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Preface

“We see that the theory of probability is at bottom only common sense reduced to
calculation; it makes us appreciate with exactitude what reasonable minds feel by a
sort of instinct, often without being able to account for it... It is remarkable that this
science, which originated in the consideration of games of chance, should have
become the most important object of human knowledge.... The most important
questions of life are, for the most part, really only problems of probability.” So said
the famous French mathematician and astronomer (the “Newton of France”) Pierre-
Simon, Marquis de Laplace. Although many people believe that the famous marquis,
who was also one of the great contributors to the development of probability, might
have exaggerated somewhat, it is nevertheless true that probability theory has
become a tool of fundamental importance to nearly all scientists, engineers, medical
practitioners, jurists, and industrialists. In fact, the enlightened individual had learned
to ask not “Is it so?” but rather “What is the probability that it is so?”

General Approach and Mathematical Level

This book is intended as an elementary introduction to the theory of probability for
students in mathematics, statistics, engineering, and the sciences (including



10 of 848

computer science, biology, the social sciences, and management science) who
possess the prerequisite knowledge of elementary calculus. It attempts to present
not only the mathematics of probability theory, but also, through numerous examples,
the many diverse possible applications of this subject.

Content and Course Planning

Chapter 1 presents the basic principles of combinatorial analysis, which are most
useful in computing probabilities.

Chapter 2  handles the axioms of probability theory and shows how they can be
applied to compute various probabilities of interest.

Chapter 3  deals with the extremely important subjects of conditional probability
and independence of events. By a series of examples, we illustrate how conditional
probabilities come into play not only when some partial information is available, but
also as a tool to enable us to compute probabilities more easily, even when no partial
information is present. This extremely important technique of obtaining probabilities
by “conditioning” reappears in Chapter 7, where we use it to obtain expectations.

The concept of random variables is introduced in Chapters 4 ,5 ,and 6
Discrete random variables are dealt with in Chapter 4 , continuous random
variables in Chapter 5 , and jointly distributed random variables in Chapter 6

The important concepts of the expected value and the variance of a random variable
are introduced in Chapters 4 and 5 |, and these quantities are then determined
for many of the common types of random variables.

Additional properties of the expected value are considered in Chapter 7 . Many
examples illustrating the usefulness of the result that the expected value of a sum of
random variables is equal to the sum of their expected values are presented.
Sections on conditional expectation, including its use in prediction, and on moment-
generating functions are contained in this chapter. In addition, the final section
introduces the multivariate normal distribution and presents a simple proof
concerning the joint distribution of the sample mean and sample variance of a
sample from a normal distribution.

Chapter 8  presents the major theoretical results of probability theory. In particular,
we prove the strong law of large numbers and the central limit theorem. Our proof of
the strong law is a relatively simple one that assumes that the random variables have
a finite fourth moment, and our proof of the central limit theorem assumes Levy’s
continuity theorem. This chapter also presents such probability inequalities as
Markov’s inequality, Chebyshev’s inequality, and Chernoff bounds. The final section
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of Chapter 8  gives a bound on the error involved when a probability concerning a
sum of independent Bernoulli random variables is approximated by the
corresponding probability of a Poisson random variable having the same expected
value.

Chapter 9  presents some additional topics, such as Markov chains, the Poisson
process, and an introduction to information and coding theory, and Chapter 10
considers simulation.

As in the previous edition, three sets of exercises are given at the end of each
chapter. They are designated as Problems, Theoretical Exercises, and Self-Test
Problems and Exercises. This last set of exercises, for which complete solutions
appear in Solutions to Self-Test Problems and Exercises, is designed to help
students test their comprehension and study for exams.

Changes for the Tenth Edition

The tenth edition continues the evolution and fine tuning of the text. Aside from a
multitude of small changes made to increase the clarity of the text, the new edition
includes many new and updated problems, exercises, and text material chosen both
for inherent interest and for their use in building student intuition about probability.
lllustrative of these goals are Examples 4n of Chapter 3 , which deals with
computing NCAA basketball tournament win probabilities, and Example 5b of
Chapter 4 , which introduces the friendship paradox. There is also new material
on the Pareto distribution (introduced in Section 5.6.5 ), on Poisson limit results
(in Section 8.5 ), and on the Lorenz curve (in Section 8.7 ).
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Chapter 1 Combinatorial Analysis

Contents

1.1 Introduction

1.2 The Basic Principle of Counting
1.3 Permutations

1.4 Combinations

1.5 Multinomial Coefficients

1.6 The Number of Integer Solutions of Equations

1.1 Introduction

Here is a typical problem of interest involving probability: A communication system is
to consist of n seemingly identical antennas that are to be lined up in a linear order.
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The resulting system will then be able to receive all incoming signals and will be
called functional as long as no two consecutive antennas are defective. If it turns out
that exactly m of the n antennas are defective, what is the probability that the
resulting system will be functional? For instance, in the special case where n = 4 and
m = 2, there are 6 possible system configurations, namely,

N T = W T =)
R, O O O R K
©C O R R O R
O R R O R O

where 1 means that the antenna is working and 0 that it is defective. Because the
resulting system will be functional in the first 3 arrangements and not functional in the
remaining 3, it seems reasonable to take % = % as the desired probability. In the case

of general n and m, we could compute the probability that the system is functional in
a similar fashion. That is, we could count the number of configurations that result in
the system’s being functional and then divide by the total number of all possible
configurations.

From the preceding discussion, we see that it would be useful to have an effective
method for counting the number of ways that things can occur. In fact, many
problems in probability theory can be solved simply by counting the number of
different ways that a certain event can occur. The mathematical theory of counting is
formally known as combinatorial analysis.

1.2 The Basic Principle of Counting

The basic principle of counting will be fundamental to all our work. Loosely put, it
states that if one experiment can result in any of m possible outcomes and if another
experiment can result in any of n possible outcomes, then there are mn possible
outcomes of the two experiments.

The basic principle of counting

Suppose that two experiments are to be performed. Then if experiment 1 can
result in any one of m possible outcomes and if, for each outcome of
experiment 1, there are n possible outcomes of experiment 2, then together
there are mn possible outcomes of the two experiments.

Proof of the Basic Principle: The basic principle may be proven by enumerating all
the possible outcomes of the two experiments; that is,
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(1,1, (1,2, ... (1,n
(2,1, (2,2, ..., (2n

(m1), (m?2), .., (mn)

where we say that the outcome is (i, j) if experiment 1 results in its ith possible
outcome and experiment 2 then results in its jth possible outcome. Hence, the set of
possible outcomes consists of m rows, each containing n elements. This proves the
result.

Example 2a

A small community consists of 10 women, each of whom has 3 children. If one
woman and one of her children are to be chosen as mother and child of the year,
how many different choices are possible?

Solution

By regarding the choice of the woman as the outcome of the first experiment and
the subsequent choice of one of her children as the outcome of the second
experiment, we see from the basic principle that there are 10 x 3 = 30 possible
choices.

When there are more than two experiments to be performed, the basic principle can
be generalized.

The generalized basic principle of counting

If » experiments that are to be performed are such that the first one may result
in any of n, possible outcomes; and if, for each of these n, possible outcomes,
there are n, possible outcomes of the second experiment; and if, for each of
the possible outcomes of the first two experiments, there are n; possible
outcomes of the third experiment; and if, then there is a total of n; - n,--n,

possible outcomes of the r experiments.
Example 2b

A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors,
and 2 seniors. A subcommittee of 4, consisting of 1 person from each class, is to
be chosen. How many different subcommittees are possible?

Solution

We may regard the choice of a subcommittee as the combined outcome of the
four separate experiments of choosing a single representative from each of the
classes. It then follows from the generalized version of the basic principle that
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there are 3 X 4 x5 x 2 = 120 possible subcommittees.

Example 2¢c

How many different 7-place license plates are possible if the first 3 places are to
be occupied by letters and the final 4 by numbers?

Solution

By the generalized version of the basic principle, the answer is
26-26-26-10-10-10-10 = 175,760,000.

Example 2d

How many functions defined on n points are possible if each functional value is
either 0 or 1?

Solution

Let the points be 1,2, ... ,n. Since f(i) must be either 0 or 1 foreachi =1,2,... n,
it follows that there are 2" possible functions.

Example 2e

In Example 2¢ , how many license plates would be possible if repetition
among letters or numbers were prohibited?

Solution

In this case, there would be 26 - 25-24-10-9-8-7 = 78,624,000 possible
license plates.

1.3 Permutations

How many different ordered arrangements of the letters a, b, and c are possible? By
direct enumeration we see that there are 6, namely, abc, acb, bac, bca, cab, and
cba. Each arrangement is known as a permutation. Thus, there are 6 possible
permutations of a set of 3 objects. This result could also have been obtained from
the basic principle, since the first object in the permutation can be any of the 3, the
second object in the permutation can then be chosen from any of the remaining 2,
and the third object in the permutation is then the remaining 1. Thus, there are
3-2-1 = 6 possible permutations.

Suppose now that we have n objects. Reasoning similar to that we have just
used for the 3 letters then shows that there are
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nn—-1)(n—2)-3-2-1=nl!

different permutations of the n objects.

Whereas n! (read as “n factorial”) is defined to equal 1 - 2---n when n is a positive
integer, it is convenient to define 0! to equal 1.

Example 3a

How many different batting orders are possible for a baseball team consisting of
9 players?

Solution

There are 9! = 362,880 possible batting orders.

Example 3b

A class in probability theory consists of 6 men and 4 women. An examination is
given, and the students are ranked according to their performance. Assume that
no two students obtain the same score.

a. How many different rankings are possible?
b. If the men are ranked just among themselves and the women just among
themselves, how many different rankings are possible?

Solution

a. (a) Because each ranking corresponds to a particular ordered
arrangement of the 10 people, the answer to this part is 10! = 3,628,800.

b. (b) Since there are 6! possible rankings of the men among themselves
and 4! possible rankings of the women among themselves, it follows from
the basic principle that there are (6!)(4!) = (720)(24) = 17,280 possible
rankings in this case.

Example 3c

Ms. Jones has 10 books that she is going to put on her bookshelf. Of these, 4 are
mathematics books, 3 are chemistry books, 2 are history books, and 1 is a
language book. Ms. Jones wants to arrange her books so that all the books
dealing with the same subject are together on the shelf. How many different
arrangements are possible?

Solution

There are 4! 3! 2! 1! arrangements such that the mathematics books are first in
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line, then the chemistry books, then the history books, and then the language
book. Similarly, for each possible ordering of the subjects, there are 4! 3! 2! 1!
possible arrangements. Hence, as there are 4! possible orderings of the subjects,
the desired answer is 4!14!3!12!1! = 6912.

We shall now determine the number of permutations of a set of n objects when
certain of the objects are indistinguishable from one another. To set this situation
straight in our minds, consider the following example.

Example 3d

How many different letter arrangements can be formed from the letters PEPPER?

Solution

We first note that there are 6! permutations of the letters P, E, P,P;E,R when the
3P's and the 2E's are distinguished from one another. However, consider any one
of these permutations for instance, P, P,E,P3;E,R. If we now permute the P’s
among themselves and the E’s among themselves, then the resultant
arrangement would still be of the form PPEPER. That is, all 3! 2! permutations

P.P,E,P3;E,R P,P,E,P3ER
P.P;E,P,E,R P,P3E,P,E R
P,P.E,P3;E,R P,P,E,P3E,R
P,P;E,P,E,R P,P3E,P{E R
P;P.E,P,E,R P3P,E,P,E R
P;P,E,P,E,R P3P,E,P{E R

are of the form PPEPER. Hence, there are 6!/(3!2!) = 60 possible letter
arrangements of the letters PEPPER.

In general, the same reasoning as that used in Example 3d  shows that

there are
n!
nyin,!--n,!
different permutations of n objects, of which n, are alike, n, are alike, ... n,
are alike.
Example 3e

A chess tournament has 10 competitors, of which 4 are Russian, 3 are from the
United States, 2 are from Great Britain, and 1 is from Brazil. If the tournament
result lists just the nationalities of the players in the order in which they placed,
how many outcomes are possible?
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Solution

There are

10!

21312011 14600

possible outcomes.

Example 3f

How many different signals, each consisting of 9 flags hung in a line, can be
made from a set of 4 white flags, 3 red flags, and 2 blue flags if all flags of the
same color are identical?

Solution

There are

213121~ 1260

different signals.

1.4 Combinations

We are often interested in determining the number of different groups of r objects
that could be formed from a total of n objects. For instance, how many different
groups of 3 could be selected from the 5 items A, B, C, D, and E? To answer this
question, reason as follows: Since there are 5 ways to select the initial item, 4 ways
to then select the next item, and 3 ways to select the final item, there are thus 5-4 -3
ways of selecting the group of 3 when the order in which the items are selected is
relevant. However, since every group of 3—say, the group consisting of items A, B,
and C will be counted 6 times (that is, all of the permutations ABC, ACB, BAC, BCA,
CAB, and CBA will be counted when the order of selection is relevant), it follows that
the total number of groups that can be formed is

5-4-3
3-2-1

=10

In general, as n(n — 1)---(n — r + 1) represents the number of different ways that a
group of r items could be selected from n items when the order of selection is
relevant, and as each group of r items will be counted r! times in this count, it follows
that the number of different groups of r items that could be formed from a set of n
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items is

nn—1)--Mm-r+1) n!
r! C(n—=1n)!r!

Notation and terminology

n

We define ( > for r < n, by

r

n\ n!
(r) C(n—n)!r!

and say that <n> (read as “n choose r“) represents the number of possible
r

combinations of n objects taken r at a time.
Thus, (n) represents the number of different groups of size r that could be selected
T

from a set of n objects when the order of selection is not considered relevant.

n
Equivalently, < > is the number of subsets of size r that can be chosen from a set of
r

n n n!
size n. Using that 0! = 1, note that < ) = <0> = oIl = 1, which is consistent with
n In!

the preceding interpretation because in a set of size n there is exactly 1 subset of
size n (namely, the entire set), and exactly one subset of size 0 (hamely the empty

n
set). A useful convention is to define < > equal to 0 when either r > norr < 0.
r

Example 4a

A committee of 3 is to be formed from a group of 20 people. How many different
committees are possible?

Solution

20 20-19-18 , ,
There are 3)" 321 1140 possible committees.

Example 4b

From a group of 5 women and 7 men, how many different committees consisting
of 2 women and 3 men can be formed? What if 2 of the men are feuding and
refuse to serve on the committee together?

Solution
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5 7
As there are <2> possible groups of 2 women, and (3) possible groups of 3

5\/7 5-4
men, it follows from the basic principle that there are <2><3> =571

7-6-5
3:2-1

= 350 possible committees consisting of 2 women and 3 men.

Now suppose that 2 of the men refuse to serve together. Because a total of

2\/5 7
<2><1> = 5 out of the <3> = 35 possible groups of 3 men contain both of the

feuding men, it follows that there are 35 — 5 = 30 groups that do not contain both
5
of the feuding men. Because there are still <2> = 10 ways to choose the 2

women, there are 30 - 10 = 300 possible committees in this case.

Example 4c

Consider a set of n antennas of which m are defective and n — m are functional
and assume that all of the defectives and all of the functionals are considered
indistinguishable. How many linear orderings are there in which no two
defectives are consecutive?

Solution

Imagine that the n — m functional antennas are lined up among themselves. Now,
if no two defectives are to be consecutive, then the spaces between the
functional antennas must each contain at most one defective antenna. That is, in
the n — m + 1 possible positions—represented in Figure 1.1 by carets—
between the n — m functional antennas, we must select m of these in which to

n 1
put the defective antennas. Hence, there are < ) possible orderings in

which there is at least one functional antenna between any two defective ones.

Figure 1.1 No consecutive defectives.
The figure shows No consecutive defectives

A useful combinatorial identity, known as Pascal’s identity, is

()=(22) (") 1rsn

Equation (4.1)  may be proved analytically or by the following combinatorial

(4.1)

argument: Consider a group of n objects, and fix attention on some particular one of



these objects—call it object 1. Now, there are (n 1) groups of size r that contain

object 1 (since each such group is formed by selecting r — 1 from the remaining

n
n — 1 objects). Also, there are < > groups of size r that do not contain object 1.

As there is a total of (n> groups of size r, Equation (4.1)  follows.
r

n
The values < ) are often referred to as binomial coefficients because of their
r

prominence in the binomial theorem.

The binomial theorem
(4.2)

(x_l_y)n: Z <Z>xkyn—k

We shall present two proofs of the binomial theorem. The first is a proof by
mathematical induction, and the second is a proof based on combinatorial
considerations.

Proof of the Binomial Theorem by Induction: When n = 1, Equation (4.2)

reduces to
1 1
x+y= <0>x0y1+ <1>x1y° =y+ x

Assume Equation (4.2)  for n — 1. Now,

x+y)x+ytt

n =1 1
n_
(x+y)zz ( " )th—fk
k=0
n —1 —_
Zn_l k+1n1k+zn_1 nk
k
k =0 =

Letting i = k + 1 in the first sum and i = k in the second sum, we find that

x+"
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(x+y" = Z <7l,l__11>xiy"“’+ Z <n;1>xiy"_"

i 1 i=0
n —1 n —1
n—1 n—1 B
— Z ) xlyn L+xn+yn+ Z xlyn i
1— l
i =1 1 =1

where the next-to-last equality follows by Equation (4.1) . By induction, the
theorem is now proved.

Combinatorial Proof of the Binomial Theorem: Consider the product

(X1 +y ) +y,)(xn +,)

Its expansion consists of the sum of 2" terms, each term being the product of n
factors. Furthermore, each of the 2™ terms in the sum will contain as a factor either x;
ory, foreachi=1,2,... n For example,

(X]_ +y1)(x2 +y2) = X1X2 +X1y2 +y1X2 +y1y2
Now, how many of the 2™ terms in the sum will have k of the x;’s and (n — k) of the
y,;'s as factors? As each term consisting of k of the x;'s and (n — k) of the y,’s
n
corresponds to a choice of a group of k from the n values x4, x,..., x,,, there are <k>
such terms. Thus, letting x; = x,y, = y,i = 1,...,n, we see that

n

+y)" = z (:)x"y“"‘

k=0

Example 4d

Expand (x + y)°>.

Solution



25 of 848

(x+y)°

3 3 3 3
(e (e (o (o

= y3+3xy? +3x%y + x3

Example 4e

How many subsets are there of a set consisting of n elements?
Solution

Since there are (:) subsets of size k, the desired answer is

2 <Z>=(1+1)“:2"

This result could also have been obtained by assigning either the number 0 or
the number 1 to each element in the set. To each assignment of numbers, there
corresponds, in a one-to-one fashion, a subset, namely, that subset consisting of
all elements that were assigned the value 1. As there are 2" possible
assignments, the result follows.

Note that we have included the set consisting of 0 elements (that is, the null set)
as a subset of the original set. Hence, the number of subsets that contain at least
1 element is 2™ — 1.

1.5 Multinomial Coefficients

In this section, we consider the following problem: A set of n distinct items is to be
T

divided into r distinct groups of respective sizes n,,n,, ... ,n,, where Z n; =n.
i=1

How many different divisions are possible? To answer this question, we note that

n
there are (

n > possible choices for the first group; for each choice of the first group,
1

n—n1

n;

there are ( > possible choices for the second group; for each choice of the first

n—n,—n

two groups, there are < 2) possible choices for the third group; and so on.

ns
It then follows from the generalized version of the basic counting principle that there
are
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n Tl—n1 n_nl_nz_"'_nr_l
Tll le nr

n! (n—ny)! nmn—my—ny — - —np_q)!
:(n—nl)!nl!(n—nl—nz)!nz!m 0!n,!

n!
:nl!nz!---nr!

possible divisions.

Another way to see this result is to consider the n values 1,1,...,1,2,...,2,...,
r,...,r, where i appears n; times, fori = 1, ... ,r. Every permutation of these values
corresponds to a division of the n items into the r groups in the following manner: Let
the permutation i,,i,, ... ,i,, correspond to assigning item 1 to group i, item 2 to
group i,, and so on. For instance, if n = 8 and if n;, = 4,n, = 3,andn; = 1, then the
permutation 1,1, 2, 3, 2,1, 2,1 corresponds to assigning items 1, 2, 6, 8 to the first
group, items 3,5, 7 to the second group, and item 4 to the third group. Because every
permutation yields a division of the items and every possible division results from
some permutation, it follows that the number of divisions of n items into r distinct
groups of sizes nq,n,, ... ,n, is the same as the number of permutations of n items of

which n, are alike, and n, are alike, ..., and n, are alike, which was shown in

n!
Section 1.3 toequal ———.
nyn,l--n,!

Notation

n
Ifn, + n, +--- + n,, = n, we define b
1 2 T (nl'nZ: ’nr> y

n n!
NNy, ... Ny nqlny!l--n,!

Thus, < > represents the number of possible divisions of n distinct

NNy, - Ny

objects into r distinct groups of respective sizes ny,n,, ... n,.
Example 5a

A police department in a small city consists of 10 officers. If the department
policy is to have 5 of the officers patrolling the streets, 2 of the officers working
full time at the station, and 3 of the officers on reserve at the station, how many
different divisions of the 10 officers into the 3 groups are possible?

Solution
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There are C1213]

= 2520 possible divisions.

Example 5b

Ten children are to be divided into an A team and a B team of 5 each. The A
team will play in one league and the B team in another. How many different
divisions are possible?

Solution

There are IS

= 252 possible divisions.

Example 5¢

In order to play a game of basketball, 10 children at a playground divide
themselves into two teams of 5 each. How many different divisions are possible?

Solution

Note that this example is different from Example 5b  because now the order of
the two teams is irrelevant. That is, there is no A or B team, but just a division
consisting of 2 groups of 5 each. Hence, the desired answer is

10!1/(5!51)

21 =126

The proof of the following theorem, which generalizes the binomial theorem, is left as
an exercise.

The multinomial theorem
(xl + xZ + -+ xr)n =

n
n n n
x11x22---xrr
Z ny,ny, . . Ny

(e onn):
ny+- +n,=n

That is, the sum is over all nonnegative integer-valued vectors (nq,n,, ... ,n,)
such thatn; +n, + -+ n, =n.

The numbers ( > are known as multinomial coefficients.

nyny, ... Ny

Example 5d

In the first round of a knockout tournament involving n = 2™ players, the n
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players are divided into n/2 pairs, with each of these pairs then playing a game.
The losers of the games are eliminated while the winners go on to the next
round, where the process is repeated until only a single player remains. Suppose
we have a knockout tournament of 8 players.

a. How many possible outcomes are there for the initial round? (For
instance, one outcome is that 1 beats 2, 3 beats 4, 5 beats 6, and 7 beats
8.)

b. How many outcomes of the tournament are possible, where an outcome
gives complete information for all rounds?

Solution

One way to determine the number of possible outcomes for the initial round is to
first determine the number of possible pairings for that round. To do so, note that

the number of ways to divide the 8 players into a first pair, a second pair, a third

8 8!
pair, and a fourth pair is (2 2 2 2) = 24 Thus, the number of possible pairings
|

241"

when there is no ordering of the 4 pairs is For each such pairing, there are

2 possible choices from each pair as to the winner of that game, showing that

gr2* 8!
there are X = possible results of round 1. [Another way to see this is to

8
note that there are <4> possible choices of the 4 winners and, for each such

choice, there are 4! ways to pair the 4 winners with the 4 losers, showing that
8 8!
there are 4!(4) =1 possible results for the first round.]

41
Similarly, for each result of round 1, there are T possible outcomes of round 2,

2!
and for each of the outcomes of the first two rounds, there are T possible

outcomes of round 3. Consequently, by the generalized basic principle of

8! 4! 2!
counting, there are kT 8! possible outcomes of the tournament. Indeed,
the same argument can be used to show that a knockout tournament of n = 2™

players has n! possible outcomes.

Knowing the preceding result, it is not difficult to come up with a more direct
argument by showing that there is a one-to-one correspondence between the set
of possible tournament results and the set of permutations of 1, ... ,n. To obtain
such a correspondence, rank the players as follows for any tournament result:
Give the tournament winner rank 1, and give the final-round loser rank 2. For the
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two players who lost in the next-to-last round, give rank 3 to the one who lost to
the player ranked 1 and give rank 4 to the one who lost to the player ranked 2.
For the four players who lost in the second-to-last round, give rank 5 to the one
who lost to player ranked 1, rank 6 to the one who lost to the player ranked 2,
rank 7 to the one who lost to the player ranked 3, and rank 8 to the one who lost
to the player ranked 4. Continuing on in this manner gives a rank to each player.
(A more succinct description is to give the winner of the tournament rank 1 and
let the rank of a player who lost in a round having 2* matches be 2 plus the rank
of the player who beat him, for k = 0, ...,m — 1.) In this manner, the result of the
tournament can be represented by a permutation iy,i, ... iy, Where i; is the
player who was given rank j. Because different tournament results give rise to
different permutations, and because there is a tournament result for each
permutation, it follows that there are the same number of possible tournament
results as there are permutations of 1, ... ,n.

Example 5e

2 2
2
(x; +x, +x3)° = (2 0 0> x2x9xQ + (0 5 0) x9x2x2

2 2
+<0’ 0, 2) xx9x2 + (1' N 0) xixix?

2 2
+<1' 0, 1) xixdxl + <0’ N 1) x9xtxl

= xZ4+xZ+x2+2x1x, + 2x1X5 + 2XX3

* 1.6 The Number of Integer Solutions of
Equations

* Asterisks denote material that is optional.

An individual has gone fishing at Lake Ticonderoga, which contains four types of fish:
lake trout, catfish, bass, and bluefish. If we take the result of the fishing trip to be the
numbers of each type of fish caught, let us determine the number of possible
outcomes when a total of 10 fish are caught. To do so, note that we can denote the
outcome of the fishing trip by the vector (x4, x,, x3, x,) where x; is the number of
trout that are caught, x, is the number of catfish, x5 is the number of bass, and x, is
the number of bluefish. Thus, the number of possible outcomes when a total of 10
fish are caught is the number of nonnegative integer vectors (x, x5, x5, x,) that sum
to 10.
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More generally, if we supposed there were r types of fish and that a total of n were
caught, then the number of possible outcomes would be the number of nonnegative
integer-valued vectors x4, ... ,x, such that

(6.1)

X1 +x,+ ... +x,=n

To compute this number, let us start by considering the number of positive integer-
valued vectors x4, ... ,x, that satisfy the preceding. To determine this number,
suppose that we have n consecutive zeroes lined up in a row:

000...00

Note that any selection of r — 1 of the n — 1 spaces between adjacent zeroes (see
Figure 1.2 ) corresponds to a positive solution of 6.1 by letting x; be the
number of zeroes before the first chosen space, x, be the number of zeroes between
the first and second chosen space, ..., and x,, being the number of zeroes following
the last chosen space.

Figure 1.2 Number of positive solutions.

OAODAODA...AO0A0

n objects ()

Choose r — 1 of the spaces a.

For instance, if we have n = 8 and r = 3, then (with the choices represented by dots)
the choice

0.0000.000

corresponds to the solution x; = 1,x, = 4,x3 = 3. As positive solutions of (6.1)
correspond, in a one-to-one fashion, to choices of r — 1 of the adjacent spaces, it
follows that the number of differerent positive solutions is equal to the number of
different selections of r — 1 of the n — 1 adjacent spaces. Consequently, we have the
following proposition.

Proposition 6.1
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r —

There are (n 1) distinct positive integer-valued vectors (x4, x5, ... ,x;)

satisfying the equation
X1 +xy+-+x.=n x;>0, (=1,...r
To obtain the number of nonnegative (as opposed to positive) solutions, note that the
number of nonnegative solutions of x; + x, + - + x,, = n is the same as the number

of positive solutions of y, + -+ +y_=n+r(seenbylettingy, =x; +1,i=1,...,r).
Hence, from Proposition 6.1 , we obtain the following proposition.

Proposition 6.2

n+r
There are <

> distinct nonnegative integer-valued vectors (x;,x,, ... ,x;)
r —

satisfying the equation

Xy +x,+ -+ x.=n

13
Thus, using Proposition 6.2 , we see that there are < 5 > = 286 possible

outcomes when a total of 10 Lake Ticonderoga fish are caught.

Example 6a

How many distinct nonnegative integer-valued solutions of x; + x, = 3 are
possible?

Solution

3+2-1

There are ( ) = 4 such solutions: (0, 3), (1, 2), (2, 1), (3, 0).

Example 6b

An investor has $20,000 to invest among 4 possible investments. Each
investment must be in units of $1000. If the total $20,000 is to be invested, how
many different investment strategies are possible? What if not all the money
needs to be invested?

Solution

If we let x;,i = 1, 2, 3, 4, denote the number of thousands invested in investment
i, then, when all is to be invested, x;, x,, x5, x, are integers satisfying the
equation
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x1+x2+X3+X4=20 XLZO

23
Hence, by Proposition 6.2 , there are ( 3 ) = 1771 possible investment

strategies. If not all of the money needs to be invested, then if we let x; denote
the amount kept in reserve, a strategy is a nonnegative integer-valued vector
(x1, x5, X3, X4, x5) Satisfying the equation

x1+x2+x3+x4+x5:20
i 24 : :
Hence, by Proposition 6.2 | there are now i) 10,626 possible strategies.

Example 6¢

How many terms are there in the multinomial expansion of (x; + x, + - + x,)™?

Solution
(X1 +x, + - +x )":Z " xpteex)T
1 2 r Ny .o My 1 r

where the sum is over all nonnegative integer-valued (nq, ... ,n,) such that

+r—1
n; + -+ +n, = n. Hence, by Proposition 6.2 | there are <n ’ 1 ) such
r —

terms.

Example 6d

Let us consider again Example 4c , in which we have a set of n items, of
which m are (indistinguishable and) defective and the remaining n — m are (also
indistinguishable and) functional. Our objective is to determine the number of
linear orderings in which no two defectives are next to each other. To determine
this number, let us imagine that the defective items are lined up among
themselves and the functional ones are now to be put in position. Let us denote
x, as the number of functional items to the left of the first defective, x, as the
number of functional items between the first two defectives, and so on. That is,
schematically, we have

%1 0x5 0, 0 X004 1
Now, there will be at least one functional item between any pair of defectives as

long as x; > 0,i = 2,...,m. Hence, the number of outcomes satisfying the
condition is the number of vectors x4, ... ,x,, -, that satisfy the equation
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X1+ t+xprr=n—m, x1=20%x,41=0x>0i=2,...,m

But,onlettingy, =x, + Ly, =x;,i=2,... myy = X;,+1 + 1, we see that this

m+1
number is equal to the number of positive vectors (y,, ...,y ) that satisfy the

equation

y,ty,++y ,=n—m+2

1 .
such outcomes, in
m

Hence, by Proposition 6.1 |, there are (n

agreement with the results of Example 4c

Suppose now that we are interested in the number of outcomes in which each
pair of defective items is separated by at least 2 functional items. By the same
reasoning as that applied previously, this would equal the number of vectors
satisfying the equation

X1+t t+xpi=n-—-m, x1=20,x,:1=20x;=22,i=2,...,m

Uponlettingy, =x; + 1Ly, =x;,—1,i=2,....my = Xn+1 + 1, we see that

m+1
this is the same as the number of positive solutions of the equation

y,+t+y, ,=n—2m+3

L n—2m+2
Hence, from Proposition 6.1 | there are such outcomes.

m

Summary

The basic principle of counting states that if an experiment consisting of two phases
is such that there are n possible outcomes of phase 1 and, for each of these n
outcomes, there are m possible outcomes of phase 2, then there are nm possible
outcomes of the experiment.

There are n! = n(n—1)---3- 2 - 1 possible linear orderings of n items. The quantity 0!
is defined to equal 1.

n\ n!
(i) NCEDIL
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when 0 < i < n, and let it equal 0 otherwise. This quantity represents the number of
different subgroups of size i that can be chosen from a set of size n. It is often called
a binomial coefficient because of its prominence in the binomial theorem, which
states that

n

(x+y)"= Z <ril>x"y"“'

i =0

For nonnegative integers n4, ... ,n,, summing to n,

n n!
ny,ny, . . ., Ny nylnyl--n,!

is the number of divisions of n items into r distinct nonoverlapping subgroups of
sizes nq,n, ... ,n,. These quantities are called multinomial coefficients.

Problems

a. How many different 7-place license plates are possible if the first
2 places are for letters and the other 5 for numbers?

b. Repeat part (a) under the assumption that no letter or number
can be repeated in a single license plate.

2. How many outcome sequences are possible when a die is rolled four
times, where we say, for instance, that the outcome is 3, 4, 3, 1 if the
first roll landed on 3, the second on 4, the third on 3, and the fourth on
17?

3. Twenty workers are to be assigned to 20 different jobs, one to each
job. How many different assignments are possible?

4. John, Jim, Jay, and Jack have formed a band consisting of 4
instruments. If each of the boys can play all 4 instruments, how many
different arrangements are possible? What if John and Jim can play all
4 instruments, but Jay and Jack can each play only piano and drums?
5. For years, telephone area codes in the United States and Canada
consisted of a sequence of three digits. The first digit was an integer
between 2 and 9, the second digit was either 0 or 1, and the third digit
was any integer from 1 to 9. How many area codes were possible?
How many area codes starting with a 4 were possible?

6. A well-known nursery rhyme starts as follows:
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“As | was going to St. lves

| met a man with 7 wives.

Each wife had 7 sacks.

Each sack had 7 cats.

Each cat had 7 kittens...”

How many kittens did the traveler meet?

a. In how many ways can 3 boys and 3 girls sit in a row?

b. In how many ways can 3 boys and 3 girls sit in a row if the boys
and the girls are each to sit together?

c. In how many ways if only the boys must sit together?

d. In how many ways if no two people of the same sex are allowed
to sit together?

8. When all letters are used, how many different letter arrangements
can be made from the letters

a. Fluke?

b. Propose?
c. Mississippi?
d. Arrange?

9. A child has 12 blocks, of which 6 are black, 4 are red, 1 is white, and
1 is blue. If the child puts the blocks in a line, how many arrangements
are possible?

10. In how many ways can 8 people be seated in a row if

a. there are no restrictions on the seating arrangement?

b. persons A and B must sit next to each other?

c. there are 4 men and 4 women and no 2 men or 2 women can sit
next to each other?

d. there are 5 men and they must sit next to one another?

e. there are 4 married couples and each couple must sit together?

11. In how many ways can 3 novels, 2 mathematics books, and 1
chemistry book be arranged on a bookshelf if

a. the books can be arranged in any order?

b. the mathematics books must be together and the novels must
be together?

c. the novels must be together, but the other books can be
arranged in any order?
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12. How many 3 digit numbers xyz, with x, y, z all ranging from 0 to 9
have at least 2 of their digits equal. How many have exactly 2 equal
digits.
13. How many different letter permutations, of any length, can be made
using the letters M O T T O. (For instance, there are 3 possible
permutations of length 1.)
14. Five separate awards (best scholarship, best leadership qualities,
and so on) are to be presented to selected students from a class of 30.
How many different outcomes are possible if

a. a student can receive any number of awards?

b. each student can receive at most 1 award?

15. Consider a group of 20 people. If everyone shakes hands with
everyone else, how many handshakes take place?
16. How many 5-card poker hands are there?
17. A dance class consists of 22 students, of which 10 are women and
12 are men. If 5 men and 5 women are to be chosen and then paired
off, how many results are possible?
18. A student has to sell 2 books from a collection of 6 math, 7 science,
and 4 economics books. How many choices are possible if

a. both books are to be on the same subject?

b. the books are to be on different subjects?

19. Seven different gifts are to be distributed among 10 children. How
many distinct results are possible if no child is to receive more than one
gift?
20. A committee of 7, consisting of 2 Republicans, 2 Democrats, and 3
Independents, is to be chosen from a group of 5 Republicans, 6
Democrats, and 4 Independents. How many committees are possible?
21. From a group of 8 women and 6 men, a committee consisting of 3
men and 3 women is to be formed. How many different committees are
possible if

a. 2 of the men refuse to serve together?

b. 2 of the women refuse to serve together?

c. 1 man and 1 woman refuse to serve together?

22. A person has 8 friends, of whom 5 will be invited to a party.
a. How many choices are there if 2 of the friends are feuding and
will not attend together?
b. How many choices if 2 of the friends will only attend together?
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23. Consider the grid of points shown at the top of the next column.
Suppose that, starting at the point labeled A, you can go one step up or
one step to the right at each move. This procedure is continued until
the point labeled B is reached. How many different paths from A to B
are possible?

Hint: Note that to reach B from A, you must take 4 steps to the right
and 3 steps upward.

B
® 4 ® ® L
o L ® 4 ®
® ¢ ® o ®
L * *® o ]
A

24. In Problem 23 , how many different paths are there from A to B

that go through the point circled in the following lattice?
ol ' . L ® B

4 o o o ® ®
25. A psychology laboratory conducting dream research contains 3
rooms, with 2 beds in each room. If 3 sets of identical twins are to be
assigned to these 6 beds so that each set of twins sleeps in different
beds in the same room, how many assignments are possible?

26.
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27. Expand (3x2 + y)".
28. The game of bridge is played by 4 players, each of whom is dealt
13 cards. How many bridge deals are possible?
29. Expand (x; + 2x, + 3x3)*
30. If 12 people are to be divided into 3 committees of respective sizes
3, 4, and 5, how many divisions are possible?
31. If 8 new teachers are to be divided among 4 schools, how many
divisions are possible? What if each school must receive 2 teachers?
32. Ten weight lifters are competing in a team weight-lifting contest. Of
the lifters, 3 are from the United States, 4 are from Russia, 2 are from
China, and 1 is from Canada. If the scoring takes account of the
countries that the lifters represent, but not their individual identities,
how many different outcomes are possible from the point of view of
scores? How many different outcomes correspond to results in which
the United States has 1 competitor in the top three and 2 in the bottom
three?
33. Delegates from 10 countries, including Russia, France, England,
and the United States, are to be seated in a row. How many different
seating arrangements are possible if the French and English delegates
are to be seated next to each other and the Russian and U.S.
delegates are not to be next to each other?
* 34. If 8 identical blackboards are to be divided among 4 schools, how
many divisions are possible? How many if each school must receive at
least 1 blackboard?
* 35. An elevator starts at the basement with 8 people (not including the
elevator operator) and discharges them all by the time it reaches the
top floor, number 6. In how many ways could the operator have
perceived the people leaving the elevator if all people look alike to him?
What if the 8 people consisted of 5 men and 3 women and the operator
could tell a man from a woman?
* 36. We have $20,000 that must be invested among 4 possible
opportunities. Each investment must be integral in units of $1000, and
there are minimal investments that need to be made if one is to invest
in these opportunities. The minimal investments are $2000, $2000,
$3000, and $4000. How many different investment strategies are
available if

a. an investment must be made in each opportunity?

b. investments must be made in at least 3 of the 4 opportunities?

* 37. Suppose that 10 fish are caught at a lake that contains 5 distinct
types of fish.
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a. How many different outcomes are possible, where an outcome
specifies the numbers of caught fish of each of the 5 types?

b. How many outcomes are possible when 3 of the 10 fish caught
are trout?

c. How many when at least 2 of the 10 are trout?

Theoretical Exercises

1. Prove the generalized version of the basic counting principle.

2. Two experiments are to be performed. The first can result in any one of m
possible outcomes. If the first experiment results in outcome i, then the
second experiment can result in any of n; possible outcomes, i =1,2,...,m.
What is the number of possible outcomes of the two experiments?

3. In how many ways can r objects be selected from a set of n objects if the
order of selection is considered relevant?

n
4. There are <

) different linear arrangements of n balls of which r are black
r

and n — r are white. Give a combinatorial explanation of this fact.
5. Determine the number of vectors (x4, ... ,x;,), such that each x; is either O or

1 and
n
ZXiZk
i=1

6. How many vectors x4, ... ,x; are there for which each x; is a positive integer
suchthatl <x; <nand x; <x, <+ < x?
7. Give an analytic proof of Equation (4.1)

B I N
e ()0

Hint: Consider a group of n men and m women. How many groups of size r
are possible?
9. Use Theoretical Exercise 8  to prove that

(-3 ()

10. From a group of n people, suppose that we want to choose a committee of
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k, k < n, one of whom is to be designated as chairperson.
a. By focusing first on the choice of the committee and then on the choice

of the chair, argue that there are (Z) k possible choices.

b. By focusing first on the choice of the nonchair committee members and

then on the choice of the chair, argue that there are <k " 1) n—k+1)
possible choices.
c. By focusing first on the choice of the chair and then on the choice of

n—1
the other committee members, argue that there are n <k 1) possible

choices.
d. Conclude from parts (a), (b), and (c) that

(M) =m-k+n( " J=n(""}

k)~ Nie—1) =™k -1

e. Use the factorial definition of (m> to verify the identity in part (d).
T

11. The following identity is known as Fermat’s combinatorial identity:

()= 3 (:23) n=

i =k

Give a combinatorial argument (no computations are needed) to establish this
identity.

Hint: Consider the set of numbers 1 through n. How many subsets of size k
have i as their highest numbered member?

12. Consider the following combinatorial identity:
n

z k<:> —p.nl

k=1

a. Present a combinatorial argument for this identity by considering a set
of n people and determining, in two ways, the number of possible
selections of a committee of any size and a chairperson for the
committee.

Hint:
i. How many possible selections are there of a committee of size k
and its chairperson?
ii. How many possible selections are there of a chairperson and
the other committee members?



b. Verify the following identity forn = 1, 2, 3, 4, 5:

n

n\ ., _a-
Z <k>k =2"""n(n+1)

k=1

For a combinatorial proof of the preceding, consider a set of n people
and argue that both sides of the identity represent the number of
different selections of a committee, its chairperson, and its secretary
(possibly the same as the chairperson).
Hint:
i. How many different selections result in the committee containing
exactly k people?
ii. How many different selections are there in which the
chairperson and the secretary are the same? (ANSWER: n2" 1.
)
iii. How many different selections result in the chairperson and the
secretary being different?

c. Now argue that
n
n
2 <k> K =2"n?(n+ 3)
k =1
13. Show that, forn > 0,

Y, (i) o
i=0

Hint: Use the binomial theorem.
14. From a set of n people, a committee of size j is to be chosen, and from
this committee, a subcommittee of size i,i < j, is also to be chosen.

a. Derive a combinatorial identity by computing, in two ways, the number
of possible choices of the committee and subcommittee—first by
supposing that the committee is chosen first and then the
subcommittee is chosen, and second by supposing that the
subcommittee is chosen first and then the remaining members of the
committee are chosen.

b. Use part (a) to prove the following combinatorial identity:

3 ()0 - () v

J =1

c. Use part (a) and Theoretical Exercise 13  to show that
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z<7><]:>(—1)"‘f=0 i<n
L \j)\i
j=i

15. Let Hy(n) be the number of vectors x4, ... ,x; for which each x; is a
positive integer satisfying1 < x; <nand x; < x, < - < x;.
a. Without any computations, argue that
Hi(n) = n

Hem) = ) Hea() k>1
j=1

Hint: How many vectors are there in which x;, = j?
b. Use the preceding recursion to compute H;(5).
Hint: First compute H,(n) forn =1, 2, 3, 4, 5.

16. Consider a tournament of n contestants in which the outcome is an
ordering of these contestants, with ties allowed. That is, the outcome
partitions the players into groups, with the first group consisting of the players
who tied for first place, the next group being those who tied for the next-best
position, and so on. Let N(n) denote the number of different possible
outcomes. For instance, N(2) = 3, since, in a tournament with 2 contestants,
player 1 could be uniquely first, player 2 could be uniquely first, or they could
tie for first

a. List all the possible outcomes when n = 3.

b. With N(0) defined to equal 1, argue, without any computations, that

n

N(n) = Z <?>N(n—i)

i =1

Hint: How many outcomes are there in which i players tie for last
place?
c. Show that the formula of part (b) is equivalent to the following:

n —1

N = ) (’;)zv(i)

i =0

d. Use the recursion to find N(3) and N(4).

(o)

17. Present a combinatorial explanation of why <n>
T

18. Argue that



< n—1 >
+
ny,ny, . . .,n.—1

Hint: Use an argument similar to the one used to establish Equation (4.1)
19. Prove the multinomial theorem.

* 20. In how many ways can n identical balls be distributed into r urns so that
the ith urn contains at least m; balls, foreach i = 1, ... ,r? Assume that

r
nz= Z m;.
i=1

* 21. Argue that there are exactly (;)(

> solutions of
n—r+k

X1 +x, +-+x.=n

for which exactly k of the x; are equal to 0.

* 22. Consider a function f(xq, ... x,,) of n variables. How many different
partial derivatives of order r does f possess?

* 23. Determine the nu mber of vectors (x4, ... ,x,) such that each x; is a

nonnegative integer and
n
Z X <k
i=1

Self-Test Problems and Exercises

1. How many different linear arrangements are there of the letters A, B, C, D,
E, F for which

a. A and B are next to each other?

b. A is before B?

c. Ais before B and B is before C?

d. A is before B and C is before D?

e. A and B are next to each other and C and D are also next to each

other?
f. E is not last in line?

2. If 4 Americans, 3 French people, and 3 British people are to be seated in a

row, how many seating arrangements are possible when people of the same
nationality must sit next to each other?
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3. A president, treasurer, and secretary, all different, are to be chosen from a
club consisting of 10 people. How many different choices of officers are
possible if

a. there are no restrictions?

b. A and B will not serve together?

c. C and D will serve together or not at all?

d. E must be an officer?

e. F will serve only if he is president?

4. A student is to answer 7 out of 10 questions in an examination. How many
choices has she? How many if she must answer at least 3 of the first 5
questions?

5. In how many ways can a man divide 7 gifts among his 3 children if the
eldest is to receive 3 gifts and the others 2 each?

6. How many different 7-place license plates are possible when 3 of the
entries are letters and 4 are digits? Assume that repetition of letters and
numbers is allowed and that there is no restriction on where the letters or
numbers can be placed.

7. Give a combinatorial explanation of the identity

()=

8. Consider n-digit numbers where each digit is one of the 10 integers
0,1, ...,9. How many such numbers are there for which

a. no two consecutive digits are equal?

b. 0 appears as a digit a total of i times, i =0, ... ,n?

9. Consider three classes, each consisting of n students. From this group of 3
n students, a group of 3 students is to be chosen.
a. How many choices are possible?
b. How many choices are there in which all 3 students are in the same
class?
c. How many choices are there in which 2 of the 3 students are in the
same class and the other student is in a different class?
d. How many choices are there in which all 3 students are in different
classes?
e. Using the results of parts (a) through (d), write a combinatorial identity.

10. How many 5-digit numbers can be formed from the integers 1,2, ...,9 if no
digit can appear more than twice? (For instance, 41434 is not allowed.)
11. From 10 married couples, we want to select a group of 6 people that is not
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allowed to contain a married couple.
a. How many choices are there?
b. How many choices are there if the group must also consist of 3 men
and 3 women?

12. A committee of 6 people is to be chosen from a group consisting of 7 men
and 8 women. If the committee must consist of at least 3 women and at least
2 men, how many different committees are possible?

*13. An art collection on auction consisted of 4 Dalis, 5 van Goghs, and 6
Picassos. At the auction were 5 art collectors. If a reporter noted only the
number of Dalis, van Goghs, and Picassos acquired by each collector, how
many different results could have been recorded if all of the works were sold?
* 14. Determine the number of vectors (x4, ... ,x,) such that each x; is a

n
ingk
i =1

positive integer and

where k > n.

15. A total of n students are enrolled in a review course for the actuarial
examination in probability. The posted results of the examination will list the
names of those who passed, in decreasing order of their scores. For instance,
the posted result will be “Brown, Cho” if Brown and Cho are the only ones to
pass, with Brown receiving the higher score. Assuming that all scores are
distinct (no ties), how many posted results are possible?

16. How many subsets of size 4 of the set S = {1, 2, ...,20} contain at least
one of the elements 1, 2, 3,4,5?

17. Give an analytic verification of

<Z>=<Izc>+k(n—k)+<n;k>, 1<k<n

Now, give a combinatorial argument for this identity.

18. In a certain community, there are 3 families consisting of a single parent
and 1 child, 3 families consisting of a single parent and 2 children, 5 families
consisting of 2 parents and a single child, 7 families consisting of 2 parents
and 2 children, and 6 families consisting of 2 parents and 3 children. If a
parent and child from the same family are to be chosen, how many possible
choices are there?

19. If there are no restrictions on where the digits and letters are placed, how
many 8-place license plates consisting of 5 letters and 3 digits are possible if
no repetitions of letters or digits are allowed? What if the 3 digits must be
consecutive?



20. Verify the identity

x;1+ ... tx,=n,x;=20

a. by a combinatorial argument that first notes that " is the number of
different n letter sequences that can be formed from an alphabet
consisting of r letters, and then determines how many of these letter
sequences have letter 1 a total of x; times and letter 2 a total of x,
times and ... and letter r a total of x,. times;

b. by using the multinomial theorem.

21. Simplify . — <’Zl> ; (;‘) . (_1)n+1<:>

Chapter 2 Axioms of Probability

Contents

2.1 Introduction

2.2 Sample Space and Events

2.3 Axioms of Probability

2.4 Some Simple Propositions

2.5 Sample Spaces Having Equally Likely Outcomes
2.6 Probability as a Continuous Set Function

2.7 Probability as a Measure of Belief

2.1 Introduction

In this chapter, we introduce the concept of the probability of an event and then show
how probabilities can be computed in certain situations. As a preliminary, however,
we need to discuss the concept of the sample space and the events of an
experiment.
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2.2 Sample Space and Events

Consider an experiment whose outcome is not predictable with certainty. However,
although the outcome of the experiment will not be known in advance, let us suppose
that the set of all possible outcomes is known. This set of all possible outcomes of an
experiment is known as the sample space of the experiment and is denoted by S.
Following are some examples:

1. If the outcome of an experiment consists of the determination of the sex of a
newborn child, then
S ={g, b}

where the outcome g means that the child is a girl and b that it is a boy.
2. If the outcome of an experiment is the order of finish in a race among the 7
horses having post positions 1, 2, 3, 4, 5, 6, and 7, then
S = {all 7! permutations of (1, 2, 3,4, 5,6, 7)}

The outcome (2, 3, 1, 6, 5, 4, 7) means, for instance, that the number 2 horse
comes in first, then the number 3 horse, then the number 1 horse, and so on.

3. If the experiment consists of flipping two coins, then the sample space
consists of the following four points:

S={(hh), (ht),(t h), ()}

The outcome will be (h, h) if both coins are heads, (h, t) if the first coin is
heads and the second tails, (¢, h) if the first is tails and the second heads, and
(t, t) if both coins are tails.
4. If the experiment consists of tossing two dice, then the sample space consists
of the 36 points
S={(,)):i,j=1,2,3,4,5,6}

where the outcome (i, j) is said to occur if i appears on the leftmost die and j
on the other die.
5. If the experiment consists of measuring (in hours) the lifetime of a transistor,

then the sample space consists of all nonnegative real numbers; that is,
S={x:0<x< oo}

Any subset E of the sample space is known as an event. In other words, an event is
a set consisting of possible outcomes of the experiment. If the outcome of the
experiment is contained in E, then we say that E has occurred. Following are some
examples of events.
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In the preceding Example 1, if E = {g}, then E is the event that the child is a girl.
Similarly, if F = {b}, then F is the event that the child is a boy.

In Example 2, if

E = {all outcomes in S starting with a 3}

then E is the event that horse 3 wins the race.

In Example 3, if E = {(h, h), (h, t)}, then E is the event that a head appears on the
first coin.

In Example 4, if E = {(1, 6), (2,5), (3,4), (4,3), (5,2), (6, 1)}, then E is the event that
the sum of the dice equals 7.

In Example 5, if E = {x: 0 < x < 5}, then E is the event that the transistor does not
last longer than 5 hours.

For any two events E and F of a sample space S, we define the new event E U F to
consist of all outcomes that are either in E or in F or in both E and F. That is, the
event E U F will occur if either E or F occurs. For instance, in Example 1, if E = {g} is
the event that the child is a girl and F = {b} is the event that the child is a boy, then

EUF ={g, b}

is the whole sample space S. In Example 3, if E = {(h, h), (h, t)} is the event that the
first coin lands heads, and F = {(t, h), (h, h)} is the event that the second coin lands
heads, then

EUF ={(h h), (ht),(t h)}

is the event that at least one of the coins lands heads and thus will occur provided
that both coins do not land tails.

The event E U F is called the union of the event E and the event F.

Similarly, for any two events E and F, we may also define the new event EF, called
the intersection of E and F, to consist of all outcomes that are both in E and in F. That
is, the event EF (sometimes written E N F) will occur only if both E and F occur. For
instance, in Example 3, if E = {(h, h), (h, t), (t, h)} is the event that at least 1 head
occurs and F = {(h, t), (t, h), (t, t)} is the event that at least 1 tail occurs, then

EF = {(ht), (t, h)}
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is the event that exactly 1 head and 1 tail occur. In Example 4, if
E=1{(1,6),(2,5),(3,4),(4,3), (5 2), (6, 1)} is the event that the sum of the dice is 7
and F ={(1,5), (2,4), (3,3), (4, 2), (5, 1)} is the event that the sum is 6, then the
event EF does not contain any outcomes and hence could not occur. To give such an
event a name, we shall refer to it as the null event and denote it by @. (That is, @
refers to the event consisting of no outcomes.) If EF = @, then E and F are said to be
mutually exclusive.

We define unions and intersections of more than two events in a similar manner. If

E,, E,, .. are events, then the union of these events, denoted by U E,, is defined
n =1

to be that event that consists of all outcomes that are in E,, for at least one value of

n = 1,2, ... Similarly, the intersection of the events E,,, denotedby A E,, is
n =1

defined to be the event consisting of those outcomes that are in all of the events
E,,n=1,2,...

Finally, for any event E, we define the new event E*, referred to as the complement of
E, to consist of all outcomes in the sample space S that are not in E. That is, E€ will
occur if and only if E does not occur. In Example 4, if event
E=1{(1,6),(2,5),(3,4),(4,3),(5,2), (6,1)}, then E° will occur when the sum of the
dice does not equal 7. Note that because the experiment must result in some
outcome, it follows that S¢ = @.

For any two events E and F, if all of the outcomes in E are also in F, then we say that
E is contained in F, or E is a subset of F, and write E c F (or equivalently, F D E,
which we sometimes say as F is a superset of E). Thus, if E c F, then the occurrence
of E implies the occurrence of F. If E € F and F c E, we say that E and F are equal
and write E = F.

A graphical representation that is useful for illustrating logical relations among events
is the Venn diagram. The sample space S is represented as consisting of all the
outcomes in a large rectangle, and the events E, F, G, ... are represented as
consisting of all the outcomes in given circles within the rectangle. Events of interest
can then be indicated by shading appropriate regions of the diagram. For instance, in
the three Venn diagrams shown in Figure 2.1 |, the shaded areas represent,
respectively, the events E U F, EF, and E€. The Venn diagram in Figure 2.2

indicates that E c F.

Figure 2.1 Venn diagrams.
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(a) Shaded region: EU F.

(b) Shaded region: FF

(b) Shaded region: E°

Figure 2.2 E c F.



The operations of forming unions, intersections, and complements of events obey
certain rules similar to the rules of algebra. We list a few of these rules:

Commutative laws EUF =FUE EF =FE
Associative laws (EUF UG =FEU(FUG) (EF)G =E(FG)
Distributive laws (EUF)G =EGUFG EFUG =(EUG)(FUG)

These relations are verified by showing that any outcome that is contained in the
event on the left side of the equality sign is also contained in the event on the right
side, and vice versa. One way of showing this is by means of Venn diagrams. For
instance, the distributive law may be verified by the sequence of diagrams in Figure
2.3

Figure 2.3 (EUF)G = EG U FG.

L F

G

(a) Shaded region: EG.
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G
(b) Shaded region: FG.

E F

(c) Shaded region: (E'U F)G.

The following useful relationships among the three basic operations of forming
unions, intersections, and complements are known as DeMorgan’s laws:

[

n n

U E|] = N E
i =1 i =1

n ¢ n

N | = U Ef
i =1 i =1

For instance, for two events E and F, DeMorgan’s laws state that

(EUF)*=E°F° and (EF)°=E°UF°
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which can be easily proven by using Venn diagrams (see Theoretical Exercise
7 ).

To prove DeMorgan’s laws for general n, suppose first that x is an outcome of

n ¢ n
< U Ei> . Then x is not containedin U  E;, which means that x is not
i =1 i =1

contained in any of the events E;, i = 1, 2, ..., n, implying that x is contained in Ef for

n
alli=1,2, ..., andthusis containedin N E{. To go the other way, suppose
i =1

that x is an outcome of ?\ Ef{. Then x is contained in E{ foralli = 1,2, ... ,n,
i=1
which means that x is not contained in E; forany i = 1, 2, ..., n, implying that x is not
c
contained in 6 E;, in turn implying that x is contained in <6Ei> . This proves the first
i 1

of DeMorgan’s laws.

To prove the second of DeMorgan’s laws, we use the first law to obtain

which, since (E€)° = E, is equivalent to
n ¢ n
( U Ef) = NE;
1 1

Taking complements of both sides of the preceding equation yields the result we
seek, namely,

2.3 Axioms of Probability

One way of defining the probability of an event is in terms of its long run relative
frequency. Such a definition usually goes as follows: We suppose that an
experiment, whose sample space is S, is repeatedly performed under exactly the
same conditions. For each event E of the sample space S, we define n(E) to be the
number of times in the first n repetitions of the experiment that the event E occurs.
Then P(E), the probability of the event E, is defined as
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P(E) = li_r)n n(E)

n 9] n

That is, P(E) is defined as the (limiting) proportion of time that E occurs. It is thus the
limiting relative frequency of E.

Although the preceding definition is certainly intuitively pleasing and should always
be kept in mind by the reader, it possesses a serious drawback: How do we know
that n(E) /n will converge to some constant limiting value that will be the same for
each possible sequence of repetitions of the experiment? For example, suppose that
the experiment to be repeatedly performed consists of flipping a coin. How do we
know that the proportion of heads obtained in the first n flips will converge to some
value as n gets large? Also, even if it does converge to some value, how do we know
that, if the experiment is repeatedly performed a second time, we shall obtain the
same limiting proportion of heads?

Proponents of the relative frequency definition of probability usually answer this
objection by stating that the convergence of n(E) /n to a constant limiting value is an
assumption, or an axiom, of the system. However, to assume that n(E) /n will
necessarily converge to some constant value seems to be an extraordinarily
complicated assumption. For, although we might indeed hope that such a constant
limiting frequency exists, it does not at all seem to be a priori evident that this need
be the case. In fact, would it not be more reasonable to assume a set of simpler and
more self-evident axioms about probability and then attempt to prove that such a
constant limiting frequency does in some sense exist? The latter approach is the
modern axiomatic approach to probability theory that we shall adopt in this text. In
particular, we shall assume that, for each event E in the sample space S, there exists
a value P(E), referred to as the probability of E. We shall then assume that all these
probabilities satisfy a certain set of axioms, which, we hope the reader will agree, is
in accordance with our intuitive notion of probability.

Consider an experiment whose sample space is S. For each event E of the sample
space S, we assume that a number P(E) is defined and satisfies the following three
axioms:

The three axioms of probability

Axiom 1

0<PE)<1

Axiom 2

P(S) =1




55 of 848

Axiom 3

For any sequence of mutually exclusive events E,, E,, ... (that is, events for
which E; E; = @ when i # j),

P< O Ei>= i P(E;)
t=1 i =1

We refer to P(E) as the probability of the event E.

Thus, Axiom 1  states that the probability that the outcome of the experiment is an
outcome in E is some number between 0 and 1. Axiom 2  states that, with
probability 1, the outcome will be a point in the sample space S. Axiom 3  states
that, for any sequence of mutually exclusive events, the probability of at least one of
these events occurring is just the sum of their respective probabilities.

If we consider a sequence of events E,, E,, . . ., ,where E;, =Sand E, = @ for

E;,
1

i > 1, then, because the events are mutually exclusive and because S =
i

[l c8

we have, from Axiom 3
PE)= ) PE)=P©)+ ) P®)
i=1 i =2

implying that

P(@) =0

That is, the null event has probability O of occurring.

Note that it follows that, for any finite sequence of mutually exclusive events E,
E, ..., Ep,

(3.1)

n n

1 =1
This equation follows from Axiom 3 by defining E; as the null event for all values
of i greater than n. Axiom 3 is equivalent to Equation (3.1)  when the sample

space is finite. (Why?) However, the added generality of Axiom 3 is necessary
when the sample space consists of an infinite number of points.

Example 3a

If our experiment consists of tossing a coin and if we assume that a head is as
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likely to appear as a tail, then we would have

1

P((HY = P(TY) = 5

On the other hand, if the coin were biased and we believed that a head were
twice as likely to appear as a tail, then we would have

2 1

P({H}) = 3 P({T}) = 3

Example 3b

If a die is rolled and we suppose that all six sides are equally likely to appear,
1

then we would have P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 2

From Axiom 3 , it would thus follow that the probability of rolling an even
number would equal

1
2

P({2,4,6}) = P({2}) + P({4}) + P({6}) =

The assumption of the existence of a set function P, defined on the events of a
sample space S and satisfying Axioms1 ,2 ,and3 , constitutes the modern
mathematical approach to probability theory. It is hoped that the reader will agree
that the axioms are natural and in accordance with our intuitive concept of probability
as related to chance and randomness. Furthermore, using these axioms, we shall be
able to prove that if an experiment is repeated over and over again, then, with
probability 1, the proportion of time during which any specific event E occurs will
equal P(E). This result, known as the strong law of large numbers, is presented in
Chapter 8 . In addition, we present another possible interpretation of probability—
as being a measure of belief-in Section 2.7

Technical Remark. We have supposed that P(F) is defined for all the events E of
the sample space. Actually, when the sample space is an uncountably infinite set,
P(E) is defined only for a class of events called measurable. However, this restriction
need not concern us, as all events of any practical interest are measurable.

2.4 Some Simple Propositions

In this section, we prove some simple propositions regarding probabilities. We first
note that since E and E° are always mutually exclusive and since E U E€ = S, we
have, by Axioms 2 and3



1= P(S) = P(EUE®) = P(E) + P(E®)

Or, equivalently, we have Proposition 4.1

P(E) =1 — P(E)

Proposition 4.1

In words, Proposition 4.1  states that the probability that an event does not
occur is 1 minus the probability that it does occur. For instance, if the probability

3
of obtaining a head on the toss of a coin is 3’ then the probability of obtaining a

5
tail must be 3

Our second proposition states that if the event E is contained in the event F, then
the probability of E is no greater than the probability of F.

Proposition 4.2
If E c F, then P(E) < P(F).
Proof. Since E c F, it follows that we can express F as
F=EUE‘F
Hence, because E and E°F are mutually exclusive, we obtain, from Axiom 3

P(F)=P(E) + P(E°F)
which proves the result, since P(EF) = 0.

Proposition 4.2  tells us, for instance, that the probability of rolling a 1 with a die is
less than or equal to the probability of rolling an odd value with the die.

The next proposition gives the relationship between the probability of the union of
two events, expressed in terms of the individual probabilities, and the probability of
the intersection of the events.

P(EUF) = P(E) + P(F) — P(EF)

Proposition 4.3

Proof To derive a formula for P(E U F), we first note that E U F can be written as
the union of the two disjoint events E and EF. Thus, from Axiom 3 , we obtain
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P(EUF) =P(EUEF°F)
= P(E) + P(E°F)

Furthermore, since F = EF U E°F, we again obtain from Axiom 3
P(F) = P(EF) + P(E°F)

or, equivalently,
P(E°F) = P(F) — P(EF)

thereby completing the proof.

Proposition 4.3  could also have been proved by making use of the Venn diagram
in Figure 2.4

Figure 2.4 Venn diagram.

E

T

Let us divide E U F into three mutually exclusive sections, as shown in Figure 2.5
In words, section | represents all the points in E that are not in F (that is, EF°),
section Il represents all points both in E and in F (that is, EF), and section Il|
represents all points in F that are not in E (that is, E°F).

Figure 2.5 Venn diagram in sections.

L F

From Figure 2.5 , we see that
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EuF =Tullulll

E =1uUll
F =T1Tulll
As |, Il, and Illl are mutually exclusive, it follows from Axiom 3  that

P(EUF) = P(l)+ P(I) + P(III)
P(E) =P()+ P(ID)
P(F) = P(I) + P(III)
which shows that

P(EUF) = P(E) + P(F) — P(Il)

and Proposition 4.3  is proved, since Il = EF.

Example 4a

J is taking two books along on her holiday vacation. With probability .5, she will
like the first book; with probability .4, she will like the second book; and with
probability .3, she will like both books. What is the probability that she likes
neither book?

Solution

Let B; denote the event that J likes book i, i = 1, 2. Then the probability that she
likes at least one of the books is

P(ByUB,) = P(By) + P(B,) — P(B1B,) =.5+.4—.3 =6

Because the event that J likes neither book is the complement of the event that
she likes at least one of them, we obtain the result

P(B{BS) = P((B;UB,)°) =1—P(B; UB,) = 4

We may also calculate the probability that any one of the three events E, F, and G
occurs, namely,

P(EUFUG) =P[(EUF)UG]

which, by Proposition 4.3 | equals

P(EUF) + P(G) — P[(E U F)G]

Now, it follows from the distributive law that the events (E U F)G and EG U FG are
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equivalent; hence, from the preceding equations, we obtain

P(EUFUG)
= P(E) + P(F) — P(EF) + P(G) — P(EG U FG)
= P(E) + P(F) — P(EF) + P(G) — P(EG) — P(FG) + P(EGFG)
= P(E) + P(F) + P(G) + P(EF) — P(EG) — P(FG) + P(EFG)

In fact, the following proposition, known as the inclusion—exclusion identity, can be
proved by mathematical induction:

Proposition 4.4

n
P(E,UE,U-UE,) = Z P(E;) — Z P(Ei Ey) + -
i =1

iq < iy

FH-DT Y PGB, By E)

iy < iy < - < iy

o (= DP(EyEyEy)

n
The summation Z P(Ey E;,-E; ) is taken over all of the (

) possible
r

i1 <ip < <lip

subsets of size r of the set {1, 2....,n}.

In words, Proposition 4.4  states that the probability of the union of n events
equals the sum of the probabilities of these events taken one at a time, minus the
sum of the probabilities of these events taken two at a time, plus the sum of the
probabilities of these events taken three at a time, and so on.

Remarks 1. For a noninductive argument for Proposition 4.4 | note first that if
an outcome of the sample space is not a member of any of the sets E;, then its
probability does not contribute anything to either side of the equality. Now,
suppose that an outcome is in exactly m of the events E;, where m > 0. Then,

since itis in U E;, its probability is counted once in P( v El->; also, as this
L i

m
outcome is contained in <k> subsets of the type E; E;, --E;,, its probability is

()-()+(5)-=(0)

times on the right of the equality sign in Proposition 4.4 . Thus, form > 0, we

i’

counted
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must show that

m
However, since 1 = <0> the preceding equation is equivalent to

m

5, (o=

i =0

and the latter equation follows from the binomial theorem, since

m

0=(-1+D"= > <’?)(— D™

i =0

2. The following is a succinct way of writing the inclusion—exclusion identity:

P(UL,E)= % (-D™"' Y P(E,-E,)

r=1 ip < - < iy

3. In the inclusion—exclusion identity, going out one term results in an upper
bound on the probability of the union, going out two terms results in a
lower bound on the probability, going out three terms results in an upper
bound on the probability, going out four terms results in a lower bound,
and so on. That is, for events E;,...E,,, we have
(4.1)

P(UPL E)< 5 P(E)
i =1

(4.2)

P(UL, E)= 3 P(E)— 3 P(EE)
i1 =1

j< i
(4.3)

P(UP,E)< S P(E)— ¥ P(EE)+ Y  PEEE
i =1

j<i k<j<i
and so on. To prove the validity of these bounds, note the identity

UL, E;=E,UE{E, UE{ESE; U - UE{--E;, 1E,



That is, at least one of the events E; occurs if E; occurs, or if E; does not occur
but E, does, orif E; and E, do not occur but E; does, and so on. Because the
right-hand side is the union of disjoint events, we obtain

(4.4)
P(UM, E) =P(E,)+P(E{E,) + P(E{ESE3) + ..+ P(E{--En_1Ey)

n
=P(E)+ X P(E{-E{,E)
i =2

Now, let B; = Ef---E{_1 = (U; <;E;)“ be the event that none of the first i — 1
events occurs. Applying the identity

P(E;) = P(B;E;) + P(B{E;)
shows that
P(E;) = P(E{..E{_4E;) = P(E;) + P(U;<; E{E})
or, equivalently,
P(E{-E{f_4E;) = P(E;) — P(Vj<; E;E})
Substituting this equation into (4.4)  yields
(4.5)

P(URy E) = ) P(E) — ) P(U;<iFif)

Because probabilities are always nonnegative, Inequality (4.1) follows directly
from Equation (4.5) . Now, fixing i and applying Inequality (1) to P(U;; E;E})
yields

P(U, < EiE;)) < 2 P(EE))

j< i

which, by Equation (4.5) , gives Inequality (4.2). Similarly, fixing i and applying
Inequality (4.2) to P(U;; E;E}) yields

P(Uj EE) = ZP(EL-EJ-)— z P(EE;EEy)

i< k< j<i
= Y PEEN- ) PEEE)
j<i k<j<i
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which, by Equation (4.5) , gives Inequality (4.3). The next inclusion—exclusion
inequality is now obtained by fixing i and applying Inequality (4.3) to
P(VUj.; E;E}), and so on.

The first inclusion-exclusion inequality, namely that
n
P(UELE)< ) P(E)
i=1

is known as Boole’s inequality.

2.5 Sample Spaces Having Equally Likely
Outcomes

In many experiments, it is natural to assume that all outcomes in the sample space
are equally likely to occur. That is, consider an experiment whose sample space S is
a finite set, say, S = {1, 2, .., N }. Then, it is often natural to assume that

P({1}) = P({2}) = - = P({N})
which implies, from Axioms 2 and 3  (why?), that
P{i}) = Lo 1,2 N
({l})—ﬁ i=12,..,

From this equation, it follows from Axiom 3  that, for any event E,

number of outcomes in E

P(E) =
(£) number of outcomesin S

In words, if we assume that all outcomes of an experiment are equally likely to occur,
then the probability of any event E equals the proportion of outcomes in the sample
space that are contained in E.

Example 5a

If two dice are rolled, what is the probability that the sum of the upturned faces
will equal 77?

Solution

We shall solve this problem under the assumption that all of the 36 possible



outcomes are equally likely. Since there are 6 possible outcomes—namely, (1, 6),
(2, 5), (3,4), (4, 3), (5, 2), and (6, 1)-that result in the sum of the dice being

6 1
equal to 7, the desired probability is T

Example 5b

If 3 balls are “randomly drawn” from a bowl containing 6 white and 5 black balls,
what is the probability that one of the balls is white and the other two black?

Solution

If we regard the balls as being distinguishable and the order in which they are
selected as being relevant, then the sample space consists of 11109 = 990
outcomes. Furthermore, there are 6 - 5 - 4 = 120 outcomes in which the first ball
selected is white and the other two are black; 5 - 6 - 4 = 120 outcomes in which
the first is black, the second is white, and the third is black; and 5-4 -6 = 120 in
which the first two are black and the third is white. Hence, assuming that
‘randomly drawn” means that each outcome in the sample space is equally likely
to occur, we see that the desired probability is

120 + 120+ 120 4

990 11

This problem could also have been solved by regarding the outcome of the
experiment as the unordered set of drawn balls. From this point of view, there are

1
< 3 ) = 165 outcomes in the sample space. Now, each set of 3 balls corresponds

to 3! outcomes when the order of selection is noted. As a result, if all outcomes
are assumed equally likely when the order of selection is noted, then it follows
that they remain equally likely when the outcome is taken to be the unordered set
of selected balls. Hence, using the latter representation of the experiment, we
see that the desired probability is

BE)

11\ 11
3
which, of course, agrees with the answer obtained previously.

When the experiment consists of a random selection of k items from a set of n items,
we have the flexibility of either letting the outcome of the experiment be the ordered
selection of the k items or letting it be the unordered set of items selected. In the
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former case, we would assume that each new selection is equally likely to be any of
the so far unselected items of the set, and in the latter case, we would assume that

all (Z) possible subsets of k items are equally likely to be the set selected. For

instance, suppose 5 people are to be randomly selected from a group of 20
individuals consisting of 10 married couples, and we want to determine P(N), the
probability that the 5 chosen are all unrelated. (That is, no two are married to each
other.) If we regard the sample space as the set of 5 people chosen, then there are

20
< c > equally likely outcomes. An outcome that does not contain a married couple

can be thought of as being the result of a six-stage experiment: In the first stage, 5 of
the 10 couples to have a member in the group are chosen; in the next 5 stages, 1 of

10
the 2 members of each of these couples is selected. Thus, there are < c >25 possible

outcomes in which the 5 members selected are unrelated, yielding the desired

probability of
10 55
5

20
5
In contrast, we could let the outcome of the experiment be the ordered selection of

the 5 individuals. In this setting, there are 20 -19- 18- 17 - 16 equally likely
outcomes, of which 20 - 18 - 16 - 14 - 12 outcomes result in a group of 5 unrelated

P(N) =

individuals, yielding the result

20-18-16-14-12

P(N) =
M =3019-18-17 16

We leave it for the reader to verify that the two answers are identical.

Example 5¢

A committee of 5 is to be selected from a group of 6 men and 9 women. If the
selection is made randomly, what is the probability that the committee consists of
3 men and 2 women?

Solution

15
Because each of the ( c ) possible committees is equally likely to be selected,

the desired probability is
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Example 5d

An urn contains n balls, one of which is special. If k of these balls are withdrawn
one at a time, with each selection being equally likely to be any of the balls that
remain at the time, what is the probability that the special ball is chosen?

Solution
Since all of the balls are treated in an identical manner, it follows that the set of k

balls selected is equally likely to be any of the <:> sets of k balls. Therefore,

()ls)
1/\k—-1 k
P{special ballis selected} = —————+ = —
n n
()
We could also have obtained this result by letting 4; denote the event that the
special ball is the ith ball to be chosen, i = 1, ..., k. Then, since each one of the n

balls is equally likely to be the ith ball chosen, it follows that P(4;) = 1/n. Hence,
because these events are clearly mutually exclusive, we have

k k
P{special ball is selected} = P( U AL-> = Z P(4;) = -

i =1

We could also have argued that P(4;) = 1/n, by noting that there are
n(n—1)--(n—k+ 1) =n!/(n— k)! equally likely outcomes of the experiment, of
which(n—1)(n—-2)(n—i+1HQ)(n—i)n—k+1)=mn—-1!/(n—k)!
result in the special ball being the ith one chosen. From this reasoning, it follows
that

(n—1! 1

P(A;) =

n! n

Example 5e

Suppose that n + m balls, of which n are red and m are blue, are arranged in a
linear order in such a way that all (n + m)! possible orderings are equally likely. If
we record the result of this experiment by listing only the colors of the successive
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balls, show that all the possible results remain equally likely.

Solution

Consider any one of the (n + m)! possible orderings, and note that any
permutation of the red balls among themselves and of the blue balls among
themselves does not change the sequence of colors. As a result, every ordering

of colorings corresponds to n! m! different orderings of the n + m balls, so every
nlm!

ordering of the colors has probability ' of occurring.

(n+m)
For example, suppose that there are 2 red balls, numbered r,,r,, and 2 blue
balls, numbered b,,b,. Then, of the 4! possible orderings, there will be 2! 2!
orderings that result in any specified color combination. For instance, the
following orderings result in the successive balls alternating in color, with a red
ball first:

r1, by, Ty, by 14, by, 7y, by Ty, by, 71, by Ty, by, 1T, by

4 1
Therefore, each of the possible orderings of the colors has probability 2-% of

occurring.

Example 5f

A poker hand consists of 5 cards. If the cards have distinct consecutive values
and are not all of the same suit, we say that the hand is a straight. For instance,
a hand consisting of the five of spades, six of spades, seven of spades, eight of
spades, and nine of hearts is a straight. What is the probability that one is dealt a
straight?

Solution

52
We start by assuming that all < : ) possible poker hands are equally likely. To

determine the number of outcomes that are straights, let us first determine the
number of possible outcomes for which the poker hand consists of an ace, two,
three, four, and five (the suits being irrelevant). Since the ace can be any 1 of the
4 possible aces, and similarly for the two, three, four, and five, it follows that there
are 4° outcomes leading to exactly one ace, two, three, four, and five. Hence,
since in 4 of these outcomes all the cards will be of the same suit (such a hand is
called a straight flush), it follows that there are 4° — 4 hands that make up a
straight of the form ace, two, three, four, and five. Similarly, there are 45— 4
hands that make up a straight of the form ten, jack, queen, king, and ace. Thus,
there are 10(4° — 4) hands that are straights, and it follows that the desired
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probability is
10(4° — 4)

(5)

~.0039

Example 5g

A 5-card poker hand is said to be a full house if it consists of 3 cards of the same
denomination and 2 other cards of the same denomination (of course, different
from the first denomination). Thus, a full house is three of a kind plus a pair. What
is the probability that one is dealt a full house?

Solution

52
Again, we assume that all ( : ) possible hands are equally likely. To determine

4\ (4
the number of possible full houses, we first note that there are <2><3> different

combinations of, say, 2 tens and 3 jacks. Because there are 13 different choices
for the kind of pair and, after a pair has been chosen, there are 12 other choices
for the denomination of the remaining 3 cards, it follows that the probability of a

full house is
4\ /4
13-12-
2):)

(5)

=~ .0014

Example 5h

In the game of bridge, the entire deck of 52 cards is dealt out to 4 players. What
is the probability that

a. one of the players receives all 13 spades;
b. each player receives 1 ace?

Solution

a. Letting E; be the event that hand i has all 13 spades, then
1
P(E) =-—— 1=1234

)

Because the events E;, i = 1, 2, 3, 4, are mutually exclusive, the probability



that one of the hands is dealt all 13 spades is

4 4 52 12
P(U_,E)= ) P(E)=4/ 13 ~ 6.3 x 10
i =1

b. Let the outcome of the experiment be the sets of 13 cards of each of the
players 1, 2, 3, 4. To determine the number of outcomes in which each of
the distinct players receives exactly 1 ace, put aside the aces and note

48
12,12,12,12
when each player is to receive 12. Because there are 4! ways of dividing
the 4 aces so that each player receives 1, we see that the number of

that there are ( ) possible divisions of the other 48 cards

possible outcomes in which each player receives exactly 1 ace is
48
4! .
<12, 12,12, 12)

52

As there are
13, 13,13,13

) possible hands, the desired probability is thus

48
41
(12,12,12,12)

52
13,13,13,13

Some results in probability are quite surprising when initially encountered. Our next
two examples illustrate this phenomenon.

~ .,1055

Example 5i

If n people are present in a room, what is the probability that no two of them
celebrate their birthday on the same day of the year? How large need n be so

1
that this probability is less than > ?

Solution

As each person can celebrate his or her birthday on any one of 365 days, there
are a total of (365)" possible outcomes. (We are ignoring the possibility of
someone having been born on February 29.) Assuming that each outcome is
equally likely, we see that the desired probability is

(365)(364)(363) .. (365 —n + 1) /(365)". Itis a rather surprising fact that when

1
n = 23, this probability is less than 5 That is, if there are 23 or more people in a

room, then the probability that at least two of them have the same birthday
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1
exceeds 5 Many people are initially surprised by this result, since 23 seems so
small in relation to 365, the number of days of the year. However, every pair of

365 1
individuals has probability ——— = —— of having the same birthday, and in a

23
group of 23 people, there are < ) > = 253 different pairs of individuals. Looked at

this way, the result no longer seems so surprising.

When there are 50 people in the room, the probability that at least two share the
same birthday is approximately .970, and with 100 persons in the room, the odds
3x10°

are better than 3,000,000:1. (That is, the probability is greater than ————
3x10°+1

that at least two people have the same birthday.)

Example 5j

A deck of 52 playing cards is shuffled, and the cards are turned up one at a time
until the first ace appears. Is the next card—that is, the card following the first
ace—more likely to be the ace of spades or the two of clubs?

Solution

To determine the probability that the card following the first ace is the ace of
spades, we need to calculate how many of the (562)! possible orderings of the
cards have the ace of spades immediately following the first ace. To begin, note
that each ordering of the 52 cards can be obtained by first ordering the 51 cards
different from the ace of spades and then inserting the ace of spades into that
ordering. Furthermore, for each of the (51)! orderings of the other cards, there is
only one place where the ace of spades can be placed so that it follows the first
ace. For instance, if the ordering of the other 51 cards is

4c, 6h, Jd, 5s, Ac, 7d, ..., Kh
then the only insertion of the ace of spades into this ordering that results in its
following the first ace is
4c, 6h, Jd, 5s, Ac, As, 7d, ..., Kh

Therefore, there are (51)! orderings that result in the ace of spades following the
first ace, so

_ G 1
P{the ace of spades follows the firstace} = @ =
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In fact, by exactly the same argument, it follows that the probability that the two
1
of clubs (or any other specified card) follows the first ace is also T In other

words, each of the 52 cards of the deck is equally likely to be the one that follows
the first ace!

Many people find this result rather surprising. Indeed, a common reaction is to
suppose initially that it is more likely that the two of clubs (rather than the ace of
spades) follows the first ace, since that first ace might itself be the ace of spades.
This reaction is often followed by the realization that the two of clubs might itself
appear before the first ace, thus negating its chance of immediately following the
first ace. However, as there is one chance in four that the ace of spades will be
the first ace (because all 4 aces are equally likely to be first) and only one chance
in five that the two of clubs will appear before the first ace (because each of the
set of 5 cards consisting of the two of clubs and the 4 aces is equally likely to be
the first of this set to appear), it again appears that the two of clubs is more likely.
However, this is not the case, and our more complete analysis shows that they
are equally likely.

Example 5k

A football team consists of 20 offensive and 20 defensive players. The players
are to be paired in groups of 2 for the purpose of determining roommates. If the
pairing is done at random, what is the probability that there are no offensive—
defensive roommate pairs? What is the probability that there are 2i offensive—
defensive roommate pairs, i = 1, 2, ..., 10?

Solution

There are
40 B (40)!
2,2,..,2)  (2H?°

ways of dividing the 40 players into 20 ordered pairs of two each. (That is, there
are (40)!/22° ways of dividing the players into a first pair, a second pair, and so
on.) Hence, there are (40)!/22°(20)! ways of dividing the players into
(unordered) pairs of 2 each. Furthermore, since a division will result in no
offensive—defensive pairs if the offensive (and defensive) players are paired
among themselves, it follows that there are [(20)!/210(10)!]2 such divisions.
Hence, the probability of no offensive—defensive roommate pairs, call it P, is
given by
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( (20)! >2
, 20001 _ [20)!]°
G0 0)!*40)!

22°9(20)!

To determine P,;, the probability that there are 2i offensive—defensive pairs, we
2
20
first note that there are (2 ) ways of selecting the 2i offensive players and the
l

2i defensive players who are to be in the offensive—defensive pairs. These 4i
players can then be paired up into (2i)! possible offensive—defensive pairs. (This
is so because the first offensive player can be paired with any of the 2i defensive
players, the second offensive player with any of the remaining 2i — 1 defensive
players, and so on.) As the remaining 20 — 2i offensive (and defensive) players
must be paired among themselves, it follows that there are

<20>2 N '[ (20 — 20)! ]2
2 ) 2107810 — i)!

divisions that lead to 2i offensive—defensive pairs. Hence,

(20)2 N '[ (20 — 20)! r
2 ) 4D 2107510 — i)!

(40)!
22°(20)!

P, = i=01,..,10

The P,;,i = 0,1, .., 10, can now be computed, or they can be approximated by
making use of a result of Stirling, which shows that n! can be approximated by
n"*t1/2¢~™/2m. For instance, we obtain

P, ~ 1.3403 x 10~ ©
P, ~ .345861

P,y =~ 7.6068 x 10~ °

Our next three examples illustrate the usefulness of the inclusion—exclusion identity
(Proposition 4.4) . In Example 51 , the introduction of probability enables us to
obtain a quick solution to a counting problem.

Example 5I

A total of 36 members of a club play tennis, 28 play squash, and 18 play
badminton. Furthermore, 22 of the members play both tennis and squash, 12
play both tennis and badminton, 9 play both squash and badminton, and 4 play
all three sports. How many members of this club play at least one of three
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sports?

Solution

Let N denote the number of members of the club, and introduce probability by
assuming that a member of the club is randomly selected. If, for any subset C of
members of the club, we let P(C) denote the probability that the selected member
is contained in C, then

number of membersin C

P(C) = ~

Now, with T being the set of members that plays tennis, S being the set that plays
squash, and B being the set that plays badminton, we have, from Proposition
44

P(TUSUB)
= P(T) + P(S) + P(B) — P(TS) — P(TB) — P(SB) + P(TSB)

36+28+18-22-12-9+4
B N

Hence, we can conclude that 43 members play at least one of the sports.

The next example in this section not only possesses the virtue of giving rise to a
somewhat surprising answer, but is also of theoretical interest.

Example 5m The Matching Problem

Suppose that each of N men at a party throws his hat into the center of the room.
The hats are first mixed up, and then each man randomly selects a hat. What is
the probability that none of the men selects his own hat?

Solution

We first calculate the complementary probability of at least one man selecting his
own hat. Let us denote by E;,i = 1, 2, ..., N the event that the ith man selects his

N
own hat. Now, by the inclusion-exclusion identity P( U El-), the probability that
1

i =

at least one of the men selects his own hat, is given by
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P(i Ql Ei> = i P(E;) — Z P(E, Ey) + -

i=1 i1 < iy

H-DM D P(EE,E,)

i1 < iy < ip

oot (= DY P(E By Ey)

If we regard the outcome of this experiment as a vector of N numbers, where the
ith element is the number of the hat drawn by the ith man, then there are N!
possible outcomes. [The outcome (1, 2, 3, ..., N) means, for example, that each
man selects his own hat.] Furthermore, E; E;,..E; , the event that each of the n
men iy, i,, .., i, Selects his own hat, can occur in any of
(N-—n)(N—n—-1)--3-2-1= (N —n)! possible ways; for, of the remaining N —n
men, the first can select any of N — n hats, the second can then select any of

N —n — 1 hats, and so on. Hence, assuming that all N! possible outcomes are
equally likely, we see that

~ (N—n)!

P(E; Ei, Ey,) N

N
) terms in z P(E; E;,-E; ), it follows that

Also, as there are <
n

i1 < iy < ip

Nt (N-m)! 1
Z PEE,E0) = N N

i1 < iy < ip

Thus,

Hence, the probability that none of the men selects his own hat is

N N

1 1 (-DY 2 .

1—1+§—§+...+ NI = (—1)/l
i=0

Upon letting x = — 1 in the identity e* = z x!/i!, the preceding probability
i=o0

when N is large is seen to be approximately equal to e ! ~ .3679. In other words,

for N large, the probability that none of the men selects his own hat is
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approximately .37. (How many readers would have incorrectly thought that this
probability would goto 1 as N — ?)

For another illustration of the usefulness of the inclusion-exclusion identity, consider
the following example.

Example 5n

Compute the probability that if 10 married couples are seated at random at a
round table, then no wife sits next to her husband.

Solution

IfweletE; i =1,2,..,10 denote the event that the ith couple sit next to each

10
other, it follows that the desired probability is 1 — P< V) El->. Now, from the
i=1

inclusion-exclusion identity,

10 10
f— . — e — n+1 . . cee .
P( L1J Ei) - ZP(EL) +( 1) Z P(E11E12 Eln)

4 < ip < - < ip

++o = P(E1E2E10)

To compute P(E;, E;,--E;,,), we first note that there are 19! ways of arranging 20
people around a round table. (Why?) The number of arrangements that result in
a specified set of n men sitting next to their wives can most easily be obtained by
first thinking of each of the n married couples as being single entities. If this were
the case, then we would need to arrange 20 — n entities around a round table,
and there are clearly (20 — n — 1)! such arrangements. Finally, since each of the
n married couples can be arranged next to each other in one of two possible
ways, it follows that there are 2™(20 — n — 1)! arrangements that result in a
specified set of n men each sitting next to their wives. Therefore,

2"(19 — n)!
P(E; Ei,Ei,) = GO

Thus, from Proposition 4.4 | we obtain that the probability that at least one
married couple sits together is

10\, (18)! (10\ , (7! (10\ ,(16)  (10\ ,, 9 _
(1)2 (19)! <2>2 (19)!+<3>2 (19)! <10>2 (19)1 ~ 6605

and the desired probability is approximately .3395.
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*Example 50 Runs

Consider an athletic team that had just finished its season with a final record of n
wins and m losses. By examining the sequence of wins and losses, we are
hoping to determine whether the team had stretches of games in which it was
more likely to win than at other times. One way to gain some insight into this
question is to count the number of runs of wins and then see how likely that
result would be when all (n + m)!/(n!m!) orderings of the n wins and m losses
are assumed equally likely. By a run of wins, we mean a consecutive sequence
of wins. For instance, if n = 10, m = 6, and the sequence of outcomes was
WWLLWWWLWLLLWWWW, then there would be 4 runs of wins—the first run
being of size 2, the second of size 3, the third of size 1, and the fourth of size 4.

Suppose now that a team has n wins and m losses. Assuming that all (n + m)!/
+

(n'm!) = <n m> orderings are equally likely, let us determine the probability
n

that there will be exactly r runs of wins. To do so, consider first any vector of
positive integers x4, x,, ..., x,- with x; + -+ + x,, = n, and let us see how many
outcomes result in r runs of wins in which the ith run is of size x;,i = 1,...,r. For
any such outcome, if we let y, denote the number of losses before the first run of

wins, y, the number of losses between the first 2 runs of wins, .. the

n yr+1
number of losses after the last run of wins, then the y, satisfy

y1+y2+...+yr+1:m yl20,yr+120,yi>0,i:2,...,’f'

and the outcome can be represented schematically as

LL.LWwW.WL.LWW.. W---WWL..L

Y1 *1 Y2 *2 *r Yo+t

Hence, the number of outcomes that result in  runs of wins the ith of size
x;,i =1, ..r — is equal to the number of integers y_, .., y.., , that satisfy the
foregoing, or, equivalently, to the number of positive integers

yi=y1+t1 Yy =y i=2.n Y =Y T
that satisfy

Y, +Y,t+y  =m+2

+
By Proposition 6.1 in Chapter 1 | there are (m

1
) such outcomes.
T

+1
Hence, the total number of outcomes that result in r runs of wins is (m >
T
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multiplied by the number of positive integral solutions of x; + -+ + x,, = n. Thus,

) . m+1\n—1 L
again from Proposition 6.1 , there are < >< 1) outcomes resulting in
r r—

n+m
r runs of wins. As there are ( > equally likely outcomes, it follows that
n

(m + 1><n — 1)
T r—1
r=1
m-+n
(")
For example, if n = 8 and m = 6, then the probability of 7 runs is

() s
B

outcomes are equally likely. Hence, if the outcome was WLWLWLWLWWLWLW,
then we might suspect that the team’s probability of winning was changing over
time. (In particular, the probability that the team wins seems to be quite high

P({r runs of wins}) =

when it lost its last game and quite low when it won its last game.) On the other
extreme, if the outcome were WWWWWWWW.LLLLLL, then there would have

7\(7 14
been only 1 run, and as P({1run}) = <1><0>/< g ) = 1/429, it would thus

again seem unlikely that the team’s probability of winning remained unchanged
over its 14 games.

2.6 Probability as a Continuous Set
Function

A sequence of events {E,,,n > 1} is said to be an increasing sequence if

EicE,c--cE,cE 4  C-

whereas it is said to be a decreasing sequence if

EiD2E, > 2DE,DE 412D

If {E,,n > 1} is an increasing sequence of events, then we define a new event,
denoted by li_)m E,, by
n [e0]
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n — o

n — o

We now prove the following Proposition 6.1
Proposition 6.1
If {E,,n > 1} is either an increasing or a decreasing sequence of events, then
, li_)mo0 P(E,) = P(n li_)moo E,)
Proof Suppose, first, that {E,,,n = 1} is an increasing sequence, and define the
events F,, n > 1, by

F1:E1

c
n —1
Fn:En< U El-) =E.ES_ , n>1
1

—1
where we have used the fact that " U E;=E,_, since the events are
1

increasing. In words, F,, consists of those outcomes in E,, that are not in any of
the earlier E;,i < n. It is easy to verify that the F,, are mutually exclusive events
such that

. o n n
U F,= U E; and U F,= U E; foraln>1



(0] oo
1 1

= of: P(F;) (byAxiom3)
1

n

n
= lim_ %P(Fi)

n
n — o 1

= lim_ P(Ey)

which proves the result when {E,, n > 1} is increasing.

If {E,,n = 1} is a decreasing sequence, then {E;,,n > 1} is an increasing
sequence; hence, from the preceding equations,

P( §] Ef) = lim P(ES)
1 n — oo
(00] [00] ¢ .
However, because U Ef =| N E; |, it follows that
1

1
P(( oﬁ El-) >= lim p(E;)
1 n — o

or, equivalently,

1-r(

= D8

El-) = lim [1-PE)] =1~ lim P(E,)
or
P< n El-) = lim pr(,)

1 n — oo

which proves the result.

Example 6a Probability and a “Paradox”
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Suppose that we possess an infinitely large urn and an infinite collection of balls
labeled ball number 1, number 2, number 3, and so on. Consider an experiment
performed as follows: At 1 minute to 12 pP.M., balls numbered 1 through 10 are

placed in the urn and ball number 10 is withdrawn. (Assume that the withdrawal

1
takes no time.) At 2 minute to 12 P.M., balls numbered 11 through 20 are placed

1
in the urn and ball number 20 is withdrawn. At 7 minute to 12 P.M., balls
numbered 21 through 30 are placed in the urn and ball number 30 is withdrawn.
1
At 3 minute to 12 P.M., and so on. The question of interest is, How many balls are

in the urn at 12 p.M.?

The answer to this question is clearly that there is an infinite number of balls in
the urn at 12 P.M., since any ball whose number is not of the form 10n, n = 1, will
have been placed in the urn and will not have been withdrawn before 12 p.m.
Hence, the problem is solved when the experiment is performed as described.

However, let us now change the experiment and suppose that at 1 minute to 12
P.M., balls numbered 1 through 10 are placed in the urn and ball number 1 is
withdrawn; at % minute to 12 P.M., balls numbered 11 through 20 are placed in the

1
urn and ball number 2 is withdrawn; at 7 minute to 12 P.M, balls numbered 21

1
through 30 are placed in the urn and ball number 3 is withdrawn; at 3 minute to

12 P.M., balls numbered 31 through 40 are placed in the urn and ball number 4 is
withdrawn, and so on. For this new experiment, how many balls are in the urn at
12 P.M.?

Surprisingly enough, the answer now is that the urn is empty at 12 p.m. For,
consider any ball-say, ball number n. At some time prior to 12 P.M. [in particular,

n—1
at (%) minutes to 12 P.M.], this ball would have been withdrawn from the urn.

Hence, for each n, ball number n is not in the urn at 12 p.Mm.; therefore, the urn
must be empty at that time.

Because for all n, the number of balls in the urn after the nth interchange is the
same in both variations of the experiment, most people are surprised that the two
scenarios produce such different results in the limit. It is important to recognize
that the reason the results are different is not because there is an actual paradox,
or mathematical contradiction, but rather because of the logic of the situation,
and also that the surprise results because one’s initial intuition when dealing with
infinity is not always correct. (This latter statement is not surprising, for when the
theory of the infinite was first developed by the mathematician Georg Cantor in
the second half of the nineteenth century, many of the other leading



mathematicians of the day called it nonsensical and ridiculed Cantor for making
such claims as that the set of all integers and the set of all even integers have
the same number of elements.)

We see from the preceding discussion that the manner in which the balls are
withdrawn makes a difference. For, in the first case, only balls numbered
10n,n > 1, are ever withdrawn, whereas in the second case all of the balls are
eventually withdrawn. Let us now suppose that whenever a ball is to be
withdrawn, that ball is randomly selected from among those present. That is,
suppose that at 1 minute to 12 p.M. balls numbered 1 through 10 are placed in
the urn and a ball is randomly selected and withdrawn, and so on. In this case,
how many balls are in the urn at 12 p.m.?

Solution

We shall show that, with probability 1, the urn is empty at 12 P.m. Let us first
consider ball number 1. Define E,, to be the event that ball number 1 is still in the
urn after the first n withdrawals have been made. Clearly,

9.18-27 - (9n)
10-19-28 - (9n+1)

P(E,) =

[To understand this equation, just note that if ball number 1 is still to be in the urn
after the first n withdrawals, the first ball withdrawn can be any one of 9, the
second any one of 18 (there are 19 balls in the urn at the time of the second
withdrawal, one of which must be ball number 1), and so on. The denominator is
similarly obtained.]

Now, the event that ball number 1 is in the urn at 12 p.m. is just the event

A E,. Because the events E,,n > 1, are decreasing events, it follows from
n =1

Proposition 6.1 that
P{ball number 1 isin the urnat 12P.M.}

:P< A En>
n —=1

= lim P(Ey)

Q oin
= 0 GH)
n =1 \Int1

We now show that
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Since

| =8

9n

(ome)=[ 2.5

this is equivalent to showing that

Now, for all m > 1,

0 m
I1 <1+i>z I1 <1+i>
n =1 9n n =

1 9Tl
= 1+1 1+1 1+1 1+1
N 9 18 27 9m
>1+1+1+ +1

9 18 27 9m

Hence, letting m — oo and using the fact that Z 1/i = oo yields

i=1

1 (s

0.0)

Thus, letting F; denote the event that ball number i is in the urn at 12 P.M., we

have shown that P(F;) = 0. Similarly, we can show that P(F;) = 0 for all i

(For instance, the same reasoning shows that P(F;) = 1_[ [9n/(9n + 1)] for

n =2

i =11,12,..,20.) Therefore, the probability that the urn is not empty at 12 P.m
P( ¥ Fi>, satisfies
1

(LlJFl> ZP(F)—O

by Boole’s inequality.
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Thus, with probability 1, the urn will be empty at 12 P.m.

2.7 Probability as a Measure of Belief

Thus far we have interpreted the probability of an event of a given experiment as
being a measure of how frequently the event will occur when the experiment is
continually repeated. However, there are also other uses of the term probability. For
instance, we have all heard such statements as “It is 90 percent probable that
Shakespeare actually wrote Hamlet’ or “The probability that Oswald acted alone in
assassinating Kennedy is .8.” How are we to interpret these statements?

The most simple and natural interpretation is that the probabilities referred to are
measures of the individual’s degree of belief in the statements that he or she is
making. In other words, the individual making the foregoing statements is quite
certain that Oswald acted alone and is even more certain that Shakespeare wrote
Hamlet. This interpretation of probability as being a measure of the degree of one’s
belief is often referred to as the personal or subjective view of probability.

It seems logical to suppose that a “measure of the degree of one’s belief” should
satisfy all of the axioms of probability. For example, if we are 70 percent certain that
Shakespeare wrote Julius Caesar and 10 percent certain that it was actually
Marlowe, then it is logical to suppose that we are 80 percent certain that it was either
Shakespeare or Marlowe. Hence, whether we interpret probability as a measure of
belief or as a long-run frequency of occurrence, its mathematical properties remain
unchanged.

Example 7a

Suppose that in a 7-horse race, you believe that each of the first 2 horses has a
20 percent chance of winning, horses 3 and 4 each have a 15 percent chance,
and the remaining 3 horses have a 10 percent chance each. Would it be better
for you to wager at even money that the winner will be one of the first three
horses or to wager, again at even money, that the winner will be one of the
horses 1, 5, 6, and 77?

Solution

On the basis of your personal probabilities concerning the outcome of the race,
your probability of winning the first bet is .2 + .2 + .15 = .55, whereas it is
2+.1+.1+.1=.5 for the second bet. Hence, the first wager is more attractive.

Note that in supposing that a person’s subjective probabilities are always consistent
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with the axioms of probability, we are dealing with an idealized rather than an actual
person. For instance, if we were to ask someone what he thought the chances were
of

a. rain today,

b. rain tomorrow,

c. rain both today and tomorrow,
d. rain either today or tomorrow,

it is quite possible that, after some deliberation, he might give 30 percent, 40 percent,
20 percent, and 60 percent as answers. Unfortunately, such answers (or such
subjective probabilities) are not consistent with the axioms of probability. (Why not?)
We would of course hope that after this was pointed out to the respondent, he would
change his answers. (One possibility we could accept is 30 percent, 40 percent, 10
percent, and 60 percent.)

Summary

Let S denote the set of all possible outcomes of an experiment. S is called the sample
space of the experiment. An event is a subset of S. If 4;,i = 1,..,n, are events, then

n
U A,;, called the union of these events, consists of all outcomes that are in at
i=1

n
least one of the events A;,i = 1,..,n. Similarly, n A;, sometimes written as A;:--4,,,
1

1=

is called the intersection of the events A; and consists of all outcomes that are in all
of the events 4;,i = 1,..n.

For any event A4, we define A° to consist of all outcomes in the sample space that are
not in A. We call A the complement of the event A. The event S, which is empty of
outcomes, is designated by & and is called the null set. If AB = @, then we say that A
and B are mutually exclusive.

For each event A of the sample space S, we suppose that a number P(A), called the
probability of 4, is defined and is such that

.0<PA <1
i. P(S) =1
iii. For mutually exclusive events A;,i > 1,

) Ai) = i P(4;)

i 1

)
—
Il c8
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P(A) represents the probability that the outcome of the experiment is in A.
It can be shown that

P(A%) =1 — P(4)

A useful result is that

P(AUB) = P(A) + P(B) — P(AB)

which can be generalized to give

n n
p( U Ai> = X PA)- XX P(44)
i=1 1< J

1=
t ZZZRP(AiAjAk)
i< j<

oo (= DMTP(Ay Ay

This result is known as the inclusion—exclusion identity.
If S is finite and each one point set is assumed to have equal probability, then

_ 14
PUA) = T

where |E| denotes the number of outcomes in the event E.

P(A) can be interpreted either as a long-run relative frequency or as a measure of
one’s degree of belief.

Problems

1. A box contains 3 marbles: 1 red, 1 green, and 1 blue. Consider an
experiment that consists of taking 1 marble from the box and then replacing it
in the box and drawing a second marble from the box. Describe the sample
space. Repeat when the second marble is drawn without replacing the first
marble.

2. In an experiment, die is rolled continually until a 6 appears, at which point
the experiment stops. What is the sample space of this experiment? Let E,,
denote the event that n rolls are necessary to complete the experiment. What

c
(0]

points of the sample space are contained in E,,? What is ( U En> ?
1
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3. Two dice are thrown. Let E be the event that the sum of the dice is odd, let
F be the event that at least one of the dice lands on 1, and let G be the event
that the sum is 5. Describe the events EF,E U F,FG,EF¢, and EFG.
4. A, B, and C take turns flipping a coin. The first one to get a head wins. The
sample space of this experiment can be defined by

1,01,001,0001,...,
{oooou-

a. Interpret the sample space.
b. Define the following events in terms of S: 10pt

i. Awins = A.
ii. Bwins = B.
jii. (AuB)".

Assume that A flips first, then B, then C, then A, and so on.

5. A system is composed of 5 components, each of which is either working or
failed. Consider an experiment that consists of observing the status of each
component, and let the outcome of the experiment be given by the vector
(x1, x5, X3, X4, Xg), Where x; is equal to 1 if component i is working and is
equal to 0 if component i is failed.
a. How many outcomes are in the sample space of this experiment?
b. Suppose that the system will work if components 1 and 2 are both
working, or if components 3 and 4 are both working, or if components
1, 3, and 5 are all working. Let W be the event that the system will
work. Specify all the outcomes in W.
c. Let A be the event that components 4 and 5 are both failed. How many
outcomes are contained in the event A?
d. Write out all the outcomes in the event AW.

6. A hospital administrator codes incoming patients suffering gunshot wounds
according to whether they have insurance (coding 1 if they do and 0 if they do
not) and according to their condition, which is rated as good (g), fair (f), or
serious (s). Consider an experiment that consists of the coding of such a
patient.
a. Give the sample space of this experiment.
b. Let A be the event that the patient is in serious condition. Specify the
outcomes in A.
c. Let B be the event that the patient is uninsured. Specify the outcomes
in B.
d. Give all the outcomes in the event B°U A.
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7. Consider an experiment that consists of determining the type of job—either
blue collar or white collar—and the political affiliation Republican, Democratic,
or Independent—of the 15 members of an adult soccer team. How many
outcomes are
a. in the sample space?
b. in the event that at least one of the team members is a blue-collar
worker?
c. in the event that none of the team members considers himself or
herself an Independent?

8. Suppose that A and B are mutually exclusive events for which P(A) = .3
and P(B) = .5. What is the probability that

a. either A or B occurs?

b. A occurs but B does not?

c. both A and B occur?

9. A retail establishment accepts either the American Express or the VISA
credit card. A total of 24 percent of its customers carry an American Express
card, 61 percent carry a VISA card, and 11 percent carry both cards. What
percentage of its customers carry a credit card that the establishment will
accept?
10. Sixty percent of the students at a certain school wear neither a ring nor a
necklace. Twenty percent wear a ring and 30 percent wear a necklace. If one
of the students is chosen randomly, what is the probability that this student is
wearing

a. a ring or a necklace?

b. a ring and a necklace?

11. A total of 28 percent of American males smoke cigarettes, 7 percent
smoke cigars, and 5 percent smoke both cigars and cigarettes.
a. What percentage of males smokes neither cigars nor cigarettes?
b. What percentage smokes cigars but not cigarettes?

12. An elementary school is offering 3 language classes: one in Spanish, one
in French, and one in German. The classes are open to any of the 100
students in the school. There are 28 students in the Spanish class, 26 in the
French class, and 16 in the German class. There are 12 students who are in
both Spanish and French, 4 who are in both Spanish and German, and 6 who
are in both French and German. In addition, there are 2 students taking all 3
classes.

a. If a student is chosen randomly, what is the probability that he or she is
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not in any of the language classes?

b. If a student is chosen randomly, what is the probability that he or she is
taking exactly one language class?

c. If 2 students are chosen randomly, what is the probability that at least 1
is taking a language class?

13. A certain town with a population of 100,000 has 3 newspapers: |, I, and
lll. The proportions of townspeople who read these papers are as follows:
I: 10 percent | and Il: 8 percent | and Il and IlI: 1 percent
[I: 30 percent | and llI: 2 percent
[lI: 5 percent Il and IlI: 4 percent
(The list tells us, for instance, that 8000 people read newspapers | and 11.)
a. Find the number of people who read only one newspaper.
b. How many people read at least two newspapers?
c. If  and Il are morning papers and Il is an evening paper, how many
people read at least one morning paper plus an evening paper?
d. How many people do not read any newspapers?
e. How many people read only one morning paper and one evening
paper?

14. The following data were given in a study of a group of 1000 subscribers to
a certain magazine: In reference to job, marital status, and education, there
were 312 professionals, 470 married persons, 525 college graduates, 42
professional college graduates, 147 married college graduates, 86 married
professionals, and 25 married professional college graduates. Show that the
numbers reported in the study must be incorrect.

Hint: Let M, W, and G denote, respectively, the set of professionals, married
persons, and college graduates. Assume that one of the 1000 persons is
chosen at random, and use Proposition 4.4  to show that if the given
numbers are correct, then P(MU W U G) > 1.

52
15. If it is assumed that all < c > poker hands are equally likely, what is the

probability of being dealt

a. a flush? (A hand is said to be a flush if all 5 cards are of the same suit.)

b. one pair? (This occurs when the cards have denominations a, a, b, c, d,
where a, b, ¢, and d are all distinct.)

c. two pairs? (This occurs when the cards have denominations a, a, b, b, c,
where a, b, and c are all distinct.)

d. three of a kind? (This occurs when the cards have denominations a, a,
a, b, c, where a, b, and c are all distinct.)

e. four of a kind? (This occurs when the cards have denominations a, a, a,
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a, b.)

16. Poker dice is played by simultaneously rolling 5 dice. Show that
a. P{no two alike} = .0926;
b. P{one pair} = .4630;
c. P{two pair} = .2315;
d. P{three alike} = .1543;
e. P{fullhouse} = .0386;
f. P{four alike} = .0193;
g. P{five alike} = .0008.

17. Twenty five people, consisting of 15 women and 10 men are lined up in a
random order. Find the probability that the ninth woman to appear is in
position 17. That is, find the probability there are 8 women in positions 1 thru
16 and a woman in position 17.
18. Two cards are randomly selected from an ordinary playing deck. What is
the probability that they form a blackjack? That is, what is the probability that
one of the cards is an ace and the other one is either a ten, a jack, a queen, or
a king?
19. Two symmetric dice have had two of their sides painted red, two painted
black, one painted yellow, and the other painted white. When this pair of dice
is rolled, what is the probability that both dice land with the same color face
up?
20. Suppose that you are playing blackjack against a dealer. In a freshly
shuffled deck, what is the probability that neither you nor the dealer is dealt a
blackjack?
21. A small community organization consists of 20 families, of which 4 have
one child, 8 have two children, 5 have three children, 2 have four children, and
1 has five children.

a. If one of these families is chosen at random, what is the probability it

has i children,i= 1,2, 3,4, 5?
b. If one of the children is randomly chosen, what is the probability that
child comes from a family having i children, i = 1, 2, 3, 4, 57

22. Consider the following technique for shuffling a deck of n cards: For any
initial ordering of the cards, go through the deck one card at a time and at
each card, flip a fair coin. If the coin comes up heads, then leave the card
where it is; if the coin comes up tails, then move that card to the end of the
deck. After the coin has been flipped n times, say that one round has been
completed. For instance, if n = 4 and the initial ordering is 1, 2, 3, 4, then if
the successive flips result in the outcome h, t, t, h, then the ordering at the end
of the round is 1, 4, 2, 3. Assuming that all possible outcomes of the sequence
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of n coin flips are equally likely, what is the probability that the ordering after
one round is the same as the initial ordering?

23. A pair of fair dice is rolled. What is the probability that the second die
lands on a higher value than does the first?

24. If two dice are rolled, what is the probability that the sum of the upturned
faces equals i? Finditfori =2,3, .. ,11,12.

25. A pair of dice is rolled until a sum of either 5 or 7 appears. Find the
probability that a 5 occurs first.

Hint: Let E,, denote the event that a 5 occurs on the nth roll and no 5 or 7

occurs on the first n — 1 rolls. Compute P(E,,) and argue that z P(E,) is
n =1

the desired probability.

26. The game of craps is played as follows: A player rolls two dice. If the sum

of the dice is either a 2, 3, or 12, the player loses; if the sum is either a 7 or an
11, the player wins. If the outcome is anything else, the player continues to roll
the dice until she rolls either the initial outcome or a 7. If the 7 comes first, the

player loses, whereas if the initial outcome reoccurs before the 7 appears, the
player wins. Compute the probability of a player winning at craps.

Hint: Let E; denote the event that the initial outcome is i and the player wins.
12

The desired probability is Z P(E;). To compute P(E;), define the events
i=2
E;, to be the event that the initial sum is / and the player wins on the nth roll.

Argue that P(E,) = Z P(E, ).

n =1
27. An urn contains 3 red and 7 black balls. Players A and B withdraw balls
from the urn consecutively until a red ball is selected. Find the probability that
A selects the red ball. (A draws the first ball, then B, and so on. There is no
replacement of the balls drawn.)
28. An urn contains 5 red, 6 blue, and 8 green balls. If a set of 3 balls is
randomly selected, what is the probability that each of the balls will be (a) of
the same color? (b) of different colors? Repeat under the assumption that
whenever a ball is selected, its color is noted and it is then replaced in the urn
before the next selection. This is known as sampling with replacement.
29. An urn contains n white and m black balls, where n and m are positive
numbers.
a. If two balls are randomly withdrawn, what is the probability that they are
the same color?
b. If a ball is randomly withdrawn and then replaced before the second
one is drawn, what is the probability that the withdrawn balls are the
same color?
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c. Show that the probability in part (b) is always larger than the one in part
(a).

30. The chess clubs of two schools consist of, respectively, 8 and 9 players.
Four members from each club are randomly chosen to participate in a contest
between the two schools. The chosen players from one team are then
randomly paired with those from the other team, and each pairing plays a
game of chess. Suppose that Rebecca and her sister Elise are on the chess
clubs at different schools. What is the probability that

a. Rebecca and Elise will be paired?

b. Rebecca and Elise will be chosen to represent their schools but will not

play each other?
c. either Rebecca or Elise will be chosen to represent her school?

31. A 3-person basketball team consists of a guard, a forward, and a center.
a. If a person is chosen at random from each of three different such
teams, what is the probability of selecting a complete team?
b. What is the probability that all 3 players selected play the same
position?

32. A group of individuals containing b boys and g girls is lined up in random
order; that is, each of the (b + g)! permutations is assumed to be equally
likely. What is the probability that the person in the ith position, 1 <i<b + g,
is a girl?
33. A forest contains 20 elk, of which 5 are captured, tagged, and then
released. A certain time later, 4 of the 20 elk are captured. What is the
probability that 2 of these 4 have been tagged? What assumptions are you
making?
34. The second Earl of Yarborough is reported to have bet at odds of 1000 to
1 that a bridge hand of 13 cards would contain at least one card that is ten or
higher. (By ten or higher we mean that a card is either a ten, a jack, a queen,
a king, or an ace.) Nowadays, we call a hand that has no cards higher than 9
a Yarborough. What is the probability that a randomly selected bridge hand is
a Yarborough?
35. Seven balls are randomly withdrawn from an urn that contains 12 red, 16
blue, and 18 green balls. Find the probability that

a. 3 red, 2 blue, and 2 green balls are withdrawn;

b. at least 2 red balls are withdrawn;

c. all withdrawn balls are the same color;

d. either exactly 3 red balls or exactly 3 blue balls are withdrawn.
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36. Two cards are chosen at random from a deck of 52 playing cards. What is
the probability that they

a. are both aces?

b. have the same value?

37. An instructor gives her class a set of 10 problems with the information that
the final exam will consist of a random selection of 5 of them. If a student has
figured out how to do 7 of the problems, what is the probability that he or she
will answer correctly

a. all 5 problems?

b. at least 4 of the problems?

38. There are n socks, 3 of which are red, in a drawer. What is the value of n
if, when 2 of the socks are chosen randomly, the probability that they are both

red is z ?

5
39. There are 5 hotels in a certain town. If 3 people check into hotels in a day,
what is the probability that they each check into a different hotel? What
assumptions are you making?
40. If 4 balls are randomly chosen from an urn containing 4 red, 5 white, 6
blue, and 7 green balls, find the probability that

a. at least one of the 4 balls chosen is green;
b. one ball of each color is chosen.

41. If a die is rolled 4 times, what is the probability that 6 comes up at least
once?

42. Two dice are thrown n times in succession. Compute the probability that
double 6 appears at least once. How large need n be to make this probability

t t17
at least -7
2

43.
a. If N people, including A and B, are randomly arranged in a line, what is
the probability that A and B are next to each other?
b. What would the probability be if the people were randomly arranged in
a circle?

44. Five people, designated as A, B, C, D, E, are arranged in linear order.
Assuming that each possible order is equally likely, what is the probability that
a. there is exactly one person between A and B?
b. there are exactly two people between A and B?
c. there are three people between A and B?
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45. A woman has n keys, of which one will open her door.
a. If she tries the keys at random, discarding those that do not work, what
is the probability that she will open the door on her kth try?
b. What if she does not discard previously tried keys?

46. How many people have to be in a room in order that the probability that at
1
least two of them celebrate their birthday in the same month is at least 5 ?

Assume that all possible monthly outcomes are equally likely.
47. Suppose that 5 of the numbers 1, 2, ..., 14 are chosen. Find the probability
that 9 is the third smallest value chosen.
48. Given 20 people, what is the probability that among the 12 months in the
year, there are 4 months containing exactly 2 birthdays and 4 containing
exactly 3 birthdays?
49. A group of 6 men and 6 women is randomly divided into 2 groups of size 6
each. What is the probability that both groups will have the same number of
men?
50. In a hand of bridge, find the probability that you have 5 spades and your
partner has the remaining 8.
51. Suppose that n balls are randomly distributed into N compartments. Find
the probability that m balls will fall into the first compartment. Assume that all
N™ arrangements are equally likely.
52. A closet contains 10 pairs of shoes. If 8 shoes are randomly selected,
what is the probability that there will be

a. no complete pair?

b. exactly 1 complete pair?

53. If 8 people, consisting of 4 couples, are randomly arranged in a row, find
the probability that no person is next to their partner.
54. Compute the probability that a bridge hand is void in at least one suit.

Note that the answer is not
4\ /39
1/\13

52
13
(Why not?)
Hint: Use Proposition 4.4
55. Compute the probability that a hand of 13 cards contains

a. the ace and king of at least one suit;
b. all 4 of at least 1 of the 13 denominations.



56. Two players play the following game: Player A chooses one of the three
spinners pictured in Figure 2.6 , and then player B chooses one of the
remaining two spinners. Both players then spin their spinner, and the one that
lands on the higher number is declared the winner. Assuming that each
spinner is equally likely to land in any of its 3 regions, would you rather be
player A or player B? Explain your answer!

Figure 2.6 Spinners

Theoretical Exercises

Prove the following relations:

1. EFcEcCEUF.
2. If Ec F, then F¢ c E€.
3. F=FEUFE‘and EUF = EUE°F.

4. (‘i‘j El->F = U E,;F and
1 1

(OrlowEi)UF= ?j\(Equ).
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5. For any sequence of events E,E,,.., define a new sequence F,,F,,.. of
disjoint events (that is, events such that F;F; = @ whenever i # j) such that
foralln > 1,

6. Let E, F, and G be three events. Find expressions for the events so that, of
E, F,and G,
a. only E occurs;
. both E and G, but not F, occur;
. at least one of the events occurs;
. at least two of the events occur;
. all three events occur;
. hone of the events occurs;
. at most one of the events occurs;

>oQ o 0 O 0O T

. at most two of the events occur;

. exactly two of the events occur;
j- at most three of the events occur.

7. Use Venn diagrams
a. to simplify the expression (E U F)(E U F°);
b. to prove DeMorgan’s laws for events E and F. [That is, prove
(EUF)°=E°F¢ and (EF)°=E°UF€]

8. Let S be a given set. If, for some k > 0, 54,55, ..., S, are mutually exclusive

k
nonempty subsets of S suchthat U S; =S,, then we call the set
i=1

{51,52,-,Sk } @ partition of S. Let T,, denote the number of different partitions of
{1,2,..,n}. Thus, T, = 1 (the only partition being S, = {1}) and T, = 2 (the two
partitions being {{1,2,}}, {{1}, {2} ).

a. Show, by computing all partitions, that T; = 5,7, = 15.

b. Show that
n
n
Tpoa=1+ ) <k>Tk
k =1

and use this equation to compute T,.

Hint: One way of choosing a partition of n + 1 items is to call one of the
items special. Then we obtain different partitions by first choosing

k,k =0,1,..,n, then a subset of size n — k of the nonspecial items, and
then any of the T, partitions of the remaining k nonspecial items. By
adding the special item to the subset of size n — k, we obtain a partition



ofall n + 1 items.

9. Suppose that an experiment is performed n times. For any event E of the

sample space, let n(E) denote the number of times that event E occurs and

define f(E) = n(E)/n. Show that f( - ) satisfies Axioms 1, 2, and 3.

10. Prove that

P(EUFUG) = P(E) + P(F) + P(G) — P(E°FG) — P(EF°G) — P(EFG®) — P(EFG®) — 2P(EF!
11.If P(E) = .9 and P(F) = .8, show that P(EF) = .7. In general, prove

Bonferroni’s inequality, namely,
P(EF) = P(E)+ P(F)—1

12. Show that the probability that exactly one of the events E or F occurs
equals P(E) + P(F) — 2P(EF).
13. Prove that
P(EF®) = P(E) — P(EF).
14. Prove Proposition 4.4 by mathematical induction.
15. An urn contains M white and N black balls. If a random sample of size r is
chosen, what is the probability that it contains exactly k white balls?
16. Use induction to generalize Bonferroni’s inequality to n events. That is,

show that
P(E{E,--E;,) =2 P(E{)+--+P(E,)—(n—-1)

17. Consider the matching problem, Example 5m , and define Ay to be the
number of ways in which the N men can select their hats so that no man

selects his own. Argue that
Ay =N —-1)(Ay-1 +Ay-2)

This formula, along with the boundary conditions A; = 0, A, = 1, can then be
solved for Ay, and the desired probability of no matches would be Ay /N
Hint: After the first man selects a hat that is not his own, there remain N — 1
men to select among a set of N — 1 hats that does not contain the hat of one
of these men. Thus, there is one extra man and one extra hat. Argue that we
can get no matches either with the extra man selecting the extra hat or with
the extra man not selecting the extra hat.

18. Let f, denote the number of ways of tossing a coin n times such that

successive heads never appear. Argue that
fo=Fnoit s n>2,wheref, =1,f, =2

Hint: How many outcomes are there that start with a head, and how many
start with a tail? If P,, denotes the probability that successive heads never
appear when a coin is tossed n times, find P, (in terms of f. ) when all

possible outcomes of the n tosses are assumed equally likely. Compute P,.
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19. An urn contains n red and m blue balls. They are withdrawn one at a time
until a total of r,r < n, red balls have been withdrawn. Find the probability that
a total of k balls are withdrawn.

Hint: A total of k balls will be withdrawn if there are r — 1 red balls in the first
k — 1 withdrawals and the kth withdrawal is a red ball.

20. Consider an experiment whose sample space consists of a countably
infinite number of points. Show that not all points can be equally likely. Can all
points have a positive probability of occurring?

*21. Consider Example 50 , which is concerned with the number of runs of
wins obtained when n wins and m losses are randomly permuted. Now
consider the total number of runs—that is, win runs plus loss runs—and show

)Gy
")
o)) G
")

P{2kruns} = 2

Self-Test Problems and Exercises

1. A cafeteria offers a three-course meal consisting of an entree, a starch, and
a dessert. The possible choices are given in the following table:

Course Choices
Entree Chicken or roast beef
Starch Pasta or rice or potatoes
Dessert Ice cream or Jello or apple pie or a peach

A person is to choose one course from each category.
a. How many outcomes are in the sample space?
b. Let A be the event that ice cream is chosen. How many outcomes are
in A?
c. Let B be the event that chicken is chosen. How many outcomes are in
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B?
d. List all the outcomes in the event AB.
e. Let C be the event that rice is chosen. How many outcomes are in C?
f. List all the outcomes in the event ABC.

2. A customer visiting the suit department of a certain store will purchase a
suit with probability .22, a shirt with probability .30, and a tie with probability
.28. The customer will purchase both a suit and a shirt with probability .11,
both a suit and a tie with probability .14, and both a shirt and a tie with
probability .10. A customer will purchase all 3 items with probability .06. What
is the probability that a customer purchases

a. none of these items?

b. exactly 1 of these items?

3. A deck of cards is dealt out. What is the probability that the 14th card dealt
is an ace? What is the probability that the first ace occurs on the 14th card?
4. Let A denote the event that the midtown temperature in Los Angeles is 70°F
, and let B denote the event that the midtown temperature in New York is 70°F
. Also, let C denote the event that the maximum of the midtown temperatures
in New York and in Los Angeles is 70°F. If P(4A) = .3,P(B) = .4,and P(C) = .2,
find the probability that the minimum of the two midtown temperatures is 70°F.
5. An ordinary deck of 52 cards is shuffled. What is the probability that the top
four cards have

a. different denominations?

b. different suits?

6. Urn A contains 3 red and 3 black balls, whereas urn B contains 4 red and 6
black balls. If a ball is randomly selected from each urn, what is the probability
that the balls will be the same color?

7. In a state lottery, a player must choose 8 of the numbers from 1 to 40. The
lottery commission then performs an experiment that selects 8 of these 40
numbers. Assuming that the choice of the lottery commission is equally likely

40
to be any of the < g > combinations, what is the probability that a player has

a. all 8 of the numbers selected by the lottery commission?
b. 7 of the numbers selected by the lottery commission?
c. at least 6 of the numbers selected by the lottery commission?

8. From a group of 3 first-year students, 4 sophomores, 4 juniors, and 3
seniors, a committee of size 4 is randomly selected. Find the probability that
the committee will consist of

a. 1 from each class;
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b. 2 sophomores and 2 juniors;
c. only sophomores or juniors.

9. For a finite set 4, let N(A) denote the number of elements in A.

a. Show that
N(AUB) = N(A) + N(B) — N(AB)

b. More generally, show that

N(i Ql Al-> = ZN(Ai) - ZZN(AiAj)

i< j

ot (= DN (A Ay)

10. Consider an experiment that consists of 6 horses, numbered 1 through 6,
running a race, and suppose that the sample space consists of the 6! possible
orders in which the horses finish. Let A be the event that the number-1 horse
is among the top three finishers, and let B be the event that the number-2
horse comes in second. How many outcomes are in the event A U B?

11. A 5-card hand is dealt from a well-shuffled deck of 52 playing cards. What
is the probability that the hand contains at least one card from each of the four
suits?

12. A basketball team consists of 6 frontcourt and 4 backcourt players. If
players are divided into roommates at random, what is the probability that
there will be exactly two roommate pairs made up of a backcourt and a
frontcourt player?

13. Suppose that a person chooses a letter at random fromRESERVE
and then chooses one at random from VE R T | C A L. What is the probability
that the same letter is chosen?

14. Prove Boole’s inequality:

p[ O Al-)S \ P(4,
(i:1 > Py

i =1

[0,0]
15. Show that if P(4;) = 1 forall i > 1, then P< N Ai> = 1.
i =1
16. Let T, (n) denote the number of partitions of the set {1,..,n} into k
nonempty subsets, where 1 < k < n. (See Theoretical Exercise 8  for the

definition of a partition.) Argue that
T(n) =kT)y(n—1)+Tr-1(n—1)

Hint: In how many partitions is {1} a subset, and in how many is 1 an element



of a subset that contains other elements?
17. Five balls are randomly chosen, without replacement, from an urn that
contains 5 red, 6 white, and 7 blue balls. Find the probability that at least one
ball of each color is chosen.
18. Four red, 8 blue, and 5 green balls are randomly arranged in a line.

a. What is the probability that the first 5 balls are blue?

b. What is the probability that none of the first 5 balls is blue?

c. What is the probability that the final 3 balls are of different colors?

d. What is the probability that all the red balls are together?

19. Ten cards are randomly chosen from a deck of 52 cards that consists of
13 cards of each of 4 different suits. Each of the selected cards is put in one of
4 piles, depending on the suit of the card.
a. What is the probability that the largest pile has 4 cards, the next largest
has 3, the next largest has 2, and the smallest has 1 card?
b. What is the probability that two of the piles have 3 cards, one has 4
cards, and one has no cards?

20. Balls are randomly removed from an urn initially containing 20 red and 10
blue balls. What is the probability that all of the red balls are removed before
all of the blue ones have been removed?

Chapter 3 Conditional Probability and
Independence

Contents
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3.5 P(-|F) Is a Probability
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3.1 Introduction

In this chapter, we introduce one of the most important concepts in probability theory,
that of conditional probability. The importance of this concept is twofold. In the first
place, we are often interested in calculating probabilities when some partial
information concerning the result of an experiment is available; in such a situation,
the desired probabilities are conditional. Second, even when no partial information is
available, conditional probabilities can often be used to compute the desired
probabilities more easily.

3.2 Conditional Probabilities

Suppose that we toss 2 dice, and suppose that each of the 36 possible outcomes is
1
equally likely to occur and hence has probability 36" Suppose further that we

observe that the first die is a 3. Then, given this information, what is the probability
that the sum of the 2 dice equals 8? To calculate this probability, we reason as
follows: Given that the initial die is a 3, there can be at most 6 possible outcomes of
our experiment, namely, (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), and (3, 6). Since each of
these outcomes originally had the same probability of occurring, the outcomes
should still have equal probabilities. That is, given that the first die is a 3, the
(conditional) probability of each of the outcomes (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), and

1
(3,6)is i whereas the (conditional) probability of the other 30 points in the sample

1
space is 0. Hence, the desired probability will be r

If we let E and F denote, respectively, the event that the sum of the dice is 8 and the
event that the first die is a 3, then the probability just obtained is called the
conditional probability that E occurs given that F has occurred and is denoted by

P(E|F)

A general formula for P(E|F) that is valid for all events E and F is derived in the same
manner: If the event F occurs, then, in order for E to occur, it is necessary that the
actual occurrence be a point both in E and in F; that is, it must be in EF. Now, since
we know that F has occurred, it follows that F becomes our new, or reduced, sample
space; hence, the probability that the event EF occurs will equal the probability of EF
relative to the probability of F. That is, we have the following definition.

Definition



If P(F) > 0, then
(2.1)
P(EF
P(E|F) —P((F))
Example 2a

Joe is 80 percent certain that his missing key is in one of the two pockets of his
hanging jacket, being 40 percent certain it is in the left-hand pocket and 40
percent certain it is in the right-hand pocket. If a search of the left-hand pocket
does not find the key, what is the conditional probability that it is in the other
pocket?

Solution

If we let L be the event that the key is in the left-hand pocket of the jacket, and R
be the event that it is in the right-hand pocket, then the desired probability
P(R|L®) can be obtained as follows:

P(RL®)
P(L°)

P(R)
1-P(L)
= 2/3

P(R|L)

If each outcome of a finite sample space S is equally likely, then, conditional on the
event that the outcome lies in a subset F c §, all outcomes in F become equally
likely. In such cases, it is often convenient to compute conditional probabilities of the
form P(E | F) by using F as the sample space. Indeed, working with this reduced
sample space often results in an easier and better understood solution. Our next two
examples illustrate this point.

Example 2b

A coin is flipped twice. Assuming that all four points in the sample space

S ={(h,h),(h,t),(t h),(tt)} are equally likely, what is the conditional probability
that both flips land on heads, given that (a) the first flip lands on heads? (b) at
least one flip lands on heads?

Solution

Let B = {(h, h)} be the event that both flips land on heads; let F = {(h, h), (h,t)}
be the event that the first flip lands on heads; and let A = {(h, h), (h,t),(t,h)} be
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the event that at least one flip lands on heads. The probability for (a) can be
obtained from

P(BF)
P(F)

P({(h,h)})
P({(h,h), (h,0)})
ﬁ

= 25 12

P(B|F) =

For (b), we have

P(BA)
P(A)
P({(h,1)})
P({(h, 1), (h,¢),(t, W)})

1/4
372"

P(B|4A) =

1/3

Thus, the conditional probabilityhat both flips land on heads given that the first
one does is 1/2, whereas the conditional probability that both flips land on heads
given that at least one does is only 1/3. Many students initially find this latter
result surprising. They reason that given that at least one flip lands on heads,
there are two possible results: Either they both land on heads or only one does.
Their mistake, however, is in assuming that these two possibilities are equally
likely. Initially there are 4 equally likely outcomes. Because the information that at
least one flip lands on heads is equivalent to the information that the outcome is
not (t,t), we are left with the 3 equally likely outcomes (h, h), (h,t), (t,h), only one
of which results in both flips landing on heads.

Example 2¢

In the card game bridge, the 52 cards are dealt out equally to 4 players—called
East, West, North, and South. If North and South have a total of 8 spades among
them, what is the probability that East has 3 of the remaining 5 spades?

Solution

Probably the easiest way to compute the desired probability is to work with the
reduced sample space. That is, given that North—South have a total of 8 spades
among their 26 cards, there remains a total of 26 cards, exactly 5 of them being
spades, to be distributed among the East—West hands. Since each distribution is
equally likely, it follows that the conditional probability that East will have exactly
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3 spades among his or her 13 cards is
5\/21
\3/A10J 229
26\
13

Multiplying both sides of Equation (2.1) by P(F), we obtain

(2.2)
P(EF) = P(F)P(E|F)

In words, Equation (2.2)  states that the probability that both E and F occur is
equal to the probability that F occurs multiplied by the conditional probability of E
given that F occurred. Equation (2.2) s often quite useful in computing the
probability of the intersection of events.

Example 2d

Celine is undecided as to whether to take a French course or a chemistry course.

1
She estimates that her probability of receiving an A grade would be 5 in a French

2
course and 3 in a chemistry course. If Celine decides to base her decision on the

flip of a fair coin, what is the probability that she gets an A in chemistry?

Solution

Let C be the event that Celine takes chemistry and A denote the event that she
receives an A in whatever course she takes, then the desired probability is P
(CA), which is calculated by using Equation (2.2)  as follows:

P(CA)

P(C)P(A|C)

36

Example 2e

Suppose that an urn contains 8 red balls and 4 white balls. We draw 2 balls from
the urn without replacement. (a) If we assume that at each draw, each ball in the
urn is equally likely to be chosen, what is the probability that both balls drawn are
red? (b) Now suppose that the balls have different weights, with each red ball
having weight r and each white ball having weight w. Suppose that the
probability that a given ball in the urn is the next one selected is its weight divided



by the sum of the weights of all balls currently in the urn. Now what is the
probability that both balls are red?

Solution

Let R; and R, denote, respectively, the events that the first and second balls
drawn are red. Now, given that the first ball selected is red, there are 7 remaining

7 8
red balls and 4 white balls, so P(R,|R;) = 1 As P(R,) is clearly 17 the desired

probability is

P(R1R;) P(R,)P(R;|Ry)

(5)) -5

8 12
Of course, this probability could have been computed by P(RlRZ) = <2>/< ) )

For part (b), we again let R; be the event that the ith ball chosen is red and use

P(R1R2) = P(R1)P(R2|R1)

Now, number the red balls, and let B;,i = 1, ..., 8 be the event that the first ball
drawn is red ball number i. Then

r
8r + 4w

[l DM

P(R,) = p( e Bl-> — Yy P(B)=8

i
Moreover, given that the first ball is red, the urn then contains 7 red and 4 white
balls. Thus, by an argument similar to the preceding one,

7r
7r + 4w

P(Rz|Ry) =

Hence, the probability that both balls are red is

p(r.R ) 8r 7r
2 )7 8r + 4w 7r + 4w

A generalization of Equation (2.2) , which provides an expression for the
probability of the intersection of an arbitrary number of events, is sometimes referred
to as the multiplication rule.

The multiplication rule
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P(E,E;E5-+Ey) = P(E1)P(E; | E1)P(E3 | E1E2)P(En|Eq1-Ep—1)

In words, the multiplication rule states that P(E,E,---E,,), the probability that all of the
events £, E,, .., E,, occur, is equal to P(E,), the probability that E; occurs, multiplied
by P(E, | E,), the conditional probability that E, occurs given that E; has occurred,
multiplied by P(E; | ELE,), the conditional probability that E; occurs given that both E,
and E, have occurred, and so on.

To prove the multiplication rule, just apply the definition of conditional probability to its
right-hand side, giving

P(Ey) P(EjE;)  P(EiEyEnq)

P< 1>P(E1E2) P(E\E,E;)  P(E1E,Ey) <E1E2,,,En>

Example 2f

In the match problem stated in Example 5m  of Chapter 2 , it was shown
that Py, the probability that there are no matches when N people randomly select
from among their own N hats, is given by

N
Py = z (-1
i =0

What is the probability that exactly k of the N people have matches?

Solution

Let us fix our attention on a particular set of k people and determine the
probability that these k individuals have matches and no one else does. Letting E
denote the event that everyone in this set has a match, and letting G be the event
that none of the other N — k people have a match, we have

P(EG) = P(E)P(G|E)

Now, let F;,i = 1, ..., k, be the event that the ith member of the set has a match.
Then

P(E) = P(FiFzFy)
P(F1)P(F2|F1)P(F3|F1F3)--P(Fi | Fy-Fj—1)

11 1 1
~ N N-1N-2 N—-k+1
_ (N—h)!

B N!



Given that everyone in the set of k has a match, the other N — k people will be
randomly choosing among their own N — k hats, so the probability that none of
them has a match is equal to the probability of no matches in a problem having
N — k people choosing among their own N — k hats. Therefore,

N —k i
P(GIE) =Py-r= X (=1) /i
i =0

showing that the probability that a specified set of k people have matches and no
one else does is

Because there will be exactly k matches if the preceding is true for any of the

N
(k) sets of k individuals, the desired probability is

N
P(exactly k matches) = <k>P<EG>
= Py_k/K!
~ e l/k! when N is large
Example 2g

An ordinary deck of 52 playing cards is randomly divided into 4 piles of 13 cards
each. Compute the probability that each pile has exactly 1 ace.

Solution

Define events E;,i = 1,2, 3,4, as follows:

E, = ({theace of spadesisinany one of the piles}

E, = f{theace of spades and the ace of hearts are in different piles}

E; = ({theaces of spades, hearts, and diamonds are all in different piles}
E, = {all4 aces are in different piles}

The desired probability is P(E,E,E3E, ), and by the multiplication rule,

P(EyE;E3E,) = P(E1)P(E2 |E1)P(E3| E1E;)P(E4 | E1E2E3)

Now,
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P(Ey) =1

since E; is the sample space S. To determine P(E, | E,), consider the pile that
contains the ace of spades. Because its remaining 12 cards are equally likely to
be any 12 of the remaining 51 cards, the probability that the ace of hearts is
among them is 12 /51, giving that

P(E,|E;) =1 12 _ 39
2P 517 51

Also, given that the ace of spades and ace of hearts are in different piles, it
follows that the set of the remaining 24 cards of these two piles is equally likely to
be any set of 24 of the remaining 50 cards. As the probability that the ace of
diamonds is one of these 24 is 24 /50, we see that

26

P(E;|ELE,) =1 24 _
3im1m2) = 50 50

Because the same logic as used in the preceding yields that

P(E,|E{E,E5) = 1 6 _ 13
4 1+283) — 49_49

the probability that each pile has exactly 1 ace is

39-26-13

~51.50.49 ~ 10°

P<E1E2E3E4>

That is, there is approximately a 10.5 percent chance that each pile will contain
an ace. (Problem 13  gives another way of using the multiplication rule to
solve this problem.)

Example 2h

Four of the eight teams in the quarterfinal round of the 2016 European
Champions League Football (soccer) tournament were the acknowledged strong
teams Barcelona, Bayern Munich, Real Madrid, and Paris St-Germain. The
pairings in this round are supposed to be totally random, in the sense that all
possible pairings are equally likely. Assuming this is so, find the probability that
none of the strong teams play each other in this round. (Surprisingly, it seems to
be a common occurrence in this tournament that, even though the pairings are
supposedly random, the very strong teams are rarely matched against each
other in this round.)
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Solution

If we number the four strong teams 1 through 4, and then let W;,i = 1, 2, 3,4, be
the event that team i plays one of the four weak teams, then the desired
probability is P(W,W,W;W,). By the multiplication rule

P(W,W,W3W,) P(W1)P(W, [W1)P(W3 [W W,)P(Wy | W, W, W3)
(4/7)(3/5)(2/3)(1)

8/35

The preceding follows by first noting that because team 1 is equally likely to be
matched with any of the other 7 teams, we have that P(W,) = 4/7. Now, given
that W, occurs, team 2 is equally likely to be matched with any of five teams:
namely, teams 3, 4, or any of the three weak teams not matched with team 1. As
three of these five teams are weak, we see that P(W, |W,) = 3/5. Similarly,
given that events W, and W, have occurred, team 3 is equally likely to be
matched with any from a set of three teams, consisting of team 4 and the
remaining two weaker teams not matched with 1 or 2. Hence,

P(W5|W,W,) = 2/3. Finally, given