizing When Necessary

The built-in ArrayList<E> class has a notion of capacity, as does our
ArrayIntList class. But instead of throwing an exception when the
capacity is exceeded, the class creates a larger array. In other
words, its capacity grows as needed to accommodate the addition of
new values to the list.

It isn’t generally easy to make an array bigger. Java doesn’t allow
you to stretch an array that was constructed previously. Instead, you
have to allocate a brand-new array and copy values from the old
array to the new array. An analogy would be the way shops and
other businesses work in the real world. If you need some extra
space for your store, you can’t generally break down the wall and
grab some of the space from the store next door. More often, you
have to relocate your store to a larger space.

Obviously you don’t want to construct a new array too often. For
example, suppose you had space for 1000 values and found you
needed space for one more. A poor solution would be to allocate a
new array of length 1001 and copy the 1000 values over. Then, if
you find you need space for one more, you could make an array that
is 1002 in length and copy the 1001 old values over. This kind of
growth policy would be very expensive.

A better idea would be to double the size of the array when you run
out of space. If you have filled up an array of length 1000, you
double its size to 2000 when the client adds something more. That
particular call on add is expensive because it has to copy 1000
values from the old array to the new array. But you won’t need to
copy again for a while. You can add another 999 values before you’d
need extra space. As a result, we think of the expense as being
spread out or amortized over all 1000 calls on add . When the cost is
spread out over 1000 adds, it is fairly low (a constant).

The built-in ArrayList class does something similar. The
documentation is a little coy about this: “The details of the growth
policy are not specified beyond the fact that adding an element has
constant amortized time cost.” If you look at the actual code, you’ll
find that it increases the capacity by 50% each time (a multiplier of
1.5).

So how do you add this functionality to your ArrayIntList class? You
included a method called checkCapacity that throws an exception if

the array isn’t big enough. You can simply replace this method with a
new method that makes the array larger if necessary:

public void ensureCapacity(int capacity) {

 if (capacity > elementData.length) {

 int newCapacity = elementData.length * 2 + 1;

 if (capacity > newCapacity) {

 newCapacity = capacity;

 }

 int[] newList = new int[newCapacity];

 for (int i = 0; i < size; i++) {

 newList[i] = elementData[i];

 }

 elementData = newList;

 }

}

This version of the method works, but you can get a slight
improvement by calling a built-in method called Arrays.copyOf that
returns a copy of an array. It has the same functionality as the
preceding code , but it is likely to run faster because this operation is
what is known as a block copy operation that can be optimized to run
faster. Thus, the method can be rewritten as follows:

public void ensureCapacity(int capacity) {

 if (capacity > elementData.length) {

 int newCapacity = elementData.length * 2 + 1;

 if (capacity > newCapacity) {

 newCapacity = capacity;

 }

 elementData = Arrays.copyOf(elementData, newCapacity);

 }

}

The checkCapacity method was declared to be private, but the
preceding method has been declared to be public, because a client
might also want to make use of that method. For example, if the
client recognizes that the capacity needs to be significantly
increased, then it is useful to be able to call this method to resize it
once rather than resizing several times. The ArrayList<E> class has
this method available as a public method.

Adding an Iterator

In Chapter 11 , we saw that it is common in the collections
framework to use an iterator object to traverse a collection. Recall
that an iterator should provide three basic operations:

hasNext() , which returns true if there are more elements to be
examined
next() , which returns the next element from the list and
advances the position of the iterator by one

remove() , which removes the element most recently returned by
next()

We will develop a class called ArrayIntListIterator that implements
this functionality for an ArrayIntList . The usual convention in Java is
to ask the collection to construct the iterator by calling the method
iterator :

ArrayIntList list = new ArrayIntList();

// code to fill up list ...

ArrayIntListIterator i = list.iterator();

Once we have obtained an iterator from the list, we can use its three
methods to traverse the list. For example, the following program
constructs an ArrayIntList and then computes the product of the
list:

 1 // A second client that uses the ArrayIntList class.

 2 public class Client2 {

 3 public static void main(String[] args) {

 4 // construct and print list

 5 int[] data = {13, 4, 85, 13, 40, –8, 17, –5};

 6 ArrayIntList list = new ArrayIntList();

 7 for (int n : data) {

 8 list.add(n);

 9 }

10 System.out.println("list = " + list);

11

12 // obtain an iterator to find the product of the

list

13 ArrayIntListIterator i = list.iterator();

14 int product = 1;

15 while (i.hasNext()) {

16 int n = i.next();

17 product *= n;

18 }

19 System.out.println("product = " + product);

20 }

21 }

The program produces the following output:

list = [13, 4, 85, 13, 40, –8, 17, –5]

product = 1562912000

Here is a variation that removes any 0 values from the list,
computing the product of the nonzero values:

 1 // A third client that uses the ArrayIntList class.

 2 public class Client3 {

 3 public static void main(String[] args) {

 4 // construct and print list

 5 int[] data = {5, 19, 0, 2, 4, 0, 13, 85, –8, 0,

23};

 6 ArrayIntList list = new ArrayIntList();

 7 for (int n : data) {

 8 list.add(n);

 9 }

10 System.out.println("list = " + list);

11

12 // use an iterator to find the product, removing

zeros

13 ArrayIntListIterator i = list.iterator();

14 int product = 1;

15 while (i.hasNext()) {

16 int n = i.next();

17 if (n == 0) {

18 i.remove();

19 } else {

20 product *= n;

21 }

22 }

23 System.out.println("list now = " + list);

24 System.out.println("product = " + product);

25 }

26 }

The program produces the following output:

list = [5, 19, 0, 2, 4, 0, 13, 85, –8, 0, 23]

list now = [5, 19, 2, 4, 13, 85, –8, 23]

product = –154523200

So how do you implement the ArrayIntListIterator class? The main
function that the iterator performs is to keep track of a particular
position in a list, so the primary field will be an integer variable for
storing this position:

public class ArrayIntListIterator {

 private int position;

 public ArrayIntListIterator(...) {

 position = 0;

 ...

 }

 ...

}

Initially you start position at 0 so that it will refer to the first value in
the list. The hasNext method is supposed to determine whether any
values remain to iterate over. To do so, it will have to compare this
position to the size of the list:

public boolean hasNext() {

 // check position against size of the list

}

To perform this comparison, the iterator needs to be able to find out
the size of the list. To do so, the iterator will need to keep track of the
list over which it is iterating. That means that you will need a second
field and the constructor will have to be passed a reference to the list
to iterate over:

public class ArrayIntListIterator {

 private ArrayIntList list;

 private int position;

 public ArrayIntListIterator(ArrayIntList list) {

 this.list = list;

 position = 0;

 ...

 }

 ...

}

Using this field, you can now easily write the hasNext method:

public boolean hasNext() {

 return position < list.size();

}

What about the next method? It is supposed to return the next value
from the list and then reset the position to be one later in the
sequence, which you can accomplish by simply incrementing the
value:

public int next() {

 int result = list.get(position);

 position++;

 return result;

}

But the method has an important precondition that you must
consider. What if a client calls next when the iterator has run out of
values to return? The method should throw an exception in that
case. The convention in Java is to throw a NoSuchElementException :

public int next() {

 if (!hasNext()) {

 throw new NoSuchElementException();

 }

 int result = list.get(position);

 position++;

 return result;

}

The final operation performed by an iterator is the remove method.
The method is supposed to remove the most recent value that was
returned by next . The position field keeps track of the next value to
be returned by the iterator, so the value to be removed is at index
position – 1 :

public void remove() {

 list.remove(position – 1);

 ...

}

Keep in mind what happens when you ask the ArrayIntList to
remove that value. All of the other values will be shifted one to the
left in the list. That means that position will no longer be positioned
at the next value in the list. That value has been shifted one to the
left, so you have to decrement position to account for the shift that
has taken place:

public void remove() {

 list.remove(position – 1);

 position––;

}

This method also has an important precondition to consider. A client
is supposed to call next before calling remove . One possibility is that
the client will call remove before making any call on next . If that
happens, it will be obvious from the fact that position will be zero.
Another possibility is that the client will call remove twice in a row
without calling next in between. That is not a legal operation either.
You won’t know just from looking at the value of position whether
the client has violated this precondition.

In this case, you need an extra bit of state for the object. You need to
keep track of whether it is currently legal to remove a value, so this is
a good time to add a field. It will be of type boolean and you can call
it removeOK . You can use this field to throw an exception if the
precondition is violated. And once a call on remove has been
performed, you have to remember that it is no longer legal to remove
a value until next is called again:

public void remove() {

 if (!removeOK) {

 throw new IllegalStateException();

 }

 list.remove(position – 1);

 position––;

 removeOK = false;

}

Notice that you throw an IllegalStateException because a call on
the method is not appropriate if it is not okay to remove a value. You
can then add code to the constructor to initialize this field to false ,
and you can reset it to true whenever next is called.

Here is the final class definition:

 1 // Objects of this class can be used to iterate over an

 2 // ArrayIntList and remove values from the list.

 3

 4 import java.util.*;

 5

 6 public class ArrayIntListIterator {

 7 private ArrayIntList list; // list to iterate

over

 8 private int position; // current list

position

 9 private boolean removeOK; // okay to remove now?

10

11 // post: constructs an iterator for the given list

12 public ArrayIntListIterator(ArrayIntList list) {

13 this.list = list;

14 position = 0;

15 removeOK = false;

16 }

17

18 // post: returns true if there are more elements left

19 public boolean hasNext() {

20 return position < list.size();

21 }

22

23 // pre : hasNext() (throws NoSuchElementException if

not)

24 // post: returns the next element in the iteration

25 public int next() {

26 if (!hasNext()) {

27 throw new NoSuchElementException();

28 }

29 int result = list.get(position);

30 position++;

31 removeOK = true;

32 return result;

33 }

34

35 // pre : next() has been called without a call on

remove

36 // (throws IllegalStateException if not)

37 // post: removes the last element returned by the

iterator

38 public void remove() {

39 if (!removeOK) {

40 throw new IllegalStateException();

41 }

42 list.remove(position – 1);

43 position––;

44 removeOK = false;

45 }

46 }

The program imports the java.util package because the class for
one of the exceptions we want to throw, NoSuchElementException ,
comes from that package.

You also have to modify the ArrayIntList class. Remember that it
needs to have a method called iterator that constructs an iterator,
which means it will look like this:

public ArrayIntListIterator iterator() {

 return new ArrayIntListIterator(...);

}

So which list should you mention in the call on the
ArrayIntListIterator constructor? The ArrayIntList is supposed to
construct an iterator that is looking at itself. You can use the this
keyword to say, “Construct an iterator that is iterating over me”:

public ArrayIntListIterator iterator() {

 return new ArrayIntListIterator(this);

}

You can find a complete listing of this fourth version of the
ArrayIntList class along with the ArrayIntListIterator class on the
web page for this textbook at http://buildingjavaprograms.com.

15.4 ArrayList<E>
In this section, we will explore how to convert the version of
ArrayIntList from the previous section into a generic ArrayList<E> .
To start, you can simply replace all occurrences of ArrayIntList with
ArrayList<E> and change references to int that refer to values to E .
Of course, there are other uses of int that specify capacity, size,
and indexes, and these don’t change.

This approach almost works, but there are a few places where you
have to be careful. For example, when you define constructors, you
don’t use the generic E when you’re naming the constructor. So the
zero-argument constructor becomes:

public ArrayList() {

 this(DEFAULT_CAPACITY);

}

You also run into trouble in the second constructor. After you perform
the simple substitution, you end up with the following method:

public ArrayList(int capacity) {

 if (capacity < 0) {

 throw new IllegalArgumentException("capacity: " +

capacity);

 }

 elementData = new E[capacity]; // illegal

 size = 0;

}

When you try to compile this version, you get an error indicating that
you are not allowed to construct a generic array. This is a limitation
of generic types. You can construct an array of type Object[] , but
not an array of type E[] . You can solve this problem by introducing a
cast. Replace the following line of code:

elementData = new E[capacity];

In its place, include this line of code:

elementData = (E[]) new Object[capacity];

This new version compiles, but it generates a warning about using
unsafe or unchecked types. There’s no real way to get around this
because Java won’t let you construct a generic array. That means
you can ignore this warning. In this case, it is good to include an
annotation for the method to indicate that you don’t want it to
generate the warning for this method:

@SuppressWarnings("unchecked")

public ArrayList(int capacity) {

 ...

}

Annotations are special Java syntax that mark metadata on a class
or method. They give instructions to the compiler. This particular
annotation is a way of telling the compiler, “Don’t generate the
warning for this method because I’m aware of the problem already.”
There are many different kinds of annotations that you can include in
your Java programs, but we won’t take time to explore them in this
book.

There is also a problem with the indexOf method. After you perform
the substitution of E for int , here is the result:

public int indexOf(E value) {

 for (int i = 0; i < size; i++) {

 if (elementData[i] == value) {

 return i;

 }

 }

 return –1;

}

This version compiles and would work, but it has a very strict
definition of equality. It would require that the actual object you are
searching for appears in the list. More often, you want to use an
equals comparison to see whether the value for which you are
searching is equal to some value in the list. You’ll want to replace the
following bit of code from your method:

if (elementData[i] == value) {

 ...

}

You can replace it with the following:

if (elementData[i].equals(value)) {

 ...

}

One final issue has to do with memory allocation. Consider what
happens when a value is removed from the simple ArrayIntList . An
array element that used to correspond to a list element is no longer
being used. In general, this isn’t a problem, and we haven’t bothered
to do any cleaning up afterward. For example, suppose that you
have a list with a capacity of 10 and you store the values [10, 20,
30, 40] in the list. The array looks like this:

If you then remove the value at index 0 , you shift the other three
values left and decrement size :

Notice that you now have two occurrences of 40 in the list. That isn’t
generally a problem because you know from the value of your size
field that the 40 stored in index 3 isn’t being used.

You can’t be so cavalier when it comes to objects. We have to think
about what is known as the garbage collector:

Garbage Collector

A process that is part of the Java Runtime Environment
that periodically frees the memory used by objects that
are no longer referenced.

In some programming languages, you have to explicitly destroy
objects when you don’t need to use them any longer. Java saves you
the trouble of doing this. Instead, its garbage collector looks for
objects that are no longer being used (i.e., objects that are no longer
referenced). You want to make sure that your ArrayList doesn’t
interfere with what the garbage collector is trying to accomplish.

If your ArrayList is keeping a reference to some object that is no
longer being used, then the garbage collector might not recognize
that it can reclaim that space. So you have to explicitly set that array
element back to null .

A direct translation of the code produces the following remove
method:

public void remove(int index) {

 checkIndex(index);

 for (int i = index; i < size – 1; i++) {

 elementData[i] = elementData[i + 1];

 }

 size––;

}

You need to add an extra line of code after the shifting code that sets
the unused array element back to null :

public void remove(int index) {

 checkIndex(index);

 for (int i = index; i < size – 1; i++) {

 elementData[i] = elementData[i + 1];

 }

 elementData[size – 1] = null;

 size––;

}

Similarly, the clear method needs to set all values to null before
resetting the size field to 0 :

public void clear() {

 for (int i = 0; i < size; i++) {

 elementData[i] = null;

 }

 size = 0;

}

One final change that you will see in this class is that the iterator
class has been converted to what is known as an inner class:

Inner Class
A class declared inside another class. Objects of the
inner class have access to the methods and fields of
the outer class.

In other words, the structure becomes

public class ArrayList<E> {

 ...

 private class ArrayListIterator implements Iterator<E> {

 ...

 }

}

The generic syntax can be a bit confusing with inner classes. We
declare our inner ArrayListIterator class without an <E> type
parameter, because the type E is already declared as part of the
outer list class. But we do have to say that it implements Iterator<E>
to match the interface from java.util . Accidentally declaring the

inner class as ArrayListIterator<E> actually creates a second
generic type E and leads to confusing compiler errors.

Inner classes are normally declared to be private. Using an inner
class for the iterator is the more usual approach. It allows you to
eliminate the field that keeps track of the list. As we indicated in the
definition box, when you declare an inner class, the instances of the
inner class have access to the methods and fields of the instance of
the outer class that constructed it. For example, the old version of
the hasNext method refers to a field called list that was used to
keep track of the list over which the iterator was iterating:

public boolean hasNext() {

 return position < list.size();

}

This code can be simplified. Because the iterator class is now an
inner class, you can write the hasNext method in a simple way:

public boolean hasNext() {

 return position < size();

}

This method is calling the size method even though the iterator has
no such method. Because it has no such method, it calls the

ArrayList method of the outer class.

This can cause problems in one part of the code. When you write the
remove method for the iterator, you need to call the remove method of
the list:

public void remove() {

 if (!removeOK) {

 throw new IllegalStateException();

 }

 remove(position – 1); // illegal

 position––;

 removeOK = false;

}

Unfortunately, this version does not compile, because both the
iterator and the list have a method called remove . One has no
parameters and the other has one parameter, so you’d think that
Java could tell the difference, but it can’t. You have to use a special
notation to make it clear that you want to refer to the outer object.
You do that by referring to the this value of the outer class, which
you refer to as ArrayList.this . Thus, you can rewrite the following
line of code:

remove(position – 1);

Here is the new version of the code:

ArrayList.this.remove(position – 1);

Before we finish this exploration, we should consider at least briefly
the issue of interfaces. As we saw in Chapters 9 and 11 ,
interfaces allow clients to describe variables in a more generic way.
For example, suppose that you want to iterate over an ArrayList of
String values. You’ll replace the following line of code:

ArrayListIterator i = list.iterator();

Instead, you’ll use the Iterator<E> interface:

Iterator<String> i = list.iterator();

In order for this code to compile, it is important for the
ArrayListIterator class to implement the Iterator interface and for
the return type for the iterator() method to use the interface rather
than the class name. These changes have been incorporated into
the final version of the class. It turns out that there are other
interfaces to consider as well, but we will save that discussion until
the end of the next chapter. At that time we will see a final version of
the ArrayList class that is even closer to the built-in version.

You will find the complete code for the ArrayList class on our web
page at http://buildingjavaprograms.com.

Chapter Summary
In this chapter, we implemented an array list class to store lists of
integers.

Collection classes have two views: the external view seen by client
code and the internal view seen by the implementer.

An array list uses an unfilled array and a size field in which the first
size elements are meaningful and the rest are empty zeroes that are
not considered to be part of the list. The entire array length
represents its capacity for storing values.

When we add values to or remove values from the front or middle of
an array list, we must shift the values right or left respectively to
account for the newly added or removed element.

Our array list has preconditions that the client will not pass an illegal
capacity on construction or illegal indexes when accessing elements.
If the client does try to do so, Java will throw an exception.

Our subsequent versions of the list class resize to a larger capacity
when the array becomes full.

The array list has an iterator for examining its elements in sequence.

Our array list of integers can be converted into a generic class that
can store a list of any type of objects. The code is similar, but we
must make a few changes—for example, when we construct arrays
of type E[] or compare objects for equality.

An inner class is declared inside the braces of another (outer) class
and has access to the state of an object of that outer class. Our final
list iterator is an inner class.

Self-Check Problems

Section 15.1: Simple
ArrayIntList

1. What is the difference between an array list’s size and its
capacity? What is the relationship between the two values?
(Is one always larger or smaller than the other, for instance?)

2. What fields must be included in the ArrayIntList class, and
why is each field important? Would the class still work
correctly if we removed any of these fields?

3. How would the output of the Client1 program shown in this
section change if each field from ArrayIntList were declared
static?

4. In this version of the list class, what happens if the client adds
too many values to fit in the array?

5. Why does the list class use a toString method rather than a
print method?

6. We wrote the class to have public methods called size (to
read the number of elements of the list) and get (to access
the element value at a specific index). Why is this approach
better than declaring the fields (such as size) public?

7. An element can be inserted at the beginning, middle, or end
of an array list. Which of the three insertion points is the most
computationally expensive, and why? Which is the most
expensive location to remove an element from the list?

8. Write methods called min and max that return the smallest
and largest values in the list respectively. For example, if a
variable called list stores [11, –7, 3, 42, 0, 14] , the call of
list.min() should return –7 and the call of list.max() should
return 42 . If the list is empty, the methods should throw an
IllegalStateException .

Section 15.2: A More Complete
ArrayIntList

9. Describe the overall preconditions placed on the list class in
this section. What assumptions do we make about how clients
will use the list?

10. What is the purpose of the checkIndex method? Where is it
called in the list class? Describe a way that the client can
utilize an ArrayIntList that will be caught by checkIndex .

11. What is the purpose of the checkCapacity method? Where is it
called in the list class? Describe a way that the client can
utilize an ArrayIntList that will be caught by checkCapacity .

12. Once we check thoroughly for preconditions in the code, what
data invariants can we now assume about the list?

13. Why do we bother to add the contains , isEmpty , and remove
methods to the list class, when the client can already
perform this same functionality with the indexOf , size , and
remove methods, respectively?

Section 15.3: Advanced Features

14. When this new version of the class fills to its capacity, it
resizes. How much does it grow? Why choose this growth
rate, rather than increasing the capacity by a single element
or other constant amount?

15. What is the benefit of adding an iterator to the list class?
16. What state does the array list iterator store?
17. How does the array list iterator know if there are more

elements left to examine? What does it do if the client tries to
examine a next element but there are none left to examine?

18. What is a precondition of the iterator’s remove method? How
does the iterator enforce this precondition, and what does it
do if the precondition is violated?

19. Write a method called sum that returns the sum of all values in
the list. For example, if a variable called list stores [11, –7,
3, 42, 0, 14] , the call of list.sum() should return 63 . If the
list is empty, sum should return 0 .

20. Write a method called average that returns the average of the
values in the list as a real number. For example, if a variable
called list stores [11, –7, 3, 42, 0, 14] , the call of
list.average() should return 10.5 . If the list is empty, average
should return 0.0 .

Section 15.4: ArrayList<E>

21. What problem do we encounter when we try to construct an
array of type E? How do we resolve this problem?

22. Since our list stores an unfilled array, the empty elements
were filled with the value 0 when our array was full of
integers. What value occupies the empty cells when our list
stores values of type E?

23. What changes need to be made to the indexOf method to
search for objects of type E in the new list class, and why
are these changes necessary?

24. What is an annotation? How are annotations useful in writing
our ArrayList<E> class?

25. Why is it important to set empty elements to null when we
are clearing or removing from the list of type E , when we
didn’t need to clear out these elements in the previous
ArrayIntList?

26. What is one benefit of making the list iterator into an inner
class?

Exercises
Each of the following exercises is a method to be added to the
ArrayIntList class from this chapter.

1. Write a method called lastIndexOf that accepts an integer as
a parameter and returns the index in the list of the last
occurrence of that value, or if the value is not found in the
list. For example, if the list stores [1, 18, 2, 7, 18, 39, 18,
40] , then the last index of 18 is 6 and the last index of 3 is

2. Write a method called indexOfSubList that accepts another list
 as a parameter and returns the starting index of where

first appears in this list, or if it is not found. All elements of
 must appear in sequence and in the same order. For

example, if variables called list1 and list2 store [11, –7, 3,
42, 0, 14] and [3, 42, 0] , respectively, the call of
list1.indexOfSubList(list2) should return 2 .

3. Write a method called replaceAll that accepts two integer
values as parameters and replaces all occurrences of the first
value in the list with the second value. For example, if a
variable called list stores [11, –7, 3, 42, 3, 0, 14, 3] , the
call of list.replaceAll(3, 999); should change the list to
store [11, –7, 999, 42, 999, 0, 14, 999] .

−1

−1.

L L

−1

L

4. Write a method called reverse that reverses the order of the
elements in the array list. For example, if a variable called
list stores [11, –7, 3, 42, 0, 14, 56] , the call of
list.reverse(); should change the list to store [56, 14, 0,
42, 3, –7, 11] . An empty or one-element list is not changed
by a call to this method.

5. Write a method called runningTotal that returns a new
ArrayIntList that contains a running total of the original list. In
other words, the th value in the new list should store the sum
of elements 0 through of the original list. For example, given
a variable list that stores [2, 3, 5, 4, 7, 15, 20, 7] ,
consider what happens when the following call is made:

ArrayIntList list2 = list.runningTotal();

The variable list2 should store [2, 5, 10, 14, 21, 36, 56,
63] . The original list should not be changed by the method. If
the original list is empty, the result should be an empty list.
The new list should have the same capacity as the original.
Remember that there is a list constructor that accepts a
capacity as a parameter.

6. Write a method called fill that accepts an integer value as a
parameter and replaces every value in the list with that value.
For example, if a variable called list initially stores [42, –7,
3, 0, 15] and the call of list.fill(2); is made, the list will be
changed to store [2, 2, 2, 2, 2] .

i

i

7. Write a method called isPairwiseSorted that returns whether
or not a list of integers is pairwise sorted. A list is considered
pairwise sorted if each successive pair of numbers is in
nondecreasing order. For example, if a variable called list
stores [3, 8, 2, 5, 19, 24, –3, 0, 4, 4, 8, 205, 42] , then
the call of list.isPairwiseSorted() should return true
because the successive pairs of this list are all sorted: (3, 8),
(2, 5), (19, 24), (–3, 0), (4, 4), (8, 205) . The extra value
42 at the end had no effect on the result because it is not part
of a pair. If the list had instead stored [7, 42, 308, 409, 19,
17, 2] , then the method should return false because the pair
(19, 17) is not in sorted order. If a list is so short that it has
no pairs, then it is considered to be pairwise sorted.

8. Write a method called count that accepts an element value as
a parameter and returns the number of occurrences of that
value in the list. For example, suppose a variable named list
stores [2, -3, 2, 0, 5, 2, 2, 6] . A call of list.count(2)
should return 4 because there are four occurrences of that
value in the list.

9. Write a method called maxCount that returns the number of
occurrences of the most frequently occurring value in a sorted
list of integers. Because the list will be sorted, all duplicates
will be grouped together, which will make it easier to count
duplicates. For example, if a variable called list stores [1,
3, 4, 7, 7, 7, 7, 9, 9, 11, 13, 14, 14, 14, 16, 16, 18, 19,

19, 19] , the call of list.maxCount() should return 4 because

the most frequently occurring value (7) occurs four times. It is
possible that there will be a tie for the most frequently
occurring value, but that doesn’t affect the outcome because
you are just returning the count, not the value. If there are no
duplicates in the list, then every value will occur exactly once
and the max count is 1 . If the list is empty, the method should
return 0 .

10. Write a method called longestSortedSequence that returns the
length of the longest sorted sequence within a list of integers.
For example, if a variable called list stores [1, 3, 5, 2, 9,
7, –3, 0, 42, 308, 17] , then the call of
list.longestSortedSequence() would return 4 because it is the
length of the longest sorted sequence within this list (the
sequence –3, 0, 42, 308). If the list is empty, your method
should return 0 . Notice that for a nonempty list the method
will always return a value of at least 1 because any individual
element constitutes a sorted sequence.

11. Write a method called removeLast that removes and returns
the last value from a list of integers. For example, if a variable
called list stores [8, 17, 42, 3, 8] , a call of
list.removeLast(); should return 8 and change the list’s state
to [8, 17, 42, 3] . The next call would return 3 and remove 3
from the list, and so on. If the list is empty, throw a
NoSuchElementException .

12. Write a method called removeFront that takes an integer as
a parameter and that removes the first values from a list of

n

n

integers. For example, if a variable called list stores [8, 17,
9, 24, 42, 3, 8] and a call of list.removeFront(4); is made,
the list’s contents should become [42, 3, 8] . You may
assume that the parameter value passed is between 0 and
the size of the list inclusive.

13. Write a method removeAll that accepts an integer value as a
parameter and that removes all occurrences of the given
value from the list.

14. Write a method called printInversions that lists all inversions
in a list of integers. An inversion is a pair of numbers in which
the first appears before the second in the list, but the first is
greater than the second. Thus, for a sorted list such as [1, 2,
3, 4] there are no inversions at all, and the method would
produce no output. Suppose that a variable called list stores
the values [4, 3, 2, 1] . The call of list.printInversions();
would print many inversions:

(4, 3)

(4, 2)

(4, 1)

(3, 2)

(3, 1)

(2, 1)

The inversions can appear in any order, so this is just one
possible correct output. You must reproduce this format

exactly, but the inversions can appear in any order. You may
assume that the list has no duplicates.

15. Write a method called mirror that doubles the size of a list by
appending the mirror image of the original sequence to the
end of the list. The mirror image is the same sequence of
values in reverse order. For example, if a variable called list
stores [1, 3, 2, 7] and the client calls list.mirror(); then
the list should be changed to store [1, 3, 2, 7, 7, 2, 3, 1] .
Notice that it has doubled in size because the original
sequence now appears in reverse order at the end of the list.

16. Write a method called stutter that replaces every value with
two of that value. For example, if the list initially stores [42, 7,
0, –3, 15] , after the call it should store [42, 42, 7, 7, 0, 0, –
3, –3, 15, 15] .

17. Write a method called stretch that takes an integer as a
parameter and that increases a list of integers by a factor of
by replacing each integer in the original list with copies of
that integer. For example, if a variable called list stores [18,
7, 4, 24, 11] and we make the call of list.stretch(3); the
list should be changed to store [18, 18, 18, 7, 7, 7, 4, 4, 4,
24, 24, 24, 11, 11, 11] . If is zero or negative, the list
should become empty.

18. Write a method called doubleList that doubles the size of a
list by appending a copy of the original sequence to the end of
the list. For example, if the list stores [1, 8, 2, 7] , your
method should change it to store [1, 8, 2, 7, 1, 8, 2, 7] .

n

n

n

n

19. Write a method called compress that replaces every pair of
elements in the list with a single element equal to the sum of
the pair. If the list is of odd size, leave the last element
unchanged. For example, if the list stores [1, 7, 3, 9, 4, 6,
5] , your method should change it to store [8, 12, 10, 5] (

 then then then 5).
20. Write a method called rotate that moves the value at the front

of a list of integers to the end of the list. For example, if a
variable called list stores [8, 23, 19, 7, 12, 4] , the call of
list.rotate(); should move the value 8 from the front of the
list to the back of the list, producing [23, 19, 7, 12, 4, 8] .

21. Write a method called switchPairs that switches the order of
values in the list in a pairwise fashion. Your method should
switch the order of the first two values, then switch the order
of the next two, switch the order of the next two, and so on. If
the list contains an odd number of values, the final element is
not moved. For example, if the list initially stores [10, 25, 31,
47, 52, 68, 77] , your method should switch the first pair (10
and 25), the second pair (31 and 47), and the third pair (5 2

and 68) to yield [25, 10, 47, 31, 68, 52, 77] .
22. Write a method called fromCounts that converts an

ArrayIntList of counts into a new ArrayIntList of values as
follows. Assume that the list stores a sequence of integer
pairs that each pair indicates a count and a number. For
example, suppose that an ArrayIntList called list stores [5,
2, 2, -5, 4, 3, 2, 4, 1, 1, 1, 0, 2, 17] . We will interpret

1 + 7, 3 + 9, 4 + 6,

this sequence of pairs to mean that you have 5 occurrences
of 2, followed by two occurrences of followed by 4
occurrences of 3, and so on. So the call of:

ArrayIntList list2 = list.fromCounts();

should cause the variable list2 to store [2, 2, 2, 2, 2, -5,
-5, 3, 3, 3, 3, 4, 4, 1, 0, 17, 17] .

−5

Programming Projects
1. The actual List interface in the java.util package has

several methods beyond the ones implemented in this
chapter. Write a version of ArrayList<E> that adds some or all
of these methods. The methods to add are as follows (some
headers are slightly modified; see the Java API Specification
for descriptions of each method):

public void addAll(int index, ArrayList<E> list)

public boolean containsAll(ArrayList<E> list)

public boolean equals(Object o)

public int lastIndexOf(Object o)

public boolean remove(Object o)

public void removeAll(ArrayList<E> list)

public void retainAll(ArrayList<E> list)

public Object[] toArray()

2. The java.util package has an interface called ListIterator
that extends the Iterator interface and includes additional
methods specific to iterating through the elements of lists
forward or backward. Write a class called ArrayListIterator 2

that adds some or all of these methods. The methods to add
are as follows (see the Java API Specification for descriptions
of each method):

public void add(E value)

public boolean hasPrevious()

public int nextIndex()

public E previous()

public int previousIndex()

public void set(E value)

3. The actual ArrayList class in the java .util package has a
method called subList that returns a view of a subportion of a
list through a given range of indexes. It can be useful to think
of part of a list as if it were its own list, complete with its own
set of indexes and values. The sublist is “backed” by the
original list, meaning that it is not a copy; if any change is
made to the sublist, the original list is also affected.
In order to implement this method, you will need to write an
inner class inside ArrayList<E> that extends ArrayList and
implements the behavior of the sublist. Override the methods
for getting and setting values at particular indexes, as well as
the size method, so that they reflect the sublist’s index range
and size. Also, modify the outer ArrayList<E> class so that it
always refers to its own elements through the use of these
methods. The outer class should be given the following new
method that returns an object of your new inner sublist class:

public ArrayList<E> subList(int fromIndex, int toIndex)

4. Based on the implementation of ArrayIntList or ArrayList,
write a class SortedIntList or SortedList that provides most
of the same operations but maintains its elements in sorted
order. When a new value is added to the sorted list, rather
than appending it to the end of the list, it is placed in the
appropriate index to maintain sorted order of the overall list.
For efficiency, you should discover the appropriate place to
add new values to the list by using a binary search. Shift
elements as needed and add the element in the proper index
to maintain sorted order. (Do not manually re-sort the
elements such as by calling Arrays.sort .) You should also
modify the class’s indexOf method to use a binary search to
locate elements.
Since the list must remain sorted, your sorted list should not
retain the following operations from ArrayIntList or
ArrayList :

public void add(int index, int value)

public void set(int index, int value)

Chapter 16 Linked Lists

16.1 Working with Nodes
• Constructing a List

• List Basics

• Manipulating Nodes

• Traversing a List

16.2 A Linked List Class
• Simple LinkedIntList

• Appending add

• The Middle of the List

16.3 A Complex List Operation
• Inchworm Approach

16.4 An IntList Interface

16. 5 LinkedList<E>

• Linked List Variations

• Linked List Iterators

• Other Code Details

Introduction
In the previous chapter, we explored how to
build a list structure using an array as the
underlying storage mechanism. In this chapter
we will explore a different structure known as a
linked list. Linked lists serve as a useful contrast
to arrays because their strengths and
weaknesses are completely opposite. And just
as Java has an ArrayList<E> class as part of
the collections framework, it also has a
LinkedList<E> class.

Even though Java provides an off-the-shelf
implementation of a linked list, it is useful to
study how it is implemented because it will give
you good insights into the properties of linked
lists. It is also important for you to understand
the concept of a linked structure. Almost all data
structures are implemented using some
combination of arrays or linking or both, which
means that it is important to understand each
approach.

We will once again develop a structure for
storing simple int values, as we did with the
development of ArrayIntList in the last
chapter. Our new structure will be called
LinkedIntList . Keeping the data simple will
allow us to focus on the data structure issues
and to learn how to manipulate linked lists in
general. Then we will explore some issues
related to interfaces. Finally, at the end of the
chapter we will explore how to turn the fairly
simple LinkedIntList into a more general
LinkedList<E> class.

16.1 Working with Nodes
Because arrays are stored in one large contiguous block of memory,
we can quickly locate any particular element of the array. Recall that
this ability to quickly jump around in the array is called random
access. The weaknesses of the array approach are that we can’t
easily insert values in or remove values from the middle without
shifting other values, and we can’t easily enlarge the size of the
structure without constructing a brand-new array with a larger
capacity.

The linked list structure has the opposite properties. It is not a
random access structure, so it is not easy to jump around in the
structure. It has the kind of sequential access we associate with a
cassette tape. If you are playing a tape and want to skip forward 10
songs, you have to fast forward through the songs. You can’t quickly
skip to the position where you want to be on the tape. Linked lists
have this property as well.

But where arrays are weak, linked lists are strong. We can quickly
insert values in or delete values from the middle of a linked list
without any shifting. It is also easy to make the list larger or smaller.

Linked lists are composed of individual elements called nodes.

Node
A single element of a structure such as a linked list;
each node contains one data value.

A node is like a Lego building block. It looks unimpressive by itself,
but once you put a bunch of them together, it can form an interesting
structure.

A basic list node looks like this:

It’s an object with two fields: one for storing a single item of data and
one for storing a reference to the next node in the list. To store a list
of integer values we’d declare the node class as follows:

public class ListNode {

 public int data;

 public ListNode next;

}

This class does not produce a nicely encapsulated object with
private fields, but the technique of using public fields is the usual
approach to defining nodes. In the next section we’ll discuss why it is
acceptable to avoid encapsulation in this case.

This is a recursive data structure. The ListNode class is defined in
terms of itself because it has a field of type ListNode . As a result, it is
often possible to solve linked list programming problems more
effectively by writing recursive methods, as described in Chapter
12 .

Constructing a List

Let’s begin by constructing a series of nodes that store the sequence
of values [3, 7, 12] . There are three values, which means you’ll
need three nodes that are linked together. When you’re creating
linked lists, if you keep a reference to the front of the list, then you
can get to anything in the list. You’ll usually use a single variable of
type ListNode that refers to (or points to) the front of the list. You
begin with this declaration:

ListNode list;

The variable list is not itself a node. It’s a variable that is capable of
referring to a node. You haven’t yet given it a value, so you would

draw the following picture for memory at this point in the program:

The “?” will be replaced with a reference to a node, which means
that this box does not have a data field or a next field. It’s a box
where you can store a reference to such an object. You don’t have
an actual node yet. To understand this distinction between an object
and a variable that stores a reference to an object, you might want to
review the section on reference semantics in Chapter 7 .

The way to get an actual node is to call new :

list = new ListNode();

This call constructs a new node and tells Java to have the variable
list refer to it:

Recall that when objects are constructed, Java initializes the fields to
the zero-equivalent for the type. That is why in the node above the

data field has the value 0 and the next field has the value null .
Notice that we use a slash through the box to indicate a null value.

What do you want to do with the node you have constructed? You
want to store 3 in its data field (list.data) and you want its next
field to point to a new node:

list.data = 3;

list.next = new ListNode();

The addition of these lines of code makes our linked list appear as
follows:

When you program linked lists, you have to understand how to
access the different elements of the structure. The variable list
stores a reference to the first node. You can get inside that node with
the dot notation (list.data and list.next). So list.next is the way
to refer to the next box of the first node. You wrote code to assign it
to refer to a new node, which is why list.next is pointing at this
second node.

Now you want to assign the second node’s data field
(list.next.data) to the value 7 and assign the second node’s next
field to refer to a third node:

list.next.data = 7;

list.next.next = new ListNode();

Now the linked list looks like this:

Again, pay close attention to the difference between list ,
list.next , and list.next.next , and remember which box is
associated with each of these:

Finally, you want to set the data field of this third node to 12 (stored
in list.next.next.data) and you want to set its next field to null :

list.next.next.data = 12;

list.next.next.next = null;

Our linked list now looks like this:

The assignment of the next field to null is actually unnecessary
because Java initializes it to that value, but it’s not a bad idea to be
explicit about the value that you want to store in the field.

The dot notation is often very confusing for novices, so it is worth
pausing for a moment to make sure that you understand the different
combinations and the elements to which they refer. Table 16.1
includes each of the possibilities for the preceding diagram.

Table 16.1 Referring to Elements of a Sample List

Here is a complete program that includes all this code for
constructing a three-element list along with code that prints the list:

 1 // Constructs and prints the list [3, 7, 12] by setting

each

 2 // field of each node.

 3

 4 public class Construct1 {

 5 public static void main(String[] args) {

 6 ListNode list = new ListNode();

 7 list.data = 3;

 8 list.next = new ListNode();

 9 list.next.data = 7;

10 list.next.next = new ListNode();

11 list.next.next.data = 12;

12 list.next.next.next = null;

13 System.out.println(list.data + " " + list.next.data

+ " "

14 + list.next.next.data);

15 }

16 }

The program produces the following output:

3 7 12

Obviously, this program represents a very tedious way to manipulate
a list. It’s much better to write code that involves loops to manipulate
lists. But it takes a while to get used to this idea, so we’re first going
to practice doing some raw list operations without a loop.

List Basics

Our previous version of the node class has just two fields:

public class ListNode {

 public int data;

 public ListNode next;

}

In general, we like to keep the node class simple, so we don’t want
to add much to this. But it is a good idea to include some
constructors:

 1 // ListNode is a class for storing a single node of a

linked

 2 // list. This node class is for a list of integer values.

 3

 4 public class ListNode {

 5 public int data; // data stored in this node

 6 public ListNode next; // link to next node in the list

 7

 8 // post: constructs a node with data 0 and null link

 9 public ListNode() {

10 this(0, null);

11 }

12

13 // post: constructs a node with given data and null

link

14 public ListNode(int data) {

15 this(data, null);

16 }

17

18 // post: constructs a node with given data and given

link

19 public ListNode(int data, ListNode next) {

20 this.data = data;

21 this.next = next;

22 }

23 }

Like the other classes we’ve seen, this class has one “real”
constructor (the one that takes two arguments). The other two
constructors use the this(...) notation to call the third constructor
with default values (0 for the data, null for next). In the new version
of the class, it is possible to write a single statement to construct the
three-element list we have been studying:

 1 // Constructs and prints the list [3, 7, 12]. This version

uses

 2 // node constructors rather than setting fields of each

node.

 3

 4 public class Construct2 {

 5 public static void main(String[] args) {

 6 ListNode list = new ListNode(3,

 7 new ListNode(7, new ListNode(12)));

 8 System.out.println(list.data + " " + list.next.data

+ " "

 9 + list.next.next.data);

10 }

11 }

In some programming languages you have to explicitly free up
memory when you are no longer using it. That is not the case in
Java. In Java you can simply stop referring to a node when you no
longer want to use it. For example, consider the following three-
element list that we have constructed:

How would you get rid of the first node? You can reassign the
variable list to point to the node that comes after it. In effect, you
leapfrog over the node that stores 3 and instead have list point to
the node that stores 7 by writing the following line of code:

list = list.next;

Now the linked list contains the following:

Now the variable list is pointing at a two-element list because it
points at the node storing 7 , which in turn points to the node that
stores 12 . The node that stores 3 is no longer pointed to by any
variable.

What happens to a node when no variable points to it? As we
mentioned at the end of the previous chapter, the Java runtime
system periodically invokes the garbage collector to look for objects
like this node and to reclaim the space so that it can be used again.

Java programmers enjoy the convenience of relying on this process,
which is sometimes called automatic garbage collection.

A good analogy is to think of each node as a helium balloon and the
arrows as the strings that we use to hold on to the balloons. If you let
go of a string, then the balloon floats away. But the garbage collector
will find all of those stray balloons and reclaim the space.

As one final example, consider what happens if you were to reset the
list variable to null :

list = null;

Our linked list would look like this:

The value null is used to represent the empty list. There are three
nodes floating around from the work we did earlier, but those are like
helium balloons that have floated away because their strings were let
go. They will eventually be recycled by the garbage collector.

You have to be careful about manipulating an empty list. For
example, if the variable list is null , and you execute code that
refers to list.data , Java will halt your program by throwing a
NullPointerException . You will quickly discover that
NullPointerException is one of the most common problems that you
run into as you try to debug your linked list code. Just keep in mind
that Java throws that exception when you attempt to dereference a
null value. In other words, it occurs when you ask for ptr.fieldName
where ptr has the value null . When Java throws the exception, it
will show you the exact line number where it occurred. Look at that
line of code carefully to find all occurrences of the dot notation,
because one of them involves a null value.

Manipulating Nodes

In the next section, we will explore how to use loops to write more
generalized code, but first it is useful to practice basic node
manipulation. A good way to practice is to make up an exercise that

involves a “before” picture and an “after” picture. The challenge is to
write code that gets you from the first state to the second state.

As an example, suppose that you have two variables of type
ListNode called p and q and that the following is the “before”
situation:

Suppose that you want to get to the following “after” situation:

In order to accomplish this, you will have to rearrange the links of
these two lists. As a starting point, think about how many variables of

type ListNode there are. You might say two because there are two
named variables, p and q . Or you might say four because you
notice that each of the four nodes has a field of type ListNode .
Actually, there are six different variables of type ListNode . The
following diagram numbers each of the six variables:

Having the variables numbered makes it easier to discuss the task at
hand. Which of these variables has to change in value to get from
the before picture to the after picture? The boxes numbered 3, 4,
and 5 have to change. If we change them appropriately, we’ll be
done.

We have to be careful about how we change the links. The order can
be important. For example, suppose we start by changing box 4 (the
variable q). In the final situation, it’s supposed to point at the node
with 9 in it. We can accomplish this by leapfrogging over the current
node to which it is pointing:

q = q.next;

But if we start with this change, what happens to the node that
contains 3? We lose track of it, as the following picture indicates:

Once we have lost track of the node containing 3 , we have no way
to get back to it. It’s like a helium balloon that has floated away
because we let go of the string.

This is a common problem in linked list programming that you have
to consider carefully. One solution is to introduce a temporary
variable that would keep track of the node to which the variable q
used to point (the node containing 3). Often, though, we can instead

solve the problem by carefully choosing the order of the changes
that we make.

Of the three values we have to change to solve this problem, the one
that is safe to change is box 3 because it’s currently null . We begin
by setting it to point to the node containing 3 :

p.next.next = q;

Our linked list now looks like this:

Now that we’ve used the value of box 4 to reset box 3, we can reset
box 4. It’s supposed to point to the node that has 9 in it. Now we can
leapfrog over the current node to which it is pointing:

q = q.next;

Our linked list now looks like this:

Now we just have to reset box 5. In the original picture, we would
have referred to box 5 as q.next , but now that we’ve changed the
value of q , we have to change the way we refer to this box. We can
still get to box 5 by starting with the variable p :

p.next.next.next = null;

Our linked list now looks like this:

We can simplify this diagram by redrawing the three nodes that are
now part of the first list all in a row. Keep in mind, though, that the
nodes themselves haven’t moved around in memory. We have only
rearranged various links. But we can more easily understand the
structure if we draw the picture in this way:

And now we can see that this diagram matches the “after” picture we
were given. The three lines of code that are needed to get from the
initial state to the final state are as follows:

p.next.next = q;

q = q.next;

p.next.next.next = null;

Obviously, this process can be very confusing. It is essential to draw
pictures to keep track of what is pointing where and what is going on
when this code executes. It’s the only way to master linked list code.

Traversing a List

Consider the problem of printing each value in a list on a different
line. For example, suppose we have a variable called list that
stores a reference to the list [3, 5, 2] :

Using the techniques from the previous section you could refer to
each of the three data fields: list.data (3) , list.next.data (5) ,
and list.next.next.data (2) . This approach can work for very short
lists, but obviously won’t work when you have hundreds or
thousands of nodes to process. In that case, you’d want to write a
loop.

You have just one variable to work with, the variable list , so that’s
clearly where you have to start. You could use it to move along the
list and print things out, but then you would lose the original value of
the variable, which would mean that you would have lost the list.
Instead, it’s better to declare a local variable of type ListNode that
you use to access the different nodes of the list:

ListNode current = list;

You can use any variable name you like, although it is common in
linked list programming to use a name like current or curr . The
preceding line of code initializes current to point to the same value
as list (the first node in the list):

You want a loop that prints the various values, and you want it to
keep going as long as there is more data to print. So how do you
structure your loop? The variable current will refer to each different
node in turn. The final node has the value null in its next field, so
eventually the variable current will become equal to null and that’s
when you know your loop is finished. Thus, your basic loop structure
will be as follows:

ListNode current = list;

while (current != null) {

 process next value.

 move current forward.

}

To process a node, you need to print out its value, which you can get
from current.data , and you need to move current to the next node
over. The position of the next node is stored in current.next , so
moving to that next node involves resetting current to current.next :

ListNode current = list;

while (current != null) {

 System.out.println(current.data);

 current = current.next;

}

The first time through this loop, current is referring to the node with
the 3 in it. It prints this value and then resets current , which causes
current to refer to (or point to) the second node in the list:

Some people prefer to visualize this differently. Instead of
envisioning the variable current sitting still while its arrow moves,

some people prefer to envision the variable itself moving. So, for the
initial situation, you draw the following picture:

After execution of the statement current = current.next , the linked
list would look like this:

Either way of thinking about this scenario works. Because in this new
situation the variable current is not null , you once again enter the
loop, print out current.data (which is now 5), and move current
along again:

Once again current is not null , so you enter the loop a third time,
print the value of current.data (2) , and reset current . But this time
current.next has the value null , so when you reset current , the
computer’s memory will look like this:

Because current has become null , when you break out of the loop
the program has produced the following output:

3

5

2

The corresponding array code would look like this:

int i = 0;

while (i < size) {

 System.out.println(elementData[i]);

 i++;

}

Assuming that you have some comfort with array-style programming,
this example might give you some useful insight into linked list
programming. There are direct parallels in terms of typical code, as
shown in Table 16.2 .

Table 16.2 Array/Linked List Equivalents

You may recall that in Chapter 7 we introduced a standard array
traversal approach:

for (int i = 0; i < <array>.length; i++) {

 <do something with array[i]>;

}

You can write a similar standard linked list traversal pattern:

<temp variable> = <front of list>;

while (<temp variable> != null) {

 <do something with <temp variable>.data>;

 <temp> variable> = <temp variable>.next;

}

Knowing that we like to use for loops for array processing, you can
imagine writing for loops to process linked lists as well. Your
previous code could be rewritten as the following code:

for (ListNode current = list; current != null; current =

current.next) {

 System.out.println(current.data);

}

Some people like to write their list code this way, but most tend to
use while loops. It’s an issue of personal taste.

16.2 A Linked List Class

In this section, we will explore how to write a class called
LinkedIntList that will be a parallel of the ArrayIntList class of
Chapter 15 .

Simple LinkedIntList

So far we have been discussing the low-level details of how to
manipulate the nodes of a class. In general, we want to provide a
potential client with a simple interface that doesn’t require the client
to understand these low-level details. For example, the ArrayIntList
class that we examined in Chapter 15 uses an array as its
underlying structure, but a client of the class never has to know that.
In a similar way, we’d like to define a LinkedIntList class that a

client can access without having to understand that it is implemented
by means of a linked list of nodes.

First we have to consider the set of fields that we need. As we’ve
seen, we can get to any element in the list as long as we have a
reference to the front of the list. So at a minimum we need a
reference to the front of the list:

public class LinkedIntList {

 private ListNode front;

 ...

}

There are several other fields we could add to improve efficiency.
Two of the most commonly added fields keep track of the length of
the list and keep a reference to the back of the list. But for this first
version, we will keep it simple and store just a reference to the front
of the list.

Notice that for this class, the field front is declared to be private. We
do that to guarantee that the class is well encapsulated. But what
about those public fields in the node class? In general public fields
are a bad idea. But they’re not of great concern in this case because
we’re going to make sure that only our LinkedIntList object will ever
manipulate individual nodes. By the time we complete this program,
we will have two classes: one for individual nodes of a list and one

for the list itself. We’ll be careful to have a clean, well-encapsulated
list object, but we don’t have to worry about doing the same thing for
the node class.

Some people prefer to encapsulate even node objects to keep things
simple, but if you want to learn how complex classes are written, it is
important to understand this convention. When we are writing code
to interact with a client, we want everything to be completely
encapsulated. But when we are writing code that is seen only by the
implementation, we can be more relaxed. As an analogy, think of
how you behave in public versus in your own home. In your own
home you might walk around in a bathrobe and slippers because you
know that only you and your family have access to your home. You
wouldn’t tend to wear a bathrobe and slippers out in public. As
another example, think of the post office boxes you find at a post
office. Those post office boxes are locked for security, just like an
encapsulated object, because anyone has access to the public post
office. But in a corporate office setting, mailboxes often are not
locked because only a limited number of people have access to
them and, therefore, people are willing to be more informal.

Later in the chapter, we will see an even better way of handling this
case by including the node class as a static inner class. But for now
we’ll work with the two classes to keep things simple.

As a first exercise, let’s add a method to our class that will allow us
to examine the contents of the list. We saw that code like the
following could be used to print a list:

ListNode current = list;

while (current != null) {

 System.out.println(current.data);

 current = current.next;

}

We could turn that into a method of the class by initializing the local
variable to the value of our field front :

public void print() {

 ListNode current = front;

 while (current != null) {

 System.out.println(current.data);

 current = current.next;

 }

}

But as we saw in Chapter 15 , it is a better idea to make this a
toString method that returns a String representation of the list. For
the ArrayIntList class we wrote the following method:

public String toString() {

 if (size == 0) {

 return "[]";

 } else {

 String result = "[" + elementData[0];

 for (int i = 1; i < size; i++) {

 result += ", " + elementData[i];

 }

 result += "]";

 return result;

 }

}

The code is very similar for the LinkedIntList class because we will
have the same special case for an empty list and the same
fencepost loop to make sure that values are separated by commas.
If we translate each array operation into its linked list equivalent, we
end up with the following code:

public String toString() {

 if (front == null) {

 return "[]";

 } else {

 String result = "[" + front.data;

 ListNode current = front.next;

 while (current != null) {

 result += ", " + current.data;

 current = current.next;

 }

 result += "]";

 return result;

 }

}

Notice that in this code we initialize current to front.next because
we handle the data for the first node outside the loop.

Appending add

Next let’s consider how to write a method that will append a value to
the end of the list. To do so, we have to locate the end of the list.
Let’s think about the general case in which we are appending a
value to the end of a list that already contains a few values. For
example, suppose the list stores [3, 5, 2] :

Suppose that you want to add the value 17 at the end of the list.
First you have to get to the correct location. So here’s a start:

ListNode current = front;

while (current != null) {

 current = current.next;

}

What happens when this code executes is that the variable current
moves along the list from the first to the last node until the loop test
fails—that is, until current becomes null . The computer’s memory
then looks like this:

It’s tempting to think that you could then execute the following line of
code to complete the task:

current = new ListNode(17);

But that won’t work. It leaves the computer’s memory looking like
this:

The preceding code allocates a new node, but this new node has no
connection to the original list. The list is still composed of three
nodes linked together. This fourth node has been constructed, but it
hasn’t been properly linked into the list.

As you learn about linked list programming, you’ll find that there are
only two ways to change the contents of a list:

change the value of front , in which case you are changing the
starting point for the list, or
change the value of <variable>.next (for some variable), which
changes one of the current links of the list.

To solve this problem, you have to stop one position early. You don’t
want to run off the end of the list as you did with the print and
toString code. Instead, you want to position current to the final
element. You can do this by changing your test. Instead of running
the loop until current becomes null , you want to run it until
current.next is null , because only the last node of the list will have
a next field that is null :

ListNode current = front;

while (current.next != null) {

 current = current.next;

}

After the loop executes, current will be pointing at the last node in
the list:

At that point, you can assign current.next to be a new node with 17
in it:

current.next = new ListNode(17);

In this case, you are changing the currently null value in that last
node to instead link to a new node with 17 in it:

You have been preparing to write code for the appending add . So
this code would be included inside a method, and you would have to
alter it to use the name of the parameter:

public void add(int value) {

 ListNode current = front;

 while (current.next != null) {

 current = current.next;

 }

 current.next = new ListNode(value);

}

Even this code isn’t quite correct, because you have to deal with the
special case in which the list is empty:

public void add(int value) {

 if (front == null) {

 front = new ListNode(value);

 } else {

 ListNode current = front;

 while (current.next != null) {

 current = current.next;

 }

 current.next = new ListNode(value);

 }

}

If you combine the toString method and the add method, along with
a constructor that initializes the front of the list to null , you end up
with the following first version of the LinkedIntList class:

 1 // Simple first version of LinkedIntList with just a

constructor

 2 // and methods for add and toString.

 3

 4 public class LinkedIntList {

 5 private ListNode front; // first value in the list

 6

 7 // post: constructs an empty list

 8 public LinkedIntList() {

 9 front = null;

10 }

11

12 // post: returns comma-separated, bracketed version of

list

13 public String toString() {

14 if (front == null) {

15 return "[]";

16 } else {

17 String result = "[" + front.data;

18 ListNode current = front.next;

19 while (current != null) {

20 result += ", " + current.data;

21 current = current.next;

22 }

23 result += "]";

24 return result;

25 }

26 }

27

28 // post: appends the given value to the end of the list

29 public void add(int value) {

30 if (front == null) {

31 front = new ListNode(value);

32 } else {

33 ListNode current = front;

34 while (current.next != null) {

35 current = current.next;

36 }

37 current.next = new ListNode(value);

38 }

39 }

40 }

The idea of stopping one step early in processing a list isn’t limited to
this appending operation. It is a fundamental pattern that comes up
over and over in linked list programming, as you’ll see with the other
examples in the chapter.

The Middle of the List

If you want your LinkedIntList to have the same capabilities as the
ArrayIntList that we developed in Chapter 15 , you have to add
several new methods. For example, you will want to have a method
called get that returns a value at a given index. When the underlying
structure was an array, you could simply ask for the array element at
that index. But for a linked list, you have access only to the front of
the list. So, to find a value at a particular index, you have no choice
but to start at the front and examine each value until you get to the
desired location:

public int get(int index) {

 ListNode current = front;

 for (int i = 0; i < index; i++) {

 current = current.next;

 }

 return current.data;

}

As we noted earlier, this means that your linked list does not have
the fast random access property that arrays and our ArrayIntList
have. Instead, we say that the linked list has sequential access,
meaning that you have to go through the values in sequence until
you get to the value of interest.

Let’s now consider the task of adding a value at a particular index.
There is a special case when you add at index 0, at the front of the
list. For example, suppose a list contains the values [19, 8, 42] :

Suppose you want to add the value 5 at the front of this list. Then
you will need to construct a new node that has the value 5 and that
points to the current front of the list:

new ListNode(5, front)

Constructing this node generates the following situation:

But that’s only part of what you need to do. To link this node into the
list, you have to reset front to point to this new node:

front = new ListNode(5, front);

Executing this line of code generates the following list:

This is a special case for your add method that applies only when
the index is 0 . So your method to add at an index should begin like
this:

public void add(int index, int value) {

 if (index == 0) {

 front = new ListNode(value, front);

 } else {

 ...

 }

}

If you aren’t adding at the front of the list, then you have to use a
temporary variable to position yourself to the appropriate spot in the
list. This is another case in which you have to stop one step early. In
the case of the get method, you wanted to position a local variable
to the node with the given index. Here you want to stop one step
before that index:

public void add(int index, int value) {

 if (index == 0) {

 front = new ListNode(value, front);

 } else {

 ListNode current = front;

 for (int i = 0; i < index – 1; i++) {

 current = current.next;

 }

 ...

 }

}

Notice that the for loop test uses index – 1 instead of index so that
it stops one step early. For example, suppose that you had the same
starting list of [19, 8, 42] and that you want to insert the value 5 at
index 2. You’d want to position the variable current to point at the
value with index 1 (the node storing 8):

Now you can change the value of current.next to add the new node.
This new node should have a data value of 5 . To what should its
next link refer? It should refer to the node that has 42 in it, which is
stored in current.next . So you’ll want to construct the node as
follows:

new ListNode(5, current.next)

Just calling the constructor leaves the computer’s memory looking
like this:

Your code is not complete. You’ve constructed a node that points at
the list, but nothing in the list points at the node. Thus, you’ve taken
care of half of what you need to do. The other half of the task is to
change a link of the list to point to the new node. The link to change
is current.next :

current.next = new ListNode(5, current.next);

After this modification has been made, the list will look like this:

Some people prefer to write the code for creating the new node in
two steps with a temporary variable, as in the following lines of code:

// first construct the node

ListNode temp = new ListNode(5, current.next);

// then link it into the list

current.next = temp;

Both approaches work. After you have incorporated this code into
your method, the code looks like this:

public void add(int index, int value) {

 if (index == 0) {

 front = new ListNode(value, front);

 } else {

 ListNode current = front;

 for (int i = 0; i < index – 1; i++) {

 current = current.next;

 }

 current.next = new ListNode(value, current.next);

 }

}

You can use a similar approach to writing the remove method. You
need to include a special case for the front of the list, in which case
you can simply leapfrog over the first element:

public void remove(int index) {

 if (index == 0) {

 front = front.next;

 } else {

 ...

 }

}

For values that appear later in the list, you need a loop similar to the
one that you used in the add method to reach the position at the
node just before the one to be removed:

public void remove(int index) {

 if (index == 0) {

 front = front.next;

 } else {

 ListNode current = front;

 for (int i = 0; i < index – 1; i++) {

 current = current.next;

 }

 ...

 }

}

If you are working with the list [19, 8, 42, 13] and you are removing
the value from index 2, your list will look like the following:

To remove the value from index 2, you need to change current.next
to point to the value that comes next, which is stored in
current.next.next :

public void remove(int index) {

 if (index == 0) {

 front = front.next;

 } else {

 ListNode current = front;

 for (int i = 0; i < index – 1; i++) {

 current = current.next;

 }

 current.next = current.next.next;

 }

}

Now the linked list looks like this:

The code has properly linked around the node that stores the value
42 (which is the value that was stored at index 2), so the list now

stores the sequence of values [19, 8, 13] .

As you write methods that involve manipulating values in the middle
of the list, it becomes clear that you often end up writing the same
kind of loop to position to a particular node in the list. This is a great
place to introduce a private method:

private ListNode nodeAt(int index) {

 ListNode current = front;

 for (int i = 0; i < index; i++) {

 current = current.next;

 }

 return current;

}

The following is a complete implementation of the LinkedIntList that
includes the methods we have just developed, along with the other
basic operations that we included in our first version of ArrayIntList .
Notice that the private nodeAt method is used in three different
methods (get , add at an index, and remove). Here is the code:

 1 // Class LinkedIntList can be used to store a list of

integers.

 2

 3 public class LinkedIntList {

 4 private ListNode front; // first value in the list

 5

 6 // post: constructs an empty list

 7 public LinkedIntList() {

 8 front = null;

 9 }

10

11 // post: returns the current number of elements in the

list

12 public int size() {

13 int count = 0;

14 ListNode current = front;

15 while (current != null) {

16 current = current.next;

17 count++;

18 }

19 return count;

20 }

21

22 // pre : 0 <= index < size()

23 // post: returns the integer at the given index in the

list

24 public int get(int index) {

25 return nodeAt(index).data;

26 }

27

28 // post: returns comma-separated, bracketed version of

list

29 public String toString() {

30 if (front == null) {

31 return "[]";

32 } else {

33 String result = "[" + front.data;

34 ListNode current = front.next;

35 while (current != null) {

36 result += ", " + current.data;

37 current = current.next;

38 }

39 result += "]";

40 return result;

41 }

42 }

43

44 // post: returns the position of the first occurrence of

the

45 // given value (-1 if not found)

46 public int indexOf(int value) {

47 int index = 0;

48 ListNode current = front;

49 while (current != null) {

50 if (current.data == value) {

51 return index;

52 }

53 index++;

54 current = current.next;

55 }

56 return -1;

57 }

58

59 // post: appends the given value to the end of the list

60 public void add(int value) {

61 if (front == null) {

62 front = new ListNode(value);

63 } else {

64 ListNode current = front;

65 while (current.next != null) {

66 current = current.next;

67 }

68 current.next = new ListNode(value);

69 }

70 }

71

72 // pre: 0 <= index <= size()

73 // post: inserts the given value at the given index

74 public void add(int index, int value) {

75 if (index == 0) {

76 front = new ListNode(value, front);

77 } else {

78 ListNode current = nodeAt(index – 1);

79 current.next = new ListNode(value,

current.next);

80 }

81 }

82

83 // pre : 0 <= index < size()

84 // post: removes value at the given index

85 public void remove(int index) {

86 if (index == 0) {

87 front = front.next;

88 } else {

89 ListNode current = nodeAt(index – 1);

90 current.next = current.next.next;

91 }

92 }

93

94 // pre : 0 <= i < size()

95 // post: returns a reference to the node at the given

index

96 private ListNode nodeAt(int index) {

97 ListNode current = front;

98 for (int i = 0; i < index; i++) {

99 current = current.next;

100 }

101 return current;

102 }

103 }

16.3 A Complex List Operation

Suppose that you want to write a new method for your LinkedIntList
class called addSorted that would add values to the list in a way
which preserves sorted order. In other words, the method would be
specified as follows:

// pre : list is in sorted (nondecreasing) order

// post: given value is added to the list so as to preserve

sorted

// (nondecreasing) order, duplicates allowed

public void addSorted(int value) {

 ...

}

Our exploration of this task will point out important cases to consider
and significant pitfalls that you must be careful to avoid when you
program with linked lists.

Let’s first look at the general case of adding a value to the middle of
a list. Suppose that the list currently stores the values [2, 5, 12] :

Now suppose that you call the addSorted method and pass it the
value 10 . How do you add the value 10 to this list to preserve sorted
order? First you need to find the right spot to insert it. It belongs
between the 5 and 12 , because it is larger than 5 and smaller than
12 . And how do you write that as a loop? You have to compare the
value against the various data values stored in the list, starting with
the first value. The new node doesn’t belong in front of the node with
2 in it because 2 is less than 10 . Likewise, it doesn’t belong in front
of the node with 5 in it because 5 is less than 10 . But it does belong
in front of the node with 12 in it, because 12 is not less than 10 .
Your first attempt at writing the code might look like the following:

ListNode current = front;

while (current.data < value) {

 current = current.next;

}

This code has the core of the right idea, but it has many problems.
First of all, it ends up positioning you in the wrong spot. You want to
stop one position early in order to add something to the list, just as
you did with the two add methods. Remember that there are only two
ways to change the structure of a linked list: Either change front , or
change one of the next fields of one of the nodes.

In this case, you want to change the next field of the node that has
5 in it. So you don’t want your variable current to end up referring to
the node that has 12 in it. You want current to point to the node that
has 5 in it. You have to modify the code to stop one position early.
You can do this by changing the test to use current.next instead of
current :

ListNode current = front;

while (current.next.data < value) {

 current = current.next;

}

In effect, your test now says, “While the value of the data one
position to the right of my current position is less than value , keep

advancing current .” This loop stops when current refers to the node
with 5 in it, which means that you can link in the new node by
changing current.next . This new node should have a data value of
value (10 in our example). To what should its next link refer? It
should refer to the node that has 12 in it, which is stored in
current.next . So you’ll want to construct the node in the following
way:

new ListNode(value, current.next)

Just calling the constructor leaves the computer’s memory looking
like this:

But now you have to link this into the list by changing current.next :

current.next = new ListNode(value, current.next);

Now the computer’s memory looks like this:

This diagram isn’t the easiest picture to read, but if you follow the
links carefully, you’ll see that, starting at the front, the sequence of
values is 2, 5, 10, 12 , which is what you want.

The code works for most cases, but it is incomplete. What if you
want to insert the value 42? Remember your loop test:

while (current.next.data < value)

This code depends on finding a value in the list that is less than the
value you are trying to insert. What if there is no such value, as in
the case of 42? This code keeps moving current forward until
current.next is null . At that point, when you try to ask for the value
of current.next.data , you are asking for null.data , which throws a
NullPointerException because Java is looking for the data field of a
nonexistent object.

If the value that you wish to insert is greater than everything else in
the list, then it belongs after the last node in the list. So you want to
stop when current gets to the last node in the list. Thus, a second
(still incorrect) attempt at writing the code for the test would be

while (current.next.data < value && current.next != null)

This code still doesn’t work. The test for current.next being null
should stop changing current at the right place, but when
current.next is null , it is not legal to ask for the value of
current.next.data . That test will throw a NullPointerException . This
test is an example of a combination of a sensitive and robust test:

You need to switch the order of these tests to make them work
properly.

while (current.next != null && current.next.data < value)

Recall from Chapter 5 that Java uses what is known as short-
circuited evaluation, which means that if the first test evaluates to
false , Java doesn’t bother to perform the second test. So the first
test, in effect, protects you from the potential problem generated by
the second test (the NullPointerException).

Incorporating these changes, you end up with the following code:

ListNode current = front;

while (current.next != null && current.next.data < value) {

 current = current.next;

}

current.next = new ListNode(value, current.next);

But even this code is not enough. The first test in this loop is the
robust test, but it isn’t very robust. If current is null , then it throws a
NullPointerException . So you want to execute this code only in the
case in which front isn’t null .

There is another special case. If the value to be inserted belongs at
the very front of the list, then this code will place it in the wrong spot.
It always inserts after a node currently in the list, never in front of all
nodes.

For example, suppose that you want to insert the value 1 in the
previous list that begins with the value 2 . The code that you have
written starts current at the front of the list and inserts the value
after that node by changing the value of current.next . So the value
1 would be inserted after the value 2 , which is clearly wrong.

For the “front of the list” case, you have to write code that changes
front rather than changing current.next . In what case would you
want to do that? When the value is less than front.data . And what
exactly do you want to do? You want to set front to a new list node
that points at the old front of the list:

if (value < front.data) {

 front = new ListNode(value, front);

}

There is yet another special case. If you ran this program, you’d find
that, after all of your hard work, the program throws a
NullPointerException on the very first call to addSorted . Java throws

an exception if the list is empty because a line in the code asks for
front.data and front is null .

So you need to include yet another test in the code:

if (value <= front.data || front == null) {

 front = new ListNode(value, front);

}

Of course, we have purposely written this addition in the wrong way
as well. This is another example of a sensitive test (referring to
front.data) and a robust test (testing front for null). So you have
to reverse the order of these two tests to make the modification to
the code work properly.

The final version of the method is as follows:

public void addSorted(int value) {

 if (front == null || front.data >= value) {

 front = new ListNode(value, front);

 } else {

 ListNode current = front;

 while (current.next != null && current.next.data <

value) {

 current = current.next;

 }

 current.next = new ListNode(value, current.next);

 }

}

The if statement in this code deals with the two special cases we
just mentioned. If the list is currently empty (front == null) or if the
value belongs at the front of the list (front.data >= value), then you
insert the value at the front of the list rather than using the other
code that you developed. The order in which this test appears is
important because the test involving front.data will throw a
NullPointerException if front is null .

This code is a good example to study because it has so many
special cases. In the course of writing the code, you had to deal with
the following cases:

middle: the “typical” case in which a value is inserted in the
middle of the list
back: the special case in which we had to insert at the back of
the list
front: the special case in which we had to insert at the front of
the list
empty: the special case in which we had to insert into an empty
list

The first two cases are handled by the if branch of the code:

The second two cases are handled inside the else branch of the
code:

Inchworm Approach

Some people find it confusing to write code that involves expressions
like current.next.data . Another approach is to use a pair of pointers
that keep track of a current and a previous position in the list. In
effect, the pointers keep track of a two-element window on the list,
as in the following diagram:

As an analogy, consider an inchworm that is two nodes in length.
When the inchworm stretches out, its back half is on one node and
the front half is on another node. To move forward, it scoots its back
half up to where the front half is, then scoots the front half onto the
next node. This is exactly analogous to the code you’d use to move
this pair of variables forward one spot:

prev = current;

current = current.next;

Here is a solution to the addSorted problem using this approach:

public void addSorted(int value) {

 if (front == null || front.data >= value) {

 front = new ListNode(value, front);

 } else {

 ListNode prev = front;

 ListNode current = front.next;

 while (current != null && current.data < value) {

 prev = current;

 current = current.next;

 }

 prev.next = new ListNode(value, prev.next);

 }

}

Yet another variation is to set prev equal to null initially in order to
eliminate the special case for the front of the list. Then you have to
test after the loop to see whether prev is still null :

public void addSorted(int value) {

 ListNode prev = null;

 ListNode current = front;

 while (current != null && current.data < value) {

 prev = current;

 current = current.next;

 }

 if (prev == null) {

 front = new ListNode(value, front);

 } else {

 prev.next = new ListNode(value, prev.next);

 }

}

16.4 An IntList Interface
The ArrayIntList class from Chapter 15 and the LinkedIntList
class we have explored in this chapter have very similar methods.
They each have the following methods:

a size method
a get method
a toString method
an indexOf method
a one-argument add method (the appending add)
a two-argument add method (add at an index)
a remove method (remove at an index)

This similarity isn’t an accident. When we began studying linked lists,
we purposely implemented new versions of these methods that
worked for linked lists. The point is that these classes are similar in
terms of what they can do, but they are very different in the ways
that they do it.

Consider the following client code, which performs parallel
operations on two different lists, adding three values, removing one,
and printing the list before and after the remove:

 1 // A client program that uses two list classes.

 2 public class ListClient1 {

 3 public static void main(String[] args) {

 4 ArrayIntList list1 = new ArrayIntList();

 5 list1.add(18);

 6 list1.add(27);

 7 list1.add(93);

 8 System.out.println(list1);

 9 list1.remove(1);

10 System.out.println(list1);

11

12 LinkedIntList list2 = new LinkedIntList();

13 list2.add(18);

14 list2.add(27);

15 list2.add(93);

16 System.out.println(list2);

17 list2.remove(1);

18 System.out.println(list2);

19 }

20 }

The program produces the following output:

[18, 27, 93]

[18, 93]

[18, 27, 93]

[18, 93]

As we expected, the two kinds of list behave the same way. So what
if you wanted to introduce a static method to eliminate this
redundancy? What type would you use for the parameter? You can’t
use ArrayIntList because then you wouldn’t be able to pass the
LinkedIntList as a parameter, and vice versa.

As we saw in Chapters 9 and 11 , the right way to approach this
task is to introduce an interface. You want to think of these lists as
being the same kind of thing. Even though you recognize that there
are significant differences between the two, you can imagine an
“integer list” abstraction of which these are two possible
implementations. They’re the same in the sense that they provide
basic “integer list” functionality like an appending add . But they are
different in the sense that they are implemented quite differently (one
using an array and the other using a linked list).

You can introduce an interface with just the method headers to
capture this notion of the integer list:

 1 // Interface for a list of integers.

 2 public interface IntList {

 3 public int size();

 4 public int get(int index);

 5 public String toString();

 6 public int indexOf(int value);

 7 public void add(int value);

 8 public void add(int index, int value);

 9 public void remove(int index);

10 }

Using the interface, you can write a processList method to use in the
client program:

 1 // A client program that uses lists via an interface.

 2 public class ListClient2 {

 3 public static void main(String[] args) {

 4 ArrayIntList list1 = new ArrayIntList();

 5 processList(list1);

 6

 7 LinkedIntList list2 = new LinkedIntList();

 8 processList(list2);

 9 }

10

11 public static void processList(IntList list) {

12 list.add(18);

13 list.add(27);

14 list.add(93);

15 System.out.println(list);

16 list.remove(1);

17 System.out.println(list);

18 }

19 }

If this is the only change you make, then your program will include
two errors instead of one. Now both calls on the method cause an
error. That seems a bit odd, because both ArrayIntList and
LinkedIntList have the methods mentioned in the IntList interface.
But recall that Java requires classes to explicitly state which
interfaces they implement. So you have to modify the two classes to
include this notation:

public class ArrayIntList implements IntList {

 ...

}

public class LinkedIntList implements IntList {

 ...

}

After you make this change, the code compiles and executes
properly.

It is important to keep in mind that you can’t create instances of the
interface type. The following line of code is an error:

IntList list = new IntList(); // error–can't instantiate the

interface

Interfaces cannot be instantiated because they are incomplete. They
specify behaviors, but they don’t say how those behaviors are
implemented. So when you create an instance, you have to pick one
of the actual implementations.

Even though you can’t create an instance of an interface, it is a good
idea to use interfaces when you define the types of variables.
Therefore, method main in the client code should be rewritten as
follows:

public static void main(String[] args) {

 IntList list1 = new ArrayIntList();

 processList(list1);

 IntList list2 = new LinkedIntList();

 processList(list2);

}

These variables are more flexible than the old variables. The
variable list1 , for example, can now refer to any IntList object, not

just one of type ArrayIntList .

16.5 LinkedList<E>
In this section, we will use the LinkedIntList that we have developed
to produce a class that is similar to Java’s LinkedList<E> class. In the
collections framework, there is a close relationship between the
LinkedList<E> class and the ArrayList<E> class. We’ll mirror that
relationship in the version that we create. The task will require
making a few changes to the ArrayList<E> that we developed at the
end of the previous chapter.

In particular, we’ll introduce an interface List<E> that both classes
will implement. We can include all of the methods that we
implemented for the ArrayList<E> .

We can also introduce a slight improvement. Various structures can
use the for-each loop that was introduced in Chapter 7 . If you
want to be able to use a for-each loop for your own class, you have
to implement a special interface known as Iterable<E> . It has one
and only one method:

public interface Iterable<E> {

 public Iterator<E> iterator();

}

In other words, we need to have a method that constructs an iterator
for our collection. We’ll discuss later in this section how to do that for
a linked list. Under the hood, the for-each loop actually calls the
iterator method on the collection and yields each next element to
the loop’s body.

In this case, we want our two classes to implement both the List<E>
interface and the Iterable<E> interface. The usual way to accomplish
that in Java is to have one interface extend another. This is similar to
inheritance for classes and you use the same extends keyword.
Here is the complete List<E> specification:

 1 // Generic interface for a List of objects of type E.

 2

 3 public interface List<E> extends Iterable<E> {

 4 public int size();

 5 public E get(int index);

 6 public int indexOf(E value);

 7 public boolean isEmpty();

 8 public boolean contains(E value);

 9 public void add(E value);

10 public void add(int index, E value);

11 public void addAll(List<E> other);

12 public void remove(int index);

13 public void set(int index, E value);

14 public void clear();

15 }

Notice that the header mentions that it extends the Iterable<E>
interface. That means that any class implementing the interface must
provide a method for constructing an iterator, which will allow the
class to be used in for-each loops.

Before we write the actual code for LinkedList<E> , we’ll explore
some variations on linked lists and discuss the issue of iterators.

Linked List Variations

So far in this chapter, we have discussed the simplest possible
linked list. Each node in this list has had a single link to the next
value in the list, and we have terminated each list with the value
null . We have used the value null to represent an empty list.

However, there are many variations on linked lists. Several of these
ideas are used in Java’s implementation of LinkedList , and we will
use several for our own implementation. There are three primary
variations: circular lists, lists with dummy nodes, and doubly linked
lists. Let’s consider each variation in turn.

Instead of making the final element of the list store the value null ,
we can have the final element of the list point back to the first value
in the list. We refer to such a list as circular. For example, here is a
circular list that stores the values [3, 7, 12] :

There are many applications in which it can be helpful to have the list
point back to the front in this manner. To manipulate such a list, you
use very different code. You can’t test for null because there are no
null links in the list. Instead, you test whether you have returned to
the point at which you started. It is often helpful to use a do/while
loop for processing a circular list. For example, the following code
prints the values of the list, one per line:

ListNode current = front;

do {

 System.out.println(current.data);

 current = current.next;

} while (current != front);

One of the tricky aspects of working with a circular list is dealing with
an empty list. The preceding code, for example, generates a
NullPointerException if the variable list has the value null .

This brings us to our second variation. It is often helpful to have extra
nodes in the list that do not store meaningful elements and that are
not considered part of the list. We refer to such a node as a dummy
node. For example, in a circular list it is often convenient to represent
the empty list as a single dummy node that points back to itself.
Dummy nodes are useful even with the kind of null-terminated lists
we have been writing. By using a dummy header node, we represent
the empty list as having just the dummy node:

The data field in the preceding list stores 0 , but it doesn’t matter
what value we store in the dummy node. The advantage of using a
dummy header node is that we no longer have to write special code
to insert a value at the front of the list. Now the front of the list will
always be this dummy header node. For example, if we were to
insert the values 3 , 7 , and 12 , they would be inserted after the
dummy node:

The final linked list variation is called a doubly linked list. The idea is
that instead of storing links in a single direction, we store them in
both directions. That means that our node class has fields for both
next and prev and that we maintain the links in both directions. For
example, the three-element list [3, 7, 12] would be stored as
follows:

Notice that each node now has two different links pointing in different
directions. The list also has two null links. The final node has a
next field that is null and the first node has a prev field that is null
to indicate in each case that there are no other nodes in that
direction.

In practice, programmers use some combination of these
techniques. For example, Java’s LinkedList<E> is implemented as a
doubly linked, circular list.

In our implementation, we will use two of these techniques. Our list
will be doubly linked and will have two dummy nodes, one for the
front of the list and one for the back of the list. We will also introduce
an extra field to keep track of the back of the list. Thus, in our
version, an empty list will look like this:

This list doesn’t look very empty, but that’s the idea. Even when it is
empty, our list will have two dummy header nodes. That way, the
fields front and back will always point to exactly the same dummy
node and we won’t have to write any special case code for changing
their values. Instead, all insertions will occur between the two
dummy nodes. For example, if we insert the values 18 and 73 , our
list will look like this:

You can think of the dummy nodes as bookends that appear on
either side of the actual nodes.

Linked List Iterators

To match our ArrayList class and to be able to implement the
Iterable interface that allows us to use for-each loops, we need to
implement an iterator for our LinkedList class. Just as we did with
ArrayList , we can make the iterator class an inner class that has
access to the fields of the outer object. In the case of the ArrayList ,
the primary field for our iterator was an integer index. For a linked
list, we want to keep track of a current list node. We still need the
removeOK field that we used for ArrayList . So our iterator class
begins as follows:

private class LinkedIterator implements Iterator<E> {

 private ListNode<E> current; // location of next value to

return

 private boolean removeOK; // whether it's okay to remove

now

 ...

}

Notice that our node class is now also generic (ListNode<E>). As in
the last chapter, we do not declare our class as LinkedIterator<E> ,
because the type E is already declared as part of the outer linked list

class. But we do place an <E> type parameter after the Iterator and
ListNode declarations.

To implement the iterator class, you have to take into consideration
the fact that you will have two dummy nodes, one at the front of the
list and one at the back. The first node you will want to process will
come after that dummy node at the front, so the proper initialization
for your iterator is as follows:

public LinkedIterator() {

 current = front.next;

 removeOK = false;

}

To test whether you have a next value to examine, you will use the
dummy nodes again. You’ll want to continue to move current
forward until it reaches the dummy node at the end of the list. That
means that you’ll implement hasNext as follows:

public boolean hasNext() {

 return current != back;

}

For the other two operations, you can simply translate what you did
with the array implementation into appropriate code for your linked
list implementation. For the next method, your code will look like the
following:

public E next() {

 if (!hasNext()) {

 throw new NoSuchElementException();

 }

 E result = current.data;

 current = current.next;

 removeOK = true;

 return result;

}

For the remove method, your code will look like this:

public void remove() {

 if (!removeOK) {

 throw new IllegalStateException();

 }

 ListNode<E> prev2 = current.prev.prev;

 prev2.next = current;

 current.prev = prev2;

 size--;

 removeOK = false;

}

Notice that, to remove a node, you have to reset both a next and a
prev pointer in the list because now you are working with a doubly
linked list.

Before we leave the subject of iterators, you should consider briefly
how to implement the addAll method for your LinkedList class.
Keep in mind that its header will refer to your List interface:

public void addAll(List<E> other) {

 ...

}

You have to write this code in such a way that it can take either a
LinkedList or an ArrayList as a parameter. That means that you
have to use methods mentioned in the interface. One misguided
approach would be to use a for loop and repeatedly call get to
retrieve each element:

// inefficient implementation of addAll method

public void addAll(List<E> other) {

 for (int i = 0; i < other.size(); i++) {

 add(other.get(i));

 }

}

This code will work, but it will be extremely inefficient when other is
a LinkedList . Each time you call the get method, you have to start
at the front of the list and skip nodes until you get to the right spot. It
is much better to use an iterator to solve this problem. You can make
it particularly simple by using a for-each loop and letting Java
manage the iterator for you. This technique greatly simplifies the
code:

public void addAll(List<E> other) {

 for (E value : other) {

 add(value);

 }

}

You should use this same implementation for the method in the
ArrayList class to make sure that it also runs efficiently for all types
of lists. It turns out that several of the methods can be implemented
using the same code for both the array list and linked list. A better

implementation would introduce an abstract list superclass to
represent this similarity. This is left as a programming project idea.

Other Code Details

We are almost ready to put the pieces together. But first, let’s
consider the fields for our LinkedList class. We have already
discussed keeping track of both the front and the back of the list. It is
also useful to keep track of the current size in a field so that you
don’t have to traverse the list to find out its size. So there will be
three fields:

public class LinkedList<E> implements List<E> {

 private ListNode<E> front; // first value in the list

 private ListNode<E> back; // last value in the list

 private int size; // current number of elements

 ...

}

To initialize the list, you want to construct the two dummy nodes and
then set up everything to refer to an empty list. You also have to
implement the clear method that is supposed to return to an empty
list, so this is a good opportunity to write the code once in the clear

method and to have the constructor call it. The constructor will look
like this:

public LinkedList() {

 front = new ListNode<>(null);

 back = new ListNode<>(null);

 clear();

}

Notice that you need to include <> when you construct the nodes.
For the clear method, you simply make these two dummy nodes
point to each other and reset the size:

public void clear() {

 front.next = back;

 back.prev = front;

 size = 0;

}

When you implement the get method, you can introduce an
optimization. In the case of a singly linked list, you always start at the
beginning of the list and move forward until you find the appropriate
spot in the list. This works well when the value appears toward the

beginning of the list. What if the value appears near the end?
Because your list is doubly linked, you can start at the end and work
backward, following the prev links until you get to the appropriate
spot. The best thing to do is to start from the front when the index is
in the first half of the list and to start from the back when it is in the
second half of the list. This optimization applies to any of the
methods that involve going to a specific index (remove , set , add). All
of these methods call the private nodeAt method, so the optimization
appears in just one place in the code:

private ListNode<E> nodeAt(int index) {

 ListNode<E> current;

 if (index < size / 2) { // start from the front

 current = front;

 for (int i = 0; i < index + 1; i++) {

 current = current.next;

 }

 } else { // start from the back

 current = back;

 for (int i = size; i >= index + 1; i--) {

 current = current.prev;

 }

 }

 return current;

}

In our final implementation of LinkedIntList , we didn’t include
methods for isEmpty , indexOf , or contains . The isEmpty method can
simply check whether the size is 0 , as you did for the ArrayList , and
the contains method can check the result of calling indexOf .

To write indexOf , you loop over the list, looking for the value and
returning its index if you find it. Because of your dummy nodes, the
loop ends up looking slightly different than the other loops you have
written:

ListNode<E> current = front.next;

while (current != back) {

 ...

}

You also have to be careful to call the equals method for
comparisons.

The code involves ordinary list operations that you’ve seen
throughout this chapter:

public int indexOf(E value) {

 int index = 0;

 ListNode<E> current = front.next;

 while (current != back) {

 if (current.data.equals(value)) {

 return index;

 }

 index++;

 current = current.next;

 }

 return -1;

}

Many of the methods that you wrote for LinkedIntList can be used
with only slight modifications for the LinkedList . Let’s look at remove
as an example. Because of the dummy nodes, you don’t have to
make a special case for an empty list. But because of the doubly
linking, you have to reset two links (a next and a prev) when you
remove the node:

public void remove(int index) {

 checkIndex(index);

 ListNode<E> current = gotoIndex(index – 1);

 current.next = current.next.next;

 current.next.prev = current;

 size--;

}

You’ll want to make similar changes to the add method.

The LinkedList class includes one final improvement. Instead of
keeping the node class as a separate class, the LinkedList class
includes it as a nested class. In this case, the individual node objects
don’t need access to the outer object, so it is best to declare the
class to be a static inner class. The details of this code are beyond
the scope of this book, but the quick explanation is that providing
access to the outer class takes some extra storage and because
we’re likely to construct thousands and perhaps even millions of
node objects, we want to be more efficient about the space that they
take up. Declaring the class to be static accomplishes that goal.

The complete code for the LinkedList class can be found at
http://buildingjavaprograms.com. You will also find the List interface
and an updated version of ArrayList there.

Chapter Summary
A linked list is a data structure that stores an ordered sequence of
elements using a chain of objects called nodes. Each node refers to
at least one other node in the list. The overall list object keeps
references to a small number of these nodes, such as the front or
back node.

A node has a data and next field. You can connect one node to
another by assigning its next field to refer to the other node. It is
possible to make chains of nodes of arbitrary length in this way.

The end of a chain of nodes, the next reference of the last node, is
null .

When you are trying to rearrange one ordering of nodes into another,
you must be careful about the order in which you change the
references. If you change the ordering so that no variable or field
refers to a given node, the node is lost and cannot be recovered.

You can traverse a linked list by creating a temporary node reference
(called current in our examples) and looping through the overall list
of nodes. Such a loop can stop when the program finds a particular
value or encounters a null next node (the end of the list).

It is often desirable to stop one node before the relevant part of the
list that you are searching for, because, in order to change the list,
you often must change the next field of the prior node.

When you are performing complex list operations such as adding to
a sorted list, it is important to think about all of the possible cases in
which the method might be called. Is the list empty, does it have a
single element, or does it have many elements? Will our element of
interest be added at or removed from the beginning, middle, or end
of the list?

When you create two tests separated by an && or || , be sure to
place the more “robust” test before the more “sensitive” test,
especially if the robust test’s failure would cause the sensitive test to
throw an exception.

One way to traverse a list is with two current references that are one
node apart, also called the inchworm approach.

A list interface can be created to represent an abstract data type that
is implemented by both array lists and linked lists. The list interface
allows client code to treat both types of lists the same way.

A linked list iterator keeps a reference to its current position in the
list. This class is often written as an inner class inside the overall list
class so that the iterator has direct access to the list’s nodes.

A generic linked list class can store objects of any type E rather than
just integers.

Self-Check Problems

Section 16.1: Working with Nodes

1. What is the difference between a linked list and an array list?
How are they similar?

2. What is the difference between a linked node and a linked
list? How are they related and connected?

3. What value is stored as the next field of the last node of a
list? What value will a node’s next field have if none is
specified?

4. What happens if you or the client try to go past the last
element in a linked list? Be specific.
For each of the next four problems, draw a picture of what the
given linked nodes would look like after the given code
executes.

5.

list.next = new ListNode(3);

6.

list.next = new ListNode(3, list.next);

7.

list = new ListNode(4, list.next.next);

8.

list.next.next = null;

For each of the next nine problems, you’ll see pictures of
linked nodes before and after changes. Write the code that
will produce the given result by modifying links between the
nodes shown and/or creating new nodes as needed. There
may be more than one way to write the code, but you may not
change any existing node’s data field value. If a variable does

not appear in the “after” picture, it doesn’t matter what value it
has after the changes are made.

Section 16.2: A Linked List Class

18. What are the two ways to change the contents of a linked list?
19. An element can be inserted at or removed from the beginning,

middle, or end of a linked list. Which of the three locations is
the most computationally expensive, and why? How does this
compare against the result for an array list?

20. When you add or remove the element found at index of a
list, you must create a temporary current node reference and
advance it through the list. At which index’s node should the
loop stop, relative to ?

21. In an array list, it is possible to overrun the capacity of the
array, at which point the list must be resized to fit. Is resizing
necessary on a linked list? What limits the number of
elements that a linked list can have?
For each of the next three problems, you’ll see pictures of
long chains of linked nodes before and after changes. (The . .
. in the middle of the chain signifies an indeterminate large
number of nodes.) Write the code that will produce the given
result by modifying links between the nodes shown and/or
creating new nodes as needed. You will need to write loops to
advance to the end of the list in order to reach the node(s) to
modify.

i

i

25. Write methods called min and max that return the smallest
and largest values in the linked list, respectively. For example,
if a variable called list stores [11, –7, 3, 42, 0, 14] , the
call of list.min() should return –7 and the call of list.max()
should return 42 . If the list is empty, throw an
IllegalStateException .

Section 16.3: A Complex List
Operation

26. What are the four cases examined in the addSorted method?
27. What is the “inchworm approach”? What advantages does

this approach have over other approaches for examining a
linked list?

28. Write methods called sum and average that return the sum of
all values in the list and the average value as a real number,
respectively. For example, if a variable called list stores [11,
–7, 3, 42, 0, 14] , the call of list.sum() should return 63 and
the call of list.average() should return 10.5 . If the list is
empty, sum should return 0 and average should return 0.0 .

Section 16.4: An IntList
Interface

29. What are some advantages of creating an IntList interface
and having both types of lists implement it?

30. Write a method called firstLast that can accept either type of
integer list as a parameter and that moves the first element of
the list to the end. For example, if a variable called list
contains the values [12, 45, 78, 20, 36] , the call of
firstLast(list); will change the list to store [45, 78, 20, 36,
12] .

Section 16.5: LinkedList<E>

31. What are some changes that need to be made to the linked
list class to convert it from storing integers to storing objects
of type E?

32. Why is an iterator especially useful with linked lists?
33. What state does the linked list iterator store? How does the

iterator know if there are more elements left to examine?

Exercises
Each of the following exercises is a method to be added to the
LinkedIntList class from this chapter.

1. Write a method called set that accepts an index and a value
and sets the list’s element at that index to have the given
value. You may assume that the index is between 0 (inclusive)
and the size of the list (exclusive).

2. Write a method called min that returns the minimum value in a
list of integers. If the list is empty, it should throw a
NoSuchElementException .

3. Write a method called isSorted that returns true if the list is
in sorted (nondecreasing) order and returns false otherwise.
An empty list is considered to be sorted.

4. Write a method called lastIndexOf that accepts an integer
value as a parameter and that returns the index in the list of
the last occurrence of that value, or −1 if the value is not
found in the list. For example, if a variable list stores the
values [1, 18, 2, 7, 18, 39, 18, 40] , then the call of
list.lastIndexOf(18) should return 6 . If the call had instead
been list.lastIndexOf(3) , the method would return –1 .

5. Write a method called countDuplicates that returns the
number of duplicates in a sorted list. The list will be in sorted

order, so all of the duplicates will be grouped together. For
example, if a variable list stores the values [1, 1, 1, 3, 3,
6, 9, 15, 15, 23, 23, 23, 40, 40] , the call of
list.countDuplicates() should return 7 because there are 2
duplicates of 1 , 1 duplicate of 3 , 1 duplicate of 15 , 2
duplicates of 23 , and 1 duplicate of 40 .

6. Write a method called hasTwoConsecutive that returns whether
or not a list of integers has two adjacent numbers that are
consecutive integers (true if such a pair exists and false
otherwise). For example, if a variable list stores the values
[1, 18, 2, 7, 8, 39, 18, 40] , then the call
list.hasTwoConsecutive() should return true because the list
contains the adjacent numbers (7, 8), which are a pair of
consecutive numbers.

7. Write a method called deleteBack that deletes the last value
(the value at the back of the list) and returns the deleted
value. If the list is empty, throw a NoSuchElementException .

8. Write a method called switchPairs that switches the order of
values in the list in a pairwise fashion. Your method should
switch the order of the first two values, then switch the order
of the next two, switch the order of the next two, and so on. If
the list contains an odd number of values, the final element is
not moved. For example, if the list initially stores [10, 25, 31,
47, 52, 68, 77] , your method should switch the first pair (10
and 25), the second pair (31 and 47), and the third pair (52
and 68) to yield [25, 10, 47, 31, 68, 52, 77] .

9. Write a method called stutter that doubles the size of a list
by replacing every integer in the list with two of that integer.
For example, suppose a variable list stores the values [1,
8, 19, 4, 17] , after a call of list.stutter() , it should store
[1, 1, 8, 8, 19, 19, 4, 4, 17, 17] .

10. Write a method called stretch that takes an integer as a
parameter and that increases a list of integers by a factor of
by replacing each integer in the original list with copies of
that integer. For example, if a variable called list stores [18,
7, 4, 24, 11] and we make the call of list.stretch(3); the
list should be changed to store [18, 18, 18, 7, 7, 7, 4, 4, 4,
24, 24, 24, 11, 11, 11] . If is zero or negative, the list
should become empty.

11. Write a method called compress that replaces every pair of
elements in the list with a single element equal to the sum of
the pair. If the list is of odd size, leave the last element
unchanged. For example, if the list stores [1, 7, 3, 9, 4, 6,
5] , your method should change it to store [8, 12, 10, 5] (

 then then then 5).
12. Write a method called split that rearranges the elements of a

list so that all of the negative values appear before all of the
nonnegatives. For example, suppose a variable list stores
the values [8, 7, -4, 19, 0, 43, -8, -7, 2] . The call of
list.split(); should rearrange the list to put the negatives
first: [-4, -8, -7, 8, 7, 19, 0, 43, 2] . It doesn’t matter what
order the numbers are in, only that the negatives appear

n

n

n

n

1 + 7, 3 + 9, 4 + 6,

before the nonnegatives, so this is only one possible solution.
You must solve the problem by rearranging the links of the list,
not by swapping data values or creating new nodes. You also
may not use auxiliary structures like arrays or ArrayLists to
solve this problem.

13. Write a method called transferFrom that accepts a second
linked list as a parameter and that moves values from the
second list to this list. You are to attach the second list’s
elements to the end of this list. You are also to empty the
second list. For example, suppose two lists called list1 and
list2 store [8, 17, 2, 4] and [1, 2, 3] , respectively. The
call of list1.transferFrom(list2); should change list1 to [8,
17, 2, 4, 1, 2, 3] and list2 to an empty list, [] . The order
of the arguments matters; list2.transferFrom(list1); should
change list1 to an empty list, [] , and list2 to [1, 2, 3, 8,
17, 2, 4] . Either of the two lists could be empty, but you can
assume that neither list is null . You are not to create any new
nodes. Your method should simply change links of the lists to
join them together.

14. Write a method called removeAll that removes all occurrences
of a particular value. For example, if a variable list stores
the values [3, 9, 4, 2, 3, 8, 17, 4, 3, 18] , the call of
list.removeAll(3); would change the list to store [9, 4, 2, 8,
17, 4, 18] .

15. Write a method called equals that accepts a second list as a
parameter, returns true if the two lists are equal, and returns

false otherwise. Two lists are considered equal if they store
exactly the same values in exactly the same order and have
exactly the same length.

16. Write a method called removeEvens that removes the values in
even-numbered indexes from a list, returning a new list that
contains those values in their original order. For example,
consider a variable list1 that stores the values [8, 13, 17,
4, 9, 12, 98, 41, 7, 23, 0, 92] and imagine that the
following call is made:

LinkedIntList list2 = list1.removeEvens();

After the call, list1 should store [13, 4, 12, 41, 23, 92] and
list2 should store [8, 17, 9, 98, 7, 0] . You may not call
any methods of the class other than the constructor to solve
this problem. You may not create any new nodes nor change
the values stored in data fields to solve this problem. You
must solve it by rearranging the links of the list.

17. Write a method called removeRange that accepts a starting and
ending index as parameters and removes the elements at
those indexes (inclusive) from the list. For example, if a
variable list stores the values [8, 13, 17, 4, 9, 12, 98, 41,
7, 23, 0, 92] , the call of listRange.removeRange(3, 8); should
remove values between index 3 and index 8 (the values 4
and 7), leaving the list of [8, 13, 17, 23, 0, 92] . The method

should throw an IllegalArgumentException if either of the
positions is negative. Otherwise you may assume that the
positions represent a legal range of the list (

).
18. Write a method called doubleList that doubles the size of a

list by appending a copy of the original sequence to the end of
the list. For example, if a variable list stores the values [1,
3, 2, 7] and we make the call of list.doubleList(); then
after the call it should store [1, 3, 2, 7, 1, 3, 2, 7] . Notice
that the list has been doubled in size by having the original
sequence appear twice in a row. You may not make
assumptions about how many elements are in the list. You
may not call any methods of the class to solve this problem. If
the original list contains nodes, then you should construct
exactly nodes to be added. You may not use any auxiliary
data structures such as arrays or ArrayLists to solve this
problem. Your method should run in O() time where is
the number of nodes in the list.

19. Write a method called rotate that moves the value at the front
of a list of integers to the end of the list. For example, if a
variable called list stores the values [8, 23, 19, 7, 45, 98,
102, 4] , then the call of list.rotate(); should move the
value 8 from the front of the list to the back of the list,
changing the list to store [23, 19, 7, 45, 98, 102, 4, 8] . If
the method is called for a list of 0 elements or 1 element, it
should have no effect on the list. You may neither construct
any new nodes to solve this problem nor change any of the

0 ≤ start ≤ end < size

N

N

N N

data values stored in the nodes. You must solve the problem
by rearranging the links of the list.

20. Write a method called shift that rearranges the elements of a
list of integers by moving to the end of the list all values that
are in odd-numbered positions and otherwise preserving list
order. For example, suppose that a variable list stores the
values [10, 31, 42, 23, 44, 75, 86] . The call of
list.shift(); should rearrange the list to store [10, 42, 44,
86, 31, 23, 75] . It doesn’t matter whether the value itself is
odd or even; what matters is whether the value appears in an
odd index (index 1, 3, 5, etc.). Also notice that the original
order of the list is otherwise preserved. You may not construct
any new nodes nor use any auxiliary data structures to solve
this problem. You also may not change any data fields of the
nodes; you must solve this problem by rearranging the links of
the list.

21. Write a method called surroundWith that takes an integer x
and an integer y as parameters and surrounds all nodes in
the list containing the value x with new nodes containing the
value y . In particular, each node that contains the value x as
data should have a new node just before it and just after it
that each contain the value y . If no nodes in the list contain
the value x , then the list should not be modified. For example,
suppose that the variables list1 , list2 , and list3 store the
following sequences of values:

[0, 1, 2, 1] // stored in list1

[0, 1, 0] // stored in list2

[0, 1, 2] // stored in list3

and we make the following calls:

list1.surroundWith(1, 4); // surround 1s with 4s

list2.surroundWith(1, 1); // surround 1s with 1s

list3.surroundWith(3, 4); // surround 3s with 4s

then the variables will now store these sequences:

[0, 4, 1, 4, 2, 4, 1, 4] // stored in list1

[0, 1, 1, 1, 0] // stored in list2

[0, 1, 2] // stored in list3

22. Write a method called reverse that reverses the order of the
elements in the list. (This is very challenging!) For example, if
the variable list initially stores the values [1, 8, 19, 4, 17] ,
the call of list.reverse(); should change the list to store [17,
4, 19, 8, 1] .

Programming Projects
1. The actual List interface in the java.util package has

several methods beyond the ones implemented in this
chapter. Write a version of LinkedList<E> that adds some or
all of these methods. The methods to add are the following
(some headers are slightly modified; see the Java API
Specification for descriptions of each method):

public void addAll(int index, List<E> list)

public boolean containsAll(List<E> list)

public boolean equals(Object o)

public int lastIndexOf(Object o)

public boolean remove(Object o)

public void removeAll(List<E> list)

public void retainAll(List<E> list)

public Object[] toArray()

2. The java.util package has an interface called ListIterator
that extends the Iterator interface and includes additional
methods that are specific to iterating through the elements of
lists forward or backward. Write a class called
LinkedListIterator2 that adds some or all of these methods
for iterating over a doubly linked list. The methods to add are

the following (see the Java API Specification for descriptions
of each method):

public void add(E value)

public boolean hasPrevious()

public int nextIndex()

public E previous()

public int previousIndex()

public void set(E value)

3. The implementation of several methods is (or can be) the
same between our ArrayList and LinkedList . Write a
common abstract superclass called AbstractList that
implements the common behavior and is extended by both
ArrayList and LinkedList . Factor out the common code from
the two list classes into this abstract superclass so that no
code duplication occurs between the two. Use iterators
wherever possible in the abstract code to ensure that the
implementation is efficient for both types of lists.

4. “Assassin” is a real-life game in which a group of players all
try individually to find and touch (or “kill”) one other player.
You can use a linked list to represent this “kill ring” of players
in the game:

If a “kill” is made, the ring adjusts by removing that person
from the list. For example, the following occurs if Sally kills
Jim:

Write a program that models a game of Assassin. The game
reads the names of the initial kill ring from a file and puts them
into a linked list in random order. Then the game repeatedly
prompts for the name of a person that has been killed. The
game continues until only one player remains and is declared
the winner. The program should also have methods for
printing the current contents of the kill ring and printing a
“graveyard” of all players who have been killed.

5. Write a graphical program that shows a set of overlapping
rectangular regions, each in a different random color. The
regions are represented internally as a linked list. The regions
have a “ -ordering” in which rectangles closer to the end of
the list are closer to the top, closer to the user’s field of view.
When the user clicks the mouse, the topmost region that
touches the mouse pointer moves to the very top (end) of the
linked list. For example, the following diagrams show the top-
left rectangle before and after the mouse is clicked:

z

(See the Nifty Assignments page at http://nifty.stanford.edu
for a more detailed description of this project, as written by its
original author, Prof. Michael Clancy of the University of
California, Berkeley.)

http://nifty.stanford.edu/

Chapter 17 Binary Trees

17.1 Binary Tree Basics
• Node and Tree Classes

17.2 Tree Traversals
• Constructing and Viewing a Tree

17.3 Common Tree Operations
• Sum of a Tree

• Counting Levels

• Counting Leaves

17.4 Binary Search Trees
• The Binary Search Tree Property

• Building a Binary Search Tree

• The Pattern x = change(x)

• Searching the Tree

• Binary Search Tree Complexity

17.5 SearchTree<E>

Introduction
In this chapter, we will explore a new data
structure known as a binary tree. Like linked
lists, binary trees are composed of
interconnected nodes. But unlike linked lists,
which involve a one-dimensional (straight line)
sequence, binary trees can branch in two
directions, which gives them a two-dimensional
structure.

A surprising number of data relationships can be
represented using binary trees. Any relationship
that involves a division into two paths can be
represented with a binary tree. Thus, binary
trees can store information that involves a
yes/no relationship, a high/low relationship, or a
first and second relationship. For example,
arithmetic expressions have operators like +
and * that have a first operand and a second
operand. Binary trees are a natural structure for
storing such relationships. Such trees are often
referred to as expression trees because they

capture the structure of the arithmetic
expressions they represent.

Because binary trees are linked structures, they
share many of the useful properties of linked
lists. It is fairly easy to grow or shrink a binary
tree by rearranging the links of the nodes.

After looking at basic binary tree terminology
and basic binary tree operations, we will explore
a particular kind of binary tree known as a binary
search tree. Binary search trees are used to
capture high/low relationships and provide an
efficient structure for keeping track of data that
have a natural ordering. The TreeSet and
TreeMap structures that are part of the
collections framework are implemented as
binary search trees.

As we study binary trees, we will find that
recursion comes into play quite often. Many
binary tree operations are best written
recursively.

17.1 Binary Tree Basics
Here is a diagram of a simple binary tree of integer values.

As we did with linked lists, we refer to each different data value as a
node. This tree has a total of six nodes. Some people joke that
computer scientists view the world upside down, so imagine turning
the diagram around the other way:

Viewed upside down, the diagram looks more like a tree. At the
bottom of this structure is a node storing the value 12 . We refer to
this value as the root of the tree. All nodes are connected either
directly or indirectly to the root node. In this diagram, the nodes that
store the values 12 , 18 , and 7 have connections branching out and
up. These nodes are referred to as branch nodes. The nodes storing
the values 23 , 4 , and 13 are at the top of this tree and have nothing
above them. They are referred to as leaf nodes or leaves of the tree.

Before we try to formally define these terms, let’s begin with a formal
definition of a binary tree.

Binary Tree
A binary tree is either

an empty tree or
a root node (typically storing some data) that refers
to two other trees known as the left subtree and the
right subtree.

The key phrase in this definition is “subtree.” The tree is composed
of smaller trees. This definition is recursive. The base case or simple

case is an empty tree that has no nodes at all. The recursive case
describes a tree of the following form:

This recursive definition will be a useful way to think about trees as
we write binary tree code. The definition will help us to more
precisely define the concepts of a branch node and a leaf node.

Branch (Branch Node)
A node that has one or more nonempty subtrees.

Leaf (Leaf Node)
A node that has two empty subtrees.

Using our recursive definition, let’s explore how we can form various
kinds of trees. The simplest kind of tree is an empty tree, which can’t
really be drawn because it contains no values.

Once you understand the concept of an empty tree, you can use the
second part of the definition to create a new kind of tree that is
composed of a root node with left and right subtrees that are both
empty. In other words, that tree would be a single leaf node, which
you could represent with a star:

*

Now you can use the recursive rule to say that a tree can be a root
node with a left tree that is empty and a right tree that is a leaf:

Or a tree can have an empty right and a leaf to the left:

Or a tree can have a leaf on either side:

These different forms now become possibilities to use for the
recursive definition, allowing you to construct even more kinds of
trees:

Using the recursive definition of a tree, we can define the concept of
parent/child relationships in the tree:

Parent/Child/Sibling/Ancestor/Desc
endant
For every node that has a nonempty subtree with
root node , we say that is the parent of and is
the child of , which leads logically to ancestor
relationships (parent of parent of . . .), descendant
relationships (child of child of . . .), and sibling
relationships (two nodes with the same parent).

Let us return to our original tree:

p

q p q q

p

Let’s start at the overall root node, which stores the value 12 . It has
two nonempty subtrees. The left subtree stores the value 18 at its
root and the right subtree stores the value 7 at its root. The nodes
storing 18 and 7 are children of the node storing 12 and they are
siblings of each other. Similarly, the node storing 23 is a child of the
node storing 18 , and the nodes storing 4 and 13 are children of the
node storing 7 , which makes them descendants of the overall root.
The overall root is the ancestor of each of the other nodes.

Using this parent/child terminology, we can more precisely define our
notion of the overall root of the tree.

Root of a Tree (Overall Root)
The node at the top of a binary tree, the only node in
the tree that has no parent.

Another important aspect of binary trees is the distribution of nodes
into different levels of the tree. Our sample tree has three different
levels: the overall root, the children of the overall root, and the
grandchildren of the overall root. This notion of levels leads us to the
concept of the depth of an individual node (how many levels away
from the root it is) and the overall height of the tree (how many levels
it has).

Node and Tree Classes

When we studied linked lists, we found that each was built from a
fairly simple building block that looks like this:

Our basic building block for a binary tree will be similar, but instead
of one link, it will have two:

As we did with linked lists, we will first study how to manipulate a
binary tree of simple int values. Here is a class definition for our
binary tree nodes.

1 // Class for storing a single node of a binary tree of ints

2

3 public class IntTreeNode {

4 public int data;

5 public IntTreeNode left;

6 public IntTreeNode right;

7

8 // constructs a leaf node with given data

9 public IntTreeNode(int data) {

10 this(data, null, null);

11 }

12

13 // constructs a branch node with given data, left

subtree,

14 // right subtree

15 public IntTreeNode(data, IntTreeNode left,

16 IntTreeNode right) {

17 this.data = data;

18 this.left = left;

19 this.right = right;

20 }

21 }

Like our linked list node, this node is very simple; it has some public
fields and a few constructors. The node has a field of type int for
storing the data contained in this node and two links of type
IntTreeNode for the left and right subtrees. The first constructor
constructs a leaf node (using null for left and right). The second
constructor is appropriate for a branch node where you want to
specify the left and right subtrees.

The node class is not well encapsulated, but as we saw with linked
lists, this is common practice in Java programming. In this chapter,
we’ll define a tree class that is well encapsulated and we will make
sure that a client of the tree class never sees these nodes. In the
final example of the chapter we will completely hide this node class

by making it a static inner class, as we did with the final version of
the linked list class.

Just as we could reach every node of a linked list by starting at the
front and moving forward, we can reach every node of a binary tree
by starting at the overall root and moving down in the tree. As a
result, we need only one field in the tree class: a reference to the
root of the tree:

public class IntTree {

 private IntTreeNode overallRoot;

 ...

}

We purposely use the name overallRoot to distinguish this root from
all of the other roots. There is only one overall root. But each subtree
is itself the root of a tree, and in our recursive methods we’ll often
use the parameter name root to indicate any of the roots.

As we did with our linked lists, we’ll represent the empty tree by
storing the value null in the overallRoot field:

17.2 Tree Traversals
We can’t do much with our tree class unless we have some way of
seeing what’s inside. We want to traverse the tree in such a way that
we visit each node exactly once. There are many different ways to
do this. Because the tree is defined recursively, it is easiest to use a
recursive approach to this problem. As a result, we want to traverse
the entire left subtree without dealing with any of the elements from
the right and, in a separate operation, traverse the entire right
subtree without dealing with any of the elements from the left. Given
this decision, there are three classic binary tree traversals. Because
we read from left to right, we traverse the left subtree before the right
subtree. The question becomes, at what point do you deal with the
root of the tree?

There are three possible answers you might give. You can process
the root before you traverse either subtree, after you traverse both
subtrees, or in between traversing the two subtrees. These three
approaches are known as preorder, postorder, and inorder traversals
respectively.

For example, consider the following simple tree:

A preorder traversal visits the root, then the left subtree, then the
right subtree, yielding the sequence [7, 6, 5] . An inorder traversal
visits the left subtree, then the root, then the right subtree, yielding
the sequence [6, 7, 5] . A postorder traversal visits the left subtree,
then the right subtree, then the root, which yields [6, 5, 7] . Notice
in this example that we always list 6 before 5 (left before right) and
that the only value which changes position is the root value 7 .

When we traverse a more complex tree, we simply use the recursive
nature of this definition to carry out the traversal. For example,

consider the following tree.

The overall root stores the value 2 , so we know that the different
traversals will look like this:

Preorder traversal: [2, <left>, <right>]
Inorder traversal: [<left>, 2, <right>]
Postorder traversal: [<left>, <right>, 2]

The left subtree of this tree stores the value 0 and has an empty
right subtree. We know that each of the occurrences of <left> is
going to be replaced by an appropriate traversal:

Preorder traversal: [2, 0, <left-left>, <right>]
Inorder traversal: [<left-left>, 0, 2, <right>]
Postorder traversal: [<left-left>, 0, <right>, 2]

Then each occurrence of <left-left> would be replaced with an
appropriate traversal for the subtree that has 7 as its root. The
following are the complete traversal results:

Preorder traversal: [2, 0, 7, 6, 5, 3, 1, 8, 9, 4]
Inorder traversal: [6, 7, 5, 0, 2, 8, 1, 3, 9, 4]
Postorder traversal: [6, 5, 7, 0, 8, 1, 4, 9, 3, 2]

There is another way to find the three different traversals. Imagine
that each node in the tree is an island and that each link is a solid
wall. Then imagine a sailboat sailing in from the upper left part of the
tree and sailing around the tree, always hugging the coastline, and
continuing around until it sails past the root on the right-hand side:

The sailboat sails past the root node three different times. It passes it
first on the left, then underneath, and then on the right. If you think
about it the right way, you’ll realize that the sailboat passes each of
the nodes three times. Even for a leaf node like the one on the left
that stores 6 , it has to pass on the left, underneath, and on the right.
It does them all in a row for a leaf node, but it still passes by in all
three directions.

If you print the values as the sailboat passes them on the left, you
get a preorder traversal. If you print the values as the sailboat
passes underneath, you get an inorder traversal. And if you print the
values as the sailboat passes them on the right, you get a postorder
traversal. This technique is useful for double-checking your
understanding of the different traversals.

Let’s now see how we can write public methods for the IntTree class
that will perform these traversals. Let’s begin by writing a public
method that will print the preorder traversal of a tree. Your public
method will look like this:

public void printPreorder() {

 ...

}

At this point we run into a problem that we discussed in Chapter
12 . Often when you write a recursive solution, you have to
introduce a second method that we call a helper method. When you
do so, it is best to write the second method as a private method. For
these binary tree methods, it will almost always be the case that you
actually have to write a pair of methods to solve any of these
problems.

The issue is that the client makes a request to print the entire tree.
But to solve this problem recursively, you need a method that works
on every subtree, not just the overall tree. In other words, you need a
method that takes an IntTreeNode as a parameter so that the
recursive method will match the recursive structure of the tree. That
way each recursive call will be able to pass on smaller and smaller
subtrees, which allows you to get closer to reaching a base case. As
a result, you will see a common pattern in binary tree code that looks
like this:

public void doSomething(<parameters>) {

 doSomething(overallRoot, <parameters>);

}

private void doSomething(IntTreeNode root, <parameters>) {

 ...

}

Binary tree code won’t always follow this pattern exactly because
there might be other actions to perform in the public method, the
return type might not be void, or there might be other parameters.
But this general pattern will be there even with all of these variations.

To solve the problem of printing in preorder, you need a private
method that has an IntTreeNode parameter:

private void printPreorder(IntTreeNode root) {

 ...

}

You start the recursive process by passing it the overall root. You
can also include code to print text at the beginning and end of the
line of output that you want to produce:

public void printPreorder() {

 System.out.print("preorder:");

 printPreorder(overallRoot);

 System.out.println();

}

How do you write the private method? It’s good to go back to the
basic definition of a binary tree. Remember that it is either an empty
tree or a root node with left and right subtrees. If it’s an empty tree,
then there isn’t anything to print. That means you could begin your
private method this way:

private void printPreorder(IntTreeNode root) {

 if (root == null) {

 // do nothing

 }

 ...

}

But since this case leaves the method with nothing to do, it’s better
to test the negation of this statement:

private void printPreorder(IntTreeNode root) {

 if (root != null) {

 ...

 }

}

And what do you do if root is not null? In that case, you have a root
node with some data in it and you have left and right subtrees that
need to be printed. In a preorder traversal you handle the root node
first, which means you’d print out the data for the root. You can
include a space to separate it from other values on the line of output:

private void printPreorder(IntTreeNode root) {

 if (root != null) {

 System.out.print(" " + root.data);

 ...

 }

}

What do you do after you print the data for this node? You want to
print the left subtree in a preorder manner and then print the right
subtree in a preorder manner:

private void printPreorder(IntTreeNode root) {

 if (root != null) {

 System.out.print(" " + root.data);

 // then print left subtree in a preorder manner

 // then print right subtree in a preorder manner

 }

}

This is a time to make the leap of faith that is so essential in writing
recursive methods. Thinking recursively, you’ll think, “If only I had a
method to print a subtree in a preorder manner . . . but I do have
such a method . . . the one I’m writing.” Therefore, this method
becomes:

private void printPreorder(IntTreeNode root) {

 if (root != null) {

 System.out.print(" " + root.data);

 printPreorder(root.left);

 printPreorder(root.right);

 }

}

That modification completes the method. It may seem odd that it
takes so little code to perform this task, but as we saw in Chapter
12 , recursive code often ends up being very short.

Now let’s consider how to modify the code to print the tree in an
inorder manner. The new code will have a similar public/private pair
of methods:

public void printInorder() {

 System.out.print("inorder:");

 printInorder(overallRoot);

 System.out.println();

}

private void printInorder(IntTreeNode root) {

 ...

}

The code will also have a similar test for an empty tree. But how do
you change the body of the private printing method to make it print
using an inorder traversal rather than a preorder traversal? You put
the print in between the two recursive calls:

private void printInorder(IntTreeNode root) {

 if (root != null) {

 printInorder(root.left);

 System.out.print(" " + root.data);

 printInorder(root.right);

 }

}

This simple rearrangement of the three calls causes the code to print
in an inorder manner rather than a preorder manner.

You can create another set of methods for printing in postorder by
again rearranging the three operations so that the two recursive calls
are made before the print .

It is important to understand why this seemingly small change of
moving the print statement relative to the recursive calls generates
such different behavior. It’s because each recursive call potentially
processes a large amount of data (an entire subtree). You’ll find that
this is a common property of binary tree code. A minor change to the
code can produce very different results.

Constructing and Viewing a Tree

It’s difficult to know whether our traversal methods work unless we
can construct a tree and examine its structure. Most often we
develop binary tree code with a specific application in mind. We’re
trying to keep things simple initially, so for now, let’s construct a very
specific tree that will allow us to test our code.

Using recursion, we can fairly easily construct a tree that has nodes
numbered in a sequential manner level by level, as in this tree of
nine nodes:

Notice how the number 1 is on the first level, then 2 and 3 on the
next level, then 4, 5, 6, and 7, and so on. In this structure, we will fill
in every possible node up to some maximum node number. Let’s
refer to this as a sequential tree to simplify our discussion.

Assume that the constructor for the class will be passed the
maximum node number to include in the tree:

public IntTree(int max) {

 ...

}

This is another case in which you need to introduce a private method
to do most of the work for you. In our previous pattern, we wrote
methods that take a parameter of type IntTreeNode and our initial call
passed the value of the field overallRoot to start the ball rolling. In
this case, there is no tree to traverse. The whole point of the method
is to construct the tree. Instead of passing overallRoot as a
parameter, we want to use the method to give a value to
overallRoot . And instead of passing a parameter of type
IntTreeNode , we want the method to return a value of type
IntTreeNode (a reference to the tree it has built). Thus, the pair of
methods will look something like this:

public IntTree(int max) {

 overallRoot = buildTree();

}

private IntTreeNode buildTree() {

 ...

}

This is a good first approximation, but it isn’t right. As you learn to
write code for binary trees, you will discover that one of the most
difficult tasks is figuring out the appropriate parameters to pass. As
you practice more, you will see various patterns emerge.

One obvious parameter to include here is the value max that is
passed to the public method. How can the private method do its job
properly if it doesn’t know when to stop? You can modify your pair to
include that parameter:

public IntTree(int max) {

 overallRoot = buildTree(max);

}

private IntTreeNode buildTree(int max) {

 ...

}

This still isn’t enough information for the private method to do its job.
Think of it this way: The private method has to construct each of the
different subtrees that are involved. One call on the method will
construct the overall tree. Another will construct the left subtree of
the overall root. Another will construct the right subtree of the overall
root. How is the method supposed to know which of these tasks to
solve?

We must include an extra parameter telling the method the node
number to use for the root of the tree that it is constructing. When the
method is passed the value 1 , it will construct the overall root. When
it is passed the value 2 , it will construct the left subtree of the overall
root, and so on. Including this second parameter, we end up with the
following code:

public IntTree(int max) {

 overallRoot = buildTree(1, max);

}

// returns a sequential tree with n as its root unless n is

// greater than max, in which case it returns an empty tree

private IntTreeNode buildTree(int n, int max) {

 ...

}

Notice that in the public method you need to pass the value 1 to
indicate that the first call should be generating a tree with 1 as its
root value. And as the comments indicate, you only want to construct
the tree if the value of n is less than or equal to the value of max .

The requirement that you want to stop building the tree for values of
n that are greater than max gives you an appropriate base case for
the private method:

private IntTreeNode buildTree(int n, int max) {

 if (n > max) {

 return null;

 } else {

 ...

 }

}

Now you just have to fill in the recursive case. You know that you
need to construct a node that stores the value n . The less obvious
part is how to construct the left and right subtrees. For the moment,
you can introduce some local variables for the two subtrees; later,
you will fill in the details about how to construct them. The method so
far looks like this:

private IntTreeNode buildTree(int n, int max) {

 if (n > max) {

 return null;

 } else {

 IntTreeNode left = ...

 IntTreeNode right = ...

 return new IntTreeNode(n, left, right);

 }

}

We suggested building this particular tree because there is a simple
mathematical relationship between each node in this tree and its
children. If a node is numbered , then its left child is numbered 2
and its right child is numbered . For example, the overall root
is numbered 1 and its children are numbered 2 and 3 . The left
subtree is numbered 2 and its children are numbered 4 and 5 , and
so on.

n n

2n + 1

Getting back to our code, now that we know what value to store in
each of the two children, we can use recursive calls to construct the
left and right subtrees:

private IntTreeNode buildTree(int n, int max) {

 if (n > max) {

 return null;

 } else {

 IntTreeNode left = buildTree(2 * n, max);

 IntTreeNoderight = buildTree(2 * n + 1, max);

 return new IntTreeNode(n, left, right);

 }

}

The preceding code works and is very clear in terms of the steps
performed. In the recursive case (the else branch), you can see that
you construct a left subtree, then construct a right subtree, and
finally put these pieces together into a new IntTreeNode that is
returned by the method. Although this code is clear, many people
prefer to write it even more concisely to eliminate the local variables.
You can rewrite the method above as follows:

private IntTreeNode buildTree(int n, int max) {

 if (n > max) {

 return null;

 } else {

 return new IntTreeNode(n, buildTree(2 * n, max),

 buildTree(2 * n + 1, max));

 }

}

Even though this tree ends up having a very predictable structure, it
is helpful to develop a method that shows the structure more clearly.
Some programming environments like jGRASP have “structure
viewers” that allow you to see a visual representation of a binary
tree. If you don’t have access to such a program, you might want to
take a simplified approach to viewing the structure of the tree.

You can accomplish this by writing a simple variation of your inorder
traversal. Instead of printing values all on a line, you will print them
one per line and use indentation to indicate the level of the tree. For
example, consider the following simple tree:

You’d want your program to produce output like this:

 5

7

 6

To read this output, you have to imagine rotating the page 90
degrees in a clockwise fashion or tilting your head slightly to the left.
The output is a little easier to see if we throw in some lines:

The lines are a little tricky to produce, so let’s settle for producing the
simple output and you’ll have to mentally add the lines. For example,
you might get output like the following for a tree with four levels:

 15

 7

 14

 3

 13

 6

 12

1

 11

 5

 10

 2

 9

 4

 8

Again, imagine rotating this output 90 degrees (or rotating the page
on which it is printed). The result looks like this:

 1

 2 3

 4 5 6 7

8 9 10 11 12 13 14 15

If you add lines to this diagram, you’ll see the tree:

The output has the root node between its two subtrees, so this
traversal is a variation of the inorder traversal. Oddly enough, you
want to print the right subtree before the left subtree. For example,
consider the following tree:

Your method would produce the following output:

 5

7

 6

Notice that the right subtree value of 5 is printed first, then the root,
then the left subtree value of 6 . This happens because you are
rotating the image.

You can fairly easily modify your inorder traversal code to produce
this new set of methods:

public void printSideways() {

 printSideways(overallRoot);

}

private void printSideways(IntTreeNode root) {

 if (root != null) {

 printSideways(root.right);

 System.out.println(root.data);

 printSideways(root.left);

 }

}

But this version of the code does not indent the various levels of the
tree. To obtain the proper indentation, you need to introduce an extra

parameter to let the private method know the level at which each
node appears. The initial call on the private method should pass the
value 0 because the overall root should be indented 0 spaces. Each
recursive call should pass an indentation level that is one higher for
its children. The following code produces the indentation of the tree:

public void printSideways() {

 printSideways(overallRoot, 0);

}

private void printSideways(IntTreeNode root, int level) {

 if (root != null) {

 printSideways(root.right, level + 1);

 for (int i = 0; i < level; i++) {

 System.out.print(" ");

 }

 System.out.println(root.data);

 printSideways(root.left, level + 1);

 }

}

Here is some client code that calls the various methods we have
developed:

 1 // Short program that demonstrates the use of the IntTree

class.

 2

 3 public class IntTreeClient {

 4 public static void main(String[] args) {

 5 IntTree t = new IntTree(12);

 6 System.out.println("Tree structure:");

 7 t.printSideways();

 8 System.out.println();

 9 t.printPreorder();

10 t.printInorder();

11 t.printPostorder();

12 }

13 }

This method produces the following output:

Tree structure:

 7

 3

 6

 12

1

 11

 5

 10

 2

 9

 4

 8

preorder: 1 2 4 8 9 5 10 11 3 6 12 7

inorder: 8 4 9 2 10 5 11 1 12 6 3 7

postorder: 8 9 4 10 11 5 2 12 6 7 3 1

Here is the complete IntTree class:

 1 // Simple binary tree class that includes methods to

construct a

 2 // tree of ints, to print the structure, and to print the

data

 3 // using a preorder, inorder, or postorder traversal. The

trees

 4 // built have nodes numbered starting with 1 and numbered

 5 // sequentially level by level with no gaps in the tree.

The

 6 // documentation refers to these as "sequential trees."

 7

 8 public class IntTree {

 9 private IntTreeNode overallRoot;

10

11 // pre : max >= 0 (throws IllegalArgumentException if

not)

12 // post: constructs a sequential tree with given number

of

13 // nodes

14 public IntTree(int max) {

15 if (max < 0) {

16 throw new IllegalArgumentException("max: " +

max);

17 }

18 overallRoot = buildTree(1, max);

19 }

20

21 // post: returns a sequential tree with n as its root

unless

22 // n is greater than max, in which case it returns

an

23 // empty tree

24 private IntTreeNode buildTree(int n, int max) {

25 if (n > max) {

26 return null;

27 } else {

28 return new IntTreeNode(n, buildTree(2 * n,

max),

29 buildTree(2 * n + 1,

max));

30 }

31 }

32

33 // post: prints the tree contents using a preorder

traversal

34 public void printPreorder() {

35 System.out.print("preorder:");

36 printPreorder(overallRoot);

37 System.out.println();

38 }

39

40 // post: prints in preorder the tree with given root

41 private void printPreorder(IntTreeNode root) {

42 if (root != null) {

43 System.out.print(" " + root.data);

44 printPreorder(root.left);

45 printPreorder(root.right);

46 }

47 }

48

49 // post: prints the tree contents using an inorder

traversal

50 public void printInorder() {

51 System.out.print("inorder:");

52 printInorder(overallRoot);

53 System.out.println();

54 }

55

56 // post: prints in inorder the tree with given root

57 private void printInorder(IntTreeNode root) {

58 if (root != null) {

59 printInorder(root.left);

60 System.out.print(" " + root.data);

61 printInorder(root.right);

62 }

63 }

64

65 // post: prints the tree contents using a postorder

traversal

66 public void printPostorder() {

67 System.out.print("postorder:");

68 printPostorder(overallRoot);

69 System.out.println();

70 }

71

72 // post: prints in postorder the tree with given root

73 private void printPostorder(IntTreeNode root) {

74 if (root != null) {

75 printPostorder(root.left);

76 printPostorder(root.right);

77 System.out.print(" " + root.data);

78 }

79 }

80

81 // post: prints the tree contents, one per line,

following an

82 // inorder traversal and using indentation to

indicate

83 // node depth; prints right to left so that it

looks

84 // correct when the output is rotated.

85 public void printSideways() {

86 printSideways(overallRoot, 0);

87 }

88

89 // post: prints in reversed preorder the tree with

given

90 // root, indenting each line to the given level

91 private void printSideways(IntTreeNode root, int level)

{

92 if (root != null) {

93 printSideways(root.right, level + 1);

94 for (int i = 0; i < level; i++) {

95 System.out.print(" ");

96 }

97 System.out.println(root.data);

98 printSideways(root.left, level + 1);

99 }

100 }

101 }

17.3 Common Tree Operations

This section discusses several common binary tree operations. All of
these operations are built on top of a standard tree traversal and
involve reasoning recursively about the subtrees.

Sum of a Tree

First let’s write a method to find the sum of the values stored in a
binary tree of ints . The method header will look like this:

public int sum() {

 ...

}

As usual, you will need to introduce a private method that allows you
to pass a node as a parameter so that you can specify which subtree
of the overall tree to work with. The public method should call the
private method, pass it the overall root, and return the result:

public int sum() {

 return sum(overallRoot);

}

private int sum(IntTreeNode root) {

 ...

}

The recursive definition tells us that a tree is either empty or a root
node with left and right subtrees. This definition provides an excellent
basis for recursive code. You know that the empty tree has a sum of
0, so you can begin with that case:

private int sum(IntTreeNode root) {

 if (root == null) {

 return 0;

 } else {

 ...

 }

}

If the tree is not empty, then it is a root node that has left and right
subtrees. To find the sum of the values, you have to combine all
three parts: the data stored in the root node and the sums of the left
and right subtrees. This task translates very easily into recursive
code:

private int sum(IntTreeNode root) {

 if (root == null) {

 return 0;

 } else {

 return root.data + sum(root.left) + sum(root.right);

 }

}

Counting Levels

As a second example, let’s write a method called countLevels that
returns the number of levels in a tree. For our purposes, we consider
the root node to be at level 1 , its children to be at level 2 , its
grandchildren to be at level 3 , and so on. The countLevels method
should return the level of the node that is furthest from the root.

You can again solve this task by writing a public/private pair of
methods. The public method returns the result of invoking the private
method with the overall root:

public int countLevels() {

 return countLevels(overallRoot);

}

private int countLevels(IntTreeNode root) {

 ...

}

You can again use the definition that a tree is either empty or a root
node with left and right subtrees. If it is empty, then it has no levels at
all (0 levels):

private int countLevels(IntTreeNode root) {

 if (root == null) {

 return 0;

 } else {

 ...

 }

}

If the tree is not empty, then it is a root node with left and right
subtrees. In this case, the data stored in the tree don’t matter. We are
asking a question about the structure of the tree. To solve this
problem, you should think about what a recursive call on the subtrees
would return. It would tell you the number of levels in the left subtree
and the number of levels in the right subtree. Those answers might
match (they might have the same number of levels), but often you’ll
find that one subtree has more levels than the other. In that case,
what matters more is the subtree that has more levels, because that
determines the number of levels in the overall tree. Here’s a first
attempt at writing the method:

private int countLevels(IntTreeNode root) {

 if (root == null) {

 return 0;

 } else {

 return Math.max(countLevels(root.left),

countLevels(root.right));

 }

}

Let’s think about a specific case. Consider the following tree:

If the method has been called with the overall root of the tree as a
parameter, then you expect the recursive calls to return 2 as the
number of levels for the left subtree and 1 as the number of levels for
the right subtree. The call on Math.max will correctly choose the 2
over the 1 for the overall answer, but the overall tree doesn’t have
two levels. It has three levels. You have to account for the root node,
which is an extra level, by adding 1 to the previous expression:

private int countLevels(IntTreeNode root) {

 if (root == null) {

 return 0;

 } else {

 return 1 + Math.max(countLevels(root.left),

countLevels(root.right));

 }

}

Without the “ 1 + ” in this expression, the method would always return
an answer of 0 . This is another example of a case in which a minor
change in a recursive definition makes a big difference in how the
method behaves.

The height of a binary tree is 1 less than its number of levels. When
we count levels, we say that the empty tree has 0 levels and a tree
composed of a single node has 1 level. According to the standard
definition of binary tree height, a tree of one node is considered to
have a height of 0 and the empty tree is considered either to have no
height (undefined height) or a height of –1 .

Counting Leaves

As a final example, let’s write a method that returns a count of the
number of leaf nodes in a tree. It will have the familiar public/private
pair of methods that includes an initial call with the overall root. You
can once again use the recursive definition of a tree to help you write
this code. If a tree is empty, then it has no nodes at all, let alone any
leaf nodes. Thus, you can begin your method with the following lines
of code:

public int countLeaves() {

 return countLeaves(overallRoot);

}

private int countLeaves(IntTreeNode root) {

 if (root == null) {

 return 0;

 } else {

 ...

 }

}

The else case involves a root node with left and right subtrees. How
many leaf nodes are in such a tree? Think about what recursive calls
on the left and right subtrees will return. They will tell you how many
leaves are in the subtrees. Each of those leaves is a leaf of the
overall tree, so you might think that the answer is as simple as
returning the sum of the subtree leaves:

private int countLeaves(IntTreeNode root) {

 if (root == null) {

 return 0;

 } else {

 return countLeaves(root.left) + countLeaves(root.right);

 }

}

If you were to test this version of the code, you’d find that it always
returns 0 as the number of leaves in a tree. That’s because you

forgot one important case. When you have a root node that has left
and right subtrees, the number of leaves in that tree is generally the
sum of the number of leaves in the two subtrees, except in one
important case. What if the subtrees are both empty? That would
mean that the node you are looking at is itself a leaf node. That
particular tree has exactly one leaf node (the root). You have to
introduce a special case that handles that particular situation:

private int countLeaves(IntTreeNode root) {

 if (root == null) {

 return 0;

 } else if (root.left == null && root.right == null) {

 return 1;

 } else {

 return countLeaves(root.left) + countLeaves(root.right);

 }

}

It may seem odd, but that simple change makes this code work.
Each leaf node returns an answer of 1, and those answers are
added together by the other calls to produce a count of the various
leaf nodes in the tree.

17.4 Binary Search Trees
In this section, we will study a particularly useful kind of binary tree
known as a binary search tree. Recall from Chapter 13 that we
can efficiently search through a sorted array using the binary search
algorithm. That algorithm is highly efficient because on each iteration
it divides a range of sorted values in half, which allows you to
eliminate half of the possibilities.

A binary search tree is a structural parallel to the binary search
algorithm. At each level of the tree we divide the data in half, storing
approximately half the values in the left subtree and approximately
half the values in the right subtree. The result is a highly efficient
structure for storing a sorted sequence of values that can be quickly
searched for particular values. As we noted in the introduction, both
the TreeMap and TreeSet classes in the Java Collections Framework
are binary search trees. In this section, we will explore how to add
values to a binary search tree and how to search the tree. We will
then explore some of the complexity issues related to binary search
trees. We’ll see that binary search trees can be very efficient,
although they also can lose their efficiency if they become
unbalanced. If you continue to study computer science, you will learn
various techniques which guarantee that the tree stays balanced.

The Binary Search Tree Property

The values in a binary search tree are guaranteed to be arranged in
such a way that the values in the left subtree are all less than the
root data and the values in the right subtree are all greater than the
root data. Sometimes we want to allow duplicates, in which case we
have to adopt a convention about which subtree they appear in. It
doesn’t matter what convention we adopt, as long as we are
consistent. For example, we can decide that if duplicates are
allowed, then they should appear in the left subtree, which would
lead to the following property:

This property of nodes is known as the binary search tree property.

Binary Search Tree Property

Property of a node which stores data if all values
stored in the left subtree are less than and all values
in the right subtree are greater than . If duplicates are
allowed, then all values in the left subtree must be less
than or equal to .

For a tree to qualify as a binary search tree, each node of the tree
must have this property. This is not just a property of the overall root.

Binary Search Tree
A binary tree in which every node has the binary
search tree property.

Here is a binary search tree of names:

n

n

n

n

The names appear in the tree using alphabetical ordering (also
known as lexicographic ordering). For example, the overall root
stores "Lisa" , which means that all of the names in the left subtree
are alphabetically less than or equal to "Lisa" and all names in the
right subtree are alphabetically greater than "Lisa" .

Consider the result you obtain when you perform an inorder traversal
of the tree:

Bart, Flanders, Homer, Krusty, Lisa, Maggie, Marge, Milhouse,

Smithers

This list of names is in alphabetical order. This result isn’t terribly
surprising when you think about the binary search tree property. In a
binary search tree, you know that values which are alphabetically
less than or equal to the root appear in the left subtree and that
values which are alphabetically greater appear in the right subtree.
For any given subtree, an inorder traversal traverses the left subtree
first, then the root, then the right subtree, which means you visit the
nodes in this order:

Therefore, the root value is printed at just the right point in time (after
the values that are alphabetically less than or equal to it and before
the values that are alphabetically greater than it). And because every
node in the tree has the binary search tree property, you know that
the value stored in each node is printed in the correct position
relative to the values that appear below it in the tree. The overall
result is that each data value is printed at just the right point in time
relative to the rest of the data.

This observation highlights one of the useful properties of a binary
search tree. Once it is constructed, we can traverse the values in
sorted order by performing an inorder traversal of the tree.

Building a Binary Search Tree

(values <= root data)

1st

root data
2nd

(values > root data)

3rd
������ ������ ������

We can borrow many elements of the IntTree class that we wrote in
the previous section to produce a new IntSearchTree class. The
primary traversal in which we will be interested is the inorder
traversal, so we can include it in our new class and rename it with
the simpler name print .

For this new class, it is best to use the concept of a data invariant, as
introduced in Chapter 8 . We can guarantee that the binary search
tree property is true for every node in our tree by making sure that
we never violate this invariant relationship. That will simplify our code
because we won’t have to test to make sure that our tree is a binary
search tree.

We imagine that a client program will involve code like the following:

 1 // This program tests the IntSearchTree class by

constructing a

 2 // binary search tree of integers and printing its contents

as

 3 // well as its structure.

 4

 5 import java.util.*;

 6

 7 public class IntSearchTreeClient {

 8 public static void main(String[] args) {

 9 Scanner console = new Scanner(System.in);

10 IntSearchTree numbers = new IntSearchTree();

11 System.out.print("Next int (0 to quit)? ");

12 int number = console.nextInt();

13 while (number != 0) {

14 numbers.add(number);

15 System.out.print("Next int (0 to quit)? ");

16 number = console.nextInt();

17 }

18 System.out.println();

19

20 System.out.println("Tree Structure:");

21 numbers.printSideways();

22 System.out.println("Sorted list:");

23 numbers.print();

24 }

25 }

This program prompts for a series of integers that are added one at
a time into the tree until the user enters the sentinel value 0 . The
program then prints the structure of the tree and the contents of the
tree. The following is a sample execution. Notice that the numbers
are printed in increasing order:

Next int (0 to quit)? 42

Next int (0 to quit)? 9

Next int (0 to quit)? 18

Next int (0 to quit)? 55

Next int (0 to quit)? 7

Next int (0 to quit)? 108

Next int (0 to quit)? 4

Next int (0 to quit)? 70

Next int (0 to quit)? 203

Next int (0 to quit)? 15

Next int (0 to quit)? 0

Tree Structure:

 203

 108

 70

 55

42

 18

 15

 9

 7

 4

Sorted list:

4 7 9 15 18 42 55 70 108 203

To begin with, you will need a constructor that constructs an empty
tree. Remember that the empty tree is represented by the value
null . In fact you could simply not have a constructor and Java would
provide you with a zero-argument constructor that initializes the field
overallRoot to null . But it’s not a bad idea to include the constructor
anyway for clarity:

public IntSearchTree() {

 overallRoot = null;

}

Then you have to write the add method. Because of our data
invariant, you can assume that, each time the method is called, the
existing tree is a binary search tree. You have to make sure that you
add the value in an appropriate place so as to preserve the binary
search tree property.

The add method will have the usual structure of a public method that
the client calls with no mention of tree nodes and a private recursive
method that takes a node as a parameter and that does the actual
work. Thus, your pair of methods will look like this:

public void add(int value) {

 add(overallRoot, value);

}

private void add(IntTreeNode root, int value) {

 ...

}

Recall that a binary tree is either empty or a root node with left and
right subtrees. If it is empty, then you want to insert the value here.
For example, initially the overall tree is empty and you insert the first

value at the top of the tree (replacing the null value with a reference
to a new leaf node that contains the given value). So the private add
method would start like this:

private void add(IntTreeNode root, int value) {

 if (root == null) {

 root = new IntTreeNode(value);

 }

 ...

}

But what if it’s not an empty tree? Then it must have a root node with
some data. Let’s assume that duplicates are allowed, so that you
want to insert this value no matter what. In the case in which root is
not null , you know that the new value has to be added to one of the
subtrees. Which one? You can compare the value you are inserting
to the data in the root to figure that out. If the value is less than or
equal to the root’s data, then you insert the value into the left
subtree; otherwise, you insert into the right subtree. Your method will
look something like this:

private void add(IntTreeNode root, int value) {

 if (root == null) {

 root = new IntTreeNode(value);

 } else if (value <= root.data) {

 // add to left

 } else {

 // add to right

 }

}

This is the general structure that you want, but exactly how do you
add to the left or right subtree? Some novices try to test things about
the left or right subtree, as in the following example:

// overly complex version

private void add(IntTreeNode root, int value) {

 if (root == null) {

 root = new IntTreeNode(value);

 } else if (value <= root.data) {

 if (root.left == null) {

 root.left = new IntTreeNode(value);

 } else {

 // even more stuff

 }

 } else {

 // add to right

 }

}

This is not a good way to approach the problem. If you’re thinking
recursively, you’ll realize that it’s another insertion task into either the

left or the right subtree. You can call the add method itself:

// simpler, but does not quite work

private void add(IntTreeNode root, int value) {

 if (root == null) {

 root = new IntTreeNode(value);

 } else if (value <= root.data) {

 add(root.left, value);

 } else {

 add(root.right, value);

 }

}

The logic of this code is almost correct. Unfortunately, in this form
the tree always remains empty. The add method never inserts a
value. The problem has to do with the parameter called root . The
parameter root will store a copy of whatever value is passed into it.
As a result, when you reassign root , it has no effect on the value
that is passed into it.

There is a particular approach to solving this problem that is very
helpful in writing binary tree code. Let’s explore this issue and the
technique in some detail before we try to fix this code.

The Pattern x = change(x)

Consider the following short program:

 1 import java.awt.*;

 2

 3 public class PointTest {

 4 public static void main(String[] args) {

 5 Point p = new Point(2, 8);

 6 System.out.println("p = " + p);

 7 change(p);

 8 System.out.println("now p = " + p);

 9 }

10

11 public static void change(Point q) {

12 q.translate(3, 5);

13 q = new Point(–7, –14);

14 System.out.println("q = " + q);

15 }

16 }

The code in main constructs a Point object and passes it as a
parameter. Inside the method we translate the coordinates of the
Point object. This change is reflected in the original Point object
because when we pass an object as a parameter, the parameter
gets a copy of the reference to the object.

But what about the final line of the method that constructs a new
Point? Does that change the main method’s variable p? The answer
is no. The overall output for this version of the program is as follows:

p = java.awt.Point[x=2,y=8]

q = java.awt.Point[x=-7,y=-14]

now p = java.awt.Point[x=5,y=13]

One of the changes (translating the coordinates) has an effect, but
the other (constructing a new Point) does not. This happens
because when we pass an object as a parameter, the parameter
gets a copy of the reference to the object. When we call the change
method, the variable q is set up as a copy of the variable p :

This is a situation we have seen before. There are two references to
the same object. We discussed this scenario in detail in the section
on reference semantics in Chapter 7 . There is only one Point
object here and we have two different ways of referring to it: using
the variable p or using the variable q . That’s why the method is able
to change the object to which p refers when it executes this line of
code:

q.translate(3, 5);

There are two different variables referring to the same object, so
either variable is capable of changing the object:

But that doesn’t mean that q has the power to change p itself. It can
change the object to which p refers (the Point), but it can’t change
the value that is stored in p (the reference, or pointer; or the arrow,
or cell phone number). When we change q with the following line of
code, it has no effect on p :

q = new Point(–7, –14);

This code gives a new value to q , but not to p , as you can see in the
following diagram:

There are many ways to try to fix this, but there is a particular
approach called the x = change(x) idiom that solves the problem
rather nicely. We change the method so that it returns the value of
the parameter just before it exits. This modification also requires us
to change the return type for the method:

public static Point change(Point q) {

 q.translate(3, 5);

 q = new Point(–7, –14);

 System.out.println("q = " + q);

 return q;

}

Then we change the call on the method to the x = change(x) form:

p = change(p);

With these changes, the program produces the following output:

p = java.awt.Point[x=2,y=8]

q = java.awt.Point[x=–7,y=–14]

now p = java.awt.Point[x=–7,y=–14]

The change that occurs in the method propagates back to the main
method.

Now let’s return to the binary tree add method to see how we could
apply this technique there. Currently the add method has a return
type of void :

private void add(IntTreeNode root, int value) {

 ...

}

We can change it so that the last thing we do in the method is to
return the value of root , which means we have to change the return
type to IntTreeNode :

private IntTreeNode add(IntTreeNode root, int value) {

 ...

 return root;

}

Then we change every call on add to match the x = change(x) form.
Recall our old public method:

public void add(int value) {

 add(overallRoot, value);

}

The code now becomes:

public void add(int value) {

 overallRoot = add(overallRoot, value);

}

The idea is that we pass the value of overallRoot to the add method
and it passes back the value of the parameter, which might be the
old value or might be a new value. We reassign overallRoot to this
value passed back by add . That way, if the method changes the
value of the parameter, overallRoot gets updated to that new value.
If it doesn’t change the value of overallRoot , then we are simply

assigning a variable to the value that it already has (effectively
saying "x = x"), which has no effect.

Two other calls on add inside the method itself need to be updated in
a similar manner:

private IntTreeNode add(IntTreeNode root, int value) {

 if (root == null) {

 root = new IntTreeNode(value);

 } else if (value <= root.data) {

 root.left = add(root.left, value);

 } else {

 root.right = add(root.right, value);

 }

 return root;

}

After we make these changes, the add method works properly.

This x = change(x) idiom is very powerful and simplifies a lot of
binary tree code, so it is important to learn how to use it well.

Searching the Tree

Once we have built a binary search tree, we will want to do more
than just printing its contents or structure. One of the most common
operations we might want to perform is to search the tree to see
whether it contains a particular value.

The method to perform this search should return a boolean result
and you will once again want to have a public/private pair of
methods, so the basic form of your solution will be as follows:

public boolean contains(int value) {

 return contains(overallRoot, value);

}

private boolean contains(IntTreeNode root, int value) {

 ...

}

Now you just have to write the body of the private method. An empty
tree again serves as the easy case. If you’re asked whether the
empty tree contains a value, the answer is no (false):

private boolean contains(IntTreeNode root, int value) {

 if (root == null) {

 return false;

 }

 ...

}

For the add method, you had two other cases. You either added to
the left subtree or added to the right subtree. For this method, there
are three cases, cases for searching the left and right subtree and
the root:

private boolean contains(IntTreeNode root, int value) {

 if (root == null) {

 return false;

 } else if (value == root.data) {

 ...

 } else if (value < root.data) {

 ...

 } else { // value > root.data

 ...

 }

}

Now you just need to fill in the three different cases. If the value is
less than root.data , then it is either in the left subtree or not in the
tree at all. In other words, you want to search the left subtree to see
whether it contains the value. You can accomplish this with a
recursive call on contains . You can make a similar recursive call on
contains to search the right subtree when the value is greater than

root.data . In the final case in which the value is equal to root.data ,
you should simply report that you found the value. In other words,
the answer is true . Putting these pieces together, you end up with
the following code:

private boolean contains(IntTreeNode root, int value) {

 if (root == null) {

 return false;

 } else if (value == root.data) {

 return true;

 } else if (value < root.data) {

 return contains(root.left, value);

 } else { // value > root.data

 return contains(root.right, value);

 }

}

A clever reader might notice that this method violates the principle of
Boolean Zen that we introduced in Chapter 5 . This method can
be written more concisely as a Boolean expression. For example, it
can be written as a single expression as follows:

private boolean contains(IntTreeNode root, int value) {

 return root != null && (root.data == value ||

 (value < root.data && contains(root.left, value))

||

 (value >= root.data && contains(root.left,

value)));

}

In this case, it is debatable whether the single expression is more
readable than the if/else version of the code. This is somewhat a
matter of personal taste, so different programmers will prefer one
version over the other, but our conclusion was that the longer version
is actually easier to read in this case.

Here is the complete implementation of the IntSearchTree class:

 1 // This class stores int values in a binary search tree.

 2 // Duplicates are allowed. Each node of the tree has the

binary

 3 // search tree property.

 4

 5 public class IntSearchTree {

 6 private IntTreeNode overallRoot;

 7

 8 // post: constructs an empty tree

 9 public IntSearchTree() {

10 overallRoot = null;

11 }

12

13 // post: value is added to overall tree so as to

preserve the

14 // binary search tree property

15 public void add(int value) {

16 overallRoot = add(overallRoot, value);

17 }

18

19 // post: value is added to given tree so as to preserve

the

20 // binary search tree property

21 private IntTreeNode add(IntTreeNode root, int value) {

22 if (root == null) {

23 root = new IntTreeNode(value);

24 } else if (value <= root.data) {

25 root.left = add(root.left, value);

26 } else {

27 root.right = add(root.right, value);

28 }

29 return root;

30 }

31

32 // post: returns true if overall tree contains value

33 public boolean contains(int value) {

34 return contains(overallRoot, value);

35 }

36

37 // post: returns true if given tree contains value

38 private boolean contains(IntTreeNode root, int value) {

39 if (root == null) {

40 return false;

41 } else if (value == root.data) {

42 return true;

43 } else if (value < root.data) {

44 return contains(root.left, value);

45 } else { // value > root.data

46 return contains(root.right, value);

47 }

48 }

49

50

51 // post: prints the tree contents using an inorder

traversal

52 public void print() {

53 printInorder(overallRoot);

54 System.out.println();

55 }

56

57 // post: prints contents of the tree with given root

using an

58 // inorder traversal

59 private void printInorder(IntTreeNode root) {

60 if (root != null) {

61 printInorder(root.left);

62 System.out.print(root.data + " ");

63 printInorder(root.right);

64 }

65 }

66

67 // post: prints the tree contents, one per line,

following an

68 // inorder traversal and using indentation to

indicate

69 // node depth; prints right to left so that it

looks

70 // correct when the output is rotated.

71 public void printSideways() {

72 printSideways(overallRoot, 0);

73 }

74

75 // post: prints in reversed preorder the tree with

given

76 // root, indenting each line to the given level

77 private void printSideways(IntTreeNode root, int level)

{

78 if (root != null) {

79 printSideways(root.right, level + 1);

80 for (int i = 0; i < level; i++) {

81 System.out.print(" ");

82 }

83 System.out.println(root.data);

84 printSideways(root.left, level + 1);

85 }

86 }

87 }

Binary Search Tree Complexity

Each level of a binary search tree can hold twice as many nodes as
the level above it. The one root node can have two children, four
grandchildren, eight great-grandchildren, and so on. As a result, we
can store a lot of values in a tree that has a relatively small number
of levels.

The number of nodes and the number of levels have an important
relationship. If you have levels in a tree, then you can store
approximately values in the tree. Going in the other direction, if
you want to include nodes in a tree, you will need approximately
log levels for the tree. We normally use this second way of
thinking about the relationship.

It may not seem immediately obvious how powerful this is because
you may not realize how much smaller log is than . Consider
some examples. To store a thousand values, you would need around
10 levels. Increase the number of values to a million, and you need
20 levels. Increase the number to a billion, and you need 30 levels.
To store a trillion values, you need only 40 levels for the tree. As a
result, binary search trees tend to be relatively short in height, even
when they store vast amounts of data.

It is also important to realize that the insertion algorithm we have
developed in this chapter does not guarantee that the tree will store
data efficiently in the minimum number of levels. While it’s true that

k

2k

N

N

N N

you can store a trillion values with just 40 levels, you might end up
with considerably more levels than that. Consider, for example, what
happens if the data are inserted in sorted order. If you build a binary
search tree by inserting the sequential numbers 1 through 1000, you
end up with a tree that looks like this one:

We refer to this as a degenerate tree. It’s technically still a tree, but
it’s not a very good tree because it makes no use of the two
branching possibilities. This is really a linked list turned on its side.
You can get similar degenerate trees if the values are inserted in
decreasing order, which produces a tree that expands indefinitely in
the left direction.

If the values are inserted into a binary search tree in a random order,
then the odds of getting a degenerate tree are fairly low. If you take a
more advanced course in data structures, you will study techniques
for ensuring that the tree is balanced. For example, the TreeMap and
TreeSet structures in the Java class libraries are implemented as
what are called red/black trees to guarantee that the resulting binary
search tree is balanced.

Let’s set aside the issue of degenerate trees and think about the
case for randomized data or for binary search trees that guarantee
balance. One important property of the binary search tree is that
each insertion into the tree requires you to descend from level to
level until you find an open spot to insert the value. Thus, insertion
into a balanced binary search tree is an operation.
Similarly, finding a value in a balanced binary search tree involves
descending from level to level, so it also is an operation.
To search for a value in a normal binary tree, you would have to
search the entire tree. Although we haven’t shown the solution here,
we’ll mention that removing a value from a balanced binary search
tree can also be accomplished as an operation.

The binary search tree, then, offers insertion, search, and removal all
in time. That means that if you are working with a trillion
values, for example, you can add a new value, search for a value, or
remove a value, all within around 40 steps. That makes the binary
search tree a very efficient structure to use for these operations.

O(log N)

O(log N)

O(log N)

O(log N)

17.5 SearchTree<E>
In the previous section, we developed code for a binary search tree
of integers. You might want to build other kinds of binary search
trees with different kinds of data and you wouldn’t want to make
many copies of essentially the same code (one for integers, one for
strings, etc.). Instead, you want to write the code in a more generic
way.

We want to be able to build a search tree for any class that
implements the Comparable interface. We want a class that we could
call SearchTree<E> (for some element type E). Here is a client
program which constructs a SearchTree<String> that puts words into
alphabetical order and a SearchTree<Integer> that puts numbers into
numerical order.

 1 // This program uses the SearchTree class to construct a

binary

 2 // search tree of strings and a binary search tree of

integers

 3 // and print out each.

 4

 5 import java.util.*;

 6

 7 public class SearchTreeClient {

 8 public static void main(String[] args) {

 9 Scanner console = new Scanner(System.in);

10 SearchTree<String> names = new SearchTree<>();

11 System.out.print("Name (blank to quit)? ");

12 String name = console.nextLine();

13 while (name.length() > 0) {

14 names.add(name);

15 System.out.print("Name (blank to quit)? ");

16 name = console.nextLine();

17 }

18 System.out.println();

19 System.out.println("Alphabetized list:");

20 names.print();

21 System.out.println();

22

23 SearchTree<Integer> numbers = new SearchTree<>();

24 System.out.print("Next int (0 to quit)? ");

25 int number = console.nextInt();

26 while (number != 0) {

27 numbers.add(number);

28 System.out.print("Next int (0 to quit)? ");

29 number = console.nextInt();

30 }

31 System.out.println();

32 System.out.println("Sorted list:");

33 numbers.print();

34 }

35 }

Here is a sample log of execution:

Name (blank to quit)? Leonard

Name (blank to quit)? Sheldon

Name (blank to quit)? Howard

Name (blank to quit)? Penny

Name (blank to quit)? Raj

Name (blank to quit)? Leslie

Name (blank to quit)? Ma

Name (blank to quit)?

Alphabetized list:

Howard

Leonard

Leslie

Ma

Penny

Raj

Sheldon

Next int (0 to quit)? 38

Next int (0 to quit)? 19

Next int (0 to quit)? –47

Next int (0 to quit)? 2

Next int (0 to quit)? 42

Next int (0 to quit)? 13

Next int (0 to quit)? 9

Next int (0 to quit)? 0

Sorted list:

–47

2

9

13

19

38

42

To generate the SearchTree class, we can start with the
IntSearchTree class and convert it into generic form.

First we need a node class for the tree. Our node class is almost the
same as the IntTreeNode class, but instead of having data of type
int , we have data of type E , and instead of saying IntTreeNode , we
have to say SearchTreeNode<E> in most places other than the
constructor headers:

 1 public class SearchTreeNode<E> {

 2 public E data; // data stored in this

node

 3 public SearchTreeNode<E> left; // left subtree

 4 public SearchTreeNode<E> right; // right subtree

 5

 6 // post: constructs a leaf node with given data

 7 public SearchTreeNode(E data) {

 8 this(data, null, null);

 9 }

10

11 // post: constructs a node with the given data and

links

12 public SearchTreeNode(E data, SearchTreeNode<E> left,

13 SearchTreeNode<E> right) {

14 this.data = data;

15 this.left = left;

16 this.right = right;

17 }

18 }

So what about the SearchTree class? You can get a pretty close
approximation of the code for this class by replacing all occurrences
of int with E and replacing all occurrences of IntTreeNode with
SearchTreeNode<E> . But you have to make a few adjustments. First,
the private add method looks like this after the substitution:

private SearchTreeNode<E> add(SearchTreeNode<E> root, E value)

{

 if (root == null) {

 root = new SearchTreeNode<>(value);

 } else if (value <= root.data) {

 root.left = add(root.left, value);

 } else {

 root.right = add(root.right, value);

 }

 return root;

}

The problem here is that you have to call the compareTo method
rather than using the <= operator. You’ll replace the line of code:

} else if (value <= root.data) {

with:

} else if (value.compareTo(root.data) <= 0) {

You have to make a similar change in the private contains method.
You have to use calls on the compareTo method rather than simple
comparisons. Because the method has more than one comparison,
in this case it makes sense to call compareTo once and store it in a
local variable:

private boolean contains(SearchTreeNode<E> root, E value) {

 if (root == null) {

 return false;

 } else {

 int compare = value.compareTo(root.data);

 if (compare == 0) {

 return true;

 } else if (compare < 0) {

 return contains(root.left, value);

 } else {

 return contains(root.right, value);

 }

 }

}

You have to make one final change. Java knows only that these data
values are of some generic type E . As a result, the calls on
compareTo in your add and contains methods generate compiler
errors. You could fix this problem with a cast. For example, you could
replace the line:

int compare = value.compareTo(root.data);

with:

int compare = ((Comparable<E>) value).compareTo(root.data);

A better approach is to modify the class header to include this
information. You want to add the constraint that the class E
implements the Comparable interface. You specify that constraint by
modifying the header as follows:

public class SearchTree<E extends Comparable<E>> {

 ...

}

It’s odd that Java has you use the keyword extends because you
want it to implement the interface, but that’s how generics work in
Java. If you are defining a class, you make a distinction between the
cases in which the new class extends another class and those in
which it implements an interface. But in generic declarations, you
use the word extends for both kinds of extension.

This is a fairly quick explanation of a complex topic. We don’t have
time to explain the details of programming with generics in detail in
this book, although there are many excellent online tutorials that you
can find by entering “Java generics” into your favorite web browser.

The complete code for the SearchTree class can be found at
http://www.buildingjavaprograms.com.

Chapter Summary
A binary tree is a linked structure in which each node refers to two
other nodes. A tree is either empty (null) or a node with references
to two other trees, called its subtrees.

The root is the top node of a tree. A leaf node is a node that has no
children. A branch node is a node that has at least one child. Each
node has a level related to the number of links that are between it
and the root of the tree.

A tree node object stores a data value and left/right references to
other nodes. An overall tree object stores a reference to a single tree
node as its overall root.

A traversal is an examination of all elements in a binary tree.
Traversals are commonly done in three orders: preorder, inorder, and
postorder. The difference between the orders relates to when a given
node is examined relative to its left/right subtrees.

Tree methods are often recursive and are often implemented with
the use of a public/private pair, in which the private method accepts

a reference to a tree node as a parameter. This technique allows the
method to recursively operate on a given portion of the overall tree.

The elements of a binary search tree are arranged in order, with
smaller elements on the left and larger elements on the right. Search
trees are useful for implementing collections that can be searched
quickly, such as sets and maps.

To add a node to a binary tree, traverse the tree to the left if the new
element is smaller than the current node or to the right if it is larger.
The end of this traversal will reveal the proper place to add the new
node.

To search for a value in a binary tree, traverse the tree going left if
the target value is smaller than the current node or right if it is larger.
Because of the way in which the tree is ordered, the end of this
traversal will either find the target’s node or find a null dead end, in
which case the value is not in the tree.

The x = change(x) is a pattern in which a recursive method is
passed an object or value in its initial state (called x here) and
returns the new state of x . This technique is often used in recursive
tree methods; the recursive call accepts a node parameter and later
returns the potentially changed node.

A tree can be made to store elements of any object type E rather
than just integers. To do this, the tree class must be made into a
generic class, and the generic type parameter E must be
constrained so that it is a class which implements the Comparable<E>
interface.

Self-Check Problems

Section 17.1: Binary Tree Basics

1. How many roots can a tree have? Does a tree have more
branches or leaves?

2. Draw a tree that has twice as many leaves as branches and
one that has the same number of leaves as branches.

3. a. How many levels does the given tree have?
b. How many branches does it have, and which nodes

are they?
c. How many leaves does it have, and which nodes are

they?
d. Which node is the root of the tree?
e. Which node(s) are the sibling(s) of the node storing the

value 2? Which nodes are its children?

Section 17.2: Tree Traversals

For each of the next three problems, write the elements of the given
tree in the order in which they would be seen by a preorder, inorder,
and postorder traversal.

4.

5.

6.

7. What would happen if we removed the root != null test from
the printPreorder method?

8. Write a method called printPostorder that could be added to
the IntTree class and that prints a postorder traversal of the
tree.

9. Write a method called printMirror that could be added to the
IntTree class and that prints a backward inorder traversal of
the tree. That is, for a given node, it examines the right
subtree, then the node itself, then the left subtree.

Section 17.3: Common Tree
Operations

10. Why do many recursive tree methods use a public/private
pair? What is the difference between the header of the public
method and that of the private method?

11. Write a method called size that could be added to the
IntTree class and that returns the total number of nodes in
the tree.

12. Write methods called min and max that could be added to the
IntTree class and that return the smallest and largest values
in the tree, respectively. For example, if a variable called tree
stores the values shown in Self-Check Problem 5 , the call
of tree.min() should return –2 and the call of tree.max()
should return 94 . If the tree is empty, the methods should
throw an IllegalStateException .

13. Write a method called countBranches that could be added to
the IntTree class and that returns the total number of branch
nodes in the tree. A branch node is any node that is not a leaf
node. (Hint: Look at the code for countLeaves written in
Section 17.3 .)

Section 17.4: Binary Search Trees

14. What is the difference between a regular binary tree and a
binary search tree?

15. Which of the following trees are valid binary search trees?

a.

b.

c.

d.

e.

16. What will be true about the results of an inorder traversal of a
binary search tree?
For each of the next four problems, draw the binary search
tree that would result if the given elements were added to an
empty binary search tree in the given order. Then write the

elements of the tree in the order that they would be visited by
each kind of traversal (preorder, inorder, and postorder).

17. Leia, Boba, Darth, R2D2, Han, Luke, Chewy, Jabba
18. Meg, Stewie, Peter, Joe, Lois, Brian, Quagmire, Cleveland
19. Kirk, Spock, Scotty, McCoy, Chekov, Uhuru, Sulu, Khaaaan!
20. Lisa, Bart, Marge, Homer, Maggie, Flanders, Smithers,

Milhouse
21. Why does the add method of a binary search tree need to

return the newly added/created node?
22. What is the x = change(x) pattern, and how is it used with

binary trees?
23. How many nodes at most would be examined in a call to

contains on a perfect binary search tree of height ?
24. Consider the following implementation of the contains

method. How does it differ from the one we showed in
Section 17.4 ? Is it better or worse, and why?

private boolean contains(IntTreeNode root, int value) {

 if (root == null) {

 return false;

 } else if (value == root.data) {

 return true;

 } else {

 return contains(root.left, value) ||

contains(root.right, value);

 }

}

N

25. Rewrite the min and max methods from Self-Check Problem
12 so that they will work on a binary search tree. The
methods should take advantage of the fact that the tree is
sorted and should not examine nodes unless necessary.

Section 17.5: SearchTree<E>

26. What are some changes that need to be made to the tree
class to convert it from storing integers to storing objects of
type E?

27. What kind of changes would you make to add an iterator to
our binary tree class?

Exercises
Each of the following exercises is a method to be added to the
IntTree class from this chapter. You may define additional private
methods to implement your public method if necessary. Several
problem descriptions refer to the following reference binary trees:

1. Write a method called countLeftNodes that returns the number
of left children in the tree. A left child is a node that appears
as the root of the left-hand subtree of another node. For
example, reference tree #1 has 3 left children (the nodes
storing the values 5 , 1 , and 4).

2. Write a method called countEmpty that returns the number of
empty branches in a tree. An empty tree is considered to have
one empty branch (the tree itself). For nonempty trees, your
methods should count the total number of empty branches
among the nodes of the tree. A leaf node has two empty
branches, a node with one nonempty child has one empty
branch, and a node with two nonempty children has no empty
branches. For example, reference tree #1 has 7 empty
branches (two under the value 1 , one under 5 , and two under
each of 4 and 6).

3. Write a method called depthSum that returns the sum of the
values stored in a binary tree of integers weighted by the
depth of each value. The method should return the value at
the root, plus 2 times the values stored at the next level of the
tree, plus 3 times the values stored at the next level of the
tree, and so on. For example, the depth sum of reference tree
#1 would be computed as (1 * 3) + (2 * (5 + 2)) + (3 * (1
+ 4 + 6)) = 50 .

4. Write a method called countEvenBranches that returns the
number of branch nodes in a binary tree that contain even
numbers. A branch node has one or two children (i.e., it is not
a leaf). For example, if a variable t refers to reference tree

#2, then the call t.countEvenBranches() should return 3
because there are three branch nodes with even values (2 ,
8 , and 6). Notice that leaf nodes with even values are not
included (the nodes storing 0 and 4).

5. Write a method called printLevel that accepts an integer
parameter n and prints the values at level n from left to right,
one per line. We will use the convention that the overall root is
at level 1 , its children are at level 2 , and so on. If there are no
values at the level, your method should produce no output.
Your method should throw an IllegalArgumentException if it is
passed a value for a level that is less than 1. For example, if a
variable t refers to reference tree #2, then the call of
t.printLevel(3); would produce the following output:

0

7

6

6. Write a method called printLeaves that prints to System.out
the leaves of a binary tree from right to left. More specifically,
the leaves should be printed in the reverse order that they
would be printed using any of the standard traversals. If the
tree is empty, your method should produce the output "no
leaves" . For example, if a variable t refers to reference tree
#2, the call of t.printLeaves(); should produce the following
output:

leaves: 9 4 0

7. Write a method called isFull that returns true if a binary tree
is full and false if it is not. A full binary tree is one in which
every node has 0 or 2 children. For example, reference trees
#1 and #2 are not full, but #3 is full. By definition, the empty
tree is considered full.

8. Write a toString method for a binary tree of integers. The
method should return "empty" for an empty tree. For a leaf
node, it should return the data in the node as a string. For a
branch node, it should return a parenthesized String that has
three elements separated by commas: the data at the root, a
string representation of the left subtree, and then a string
representation of the right subtree. For example, if a variable
t refers to reference tree #2, then the call t.toString()
should return the following String (without the surrounding
quotes):

"(2, (8, 0, empty), (1, (7, 4, empty), (6, empty, 9)))"

9. Write a method called equals that accepts another binary tree
of integers as a parameter and compares the two trees to see
whether they are equal to each other. For example, if
variables of type IntTree called t1 and t2 have been
initialized, then t1.equals(t2) will return true if the trees are

equal and false otherwise. Two empty trees are considered
to be equal to each other.

10. Write a method called doublePositives that doubles all data
values greater than 0 in a binary tree of integers.

11. Write a method called numberNodes that changes the data
stored in a binary tree, assigning sequential integers starting
with 1 to each node so that a preorder traversal will produce
the numbers in order (1, 2, 3, etc.). For example, if a
variable t refers to reference tree #1, the call of
t.numberNodes(); would overwrite the existing data, assigning
values from 1 to 6 to the nodes so that a preorder traversal
of the tree would produce 1, 2, 3, 4, 5, 6 as shown in the
following diagram. Do not change the structure of the tree,
only the values stored in the data fields. Your method should
return the number of nodes in the tree.

12. Write a method called removeLeaves that removes the leaves
from a tree. A leaf is a node that has empty left and right
subtrees. If your method is called on an empty tree, the

method does not change the tree because there are no nodes
of any kind (leaf or not).

13. Write a method called copy that returns a reference to a new
IntTree that is an independent copy of the original tree. Do
not change the original tree.

14. Write a method called completeToLevel that accepts an integer
 as a parameter and that adds nodes to a tree to complete

the first levels. A level is complete if every possible node at
that level is not null . We will use the convention that the
overall root is at level 1 , its children are at level 2 , and so on.
You should preserve any existing nodes in the tree. Any new
nodes added to the tree should contain the value –1 . Your
method should throw an IllegalArgumentException if it is
passed a value for a level that is less than 1 .
For example, if a variable called t refers to reference tree #2
and you make the call of t.completeToLevel(4); , the tree
should change to the following tree:

n

n

15. Write a method called trim that accepts minimum and
maximum integers as parameters and removes from the tree
any elements that are not within that range inclusive. For this
method you should assume that your tree is a binary search
tree and that its elements are in valid binary search tree order.
Your method should maintain the binary search tree ordering
property of the tree. This property is important for solving this
problem.

16. Write a method called tighten that eliminates branch nodes
that have only one child. Each such node should be replaced
by its only child. (This can lead to multiple replacements
because the child might itself be replaced.) For example, if a
variable called t refers to reference tree #2, the call of
t.tighten(); should leave t storing the following tree.

17. Write a method called combineWith that accepts another
binary tree of integers as a parameter and combines the two
trees into a new third tree that is returned. The new tree’s
structure should be a union of the structures of the two
original trees; it should have a node in any location where
there was a node in either of the original trees (or both). The
nodes of the new tree should store an integer indicating which
of the original trees had a node at that position (1 if just the
first tree had the node, 2 if just the second tree had the node,
and 3 if both trees had the node). Your method should not
change the structure or contents of either of the two original
trees that are being combined.
For example, suppose IntTree variables t2 and t3 refer to
reference trees #2 and #3, respectively. The call of
t2.combineWith(t3) will return a reference to the following new
tree. Keep in mind that nodes numbered 1 are those that

appear only in t2 , nodes numbered 2 appear only in t3 , and
nodes numbered 3 appear in both.

18. Write a method called inOrderList that returns a list
containing the sequence of values obtained from an inorder
traversal of your binary tree of integers. For example, if a
variable t refers to reference tree #3, then the call
t.inOrderList() should return the list [8, 3, 7, 2, 1] . If the
tree is empty, your method should return an empty list.

19. Write a method called evenLevels that makes sure that all
branches end on an even level. If a leaf node is on an odd
level it should be removed from the tree. We will define the
root as being on level 1 . For example, if a variable t refers to
reference tree #2, then the call t.evenLevels(); should
change the tree’s state to the following, removing the leaf
value 0 because it is on an odd level:

20. Write a method called makePerfect that adds nodes until the
binary tree is a perfect tree. A perfect binary tree is one where
all leaves are at the same level. Another way of thinking of it
is that you are adding dummy nodes to the tree until every
path from the root to a leaf is the same length. A perfect tree’s
shape is exactly triangular and every branch node has exactly
two children, and all of the leaves are at the same level. Each
new node you add to the tree should store the value 0 . For
example, if a variable t refers to reference tree #2, then the
call t.makePerfect(); should change the tree’s state to the
following:

21. Write a method called matches that returns a count of the
number of nodes in one tree that match nodes in another tree.
A match is defined as a pair of nodes that are in the same
position in the two trees relative to their overall root and that
store the same data. Consider, for example, the following
trees:

The overall root of the two trees match (both are 3). The
nodes at the top of the left subtrees of the overall root do not
match (one is 4 and one is 6). The top of the right subtrees of
the overall root match (both are 7). The next level of the tree
has 2 matches for the nodes storing 0 and 2 (there are two
nodes that each store 9 at this level, but they are in different
positions relative to the overall root of the tree). The nodes at
the lowest level both store 8, but they aren’t a match because
they are in different positions. Therefore, these two trees have

a total of 4 matches. Therefore the calls of
tree1.matches(tree2) and tree2.matches(tree1) would each
return 4 .

Programming Projects
1. Implement a yes/no guessing game called 20 Questions using

a binary tree. At the beginning of each round of the game, the
human player thinks of an object. The computer tries to guess
the object by asking a series of no more than 20 yes-or-no
questions. Eventually the computer guesses what the object
is. If this guess is correct, the computer wins; if not, the
human player wins.
The computer keeps track of a binary tree with nodes
representing questions and answers. A “question” node
contains a left “yes” subtree and a right “no” subtree. An
“answer” node is a leaf. This tree can be traversed to ask the
human player questions until it reaches a leaf node, at which
point the computer asks whether that answer is the correct
one.
Initially the computer is not very intelligent, but it grows more
intelligent with each game. If the computer’s answer guess is
incorrect, the player must give it a new question to help it in
future games. This is similar to the game found at the web site
http://animalgame.com/. You should write methods to
construct a tree, play a game, and save/load the tree’s state
from a file.

2. Write a program that encodes and decodes Morse code files
using a binary tree. Morse code is a system that encodes the
26 English letters and 10 numeric digits into sequences of

dots, dashes, and spaces. Your tree can store the encodings
of each letter and number, going left for a dot and right for a
dash. When your program reads a sequence of Morse code
characters, it should traverse the tree in the appropriate
direction for each character and output the letter or number it
reaches at the end of each sequence.

3. Write a program that performs Huffman encoding and
compression using a binary tree. Huffman coding is an
algorithm devised by David A. Huffman of MIT in 1952 for
compressing text data to make a file occupy a smaller number
of bytes. The idea of Huffman coding is to abandon the rigid
8-bits-per-character requirement of ASCII encoding and use
different-length binary encodings for different characters. The
advantage of doing this is that if a character occurs frequently
in the file, such as the letter , it could be given a shorter
encoding (fewer bits), making the file smaller.
Your program should contain methods to read an input text
file, count its characters, and use these counts to build a
Huffman tree for the characters by frequency. Use this
Huffman tree to output an encoded and compressed version
of the file. Also write a method to read and decompress this
file later. You may want to use helper classes for reading and
writing a file one bit at a time. You can find classes called
BitInputStream and BitOutputStream at our web site,
http://buildingjavaprograms.com.

4. The actual Set interface in the java.util package has
several methods that are beyond those implemented by our
search tree in this chapter. Write a version of SearchTree<E>

e

that adds some or all of these methods. The methods to add
are the following (some headers are slightly modified; see the
Java API Specification for descriptions of each method):

public void addAll(SearchTree<E> tree)

public void clear()

public boolean containsAll(SearchTree<E> tree)

public boolean equals(Object o)

public boolean isEmpty()

public boolean remove(Object o)

public void removeAll(SearchTree<E> tree)

public void retainAll(SearchTree<E> tree)

public Object[] toArray()

5. Add an iterator to the search tree. Write a class called
SearchTreeIterator that has the methods that follow for
iterating over a binary tree. You will also need to modify the
tree nodes to store parent references so that the iterator can
properly walk “up” the tree as necessary. (See the Java API
Specification for descriptions of each method.) Here are the
methods:

public boolean hasNext()

public E next()

public void remove()

6. Write a program that evaluates numeric expressions using a
binary expression tree. A leaf node represents an operand (a

number). A branch node represents an operator; its two
subtrees represent its operands.

Chapter 18 Advanced Data
Structures

18.1 Hashing
• Array Set Implementations

• Hash Functions and Hash Tables

• Collisions

• Rehashing

• Hashing Non-Integer Data

• Hash Map Implementation

18.2 Priority Queues and Heaps
• Priority Queues

• Introduction to Heaps

• Removing from a Heap

• Adding to a Heap

• Array Heap Implementation

• Heap Sort

Introduction
In this chapter, we will explore the
implementation of two powerful data structures
called hash tables and heaps. Both of these
structures are used in Java’s Collections
Framework to implement collections such as
HashSet , HashMap , and PriorityQueue . These
clever data structures allow for efficient
operations such as adding, removing, searching,
and ordering elements.

Upon completion of this chapter you will have
seen all of the major implementation strategies
used in the primary collections in the Java
Collections Framework: arrays (ArrayList ,
Stack), linked lists (LinkedList), binary trees
(TreeSet , TreeMap), hash tables (HashSet ,
HashMap), and heaps (PriorityQueue).

18.1 Hashing
Hashing is a technique for efficiently mapping data elements to
indexes in an array so that they can be added, removed, and
searched very quickly. Hashing is the underlying technique used to
implement the HashSet and HashMap classes. Hashing makes it
possible to have a collection that can add, remove, and search for
data elements in a constant amount of time (also called O(1), as
discussed in Chapter 13), making it extremely fast for many
common use cases.

Array Set Implementations

Suppose we want to store a set of integers using an array as the
underlying data structure and that the most common operations we
want to enable are insertion (add), deletion (remove), and testing for
membership (contains). Further suppose that the order in which the
elements are stored does not matter, so long as we can implement
all of these operations efficiently. The key concern is that the
structure should be fast for these three operations.

We could follow the same general idea as ArrayIntList , using an
unfilled array and a size field to represent the data in the set:

public class ArrayIntSet {

 private int[] elementData;

 private int size;

 // Constructs an empty set.

 public ArrayIntSet() {

 elementData = new int[10];

 size = 0;

 }

 ...

As each element is inserted, it is stored at the next available index
and the size field is incremented. So if the array’s length is 10 and
the client adds the values 7 , 5 , 1 , and 9 , the set would have the
internal state shown in Figure 18.1 . The blank array cells actually
contain 0s, but they are unimportant because they are past the size.

Figure 18.1 Representing a set as an unfilled, unsorted array

Is this a good way to implement a set? Think about how the common
operations would be written. Adding an element is efficient (O(1));
simply place it in the next free slot and increment the size field.

Removal is an inefficient linear search through the array for the value
to remove. Once the value is found, since order is unimportant, you
can quickly remove it by replacing it by the last element in the array,
rather than having to shift any following elements left by one index;
but the search to find it is still slow. We might have to examine all of
the elements (on average, about half of them), so removal is
Testing for membership is also slow, a linear search over all
elements to try to find the value of interest. To figure out whether the
set contains the value 9 , we must look at the 7 , 5 , 1 , and 9 before
it is found.

Removal and searching from the unsorted array are slow because
there’s no particular way to guess where the element value will be
found, if it is in the array at all. But with some creativity we can
improve upon this situation. We’ve seen some strategies that take
advantage of sorted data, such as the binary search algorithm.
Binary search does not need to examine every index of the array to
find an element; at each step the algorithm eliminates half of the
remaining search space, resulting in a runtime.

We could base our set on a sorted array, as shown in Figure 18.2 .
As elements are added to this sorted array, they must be placed into
the proper indexes to maintain sorted order. The implementation of
insertion or removal requires two steps: binary searching for the right
index for the element, then shifting any following elements left or
right. For example, if the value 2 is added, the 5 , 7 , and 9 must be
shifted right by one index to make room for it.

O(N).

O(log N)

Figure 18.2 Representing a set as an unfilled, sorted array

The sorted array structure would be faster to search because we
could implement our contains method as a binary search. Adding
and removing would be in the worst case because of the
shifting. Still, this is arguably a better implementation than the
unsorted array if the primary concern is the speed of the contains
operation.

Hash Functions and Hash Tables

Implementing a set using a sorted array is a step up from an
unsorted one, but it’s possible to do better. Let’s explore how to use

O(N)

a special mapping strategy called a hash function to organize the
elements of our set and search it quickly.

Recall that the order of the elements doesn’t matter, as long as the
set can add, remove, and find elements. The elements can be
placed anywhere, as long as they can be found later. Here’s an odd
but powerful idea: What if we stored element value at index ? For
example, if you tell the set to add the value 5 , store it at index 5. If
we used this technique, the set storing 7 , 5 , 1 , and 9 would have
the structure shown in Figure 18.3 .

Figure 18.3 Storing set elements at corresponding indexes

If we stored our set data using this technique, the three basic set
operations become extremely efficient to implement. Inserting a
value simply involves going to index and storing there; no
searching or shifting is needed. Removing the value requires going
to index and changing the value back to 0 . Testing for
membership of a value (contains) requires looking at index to
see whether is stored there; if so, the value is part of the set, and if
not, it isn’t.

k k

k k k

k

k

k k

k

You may already be thinking of some problems with this
implementation strategy. What if the client tries to add a value that is
outside the range 0 to 9, such as 23? We could start with a larger
array; if elementData has length 100, our 23 will fit nicely. But no
matter how large the array becomes, the client can always add a
larger integer outside its bounds. Negative numbers also pose a
problem because arrays never have negative indexes.

To get around these issues, let’s patch our storage technique.
Instead of always storing element value at index we’ll limit ’s
value by modding it by the array capacity. So if the array length is 10,
the value 23 would be inserted at index 3 because 23 % 10 equals
3 . To fix negative numbers, we’ll take the absolute value of and
apply the same technique. So the value -58 would be inserted at
index 8.

Figure 18.4 shows what the array would look like after the
insertion of 23 and -58 using our new mod technique. The set still
has the same speedy runtime for the common operations because
each element still has a single index into which it will be placed.

Figure 18.4 Use of hash function with wrap-around

k k, k

k

Since our mapping from element value to preferred index now has a
bit of complexity to it, we might turn it into a method that accepts the
element value as a parameter and returns the right index for that
value. Such a method is referred to as a hash function, and an array
that uses such a function to govern insertion and deletion of its
elements is called a hash table. The individual indexes in the hash
table are also sometimes informally called buckets.

Our hash function so far is the following:

private int hashFunction(int value) {

 return Math.abs(value) % elementData.length;

}

Hash Function
A method for rapidly mapping between element values
and preferred array indexes at which to store those
values.

Hash Table

An array that stores its elements in indexes produced
by a hash function.

Collisions

There is still a problem with our current hash table. Because our
hash function wraps values to fit in the array bounds, it is now
possible that two values could have the same preferred index. For
example, if we try to insert 45 into the hash table, it maps to index 5,
conflicting with the existing value 5 . This is called a collision. Our
implementation is incomplete until we have a way of dealing with
collisions. If the client tells the set to insert 45 , the value 45 must be
added to the set somewhere; it’s up to us to decide where to put it.

Collision
When two or more element values in a hash table
produce the same result from its hash function,
indicating that they both prefer to be stored in the same
index of the table.

One common way of resolving collisions is called probing, which
involves looking for another index to use if the preferred index is
taken. For example, if the client wants to add 45 and index 5 is in
use, we could just put 45 at the next available index, which is 6 in
our example. (Looking forward one index at a time for the next free
index is called linear probing, but there are other kinds of probing
such as quadratic probing, which involves jumping around to various
places in the hash table.)

Figure 18.5 shows the hash table’s state if the values 45 , 91 , and
71 are added and linear probing is used to resolve the collisions.
The 45 conflicts with 5 and is put into index 6. The 91 conflicts with
existing value 1 and is put into index 2. The 71 conflicts with 1 and
91 and must be put into index 3.

Figure 18.5 Hash collisions resolved by linear probing

Probing gets around the collision problem, but it introduces new
problems of its own. For one, it is no longer as simple to find an
element’s value. A value whose hash function evaluates to might
be stored at index but if something other than is there, it might

k

k, k

be at index etc. So we would need to patch our other
methods such as contains accordingly. We can make the
appropriate modifications, but we also have to think about the
original goals of this implementation. Searching for elements is
supposed to be fast, and if we have to probe through a lot of
elements to find anything, we’re losing the efficiency we sought after
in the first place.

Probing
Resolving hash collisions by placing elements at other
indexes in the table rather than their preferred indexes.

Another problem is that the hash table can get full, resulting in no
free slots to store a value. The example array of size 10 can hold
only 10 elements. If the client tries to add an eleventh element, the
array must be resized. Resizing a hash table is a nontrivial operation
that we’ll discuss in the next section.

Even if the array is not entirely full, if many elements are next to
each other it can slow down the runtime for later operations. For
example, to add the value 25 to the hash table in Figure 18.5
requires looking at four buckets: indexes 5, 6, 7, and 8 (where the
value is finally placed). After doing so, a search for the value 95

k + 1, k + 2,

(which is not found in the table) would need to examine indexes 5, 6,
7, 8, 9, and 0 before finally giving up. When elements clump up near
each other like this, it is called clustering, and it is desirable to have
as little clustering as possible in a hash table for it to perform
efficiently.

Another way of dealing with the collision problem is to change our
internal data structure. Collisions would not be a problem if each
array index could store more than one value. This is possible if we
change the array to be an array of lists rather than an array of
integers. The list at index will store all elements that the hash
function maps to Figure 18.6 demonstrates this idea. To add
an element to the hash table, we go to its preferred index and add
the element value to the list stored at that index. Resolving collisions
by storing hash elements in lists is called separate chaining. The real
HashSet and HashMap provided in java.util use separate chaining
internally to resolve collisions.

Figure 18.6 Hash collisions resolved by separate chaining

k

k.

Separate Chaining
Resolving hash collisions by having each index of the
table store a list of values rather than a single value.

As with probing, separate chaining faces an efficiency issue if the
size of the set becomes large enough, especially if the numbers
happen to have a lot of collisions with each other. For example, if the
client adds a lot of numbers to the set that end with 1, there will be a
long list of elements at index 1 in the hash table, and we’ll have to
perform a long search through the list to find values. One way to
mitigate this issue is to use a larger array to store the element data,

which will result in fewer collisions and shorter lists at each index.
Another good idea is to use an array size that is not a multiple of 10
or any other round number, to avoid number patterns that are likely
to collide. Many hash table implementations use a prime number for
the table capacity.

We’ll implement the lists of elements as lists of node objects, similar
to the implementation of linked lists in Chapter 16 . An inner class
HashEntry represents a single node in such a list:

// Represents a single value in a chain stored in one hash

bucket.

private class HashEntry {

 private int data;

 private HashEntry next;

 public HashEntry(int data) {

 this(data, null);

 }

 public HashEntry(int data, HashEntry next) {

 this.data = data;

 this.next = next;

 }

}

Using this inner class we can now implement the add and contains
operations on our set. The add method adds a new entry to the table
if the element is not already found in the table. Before adding an

element to the set, we make sure it is not a duplicate by calling
contains . The contains method looks through the list at the
appropriate hash bucket index to see if that value is found in the list.
When elements are added, we insert them at the front of the
appropriate linked list. This is faster than traversing the links all the
way to the end of the list to insert the element.

// Adds the given element to this set, if it was not

// already contained in the set.

public void add(int value) {

 if (!contains(value)) {

 // insert new value at front of list

 int bucket = hashFunction(value);

 elementData[bucket] = new HashEntry(value,

elementData[bucket]);

 size++;

 }

}

// Returns true if the given value is found in this set.

public boolean contains(int value) {

 int bucket = hashFunction(value);

 HashEntry current = elementData[bucket];

 while (current != null) {

 if (current.data == value) {

 return true;

 }

 current = current.next;

 }

 return false;

}

We can also implement the remove method now. Removal is a bit
trickier than adding, because we have to make sure to handle all of
the possible cases. If the element to be removed is at the front of its
linked list, we must adjust the front reference; otherwise we must
change the next reference of some existing node in the list. As
always with linked lists, we must be careful to check for null and not
try to traverse past the end of a list.

// Removes the given value if it is contained in the set.

public void remove(int value) {

 int bucket = hashFunction(value);

 if (elementData[bucket] != null) {

 // check front of list

 if (elementData[bucket].data == value) {

 elementData[bucket] = elementData[bucket].next;

 size--;

 } else {

 // check rest of list

 HashEntry current = elementData[bucket];

 while (current.next != null && current.next.data !=

value) {

 current = current.next;

 }

 // if the element is found, remove it

 if (current.next != null) {

 current.next = current.next.next;

 size--;

 }

 }

 }

}

Removing from a hash table that uses probing has different
complications. If we start with the hash table from Figure 18.5 and
decide to remove the value 1 , we can’t just replace it with a blank
value, because there is a chain of other elements (91 and 71) that
probed to the following indexes 2 and 3. If a later contains(71) call is
made on the set, the code might mistakenly think that bucket 1 is
empty and therefore incorrectly decide that 71 is not contained in the
set. What is often done instead is to replace the removed value with
a special marker value to indicate that a removal occurred. That way
when contains or add is called later, it can recognize that value and
realize that other values might follow the removed bucket. Flagging
buckets with this special marker is more efficient than trying to shift
values back in the hash table. Figure 18.7 shows an example
removal of the value 1 .

Figure 18.7 Removal of an element when probing is used

We will focus on our implementation that uses separate chaining
rather than showing the code for the probing version. You can find
both versions on our web site at http://buildingjavaprograms.com.

There are other ways of resolving collisions. For example, if the hash
function results in a conflict, a secondary hash function can be used
to find a new hash bucket. This is sometimes called double hashing.
Double hashing and other methods of collision resolution are outside
the scope of this chapter.

Rehashing

When a hash table becomes too full, it can be enlarged to give it
additional capacity for storing elements. Consider the full hash table
in Figure 18.8 that uses linear probing to resolve collisions. In
addition to the elements previously added, the client has inserted 80 ,
63 , and 57 , causing a completely full hash table. When the client
tries to add an eleventh value, the hash table must be enlarged to
make room for it.

Figure 18.8 Full hash table with linear probing

Resizing a hash table is not as simple as creating a larger array and
copying each element over into it. The reason is because the
element values may not have the same hash function result in the
new larger array. For example, the value 91 maps to index 1 in the
array of length 10 because 91 % 10 equals 1 . But the same value 91
maps to index 11 in an array of length 20 because 91 % 20 equals
11. Therefore, when resizing a hash table array, it is important to
reprocess each element using the hash function and place it into the
new appropriate index. This process is called rehashing.

Suppose the client tries to add the value 35 to the full hash table.
Figure 18.9 shows a properly resized and rehashed table. Notice
that 91 , 71 , 35 , and 57 now sit in the second half of the array
because their hash function results fall in that range. The value 63
also gets to sit in its preferred index of 3 because the element 71
that previously collided with it has moved to index 12. The rehashing
also helps to decrease clustering; now the longest chain of
consecutively occupied buckets is three.

Figure 18.9 Enlarged hash table after rehashing

Rehashing
Resizing a hash table to increase its capacity and
enabling it to store more elements, or store them more
efficiently.

Hash tables that use separate chaining can also be rehashed, but
the issues are slightly different. Technically a chained hash table
never becomes completely “full” in the sense of becoming unable to
add any more elements, because a new element can always be
added to the list at a given index. But if the lists at each index
become too long, the set operations become too slow. So it is still
important to enlarge the hash table as its size grows. Figure
18.10 shows a chained table with the same elements as in Figure
18.8 .

Figure 18.10 “Full” hash table with separate chaining

Figure 18.11 shows the same hash table after a rehashing to
length 20 and the insertion of value 35 . The values 91 , 71 , 35 , and
57 are now stored in lists in the second half of the table.

Figure 18.11 Enlarged chained hash table after rehashing

In our examples we chose to resize the hash table once its size
exceeded its capacity. But most hash tables do not wait so long to
rehash, because a nearly or entirely full table starts to exhibit poor
performance. A better alternative is to monitor the table’s size
relative to the array capacity, also called the load factor of the table,
and resize once this ratio exceeds some threshold. The load factor is
fairly easy to compute:

private double loadFactor() {

 return (double) size / elementData.length;

}

The real Java HashSet uses a default load factor of 0.75; in other
words, once the number of elements is three fourths as large as the
capacity, the table is enlarged. We can incorporate this logic into our
own hash set with a constant and a check at the start of the add
method:

public class HashIntSet {

 private static final double MAX_LOAD_FACTOR = 0.75;

 private HashEntry[] elementData;

 private int size;

 ...

 public void add(int value) {

 if (!contains(value)) {

 if (loadFactor() >= MAX_LOAD_FACTOR) {

 rehash();

 }

 ...

The simplest way to implement the actual rehashing operation is to
replace the set’s internal hash table with a new larger one, then loop
over the old table and read all of its contents back into the new hash
table. We can call the set’s own add method to reinsert all of the data
to avoid duplicating code:

private void rehash() {

 // replace element data array with a larger empty version

 HashEntry[] oldElementData = elementData;

 elementData = new HashEntry[2 * oldElementData.length];

 size = 0;

 // re-add all of the old data into the new array

 for (int i = 0; i < oldElementData.length; i++) {

 HashEntry current = oldElementData[i];

 while (current != null) {

 add(current.data);

 current = current.next;

 }

 }

}

Hashing Non-Integer Data

Our hash set works well for storing integer data, but we have not yet
discussed how to apply hashing techniques to non-integer data. The
key idea is still the same: We need a way of mapping from values to
preferred indexes at which to store them. It is possible to come up
with hash functions for other kinds of data that convert them into
integers. For example, we could convert a string into an integer by
adding the integer ASCII values of its characters in some way.

The idea of hashing, and the importance of all kinds of data being
able to be stored in a hash table, was close to the hearts of the
original designers of Java. Recall that every Java class has an
ancestor named Object that contains various basic behaviors that
are common to every object. One of the methods of the Object class
is named hashCode . You can call hashCode on any object to convert
the object into an integer for use in a hash table. A modified version
of our hash function that works for any type of objects is the
following:

public int hashFunction(Object value) {

 return Math.abs(value.hashCode()) % elementData.length;

}

According to the official Java documentation for the hashCode
method, a proper hash function must be consistent. That is, when
called multiple times on an object whose state is not changing, it
should return the same value each time. Similarly, when hashCode is
called on two objects with equivalent states (such that equals would
return true for the two objects), it should return the same value.

In general it is also desirable for hashCode to return unequal values
when two objects have different states. But it is not mandatory for
unequal objects to always have different hash codes. In fact, it is
impossible to guarantee such a thing; for example, there are only
four billion unique integer values, but there are infinitely many unique
strings, so some strings must naturally have the same hash code as
others. Unequal objects having equal hash codes does not break the
hash table, but it does mean that those objects will hash to the same
index and will collide, so they will be placed into the same list if
separate chaining is used on the hash table.

The default version of hashCode from the Object class computes an
integer based on the memory address of the object. This function
satisfies the consistency requirement, but it is not ideal because it
does not take into account the state of each object. For this reason
many classes override hashCode with their own versions that
compute an integer by somehow combining the object’s state. Good
hash functions try to do their best about spreading the hash values
over a wide range of numbers to minimize conflicts.

When writing your own class, if your class has an equals method,
you are expected to also provide a hashCode method to override the
one provided by the Object superclass. The reason is that objects
with “equal” state are supposed to have equal hash codes, and this
would not be guaranteed by the version of hashCode inherited from
class Object . Your hashCode method should combine the object’s
state in some way into a single integer and return it. The state can
be combined in any way as long as it consistently produces the
same integer for the same state.

The following is a possible hashCode method for the Point class
implemented in Chapter 8 . The code adds the x and y values but
scales the y value up by a large number to spread out the space of
integers returned. This is to avoid collisions between points like (4, 7)
and (7, 4). Simply adding x + y and returning the result would also
be correct but would not distribute the integer codes as much.

// a possible hashCode method for Ch. 8’s Point class

public class Point {

 private int x;

 private int y;

 ...

 public int hashCode() {

 return 31337 * y + x;

 }

Many classes in the Java class libraries have their own hashCode
methods. For example, the String class code has a hashCode
method whose code is roughly the following. The code seems odd in
that it multiplies by 31 at each pass through the loop. If the
characters were simply added, there would be conflicts between
various kinds of strings. For example, strings of similar length would
all be clustered within a small range of hash codes, and strings that
are anagrams, such as “file” and “life”, would always collide.
Multiplying the result by some number at each pass spreads out the
space of codes and reduces these potential collisions.

// the hashCode method inside Java’s String class

public int hashCode() {

 int hash = 0;

 for (int i = 0; i < this.length(); i++) {

 hash = 31 * hash + this.charAt(i);

 }

 return hash;

}

If you are writing a hashCode method for a class that has fields that
are not integers, it is less clear how to combine the fields’ state into a
single hash code integer. Remember that if the fields are objects,
they have their own hashCode methods that you can call. And
primitives like double can be converted into their object wrapper
equivalents, such as Double , and you can call hashCode on those.

Here is an example class BankAccount with non-integer fields and a
possible hashCode method based on its state. Notice that we again
multiply the various fields by large integer constants to spread out
the results of the function.

// a possible hashCode method for a BankAccount class

public class BankAccount {

 private int id;

 private String name;

 private double balance;

 ...

 public int hashCode() {

 return id +

 31 * name.hashCode() +

 16581 * new Double(balance).hashCode();

 }

}

If we want our set to be able to store any kind of object as its data,
we can convert our HashIntSet into a generic HashSet , giving it a type
parameter E for its elements. This requires small changes
throughout the code, such as changing methods to accept
parameters of type E rather than int , and comparing values using
equals rather than == . The process is very similar to our conversions
of ArrayIntList and LinkedIntList to generic collections in previous
chapters. The complete generic version of the class is not shown,

but a few of the relevant lines to change are found in the following
abbreviated code:

public class HashSet<E> {

 ...

 public void add(E value) { ... }

 public boolean contains(E value) {

 ...

 while (current != null) {

 if (current.data.equals(value)) { ...

 }

 public void remove(E value) { ... }

 ...

 private class HashEntry {

 private E data;

 private HashEntry next;

 ...

 }

}

Hash Map Implementation

The ideas shown so far form the core of the implementation of the
HashSet class. The HashMap has a very similar internal structure.
Recall that a map stores key/value pairs rather than simple element

values. A HashMap is still implemented using a hash table, but the
hash entry objects in each linked list are changed to store a pair of
data fields, representing one key/value pair.

public class HashEntry {

 private Object key;

 private Object value;

 private HashEntry next;

 ...

}

Suppose a map is created with integers as the type for its keys and
values, and the following pairs are added to it:

mymap.put(1, 37);

mymap.put(39, –2);

mymap.put(25, 44);

mymap.put(–5, 0);

Figure 18.12 shows the internal state of the hash table containing
these pairs. Each index stores a list of HashEntry objects.

Figure 18.12 Hash map

To be able to accept any type of data for the keys and values, most
hash map implementations are generic classes that accept a pair of
type parameters, K for the key type and V for the value type. The
hash map therefore has the following class header:

public class HashMap<K, V> {

 ...

 private class HashEntry {

 private K key;

 private V value;

 private HashEntry next;

 ...

 }

}

You can find complete code for the HashSet and HashMap classes on
our web page at http://buildingjavaprograms.com.

18.2 Priority Queues and Heaps
In Chapter 14 , you saw how queues are useful for storing data in
First-In, First-Out (FIFO) order. There are other situations in which a
queue-like structure is needed but with an ordering other than FIFO.
In this section we will discuss a collection called a priority queue that
is useful in these situations. We will also explore an underlying data
structure called a heap that can be used to efficiently implement a
priority queue.

Priority Queues

Consider the task of simulating the waiting line of patients at an
emergency room. In general it seems that the patients should be
served in the order in which they arrived. But some patients require
urgent care and should be able to step in front of others in line. The
primary consideration in the line’s ordering is the importance of
treating that particular patient.

A similar situation is the task of processing the set of customers
waiting to purchase their goods at a food market. Again the
customers naturally want to gather into lines, but real markets have
found that they can serve more customers if they have “express

lines” and other features to allow some customers to go ahead of
others; in this case, customers with fewer items can skip ahead.

The general principle in situations like these is that of a queue, but
organized by urgency or priority of each element rather than strictly
on the order of insertion. There is a collection called a priority queue
that is well suited to tasks like these. You can add elements to a
priority queue in any order, but when you remove them, they will
come out in order of priority or importance.

Priority Queue
A collection that associates each added element with a
priority or importance and allows access or removal of
the elements in order of priority.

Java’s Collections Framework in java.util includes a class called
PriorityQueue that arranges elements into their natural ordering from
smallest to largest. For primitive values like integers and real
numbers this means arranging the elements in ascending order.

The following example briefly illustrates the usage of a priority
queue. Seven integers are added to the queue in no particular order.

When the integers are removed from the queue, they come out in
ascending order.

Queue<Integer> pq = new PriorityQueue<>();

pq.add(42);

pq.add(17);

pq.add(9);

pq.add(42);

pq.add(35);

pq.add(–1);

pq.add(88);

while (!pq.isEmpty()) {

 System.out.print(pq.remove() + " "); // –1 9 17 35 42 42 88

}

For objects, the priority queue arranges the elements by the ordering
of their compareTo method. If the elements of the queue are not
Comparable (or if you would like to arrange them in an order other
than their natural ordering), you can pass a Comparator to the
queue’s constructor to indicate the relative ordering to use. The most
commonly desired reordering is to reverse the queue so that the
elements come out in descending rather than ascending order. This
can be done easily by calling Collections.reverseOrder , a method
that returns a Comparator that reverses the natural ordering of any
comparable class:

Queue<Integer> pq = new PriorityQueue<>

(Collections.reverseOrder());

...

while (!pq.isEmpty()) {

 System.out.print(pq.remove() + " "); // 88 42 42 35 17 9 –1

}

The useful methods of PriorityQueue objects are listed in Table
18.1 .

Table 18.1 PriorityQueue<E> Methods

A priority queue is a bit like a sorted list. You could achieve similar
behavior to a priority queue by storing your data in an ArrayList ,
calling Collections.sort after adding each element, and always
removing the element from index 0 every time. One key difference
with a priority queue compared to a sorted list is that it manages the
ordering automatically without the need for the client to sort the
elements manually. Another big advantage is that the priority queue
implements this behavior in a much more efficient way. Sorting a list
is a slow operation that requires

time, and removing the first element from index 0 leads to bulky
shifting of the elements, requiring

O(N log N)

O(N)

time for each removal.

The priority queue, when implemented properly, can support its most
common operations much more quickly than a sorted list. Adding
and removing elements requires

time, and peeking at the minimum element requires constant O(1)
time. The key to such an efficient implementation is a clever
underlying data structure called a heap, which we will explore in the
following sections.

Introduction to Heaps

A heap is a tree that arranges its elements with a vertical ordering. In
a minimum heap or min-heap, child nodes always store values
greater than or equal to the parent’s value. In a maximum heap or
max-heap, a parent node’s value is always greater than or equal to
those of its children. In other words, in a min-heap, the smallest
element values are closer to the top (root) of the tree; in a max-heap,
the largest element values are nearest to the root.

The fact that these elements are located at the top of the tree makes
them easy to access and remove quickly and makes a heap an
excellent structure to use to implement a priority queue. Since a
priority queue is always finding and removing the smallest element,

()

O(log N)

having that element at the very top of the tree makes finding it trivial.
For this reason Java’s PriorityQueue collection is implemented using
a min-heap internally.

Heap
A tree that maintains a vertical ordering between
parents and children, where parent nodes store smaller
values than all of their children (min-heap) or parents
store greater values than all of their children (max-
heap).

Figure 18.13 shows an example of a min-heap. Notice how the
smallest element value, 10 , is at the top of the tree. Larger elements
are placed lower on the tree. You may be surprised initially by some
of the ordering; 50 appears higher in the tree than 44 , and 90 is
higher than 80 and 60 , and so on. But the key property of a heap is
that a parent’s value must be smaller than that of its children, and
the nodes just listed are not in the same subtree as each other, so
they share no direct parent–child relationship. Therefore, this
example tree does satisfy the requirements to be a valid heap.

Figure 18.13 A min-heap

A heap can be implemented with nodes having any number of
children, but as we did with trees in the previous chapter, we will
focus on heaps whose nodes have at most two children, which are
called binary heaps.

A heap is usually maintained as a complete tree, which is one where
every level except possibly the lowest level is completely filled with
all nodes having both children, and if the last level of the tree is not
completely filled, all children are at the left-most edge of the tree.
This minimizes the height of the tree relative to the number of
elements; a wider and shorter tree is faster for traversing from the
root to any given leaf.

Some people become confused about the difference between a
priority queue and a heap. A priority queue is an abstract data type,

a description of a set of operations that a collection should have. A
heap is one possible efficient way of implementing those operations,
but it is not the only way of doing so. The Java class libraries add to
this confusion by naming their class PriorityQueue when it should
probably be represented as an interface named PriorityQueue that is
implemented by a class called HeapPriorityQueue , to match other
pairs like List / ArrayList or Set / TreeSet .

The key operations for a priority queue are adding elements and
finding/removing the minimum value. Let’s explore how those
operations can be implemented efficiently using a heap. Finding the
minimum value (peek) is trivial since it is simply the data stored in
the overall root element of the tree. So we’ll focus on adding and
removing values from a heap.

Removing from a Heap

Suppose we have the heap shown in Figure 18.13 and want to
remove the minimum value, 10. We can’t simply yank the node out
of the tree because it leaves a hole at the tree’s root that must be
filled. When dealing with binary search trees with their left-to-right
ordering, removal usually involves moving one of the removed
element’s children up to occupy its spot and rearranging the tree as
necessary to ensure that the ordering is left intact. With a heap we
employ a different algorithm that begins not with the removed
element’s children but with a leaf.

To remove the root of a heap, first we remove the rightmost leaf of
the tree. Then we place this leaf’s value into the tree at the root,
replacing the previous root value. This is likely to place the tree in a
temporarily invalid state, since the leaf is presumably one of the
larger element values and therefore is not suitable as a new root. But
we then repair this problem by pushing the invalid root down the tree
by swapping it with its smallest child until it is in a legal location, a
process called bubbling or percolating the element down the tree.

Bubble (Percolate)
Moving a heap element upward or downward until the
heap’s state satisfies the required vertical ordering.

The overall remove-min algorithm is described by the following
pseudocode:

find and remove rightmost leaf node.

insert leaf’s value into root node.

current node = root.

while (current node’s value is not smaller than both children)

{

 choose smaller of two children.

 swap current node’s value with smaller child value.

 current node = smaller child node.

}

Figure 18.14 demonstrates the removal of the minimum value,
10 , from our previous heap. First the rightmost leaf, 65 , is inserted
as the root. Then since 65 is not smaller than its children, it is
swapped for its smaller child repeatedly until it is in proper order. The
first swap is with 20 , because 20 < 80 . Then 65 is compared with its
new children, 44 and 90 . The 44 is smaller so the 65 is swapped
there. Now the heap is back into proper order so the removal is
complete.

Figure 18.14 Removing from min-heap with bubble-down

The runtime of the remove-min operation is related to the number of
swaps that occur as the new root is bubbled down to its proper
location. Since our tree is a complete tree, it is as wide as possible
for its height; the number of nodes in a tree of height is roughlyH

equal to Thus, the height of a tree containing elements is
very close to This means that the number of bubble-down
swaps, and therefore the overall runtime of removing the minimum
element from a heap, is

Adding to a Heap

Adding a value to a heap is similar to removing the minimum
element but in reverse. Suppose we have the heap shown in Figure
18.14 and want to add a new value, 37 . The value needs to be
placed properly to maintain the heap’s overall ordering. The
algorithm for adding an element to a heap begins at the bottom of
the tree.

To add an element to a heap, we first insert it as a new rightmost
leaf. (If the tree is completely full at its bottom level, the new value
becomes the left child of the leftmost leaf, starting its own new level

2H. N

log2 N .

O(log N).

in the tree.) This is likely to place the tree in a temporarily invalid
state, since the newly inserted leaf may not be larger than all of its
parents and therefore not suitable to be placed there. We repair this
problem by swapping the new value upward with its parents until it is
in a suitable location, bubbling it upward much like we bubbled
values downward upon a removal. The overall pseudocode for
adding to a heap is the following:

insert new element value as a new rightmost leaf node.

current node = the new leaf node.

while (current node’s value is not greater than its parent) {

 swap current node’s value with parent’s value.

 current node = parent node.

}

Figure 18.15 demonstrates adding the value 37 to our example
heap from Figure 18.14 . The value bubbles up twice, swapping
with 60 and then with 50 , because those values are greater than 37 .
It stops there because the next parent is 20 , which is smaller than
37 and should therefore remain higher in the tree.

Figure 18.15 Adding to min-heap with bubble-up

The runtime complexity of adding to a heap is similar to that of
removing the minimum element. In an ideal case, the newly added
element will be larger than its parent and no upward bubbling will be

required, which would yield a constant O(1) runtime. In the worst
case, the newly added node is smaller than all of the values in the
heap and must bubble all the way to the root. Since the height of a
heap with elements is almost exactly the worst case for
adding to the heap is

In general the newly added element must bubble itself some portion
of the distance up the tree, so we say that the add operation has a

average runtime.

Array Heap Implementation

A heap can be implemented as a tree of linked node objects much
like the binary trees implemented in the binary trees chapter. But a
few of the operations we want to perform don’t lend themselves well
to the node implementation. For example, bubbling upward requires
us to be able to reach a node’s parent, and our tree implementation
did not contain references from a node to its parent. Also, the add
and remove operations both involve manipulating the rightmost leaf
in the tree, which is not trivial to access in a tree implemented with
nodes.

N log2 N ,

O(log N).

O(log N)

There is another clever implementation of heaps that provides great
efficiency for the operations we want to implement. It turns out that
any complete binary tree can actually be stored as an array, where
index 1 stores the root element, and the children of index are
stored at indexes and So the children of index 1 (the
root) are at indexes 2 and 3; the children of index 2 are at indexes 4
and 5; the children of index 3 are indexes 6 and 7; the children of
index 4 are indexes 8 and 9; the children of index 5 are indexes 10
and 11; and so on. We leave index 0 blank and start our root at index
1 so that the indexes line up conveniently in this way. Figure
18.16 shows an array representation of the same heap depicted in
Figure 18.13 , with the value 10 as its root.

Figure 18.16 Heap implemented as array

The array representation is excellent for implementing a heap
because it is easy to jump from a node to its parent; the parent of the
element at index is stored at index It is also trivial to find the
rightmost child in the heap; the rightmost child is always located at
index size, and any new rightmost child we want to insert should be
inserted at index For example, in the array heap shown in
Figure 18.16 , the rightmost leaf is 65 , stored in index 10, and a
new leaf would be added at index 11.

i

2i 2i + 1.

i i/2.

size + 1.

Let’s implement a skeletal version of a priority queue using a heap
represented as an array.

public class HeapIntPriorityQueue {

 private int[] elementData;

 private int size;

 public HeapIntPriorityQueue() {

 elementData = new int[10];

 size = 0;

 }

 ...

To simplify the implementation of the add and remove operations,
we’ll introduce several short helper methods for navigating upward
and downward in the tree from parents to children and vice versa, as
well as a method to swap elements in the array, since swapping is
used in bubbling.

// helpers for navigating indexes up/down the tree

private int parent(int index) {

 return index / 2;

}

private int leftChild(int index) {

 return index * 2;

}

private int rightChild(int index) {

 return index * 2 + 1;

}

private boolean hasParent(int index) {

 return index > 1;

}

private boolean hasLeftChild(int index) {

 return leftChild(index) <= size;

}

private boolean hasRightChild(int index) {

 return rightChild(index) <= size;

}

private void swap(int[] a, int index1, int index2) {

 int temp = a[index1];

 a[index1] = a[index2];

 a[index2] = temp;

}

First let’s implement the add operation, since it is a bit simpler than
removal. Figure 18.17 shows the adding of element value 37 to
the heap. It bubbles upward as far as necessary until the value is not
smaller than its parent value or until it reaches the root of the tree.

Figure 18.17 Array heap add operation

The following code implements the add operation on our min-heap.
The code uses the helper methods defined previously such as
parent and swap . Notice that the node is initially inserted at the end
of the array (index) and then bubbled upward to parent
indexes as long as the node’s value is less than that of its parent.

// Adds the given element to this queue.

public void add(int value) {

 elementData[size + 1] = value; // add as rightmost leaf

 // "bubble up" as necessary to fix ordering

 int index = size + 1;

 boolean found = false;

 while (!found && hasParent(index)) {

 int parent = parent(index);

 if (elementData[index] < elementData[parent]) {

size + 1

 swap(elementData, index, parent(index));

 index = parent(index);

 } else {

 found = true; // found proper location; stop the

loop

 }

 }

 size++;

}

As with an array list or hash table, the array can run out of space. A
proper add method should also check to make sure that the array
has enough capacity to hold the element being added. The following
code can be inserted at the start of the add method to handle this:

// resize if necessary

if (size + 1 >= elementData.length) {

 elementData = Arrays.copyOf(elementData, elementData.length

* 2);

}

Now let’s implement the remove-min operation. Figure 18.18
shows the removal of the root element value from the heap from
Figure 18.17 . The rightmost leaf, 60 , is moved to the root, then it
is bubbled downward, swapping it with its smaller child as far as

necessary until the value is not larger than either of its children (or
until it is a leaf and has no children). In the example, 60 swaps with
its right child, 20 , which is smaller than 37 ; then it swaps with its left
child, 44 , which is less than its right child, 90 .

Figure 18.18 Array heap remove-min operation

The following code implements the remove-min operation on our
min-heap. The code uses the helper methods defined previously,
such as leftChild and hasRightChild . The code inside the loop
initially chooses to swap with the left child, but if the right one is
smaller than the left, the right one is chosen. The loop stops when
the node has no children (when it becomes a leaf) or when it is not
larger than its child and has therefore reached the correct position.

// Removes and returns the minimum value in the queue.

public int remove() {

 // move rightmost leaf to become new root

 int result = peek();

 elementData[1] = elementData[size];

 size--;

 // "bubble down" as necessary to fix ordering

 int index = 1;

 boolean found = false;

 while (!found && hasLeftChild(index)) {

 int left = leftChild(index);

 int right = rightChild(index);

 int child = left;

 if (hasRightChild(index) &&

 elementData[right] < elementData[left]) {

 child = right;

 }

 if (elementData[index] > elementData[child]) {

 swap(elementData, index, child);

 index = child;

 } else {

 found = true; // found proper location; stop the

loop

 }

 }

 return result;

}

A heap that stores objects rather than integers is very similar to the
code we have already shown, except that comparisons are made
using the compareTo method rather than < and > operators. You can
find complete code for the HeapIntPriorityQueue class, as well as a
HeapPriorityQueue that stores objects, on our web page at
http://buildingjavaprograms.com.

Heap Sort

In a previous chapter, we discussed details of several sorting
algorithms, such as selection sort and merge sort. There is a simple
algorithm for sorting called heap sort that takes advantage of the
ordering of heaps to arrange data quickly. If you add all elements of
an array to a priority queue and then remove them, they will come
out in ascending (sorted) order. The heap sort algorithm can be
described by the following pseudocode:

heapSort(A):

 H = create new heap.

 for each element n in A:

 add n to H.

 while (H not empty):

 remove element from H.

 add element back into A.

Here is a simple implementation of the heap sort for sorting an array
of integers using a PriorityQueue :

public static void heapSort(int[] a) {

 Queue<Integer> pq = new PriorityQueue<>();

 for (int n : a) {

 pq.add(n);

 }

 for (int i = 0; i < a.length; i++) {

 a[i] = pq.remove();

 }

}

When sorting an array of elements, heap sort performs add
and remove operations on a heap. Each add or remove has a

complexity, so the overall heap sort algorithm has

complexity. Heap sort is a fairly efficient algorithm, certainly much
faster than selection sort and with comparable performance to merge
sort.

One drawback of the heap sort algorithm as shown is the memory
required. To sort the array we must create another large data

N N

N

O(log N)

O(N log N)

structure (the priority queue, and the array heap inside it) to
temporarily store the data. For very large data sets this can be
undesirable.

It is possible to implement heap sort “in-place” so that it uses the
original array itself as the heap. The basic idea is to treat the array
as an initially invalid heap and “repair” it into a proper heap by
repeatedly bubbling elements into proper positions. Once the array
represents a heap, performing remove operations repeatedly on the
array and moving the removed elements to the end of the array end
up fully sorting the array contents. The algorithm arranges the
elements into ascending order if a max-heap is used and descending
order if a min-heap such as our HeapIntPriorityQueue is used.

The in-place version of the heap sort algorithm would require a
modified version of our HeapIntPriorityQueue implementation with a
few tweaks. The details of implementing an in-place heap sort
algorithm are outside the scope of this chapter, but a full
implementation of the algorithm is posted on our web page at
http://buildingjavaprograms.com.

Chapter Summary
Hashing is a technique for mapping between element values and
integers representing array indexes at which to store those
elements. Hashing allows for the implementation of sets and maps
with extremely efficient O(1) runtime for adding, removing, and
searching for elements.

A hash function is an algorithm that maps element values to array
indexes. A common technique for integer data is to mod (%) the
value by the array’s length.

When multiple element values have the same hash function value,
there is a collision. Collisions can be resolved by moving to another
index (probing) or by storing a list of matched elements at each
index (separate chaining).

Rehashing is the process of resizing a hash table, generally to
enlarge it so that it can efficiently store more elements. The array
cannot simply be enlarged; the elements must be readded because
their hash function values may change in the new larger array.

Non-integer elements can be hashed by calling their hashCode
method.

A priority queue allows elements to be inserted in any order and
removed in ascending order.

A structure called a heap is often used to implement priority queues.
A heap is a tree with a vertical ordering, where parents store smaller
values than their children (min-heap) or larger values than their
children (max-heap).

When adding a value to a heap, it is added as a leaf and then
“bubbled” (swapped) up the tree until it is in a proper place in the
vertical ordering. When removing a value from a heap, the heap’s
rightmost leaf is moved to the root and then “bubbled” down the tree
until it is in a proper place in the vertical ordering.

Because of its complete structure, a heap can be implemented
efficiently using an array, rather than as a linked tree of node objects.

Heaps can be used to help sort data, an algorithm called heap sort.

Self-Check Problems

Section 18.1: Hashing

1. What is hashing, and why is hashing a good way of
implementing a set?

2. Which of the following statements about hash tables is true?
a. A hash table has

average time to add and search for elements.
b. The higher a hash table’s load factor, the more quickly

elements can be found.
c. Once a hash table’s load factor reaches 0.75, no more

elements can be added.
d. A hash function maps element values to integer

indexes in the hash table.
e. A good hash function returns the same value as much

as possible for all data.

3. How do you know when a hash table has become “full”? At
what point does it become impossible to add further elements
to a hash table of a given size? Does it depend on the
collision resolution strategy used?

4. The following statement is an incorrect attempt to resize a
hash table to twice its current size. Why is this code incorrect?
What is the proper way to enlarge a hash table?

O(log N)

elementData = Arrays.copyOf(elementData, 2 *

elementData.length);

5. What is the final state of a hash table of size 10 after adding
35, 2, 15, 80, 42, 95, and 66? Assume that we are using the
standard “mod” hash function shown in the chapter and linear
probing for collision resolution. Do not perform any resizing or
rehashing. Draw the entire array and the contents of each
index.

6. If separate chaining is used for collision resolution, and the
same elements from the previous problem (35, 2, 15, 80, 42,
95, and 66) are added to a hash table of size 10, what is the
final state of the hash table? Do not perform any resizing or
rehashing. Draw the entire array and the contents of each
index.

7. Suppose we have a hash set that uses the standard “mod”
hash function shown in the chapter and uses linear probing
for collision resolution. The starting hash table length is 5, and
the table chooses to rehash to twice its former size once the
load factor reaches or exceeds 0.5. If we begin with an empty
set, what will be the final state of the hash table after the
following elements are added and removed? Draw the entire
array and the contents of each index, including any resizing
and rehashing necessary. Write “X” in any index in which an
element is removed and not replaced by another element.
Also write the size, capacity, and load factor of the final hash
table.

HashIntSet set = new HashIntSet();

set.add(15);

set.add(5);

set.add(13);

set.add(24);

set.add(32);

set.remove(13);

set.add(17);

set.add(44);

set.remove(15);

set.add(47);

8. Suppose we have a hash set that uses the standard “mod”
hash function shown in the chapter and uses linear probing
for collision resolution. The starting hash table length is 11,
and the table does not rehash during this problem. If we begin
with an empty set, what will be the final state of the hash table
after the following elements are added and removed? Draw
the entire array and the contents of each index. Write “X” in
any index in which an element is removed and not replaced
by another element. Also write the size, capacity, and load
factor of the final hash table.

set.add(4);

set.add(52);

set.add(50);

set.add(39);

set.add(29);

set.remove(4);

set.remove(52);

set.add(70);

set.add(82);

set.add(15);

set.add(18);

9. For each of the following possible hashCode implementations:
Is the following a legal hashCode method for a Point class,
according to the general contract of that method? Does it
distribute the hash codes well between objects? Why or why
not?

a.
public int hashCode() {

 return x * y;

}

b.
public int hashCode() {

 return 42;

}

c.
public int hashCode() {

 Random rand = new Random();

 return rand.nextInt();

}

10. Write a hashCode method for a Date class, whose fields are a
year, month, and day, as integers. Follow the general contract
for the hashCode method.

11. Write a hashCode method for a Student class, whose fields are
a name (a string), age (an integer), student ID number (an
integer), and weight in pounds (a real number). Follow the
general contract for the hashCode method.

12. Suppose we have a hash map that uses the standard “mod”
hash function shown in the chapter and uses linear probing
for collision resolution. The starting hash table length is 5, and
the table chooses to rehash to twice its former size once the
load factor reaches or exceeds 0.5. If we begin with an empty
map, what will be the final state of the hash table after the
following key/value pairs are added and removed? Draw the
entire array and the contents of each index, including any
resizing and rehashing necessary. Write “X” in any index in
which an element is removed and not replaced by another
element. Also write the size, capacity, and load factor of the
final hash table.

HashMap<Integer, String> map = new HashMap<>();

map.put(7, "Jessica");

map.put(34, "Tyler");

map.put(17, "Ryan");

map.put(15, "Tina");

map.put(84, "Saptarshi");

map.remove("Tyler");

map.put(7, "Meghan");

map.put(33, "Kona");

map.remove(17);

map.put(6, "Tina");

map.remove(84);

map.put(15, "Daisy");

Section 18.2: Priority Queues and
Heaps

13. Which of the following statements about min-heaps is true?
a. Smaller values are on the left and larger values are on

the right.
b. The smallest value is the root.
c. The smallest value is one of the leaves.
d. Every value is smaller than all values at lower levels of

the tree. For example, if there is a 25 at level 3, there
will not be any elements with values less than 25 at
levels 4 and beyond.

e. The peek operation returns the largest value in the
heap.

14. If a binary heap has 26 nodes, what is its height? If it has 73
nodes, what is the height? How do you know for sure?

15. Which of the following are valid min-heaps? For the one(s)
that are invalid, what makes them invalid?

a.

b.

c.

16. In an array heap as implemented in this section, for the
element at index 8 of the array, what are the indexes of its left
and right children? What is the index of its parent? If the
element is at index 23, what are the indexes of its children
and parent?

17. Simulate the adding of the value 21 to the following min-heap:

18. Simulate the adding of value 7 to the same heap from the
previous problem, after the 21 has already been added.

19. Draw the tree for the binary min-heap that results from
inserting 4, 9, 3, 7, 2, 5, 8, 6 in that order into an initially
empty heap.

20. Perform 3 removals on the heap you drew in the previous
problem. Show the complete state of the tree after each
removal.

21. Draw the tree for the binary min-heap that results from
inserting 11, 9, 12, 14, 3, 15, 7, 8, 1 in that order into an
initially empty heap.

22. Perform 3 removals on the heap you drew in the previous
problem. Show the complete state of the tree after each
removal.

23. The following is an incorrect diagram of the array
representations of the heap shown in Self-Check Problem 17
using the array representation described in this section of the
chapter (before any adds or removals are made from it). What
is wrong with the diagram? What changes must be made to
fix it so that it accurately represents the given heap?

24. Draw the min-heap being represented by the given array:

25. Draw the array representation of the heap you computed as
your answer to Self-Check Problem 19 (after all of the
elements are added to it).

26. Draw the array representation of the heap you computed as
your answer to Self-Check Problem 21 (after all of the

elements are added to it).

Exercises
1. Write a method in the HashIntSet class called addAll that

accepts another hash set as a parameter and adds all of the
elements from the other set into the current set. For example,
if the set stores [-5, 1, 2, 3] and the method is passed [2,
3, 6, 44, 79] , your set would store [-5, 1, 2, 3, 6, 44, 79] .

2. Write a method in the HashIntSet class called containsAll that
accepts another hash set as a parameter and returns true if
your set contains every element from the other set. For
example, if the set stores [-2, 3, 5, 6, 8] and the method is
passed [3, 6, 8] , your method would return true . If the
method were passed [3, 6, 7, 8] , your method would return
false because your set does not contain the value 7 .

3. Write a method in the HashIntSet class called equals that
accepts another hash set as a parameter and returns true if
the two sets contain exactly the same elements. The internal
hash table size and ordering of the elements does not matter,
only the sets of elements themselves.

4. Write a method in the HashIntSet class called removeAll that
accepts another hash set as a parameter and ensures that
this set does not contain any of the elements from the other
set. For example, if the set stores [-2, 3, 5, 6, 8] and the

method is passed [2, 3, 6, 8, 11] , your set would store [-2,
5] .

5. Write a method in the HashIntSet class called retainAll that
accepts another hash set as a parameter and removes all
elements from this set that are not contained in the other set.
For example, if the set stores [-2, 3, 5, 6, 8] and the
method is passed [2, 3, 6, 8, 11] , your set would store [3,
6, 8] .

6. Write a method in the HashIntSet class called toArray that
returns the elements of the set as a filled array. The order of
the elements in the array is not important as long as all
elements from the set are present in the array, with no extra
empty slots before or afterward.

7. Write a method in the HashIntSet class called toString that
returns a string representation of the elements in the set, such
as "[-2, 3, 5, 6, 8]" . The order of the elements in the string
does not matter as long as they are all present in the proper
format. Do not list any empty or meaningless indexes in the
string.

8. Write a method called descending that accepts an array of
integers and rearranges the integers in the array to be in
descending order using a PriorityQueue as a helper. For
example, if the array passed stores [42, 9, 22, 17, -3, 81] ,
after the call the array should store [81, 42, 22, 17, 9, -3] .

9. Write a method called kthSmallest that accepts a
PriorityQueue of integers and an integer as parameters andk

returns the th-smallest integer from the priority queue. For
example, if the queue passed stores the integers [42, 50, 45,
78, 61] and is 4, return the fourth-smallest integer, which is
61 . If is 0 or negative or greater than the size of the queue,
throw an IllegalArgumentException . If your method modifies
the state of the queue during its computation, it should restore
the queue before it returns. You may use one stack or queue
as auxiliary storage.

10. Write a method called isConsecutive that accepts a
PriorityQueue of integers as a parameter and returns true if
the queue contains a sequence of consecutive integers
starting from the front of the queue. Consecutive integers are
integers that come one after the other, as in 5, 6, 7, 8, 9, etc.,
so if the queue stores [7, 8, 9, 10, 11] , your method should
return true . If your method modifies the state of the queue
during its computation, it should restore the queue before it
returns. You may use one stack or queue as auxiliary storage.

11. Write a method called removeDuplicates that accepts a
PriorityQueue of integers as a parameter and modifies the
queue’s state so that any element that is equal to another
element in the queue is removed. For example, if the queue
stores [7, 7, 8, 8, 8, 10, 45, 45] , your method should
modify the queue to store [7, 8, 10, 45] . You may use one
stack or queue as auxiliary storage.

12. Write a method called stutter that accepts a PriorityQueue of
integers as a parameter and replaces every value in the
queue with two occurrences of that value. For example, if the

k

k

k

queue stores [7, 8, 10, 45] , your method should modify the
queue to store [7, 7, 8, 8, 10, 10, 45, 45] . You may use
one stack or queue as auxiliary storage.

13. Write a method called fillGaps that accepts a PriorityQueue
of integers as a parameter and adds elements to it until every
element in its range of smallest to largest is represented once
if it was not previously found in the priority queue. For
example, if the queue stores [1, 3, 3, 6, 6, 8] , your method
should modify the queue to store [1, 2, 3, 3, 4, 5, 6, 6, 7,
8] . You may use one collection as auxiliary storage.

14. Write a method in the HeapIntPriorityQueue class called
toArray that returns the elements of the queue as a filled
array. The order of the elements in the array is not important
as long as all elements from the queue are present in the
array, with no extra empty slots before or afterward.

15. Write a method in the HeapIntPriorityQueue class called
toString that returns a string representation of the elements
in the queue, such as "[42, 50, 45, 78, 61]" . The order of
the elements in the string does not matter as long as they are
all present in the proper format.

16. Write a method in the HeapIntPriorityQueue class called merge
that accepts another HeapIntPriorityQueue as a parameter
and adds all elements from the other queue into the current
queue, maintaining proper heap order such that the elements
will still come out in ascending order when they are removed.
Your code should not modify the queue passed in as a

parameter. (Recall that objects of the same class can access
each other’s private fields.)

Programming Projects
1. Add an iterator to the HashSet class written in this chapter. To

do this you will need to write an inner class that can iterate
over the elements of the set, remembering its position as it
moves along. Also write a method in the HashSet class called
iterator that returns such an iterator object.

2. In this chapter, we implemented a HashSet that used separate
chaining to resolve collisions. Implement your own version of
HashSet that uses linear probing to resolve collisions. Perform
lazy removals, placing a special “removed” marker value into
any bucket where an element is removed.

3. Modify the HeapIntPriorityQueue class written in this chapter
to make it configurable in ways similar to Java’s PriorityQueue
class. Make it possible for the heap to be a min-heap or max-
heap. (If you create a heap of objects, you could also modify it
to accept a Comparator parameter to its constructor.)

4. Modify the HeapIntPriorityQueue class written in this chapter
to make it into a three-heap. A three-heap is similar to a
binary heap, except that each node is considered to have
three children rather than two children. A three-heap is a
wider tree though not as tall as a binary heap. The heap can
still be represented as an array, but the algorithms for
traversing it must be modified to consider all three children
when bubbling as appropriate, etc. (Do you expect that a

three-heap will be faster or slower than a binary heap for
insertion, and for removal? Why? You can create a test to
verify the performance of each operation.)

5. Write a program that implements the “Huffman coding”
compression algorithm using priority queues and binary trees.
Huffman coding is an algorithm devised by David A. Huffman
of MIT in 1952 for compressing text data to make a file
occupy a smaller number of bytes. Normally text data is
stored in a standard format of 8 bits per character, commonly
using an encoding called ASCII that maps every character to
a binary integer value from 0–255. The idea of Huffman
coding is to abandon the rigid 8-bits-per-character
requirement and use different-length binary encodings for
different characters. The advantage of doing this is that if a
character occurs frequently in the file, such as the letter “e”, it
could be given a shorter encoding (fewer bits), making the file
smaller.
The steps involved in Huffman coding a given text source file
into a destination compressed file are the following:

a. Examine the source file’s contents and count the
number of occurrences of each character (consider
using a map).

b. Place each character and its frequency (count of
occurrences) into a priority queue ordered in ascending
order by character frequency.

c. Convert the contents of this priority queue into a binary
tree with a particular structure. Create this tree by
repeatedly removing the two front elements from the

priority queue (the two nodes with the lowest
frequencies) and combining them into a new node with
these two nodes as its children and the two nodes’
combined frequencies as its frequency. Then reinsert
this combined node back into the priority queue.
Repeat until the priority queue contains just one single
node.

d. Traverse the tree to discover the binary encodings of
each character. Each left branch represents a ‘0’ in the
character’s encoding and each right branch represents
a “1”.

e. Reexamine the source file’s contents, and for each
character, output the encoded binary version of that
character to the destination file to compress it.

Chapter 19 Functional
Programming with Java 8

19.1 Effect-Free Programming

19.2 First-Class Functions
• Lambda Expressions

19.3 Streams
• Basic Idea

• Using Map

• Using Filter

• Using Reduce

• Optional Results

19.4 Function Closures

19.5 Higher-Order Operations on Collections
• Working with Arrays

• Working with Lists

• Working with Files

19.6 Case Study: Perfect Numbers
• Computing Sums

• Incorporating Square Roots

• Just Five and Leveraging Concurrency

Introduction
Every 10 to 15 years the computer science
education community updates the suggested
curriculum for computer science majors. In the
most recent curriculum revision in 2013, the
ACM/IEEE joint task force updated the
suggestions for coverage of programming
languages. As they explained in their
introduction to that section:

Software developers must understand the programming
models underlying different languages and make
informed design choices in languages supporting multiple
complementary approaches. Computer scientists will
often need to learn new languages and programming
constructs, and must understand the principles underlying
how programming language features are defined,
composed, and implemented.

They went on to describe specific concepts from
various programming paradigms that should be
studied by every undergraduate computer
science major. Two of the paradigms that they
emphasize are the procedural and object-
oriented paradigms that have been discussed
thoroughly in this book. Java is a hybrid
language that supports both approaches. We
began the book by studying procedural
programming with static methods that we used
to decompose a large program into action-
oriented components. Then starting in Chapter
8 we moved on to the object-oriented
approach in which a large program is
decomposed into a set of interacting objects
each with their own class defining their state and
behavior.

In this chapter, we will explore a third approach to programming that
is known as functional programming. Java uses the term “method”
for what many other languages call a “function,” so in the discussion
that follows, you can mentally substitute “method” for “function.”

Functional Programming
A style of programming that emphasizes the use of
functions (methods) to decompose a complex task into
subtasks.

The Java community has spent years discussing how best to add
functional features to the language, culminating with the release of
Java 8 in 2014. The new features added to the language in this
release allow Java programmers to take advantage of this different
approach to programming. The new curriculum guidelines list five
specific topics that undergraduates should study related to functional
programming:

1. Effect-free programming
2. Processing structured data via functions
3. First-class functions
4. Function closures
5. Higher-order operations on collections

The first three are categorized as Core Tier-1 and items 4 and 5 are
categorized as Core Tier-2. As the guidelines explain, “computer-
science curricula should cover all the Core Tier-1 topics” and “all or
almost all of the Core Tier-2 topics.” Each of these concepts has its
own section in this chapter, except for Item 2 which does not
translate easily to Java. In addition, this chapter includes a separate
section that discusses the central Java 8 concept of streams
because much of the functional programming support is provided
using that mechanism. This chapter ends with a short case study
that picks up an additional Core Tier-1 concept of using concurrency
to speed the execution of a complex computation. As we will see, the
functional programming approach is particularly well suited to safe
and reliable concurrency, which is becoming increasingly important
in modern computing where the average PC now comes with
multiple processors (sometimes described as “multi-core
processing”). The terminology can sometimes be intimidating, but as
we will see, these concepts are fairly straightforward to discuss using
Java 8 constructs.

19.1 Effect-Free Programming
Consider the following line of code:

int result = f(x) + f(x);

This code computes a result by calling a function (a method) two
different times and adding together the results. Offhand it seems that
we would get the exact same behavior with this line of code:

int result = 2 * f(x);

Sometimes the two are equivalent and sometimes not. The question
to consider is whether the function produces a side effect.

Side Effect
A change to the state of an object or program variable
produced by a call on a function (i.e., a method).

As an example, consider the following program:

 1 // This program demonstrates a method with a side effect.

 2 // Each time f is called, the variable x's value changes.

 3

 4 public class SideEffect {

 5 public static int x;

 6

 7 public static int f(int n) {

 8 x = x * 2;

 9 return x + n;

10 }

11

12 public static void main(String[] args) {

13 x = 5;

14 int result = f(x) + f(x);

15 System.out.println(result);

16 }

17 }

This confusing program begins with the declaration of a static
variable called x that has the entire class as its scope. Such
variables are called global variables. We have discouraged the use
of global variables because they can lead to the kind of confusing
code we have here.

The program begins by initializing the global variable x to the value
5. Then on line 14 the program calls the function f twice, passing it
the value of x each time. But f doubles the value of x before
returning the sum of the value passed as a parameter and x . If you
find this all highly confusing, you’re not alone. This style of
programming is very bad.

On the first call to f , the variable x has the value 5. This is passed
from main as the parameter called n . Inside function f , we first
double x , which gives it the value 10. It then returns the sum of x ,
which is now 10, and n , which is 5. So it returns 15 for the first call.
On the second call, it passes the current value of x , which is 10, to
the function and uses this to initialize n to be 10. Then it doubles x
from 10 to 20 and returns the sum of x and n , which are 20 and 10.
So it returns the value 30 on the second call. The variable result is
set to the sum of these two returns values, which is 15 plus 30, or
45.

What happens if we substitute our other line of code for setting
result?

int result = 2 * f(x);

The first call on the function behaves as it did before, returning the
value 15. We double that to 30 and set result to 30. So we end up

with a program that has different behavior because the function f
has a side effect.

Because functional programming focuses so much on individual
functions, the community of programmers who use functional
programming regularly have concluded that side effects should be
avoided when possible, leading to the kind of “effect free” functions
that serve as the title of this section.

The object-oriented community has been less wary of functions with
side effects. A central idea of OOP is that objects have state that
changes as methods are called. Recall from Chapter 8 that
instance methods are classified as accessors that can be thought of
as read-only operations accessing the object’s state and mutators
that can be thought of as read/write operations that often change the
state of the object. Using the terminology from functional
programming, we would say that accessors are usually effect-free
functions while mutators are functions with a side effect. Even
accessors can have side effects because they might change the
state of other objects.

One of the simplest and most pervasive sources of side effects we
have seen is the printing of values. Continuing our example of a
function f that might be called once or twice, if the function includes
a call on System.out.println , then it will produce more output when
called twice than when it is called once. So even though the variable
result in our example might be set to the same value, there is still a
possible side effect caused by the function if it produces output.

As we will see in the case study at the end of this chapter, there are
great advantages to writing code that is free of side effects. It is
easier to take advantage of concurrency using such code and it is
easier to prove formal properties of programs that are written using
the effect-free approach.

DID YOU KNOW?

Functional Programming Influences

on Java

One of the most successful functional programming
languages is the Scheme language developed at MIT in the
1970s by Guy Steele and Gerry Sussman. Jim Gosling who
designed the Java programming language was well aware of
Scheme and it is clear that many of the ideas from Scheme
influenced the design of Java.

As mentioned in Chapter 3 , objects of the String class are
immutable, which means that all of their methods are free of
side effects. This has greatly simplified the use of String
objects. Consider, for example, a class with a field called
name of type String and an accessor method for examining
the value of that field:

public String getName() {

 return name;

}

In Java, you don’t have to worry about the possibility that a
client of this class might alter your string object. In other
programming languages, you might make a defensive copy to
give to the client to avoid any possible interference.

The idea of effect-free programming is also evident in the
Collections class that has methods for constructing an
“unmodifiable” version of a collection, such as
Collections.unmodifiableList .

Another example of the influence of Scheme can be found in
Java’s concept of interning of strings (read the description of
the method String.intern if you are curious). It is also worth
noting that Guy Steele, the co-designer of Scheme, was hired
by Sun Microsystems in 1994 to work on the Java team.

19.2 First-Class Functions
When you study any particular programming language, you will soon
learn what the basic elements of the language are. For example,
almost every programming language allows you to manipulate
numbers as basic elements. You can store a number in a variable,
you can pass a number as a parameter, you have various operations
for manipulating numbers, and you can return a number from a
method call. Strings are also basic elements of Java because they
are easy to declare, store, and pass as parameters.

Not every data type is a first-class citizen of every language. For
example, not every programming language allows you to manipulate
Boolean values as basic elements the way Java does. For decades
the C programming language did not have a proper type for storing
Boolean values and programmers instead used the integer values 1
and 0 to represent true and false. Some languages consider
collections like lists and maps to be first-class citizens, providing
special syntax for declaring and manipulating them; in Java, arrays
receive first-class treatment and special syntax, but the collection
objects do not.

First-Class Citizen

An element of a programming language that is tightly
integrated with the language and supports the full
range of operations generally available to other entities
in the language.

What would it mean to provide first-class status for functions? Let’s
begin with an example that points out the motivation. Consider the
task of performing drill and practice with a user where you make up
addition problems involving two numbers between 1 and 12 and you
keep track of how many answers the user got right. Below is a
typical interaction.

10 + 6 = 16

you got it right

9 + 6 = 15

you got it right

3 + 7 = 9

incorrect...the answer was 10

12 + 10 = 22

you got it right

9 + 12 = 20

incorrect...the answer was 21

3 of 5 correct

Suppose that the above quiz is represented as a method called
giveProblems that is passed a Scanner that reads from the console
and a number of problems to provide to the user, as in:

Scanner console = new Scanner(System.in);

giveProblems(console, 5);

This is a straightforward task to solve building on material from
Chapters 1 through 5 .

public static void giveProblems(Scanner console, int

numProblems) {

 Random r = new Random();

 int numRight = 0;

 for (int i = 1; i <= numProblems; i++) {

 int x = r.nextInt(12) + 1;

 int y = r.nextInt(12) + 1;

 System.out.print(x + " + " + y + " = ");

 int answer = x + y;

 int response = console.nextInt();

 if (response == answer) {

 System.out.println("you got it right");

 numRight++;

 } else {

 System.out.println("incorrect...the answer was " +

answer);

 }

 }

 System.out.println(numRight + " of " + numProblems + "

correct");

}

We now have a method that allows us to have a user practice
addition problems. What if we wanted to also practice multiplication
problems? Most of the code stays the same, but we would have to
change the addition in these two lines of code:

System.out.print(x + " + " + y + " = ");

int answer = x + y;

to be multiplication:

System.out.print(x + " * " + y + " = ");

int answer = x * y;

In a sense, we want to replace the plus with an asterisk in both of
these lines of code. If we want the code to work for both addition and
multiplication, the first line of code is easier to generalize. The only
part that needs to change is the text to be printed, and we have the
ability to manipulate text as a basic element of Java using a String .

We can change the method header to take a third parameter
specifying the text to print:

public static void giveProblems(Scanner console, int

numProblems,

 String text) {

 ...

 System.out.print(x + " " + text + " " + y + " = ");

 ...

}

We can then make two calls on the method to have it use a plus the
first time and an asterisk the second time:

giveProblems(console, 5, "+");

giveProblems(console, 5, "*");

So far so good. But now we run into the problem that the method is
computing the right answer as the sum of the two numbers, even if
an asterisk is passed as the text. That will make for a very frustrating
experience on the second call where the console indicates to the
user that the problem is a multiplication problem.

The question is how to change the computation of the right answer. It
would be great if we could say:

int answer = x text y;

If Java somehow filled in “+” or “*” appropriately and then used the
corresponding operator for the computation, then it would work. But
Java doesn’t work this way. The way that we usually get around this
in Java is by introducing an if/else structure that tests whether the
string is a plus or an asterisk. But then the code works for only those
two operators, and additional branches must be added to the code
later to make it support subtraction and other operations.

What we really want is the ability to pass an additional parameter
that specifies the calculation to perform. We want to say, “Use the
addition operation the first time and the multiplication operation the
second time.” A functional programmer would say that what we want
to be able to do is to pass in a function. This is an example of what
we mean by elevating functions to first class status in the language.
We want to be able to introduce a fourth parameter that specifies the
function to use for computing the right answer. That requires thinking
of the function as a thing in the language that can be passed as a
parameter.

Lambda Expressions

Java 8 provides a nice mechanism for doing exactly that. We can
form a lambda expression.

Lambda Expression (Lambda)
An expression that describes a function by specifying
its parameters and the value that it returns.

The term “lambda” was coined by a logician named Alonzo Church
in the 1930s. The term is used consistently across many
programming languages, so it is worth becoming familiar with it. The
Python programming language, for example, uses “lambda” as a
keyword for forming this type of anonymous function.

Lambda expressions are formed in Java by specifying the
parameters of the function and an expression that represents the
value to return separated by the special operator “ -> ”.

<parameters> -> <expression>

For example, we can use the following lambda expression to
represent a function that adds together two arguments:

(int x, int y) -> x + y

Notice that the parameters are enclosed in parentheses. In reading
this expression, we typically describe it as, “Given the parameters x
and y of type int, we return ” We can also write this as a
method with a name, as in:

public static int sum(int x, int y) {

 return x + y;

}

Notice how the lambda expression takes the parenthesized
parameter list from the method header and the expression used in
the return statement to form a simple expression. Once you get used
to reading lambda expressions, you will find that it is a concise way
to read and reason about the underlying computation being
performed.

It is also often possible to eliminate the types for the parameters
because they can usually be inferred by the surrounding context. For
our sample code, we will be able to use this lambda expression to
describe addition:

(x, y) -> x + y

And this expression to describe multiplication:

x + y.

(x, y) -> x * y

Given this new option, we can rewrite our client code as follows to
perform 3 each of addition and multiplication problems.

Scanner console = new Scanner(System.in);

giveProblems(console, 3, "+", (x, y) -> x + y);

giveProblems(console, 3, "*", (x, y) -> x * y);

Below is a sample log of execution.

9 + 1 = 10

you got it right

4 + 4 = 8

you got it right

6 + 2 = 9

incorrect...the answer was 8

2 of 3 correct

10 * 11 = 110

you got it right

9 * 6 = 64

incorrect...the answer was 54

5 * 7 = 45

incorrect...the answer was 35

1 of 3 correct

This ability to pass a lambda expression as a parameter points out
the benefit of treating functions as first-class elements of the
language. Just as we can provide a different number of problems to
perform or a different text to use for displaying the problems, we can
also provide a different function for computing the right answer. This
is a much more flexible approach than having to write tedious
if/else constructs that say exactly what to do for each different
possibility. Instead we provide a simple definition of the function we
want to use and the function is stored in a parameter of the method.

It is more important that you learn how to become a client of these
functional programming features of Java than to learn how to
implement them yourself. But for those who are interested in seeing
the implementation, the following is the revised method code:

public static void giveProblems(Scanner console, int

numProblems,

 String text, IntBinaryOperator

operator) {

 Random r = new Random();

 int numRight = 0;

 for (int i = 1; i <= numProblems; i++) {

 int x = r.nextInt(12) + 1;

 int y = r.nextInt(12) + 1;

 System.out.print(x + " " + text + " " + y + " = ");

 int answer = operator.applyAsInt(x, y);

 int response = console.nextInt();

 if (response == answer) {

 System.out.println("you got it right");

 numRight++;

 } else {

 System.out.println("incorrect...the answer was " +

answer);

 }

 }

 System.out.println(numRight + " of " + numProblems + "

correct");

 System.out.println();

}

There are other variations on lambda expression syntax. For
example, if a lambda expression accepts only a single parameter,
the parentheses around it are not required. The following is a lambda
expression that accepts an integer and returns that integer plus 1:

n -> n + 1

Another syntax variation is that if the computation is not a simple
expression, you can include multiple statements enclosed in curly
braces, such as:

x -> { int z = x * x; System.out.println(z); return z; }

Our discussion of first-class functions is a little generous to Java
because it turns out that functions in Java 8 are not truly first-class.
The language designers have done some fancy work behind the
scenes to make it feel like Java has first-class functions, but they
aren’t really first-class because you can’t do basic things like storing
them directly in a variable. Instead Java takes advantage of
interfaces that have a single abstract method in them (known as
functional interfaces) and constructs an object for you that
implements the interface’s method using the elements of the lambda
expression. As a result, Java’s implementation of functional
programming is more clunky and restrictive than in a true functional
programming language. But for our purposes, the lambda
expressions and functional interfaces act enough like first-class
functions that we can explore the concept, even though it is a bit of
an illusion.

You can try out lambdas in JShell, but the syntax is a bit clunky
compared to some other programming languages. The following
JShell interaction creates a lambda function called f and calls it on
two integers:

jshell> IntBinaryOperator f = (x, y) -> x + y;

f ==> $Lambda$14/1551870003@39aeed2f

jshell> f.applyAsInt(6, 2)

$2 ==> 8

19.3 Streams
You don’t truly appreciate the benefits of functional programming in
Java until you explore streams, which are the primary mechanism
that Java provides for this style of programming. We have seen this
concept before when we studied files in Chapter 6 . We saw input
streams that are a source of data and output streams that are a
destination for results. The streams in this chapter are a
generalization of that idea. Oracle describes a Java stream as a
sequence of elements of data on which various functional
programming operations can be performed.

Stream
A sequence of elements from a data source that
supports aggregate operations.

Basic Idea

The best way to think about a stream is to visualize it as a flow of
data from a source to a terminator with possible modifiers in
between, as shown in Figure 19.1 .

Figure 19.1 Streams

There is always one source and one terminator, but there can be any
number of modifiers (including none) in between. As the diagram
indicates, think of each modifier as transforming the stream in some
way. One sequence of values flows in and a different sequence of
values flows out. This way, we solve a complex programming task by
identifying the source of the data to process, the final result we want
to compute, and a series of transformations in between that move us
closer to completing the task. Each of the modifiers will be specified
by a function, which means that we are decomposing the overall task
into a series of subtasks that each involve a single transformation
specified by a function.

As a first example, suppose we want to find the sum of the squares
of the integers 1 through 5. We could use a classic cumulative sum
to accomplish this:

// compute the sum of the squares of integers 1-5

int sum = 0;

for (int i = 1; i <= 5; i++) {

 sum = sum + i * i;

}

This code specifies exactly how to perform this computation, using a
loop variable called i that varies from 1 to 5 and accumulating the
final answer in a variable called sum . You will see that when we use
streams, we describe more what we want computed instead of
specifying how to compute it. This can make the coding itself
simpler, but more importantly, it gives the computer more flexibility to
decide how to implement the computation. As we will see in the case
study at the end of this chapter, this can allow the computer to
optimize the solution to run faster.

Using a stream approach, we first have to identify a source of data.
We don’t have a convenient source for the squares of the positive
integers, but there is a static method called IntStream.range that
produces a stream of sequential integers in a particular range. As
with the substring method of the String class, the range method
has a first parameter that is inclusive and a second parameter that is
exclusive. So we will make the call IntStream.range(1, 6) to produce
a stream with the integers [1, 2, 3, 4, 5]. There is a variation of the
method called rangeClosed that would allow us to pass (1, 5) as
parameters, but the range method uses the same convention we
have studied in Java for substrings and it is also more commonly
used in other programming languages. Python, for example, has a
range function that works the same way.

We also need to pick an appropriate terminator. In this case Java
provides one for us in the form of a method called sum that adds up
the values in a stream of numbers. For now, let’s just add up the
integers and store the result in a variable. So we would write this line
of code:

int sum = IntStream.range(1, 6).sum();

This sets the variable sum to 15 (). In this case,
we have the required source of data and the required terminator, but
there are no modifications along the way. Figure 19.2 shows a
diagram of what is going on.

Figure 19.2 Stream operations on range of integers

In our computation, the initial call to IntStream.range is the source,
and sum is the terminator. The call on range produces a stream of
five integers. This stream is fed into the sum method, which adds
them up to produce the final result of 15. But recall that we want the
sum of the first five squares, not the first five integers. We can
accomplish that by introducing a modifier in between the range
creation and the sum operation.

You can see optional values in JShell. It displays that the result is
optional, along with its value, if any. If you want to split up long lines

1 + 2 + 3 + 4 + 5

with multiple stream operations, you have to type the dot character
before you press Enter for JShell to know you haven’t finished
writing the stream expression yet:

jshell> IntStream.of(55, 20, 19, 31, 40, -2, 62, 30).

 ...> filter(n -> n % 10 == 0).

 ...> max()

$1 ==> OptionalInt[40]

jshell> $1.getAsInt()

40

Using Map

Stream objects have a method called map that takes a function as a
parameter. We can provide a function that squares a number. What
map does is to produce a new stream that has the result of applying
the given function to each element of the original stream. So if the
original stream had five numbers, then the new stream will also have
five numbers, but they will be new numbers obtained by calling the
function passed as a parameter on each of the five elements in the
stream. So our line of code becomes:

int sum = IntStream.range(1, 6).map(n -> n * n).sum();

There is a convention popular among Java programmers to list each
step of this operation on a different line of code. The first line of code
should have the source and the final line should have the terminator
and any modifications should be listed as separate lines in between.
So the code above becomes:

int sum = IntStream.range(1, 6)

 .map(n -> n * n)

 .sum();

This is just a formatting convention to make it easier to read the
code. We would read this in a high-level way as, “To assign the
variable sum , first form the given range of integers, then map the
given function over those integers, and then find their sum.” We can
update our diagram as shown in Figure 19.3 , again using the
convention of including one step on each line.

Figure 19.3 Stream operations with map

As the diagram indicates, it is useful to think in terms of a flow of
data. First the call on range produces the sequence [1, 2, 3, 4, 5].

This is then passed through the map modifier that changes the
stream by applying the squaring function to each value, generating
the new stream [1, 4, 9, 16, 25]. This new stream is then sent into
the sum terminator that adds them up to produce the value 55.

This example has the classic structure of one source of data, one
modification, and one terminator that computes a result. It is useful
to keep in mind these three basic elements of a typical stream
computation. But you can have more than one modification along the
way, so let’s look at an example that has many.

Using Filter

Suppose that instead of using sequential integers, we decide to work
with the first 10 digits of pi. We can form a specific stream of integers
by calling the method IntStream.of and listing the individual values,
so let’s use the same code as before but using those 10 digits:

int sum = IntStream.of(3, 1, 4, 1, 5, 9, 2, 6, 5, 3)

 .map(n -> n * n)

 .sum();

This sets sum to be 207, as indicated in Figure 19.4 .

Figure 19.4 Stream operations on digits of pi

But suppose that we don’t want to add up the squares of all of these
digits. Suppose we are only interested in the odd digits. We could
rewrite the function we used in map to return 0 for even numbers and
the square of the number for odd numbers, but there is a better way.
There is a modifier known as filter that can be used to restrict a
stream to those values that pass some test. So while the map
modifier gives you a stream of new values of the same length as the
original, the filter modifier gives you a stream of unchanged
values, but not necessarily of the same length because not all values
pass the given test.

The filter method takes as its argument a Boolean-valued
predicate. In our case, we will test that the remainder when divided
by 2 is not 0.

int sum = IntStream.of(3, 1, 4, 1, 5, 9, 2, 6, 5, 3)

 .filter(n -> n % 2 != 0)

 .map(n -> n * n)

 .sum();

Updating our diagram for the flow of data we get the result shown in
Figure 19.5 .

Figure 19.5 Stream operations with filter

We now have two different stream modifiers; let’s throw in a third.
Suppose that we don’t want to include any given number more than
once in computing this sum. That would normally require some kind
of structure like a set to remember values that we have seen so as to
eliminate duplicates. But Java provides a specific modifier for this
known as distinct . The stream that it produces will have values
from the original stream in the same order, but with all duplicates
removed (only the first occurrence of each value will be included). So
we can add this to our code to get:

int sum = IntStream.of(3, 1, 4, 1, 5, 9, 2, 6, 5, 3)

 .filter(n -> n % 2 != 0)

 .distinct()

 .map(n -> n * n)

 .sum();

Figure 19.6 shows an updated diagram of this new code.

Figure 19.6 Stream operations with distinct

This is a fairly complex operation that we have described without
saying much about how it is accomplished. We are requesting the
sum of the squares of the odd numbers of this sequence after
duplicate numbers have been removed. The stream mechanism and
these individual modifiers take care of the rest of the work for us.

As another example, suppose we want to write a method to test
whether a number is prime. By definition a prime is a number that
is divisible by 1 and itself but nothing else. Another way of saying
that is that primes have exactly two factors. We can express that
using streams by producing the values 1 through , filtering on
factors, and seeing whether there are exactly two of them.

public static boolean isPrime(int n) {

 return IntStream.range(1, n + 1)

 .filter(x -> n % x == 0)

 .count()

 == 2;

}

n

n

Remember that the second parameter to range is exclusive, which is
why we use to have the stream go all the way up to and
including It is worth considering the special case of 1. This
method says that it is not prime, because there is only one value
between 1 and 1 that is divisible by 1. That is the right answer
because the value 1 is not considered a prime. This computation is
inefficient because it only needs to test values up to the square root
of , but we will delay that discussion for the case study at the end
of this chapter.

Using Reduce

Now let’s consider the task of computing the factorial of an integer ,
which is defined as the product of the integers 1 through This is a
slightly different task and requires a slightly different approach. In
this case, we want to take all of the integers in a stream and
combine them into one integer using multiplication. There is a
special stream terminator known as reduce that combines elements
from a stream. Below is a method that computes the factorial using
this approach.

public static int factorial(int n) {

 return IntStream.range(2, n + 1)

 .reduce(1, (a, b) -> a * b);

}

n + 1

n.

n

n

n.

You will notice that the call on reduce begins with an extra parameter
1 . This is the starting value to use for the computation. Multiplying
by 1 does not change the overall result and it allows the expression
to guarantee that it returns a value even if the stream is empty. That
means that 0 factorial is correctly reported as 1. It also means that
negative factorials are reported as 1 which we could fix with a test
that throws an exception in that case because the factorial is
undefined for negatives.

There are many details we have left out about streams. For example,
we have not yet discussed the problem that some computations do
not produce a result. You can generally compute an average or a
maximum or a minimum of a sequence of values, but not if the
sequence is empty. Java has a notion of an option type that
sometimes has a result and sometimes does not, which we will
briefly explore in the next section. We will close with a simple
variation of our computation on the first ten squares that uses a built-
in terminator known as summaryStatistics in place of sum :

System.out.println(IntStream.range(1, 11)

 .map(n -> n * n)

 .summaryStatistics());

which produces the following output:

IntSummaryStatistics{count=10, sum=385, min=1,

average=38.500000, max=100}

Each of these statistics has a corresponding terminator, such as
average and max . You can read more about them and the other
modifiers and terminators in the documentation for the IntStream
class.

Optional Results

Some of the provided stream terminators have a subtlety that merits
investigation. For example, if you want to find and print the largest
multiple of 10 in a certain group of integers, you might perform the
following stream operations to filter out all the non-multiples of 10
and then print the largest of the remaining numbers:

// print largest multiple of 10 in list (does not compile)

int largest = IntStream.of(55, 20, 19, 31, 40, -2, 62, 30)

 .filter(n -> n % 10 == 0)

 .max();

System.out.println(largest);

But you’d find that the preceding code generates a compiler error
such as the following:

incompatible types: OptionalInt cannot be converted to int

This is because the results of some stream terminators like average ,
findFirst , max , and min are undefined if the stream does not
contain any data. What if there were no multiples of 10 after doing
the filtering? There would be no maximum to return. The terminator
could have chosen a default value like 0, but this is not guaranteed
to be what the programmer would want.

For this reason, those terminators do not actually return the type of
result you would expect, such as an int or double . The designers of
the library needed a way to represent that the result might be
undefined. So these terminators actually return values of types
called OptionalInt and OptionalDouble . These “optional” types are
small wrapper objects for storing a single int or double result
respectively. Each type has a corresponding method called getAsInt
and getAsDouble to extract the value. Those methods will throw a
NoSuchElementException if the value is undefined. (There is also a
more general optional type called Optional<T> that is outside the
scope of this chapter.)

The following code properly stores the largest multiple of 10 as an
integer:

// print largest multiple of 10 in list

int largest = IntStream.of(55, 20, 19, 31, 40, -2, 62, 30)

 .filter(n -> n % 10 == 0)

 .max()

 .getAsInt();

System.out.println(largest);

A full discussion of these optional types is outside the scope of this
chapter, but you can read more about them in the Java 8 API
documentation.

19.4 Function Closures
We have seen that Java has extensive rules about the scope of
variables that guarantees that every reference to a variable will work
out. Consider, for example, the following program that attempts to
count how many factors of 10 there are.

 1 // Attempts to count the factors of 10.

 2 // Does not compile; not an example to follow.

 3

 4 public class BadScope {

 5 public static boolean isMultiple(int x) {

 6 return n % x == 0;

 7 }

 8

 9 public static void main(String[] args) {

10 int n = 10;

11 int count = 0;

12 for (int i = 1; i <= n; i++) {

13 if (isMultiple(i)) {

14 count++;

15 }

16 }

17 System.out.println("count = " + count);

18 }

19 }

This program does not compile. Java complains that the variable n
referred to in the method isMultiple is not defined. You might argue
that it is defined in the main method and is set up before the function
is called. But as we have seen, Java has strict rules about this and
requires that the variable n be visible in the scope of the method or
in the outer class scope. Being available in the scope of a different
method isn’t good enough.

The usual fix is to pass n as a parameter:

 1 // Counts the factors of 12.

 2

 3 public class GoodScope {

 4 // Returns true if n is a multiple of (is divisible by)

x.

 5 public static boolean isMultiple(int x, int n) {

 6 return n % x == 0;

 7 }

 8

 9 public static void main(String[] args) {

10 int n = 10;

11 int count = 0;

12 for (int i = 1; i <= n; i++) {

13 if (isMultiple(i, n)) {

14 count++;

15 }

16 }

17 System.out.println("count = " + count);

18 }

19 }

This program now compiles and correctly reports that there are four
factors of 10 (1, 2, 5, and 10). But consider the following code that
uses a stream, a call on filter , and a call on the terminator count
which returns a value of type long .

int n = 10;

long count = IntStream.range(1, n + 1)

 .filter(x -> n % x == 0)

 .count();

System.out.println("count = " + count);

It also correctly reports that there are four factors of 10. There is
similar code used in the isPrime method included in the previous
section. But how does it work? Think about the lambda expression
being passed as a parameter to filter :

x -> n % x == 0

This is supposed to represent an independent function. In fact, it
looks a lot like the isMultiple method from the BadScope class. It has
a single parameter called x and it returns a boolean value based on
whether the variable n is divisible by x . It has access to the variable
x because it is the parameter, but how does it have access to the
variable n?

You might say that you can see the variable n defined in the scope
in which this lambda expression occurs and that is the key to
understanding this, but it is important to recognize that something
special is going on here. Remember that you are passing a function
to the filter method that it will execute. That filter function is in a
different class that doesn’t have access to the variable n that is
defined here. So somehow the value of n is being passed along with
the code.

When you form a lambda expression, some of the variables you
refer to will be included as parameters to the function. We call such
references bound variables because they are each connected to a
parameter. Any reference that is not to a parameter in a lambda
expression is considered a free variable. Variables cannot be
completely free of definition because then they would be undefined.
But because a lambda expression occurs in the middle of code that
potentially has variables defined, the lambda expression can refer to
free variables that are defined in its outer scope.

Bound/Free Variable
In a lambda expression, parameters are bound
variables while variables in the outer containing scope
are free variables.

In our sample lambda expression, the outer code defines a local
variable called n , which means that the reference to n in the lambda
expression makes sense. But Java has to perform some work
behind the scenes to include this variable definition along with the
code. We refer to such a combination as a closure.

Function Closure
A block of code defining a function along with the
definitions of any free variables that are defined in the
containing scope.

Let’s use another example that goes to an extreme to make the
point. Suppose we have a method called compute that takes a
function of two arguments as a parameter. We might call it like this:

compute((x, y) -> x + y);

This lambda expression refers to x and y which are both
parameters, which means they are bound. There are no free
variables in this expression. But suppose the code instead had been:

int min = 10;

int max = 50;

int multiplier = 3;

compute((x, y) -> Math.max(x, min) * Math.max(y, max) *

multiplier);

This lambda expression has references to x and y just like the other
one, but those aren’t a problem because they are bound because
they are parameters. But it also has references to variables called
min , max , and multiplier , which are not parameters of the lambda
expression, which means they are free variables. Java has to include
those definitions along with the code in order for the compute
method to be able to do its job.

For a visual representation, imagine that Java puts together the code
of the lambda expression along with the definitions of the parameters
and these three free variables into one big object, as shown in
Figure 19.7 .

Figure 19.7 Diagram of a function closure

This object is the closure. It contains both the code and the relevant
context in which the code occurs. The free variables min , max , and
multiplier have been included so that the code can be executed.
We say that they have been captured in forming this closure.

The word closure comes from mathematics (e.g., the concept of a
transitive closure), but here is a way to think about it that might be
helpful to remember the concept. We all seek closure in our lives,
which means that we don’t want any loose ends from our past left
around to upset us. Free variables are loose ends in a lambda
expression that would make it impossible to evaluate the code. By
including their definition in the closure, we are tying up those loose
ends so that there isn’t anything left that is undecided. Once we’ve
done that, we’ve reached a kind of closure with this computation.

We run into potential problems if any of the free variables included in
a closure change in value. If the value of a free variable changes,
then the computation isn’t well defined. For example, it means that
the order in which we perform the individual computations for a
stream can change the overall result. This relates to the concept of
effect-free programming described earlier in this chapter. We want to

write code that does not have these potential sources of
inconsistency.

Java requires that any free variable included in a lambda expression
has to effectively be a constant. The easiest way to guarantee this is
to use values that are defined with the keyword final . But the Java
compiler will allow you to use ordinary variables as long as your
code never assigns those variables a value more than once. This is
a helpful restriction, but it still leaves open the possibility that you will
have a reference to an object whose state changes. That leads to
unpredictable results and should be avoided whenever possible.

19.5 Higher-Order Operations on
Collections
You may have noticed that methods like map , filter , and reduce are
functions that accept other functions as arguments. As a result, they
are known as higher-order functions.

Higher-Order Function
A function that takes another function as an argument.

We have already discussed these higher-order functions previously
with examples of streams composed of simple int values. In this
section, we will explore how similar operations can be performed on
arrays and other Java collections. This section also discusses
stream terminators that collect stream elements into a collection.

Working with Arrays

Any array can serve as the source for a stream by passing it as a
parameter to the method Arrays.stream . For example, suppose that
you have an array of simple int values defined as follows:

int[] numbers = {3, -4, 8, 4, -2, 17, 9, -10, 14, 6, -12};

Suppose that we want to find the sum of the absolute values of the
even integers in this list and we want to exclude any duplicates. That
sounds a lot like what we were doing before and we can do it in the
same way but using the array as the source of data.

int sum = Arrays.stream(numbers)

 .map(n -> Math.abs(n))

 .filter(n -> n % 2 == 0)

 .distinct()

 .sum();

We can once again use a diagram to explore what happens on each
step of this computation, as shown in Figure 19.8 .

Figure 19.8 Stream operations on an array

Order can matter for these components that modify the stream. For
example, if we call distinct before we use map to convert to the
absolute value, then we would miss the fact that there is a -4 and a 4
in the original list. There is a minor efficiency improvement in
performing the filter operation before the distinct operation
because distinct is easier to perform on a shorter sequence, which
is what filter provides.

One of these lambda expressions is of particular interest. We call
map passing it an expression that converts a number to its absolute
value:

.map(n -> Math.abs(n))

Think about this expression. It describes a function that takes a
value n as a parameter and that returns the value of Math.abs(n) .
But isn’t that exactly what Math.abs already does? In other words,
Math.abs is the function we want to pass to map . We don’t need to
make a new function that is basically a second version of Math.abs .
Java allows you to avoid this redundancy by directly referring to the
Math.abs method. We use the name of the class followed by two
colons followed by the name of the method. This syntax in Java is
called a method reference. That means that our code can instead be
written as:

int sum = Arrays.stream(numbers)

 .map(Math::abs)

 .filter(n -> n % 2 == 0)

 .distinct()

 .sum();

Method reference
A syntax to refer to a method so that it can be used as
part of a functional expression.

Things work slightly differently for arrays of objects, but we’ll explore
that in the next section on working with lists. Java cares about the
values in a stream but not where those values come from. So a
stream whose source is an array of objects would be manipulated in
exactly the same way as a stream whose source is a list of objects.

It is also worth noting that the various stream classes have a special
terminator called toArray that collects the stream contents into an
array. For example, the following code:

int[] sublist = Arrays.stream(numbers)

 .map(Math::abs)

 .filter(n -> n % 2 == 0)

 .distinct()

 .toArray();

will set the variable sublist to the following array:

[4, 8, 2, 10, 14, 6, 12]

Working with Lists

As noted earlier, Java doesn’t care what the source of a stream is. It
only cares about the kind of data in the stream. But so far we have
only looked at streams that contain simple int data. Lists store
objects, so they tend to be manipulated in a slightly different way.

The List interface now includes a method called stream that can be
used to create a stream of values from a list. For example, suppose
that we want to process a list of words. We can use the
Arrays.asList method to create a list of specific words to manipulate:

List<String> words = Arrays.asList("To", "be", "or", "Not",

"to", "be");

Suppose that we simply want to print these words on a line of output.
We could use a for-each loop to do so:

System.out.print("words:");

for (String s : words) {

 System.out.print(" " + s);

}

System.out.println();

This code produces the following output.

words: To be or Not to be

Think about what is going on here. We are using a for-each loop to
go through every element of the list and to perform some specific
task on each of those elements. We can accomplish the same effect
by creating a stream from the list and calling the forEach method of
the stream class to perform the same task expressed using a
lambda expression. The stream method forEach accepts a lambda
that, in turn, accepts a single element from the stream and performs
some action on it.

System.out.print("words:");

words.stream()

 .forEach(s -> System.out.print(" " + s));

System.out.println();

It seems odd to use forEach instead of map . Isn’t this a mapping
operation? The answer is yes and this is one of the cases where
Java is showing it’s clunky implementation of functional
programming. There are two reasons that we need to use forEach
instead of map . Remember that map is a modifier that takes one
stream and produces a new stream. We are calling the
System.out.print method, which has a void return type. Because it
doesn’t return anything, it would not be an appropriate method to use
for a map operation. More importantly, each stream needs a
terminator. In this case, the application of the print method is the
last thing we want to do with the stream, so we need a terminator
rather than a modifier. It’s not a bad idea to think of forEach as a
variation of map that serves as a terminator rather than a modifier.

We can make this code a bit more functional by noticing that we are
modifying each string to have a space in front of it and then applying
the print method to each of those strings. We can describe this more
clearly with a call on map that modifies each string and then a call on
the System.out.print method that can be referred to directly using a
method reference:

System.out.print("words:");

words.stream()

 .map(s -> " " + s)

 .forEach(System.out::print);

System.out.println();

As usual, we can add more modifiers to this stream computation. For
example, we can apply the toLowerCase method to eliminate any
differences in case, the distinct method to eliminate duplicates, and
the sorted method to put the results into sorted order.

System.out.print("words:");

words.stream()

 .map(String::toLowerCase)

 .distinct()

 .sorted()

 .map(s -> " " + s)

 .forEach(System.out::print);

System.out.println();

This code produces the following output:

words: be not or to

There is enough going on here that a diagram is again helpful to
understand each individual step. Figure 19.9 shows the various
steps in the computation.

Figure 19.9 Stream operations on a list of strings

Let’s explore one last example that shows one of the potential pitfalls
that comes up when working with streams. Suppose we want to
know the sum of the lengths of the strings in the original list. We can
apply the length method of the String class to each of the strings
and then ask for the sum of those values. This seems fairly
straightforward:

int totalLength = words.stream()

 .map(String::length)

 .sum();

Unfortunately, this code does not compile. It says that there is no
method called sum for the given stream. But doesn’t the length
method of the String class return an int? So wouldn’t the call on

map produce a stream of int values? If so, it should have the sum
method we were using in the previous section.

The problem is that Java has different stream types and these types
are preserved by modifying components unless you explicitly tell
Java to change the stream type. The source is a stream of objects,
so the map command will produce a stream of objects. In particular, it
boxes each of the int values returned by the length method and
gives you a stream of Integer objects. If you really want it to produce
a stream of simple int values, you have to instead call the mapToInt
method that changes the stream type:

int totalLength = words.stream()

 .mapToInt(String::length)

 .sum();

This version of the code works properly, setting the variable
totalLength to 13 . Making a diagram is again helpful to consider
exactly what is happening here, as shown in Figure 19.10 .

Figure 19.10 Stream operations on a list of strings mapped to
integers

Notice that the original stream contains strings, but after the call on
mapToInt , we have a stream of int values. That stream can be
terminated with a call on sum , as we did in the examples in the last
section.

As noted earlier, this short chapter is not meant to cover all of the
details of these Java 8 constructs. We are exploring the important
concepts with a representative subset of these operations. But if you
keep in mind the idea of streams changing their types, then you will
probably understand why there are methods with names like
mapToInt , mapToDouble , mapToLong , and mapToObj and why it is
sometimes handy to call the modifier called boxed that converts a
stream of primitive values into its corresponding wrapped objects.

We saw that you can collect the values in a stream into an array by
using the terminator called toArray . There is a similar method called
collect that allows you to collect the results in a collection. You
need to construct an appropriate Collectors object by calling an
appropriate method such as toList or toSet . For example, using our
words example from before, we can convert all of the words to
lowercase and collect the results in a set.

Set<String> words2 = words.stream()

 .map(String::toLowerCase)

 .collect(Collectors.toSet());

System.out.println("word set = " + words2);

This code produces the following output:

word set = [not, be, or, to]

If you want to specify exactly which type of collection to produce, you
can do so with a call that passes in a reference to the constructor of
the appropriate class. For example, if you want to guarantee that you
get a TreeSet that keeps the keys in sorted order, you would instead
say:

Set<String> words2 = words.stream()

 .map(String::toLowerCase)

 .collect(Collectors.toCollection(TreeSet::new));

System.out.println("word set = " + words2);

In which case the output becomes:

word set = [be, not, or, to]

As with the other examples, we are only scratching the surface here
of the details of how all of this works, but these examples serve as
good indicators of the kind of operations that can be performed using
streams.

As you can see from the examples in this section, functional style
programming is particularly helpful for processing of collections like
arrays and lists. The trio of higher-order functions map , filter , and
reduce provide a particularly powerful set of tools for solving a wide
variety of computational tasks on collections.

Working with Files

Java 8 provides a new facility for reading the lines of a file into a
stream of strings. Importing the package java.nio.file will give you
access to the Files class, which contains a static method lines that
returns a stream of the lines of a file. The syntax is the following:

Files.lines(Paths.get("<filename>"))

The Files.lines method throws an IOException if the file does not
exist or cannot be read, so you must surround it with a try/catch
block or use a throws clause in your method heading. For example,
suppose we have a file in the current directory named haiku.txt that
stores the following three lines of text:

haiku are funny

but sometimes they don't make sense

refrigerator

The Files.lines method would return the file’s three lines as a
stream containing three string elements. The following code would
read and print every line of haiku.txt using a stream:

// print every line of the file

try {

 Files.lines(Paths.get("haiku.txt"))

 .forEach(System.out::println);

} catch (IOException ioe) {

 System.out.println("Could not read file: " + ioe);

}

If you want to process each line, the standard stream operations like
map , filter , and reduce can be used on the strings in the stream.
For example, the following code finds out the length of longest line in
the file:

// find longest line in the file

int longest = Files.lines(Paths.get("haiku.txt"))

 .mapToInt(String::length)

 .max()

 .getAsInt();

Figure 19.11 summarizes the stream operations and their results.
Recall that we need to use getAsInt at the end of our stream calls
because the max terminator returns an OptionalInt to represent the
possibility that there might be no lines in the file.

Figure 19.11 Stream operations on the lines of a file

19.6 Case Study: Perfect
Numbers
To complete our exploration of functional programming, we will look
at a classic problem from mathematics that is known to take a lot of
computational power to solve. We are going to write a program that
looks for perfect numbers. A perfect number is defined as one that is
equal to the sum of its divisors other than itself. For example, the
divisors of 6 are [1, 2, 3, 6]. If you exclude 6, the other divisors add
up to In fact, 6 is the smallest perfect number. The
next perfect number is 28 whose divisors are [1, 2, 4, 7, 14, 28].

If you search for “perfect number” in your web browser, you will find
several web sites that chronicle the fascination that many people
have had over the years with this concept. Some ancient Greeks
believed that the world was created in 6 days because 6 is the first
perfect number. St. Augustine repeats this claim in his writings. The
ancient Greeks also believed that the moon completes an orbit every
28 days because 28 is the second perfect number.

The first four perfect numbers have been known since ancient times,
but the earliest known references to the fifth perfect number date
from the fifteenth century. In this section we will write a program to
find the fifth perfect number. In doing so, we will be able to explore
one of the biggest benefits of functional programming: that it can

6(1 + 2 + 3).

speed up the execution of programs that require a lot of
computational power.

Computing Sums

This problem, as with many problems from mathematics, lends itself
naturally to a functional approach. In this first version, let’s write code
that finds the sum of the divisors of a number not including the
number itself and include debugging code that will allow us to have
confidence that it is working correctly.

We can use Intstream.range to produce a stream of integers and
filter it with a test for divisibility and then compute the sum. Let’s put
it into a method so that we can call it easily:

public static int sumDivisors(int n) {

 return IntStream.range(1, n)

 .filter(x -> n % x == 0)

 .sum();

}

Normally we would have range go up to n+1 so that it will include n ,
but in this case we want to exclude n from the sum because we are
looking for the sum of the divisors other than the number itself.

In the main method, we can compute the sums for the first 10
integers and print them out again using a call on IntStream.range
and a call on map to apply our function:

IntStream.range(1, 11)

 .map(Perfect1::sumDivisors)

 .forEach(n -> System.out::println.print(n + " "));

System.out.println();

Notice that we terminate this stream with a call on forEach that prints
each number with a space after it. This will produce an extraneous
space at the end of the line, but that’s not a problem for us at this
stage in development. Also notice that the call on map takes a
method reference to the function to be applied. We use the name of
the class (the one we are writing) along with the double colon
operator and the name of the method from this class that we want to
call.

The code above produces the following output:

0 1 1 3 1 6 1 7 4 8

We could hand-check that these values are correct, but it is helpful
to build some debugging code into our solution that will allow us to
see more clearly exactly what is going on in this computation. Java

provides a special method called peek that is particularly helpful for
this kind of debugging. In some sense, the peek method has no
effect on a stream at all. It produces as output the same stream that
it is given as input. But it allows you to pass it a function to be
executed on each value in the stream. In our case, we would like to
do some printing of individual stream values. We see 10 numbers
above and can figure out which one goes with each input value to
the function, but we can use peek to confirm this more directly.

The code below includes a call on peek that prints the number and
an equals sign before it maps that number to its divisor sum and
prints it.

IntStream.range(1, 11)

 .peek(n -> System.out.print(n + "="))

 .map(Perfect1::sumDivisors)

 .forEach(n -> System.out.print(n + " "));

System.out.println();

It produces the following output.

1=0 2=1 3=1 4=3 5=1 6=6 7=1 8=7 9=4 10=8

This output indicates that the sum of divisors for 1 is 0, the sum of
divisors for 2 is 1, the sum of divisors for 3 is 1, and so on. This

sounds wrong, but remember that we are excluding the number itself
from these divisors. We can make this even clearer by adding a call
on peek to our stream that is computing divisors:

return IntStream.range(1, n)

 .filter(x -> n % x == 0)

 .peek(x -> System.out.print(x + ","))

 .sum();

}

This version of the code produces the following output:

1=0 2=1,1 3=1,1 4=1,2,3 5=1,1 6=1,2,3,6 7=1,1 8=1,2,4,7 9=1,3,4

10=1,2,5,8

This output is a little hard to read as well, but keep in mind what we
have added. As the method that sums up the divisors encounters a
new divisor, it prints it with a comma afterward. For example, when it
is finding the divisors of 10 it finds the divisors 1, 2, and 5. So it
produces the output “1,2,5,” which includes an extra comma at the
end. Then the code we have in main prints the actual result, which is
8. We can see that is equal to 8, so we know that this
output verifies that the code is working properly.

It is useful to look at a diagram for the specific computation of the
divisors of 10. Figure 19.12 shows the steps of the stream

1 + 2 + 5

computation.

Figure 19.12 Stream operations to compute sum of divisors of
10

As the diagram above indicates, the call on peek is producing a side
effect. Normally we want to write code that is effect-free without such
side effects, but in this case it is a useful way to make the
computation more visible for debugging purposes.

Consider a similar diagram for the overall computation being
performed by the main method. Figure 19.13 shows the stream
operations.

Figure 19.13 Stream operations to compute sum of divisors of
10

Figure 19.13 is confusing. It implies that it prints all of the text
from the call on peek before it calls map and only later prints all of the
answers through the call on forEach . A diagram can only convey so
much of a complex process like the processing of a stream. The
diagram is showing the resulting stream on each step, but that is
different from the order of operations. This can get very tricky to
understand, but here is a brief explanation. Nothing happens until
Java encounters the terminator. When it gets to the call on forEach ,
it works backward to get a value from the stream to process. It goes
all the way back to the source which was the call on range . The
range method sends out the value 1, which is given to peek to print
“1=”, and then it passes to map which converts it to 0, and then it
makes it back to forEach that prints the 0. At this point in time we
have as output “ 1=0 ”. Then the forEach method asks for another
value and we begin the process over again using the value 2, then 3,
then 4, all the way up to 10. So the right way of thinking of this is that
individual values of the stream pass through each of the different
modifiers in sequence before the next value from the stream is
processed.

There is a great moral of the story here. The main reason this is
confusing is that the output generated by peek is mixed in with the
output generated by the terminator in a surprising way. And that
output generated by peek is a side effect. If we restrict ourselves to
effect-free code that doesn’t have side effects, then we rarely need
to think about these issues of ordering.

Below is the complete code for this version that prints the sums for
the numbers 1 through 10 including debugging information.

 1 // Prints the sum of factors of the integers 1 - 10.

 2 // Initial version.

 3

 4 import java.util.stream.*;

 5

 6 public class Perfect1 {

 7 public static void main(String[] args) {

 8 IntStream.range(1, 11)

 9 .peek(n -> System.out.print(n + "="))

10 .map(Perfect1::sumDivisors)

11 .forEach(n -> System.out.print(n + " "));

12 System.out.println();

13 }

14

15 // returns the sum of the proper divisors of n

16 public static int sumDivisors(int n) {

17 return IntStream.range(1, n)

18 .filter(x -> n % x == 0)

19 .peek(x -> System.out.print(x + ","))

20 .sum();

21 }

22 }

Incorporating Square Root

It seems like we are almost done. We can modify main so that it
looks at a lot of integers (say, up to 1 million) and filters on those that
are equal to their sum of divisors. We can also use the
System.currentTimeMillis method introduced in Chapter 13 to
keep track of how much time we spend computing the result. We can
temporarily turn off our debugging code by commenting it out and
include the following code in main .

long start = System.currentTimeMillis();

IntStream.range(1, 1000001)

 .filter(n -> n == sumDivisors(n))

 .forEach(System.out::println);

double elapsed = (System.currentTimeMillis() - start) / 1000.0;

System.out.println();

System.out.println("time = " + elapsed);

When one of the authors ran this on his laptop computer, it reported
taking 2260.112 seconds to complete, which is over 37 minutes. It
correctly reported the first four perfect numbers, but it didn’t manage
to find the fifth. And it isn’t going to find the fifth in a reasonable
amount of time.

We need to improve the efficiency of our computation. The easiest
way to do this is to notice that each divisor that is less than the

square root of a number is paired with a divisor that is greater than
the square root. If, for example, we are looking for the divisors of
100, we find that the divisor 1 is paired with 100, the divisor 2 is
paired with 50, the divisor 4 is paired with 25, and so on. So instead
of finding each divisor by checking all the way up to the number, we
can instead find pairs of divisors by checking up to the square root. If
you search for the divisors in this way, for each divisor x you find,
you know that you have also found its pair, whose value is n / x; so
our modified code contains an additional call to map that adds in
each divisor’s pair to our sum.

Remember that we want to exclude the number n itself from the
sum. It is always paired with 1, so an easy way to do this is to start
our search for divisors starting at 2 rather than 1. If we do that,
however, then we have to remember to add 1 to the final result
because 1 is supposed to be included in the sum. The code below
implements this strategy and updates the call on peek to report the
pairs of divisors.

// returns the sum of the proper divisors of n

// (optimized version that computes up to square root only)

public static int sumDivisors(int n) {

 int root = (int) Math.sqrt(n);

 int sum = IntStream.range(2, root + 1)

 .filter(x -> n % x == 0)

 .peek(x -> System.out.print(x + "-" + n / x + ","))

 .map(x -> x + n / x)

 .sum();

 return sum + 1;

}

We can go back to our old client code that shows output for the
numbers 1 through 10, which produces the following output.

1=1 2=1 3=1 4=2-2,5 5=1 6=2-3,6 7=1 8=2-4,7 9=3-3,7 10=2-5,8

This output is different from before in that it doesn’t include 1 at the
beginning of each list of divisors. That’s because we are handling 1
as a special case, as described previously. But there is something
else to notice. It is getting the wrong answers for some of these
values. In particular, it has the wrong answer for 1, 4, and 9. You
might be able to notice what those three numbers have in common,
but you can also figure this out by looking at one of them in detail.
Let’s take 4. Its divisors other than itself are 1 and 2, so that should
add up to 3. Instead we are getting an indication that it has a pair of
divisors 2 and 2 and that it adds up to 5 when you include the special
case of 1.

The problem comes for numbers that are perfect squares. It is true
that every divisor that is strictly less than the square root of a number
has a different divisor that it is paired with that is strictly larger than
the square root. But for numbers that are perfect squares, their
square root isn’t paired with another divisor. This is a special case

that we can handle after the main computation of sum by adding the
following code.

if (n == root * root) {

 sum = sum - root;

}

Below is the complete program that checks numbers up to 1 million.
This new version takes only 4.493 seconds to run, which is quite a
bit better than 37 minutes.

 1 // Prints the sum of factors of the integers 1 - 1,000,000.

 2 // Second version with optimizations to compute the sum of

 3 // n's factors more quickly by examining only up to

sqrt(n).

 4 import java.util.stream.*;

 5

 6 public class Perfect2 {

 7 public static void main(String[] args) {

 8 long start = System.currentTimeMillis();

 9 IntStream.range(1, 1000001)

10 .filter(n -> n == sumDivisors(n))

11 .forEach(System.out::println);

12 double elapsed = (System.currentTimeMillis() -

start)

13 / 1000.0;

14 System.out.println();

15 System.out.println("time = " + elapsed);

16 }

17

18 // returns the sum of the proper divisors of n

19 public static int sumDivisors(int n) {

20 int root = (int) Math.sqrt(n);

21 int sum = IntStream.range(2, root + 1)

22 .filter(x -> n % x == 0)

23 .map(x -> x + n / x)

24 .sum();

25 if (n == root * root) {

26 sum = sum - root;

27 }

28 return sum + 1;

29 }

30 }

Just Five and Leveraging
Concurrency

We are basically ready to see if we can actually find the fifth perfect
number. We have checked up to 1 million and didn’t find it. We could
try going up to 10 million or 100 million or some other large number.
But Java provides a nice alternative.

We have been using a call on IntStream.range to specify a specific
range of numbers to use. We can instead use the method
IntStream.iterate to produce a stream containing all positive
integers. The iterate method takes a starting value and an update
function. So the source of our stream will be the following call.

IntStream.iterate(1, n -> n + 1)

This is potentially an infinite stream of numbers because we say to
start at 1 and to update by replacing n with , but we never say
how it stops. When you work with a stream like this, you have to
include a special modifier that limits how many values it produces.
Not surprisingly, this modifier is called limit . The following code
prints the first five integers that are equal to the sum of their divisors
(in other words, the first five perfect numbers):

IntStream.iterate(1, n -> n + 1)

 .filter(n -> n == sumDivisors(n))

 .limit(5)

 .forEach(System.out::println);

This is another place where it is important to understand in general
the order of operations. If you think of the call on iterate as
producing all of its result before you ever get to the call on filter ,
then this code makes no sense. You have to understand this code in

n + 1

terms of individual values being generated by iterate and then
passed to filter . When one of those values passes the test, it is
passed on to limit and then to forEach which prints it. After the
limit method has produced five values, it stops requesting new
values to be checked from the iterate method.

We can throw in a call on the modifier unordered because it makes
the limit method easier to optimize so that it potentially runs a bit
faster. Combining all of this and running the program with the timing
code, it ends up producing output like the following. The program
finds the fifth perfect number and takes less than 11 minutes on one
of the authors’ laptops.

6

28

496

8128

33550336

time = 629.301

But we can do even better. Computer scientists have realized for a
while now that speeding up a single processor cannot be achieved
indefinitely and that eventually we will have to leverage the power of
concurrency. It is typical now for laptops to be dual-core or quad-

core or some other form of multi-core where there is more than one
processor. But it isn’t easy to take advantage of multiple processors.

The pitfalls of concurrency are beyond the scope of this discussion,
but think about something as simple as preparing a meal to be
served at a restaurant. It is easy to see how one chef would
complete the task by doing everything. Adding additional chefs might
be helpful if you can divide up the task somehow. For example, one
might prepare an appetizer while another prepares the main dish
and a third prepares a dessert. Even in this case the timing matters
because if the dessert is completed quickly and the main dish comes
out last, then it is possible that the dessert will spoil because the
customer won’t want to eat it until the end of the meal. And if you try
to have a dozen cooks work on the meal you generally end up with
the well-known disaster of “too many cooks in one kitchen.”

When Google was faced with the problem of performing massive
calculations over vast databases, they quickly turned to concurrency
with multiple machines to speed things up. They realized that many
computations can be decomposed into a mapping operation and a
reducing operation similar to the approach we have described in this
chapter. For example, if you want to count how many web pages
have a particular search phrase, you can map a function over the
pages that returns 0 or 1 depending on whether the search term
appears in that particular page and then you can reduce all of those
0s and 1s using simple addition. They built a system that they call
MapReduce that uses exactly this approach. Typical computations
are executed with hundreds of processors working on each problem.

An open source version of their system called Hadoop has also been
popular for applying concurrency effectively to large-scale
computations.

The increasing importance of concurrency has led many to realize
that functional programming is a powerful way to take advantage of
parallel computation. Its emphasis on effect-free programming allows
it to avoid many of the common pitfalls of running code on multiple
processors. The model of expressing a computation in terms of
mapping, filtering, and reducing lends itself naturally to a concurrent
solution because usually these operations can be performed in
parallel without affecting the overall result.

Many people enjoy functional programming because they like to
express problems in a functional manner. Others appreciate the fact
that you can write short code that has a certain elegance to it
because complex computations can be expressed very concisely.
But in the world of modern computing, the truly compelling reason to
study functional programming is that it provides a practical solution
to the problem of taking advantage of concurrency. In other words,
concurrency is the “killer app” for functional programming that
convinced the IEEE/ACM joint task force among others that every
undergraduate majoring in computer science needs to understand
the basics of functional programming.

It is therefore fitting to end this chapter by noting that the final
version of the program has one minor change. We insert a modifier

called parallel in the block in main that is searching for perfect
numbers:

IntStream.iterate(1, n -> n + 1)

 .parallel()

 .unordered()

 .filter(n -> n == sumDivisors(n))

 .limit(5)

 .forEach(System.out::println);

This extra call tells Java that it would be okay to perform this
computation in parallel. It’s okay for Java to use as many cooks as it
has available to work on the individual problems. Imagine, for
example, that a thousand different processors are working on this.
There is no reason you can’t say, “Processor #1, you figure out
whether 1 is a perfect number while processor #2 figures out
whether 2 is and processor #3 figures out whether 3 is, etc., etc.”

Notice, again, that this style of programming is characterized by the
lack of specificity of how it is to be accomplished. We describe the
source of the numbers to examine, the test to perform, the fact that
we want five answers, the fact that we want to print each one, and
the fact that the computations can be performed in parallel. But we
leave it up to the computer to figure out how best to optimize the
actual computations. Many programmers resist this style because
many of us are control freaks who want to say exactly how
everything is done. It turns out that loosening the reins and allowing

the computer to optimize it for us often leads to much better results if
we have expressed what we want in a way that preserves flexibility
for how to get there. That is one of the things that functional
programming is best suited for.

When this final version was run on the same laptop, it produced the
following output on one of the authors’ computers.

6

28

496

8128

33550336

time = 170.636

This is 3.7 times faster than it was before. Not surprisingly, the
author’s laptop is a quad-core machine with four different
processors. The final program appears below.

 1 // This program searches for the first five perfect numbers.

It uses

 2 // a functional programming approach including a

specification that

 3 // the computation can be performed in parallel to speed it

up.

 4

 5 import java.util.stream.*;

 6

 7 public class Perfect {

 8 public static void main(String[] args) {

 9 long start = System.currentTimeMillis();

10 IntStream.iterate(1, n -> n + 1)

11 .parallel()

12 .unordered()

13 .filter(n -> n == sumDivisors(n))

14 .limit(5)

15 .forEach(System.out::println);

16 double elapsed = (System.currentTimeMillis() -

start)

17 / 1000.0;

18 System.out.println();

19 System.out.println("time = " + elapsed);

20 }

21

22 // pre: n >= 1

23 // post: returns the sum of the proper divisors of n

(i.e., not

24 // including n itself)

25 public static int sumDivisors(int n) {

26 int root = (int) Math.sqrt(n);

27 int sum = IntStream.range(2, root + 1)

28 .filter(x -> n % x == 0)

29 .map(x -> x + n / x)

30 .sum();

31 if (n == root * root) {

32 sum = sum - root;

33 }

34 return sum + 1;

35 }

36 }

Chapter Summary
Functional programming is a style that emphasizes the use of
functions or methods to decompose problems. Java 8 added new
constructs to the language to support functional programming.

A side effect is a change made to the state of a program that occurs
when a function or method is called, such as modifying a global
variable or printing output. Functional programmers try to avoid side
effects as much as possible.

A first-class function is one that can be treated like other types of
data, such as being passed as a parameter or composed with other
functions.

Java provides a shorthand syntax for defining anonymous functions
called lambda expressions or lambdas for short.

A stream is a sequence of elements from a data source that
supports aggregate operations. An array, collection, string, range of
integers, or many other sources of data can be converted into a
stream.

Typical operations performed on a stream include map (apply an
operation to each element), filter (keep or remove some elements
based on various criteria), and reduce (combine multiple elements
into a single element).

A closure is a function definition along with the definitions of any
variables declared outside the function (“free variables”) that the
function utilizes.

A higher-order function is one that accepts another function as an
argument. Java supports a limited form of higher-order functions
through a feature called method references.

Self-Check Problems

19.1 Effect-Free Programming

1. Why do functional programmers want to avoid side effects?
2. Why is calling System.out.println considered a side effect?

Does this imply that calling System.out.println is a bad thing?
3. What side effect does the following function have? How could

it be rewritten to avoid side effects?

// Doubles the values of all elements in an array.

public static void doubleAll(int[] a) {

 for (int i = 0; i < a.length; i++) {

 a[i] = 2 * a[i];

 }

}

4. Rewrite the SideEffect program from this section so that it
does not contain any side effects. Rather than modifying a
global variable, make the function accept the value of x to
use as a parameter.

19.2 First-Class Functions

5. What change must be made to the math drilling program from
this section for it to support subtraction problems?

6. Write a lambda expression that converts an integer into the
square of that integer; for example, 4 would become 16.

7. Write a lambda expression that accepts two integers and
chooses the larger of the two; for example, if given 4 and 11, it
would return the 11.

8. Write a lambda expression that accepts two strings
representing a first and last name and concatenates them
together into a string in “Last, First” format. For example, if
passed "Cynthia" and "Lee" , it would return "Lee, Cynthia" .

19.3 Streams

9. Is a stream the same as an array? How are they similar, and
how are they different?

10. What value is stored into the variable result by the following
code?

int result = IntStream.of(1, 2, 3, 4, 5, 6, 7)

 .map(n -> n / 2)

 .distinct()

 .count();

11. Write a piece of code that uses stream operations to compute
the sum the negations of a stream of integers. For example, if
the stream contains {2, 4, -1, 8} , the sum to compute is

12. Write a piece of code that uses stream operations to count the
number of even integers in a stream. For example, if the
stream contains {18, 1, 6, 8, 9, 2} , there are 4 even
integers.

13. What value is stored into the variable result by the following
code?

int result = IntStream.of(3, -4, 8, -6, 1)

 .map(n -> Math.abs(n))

 .reduce(0, (a, b) -> a + 2 * b);

14. The following code does not compile. Why not? How must it
be modified?

double avg = DoubleStream.of(3.1, -4.5, 8.9, -6.2, 1.0)

 .map(n -> Math.abs(n))

 .average();

19.4 Function Closures

15. What is the difference between a free variable and a bound
variable?

−2 + −4 + 1 + −8 = −13.

16. What are the free variables and bound variables in the
lambda function in the following code?

int a = 1;

int b = 2;

compute((c, d) -> c + b - a);

17. The following code does not compile. Why not? What is
upsetting the compiler?

int a = 10;

int b = 20;

int sum = IntStream.of(1, 2, 3, 4, 5)

 .map(n -> n + b - (++a))

 .sum();

19.5 Higher-Order Operations on
Collections

18. What is the output of the following code?

int[] a = {10, -28, 33, 28, -49, 56, 49};

Arrays.stream(a)

 .map(Math::abs)

 .forEach(System.out::println);

19. Modify the code from the previous problem so that it does not
print any duplicate values.

20. Suppose you have an array of integers called numbers . Write a
piece of code that uses stream operations to make a new
array called positives that stores only the positive integers
from numbers .

21. Suppose you have a list of strings declared as follows. Write
code to use stream operations to print all of the four-letter
words in the list.

List<String> list = Arrays.asList("four", "score", ...,

"ago");

22. Write code to print all lines from the file notes.txt that are at
least 40 characters long.

23. The following code contains four problems causing it to fail to
compile. What are they?

public static int longestLineLength(String filename) {

 return Files.lines(filename)

 .map(String::length)

 .max();

}

Exercises
1. Write a method printDoubled that uses stream operations to

print twice the value of each element of array of integers. For
example, if the array passed is {2, -1, 4, 16} , print 4 -2 8
32 .

2. Write a method sumAbsVals that uses stream operations to
compute the sum of the absolute values of an array of
integers. For example, the sum of {-1, 2, -4, 6, -9} is 22 .

3. Write a method largestEven that uses stream operations to
find and return the largest even number from an array of
integers. For example, if the array is {5, -1, 12, 10, 2, 8} ,
your method should return 12 . You may assume that the array
contains at least one even integer.

4. Write a method totalCircleArea that uses stream operations
to compute and return the sum of the areas of a group of
circles, rounded to the nearest whole number. Your function
accepts an array of real numbers representing the radii of the
circles. For example, if the array is {3.0, 1.0, 7.2, 5.5} ,
return 289.0 . Recall that the area of a circle of radius is

5. Write a method countNegatives that uses stream operations to
count how many numbers in a given array of integers are

r

π r2.

negative. For example, if the array is {5, -1, -3, 20, 47, -10,
-8, -4, 0, -6, -6} , return 7 .

6. Write a method pigLatin that uses stream operations to
convert a String parameter into its “Pig Latin” form. For this
problem we’ll use a simple definition of Pig Latin where the
first letter should be moved to the end of the word and
followed by “ay.” For example, if the string passed is "go
seattle mariners" , return "o-gay eattle-say ariners-may" .

7. Write a method countVowels that uses stream operations to
count the number of vowels in a given string. A vowel is an A,
E, I, O, or U, case-insensitive. For example, if the string is
"SOO beautiful" , there are seven vowels.

8. Write a method toSortedForm that uses stream operations to
convert a String parameter into a sorted form with its letters
in alphabetical order. For example, if the string passed is
"tennessee" , return "eeeennsst" .

9. Write a method stdev that computes the standard deviation of
an array of real numbers. The formula for computing a
standard deviation of N values is the following, where
represents each element and represents the arithmetic
mean (average) of all the elements:

σ xi

ith μ

σ =
1

N

N

∑
i=1

(xi − μ)2

��⎷

10. Write a method glueReverse that accepts a List of strings as
its parameter and uses stream operations to return a single
string consisting of the list’s elements concatenated together
in reverse order. For example, if the list stores ["the",
"quick", "brown", "fox"] , you should return
"foxbrownquickthe" .

11. Write a method theLines that accepts a file name as a
parameter and uses stream operations to return a count of the
number of lines in the file that start with the word “The”, case-
insensitive.

12. Write a method fourLetterWords that accepts a file name as a
parameter and returns a count of the number of unique lines
in the file that are exactly four letters long. Assume that each
line in the file contains a single word.

13. Write a method firstFive that accepts a file name string as
its parameter and uses stream operations to print the first five
non-blank lines of the file. Do not use any loops or collections;
perform the work entirely using streams.

Programming Projects
1. Write a file searching program that uses streams to efficiently

search a set of files for a given substring. Write two versions
of the code, one that sequentially reads each file with a
Scanner and checks each line to see if it contains the
substring, and a second that uses streams to open all of the
files and search the lines using stream operations. The most
efficient version of the stream code will open all of the files in
parallel. Test how much more efficient the streams are than
the Scanner by using System.currentTimeMillis to measure the
elapsed time for both versions of the code when run on a
collection of large files, printing output such as the following:

Searching 15 files for "the" using Scanner:

there were 84530 total matching lines.

Took 546 ms.

Searching 15 files for "the" using streams:

there were 84530 total matching lines.

Took 160 ms.

2. Write a program that prompts the user for an integer value
and that reports the sum of the first prime numbers,
reporting a sum of 0 if the user enters a value less than 1.

n

n

Structure your program to be similar to the case study, using
an iterating function to produce the sequence 1, 2, 3, . . . , and
filtering using the isPrime method that appears at the end of
section 19.3 . Don’t include the unordered modifier because
we want the first primes, not some other combination of
primes. Include timing code and print how long it takes to
compute the sum.
Once you have a working program, explore the following
efficiency improvements and note how the time changes with
each using a fairly large value of such as 10,000:

Modify isPrime to check only up to the square root, as in
the case study (remember that 1 is not a prime).
Modify the iterating function to examine only odd numbers
and manually add 2 to the sum (because 2 is the only
even prime).
Modify the overall iteration to include the parallel
modifier, as in the case study. Note that the benefits of
parallel execution might not be evident for this
computation because the problem size is fairly constrained
(values of greater than 20,043 will lead to integer
overflow).

n n

n

n

Appendix A Java Summary

Java Keywords

Primitive Types

Arithmetic Operators

Relational Operators

Logical Operators

Operator Precedence

Wrapper Classes

Syntax Templates
Variable declaration without initialization:

<type> <name>, <name>, <name>, . . . , <name>;

Variable declaration with initialization:

<type> <name> = <expression>;

Assignment:

<variable> = <expression>;

Constant declaration:

public static final <type> <name> = <expression>;

Static method definition:

public static <type> <name>(<type> <name>, . . . , <type> <name>)

{

 <statement>;

 ...

 <statement>;

}

Call on static method:

<method name>(<expression>, <expression>, . . . , <expression>)

Call on instance method:

<variable>.<method>(<expression>, <expression>, . . . ,

<expression>)

Class definition:

public class <class name> {

 // fields

 private <type> <name>;

 private <type> <name>;

 ...

 // constructors

 public <class name>(<type> <name>, . . . , <type> <name>) {

 <statement>;

 ...

 <statement>;

 }

 ...

 // methods

 public <type> <name>(<type> <name>, . . . , <type> <name>) {

 <statement>;

 ...

 <statement>;

 }

 ...

}

Constructor calling another constructor:

this(<expression>, <expression>, . . . , <expression>);

Instance method calling superclass method:

super.<method>(<expression>, <expression>, . . . , <expression>)

Constructor calling superclass constructor:

super(<expression>, <expression>, . . . , <expression>);

Specifying an inheritance relationship:

public class <subclass name> extends <superclass name> {

 ...

}

Implementing an interface:

public class <name> implements <interface> {

 ...

}

Specifying inheritance relationship and implementing interfaces:

public class <name> extends <superclass name>

 implements <interface name>, <interface name>, . . . ,

<interface name> {

 ...

}

Interface definition:

public interface <name> {

 public <type> <name>(<type> <name>, . . . , <type> <name>);

 ...

 public <type> <name>(<type> <name>, . . . , <type> <name>);

}

Abstract class:

public abstract class <name> {

 ...

}

Abstract method:

public abstract <type> <name>(<type> <name>, . . . , <type>

<name>);

return statement:

return <expression>;

throw statement:

throw <exception>;

assert statement:

assert <boolean test>;

Array declaration:

<element type>[] <name> = new <element type>[<size>];

Array initialization:

<element type>[] <name> = {<value>, <value>, . . . , <value>};

Simple if :

if (<test>) {

 <statement>;

 ...

 <statement>;

}

if/else :

if (<test>) {

 <statement>;

 ...

 <statement>;

} else {

 <statement>;

 ...

 <statement>;

}

Nested if/else ending in test :

if (<test1>) {

 <statement1>;

} else if (<test2>) {

 <statement2>;

} else if (<test3>) {

 <statement3>;

}

Nested if/else ending in else :

if (<test1>) {

 <statement1>;

} else if (<test2>) {

 <statement2>;

} else {

 <statement3>;

}

for loop:

for (<initialization>; <continuation test>; <update>) {

 <statement>;

 ...

 <statement>;

}

For-each loop:

for (<type> <name> : <array or collection>) {

 <statement>;

 ...

 <statement>;

}

while loop:

while (<test>) {

 <statement>;

 ...

 <statement>;

}

do/while loop:

do {

 <statement>;

 ...

 <statement>;

} while (<test>);

try/catch statement:

try {

 <statement>;

 ...

 <statement>;

} catch (<type> <name>) {

 <statement>;

 ...

 <statement>;

}

Useful Methods of ArrayList
Objects

Useful Methods of the
Character Class

Useful Methods of the
Collection Interface

Useful Methods of the
Collections Class

Useful Methods of
DrawingPanel Objects

Useful Methods of File Objects

Useful Methods of Graphics
Objects

Useful Methods of Iterator
Objects

Useful Methods of Map Objects

Constants and Useful Methods of
the Math Class

Useful Methods of the Object
Class

Useful Methods of Point
Objects

Useful Methods of Random
Objects

Useful Methods of Scanner
Objects

Useful Methods of String
Objects

Appendix B The Java API
Specification and Javadoc
Comments

The Java API Specification
Java’s Application Programming Interface (API) Specification is a set
of web pages that describe the classes, interfaces, and methods of
the Java class libraries. You can use these pages to learn class and
method names or to find details about a particular method. The API
pages can be thought of as a contract between the authors of the
class libraries and you, the client of those classes.

The API pages exemplify the idea of the public view of a class
versus its private implementation. Each class has a set of
constructors, constants, and methods that its clients can access and
use. The class also has private fields, methods, and method bodies
that are used to actually implement the behavior specified in the
public interface. The main benefit of this separation is that you don’t
need to know the private implementation of the class libraries to be
able to use them.

As of this writing, the current Java API Specification pages can be
accessed from the following URL:

http://docs.oracle.com/javase/10/docs/api/

(Each new version of Java has a new specification, so this URL will
change as new versions are released.) When you visit the API pages
you’ll see a screen that looks like Figure B.1 .

Figure B.1 The Java API Specification

The main frame of the page (on the right) shows information about
classes that you can select using the frames on the left. The lower-
left frame lists all of the classes and interfaces, and the upper-left
frame lists all of the packages in the class libraries. Recall that

packages are groups of related classes that you can use in your
program by importing them. If you’re looking for a class from a
particular package, you can click that package’s name in the top-left
frame to filter the results in the bottom-left frame.

Once you click a class name in the bottom-left frame, information
about that class appears in the main frame. At the start of the page
you’ll see a tree showing the names of any superclasses and any
interfaces that it implements, the class’s header, and a summary
description of the class. The summary description gives general
information about the purpose and usage of the class and may link
to other relevant documentation or tutorials.

An ordered list of the contents of the class follows the summary.
Listed first will be any public fields and class constants. Next will be
the class’s constructors, followed by its methods. Each field, method,
and constructor has a line showing information such as its name,
parameters, and return type, followed by a one-sentence description.
You can click the name of the item to see more details about it.

For example, the following is the summary information for the
Scanner class’s constructor to read input from a file:

Constructor Summary

Scanner (File source)

Constructs a new Scanner that produces values scanned from
the specified file.

Clicking on a method can provide useful details about how to use it,
including a longer description, a detailed explanation of each
parameter that the method requires, a description of what kind of
value (if any) the method returns, and a listing of any exceptions the
method may throw. These detail views allow you to learn the
preconditions and postconditions of the method and to see examples
of calls and their results.

For example, the following are the details about the substring
method of the String class:

substring

public String substring(int beginIndex,

 int endIndex)

Returns a new string that is a substring of this string. The substring
begins at the specified beginIndex and extends to the character at
index endIndex – 1 . Thus the length of the substring is endIndex –
beginIndex .

Examples:

"hamburger".substring(4, 8) returns "urge"

"smiles".substring(1, 5) returns "mile"

Parameters

beginIndex—the beginning index, inclusive

endIndex—the ending index, exclusive

Returns

the specified substring

Throws

IndexOutOfBoundsException—if the beginIndex is negative, if endIndex
is larger than the length of this String object, or if beginIndex is
larger than endIndex

Some of the methods in the API specs are marked as deprecated.

Deprecated

Discouraged from use.

Deprecated items are ones that Java’s designers want to discourage
you from using. Generally these are methods that Oracle has either
renamed or decided shouldn’t be called because they didn’t behave
correctly or safely. You might think that they should just remove
these deprecated methods from Java, but doing so would break any
older Java programs that call these methods. An example of a
deprecated method is the inside method in the Rectangle class of
the java.awt package:

inside (int x, int y)

Deprecated. As of JDK version 1.1, replaced by contains(int, int) .

Writing Javadoc Comments
If you write your comments in a special style called Javadoc, they
can be used to automatically produce web pages like those in the
API Specification. In fact, Oracle generates the API Specification by
writing Javadoc comments in each class of the class libraries. The
syntax to signify a Javadoc comment is to begin a multiline comment
with /** rather than the usual /* :

/**

 * This is a Javadoc comment.

 */

Javadoc comments may be added to class headers, methods, class
constants, public fields, and any other visible members of a class.

Many Javadoc comments also specify additional information using
special syntax called tags. A tag is an indicator for specific
information such as a description of a parameter or return value, the
author of a class, the version of a file, and so on. The information in
a tag can include boundary conditions, acceptable parameter
ranges, and examples.

The syntax for tags is to write an @ sign and a tag name, followed by
any additional information. Several common Javadoc tags are
described in the following table:

The @author and @version tags are often used on class headers. For
example, the following comment can precede the header for a Point
class:

/**

 * A Point object represents an ordered pair of

 * (x, y) coordinates in the 2D Cartesian plane.

 *

 * @author Marty Stepp (stepp@example.com)

 * @version 1.2 (January 12, 2018)

 */

public class Point {

 ...

}

The @param and @throws tags are often used on methods and
constructors. Non void methods may also use the @return tag. It is
best to use the three preceding tags if they supply valuable
additional information that cannot be discerned from the method’s
header or overall comment header.

For example, the following comment can precede the header for the
distance method of the Point class:

/**

 * Computes and returns the distance between this point

 * and the given other point.

 *

 * @param p the point to which the distance is computed

 * @return the distance, computed as the square root of

 * the sums of the squares of the differences

 * between the two points' x-coordinates (dx)

 * and between their y-coordinates (dy)

 * @throws NullPointerException if p is null

 */

public double distance(Point p) {

 int dx = x 2 p.x;

 int dy = y 2 p.y;

 return Math.sqrt(dx * dx + dy * dy);

}

As we mentioned previously, Javadoc comments can be converted
into web documentation pages. Some Java editing environments
include this functionality; check your editor to see whether it is
provided. If not, the JDK includes a command-line tool for generating
the pages. To use it, open a terminal window to the directory of your
source code files and type the following command:

javadoc *.java

The web page that is generated for the preceding Point class is
shown in Figure B.2 .

Figure B.2 Generated Javadoc pages for Point class

Clicking on the name of a method brings up the method’s detail
page, as in the API Specification. The web page that is generated for
the preceding distance method looks like this:

Method Detail

distance

public double distance(Point p)

Computes and returns the distance between this point and
the given other point.

Parameters:

p — the point to which the distance is computed

Returns:

the distance, computed as the square root of the sums of the
squares of the differences between the two points’ -
coordinates (dx) and between their -coordinates (dy)

Throws:

java.lang.NullPointerException — if p is null

Because Javadoc comments are converted into HTML, they can
contain HTML tags that will show up in any generated Javadoc

x
y

pages. You may use these tags to format your comments.

Javadoc comments provide documentation to clients that lets them
know how to use your class without needing to read its source code.
However, they are lengthy and can take time to write. Writing
Javadoc comments is most useful when you know that your class
will be used by many clients.

Oracle maintains a web site with much more information about
writing Javadoc comments at the following URL:

http://www.oracle.com/technetwork/java/javase/documentation/index
-137868.html

Appendix C Additional Java
Syntax
This appendix briefly covers several features of Java that are not
otherwise shown in the textbook. It is not intended to be a complete
reference; see the Java Language Specification and Java Tutorial
online for more detailed coverage of these language features.

Primitive Types: byte , short ,
long , float

In this textbook, we have focused our attention on four primitive data
types: int , double , char , and boolean . Java has four additional
primitive types that are used in certain special situations. Three of
these additional types (byte , short , and long) are variants of int
that use a different amount of memory, providing a tradeoff between
memory consumption and the range of numbers that can be
represented. The fourth, float , is a variant of double that uses half
the memory. It can be useful in certain applications where reduced
memory usage and faster computation is more important than
extremely high numeric accuracy, such as in computer games.

Many of the operators and much of the syntax that you have used
with int and double work with these types. Two of these types use a
suffix letter at the end of their literal values: F for float, and L for
long . The following code declares a variable of each type:

byte var1 = 63;

short var2 = –16000;

long var3 = 1234567890123456L;

float var4 = 1.2345F;

Ternary Operator ? :
Java has a ternary operator that allows you to choose between two
expressions based on the value of a boolean test. (“Ternary” means
“having three sections.”) Think of it as an abbreviated form of an
if/else statement, except that an if/else chooses between two
blocks of statements, while a ternary expression chooses between
two expressions or values:

<test> ? <expression1> : <expression2>

A ternary expression is most useful when you want to assign a
variable one of two values, or when you want to pass one of two
values as a parameter or return value. For example:

// if d > 10.0, set x to 5; else set x to 2

double d = ...;

int x = d > 10.0 ? 5 : 2;

// e.g. "I have 3 buddies" or "I have 1 buddy"

int pals = ...;

String msg = "I have " + pals + " " + (pals == 1 ? "buddy" :

 "buddies");

// Returns the larger of a and b

public static int max(int a, int b) {

 return (a > b) ? a : b;

}

Exiting a Loop: break and
continue

Java has a statement called break that will immediately exit a while ,
do/while , or for loop. One common usage of break is to write a loop
that performs its exit test in the middle of each iteration rather than at
the start or end. The common template is to form what appears to be
an infinite loop:

while (true) {

 <statement>;

 ...

 if (<test>) {

 break;

 }

 <statement>;

 ...

}

Because the boolean literal true always evaluates to true , this loop
appears to execute indefinitely. But a test occurs in the middle of the
loop. This technique is useful for solving fencepost and sentinel

problems. For example, Chapter 5 examines a sentinel problem
for summing numbers until . This problem can be elegantly
solved with break as follows:

Scanner console = new Scanner(System.in);

int sum = 0;

while (true) {

 System.out.print("next integer (-1 to quit)?");

 int number = console.nextInt();

 if (number == –1) {

 break;

 }

 sum += number;

}

System.out.println("sum = " + sum);

The continue statement immediately ends the current iteration of a
loop. The code execution will return to the loop’s header, which will
perform the loop’s test again (along with the update step, if it is a for
loop). The following loop uses continue to avoid negative integers:

for (int i = 0; i < 100; i++) {

 System.out.print("type a nonnegative integer:");

 int number = console.nextInt();

−1

 if (number < 0) {

 continue; // skip this number

 }

 sum += number;

 ...

}

Many programmers discourage use of the break and continue
statements because these statements cause the code execution to
jump from one place to another, which some people find nonintuitive.
Any solution that uses break or continue can be rewritten to work
without them.

It is possible to label statements and to break or continue executing
from a particular label. This can be useful for immediately exiting to
particular levels from a set of nested loops. This syntax is outside the
scope of this textbook.

The switch Statement
The switch statement is a control structure that is similar to the
if/else statement. It chooses one of many paths (“cases”) to
execute on the basis of the value of a given variable or expression. It
uses the following syntax:

switch (<expression>) {

 case <value>:

 <statements>;

 break;

 case <value>:

 <statements>;

 break;

 ...

 default: // optional

 <statements>;

 break;

}

The <expression> used in a switch statement must be an integral
type (byte , short , char , or int) or an enumerated type (enum ,

discussed later in this appendix). In Java version 7 and up, you
may also switch on a String value.

The benefit of the switch syntax is that you do not need to repeat the
else if syntax or the variable’s name for each path; you simply write
case plus the next value to test. If the value does not match any of
the cases, none of them is executed. The following code prints a
runner’s medal; if the runner was not in first through third place, no
message is printed.

Scanner console = new Scanner(System.in);

System.out.print("In what place did you finish the race? ");

int place = console.nextInt();

switch (place) {

 case 1:

 System.out.println("You won the gold medal!!!");

 break;

 case 2:

 System.out.println("You earned a silver medal!");

 break;

 case 3:

 System.out.println("You got a bronze medal.");

 break;

}

The optional default case holds code to execute if the expression’s
value does not match any of the other cases, as shown in the code
that follows.

The tricky part of switch is remembering to write a break statement
at the end of each case. If you omit the break at the end of a case,
the code “falls through” into the next case and also executes its
code. A programmer may cause this to happen intentionally, as in
the following code, but often it is done by accident and leads to bugs:

switch (place) {

 case 1: // give the same response for values 1–3

 case 2:

 case 3:

 System.out.println("You won a medal!!!");

 break;

 default:

 System.out.println("You did not win a medal. Sorry.");

 break;

}

Many programmers avoid the switch statement because it is so easy
to produce a bug such as that just described. In older programming
languages the switch statement was a more efficient way to execute
the if/else statement, but this benefit is not noticeable in Java.

The try/ catch Statement
The try/catch statement “tries” to execute a given block of code
(called the “ try block”). The statement also specifies a second
“ catch block” of code that should be executed if any code in the “ try
block” generates an exception of a particular type. It uses the
following syntax:

try {

 <statements>;

} catch (<type> <name>) {

 <statements>;

}

For example, the following code attempts to read an input file and
prints an error message if the operation fails:

try {

 Scanner input = new Scanner(new File("input.txt"));

 while (input.hasNextLine()) {

 System.out.println(input.nextLine());

 }

} catch (FileNotFoundException e) {

 System.out.println("Error reading file: " + e);

}

If you wrap all potentially unsafe operations in a method with the
try/catch syntax, you do not need to use a throws clause on that
method’s header. For example, you do not need to declare that your
main method throws a FileNotFoundException if you handle it yourself
using a try/catch block.

Some variations of the try/catch syntax are not shown here. It is
possible to have multiple catch blocks for the same try block, to
handle multiple kinds of exceptions. It is also possible to add another
block called a “ finally block” that contains code to execute in all
cases, whether an error occurs or not. This technique can be useful
to consolidate cleanup code that should be run after the try block
finishes. These syntax variations are outside the scope of this
textbook.

The assert Statement
In Chapters 4 and 5 , we discussed preconditions,
postconditions, and logical assertions. Sometimes programmers
want to test logical assertions (Boolean expressions) as sanity
checks in their own code. As the code runs, it will check each
assertion that it reaches. If the assertion’s expression is not true, the
program will halt with an error.

Java supports the testing of assertions with its assert statement,
which uses the following syntax:

assert <boolean test>;

For example, to test that a variable x is nonnegative, you could write
the following line of code:

assert x >= 0;

In general, we expect these assertions to succeed. When an
assertion fails, it signals a problem. It means that the program has a

logic error that is preventing the assumptions from holding true.

Testing of assertions can be expensive, so Java lets you control
whether this feature is enabled or disabled. You can enable
assertion checking in your Java editor while you are developing and
testing a program to make sure it works properly. Then you can
disable it when you’re fairly confident that the program works and
you want to speed it up. By default, assertion checking is disabled.

Enumerations: enum
Since Chapter 2 we have seen the usefulness of class constants.
Sometimes we want to create a type that has only a small number of
predefined constant values. For example, suppose we are writing a
program for a card game. Each card has a suit: Clubs, Diamonds,
Hearts, or Spades. We could represent these values as integers (0
through 3) or strings, but these are clumsy solutions because the
range of integers and strings is large, so it may be possible to slip in
an invalid suit value.

In such situations, it can be useful to create an enumerated type,
which is a simple type that has only a small number of constant
values.

public enum <name> {

 <name>, <name>, ..., <name>

}

For example, to create an enumerated type for card suits, you could
write the following code in a file named Suit.java :

public enum Suit {

 CLUBS, DIAMONDS, HEARTS, SPADES

}

The following client code uses the enumerated type:

// 9 of Diamonds

int myCardRank = 9;

Suit myCardSuit = Suit.DIAMONDS;

It would also be possible to create a Card class that has a field for
the card’s rank and a field of type Suit for the card’s suit. This way
an invalid suit can never be passed; it must be one of the four
constants declared. You can test whether a variable of an
enumerated type stores a particular value with the == and !=
operators:

if (myCardSuit == Suit.CLUBS) {

 // then this card is a Club

 ...

}

The enum concept is borrowed from past programming languages
such as C, in which enumerated constants were actually represented
as 0-based integers on the basis of the order in which they were
declared. If you want to get an integer equivalent value for a Java
enum value, call its ordinal method. For example, the call of
myCardSuit.ordinal() returns 1 because DIAMONDS is the second
constant declared. Every enum type also has a values method that
returns all possible values in the enumeration as an array. For
example, the call of Suit.values() returns the following array:

{Suit.CLUBS, Suit.DIAMONDS, Suit.HEARTS, Suit.SPADES}

Packages
Since Chapter 3 we have used the import statement to make use
of classes from the Java class libraries. The classes in the libraries
are organized into groups called packages. Packages are valuable
when you are working with large numbers of classes. They give Java
multiple namespaces, meaning that there may be two classes with
the same name so long as they are in different packages. Packages
also help physically separate your code files into different directories,
which makes it easier to organize a large Java project.

Every Java class is part of a package. If the class does not specify
which package it belongs to, it is part of a nameless default package.
To specify that the class belongs to some other package, place a
package declaration statement as the first statement at the top of the
file, even before any import statements or the class’s header. A
package declaration has the following syntax:

package <name>;

For example, to specify that the class CardGame belongs to the
homework4 package, you would write the following statement at the
top of the CardGame.java file:

package homework4;

import java.io.*;

import java.util.*;

// This class represents the main card game logic.

public class CardGame {

 ...

}

Packages may be nested, indicated by dots. The packages in the
Java class libraries are nested at least two levels deep, such as
java.util or java.awt.event . For example, to specify that a graphical
user interface file for Homework 4 belongs to the gui subpackage
within the homework4 package, you would write the following
statement:

package homework4.gui;

...

Packages are reflected by the directory structure of the files in your
Java project. For example, if a file claims to belong to the homework4
package, it must be placed in the homework4/ directory relative to the

root directory of your project. A file in the homework.gui package must
be in the homework4/gui directory relative to the project’s root.

If you write classes that are part of different packages and a class
from one package wants to use a class from another, you must use
an import statement for the compiler to find the classes. Remember
that packages are not nested, so importing the homework4 package
does not automatically import homework4.gui and vice versa.

package general;

import homework4.*;

import homework4.gui.*;

...

Packages are generally not necessary for small projects, though
some editors add them to the top of all files automatically. Users of
basic Java IDEs or text editors often avoid packages because they
can make it harder to compile the entire project successfully. More
sophisticated Java editors such as Eclipse or NetBeans handle
packages better and usually provide a one-click button for compiling
and executing all of the packages of a project.

Protected and Default Access
In Chapter 8 ’s discussion of encapsulation we learned about two
kinds of access: private (visible only to one class) and public
(visible to all classes). In general, you should follow the convention
shown in this book of declaring all fields private and most methods
public (other than internal helper methods). But Java has two other
levels of access:

protected access:

Visible to this class and all of its subclasses, as well as to all
classes in the same package as this class.
default (package) access:

Visible to all classes in the same package as this class.

Some programmers prefer to declare their fields as protected when
writing classes that are part of an inheritance hierarchy. This
declaration provides a relaxed level of encapsulation, because
subclasses can directly access protected fields rather than having to
go through accessor or mutator methods. For example, if a subclass
DividendStock chose to extend the following Stock class, it would be
able to directly get or set its symbol or shares field values:

public class Stock {

 protected String symbol;

 protected int shares;

 ...

}

The downside is that any class in the same package can also access
the fields, which is generally discouraged. A compromise
recommended by Joshua Bloch, author of Effective Java, is to give
subclasses access to private data through protected methods
instead of protected fields. This gives the class author the freedom to
change the implementation of the class later if necessary.

Default access is given to a field when it has no access modifier in
front of its declaration, such as in the initial versions of our Point
class in Chapter 8 (prior to properly encapsulating it). A field or
method with default access can be directly accessed by any class in
the same package. We generally discourage the use of default
access in most situations, since it can needlessly violate the
encapsulation of the object.

Index

A

abs method, 161, 270, 1140–1141
abstract classes, 647–652

defined, 648
interfaces vs., 647–652
ShareAsset class, 648–650
syntax for declaring, 648
uses, 651

abstract data types. See ADTs (abstract data types)
abstraction

defined, 560, 561
representation, 574

abstract methods, 634, 648
Abstract Window Toolkit (AWT), 202
access

default, 1190
inherited fields, 603–605
private, 561–567, 604
protected, 1190

accessors, 548–549, 1122
ActionListener interface, 632
actual parameters, 145, 149–150
addition () operator, 84–86
additive operators, 73, 74, 88, 247

+

add method, 671, 747
addSorted method, 1002–1008
ADTs (abstract data types), 731–733, 892

defined, 731
interfaces and, 731
map, 746

algorithmic thinking, 3
algorithms

analysis, 852, 854
array-traversal, 470–484
binary search, 862–865
concept of, 2–3
constant-time, 858
cubic, 860
cumulative, 259–270
cumulative sum, 259–261
cumulative text, 272–274
defined, 2
Euclid’s, 785
exponential, 860
fencepost, 333–339
linear, 859, 861
logarithmic, 858
log-linear, 859
merge sort, 873
nested loops, 495–497
pseudocode, 108–110
quadratic, 859

range, 855–858
searching and sorting, 861–872
selection sort, 869–872
sequential, 447
string traversal, 481–482

AND (&&) operator, 258, 288
precedence, 343
short-circuited evaluation, 346
truth table for, 341

annotation, 964
API (Application Programming Interface) Specification, 8
Apple Computer, 538
Application Programming Interface (API) Specification, 1176–
1178
applications, 4
arguments. See parameters
arithmetic notations, 819
arithmetic operators, 69–72, 1161
ArrayIndexOutOfBounds Exception , 455, 472, 491, 950
ArrayIntList class, 932, 941, 990, 1008, 1084

adding an iterator, 957–963
advanced features, 955–963
constructor and constant, 944–945
convenience methods, 952–955
converting into ArrayList<E> , 963–968
encapsulation, 938–939
garbage collector, 965
inner class, 966–968

preconditions and postconditions, 945–948
printing/adding, 932–937
resizing, 955–957
throwing exceptions, 949–955

ArrayList , 667–721, 723, 841
adding to, 679–683
adding values to, 671–672
benefits of, 730
Collections.sort method, 689
complete program, 677–679
defined, 667, 668
for-each loop, 684–686
LinkedList vs., 724–726
for loop and, 680–683
methods, 675
natural ordering of values, 691–694
operations, 669–674
printing, 670
removing from, 679–683
searching methods, 674–677
syntax for constructing, 669
wrapper classes, 686–688

ArrayList objects, methods of, 1168
arrays, 447–534, 1140–1141

accessing, 452–455
advanced techniques, 488–497
auto-initialization, 450
basics of, 448–470

buffer overruns, 457–458
case study, 509–519
command-line arguments, 494–495
constructing, 448–452
declaring, 449
defined, 447, 448
equality, testing for, 475–477
filled, 933
for-each loop, 467–468
heap implementation, 1106–1108
index, 448
initializing, 455–456
jagged, 499–503
loops, 467–468
merging, 873–876
and methods, 464–466
multidimensional, 497–503
nested loop algorithms, 495–497
of objects, 493–494
of pixels, 504–509
printing, 471–473
program, 456–461
random access, 461–462
rectangular two-dimensional, 497–499
reversing, 477–481
searching and replacing, 473–475
sequential search, 861–862
shifting values in, 488–493

sorted, 1084
splitting, 873–876
traversal algorithms, 470–484
traversing, 448–452
unfilled, 933
unsorted, 1084

Arrays.asList method, 1141–1142
Arrays class, 468–469

copyOf method, 469
copyOfRange method, 469
deepToString method, 499
equals method, 469, 476–477
parallelSort method, 845
sort method, 845
toString method, 469–470, 499
Arrays.stream method, 1140–1141

ASCII, 275
assertions, 358–366

defined, 358
example, 362–366
provable, 360
reasoning about, 360–362

assert statement, 1187
assignment operators, 83, 88, 247
assignment statements, 78, 79–80, 81–82, 83
asterisk (*), 65, 69
auto-initialization, 450

automatic garbage collection, 981
average case analysis, 861

B

backslash character (\), 16, 69
back trace, 170
backtracking, recursive, 801–818
backward compatibility, 629
base case, 770–771, 780, 782–785, 799, 804
behavior, object, 536, 540
Benford’s Law case study, 509–519
best case analysis, 862
big-Oh notation, 858
binary files, 395
binary heaps, 1102
binary numbers, 4–5
binary search, 842–845, 862–865

defined, 842
details, 867–868
implementing, 862–865
recursive, 865–867
runtime of, 865

binarySearch method, 842, 867–868
binary search tree, 740, 1052–1067

building, 1055–1058
complexity, 1066–1067
defined, 1052, 1054
property, 1053–1055

searching, 1062–1066
binary tree, 1028–1071

branch nodes, 1029, 1030
counting leaves, 1051–1052
counting levels, 1049–1050
defined, 1029
degenerate, 1067
height of, 1051
kinds of, 1031
leaf nodes, 1030–1031
operations of, 1048–1052
parent/child/sibling/ancestor/descendant, 1031
root of, 1029, 1031–1032
sum of, 1048–1049
traversals, 1033–1048

block copy operation, 956
Board object, 809–810
Body Mass Index (BMI), 76

case study, 290–305
boilerplate code, 427
Boole, George, 339
Boolean expression, 339–341, 353–354
boolean flag, 908
boolean type, 64, 69, 339–354

defined, 320
flags, 348–350
values, 339–340
variables, 340, 348–350

Boolean Zen, 350–352
bounds checking, 458
bound variables, 1137, 1138
boxing, 688, 690–691
branch nodes, 1029
break statement, 1183–1184
bubbling, 1103
buckets, 1087
buffer overruns, 457–458
bugs, 28

off-by-one, 462–463
Y2K (millennium), 564
Zune, 345

bytecodes, 7
byte type, 64

C

calls, 602–603
complex, interpretation, 622–625
constructor, 605–607
recursive, 783, 806, 810

call stack, 776
canRead method, 425
capacity, list, 934
case studies

Benford’s Law, 509–519
Body Mass Index (BMI), 290–305
DrawFigures , 40–46
financial class hierarchy, 639–642
hourglass figure, 115–123
lottery program, 743–745
merge sort, implementation, 873–881
NumberGuess , 366–375
perfect numbers, 1146–1156
prefix evaluator, 818–824
projectile trajectory, 178–186
pyramids, 224–230
sieve algorithm, 734–737
Stock class, 573–582
vocabulary comparison, 701–714

WordCount , 750–753
zip code lookup, 427–434

casting, 74–76, 612
central processing unit (CPU), 3
chaining, 304–305
Character class, methods of, 1169
characters, literals, 69
charAt method, 168, 285, 482
char type

defined, 64
example, 64, 69
int vs., 271–272
literal values, 270
String vs., 271

checked exception, 398
checkIndex method, 953, 954
Circle class, 628, 636
circles, area and perimeter, 633
Class, Responsibilities, Collaborators (CRC) card, 576
classes, 535–591

abstract, 647–652
ArrayIntList . See ArrayIntList class
Arrays , 468–470
case study, 573–582
Character , 273
cohesion, 576
Color , 208–210

complexity, 858–860
concrete, 651
constants, 113–115, 119–122
defined, 10, 166
design(ing), 573–582, 640–644
DrawingPanel , 202–203
generic, 668–669
Graphics2D , 629–631
IllegalArgumentException , 282
inner, 966–968
Integer , 897–898
invariants, 567–571
LinkedIntList . See LinkedIntList class
LinkedList<E> , 975, 1011–1019
Math , 158–161
Object , 609–610
objects. See objects
PrintStream , 420–424
Scanner , 910
TimeSpan , 571–573
wrapper. See wrapper classes

class headers, 11
client code, 537
clients, defined, 537
Cloneable interface, 632
clustering, 1088
code, 6

boilerplate, 427
client, 537
evaluation, 917–920
legacy, 593
reuse, 593

cohesion, 302–303, 576
Collection interface, 732

useful methods of, 724, 1169
collections, 723–724. See also lists; maps; sets

higher-order operations on, 1139–1146
overview, 753–754

Collections class, methods of, 732
Collections.sort method, 689
collisions, 1087–1092
Color class, 208–210

constants, 209
Color object, 506–509

methods, 507
colors

background, 208
graphics, 208–210

command-line arguments, 494–495
comments

defined, 22
forms, 22–23
Javadoc, 23, 1178-1181
pre/post, 281–282
programming error, 29

single-line, 23
writing, 1178–1181

Comparable interface, 632, 689–701, 848
implementation, 692, 694–701

comparators
custom ordering with, 848–851
defined, 740
implementation, 848–849
and methods, 851

compare method, 848–849
compareTo method, 692, 695–697, 848–849
compilation errors, 24
compilers, 6–7
complex expressions, 66
complexity, 852–860

binary search tree, 1066–1067
classes, 858–860
defined, 852
empirical analysis, 855–858
managing, 103–115
time, 852

computers, 2–10
concatenation, string, 84–87
concrete classes, 651
conditional execution, 243–319

case study, 290–305
cumulative algorithms, 259–270
if/else statements, 244–258

methods with, 279–290
return values and, 283–287
text processing, 270–278

conditions
multiple, 258
postconditions, 279
preconditions, 279

console
defined, 9
input, 9, 173
interaction, 9
output, 9
window, 9

constants
class, 113–115, 119–122
declaration, 114
Font class, 217
Math class, 160
parameters vs., 156

constant-time algorithm, 858, 865
constructors, 173, 552–560, 980

default, 555
headers, 553
implementation, 578–582
multiple, 559–560
redeclaring fields in, 556
syntax, 555
using void keyword with, 555–556

consuming input, 406–407
contains method, 675
continue statement, 1183–1184
contract, 932
control structure, 94
control variable, 106
copyOf method, 469, 956
copyOfRange method, 469
counter, 266
coupling

defined, 303–304
loose, 575
minimizing, 303

C programming language, 14, 65, 458
C# programming language, 458
C++ programming language, 14, 458
CPU (central processing unit), 3
CRC (Class, Responsibilities, Collaborators) card, 576
cubic algorithm, 860
cumulative algorithms, 259–270

cumulative product, 280–281
cumulative sum, 259–261, 265–267
defined, 259
min/max loops, 261–265
roundoff errors, 267–270
text, 272–274

cumulative concatenation, 273
cumulative product, 280–281

cumulative sum, 259–261
execution, 260–261
with if/else statements, 265–267
pseudocode, 259

cumulative text algorithms, 272–274
curly brace characters ({}), 11, 97–98
current directory, 409
cursor

input, 405
output, 17, 18

D

data
availability, 393
munging, 428
ownership, 305
processing, origin of, 394
recursive functions and, 781–797

data structures, 723
data types, 64–65. See also specific types
dead-end, 804, 811, 813
debugging, 24, 28
decimal numbers, 4, 5
decision tree, 802–803, 806
declarations

array, 449
import, 178
static method, 153

declarations, variable, 77–78
defined, 77
variations, 81–82

decomposition. See also procedural decomposition
decrementing, 81, 87, 99
decrement (--) operator, 87–90
deepToString method, 499
default access, 1190

default constructor, 555
defensive programming, 283
definite loops, 63, 321
degenerate tree, 1067
deprecated items, 1178
dequeueing, 896
design

class, 640–644
inheritance and, 625–631
object-oriented. See object-oriented design (OOD)
procedural, 300–305

diamond operator, 669
difference operation, 742
digital, 4
digit-matching algorithm, 369
directories, 409–412

current, 409
defined, 409
recursion, 790–794
working, 409

DividendStock class, 606–608
division operator (), 69–70
DOS, 538
dot notation, 159, 544
double backslash characters (\), 21
double hashing, 1092
doubleNumber method, 151, 152
double type, 65

/

conversion of int into, 75–76
defined, 64
in scientific notation, 69

doubly linked list, 1014
do/while loops, 330–332. See also loops

flow of, 331
syntax, 331

drawBox method, 33–36, 156–157
DrawFigures case study, 40–46

final version, 43–44
flow of execution, 44–46
structured version, 41–42

DrawingPanel objects, 202–203, 218
case study, 224–230
methods, 202, 504, 1172
size, 211

drawLine method, 203
drawOval method, 207, 208
drawRect method, 206, 208, 215
drawString method, 215, 220
drawText method, 220
drawTriangle method, 774–776
dummy node, 1013
dummy values, 327

E

effect-free programming, 1120–1122
elements, 723. See also arrays

auto-initialization, 450
defined, 448

empirical analysis, 852
complexity, 855–861

encapsulation, 560–573
class invariants, 567–571
defined, 560
internal implementation changes, 571–572
Point class, 611
poor, 564
private access, 561–567
of superclass, 604

enqueueing, 896
enumerated types (enum), 1185–1186
epoch, 859
equality

array, 475–476
object, 255–256

equality operator (), 246, 247
equalsIgnoreCase method, 256
equals method, 256, 469, 475–477, 610–613, 868

==

Erle, Schuyler, 428
errors. See also exceptions

compilation, 24
logic, 24, 28
off-by-one, 462–463
program, 24–28
roundoff, 267–270
runtime, 24, 39–40
syntax, 24–28
user, 354–358

escape sequences, 15–16
Euclid’s algorithm, 785
evaluation

code, 917–920
expression, 65, 908–920

evaluator, 914–920
exceptions. See also errors

checked, 398
defined, 170
thrown, 170, 279–283, 949–955
types, 950

execution
conditional. See conditional execution
flow analysis, 44–46
for loops, 96
program, 6

exponential algorithm, 860
exponentiation, integer, 781–783

expressions
Boolean, 339–340, 341, 353–354
complex, 66
defined, 65
evaluating, 65
operators, 66
values, calculating, 79

extends keyword, 596
extensions

class, 596–600
file, 8–9

F

factorials
computing, 280
defined, 280
mathematical definition of, 281

factoring
defined, 257
if/else statements, 256–258

fencepost loop, 333–337. See also loops
defined, 333
with if statement, 334–337
sentinel, 337–338

fields, 541–543
defined, 541
encapsulated, 562
inherited, accessing, 603–605
private, 561–567
redeclaring in constructors, 556

FIFO (First-In, First-Out), 893
figures, drawing, 40–46
FileNotFoundException , 398–399, 402
File objects, 396, 400, 790–791, 1173
files, 1145–1146

absolute path, 409

advanced processing, 420–427
binary, 395
defined, 393
extensions, 8–9, 394–395
input, 412–414
line-based processing, 413–419
output, 420–425
paths, 409–410
processing, 392–446
reading, 393–400
relative path, 409
structure of, 403–407
text, 395
token-based processing, 401–413

Files.lines method, 1145
fillOval method, 208
fillPolygon method, 799
fillRect method, 208, 220
filter modifier, 1132
final keyword, 114
financial class hierarchy case study, 639–642
findNextToken method, 911
first-class citizen, 1123–1124
first-class functions, 1123–1124
flags, boolean, 348–349
floating-point numbers, 72
float type, 64, 65

flow of control, 34–36
of do/while loops, 331
of execution analysis, 44–46
of if/else statement, 246
of if statement, 248
of for loop, 94
of nested if/else statements, 250, 251
of while loop, 321

folders, 409
Font class, 216

constants, 217
fonts

common names, 217
defined, 216
graphics, 215–218

for-each loop, 791
ArrayList and, 684–685
arrays, 467–468, 475
iterators, 729–730
syntax, 467
uses, 467

forEach method, 1142
for loop, 63, 92–102, 212, 767, 794, 812–813

and ArrayList , 679–680
body, 93
as control structures, 94
decrementing, 99

execution, 96, 99
flow of, 94
nested, 100
patterns, 98–99
scope, 105
syntax, 93
tracing, 94–97

formal parameter, 145, 149
formal verification, 360
format specifiers, 276–277
format string, 276
Formattable interface, 632
forward slash (), 69–70
fractal geometry, 797
free variables, 1137, 1138
functional interfaces, 1129
functional programming, 1119–1156

defined, 1120
effect-free programming, 1120–1122
first-class functions, 1123–1129
function closures, 1136–1139
higher-order function, 1139–1146
influences on Java, 1122–1123
perfect numbers case study, 1146–1156
streams, 1129–1136

function closures, 1136–1139
functions, recursive, 781–797

advantages of, 783

/

execution of, 782–783

G

garbage collection, 981
garbage collector, 965
Gauss, Carl Friedrich, 161
GB (gigabytes), 5, 6
GCD (greatest common divisor), 784–787
generic class, 668–669
getBlue method, 507
getGraphics method, 203, 629
getGreen method, 507
getInput method, 427
get method, 673, 727, 747
getPixels method, 504–505
getRed method, 507
gigabytes (GB), 5, 6
giveProblems method, 1124–1125
global variables, 1121
graphics

case study, 224–230
colors, 208–210
defined, 201
DrawingPanel class, 202–203
fonts, 215–218

images, 218–220
introduction to, 202–209
loops for, 211–215
procedural decomposition with, 220–224
shapes, 203–207
text, 215–218

Graphics class, 798–799
Graphics2D class, 629–631
Graphics objects, 204–210, 1171
greater than () operator, 246
greater than or equal to () operator, 246
greatest common divisor (GCD), 784–787
growth rates, 857

>
> =

H

hailstone sequences, 263
hard disk, 3
hardware, 3
has-a relationship, is-a relationship vs., 628
hashCode method, 1095–1097
hash codes, 738
hash function, 1087
hashing, 1084–1099

array set implementations, 1084–1085
collisions, 1087–1092
double, 1092
functions/tables, 1085–1087
map implementation, 1098–1099
non-integer data, 1095–1098
rehashing, 1092–1095
separate chaining, 1088–1092

HashMap interface, 746
HashSet class, 738–741
hash table, 738
hasNextInt method, 355, 356
hasNextLine method, 414
headers

class, 11

constructors, 553
instance methods, 544–545
method, 12

HeapPriorityQueue , 1111
heaps

adding to, 1103–1105
array implementation, 1106–1109
binary, 1102
complete tree, 1102
defined, 1102
min/max, 1101
priority queue, 1099–1101
PriorityQueue<E> methods, 1101
removing from, 1103–1104
sorting algorithms, 1110–1111

Hello, world!, 10–14, 421–422
helper methods, 794–797
heuristics

defined, 300
object-oriented design, 574–576
procedural design, 300–305

hierarchies
class, 620
inheritance, 595–596
nonprogramming, 594–596
shape class, 638

higher-order function, 1139–1146
hinting, 369–372

Hollerith, Herman, 394
Hopper, Grace, 28
hourglass figure case study, 115–123
hypotenuse method, 164

I

IBM, 538
identifiers, 18–19
IDEs (Integrated Development Environments), 9
IEEE (Institute of Electrical and Electronics Engineers), 280
if/else statements, 244–258, 772–773, 852, 875–876, 936

cumulative sum with, 265–267
defined, 245
factoring, 256–257
flow of, 246
multiple conditions, 258
nested, 248
object equality, 255–256
overview, 245
relational operators, 246–248
syntax, 245
wrong construct selection, 253–255

if statement
defined, 244
with fencepost, 334–337
flow of, 244, 248
sequential, flow of, 249
syntax, 244

IllegalArgumentException , 282, 578, 949

IllegalStateException , 951
illegal values, testing for, 290
images, 218–220
immutable objects, 171
implicit parameter, 546–548, 611
import declarations, 178
inchworm approach, 1007–1008
incrementing, 81, 87
increment () operator, 87–90
indefinite loops, 321
indexes

arrays, 448
defined, 168
String , 286

indexOf method, 284–285, 675, 841, 953
IndexOutOfBoundsException , 952
infinite loops, 107–108, 320–321
infinite recursion, 770, 786, 787–790
infix notation, 818, 819
inheritance

basics, 593–602
code reuse, 593
defined, 598
and design, 625–631
extending class, 596–600
hierarchies, 595–596
interfaces. See interfaces
misuse of, 625–627

++

nonprogramming hierarchies, 594–596
overriding methods, 600–602
polymorphism and, 615–625
single, 598
subclass, 598
superclass, 598, 602–615

initialization
arrays, 450, 456–457
objects, 552–560
parameters, 151
variables, 95

inner class, 966–968
inorder traversals, 1034
input

console, 9, 173
consuming, 405–406
cursor, 405–406
files, 412–414
tokenizing, 175

insertion point, 868
instance methods, 543–546

accessors, 548–549, 1122
defined, 543
headers, 544–545
implicit parameters, 546–547
mutators, 548–549, 1122
syntax, 546

instanceof keyword, 613–615

instances, objects as, 166
Integer class, 897–899
integers exponentiation, 781–783
Integrated Development Environments (IDEs), 9
interactive programs, 173–182

defined, 173
sample, 176–178

interfaces, 631–639
abstract classes vs., 647–652
and abstract data types, 731
ActionListener , 632
benefits of, 637–639
Cloneable , 632
Collection , 724, 732
Comparable , 632, 689–701, 848
defined, 631
Formattable , 632
HashMap , 746
implementation, 632, 634–637
IntList , 1008–1011
List , 731, 1141–1142
Runnable , 632
Serializable , 632
for shapes, 632–634
syntax for declaring, 634
TreeMap , 746

Internet worms, 458

intersection operation, 742
IntList interface, 1008–1011
IntStream.iterate method, 1153
IntStream.of method, 1132–1133
IntStream.range method, 1130, 1131, 1147–1148
int type

conversion into double , 75–76
defined, 64
integer literals, 68

intValue method, 686
invariants, class, 567–571

defined, 569
enforcing, 569–570

is-a relationship, 595, 598
vs. has-a relationship, 628

isDirectory method, 790
isEmpty method, 953, 1018
isMultiple method, 1136, 1137
iterations, 95, 764

solution converted to recursion, 767–769
iterative approach, 764
iterative enhancement, 31
Iterator interface, 632
Iterator objects, methods of, 1174
iterators, 727–730

ArrayIntList , 957–963

calling next on, 729–730
defined, 728
in for-each loops, 729–730
linked lists, 1015–1017
methods, 728

J

jagged arrays, 499–503
Java

bytecodes, 7
class libraries, 8
coding conventions, 13
defined, 7
need for, 7–8
platform independence, 8
programming environment, 8–10
runtimes, 7

java.awt package, 208, 493, 539, 632
Java Collections Framework

lists, 723–737
maps, 745–753
sets, 737–745

Javadoc comments, 23, 1178–1181
java.io package, 632
java.lang package, 178
java.nio.file , 1145
Java Runtime Environment (JRE), 7
java.util package, 178, 632, 669, 723, 724, 842, 1088
Java Virtual Machine (JVM), 7
JRE (Java Runtime Environment), 7

JShell, 67–69
JVM (Java Virtual Machine), 7

K

KB (kilobytes), 5, 6
Kernighan, Brian, 14, 28, 103
keySet method, 748–749
keywords, 1161

defined, 19
extends , 598
final , 114
instanceof , 613–615
new , 174, 494
private , 561
public , 32
reserved, 19–20
static , 33, 544
this , 557–559
void , 33

kilobytes (KB), 5, 6
Knuth, Don, 2, 3

L

lambda expression, 1126–1129
lastIndexOf method, 677
leaf nodes, 1030–1031

counting, 1051–1052
legacy code, 593
length method, 543
less than () operator, 246
less than or equal to () operator, 246
lexicographic ordering, 1054
libraries, defined, 8
LIFO (Last-In, First-Out), 893, 894
linear algorithm, 859, 861
linear probing, 1087, 1088
line-based file processing, 413–419

defined, 413
token-based combination, 415–419

lines, drawing, 203–208
LinkedIntList class, 1008

addSorted method, 1002–1008
appending add , 991–995
inchworm approach, 1007–1008
middle of the list, 995–1002
simple, 989–991

<

<=

LinkedList class, 724–726, 841, 989–1002
case study, 734–737

linked lists, 975–1027. See also lists
advantage of, 726
as array list, 725
benefits of, 730
code details, 1017–1019
construction of, 977–979
defined, 725
doubly, 1014
iterators, 727–730, 1015–1017
nodes, 725, 976–988
variations, 1012–1014

list abstraction, 668
listFiles method, 791
List interface, 632, 731, 1141–1142
ListIterator , 730
lists, 723–737, 1141–1145

capacity, 934
circular, 1012–1013
complex operations, 1002–1008
defined, 723
equivalents, 988
linked. See linked lists
sets/maps vs., 753
traversing, 985–988

literals, 68–69
boolean , 69

characters, 69
defined, 65, 68
integers, 68
string, 14, 29

load factor, 1094
localizing variables, 103
local variables, 103, 150
logarithmic algorithm, 859
logical operators, 340–343, 1162

AND (&&), 341
defined, 340
NOT (!), 341
OR (| |), 341
short-circuit evaluation, 343–348

logic errors, 24, 28
log-linear algorithm, 859
long type, 64
loops

for . See for loop
array, 467–468
definite, 63, 321
do/while , 331–333
exiting, 1183–1184
for-each, 467–468, 475, 684–686
for graphics, 211–215
indefinite, 63, 321
infinite, 107, 324–325
iterations, 95

min/max , 261–265
priming, 327–328
runtime(s), 853
sentinel, 337–339
traversing, 470, 474
while . See while loop

loose coupling, 575
lottery case study, 743–745

M

machine language, 6
Macintosh computer, 538
magic numbers, 113
main method, 36, 147, 774

as static method, 32
syntax, 12

managing complexity, 103–115
Mandelbrot, Benoit, 797
Map interface, 632
Map objects, methods of, 1172
maps, 745–753

case study, 750–753
construction, 746–747
defined, 723, 746
keySet method, 748–749
key/value pair, 746–747
methods of, 748
operations, 746–747
sets/lists vs., 753
TreeMap vs. HashMap , 749–750
value method, 748–749
views, 748–749

Math class, 158–161

constants, 160
methods of, 1173
static methods in, 160–161

megabytes (MB), 5, 6
memory

defined, 3
storage, units of, 6

merge sort
case study, 873–881
defined, 873
recursive, 876–879

merging arrays, 873–876
method call, 33
method headers, 12

parameters in, 144
stock fields and, 576–577

methods
abs , 161, 270, 1140–1141
abstract, 634
add , 670
addSorted , 1002–1008
ArrayList , 675
ArrayList objects, 1168
arrays and, 464–466
Arrays.asList , 1141–1142
Arrays class, 470
Arrays.stream , 1140–1141

binarySearch , 842
calling another method, 36–38
canRead , 425
Character class, 273, 1169
charAt , 168, 285
checkIndex , 953, 954
Collections class, 732
Collections.sort , 689
Color object, 507
compare , 848–849
compareTo , 692, 848–849
with conditional execution, 279–290
contains , 675
copyOf , 469
copyOfRange , 469
coupling, 303–304
deepToString , 499
defined, 11
doubleNumber , 151
drawBox , 33–36, 156–157
DrawingPanel class, 202, 504, 1170
drawLine , 203
drawOval , 206, 208
drawRect , 206, 208, 215
drawString , 215, 220

drawText , 220
drawTriangle , 774–776
equals , 256, 475–477, 610–613, 868
equalsIgnoreCase , 256
Files.lines , 1145
fillOval , 208
fillPolygon , 799
fillRect , 208, 220
findNextToken , 911
get , 673, 727, 747
getBlue , 507
getGraphics , 203, 629
getGreen , 507
getInput , 427
getPixels , 504–505
getRed , 507
giveProblems , 1124–1125
Graphics2D , 630
graphics objects, 1171
hashCode , 1095–1097
hasNextInt , 355, 356
hasNextLine , 414
helper, 794–797
hypotenuse , 164
with indentation, 793–794

indexOf , 284–285, 676–677, 841, 953
instance, 543–546
IntStream.of , 1132–1133
IntStream.range , 1130, 1131
intValue , 686
isDirectory , 790
isEmpty , 953, 1018
Iterator objects, 1172
iterators, 728
keySet , 748–749
lastIndexOf , 677
length , 543
listFiles , 791
main , 12, 32, 147, 774
Map objects, 1172
maps, 748
Math class, 160–161, 1173
next , 401
nextDouble , 175, 177, 179, 401, 405, 406
nextInt , 174, 179, 326, 401
nextLine , 174, 414
Object class, 609, 1174
overloading, 156–157
overriding, 600–602
parallelSort , 845
Point objects, 540

pow , 781, 783
print , 790, 792–793
PriorityQueue<E> , 1101
put , 747
Queue interface, 896
random , 325
Random objects, 326
range , 855
rating , 288
remove , 727, 939
removeEvenLength , 726
replaceAll , 475
return values, 157–164
reverse , 772, 777–780
reverseOrder , 851
setBackground , 209–210
setColor , 209–210, 213
setFont , 216
setLocation , 563
setPixels , 504–505
shuffle , 847
signatures, 156–157
size , 673
sort , 845
sqrt , 158

Stack class, 894
static, 31–34, 153
String objects, 172
substring , 169–170, 344
sum , 162, 1130
swap , 479, 871
takeDictation , 597
toLowerCase , 171, 172
toString . See toString method
toUpperCase , 171, 172
translate , 539, 544, 545–546
value , 748–749
writeChars , 153–154
writeSpaces , 143–146
writeStars , 767–769

mod operator (%), 70, 71
multidimensional arrays, 497–503. See also arrays

defined, 497
jagged, 499–503
rectangular two-dimensional, 497–499

multiple constructors, 559–560
multiple objects, 486–488
multiplication operator (*), 69–70
multiplicative operators, 73, 74, 88, 247
mutators, 548–549, 1122

N

namespaces, 1188
native compilers, 6
natural ordering, 691–694
nested if/else statements, 248–252

final branch, 252
flow of, 250, 251
options, 253

nested loops
algorithms, 495–497
code, 101
defined, 100
for loop, 100–102
trace of, 108

The New Hacker’s Dictionary, 38–39
new keyword, 174, 494
nextDouble method, 175, 177, 179, 401, 405–407
nextInt method, 174, 179, 326, 401
nextLine method, 174, 414
next method, 401
nodes, 976–988

branch, 1029
defined, 725, 976
dummy, 1013

leaf, 1030–1031
manipulating, 982–985
and tree classes, 1032–1033

nonabstract classes, 651
nonprogramming hierarchies, 594–596
NoSuchElementException , 912, 960
not equal to () operator, 246
NOT operator (!), 341
NullPointerException , 578, 615, 950, 1004, 1006
NumberGuess case study, 366–375
number parameter, 144, 148
numbers

binary, 4–5
decimal, 4, 5
magic, 113
perfect, case study, 1146–1156
pseudorandom, 325
random, 325–329
smallest divisor, finding, 322–323

! =

O

Object class, 609–610
methods of, 609, 1174

object-oriented design (OOD), 639, 640
heuristics, 574–576

object-oriented programming (OOP), 485, 536–540, 594
defined, 536

objects, 165–178
array, 484, 493–494
behavior, 536
class, 166
defined, 166, 536
equality, 255–256
exception, 282
File , 396, 400
Graphics , 203–208
immutable, 171
initialization, 552–560
as instances, 166
multiple, 486–488
Point . See Point objects
PrintStream , 420–421
Random , 326
Scanner , 142, 173–178

searching, 868–869
state, 536, 541–543
String , 166–173

off-by-one bug, 462–463
offset, 222
OOD. See object-oriented design (OOD)
OOP. See object-oriented programming (OOP)
operands, 66, 819–820
operating system, 4

history, and objects, 538
operators. See also specific operators

additive, 73, 74, 88, 247
arithmetic, 69–72, 1161
assignment, 83, 88, 247
decrement (--), 87–90
defined, 66
increment (), 87–90
instanceof , 613
logical. See logical operators
multiplicative, 73, 88, 247
precedence, 72–74, 88, 247, 343, 1162
relational, 246–248, 1162
ternary, 1183
unary, 74, 88, 247

OR operator (| |), 258, 341–343
precedence, 343
short-circuited evaluation, 346
truth table for, 341

++

output
cursor, 17, 18
files, 420–424
of program, 9

overloading methods, 156–157
overriding methods, 600–602

P

packages, 1188–1190. See also specific packages
declaration syntax, 1189
defined, 178

parallelSort method, 846
parameters, 143–157

actual, 145, 149–150
defined, 143
formal, 145, 149–150
implicit, 546–548
initialization, 151
limitations of, 150–152
local manipulations of, 152
mechanics of, 146–150
in method headers, 144
multiple, 153–155
vs. constants, 156

parentheses (()), 93
Pascal’s triangle, 500–501
paths

defined, 409
files, 409–410
reasoning about, 288–290
relative, 410

PB (petabyte), 6

Peirce, Charles, 3
percent sign (%)

mod operator, 70, 71
percolating, 1103
perfect numbers case study, 1146–1156
petabyte (PB), 6
Pirsig, Robert, 350
pixels, 202

arrays of, 504–509
Point class, 850

encapsulation, 561–567, 612
state and behavior, 540–546

Point3D class, 625–628
Point objects, 539–540, 545, 851

constructing, 494
defined, 539
methods of, 540, 1176

Polygon class, 799
polymorphism

complex calls interpretation, 622–625
inheritance and, 615–625
inheritance code interpretation, 620–622
mechanics, 618–620

pop operation, stack, 893
postconditions, 279
postdecrement (x--) operator, 88
postfix notation, 818–819
postincrement (x++) operator, 88

postorder traversals, 1034
pow method, 781, 783
precedence, 72–74, 88, 247, 343, 1162

defined, 72
logical operator, 342

preconditions, 279
predecrement (--x) operator, 88–89
prefix evaluator case study, 818–824
prefix notation, 818–819
preincrement (++x) operator, 88
preorder traversals, 1034
priming loops, 327
primitive types, 64–65, 616, 686, 1163, 1182
printf statement, 276, 692
printing

ArrayIntList class, 932–937
ArrayList , 669
arrays, 471–472

println statements, 16–18, 79, 471, 671
in toString method, 551–552

print method, 790, 792–793
print statement, 17–18, 98
PrintStream class, 420–424
PriorityQueue<E> method, 1101
private access, 561–567, 604
private keyword, 561
probing, 1087, 1088

procedural decomposition
defined, 28
example, 30
flow of control, 34–36
with graphics, 220–224
static methods, 31–34

procedural design heuristics, 300–305
program errors, 24–28
programming

defensive, 283
functional. See functional programming
Java environment, 8–10
need for, 2–3
object-oriented. See object-oriented programming (OOP)
process, 6–7

programs
array, 456–460
ArrayList , 677–678
chaining, 304–305
client, 537
cohesion, 302–303
complexity. See complexity
defined, 3
errors, 24–28
execution, 6
flow of control, 34–36
Hello, world!, 10–14, 421–422
interactive, 173–174

output of, 9
overview of, 10–23
performance, 852
readability, 21–23

projectile trajectory case study, 178–186
prompt, 177
protected access, 1190
provable assertion, 359–360
pruning, decision tree, 808
pseudocode, 108–113, 357, 367, 795, 804

for backtracking solutions, 810–813
defined, 108
sort algorithm, 871–872

pseudorandom numbers, 325
public keyword, 33
push operation, stack, 893
put method, 747
pyramids case study, 224–230
Pythagorean theorem, 163

Q

quadratic algorithm, 859
quadratic probing, 1087
Queue interface, methods of, 896
queues

concepts, 896–897
defined, 723, 896
Integer wrapper class, 897–898
operations, 897–898
priority, 1099–1101
removing values from, 904–906
sum of, 900–901
transfer values to stack, 899–900

queueToStack method, 902

R

RAM (random access memory), 3
random access, 461–462, 727
random access memory (RAM), 3
random method, 325
random numbers, 325–329
Random objects, 325–327

methods of, 326, 1176
misusing, 329

range algorithm, 855–858
range method, 855
rating method, 288
Raymond, Eric, 38
readability, program, 21–23
reading files, 393–400

beyond end, 399–400
with Scanner objects, 396–399
structure of files, 403–407

reasoning, assertion, 360–362
records, 543, 604–605
Rectangle class, 635
rectangles, area and perimeter, 633
rectangular two-dimensional arrays, 497–499
recurrence relations, 867

recursion, 763–839
backtracking, 801–818
base case, 770–771
binary search, 865–868
bottom of, 766
case study, 818–824
data, 781–797
defined, 764
directories, 790–794
example, 771–781
file-reversing method, 776–781
functions, 781–797
graphics, 797–801
helper methods, 794–797
infinite, 770, 786, 787–789
iterative solution converted to, 767–769
mechanics of, 773–781
merge sort, 876–879
nonprogramming example, 764–767
recursive case, 770–771
solution structure, 769–771

recursive case, 770–771, 782, 785, 820
recursive merge sort, 876–879
reduce , stream terminator, 1134–1135
refactoring, 643–644
reference semantics, 484–488

defined, 484–485
multiple objects, 486–488

reasons for, 485–486
rehashing, 1092–1095
relational operators, 246–248, 1164

limitation of, 248
types, 247

relationships
has-a, 628
is-a, 595, 598

relative file path, 409
remainder operator (%), 70–71
removeEvenLength method, 726
remove method, 727, 940
replaceAll method, 475
return statement, 161–162, 288
return type, 158
return values, 157–165

ignoring, 163
reverse method, 772, 777–780
reverseOrder method, 851
RGB value, 504, 507
Ritchie, Dennis, 14
robust programs, 354
root, of binary tree, 1029, 1031–1032
roundoff errors, 267–270

defined, 268
outcomes, 268–269

Runnable interface, 632

running programs, 6
runtimes, 613

of algorithm, 855–858
binary search algorithm, 864–865
errors, 24, 39–40
of loop, 853
statements, 853

S

Scanner class, 173–178, 910
interactive program with, 176–178
lookahead, 354–356

Scanner objects, 142
in file processing, 407
methods, 174, 1177
parameters, 407–409
reading files with, 396–399

scope, 103–107, 545
defined, 103, 545
implications, 103
outer, 105

searching
ArrayList , 673–677
arrays, 472–475
binary, 842–845, 862–865, 867–868
implementing algorithms, 861–872
in Java’s class libraries, 847
libraries, 841–851
objects, 868–869
recursive binary, 865–867
sequential search, 861–862

SearchTree<E> , 1067–1071

selection sort, 869–872
self-check problems

ArrayLists , 714–717
arrays, 520–527
classes, 583–585
conditional execution, 306–314
file processing, 435–444
functional programming, 1157–1159
graphics, 230–232
Java Collections Framework, 754–758
Java programming introduction, 47–54
linked lists, 1020–1023
parameters and objects, 187–195
primitive data and definite loops, 124–132
program logic and indefinite loops, 376–386
recursion, 825–831
searching and sorting, 883–887
stacks and queues, 920–924

semicolon (;), 12, 15, 26–27
sentinel loops, 337–339
separate chaining, 1088–1092
sequences

escape, 15–16
hailstone, 263

sequential access, 461
sequential algorithms, 447
sequential search, 841

of array, 861–862

Serializable interface, 632
setBackground method, 209–210
Set collection, 737
setColor method, 209–210, 213
setFont method, 216
Set interface, 632
setLocation method, 563
setPixels method, 504–505
sets, 737–745

case study, 743–745
concepts, 738–740
defined, 723, 737
maps/lists vs., 753
operations, 741–743
TreeSet vs. HashSet , 738–741

shapes
area and perimeter formulas, 633
drawing, 203–208
interfaces for, 632–634

ShareAsset class, 645–646
short-circuit evaluation, 343–348
short type, 64
shuffle method, 846
shuffling, 846–847
side effect, 1121
Sierpinski triangle, 797–798
sieve algorithm case study, 734–737

signatures, method, 156–157
simulations, 329–331
single inheritance, 598
size method, 673
smallest divisor, 322–323
software, 4

crisis, 593
sorted array, 1084
sorting, 845–846, 852

Arrays.parallelSort method, 845
Arrays.sort method, 845
Collections.sort method, 846
implementing algorithms, 861–872
in Java’s class libraries, 847
selection sort, 869–872

sort method, 845
spaces

String objects, 168
writing, 143–146

space-writing task, 143–144
specifiers, format, 276–277
splitting arrays, 873–876
sqrt method, 158–159
stack, 893–895

comparison for similarity, 906–908
defined, 723, 894
Integer wrapper class, 897–898

operations, 897–904
sum of, 901–904
transfer values to queue, 899–900

Stack class, methods of, 894
stack trace, 170
state, objects, 541–543

defined, 536
statements

assert , 1187
assignment, 79–83
break , 1185–1186
continue , 1183–1184
defined, 12
if/else , 772–773. See if/else statements
print , 17–18, 98
printf , 707
println , 16–18, 79, 671
prompt, 177
return , 161–162, 288
runtimes, 853
switch , 1184–1186
throw , 281
try/catch , 1186–1187

static keyword, 33, 544
static methods, 31–34

defined, 32

in Math class, 160–161
structure, 32
syntax, 153

Steele, Guy, 1122
stepwise refinement, 31
Stock class case study, 573–582
streams, 1129–1136

defined, 1129
using filter, 1132–1134
using map, 1131–1132
using reduce , 1134–1135

String class, 693–694
string concatenation, 84–87
StringIndexOutOfBounds Exception , 347
string literals, 14, 29
String objects, 166–173

index, 168
length, 167–168
methods of, 172, 1177
spaces, 168

strings
defined, 14
format, 276
line breaks inside, 15–16
programming error, 29
traversal algorithm, 481–482

struct, 543
subclasses, 598. See also inheritance

subset, 742
substitutability, 627
substring method, 169–170, 344, 1130
sum method, 162, 1130
superclasses. See also inheritance

accessing inherited fields, 603–605
constructors, calling, 605–607
declaration syntax, 598
defined, 598
interacting with, 602–615
overridden methods, 602–603

superset, 742
Sussman, Gerry, 1122
swap method, 479, 871
switch statement, 1172–1174
syntax

abstract classes, 648
abstract method declaration, 649
array declaration and construction, 449
array initialization, 455–456
constant definitions, 114
constructors, 555
do/while loops, 331
encapsulated field declaration, 562
errors, 24–28
for-each loop, 467–468
instance methods, 546
interface declaration, 634

for loop, 93
packages declaration, 1189
return statement, 162
static method declaration, 153
superclass declaration, 598
template, 11
templates, 1163–1167
this keyword, 557–559
throw statement, 281
while loop, 321

System.currentTimeMillis method, 1150–1151
System.out.print , 173
System.out.printf , 274–278
System.out.println , 172

T

tags, Javadoc comments, 1181
takeDictation method, 597
tallying values, 510–514
terabyte (TB), 6
terminal interaction, 9
ternary operator, 1183
text

cumulative algorithms, 272–274
files, 395
processing, 270–278

this keyword, 557–559
throwing exceptions, 170, 279–283, 949–952
throws clause, 398, 425
throw statement, 281
time complexity, 852
TimeSpan class, 571
token-based processing, 401–413. See also files

defined, 401
input file, 412–413
line-based combination, 415–419
paths and directories, 409–411
Scanner parameters, 407–409
structure of files, 403–407

tokens
defined, 174
reading wrong kind of, 404
splitting, 909–914
whitespace-separated, 405

toLowerCase method, 171–172, 1143
toString method, 469, 499, 671, 738, 747, 895, 936, 994

implementing, 551
println statement in, 551–552

toUpperCase method, 171–172
translate method, 539, 544, 545–546
traversing loops, 470, 474
TreeMap class, 746, 850, 1053

vs. HashMap class, 749–750
TreeSet class, 723, 738–741, 850, 1053
tree traversals, 1033–1048. See also binary tree

constructing and viewing, 1039–1048
preorder/postorder/inorder, 1034

triangle, area and perimeter, 633
Triangle class, 637
try/catch statement, 1186–1187
two-dimensional arrays, 497–499
types

boolean , 64, 69, 320, 339–354
byte , 64
char , 64

double , 64–65
float , 64–65
int , 64, 271–272
long , 64
mixing, 74–76
primitive, 64–65
short , 64

type-safe language, 64

U

unary operators, 74, 88, 247
unboxing, 688, 690–691
underscore (_) character, 19
Unicode, 275
uninitialized variables, 78
union operation, 742
unsorted array, 1084
user errors, 354–358

V

value method, 748–749
values

adding to ArrayList , 671–672
comparison function, 691
natural ordering, 691–694
removing from ArrayList , 672
semantics, 484–485
shifting in arrays, 488–493
tallying, 510–514
types, 484

value semantics, 485
variables, 76–92

assigning, 78–80
assignment/declaration variations, 81–84
boolean type, 339, 348–350
bound, 1137–1138
declarations, 77–78
decrementing, 81, 87
defined, 76
free, 1137–1138
global, 1121
incrementing, 81, 87
initial value, 81

local, 103, 150
localizing, 103
loop, 95
mixing types and, 90–91
in println statement, 79
uninitialized, 78

Venn diagrams, 742
verification, program, 360
void keyword, 33, 555–556

W

while loop, 321–333. See also loops
defined, 320
do/while loops, 331–333
flow of, 321
priming, 327
random numbers, 325–328
simulations, 329–331
smallest divisor, 322–323
syntax of, 321

whitespace, 174, 405
WordCount case study, 750–753
working directory, 409
worst case analysis, 862
wrapper classes, 686–688, 1186

boxing, 688
common, 688
defined, 686
unboxing, 688

writeChars methods, 153–154
writeSpaces method, 143–145
writeStars method, 767–769

Y

Y2K (millennium) bug, 564

Z

Zen, Boolean, 350–352
zero-based indexing, 448, 671
zip code lookup case study, 427–434

Contents
1. Building Java Programs A Back to Basics Approach
2. Preface

A. New to This Edition
B. Features from Prior Editions
C. Layers and Dependencies
D. Supplements
E. MyLab Programming
F. VideoNotes

3.
Location of Video Notes in the Text
http://www.pearson.com/cs-resources

4. Brief Contents
5. Contents
6. Chapter 1 Introduction to Java Programming

A. Introduction
B. 1.1 Basic Computing Concepts

1. Why Programming?
2. Hardware and Software
3. The Digital Realm
4. The Process of Programming
5. Why Java?
6. The Java Programming Environment

C. 1.2 And Now—Java

1. String Literals (Strings)
2. System.out.println
3. Escape Sequences
4. print versus println
5. Identifiers and Keywords
6. A Complex Example: DrawFigures1
7. Comments and Readability

D. 1.3 Program Errors
1. Syntax Errors
2. Logic Errors (Bugs)

E. 1.4 Procedural Decomposition
1. Static Methods
2. Flow of Control
3. Methods That Call Other Methods
4. An Example Runtime Error

F. 1.5 Case Study: DrawFigures
1. Structured Version
2. Final Version without Redundancy
3. Analysis of Flow of Execution

G. Chapter Summary
H. Self-Check Problems

1. Section 1.1: Basic Computing Concepts
2. Section 1.2: And Now—Java
3. Section 1.3: Program Errors

4. Section 1.4: Procedural Decomposition

I. Exercises
J. Programming Projects

7. Chapter 2 Primitive Data and Definite Loops
A. Introduction
B. 2.1 Basic Data Concepts

1. Primitive Types
2. Expressions
3. JShell
4. Literals
5. Arithmetic Operators
6. Precedence
7. Mixing Types and Casting

C. 2.2 Variables
1. Assignment/Declaration Variations
2. String Concatenation
3. Increment/Decrement Operators
4. Variables and Mixing Types

D. 2.3 The for Loop
1. Tracing for Loops
2. for Loop Patterns
3. Nested for Loops

E. 2.4 Managing Complexity

1. Scope
2. Pseudocode
3. The Table Technique
4. Class Constants

F. 2.5 Case Study: Hourglass Figure
1. Problem Decomposition and Pseudocode
2. Initial Structured Version
3. Adding a Class Constant
4. Further Variations

G. Chapter Summary
H. Self-Check Problems

1. Section 2.1: Basic Data Concepts
2. Section 2.2: Variables
3. Section 2.3: The for Loop
4. Section 2.4: Managing Complexity

I. Exercises
J. Programming Projects

8. Chapter 3 Introduction to Parameters and Objects
A. Introduction
B. 3.1 Parameters

1. The Mechanics of Parameters
2. Limitations of Parameters
3. Multiple Parameters
4. Parameters versus Constants

5. Overloading of Methods

C. 3.2 Methods That Return Values
1. The Math Class
2. Defining Methods That Return Values

D. 3.3 Using Objects
1. String Objects
2. Interactive Programs and Scanner Objects
3. Sample Interactive Program

E. 3.4 Case Study: Projectile Trajectory
1. Unstructured Solution
2. Structured Solution

F. Chapter Summary
G. Self-Check Problems

1. Section 3.1: Parameters
2. Section 3.2: Methods That Return Values
3. Section 3.3: Using Objects

H. Exercises
I. Programming Projects

9. Supplement 3G Graphics (Optional)
A. Introduction
B. 3G.1 Introduction to Graphics

1. DrawingPanel

2. Drawing Lines and Shapes
3. Colors
4. Drawing with Loops
5. Text and Fonts
6. Images

C. 3G.2 Procedural Decomposition with Graphics
1. A Larger Example: DrawDiamonds

D. 3G.3 Case Study: Pyramids
1. Unstructured Partial Solution
2. Generalizing the Drawing of Pyramids
3. Complete Structured Solution

E. Chapter Summary
F. Self-Check Problems

1. Section 3G.1: Introduction to Graphics

G. Exercises
H. Programming Projects

10. Chapter 4 Conditional Execution
A. Introduction
B. 4.1 if/else Statements

1. Relational Operators
2. Nested if/else Statements
3. Object Equality
4. Factoring if/else Statements

5. Testing Multiple Conditions

C. 4.2 Cumulative Algorithms
1. Cumulative Sum
2. Min/Max Loops
3. Cumulative Sum with if
4. Roundoff Errors

D. 4.3 Text Processing
1. The char Type
2. char versus int
3. Cumulative Text Algorithms
4. System.out.printf

E. 4.4 Methods with Conditional Execution
1. Preconditions and Postconditions
2. Throwing Exceptions
3. Revisiting Return Values
4. Reasoning about Paths

F. 4.5 Case Study: Body Mass Index
1. One-Person Unstructured Solution
2. Two-Person Unstructured Solution
3. Two-Person Structured Solution
4. Procedural Design Heuristics

G. Chapter Summary
H. Self-Check Problems

1. Section 4.1: if/else Statements
2. Section 4.2: Cumulative Algorithms
3. Section 4.3: Text Processing
4. Section 4.4: Methods with Conditional Execution

I. Exercises
J. Programming Projects

11. Chapter 5 Program Logic and Indefinite Loops
A. Introduction
B. 5.1 The while Loop

1. A Loop to Find the Smallest Divisor
2. Random Numbers
3. Simulations
4. do/while Loop

C. 5.2 Fencepost Algorithms
1. Fencepost with if
2. Sentinel Loops

D. 5.3 The boolean Type
1. Logical Operators
2. Short-Circuited Evaluation
3. boolean Variables and Flags
4. Boolean Zen
5. Negating Boolean Expressions

E. 5.4 User Errors

1. Scanner Lookahead
2. Handling User Errors

F. 5.5 Assertions and Program Logic
1. Reasoning about Assertions
2. A Detailed Assertions Example

G. 5.6 Case Study: NumberGuess
1. Initial Version without Hinting
2. Randomized Version with Hinting
3. Final Robust Version

H. Chapter Summary
I. Self-Check Problems

1. Section 5.1: The while Loop
2. Section 5.2: Fencepost Algorithms
3. Section 5.3: The boolean Type
4. Section 5.4: User Errors
5. Section 5.5: Assertions and Program Logic

J. Exercises
K. Programming Projects

12. Chapter 6 File Processing
A. Introduction
B. 6.1 File-Reading Basics

1. Data, Data Everywhere
2. Files and File Objects

3. Reading a File with a Scanner

C. 6.2 Details of Token-Based Processing
1. Structure of Files and Consuming Input
2. Scanner Parameters
3. Paths and Directories
4. A More Complex Input File

D. 6.3 Line-Based Processing
1. String Scanners and Line/Token Combinations

E. 6.4 Advanced File Processing
1. Output Files with PrintStream
2. Guaranteeing That Files Can Be Read

F. 6.5 Case Study: Zip Code Lookup
G. Chapter Summary
H. Self-Check Problems

1. Section 6.1: File-Reading Basics
2. Section 6.2: Details of Token-Based Processing
3. Section 6.3: Line-Based Processing
4. Section 6.4: Advanced File Processing

I. Exercises
J. Programming Projects

13. Chapter 7 Arrays
A. Introduction

B. 7.1 Array Basics
1. Constructing and Traversing an Array
2. Accessing an Array
3. Initializing Arrays
4. A Complete Array Program
5. Random Access
6. Arrays and Methods
7. The For-Each Loop
8. The Arrays Class

C. 7.2 Array-Traversal Algorithms
1. Printing an Array
2. Searching and Replacing
3. Testing for Equality
4. Reversing an Array
5. String Traversal Algorithms
6. Functional Approach

D. 7.3 Reference Semantics
1. Multiple Objects

E. 7.4 Advanced Array Techniques
1. Shifting Values in an Array
2. Arrays of Objects
3. Command-Line Arguments
4. Nested Loop Algorithms

F. 7.5 Multidimensional Arrays

1. Rectangular Two-Dimensional Arrays
2. Jagged Arrays

G. 7.6 Arrays of Pixels
H. 7.7 Case Study: Benford’s Law

1. Tallying Values
2. Completing the Program

I. Chapter Summary
J. Self-Check Problems

1. Section 7.1: Array Basics
2. Section 7.2: Array-Traversal Algorithms
3. Section 7.3: Reference Semantics
4. Section 7.4: Advanced Array Techniques
5. Section 7.5: Multidimensional Arrays

K. Exercises
L. Programming Projects

14. Chapter 8 Classes
A. Introduction
B. 8.1 Object-Oriented Programming

1. Classes and Objects
2. Point Objects

C. 8.2 Object State and Behavior
1. Object State: Fields
2. Object Behavior: Methods

3. The Implicit Parameter
4. Mutators and Accessors
5. The toString Method

D. 8.3 Object Initialization: Constructors
1. The Keyword this
2. Multiple Constructors

E. 8.4 Encapsulation
1. Private Fields
2. Class Invariants
3. Changing Internal Implementations

F. 8.5 Case Study: Designing a Stock Class
1. Object-Oriented Design Heuristics
2. Stock Fields and Method Headers
3. Stock Method and Constructor Implementation

G. Chapter Summary
H. Self-Check Problems

1. Section 8.1: Object-Oriented Programming
2. Section 8.2: Object State and Behavior
3. Section 8.3: Object Initialization: Constructors
4. Section 8.4: Encapsulation
5. Section 8.5: Case Study: Designing a Stock Class

I. Exercises
J. Programming Projects

15. Chapter 9 Inheritance and Interfaces
A. Introduction
B. 9.1 Inheritance Basics

1. Nonprogramming Hierarchies
2. Extending a Class
3. Overriding Methods

C. 9.2 Interacting with the Superclass
1. Calling Overridden Methods
2. Accessing Inherited Fields
3. Calling a Superclass’s Constructor
4. DividendStock Behavior
5. The Object Class
6. The equals Method
7. The instanceof Keyword

D. 9.3 Polymorphism
1. Polymorphism Mechanics
2. Interpreting Inheritance Code
3. Interpreting Complex Calls

E. 9.4 Inheritance and Design
1. A Misuse of Inheritance
2. Is-a Versus Has-a Relationships
3. Graphics2D

F. 9.5 Interfaces
1. An Interface for Shapes

2. Implementing an Interface
3. Benefits of Interfaces

G. 9.6 Case Study: Financial Class Hierarchy
1. Designing the Classes
2. Redundant Implementation
3. Abstract Classes

H. Chapter Summary
I. Self-Check Problems

1. Section 9.1: Inheritance Basics
2. Section 9.2: Interacting with the Superclass
3. Section 9.3: Polymorphism
4. Section 9.4: Inheritance and Design
5. Section 9.5: Interfaces
6. Section 9.6: Case Study: Financial Class Hierarchy

J. Exercises
K. Programming Projects

16. Chapter 10 ArrayLists
A. Introduction
B. 10.1 ArrayLists

1. Basic ArrayList Operations
2. ArrayList Searching Methods
3. A Complete ArrayList Program
4. Adding to and Removing from an ArrayList
5. Initializing an ArrayList

6. Using the For-Each Loop with ArrayLists
7. Wrapper Classes

C. 10.2 The Comparable Interface
1. Natural Ordering and compareTo
2. Implementing the Comparable Interface

D. 10.3 Case Study: Ranked Choice Voting
1. Ballot Class
2. Counting Votes
3. Multiple Rounds

E. Chapter Summary
F. Self-Check Problems

1. Section 10.1: ArrayLists
2. Section 10.2: The Comparable Interface

G. Exercises
H. Programming Projects

17. Chapter 11 Java Collections Framework
A. Introduction
B. 11.1 Lists

1. Collections
2. LinkedList versus ArrayList
3. Iterators
4. Abstract Data Types (ADTs)

5. LinkedList Case Study: Sieve

C. 11.2 Sets
1. Set Concepts
2. TreeSet versus HashSet
3. Set Operations
4. Set Case Study: Lottery

D. 11.3 Maps
1. Basic Map Operations
2. Map Views (keySet and values)
3. TreeMap versus HashMap
4. Map Case Study: WordCount
5. Collection Overview

E. Chapter Summary
F. Self-Check Problems

1. Section 11.1: Lists
2. Section 11.2: Sets
3. Section 11.3: Maps

G. Exercises
H. Programming Projects

18. Chapter 12 Recursion
A. Introduction
B. 12.1 Thinking Recursively

1. A Nonprogramming Example

2. An Iterative Solution Converted to Recursion
3. Structure of Recursive Solutions

C. 12.2 A Better Example of Recursion
1. Mechanics of Recursion

D. 12.3 Recursive Functions and Data
1. Integer Exponentiation
2. Greatest Common Divisor
3. Directory Crawler
4. Helper Methods

E. 12.4 Recursive Graphics
F. 12.5 Recursive Backtracking

1. A Simple Example: Traveling North/East
2. 8 Queens Puzzle
3. Solving Sudoku Puzzles

G. 12.6 Case Study: Prefix Evaluator
1. Infix, Prefix, and Postfix Notation
2. Evaluating Prefix Expressions
3. Complete Program

H. Chapter Summary
I. Self-Check Problems

1. Section 12.1: Thinking Recursively
2. Section 12.2: A Better Example of Recursion
3. Section 12.3: Recursive Functions and Data

4. Section 12.4: Recursive Graphics
5. Section 12.5: Recursive Backtracking

J. Exercises
K. Programming Projects

19. Chapter 13 Searching and Sorting
A. Introduction
B. 13.1 Searching and Sorting in the Java Class Libraries

1. Binary Search
2. Sorting
3. Shuffling
4. Custom Ordering with Comparators

C. 13.2 Program Complexity
1. Empirical Analysis
2. Complexity Classes

D. 13.3 Implementing Searching and Sorting Algorithms
1. Sequential Search
2. Binary Search
3. Recursive Binary Search
4. Searching Objects
5. Selection Sort

E. 13.4 Case Study: Implementing Merge Sort
1. Splitting and Merging Arrays
2. Recursive Merge Sort

3. Complete Program

F. Chapter Summary
G. Self-Check Problems

1.
Section 13.1: Searching and Sorting in the Java Class
Libraries

2. Section 13.2: Program Complexity

3.
Section 13.3: Implementing Searching and Sorting
Algorithms

4. Section 13.4: Case Study: Implementing Merge Sort

H. Exercises
I. Programming Projects

20. Chapter 14 Stacks and Queues
A. Introduction
B. 14.1 Stack/Queue Basics

1. Stack Concepts
2. Queue Concepts

C. 14.2 Common Stack/Queue Operations
1. Transferring between Stacks and Queues
2. Sum of a Queue
3. Sum of a Stack

D. 14.3 Complex Stack/Queue Operations
1. Removing Values from a Queue
2. Comparing Two Stacks for Similarity

E. 14.4 Case Study: Expression Evaluator
1. Splitting into Tokens
2. The Evaluator

F. Chapter Summary
G. Self-Check Problems

1. Section 14.1: Stack/Queue Basics
2. Section 14.2: Common Stack/Queue Operations
3. Section 14.3: Complex Stack/Queue Operations

H. Exercises
I. Programming Projects

21. Chapter 15 Implementing a Collection Class
A. Introduction
B. 15.1 Simple ArrayIntList

1. Adding and Printing
2. Thinking about Encapsulation
3. Dealing with the Middle of the List
4. Another Constructor and a Constant
5. Preconditions and Postconditions

C. 15.2 A More Complete ArrayIntList
1. Throwing Exceptions
2. Convenience Methods

D. 15.3 Advanced Features
1. Resizing When Necessary

2. Adding an Iterator

E. 15.4 ArrayList<E>
F. Chapter Summary
G. Self-Check Problems

1. Section 15.1: Simple ArrayIntList
2. Section 15.2: A More Complete ArrayIntList
3. Section 15.3: Advanced Features
4. Section 15.4: ArrayList<E>

H. Exercises
I. Programming Projects

22. Chapter 16 Linked Lists
A. Introduction
B. 16.1 Working with Nodes

1. Constructing a List
2. List Basics
3. Manipulating Nodes
4. Traversing a List

C. 16.2 A Linked List Class
1. Simple LinkedIntList
2. Appending add
3. The Middle of the List

D. 16.3 A Complex List Operation
1. Inchworm Approach

E. 16.4 An IntList Interface
F. 16.5 LinkedList<E>

1. Linked List Variations
2. Linked List Iterators
3. Other Code Details

G. Chapter Summary
H. Self-Check Problems

1. Section 16.1: Working with Nodes
2. Section 16.2: A Linked List Class
3. Section 16.3: A Complex List Operation
4. Section 16.4: An IntList Interface
5. Section 16.5: LinkedList<E>

I. Exercises
J. Programming Projects

23. Chapter 17 Binary Trees
A. Introduction
B. 17.1 Binary Tree Basics

1. Node and Tree Classes

C. 17.2 Tree Traversals
1. Constructing and Viewing a Tree

D. 17.3 Common Tree Operations
1. Sum of a Tree
2. Counting Levels

3. Counting Leaves

E. 17.4 Binary Search Trees
1. The Binary Search Tree Property
2. Building a Binary Search Tree
3. The Pattern x = change(x)
4. Searching the Tree
5. Binary Search Tree Complexity

F. 17.5 SearchTree<E>
G. Chapter Summary
H. Self-Check Problems

1. Section 17.1: Binary Tree Basics
2. Section 17.2: Tree Traversals
3. Section 17.3: Common Tree Operations
4. Section 17.4: Binary Search Trees
5. Section 17.5: SearchTree<E>

I. Exercises
J. Programming Projects

24. Chapter 18 Advanced Data Structures
A. Introduction
B. 18.1 Hashing

1. Array Set Implementations
2. Hash Functions and Hash Tables
3. Collisions
4. Rehashing

5. Hashing Non-Integer Data
6. Hash Map Implementation

C. 18.2 Priority Queues and Heaps
1. Priority Queues
2. Introduction to Heaps
3. Removing from a Heap
4. Adding to a Heap
5. Array Heap Implementation
6. Heap Sort

D. Chapter Summary
E. Self-Check Problems

1. Section 18.1: Hashing
2. Section 18.2: Priority Queues and Heaps

F. Exercises
G. Programming Projects

25. Chapter 19 Functional Programming with Java 8
A. Introduction
B. 19.1 Effect-Free Programming
C. 19.2 First-Class Functions

1. Lambda Expressions

D. 19.3 Streams
1. Basic Idea
2. Using Map

3. Using Filter
4. Using Reduce
5. Optional Results

E. 19.4 Function Closures
F. 19.5 Higher-Order Operations on Collections

1. Working with Arrays
2. Working with Lists
3. Working with Files

G. 19.6 Case Study: Perfect Numbers
1. Computing Sums
2. Incorporating Square Root
3. Just Five and Leveraging Concurrency

H. Chapter Summary
I. Self-Check Problems

1. 19.1 Effect-Free Programming
2. 19.2 First-Class Functions
3. 19.3 Streams
4. 19.4 Function Closures
5. 19.5 Higher-Order Operations on Collections

J. Exercises
K. Programming Projects

26. Appendix A Java Summary
A. Java Keywords

B. Primitive Types
C. Arithmetic Operators
D. Relational Operators
E. Logical Operators
F. Operator Precedence
G. Wrapper Classes
H. Syntax Templates
I. Useful Methods of ArrayList Objects
J. Useful Methods of the Character Class
K. Useful Methods of the Collection Interface
L. Useful Methods of the Collections Class
M. Useful Methods of DrawingPanel Objects
N. Useful Methods of File Objects
O. Useful Methods of Graphics Objects
P. Useful Methods of Iterator Objects
Q. Useful Methods of Map Objects
R. Constants and Useful Methods of the Math Class
S. Useful Methods of the Object Class
T. Useful Methods of Point Objects
U. Useful Methods of Random Objects
V. Useful Methods of Scanner Objects
W. Useful Methods of String Objects

27.
Appendix B The Java API Specification and Javadoc
Comments
A. The Java API Specification

1. Parameters
2. Returns
3. Throws
4. Deprecated

B. Writing Javadoc Comments

28. Appendix C Additional Java Syntax
A. Primitive Types: byte , short , long , float
B. Ternary Operator ? :
C. Exiting a Loop: break and continue
D. The switch Statement
E. The try/ catch Statement
F. The assert Statement
G. Enumerations: enum
H. Packages
I. Protected and Default Access

29. Index
A. A
B. B
C. C
D. D
E. E
F. F
G. G
H. H
I. I

J. J
K. K
L. L
M. M
N. N
O. O
P. P
Q. Q
R. R
S. S
T. T
U. U
V. V
W. W
X. Y
Y. Z

List of Illustrations

Landmarks
1. Brief Contents
2. Frontmatter
3. Start of Content
4. backmatter

5. List of Illustrations

1. i
2. ii
3. iii
4. iv
5. v
6. vi
7. vii
8. viii
9. ix

10. x
11. xi
12. xii
13. xiii
14. xiv
15. xv
16. xvi
17. xvii
18. xviii
19. xix
20. xx
21. xxi
22. xxii
23. xxiii
24. xxiv
25. xxv
26. xxvi

27. xxvii
28. xxviii
29. 1
30. 2
31. 3
32. 4
33. 5
34. 6
35. 7
36. 8
37. 9
38. 10
39. 11
40. 12
41. 13
42. 14
43. 15
44. 16
45. 17
46. 18
47. 19
48. 20
49. 21
50. 22
51. 23
52. 24
53. 25
54. 26

55. 27
56. 28
57. 29
58. 30
59. 31
60. 32
61. 33
62. 34
63. 35
64. 36
65. 37
66. 38
67. 39
68. 40
69. 41
70. 42
71. 43
72. 44
73. 45
74. 46
75. 47
76. 48
77. 49
78. 50
79. 51
80. 52
81. 53
82. 54

83. 55
84. 56
85. 57
86. 58
87. 59
88. 60
89. 61
90. 62
91. 63
92. 64
93. 65
94. 66
95. 67
96. 68
97. 69
98. 70
99. 71

100. 72
101. 73
102. 74
103. 75
104. 76
105. 77
106. 78
107. 79
108. 80
109. 81
110. 82

111. 83
112. 84
113. 85
114. 86
115. 87
116. 88
117. 89
118. 90
119. 91
120. 92
121. 93
122. 94
123. 95
124. 96
125. 97
126. 98
127. 99
128. 100
129. 101
130. 102
131. 103
132. 104
133. 105
134. 106
135. 107
136. 108
137. 109
138. 110

139. 111
140. 112
141. 113
142. 114
143. 115
144. 116
145. 117
146. 118
147. 119
148. 120
149. 121
150. 122
151. 123
152. 124
153. 125
154. 126
155. 127
156. 128
157. 129
158. 130
159. 131
160. 132
161. 133
162. 134
163. 135
164. 136
165. 137
166. 138

167. 139
168. 140
169. 141
170. 142
171. 143
172. 144
173. 145
174. 146
175. 147
176. 148
177. 149
178. 150
179. 151
180. 152
181. 153
182. 154
183. 155
184. 156
185. 157
186. 158
187. 159
188. 160
189. 161
190. 162
191. 163
192. 164
193. 165
194. 166

195. 167
196. 168
197. 169
198. 170
199. 171
200. 172
201. 173
202. 174
203. 175
204. 176
205. 177
206. 178
207. 179
208. 180
209. 181
210. 182
211. 183
212. 184
213. 185
214. 186
215. 187
216. 188
217. 189
218. 190
219. 191
220. 192
221. 193
222. 194

223. 195
224. 196
225. 197
226. 198
227. 199
228. 200
229. 201
230. 202
231. 203
232. 204
233. 205
234. 206
235. 207
236. 208
237. 209
238. 210
239. 211
240. 212
241. 213
242. 214
243. 215
244. 216
245. 217
246. 218
247. 219
248. 220
249. 221
250. 222

251. 223
252. 224
253. 225
254. 226
255. 227
256. 228
257. 229
258. 230
259. 231
260. 232
261. 233
262. 234
263. 235
264. 236
265. 237
266. 238
267. 239
268. 240
269. 241
270. 242
271. 243
272. 244
273. 245
274. 246
275. 247
276. 248
277. 249
278. 250

279. 251
280. 252
281. 253
282. 254
283. 255
284. 256
285. 257
286. 258
287. 259
288. 260
289. 261
290. 262
291. 263
292. 264
293. 265
294. 266
295. 267
296. 268
297. 269
298. 270
299. 271
300. 272
301. 273
302. 274
303. 275
304. 276
305. 277
306. 278

307. 279
308. 280
309. 281
310. 282
311. 283
312. 284
313. 285
314. 286
315. 287
316. 288
317. 289
318. 290
319. 291
320. 292
321. 293
322. 294
323. 295
324. 296
325. 297
326. 298
327. 299
328. 300
329. 301
330. 302
331. 303
332. 304
333. 305
334. 306

335. 307
336. 308
337. 309
338. 310
339. 311
340. 312
341. 313
342. 314
343. 315
344. 316
345. 317
346. 318
347. 319
348. 320
349. 321
350. 322
351. 323
352. 324
353. 325
354. 326
355. 327
356. 328
357. 329
358. 330
359. 331
360. 332
361. 333
362. 334

363. 335
364. 336
365. 337
366. 338
367. 339
368. 340
369. 341
370. 342
371. 343
372. 344
373. 345
374. 346
375. 347
376. 348
377. 349
378. 350
379. 351
380. 352
381. 353
382. 354
383. 355
384. 356
385. 357
386. 358
387. 359
388. 360
389. 361
390. 362

391. 363
392. 364
393. 365
394. 366
395. 367
396. 368
397. 369
398. 370
399. 371
400. 372
401. 373
402. 374
403. 375
404. 376
405. 377
406. 378
407. 379
408. 380
409. 381
410. 382
411. 383
412. 384
413. 385
414. 386
415. 387
416. 388
417. 389
418. 390

419. 391
420. 392
421. 393
422. 394
423. 395
424. 396
425. 397
426. 398
427. 399
428. 400
429. 401
430. 402
431. 403
432. 404
433. 405
434. 406
435. 407
436. 408
437. 409
438. 410
439. 411
440. 412
441. 413
442. 414
443. 415
444. 416
445. 417
446. 418

447. 419
448. 420
449. 421
450. 422
451. 423
452. 424
453. 425
454. 426
455. 427
456. 428
457. 429
458. 430
459. 431
460. 432
461. 433
462. 434
463. 435
464. 436
465. 437
466. 438
467. 439
468. 440
469. 441
470. 442
471. 443
472. 444
473. 445
474. 446

475. 447
476. 448
477. 449
478. 450
479. 451
480. 452
481. 453
482. 454
483. 455
484. 456
485. 457
486. 458
487. 459
488. 460
489. 461
490. 462
491. 463
492. 464
493. 465
494. 466
495. 467
496. 468
497. 469
498. 470
499. 471
500. 472
501. 473
502. 474

503. 475
504. 476
505. 477
506. 478
507. 479
508. 480
509. 481
510. 482
511. 483
512. 484
513. 485
514. 486
515. 487
516. 488
517. 489
518. 490
519. 491
520. 492
521. 493
522. 494
523. 495
524. 496
525. 497
526. 498
527. 499
528. 500
529. 501
530. 502

531. 503
532. 504
533. 505
534. 506
535. 507
536. 508
537. 509
538. 510
539. 511
540. 512
541. 513
542. 514
543. 515
544. 516
545. 517
546. 518
547. 519
548. 520
549. 521
550. 522
551. 523
552. 524
553. 525
554. 526
555. 527
556. 528
557. 529
558. 530

559. 531
560. 532
561. 533
562. 534
563. 535
564. 536
565. 537
566. 538
567. 539
568. 540
569. 541
570. 542
571. 543
572. 544
573. 545
574. 546
575. 547
576. 548
577. 549
578. 550
579. 551
580. 552
581. 553
582. 554
583. 555
584. 556
585. 557
586. 558

587. 559
588. 560
589. 561
590. 562
591. 563
592. 564
593. 565
594. 566
595. 567
596. 568
597. 569
598. 570
599. 571
600. 572
601. 573
602. 574
603. 575
604. 576
605. 577
606. 578
607. 579
608. 580
609. 581
610. 582
611. 583
612. 584
613. 585
614. 586

615. 587
616. 588
617. 589
618. 590
619. 591
620. 592
621. 593
622. 594
623. 595
624. 596
625. 597
626. 598
627. 599
628. 600
629. 601
630. 602
631. 603
632. 604
633. 605
634. 606
635. 607
636. 608
637. 609
638. 610
639. 611
640. 612
641. 613
642. 614

643. 615
644. 616
645. 617
646. 618
647. 619
648. 620
649. 621
650. 622
651. 623
652. 624
653. 625
654. 626
655. 627
656. 628
657. 629
658. 630
659. 631
660. 632
661. 633
662. 634
663. 635
664. 636
665. 637
666. 638
667. 639
668. 640
669. 641
670. 642

671. 643
672. 644
673. 645
674. 646
675. 647
676. 648
677. 649
678. 650
679. 651
680. 652
681. 653
682. 654
683. 655
684. 656
685. 657
686. 658
687. 659
688. 660
689. 661
690. 662
691. 663
692. 664
693. 665
694. 666
695. 667
696. 668
697. 669
698. 670

699. 671
700. 672
701. 673
702. 674
703. 675
704. 676
705. 677
706. 678
707. 679
708. 680
709. 681
710. 682
711. 683
712. 684
713. 685
714. 686
715. 687
716. 688
717. 689
718. 690
719. 691
720. 692
721. 693
722. 694
723. 695
724. 696
725. 697
726. 698

727. 699
728. 700
729. 701
730. 702
731. 703
732. 704
733. 705
734. 706
735. 707
736. 708
737. 709
738. 710
739. 711
740. 712
741. 713
742. 714
743. 715
744. 716
745. 717
746. 718
747. 719
748. 720
749. 721
750. 722
751. 723
752. 724
753. 725
754. 726

755. 727
756. 728
757. 729
758. 730
759. 731
760. 732
761. 733
762. 734
763. 735
764. 736
765. 737
766. 738
767. 739
768. 740
769. 741
770. 742
771. 743
772. 744
773. 745
774. 746
775. 747
776. 748
777. 749
778. 750
779. 751
780. 752
781. 753
782. 754

783. 755
784. 756
785. 757
786. 758
787. 759
788. 760
789. 761
790. 762
791. 763
792. 764
793. 765
794. 766
795. 767
796. 768
797. 769
798. 770
799. 771
800. 772
801. 773
802. 774
803. 775
804. 776
805. 777
806. 778
807. 779
808. 780
809. 781
810. 782

811. 783
812. 784
813. 785
814. 786
815. 787
816. 788
817. 789
818. 790
819. 791
820. 792
821. 793
822. 794
823. 795
824. 796
825. 797
826. 798
827. 799
828. 800
829. 801
830. 802
831. 803
832. 804
833. 805
834. 806
835. 807
836. 808
837. 809
838. 810

839. 811
840. 812
841. 813
842. 814
843. 815
844. 816
845. 817
846. 818
847. 819
848. 820
849. 821
850. 822
851. 823
852. 824
853. 825
854. 826
855. 827
856. 828
857. 829
858. 830
859. 831
860. 832
861. 833
862. 834
863. 835
864. 836
865. 837
866. 838

867. 839
868. 840
869. 841
870. 842
871. 843
872. 844
873. 845
874. 846
875. 847
876. 848
877. 849
878. 850
879. 851
880. 852
881. 853
882. 854
883. 855
884. 856
885. 857
886. 858
887. 859
888. 860
889. 861
890. 862
891. 863
892. 864
893. 865
894. 866

895. 867
896. 868
897. 869
898. 870
899. 871
900. 872
901. 873
902. 874
903. 875
904. 876
905. 877
906. 878
907. 879
908. 880
909. 881
910. 882
911. 883
912. 884
913. 885
914. 886
915. 887
916. 888
917. 889
918. 890
919. 891
920. 892
921. 893
922. 894

923. 895
924. 896
925. 897
926. 898
927. 899
928. 900
929. 901
930. 902
931. 903
932. 904
933. 905
934. 906
935. 907
936. 908
937. 909
938. 910
939. 911
940. 912
941. 913
942. 914
943. 915
944. 916
945. 917
946. 918
947. 919
948. 920
949. 921
950. 922

951. 923
952. 924
953. 925
954. 926
955. 927
956. 928
957. 929
958. 930
959. 931
960. 932
961. 933
962. 934
963. 935
964. 936
965. 937
966. 938
967. 939
968. 940
969. 941
970. 942
971. 943
972. 944
973. 945
974. 946
975. 947
976. 948
977. 949
978. 950

979. 951
980. 952
981. 953
982. 954
983. 955
984. 956
985. 957
986. 958
987. 959
988. 960
989. 961
990. 962
991. 963
992. 964
993. 965
994. 966
995. 967
996. 968
997. 969
998. 970
999. 971

1000. 972
1001. 973
1002. 974
1003. 975
1004. 976
1005. 977
1006. 978

1007. 979
1008. 980
1009. 981
1010. 982
1011. 983
1012. 984
1013. 985
1014. 986
1015. 987
1016. 988
1017. 989
1018. 990
1019. 991
1020. 992
1021. 993
1022. 994
1023. 995
1024. 996
1025. 997
1026. 998
1027. 999
1028. 1000
1029. 1001
1030. 1002
1031. 1003
1032. 1004
1033. 1005
1034. 1006

1035. 1007
1036. 1008
1037. 1009
1038. 1010
1039. 1011
1040. 1012
1041. 1013
1042. 1014
1043. 1015
1044. 1016
1045. 1017
1046. 1018
1047. 1019
1048. 1020
1049. 1021
1050. 1022
1051. 1023
1052. 1024
1053. 1025
1054. 1026
1055. 1027
1056. 1028
1057. 1029
1058. 1030
1059. 1031
1060. 1032
1061. 1033
1062. 1034

1063. 1035
1064. 1036
1065. 1037
1066. 1038
1067. 1039
1068. 1040
1069. 1041
1070. 1042
1071. 1043
1072. 1044
1073. 1045
1074. 1046
1075. 1047
1076. 1048
1077. 1049
1078. 1050
1079. 1051
1080. 1052
1081. 1053
1082. 1054
1083. 1055
1084. 1056
1085. 1057
1086. 1058
1087. 1059
1088. 1060
1089. 1061
1090. 1062

1091. 1063
1092. 1064
1093. 1065
1094. 1066
1095. 1067
1096. 1068
1097. 1069
1098. 1070
1099. 1071
1100. 1072
1101. 1073
1102. 1074
1103. 1075
1104. 1076
1105. 1077
1106. 1078
1107. 1079
1108. 1080
1109. 1081
1110. 1082
1111. 1083
1112. 1084
1113. 1085
1114. 1086
1115. 1087
1116. 1088
1117. 1089
1118. 1090

1119. 1091
1120. 1092
1121. 1093
1122. 1094
1123. 1095
1124. 1096
1125. 1097
1126. 1098
1127. 1099
1128. 1100
1129. 1101
1130. 1102
1131. 1103
1132. 1104
1133. 1105
1134. 1106
1135. 1107
1136. 1108
1137. 1109
1138. 1110
1139. 1111
1140. 1112
1141. 1113
1142. 1114
1143. 1115
1144. 1116
1145. 1117
1146. 1118

1147. 1119
1148. 1120
1149. 1121
1150. 1122
1151. 1123
1152. 1124
1153. 1125
1154. 1126
1155. 1127
1156. 1128
1157. 1129
1158. 1130
1159. 1131
1160. 1132
1161. 1133
1162. 1134
1163. 1135
1164. 1136
1165. 1137
1166. 1138
1167. 1139
1168. 1140
1169. 1141
1170. 1142
1171. 1143
1172. 1144
1173. 1145
1174. 1146

1175. 1147
1176. 1148
1177. 1149
1178. 1150
1179. 1151
1180. 1152
1181. 1153
1182. 1154
1183. 1155
1184. 1156
1185. 1157
1186. 1158
1187. 1159
1188. 1160
1189. 1161
1190. 1162
1191. 1163
1192. 1164
1193. 1165
1194. 1166
1195. 1167
1196. 1168
1197. 1169
1198. 1170
1199. 1171
1200. 1172
1201. 1173
1202. 1174

1203. 1175
1204. 1176
1205. 1177
1206. 1178
1207. 1179
1208. 1180
1209. 1181
1210. 1182
1211. 1183
1212. 1184
1213. 1185
1214. 1186
1215. 1187
1216. 1188
1217. 1189
1218. 1190
1219. 1191
1220. 1192
1221. 1193
1222. 1194
1223. 1195
1224. 1196
1225. 1197
1226. 1198
1227. 1199
1228. 1200
1229. 1201
1230. 1202

1231. 1203
1232. 1204

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

Long description

	Building Java Programs A Back to Basics Approach
	Preface
	New to This Edition
	Features from Prior Editions
	Layers and Dependencies
	Supplements
	MyLab Programming
	VideoNotes

	Location of Video Notes in the Text http://www.pearson.com/cs-resources
	Brief Contents
	Contents
	Chapter 1 Introduction to Java Programming
	Introduction
	1.1 Basic Computing Concepts
	Why Programming?
	Hardware and Software
	The Digital Realm
	The Process of Programming
	Why Java?
	The Java Programming Environment

	1.2 And Now—Java
	String Literals (Strings)
	System.out.println
	Escape Sequences
	print versus println
	Identifiers and Keywords
	A Complex Example: DrawFigures1
	Comments and Readability

	1.3 Program Errors
	Syntax Errors
	Logic Errors (Bugs)

	1.4 Procedural Decomposition
	Static Methods
	Flow of Control
	Methods That Call Other Methods
	An Example Runtime Error

	1.5 Case Study: DrawFigures
	Structured Version
	Final Version without Redundancy
	Analysis of Flow of Execution

	Chapter Summary
	Self-Check Problems
	Section 1.1: Basic Computing Concepts
	Section 1.2: And Now—Java
	Section 1.3: Program Errors
	Section 1.4: Procedural Decomposition

	Exercises
	Programming Projects

	Chapter 2 Primitive Data and Definite Loops
	Introduction
	2.1 Basic Data Concepts
	Primitive Types
	Expressions
	JShell
	Literals
	Arithmetic Operators
	Precedence
	Mixing Types and Casting

	2.2 Variables
	Assignment/Declaration Variations
	String Concatenation
	Increment/Decrement Operators
	Variables and Mixing Types

	2.3 The for Loop
	Tracing for Loops
	for Loop Patterns
	Nested for Loops

	2.4 Managing Complexity
	Scope
	Pseudocode
	The Table Technique
	Class Constants

	2.5 Case Study: Hourglass Figure
	Problem Decomposition and Pseudocode
	Initial Structured Version
	Adding a Class Constant
	Further Variations

	Chapter Summary
	Self-Check Problems
	Section 2.1: Basic Data Concepts
	Section 2.2: Variables
	Section 2.3: The for Loop
	Section 2.4: Managing Complexity

	Exercises
	Programming Projects

	Chapter 3 Introduction to Parameters and Objects
	Introduction
	3.1 Parameters
	The Mechanics of Parameters
	Limitations of Parameters
	Multiple Parameters
	Parameters versus Constants
	Overloading of Methods

	3.2 Methods That Return Values
	The Math Class
	Defining Methods That Return Values

	3.3 Using Objects
	String Objects
	Interactive Programs and Scanner Objects
	Sample Interactive Program

	3.4 Case Study: Projectile Trajectory
	Unstructured Solution
	Structured Solution

	Chapter Summary
	Self-Check Problems
	Section 3.1: Parameters
	Section 3.2: Methods That Return Values
	Section 3.3: Using Objects

	Exercises
	Programming Projects

	Supplement 3G Graphics (Optional)
	Introduction
	3G.1 Introduction to Graphics
	DrawingPanel
	Drawing Lines and Shapes
	Colors
	Drawing with Loops
	Text and Fonts
	Images

	3G.2 Procedural Decomposition with Graphics
	A Larger Example: DrawDiamonds

	3G.3 Case Study: Pyramids
	Unstructured Partial Solution
	Generalizing the Drawing of Pyramids
	Complete Structured Solution

	Chapter Summary
	Self-Check Problems
	Section 3G.1: Introduction to Graphics

	Exercises
	Programming Projects

	Chapter 4 Conditional Execution
	Introduction
	4.1 if/else Statements
	Relational Operators
	Nested if/else Statements
	Object Equality
	Factoring if/else Statements
	Testing Multiple Conditions

	4.2 Cumulative Algorithms
	Cumulative Sum
	Min/Max Loops
	Cumulative Sum with if
	Roundoff Errors

	4.3 Text Processing
	The char Type
	char versus int
	Cumulative Text Algorithms
	System.out.printf

	4.4 Methods with Conditional Execution
	Preconditions and Postconditions
	Throwing Exceptions
	Revisiting Return Values
	Reasoning about Paths

	4.5 Case Study: Body Mass Index
	One-Person Unstructured Solution
	Two-Person Unstructured Solution
	Two-Person Structured Solution
	Procedural Design Heuristics

	Chapter Summary
	Self-Check Problems
	Section 4.1: if/else Statements
	Section 4.2: Cumulative Algorithms
	Section 4.3: Text Processing
	Section 4.4: Methods with Conditional Execution

	Exercises
	Programming Projects

	Chapter 5 Program Logic and Indefinite Loops
	Introduction
	5.1 The while Loop
	A Loop to Find the Smallest Divisor
	Random Numbers
	Simulations
	do/while Loop

	5.2 Fencepost Algorithms
	Fencepost with if
	Sentinel Loops

	5.3 The boolean Type
	Logical Operators
	Short-Circuited Evaluation
	boolean Variables and Flags
	Boolean Zen
	Negating Boolean Expressions

	5.4 User Errors
	Scanner Lookahead
	Handling User Errors

	5.5 Assertions and Program Logic
	Reasoning about Assertions
	A Detailed Assertions Example

	5.6 Case Study: NumberGuess
	Initial Version without Hinting
	Randomized Version with Hinting
	Final Robust Version

	Chapter Summary
	Self-Check Problems
	Section 5.1: The while Loop
	Section 5.2: Fencepost Algorithms
	Section 5.3: The boolean Type
	Section 5.4: User Errors
	Section 5.5: Assertions and Program Logic

	Exercises
	Programming Projects

	Chapter 6 File Processing
	Introduction
	6.1 File-Reading Basics
	Data, Data Everywhere
	Files and File Objects
	Reading a File with a Scanner

	6.2 Details of Token-Based Processing
	Structure of Files and Consuming Input
	Scanner Parameters
	Paths and Directories
	A More Complex Input File

	6.3 Line-Based Processing
	String Scanners and Line/Token Combinations

	6.4 Advanced File Processing
	Output Files with PrintStream
	Guaranteeing That Files Can Be Read

	6.5 Case Study: Zip Code Lookup
	Chapter Summary
	Self-Check Problems
	Section 6.1: File-Reading Basics
	Section 6.2: Details of Token-Based Processing
	Section 6.3: Line-Based Processing
	Section 6.4: Advanced File Processing

	Exercises
	Programming Projects

	Chapter 7 Arrays
	Introduction
	7.1 Array Basics
	Constructing and Traversing an Array
	Accessing an Array
	Initializing Arrays
	A Complete Array Program
	Random Access
	Arrays and Methods
	The For-Each Loop
	The Arrays Class

	7.2 Array-Traversal Algorithms
	Printing an Array
	Searching and Replacing
	Testing for Equality
	Reversing an Array
	String Traversal Algorithms
	Functional Approach

	7.3 Reference Semantics
	Multiple Objects

	7.4 Advanced Array Techniques
	Shifting Values in an Array
	Arrays of Objects
	Command-Line Arguments
	Nested Loop Algorithms

	7.5 Multidimensional Arrays
	Rectangular Two-Dimensional Arrays
	Jagged Arrays

	7.6 Arrays of Pixels
	7.7 Case Study: Benford’s Law
	Tallying Values
	Completing the Program

	Chapter Summary
	Self-Check Problems
	Section 7.1: Array Basics
	Section 7.2: Array-Traversal Algorithms
	Section 7.3: Reference Semantics
	Section 7.4: Advanced Array Techniques
	Section 7.5: Multidimensional Arrays

	Exercises
	Programming Projects

	Chapter 8 Classes
	Introduction
	8.1 Object-Oriented Programming
	Classes and Objects
	Point Objects

	8.2 Object State and Behavior
	Object State: Fields
	Object Behavior: Methods
	The Implicit Parameter
	Mutators and Accessors
	The toString Method

	8.3 Object Initialization: Constructors
	The Keyword this
	Multiple Constructors

	8.4 Encapsulation
	Private Fields
	Class Invariants
	Changing Internal Implementations

	8.5 Case Study: Designing a Stock Class
	Object-Oriented Design Heuristics
	Stock Fields and Method Headers
	Stock Method and Constructor Implementation

	Chapter Summary
	Self-Check Problems
	Section 8.1: Object-Oriented Programming
	Section 8.2: Object State and Behavior
	Section 8.3: Object Initialization: Constructors
	Section 8.4: Encapsulation
	Section 8.5: Case Study: Designing a Stock Class

	Exercises
	Programming Projects

	Chapter 9 Inheritance and Interfaces
	Introduction
	9.1 Inheritance Basics
	Nonprogramming Hierarchies
	Extending a Class
	Overriding Methods

	9.2 Interacting with the Superclass
	Calling Overridden Methods
	Accessing Inherited Fields
	Calling a Superclass’s Constructor
	DividendStock Behavior
	The Object Class
	The equals Method
	The instanceof Keyword

	9.3 Polymorphism
	Polymorphism Mechanics
	Interpreting Inheritance Code
	Interpreting Complex Calls

	9.4 Inheritance and Design
	A Misuse of Inheritance
	Is-a Versus Has-a Relationships
	Graphics2D

	9.5 Interfaces
	An Interface for Shapes
	Implementing an Interface
	Benefits of Interfaces

	9.6 Case Study: Financial Class Hierarchy
	Designing the Classes
	Redundant Implementation
	Abstract Classes

	Chapter Summary
	Self-Check Problems
	Section 9.1: Inheritance Basics
	Section 9.2: Interacting with the Superclass
	Section 9.3: Polymorphism
	Section 9.4: Inheritance and Design
	Section 9.5: Interfaces
	Section 9.6: Case Study: Financial Class Hierarchy

	Exercises
	Programming Projects

	Chapter 10 ArrayLists
	Introduction
	10.1 ArrayLists
	Basic ArrayList Operations
	ArrayList Searching Methods
	A Complete ArrayList Program
	Adding to and Removing from an ArrayList
	Initializing an ArrayList
	Using the For-Each Loop with ArrayLists
	Wrapper Classes

	10.2 The Comparable Interface
	Natural Ordering and compareTo
	Implementing the Comparable Interface

	10.3 Case Study: Ranked Choice Voting
	Ballot Class
	Counting Votes
	Multiple Rounds

	Chapter Summary
	Self-Check Problems
	Section 10.1: ArrayLists
	Section 10.2: The Comparable Interface

	Exercises
	Programming Projects

	Chapter 11 Java Collections Framework
	Introduction
	11.1 Lists
	Collections
	LinkedList versus ArrayList
	Iterators
	Abstract Data Types (ADTs)
	LinkedList Case Study: Sieve

	11.2 Sets
	Set Concepts
	TreeSet versus HashSet
	Set Operations
	Set Case Study: Lottery

	11.3 Maps
	Basic Map Operations
	Map Views (keySet and values)
	TreeMap versus HashMap
	Map Case Study: WordCount
	Collection Overview

	Chapter Summary
	Self-Check Problems
	Section 11.1: Lists
	Section 11.2: Sets
	Section 11.3: Maps

	Exercises
	Programming Projects

	Chapter 12 Recursion
	Introduction
	12.1 Thinking Recursively
	A Nonprogramming Example
	An Iterative Solution Converted to Recursion
	Structure of Recursive Solutions

	12.2 A Better Example of Recursion
	Mechanics of Recursion

	12.3 Recursive Functions and Data
	Integer Exponentiation
	Greatest Common Divisor
	Directory Crawler
	Helper Methods

	12.4 Recursive Graphics
	12.5 Recursive Backtracking
	A Simple Example: Traveling North/East
	8 Queens Puzzle
	Solving Sudoku Puzzles

	12.6 Case Study: Prefix Evaluator
	Infix, Prefix, and Postfix Notation
	Evaluating Prefix Expressions
	Complete Program

	Chapter Summary
	Self-Check Problems
	Section 12.1: Thinking Recursively
	Section 12.2: A Better Example of Recursion
	Section 12.3: Recursive Functions and Data
	Section 12.4: Recursive Graphics
	Section 12.5: Recursive Backtracking

	Exercises
	Programming Projects

	Chapter 13 Searching and Sorting
	Introduction
	13.1 Searching and Sorting in the Java Class Libraries
	Binary Search
	Sorting
	Shuffling
	Custom Ordering with Comparators

	13.2 Program Complexity
	Empirical Analysis
	Complexity Classes

	13.3 Implementing Searching and Sorting Algorithms
	Sequential Search
	Binary Search
	Recursive Binary Search
	Searching Objects
	Selection Sort

	13.4 Case Study: Implementing Merge Sort
	Splitting and Merging Arrays
	Recursive Merge Sort
	Complete Program

	Chapter Summary
	Self-Check Problems
	Section 13.1: Searching and Sorting in the Java Class Libraries
	Section 13.2: Program Complexity
	Section 13.3: Implementing Searching and Sorting Algorithms
	Section 13.4: Case Study: Implementing Merge Sort

	Exercises
	Programming Projects

	Chapter 14 Stacks and Queues
	Introduction
	14.1 Stack/Queue Basics
	Stack Concepts
	Queue Concepts

	14.2 Common Stack/Queue Operations
	Transferring between Stacks and Queues
	Sum of a Queue
	Sum of a Stack

	14.3 Complex Stack/Queue Operations
	Removing Values from a Queue
	Comparing Two Stacks for Similarity

	14.4 Case Study: Expression Evaluator
	Splitting into Tokens
	The Evaluator

	Chapter Summary
	Self-Check Problems
	Section 14.1: Stack/Queue Basics
	Section 14.2: Common Stack/Queue Operations
	Section 14.3: Complex Stack/Queue Operations

	Exercises
	Programming Projects

	Chapter 15 Implementing a Collection Class
	Introduction
	15.1 Simple ArrayIntList
	Adding and Printing
	Thinking about Encapsulation
	Dealing with the Middle of the List
	Another Constructor and a Constant
	Preconditions and Postconditions

	15.2 A More Complete ArrayIntList
	Throwing Exceptions
	Convenience Methods

	15.3 Advanced Features
	Resizing When Necessary
	Adding an Iterator

	15.4 ArrayList<E>
	Chapter Summary
	Self-Check Problems
	Section 15.1: Simple ArrayIntList
	Section 15.2: A More Complete ArrayIntList
	Section 15.3: Advanced Features
	Section 15.4: ArrayList<E>

	Exercises
	Programming Projects

	Chapter 16 Linked Lists
	Introduction
	16.1 Working with Nodes
	Constructing a List
	List Basics
	Manipulating Nodes
	Traversing a List

	16.2 A Linked List Class
	Simple LinkedIntList
	Appending add
	The Middle of the List

	16.3 A Complex List Operation
	Inchworm Approach

	16.4 An IntList Interface
	16.5 LinkedList<E>
	Linked List Variations
	Linked List Iterators
	Other Code Details

	Chapter Summary
	Self-Check Problems
	Section 16.1: Working with Nodes
	Section 16.2: A Linked List Class
	Section 16.3: A Complex List Operation
	Section 16.4: An IntList Interface
	Section 16.5: LinkedList<E>

	Exercises
	Programming Projects

	Chapter 17 Binary Trees
	Introduction
	17.1 Binary Tree Basics
	Node and Tree Classes

	17.2 Tree Traversals
	Constructing and Viewing a Tree

	17.3 Common Tree Operations
	Sum of a Tree
	Counting Levels
	Counting Leaves

	17.4 Binary Search Trees
	The Binary Search Tree Property
	Building a Binary Search Tree
	The Pattern x = change(x)
	Searching the Tree
	Binary Search Tree Complexity

	17.5 SearchTree<E>
	Chapter Summary
	Self-Check Problems
	Section 17.1: Binary Tree Basics
	Section 17.2: Tree Traversals
	Section 17.3: Common Tree Operations
	Section 17.4: Binary Search Trees
	Section 17.5: SearchTree<E>

	Exercises
	Programming Projects

	Chapter 18 Advanced Data Structures
	Introduction
	18.1 Hashing
	Array Set Implementations
	Hash Functions and Hash Tables
	Collisions
	Rehashing
	Hashing Non-Integer Data
	Hash Map Implementation

	18.2 Priority Queues and Heaps
	Priority Queues
	Introduction to Heaps
	Removing from a Heap
	Adding to a Heap
	Array Heap Implementation
	Heap Sort

	Chapter Summary
	Self-Check Problems
	Section 18.1: Hashing
	Section 18.2: Priority Queues and Heaps

	Exercises
	Programming Projects

	Chapter 19 Functional Programming with Java 8
	Introduction
	19.1 Effect-Free Programming
	19.2 First-Class Functions
	Lambda Expressions

	19.3 Streams
	Basic Idea
	Using Map
	Using Filter
	Using Reduce
	Optional Results

	19.4 Function Closures
	19.5 Higher-Order Operations on Collections
	Working with Arrays
	Working with Lists
	Working with Files

	19.6 Case Study: Perfect Numbers
	Computing Sums
	Incorporating Square Root
	Just Five and Leveraging Concurrency

	Chapter Summary
	Self-Check Problems
	19.1 Effect-Free Programming
	19.2 First-Class Functions
	19.3 Streams
	19.4 Function Closures
	19.5 Higher-Order Operations on Collections

	Exercises
	Programming Projects

	Appendix A Java Summary
	Java Keywords
	Primitive Types
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Operator Precedence
	Wrapper Classes
	Syntax Templates
	Useful Methods of ArrayList Objects
	Useful Methods of the Character Class
	Useful Methods of the Collection Interface
	Useful Methods of the Collections Class
	Useful Methods of DrawingPanel Objects
	Useful Methods of File Objects
	Useful Methods of Graphics Objects
	Useful Methods of Iterator Objects
	Useful Methods of Map Objects
	Constants and Useful Methods of the Math Class
	Useful Methods of the Object Class
	Useful Methods of Point Objects
	Useful Methods of Random Objects
	Useful Methods of Scanner Objects
	Useful Methods of String Objects

	Appendix B The Java API Specification and Javadoc Comments
	The Java API Specification
	Parameters
	Returns
	Throws
	Deprecated

	Writing Javadoc Comments

	Appendix C Additional Java Syntax
	Primitive Types: byte, short, long, float
	Ternary Operator ? :
	Exiting a Loop: break and continue
	The switch Statement
	The try/catch Statement
	The assert Statement
	Enumerations: enum
	Packages
	Protected and Default Access

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

