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“We see that the theory of probability is at bottom only common sense reduced to

calculation; it makes us appreciate with exactitude what reasonable minds feel by a

sort of instinct, often without being able to account for it... It is remarkable that this

science, which originated in the consideration of games of chance, should have

become the most important object of human knowledge.... The most important

questions of life are, for the most part, really only problems of probability.” So said

the famous French mathematician and astronomer (the “Newton of France”) Pierre-

Simon, Marquis de Laplace. Although many people believe that the famous marquis,

who was also one of the great contributors to the development of probability, might

have exaggerated somewhat, it is nevertheless true that probability theory has

become a tool of fundamental importance to nearly all scientists, engineers, medical

practitioners, jurists, and industrialists. In fact, the enlightened individual had learned

to ask not “Is it so?” but rather “What is the probability that it is so?”

This book is intended as an elementary introduction to the theory of probability for

students in mathematics, statistics, engineering, and the sciences (including
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computer science, biology, the social sciences, and management science) who

possess the prerequisite knowledge of elementary calculus. It attempts to present

not only the mathematics of probability theory, but also, through numerous examples,

the many diverse possible applications of this subject.

Chapter 1  presents the basic principles of combinatorial analysis, which are most

useful in computing probabilities.

Chapter 2  handles the axioms of probability theory and shows how they can be

applied to compute various probabilities of interest.

Chapter 3  deals with the extremely important subjects of conditional probability

and independence of events. By a series of examples, we illustrate how conditional

probabilities come into play not only when some partial information is available, but

also as a tool to enable us to compute probabilities more easily, even when no partial

information is present. This extremely important technique of obtaining probabilities

by “conditioning” reappears in Chapter 7 , where we use it to obtain expectations.

The concept of random variables is introduced in Chapters 4 , 5 , and 6 .

Discrete random variables are dealt with in Chapter 4 , continuous random

variables in Chapter 5 , and jointly distributed random variables in Chapter 6 .

The important concepts of the expected value and the variance of a random variable

are introduced in Chapters 4  and 5 , and these quantities are then determined

for many of the common types of random variables.

Additional properties of the expected value are considered in Chapter 7 . Many

examples illustrating the usefulness of the result that the expected value of a sum of

random variables is equal to the sum of their expected values are presented.

Sections on conditional expectation, including its use in prediction, and on moment-

generating functions are contained in this chapter. In addition, the final section

introduces the multivariate normal distribution and presents a simple proof

concerning the joint distribution of the sample mean and sample variance of a

sample from a normal distribution.

Chapter 8  presents the major theoretical results of probability theory. In particular,

we prove the strong law of large numbers and the central limit theorem. Our proof of

the strong law is a relatively simple one that assumes that the random variables have

a finite fourth moment, and our proof of the central limit theorem assumes Levy’s

continuity theorem. This chapter also presents such probability inequalities as

Markov’s inequality, Chebyshev’s inequality, and Chernoff bounds. The final section
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of Chapter 8  gives a bound on the error involved when a probability concerning a

sum of independent Bernoulli random variables is approximated by the

corresponding probability of a Poisson random variable having the same expected

value.

Chapter 9  presents some additional topics, such as Markov chains, the Poisson

process, and an introduction to information and coding theory, and Chapter 10

considers simulation.

As in the previous edition, three sets of exercises are given at the end of each

chapter. They are designated as Problems, Theoretical Exercises, and Self-Test

Problems and Exercises. This last set of exercises, for which complete solutions

appear in Solutions to Self-Test Problems and Exercises, is designed to help

students test their comprehension and study for exams.

The tenth edition continues the evolution and fine tuning of the text. Aside from a

multitude of small changes made to increase the clarity of the text, the new edition

includes many new and updated problems, exercises, and text material chosen both

for inherent interest and for their use in building student intuition about probability.

Illustrative of these goals are Examples 4n of Chapter 3 , which deals with

computing NCAA basketball tournament win probabilities, and Example 5b of

Chapter 4 , which introduces the friendship paradox. There is also new material

on the Pareto distribution (introduced in Section 5.6.5 ), on Poisson limit results

(in Section 8.5 ), and on the Lorenz curve (in Section 8.7 ).

I would like to thank the following people who have graciously taken the time to

contact me with comments for improving the text: Amir Ardestani, Polytechnic

University of Teheran; Joe Blitzstein, Harvard University; Peter Nuesch, University of

Lausaunne; Joseph Mitchell, SUNY, Stony Brook; Alan Chambless, actuary; Robert

Kriner; Israel David, Ben-Gurion University; T. Lim, George Mason University; Wei

Chen, Rutgers; D. Monrad, University of Illinois; W. Rosenberger, George Mason

University; E. Ionides, University of Michigan; J. Corvino, Lafayette College; T.

Seppalainen, University of Wisconsin; Jack Goldberg; University of Michigan; Sunil

Dhar, New Jersey Institute of Technology; Vladislav Kargin, Stanford University;

Marlene Miller; Ahmad Parsian; and Fritz Scholz, University of Washington.

I would also like to especially thank the reviewers of the ninth and tenth editions:

11 of 848



Richard Laugesen, University of Illinois; Stacey Hancock, Clark University; Stefan

Heinz, University of Wyoming; and Brian Thelen, University of Michigan; Mark Ward,

Purdue University. I would like to thank the accuracy checker, Stacey Hancock

(Montana State University), for her careful review.
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1.1 Introduction

1.2 The Basic Principle of Counting

1.3 Permutations

1.4 Combinations

1.5 Multinomial Coefficients

1.6 The Number of Integer Solutions of Equations

Here is a typical problem of interest involving probability: A communication system is

to consist of  seemingly identical antennas that are to be lined up in a linear order.𝑛

14 of 848



The resulting system will then be able to receive all incoming signals and will be

called functional as long as no two consecutive antennas are defective. If it turns out

that exactly  of the  antennas are defective, what is the probability that the

resulting system will be functional? For instance, in the special case where  and

 there are 6 possible system configurations, namely,

where 1 means that the antenna is working and 0 that it is defective. Because the

resulting system will be functional in the first 3 arrangements and not functional in the

remaining 3, it seems reasonable to take  as the desired probability. In the case

of general  and  we could compute the probability that the system is functional in

a similar fashion. That is, we could count the number of configurations that result in

the system’s being functional and then divide by the total number of all possible

configurations.

From the preceding discussion, we see that it would be useful to have an effective

method for counting the number of ways that things can occur. In fact, many

problems in probability theory can be solved simply by counting the number of

different ways that a certain event can occur. The mathematical theory of counting is

formally known as combinatorial analysis.

The basic principle of counting will be fundamental to all our work. Loosely put, it

states that if one experiment can result in any of  possible outcomes and if another

experiment can result in any of  possible outcomes, then there are mn possible

outcomes of the two experiments.

The basic principle of counting

Suppose that two experiments are to be performed. Then if experiment 1 can

result in any one of  possible outcomes and if, for each outcome of

experiment 1, there are  possible outcomes of experiment 2, then together

there are mn possible outcomes of the two experiments.

Proof of the Basic Principle: The basic principle may be proven by enumerating all

the possible outcomes of the two experiments; that is,

𝑚 𝑛

𝑛 ൌ 4

𝑚 ൌ 2,

0 1 1 0

0 1 0 1

1 0 1 0

0 0 1 1

1 0 0 1

1 1 0 0

3
6
ൌ 1

2

𝑛 𝑚,

𝑚

𝑛

𝑚

𝑛
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where we say that the outcome is ( ) if experiment 1 results in its th possible

outcome and experiment 2 then results in its th possible outcome. Hence, the set of

possible outcomes consists of  rows, each containing  elements. This proves the

result.

Example 2a

A small community consists of 10 women, each of whom has 3 children. If one

woman and one of her children are to be chosen as mother and child of the year,

how many different choices are possible?

Solution

By regarding the choice of the woman as the outcome of the first experiment and

the subsequent choice of one of her children as the outcome of the second

experiment, we see from the basic principle that there are  possible

choices.

When there are more than two experiments to be performed, the basic principle can

be generalized.

The generalized basic principle of counting

If  experiments that are to be performed are such that the first one may result

in any of  possible outcomes; and if, for each of these  possible outcomes,

there are  possible outcomes of the second experiment; and if, for each of

the possible outcomes of the first two experiments, there are  possible

outcomes of the third experiment; and if, then there is a total of 

possible outcomes of the  experiments.

Example 2b

A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors,

and 2 seniors. A subcommittee of 4, consisting of 1 person from each class, is to

be chosen. How many different subcommittees are possible?

Solution

We may regard the choice of a subcommittee as the combined outcome of the

four separate experiments of choosing a single representative from each of the

classes. It then follows from the generalized version of the basic principle that

ሺ1, 1ሻ, ሺ1, 2ሻ, . . ., ሺ1,𝑛ሻ

ሺ2, 1ሻ, ሺ2, 2ሻ, . . ., ሺ2,𝑛ሻ

⋮

ሺ𝑚, 1ሻ, ሺ𝑚, 2ሻ, . . ., ሺ𝑚,𝑛ሻ

𝑖, 𝑗 𝑖

𝑗

𝑚 𝑛

10 ൈ 3 ൌ 30

𝑟

𝑛ଵ 𝑛ଵ
𝑛ଶ

𝑛ଷ
𝑛ଵ ⋅ 𝑛ଶ⋯𝑛௥

𝑟
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there are  possible subcommittees.

Example 2c

How many different 7-place license plates are possible if the first 3 places are to

be occupied by letters and the final 4 by numbers?

Solution

By the generalized version of the basic principle, the answer is

Example 2d

How many functions defined on  points are possible if each functional value is

either 0 or 1?

Solution

Let the points be  Since  must be either 0 or 1 for each 

it follows that there are  possible functions.

Example 2e

In Example 2c , how many license plates would be possible if repetition

among letters or numbers were prohibited?

Solution

In this case, there would be  possible

license plates.

How many different ordered arrangements of the letters  and  are possible? By

direct enumeration we see that there are 6, namely, abc, acb, bac, bca, cab, and

cba. Each arrangement is known as a permutation. Thus, there are 6 possible

permutations of a set of 3 objects. This result could also have been obtained from

the basic principle, since the first object in the permutation can be any of the 3, the

second object in the permutation can then be chosen from any of the remaining 2,

and the third object in the permutation is then the remaining 1. Thus, there are

 possible permutations.

Suppose now that we have  objects. Reasoning similar to that we have just

used for the 3 letters then shows that there are

3 ൈ 4 ൈ 5 ൈ 2 ൌ 120

26 ⋅ 26 ⋅ 26 ⋅ 10 ⋅ 10 ⋅ 10 ⋅ 10 ൌ 175,760,000.

𝑛

1,2, . . . ,𝑛. 𝑓ሺ𝑖ሻ 𝑖 ൌ 1,2, . . . ,𝑛,

2௡

26 ⋅ 25 ⋅ 24 ⋅ 10 ⋅ 9 ⋅ 8 ⋅ 7 ൌ 78,624,000

𝑎, 𝑏, 𝑐

3 ⋅ 2 ⋅ 1 ൌ 6

𝑛
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different permutations of the  objects.

Whereas  (read as “n factorial”) is defined to equal  when  is a positive

integer, it is convenient to define  to equal 

Example 3a

How many different batting orders are possible for a baseball team consisting of

9 players?

Solution

There are  possible batting orders.

Example 3b

A class in probability theory consists of 6 men and 4 women. An examination is

given, and the students are ranked according to their performance. Assume that

no two students obtain the same score.

a. How many different rankings are possible?

b. If the men are ranked just among themselves and the women just among

themselves, how many different rankings are possible?

Solution

a. (a) Because each ranking corresponds to a particular ordered

arrangement of the 10 people, the answer to this part is 

b. (b) Since there are 6! possible rankings of the men among themselves

and 4! possible rankings of the women among themselves, it follows from

the basic principle that there are  possible

rankings in this case.

Example 3c

Ms. Jones has 10 books that she is going to put on her bookshelf. Of these, 4 are

mathematics books, 3 are chemistry books, 2 are history books, and 1 is a

language book. Ms. Jones wants to arrange her books so that all the books

dealing with the same subject are together on the shelf. How many different

arrangements are possible?

Solution

There are 4! 3! 2! 1! arrangements such that the mathematics books are first in

𝑛ሺ𝑛 െ 1ሻሺ𝑛 െ 2ሻ⋯3 ⋅ 2 ⋅ 1 ൌ 𝑛!

𝑛

𝑛! 1 ⋅ 2⋯𝑛 𝑛

0! 1.

9! ൌ 362,880

10! ൌ 3,628,800.

ሺ6!ሻሺ4!ሻ ൌ ሺ720ሻሺ24ሻ ൌ 17,280
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line, then the chemistry books, then the history books, and then the language

book. Similarly, for each possible ordering of the subjects, there are 4! 3! 2! 1!

possible arrangements. Hence, as there are 4! possible orderings of the subjects,

the desired answer is 

We shall now determine the number of permutations of a set of  objects when

certain of the objects are indistinguishable from one another. To set this situation

straight in our minds, consider the following example.

Example 3d

How many different letter arrangements can be formed from the letters 

Solution

We first note that there are 6! permutations of the letters  when the

 and the  are distinguished from one another. However, consider any one

of these permutations for instance,  If we now permute the ’s

among themselves and the ’s among themselves, then the resultant

arrangement would still be of the form  That is, all 3! 2! permutations

are of the form  Hence, there are  letter

arrangements of the letters 

In general, the same reasoning as that used in Example 3d  shows that

there are

different permutations of  objects, of which  are alike,  are alike, 

are alike.

Example 3e

A chess tournament has 10 competitors, of which 4 are Russian, 3 are from the

United States, 2 are from Great Britain, and 1 is from Brazil. If the tournament

result lists just the nationalities of the players in the order in which they placed,

how many outcomes are possible?

4! 4! 3! 2! 1! ൌ 6912.

𝑛

𝑃𝐸𝑃𝑃𝐸𝑅?

𝑃ଵ𝐸ଵ𝑃ଶ𝑃ଷ𝐸ଶ𝑅

3𝑃's 2𝐸's

𝑃ଵ𝑃ଶ𝐸ଵ𝑃ଷ𝐸ଶ𝑅. 𝑃

𝐸

𝑃𝑃𝐸𝑃𝐸𝑅.

𝑃ଵ𝑃ଶ𝐸ଵ𝑃ଷ𝐸ଶ𝑅 𝑃ଵ𝑃ଶ𝐸ଶ𝑃ଷ𝐸ଵ𝑅

𝑃ଵ𝑃ଷ𝐸ଵ𝑃ଶ𝐸ଶ𝑅 𝑃ଵ𝑃ଷ𝐸ଶ𝑃ଶ𝐸ଵ𝑅

𝑃ଶ𝑃ଵ𝐸ଵ𝑃ଷ𝐸ଶ𝑅 𝑃ଶ𝑃ଵ𝐸ଶ𝑃ଷ𝐸ଵ𝑅

𝑃ଶ𝑃ଷ𝐸ଵ𝑃ଵ𝐸ଶ𝑅 𝑃ଶ𝑃ଷ𝐸ଶ𝑃ଵ𝐸ଵ𝑅

𝑃ଷ𝑃ଵ𝐸ଵ𝑃ଶ𝐸ଶ𝑅 𝑃ଷ𝑃ଵ𝐸ଶ𝑃ଶ𝐸ଵ𝑅

𝑃ଷ𝑃ଶ𝐸ଵ𝑃ଵ𝐸ଶ𝑅 𝑃ଷ𝑃ଶ𝐸ଶ𝑃ଵ𝐸ଵ𝑅

𝑃𝑃𝐸𝑃𝐸𝑅. 6!/ሺ3! 2!ሻ ൌ 60 possible

𝑃𝐸𝑃𝑃𝐸𝑅.

𝑛!
𝑛ଵ ! 𝑛ଶ ! ⋯ 𝑛௥ !

𝑛 𝑛ଵ 𝑛ଶ . . . ,𝑛௥
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Solution

There are

possible outcomes.

Example 3f

How many different signals, each consisting of 9 flags hung in a line, can be

made from a set of 4 white flags, 3 red flags, and 2 blue flags if all flags of the

same color are identical?

Solution

There are

different signals.

We are often interested in determining the number of different groups of  objects

that could be formed from a total of  objects. For instance, how many different

groups of 3 could be selected from the 5 items  and  To answer this

question, reason as follows: Since there are 5 ways to select the initial item, 4 ways

to then select the next item, and 3 ways to select the final item, there are thus 

ways of selecting the group of 3 when the order in which the items are selected is

relevant. However, since every group of 3–say, the group consisting of items 

and  will be counted 6 times (that is, all of the permutations ABC, ACB, BAC, BCA,

CAB, and CBA will be counted when the order of selection is relevant), it follows that

the total number of groups that can be formed is

In general, as  represents the number of different ways that a

group of  items could be selected from  items when the order of selection is

relevant, and as each group of  items will be counted ! times in this count, it follows

that the number of different groups of  items that could be formed from a set of 

10!
4! 3! 2! 1!

ൌ 12,600

9!
4! 3! 2!

ൌ 1260

𝑟

𝑛

𝐴, 𝐵, 𝐶, 𝐷, 𝐸?

5 ⋅ 4 ⋅ 3

𝐴, 𝐵,

𝐶

5 ⋅ 4 ⋅ 3
3 ⋅ 2 ⋅ 1

ൌ 10

𝑛ሺ𝑛 െ 1ሻ⋯ሺ𝑛 െ 𝑟 ൅ 1ሻ

𝑟 𝑛

𝑟 𝑟

𝑟 𝑛
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items is

Notation and terminology

We define  for  by

and say that  (read as “  choose “) represents the number of possible

combinations of  objects taken  at a time.

Thus,  represents the number of different groups of size  that could be selected

from a set of  objects when the order of selection is not considered relevant.

Equivalently,  is the number of subsets of size  that can be chosen from a set of

size  Using that  note that  which is consistent with

the preceding interpretation because in a set of size  there is exactly  subset of

size  (namely, the entire set), and exactly one subset of size  (namely the empty

set). A useful convention is to define  equal to  when either  or 

Example 4a

A committee of 3 is to be formed from a group of 20 people. How many different

committees are possible?

Solution

There are  possible committees.

Example 4b

From a group of 5 women and 7 men, how many different committees consisting

of 2 women and 3 men can be formed? What if 2 of the men are feuding and

refuse to serve on the committee together?

Solution

𝑛ሺ𝑛 െ 1ሻ⋯ሺ𝑛 െ 𝑟 ൅ 1ሻ
𝑟!

ൌ
𝑛!

ሺ𝑛 െ 𝑟ሻ! 𝑟!

ቆ
𝑛

𝑟
ቇ, 𝑟 ൑ 𝑛,

ቆ
𝑛

𝑟
ቇ ൌ

𝑛!
ሺ𝑛 െ 𝑟ሻ! 𝑟!

ቆ
𝑛

𝑟
ቇ 𝑛 𝑟

𝑛 𝑟

ቆ
𝑛

𝑟
ቇ 𝑟

𝑛

ቆ
𝑛

𝑟
ቇ 𝑟

𝑛. 0! ൌ 1, ቆ
𝑛

𝑛
ቇ ൌ ቆ

𝑛

0
ቇ ൌ

𝑛!
0!𝑛!

ൌ 1,

𝑛 1

𝑛 0

ቆ
𝑛

𝑟
ቇ 0 𝑟 ൐ 𝑛 𝑟 ൏ 0.

ቆ
20

3
ቇ ൌ

20 ⋅ 19 ⋅ 18
3 ⋅ 2 ⋅ 1

ൌ 1140
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As there are  possible groups of 2 women, and  possible groups of 3

men, it follows from the basic principle that there are 

 possible committees consisting of 2 women and 3 men.

Now suppose that  of the men refuse to serve together. Because a total of

 out of the  possible groups of 3 men contain both of the

feuding men, it follows that there are  groups that do not contain both

of the feuding men. Because there are still  ways to choose the 2

women, there are  possible committees in this case.

Example 4c

Consider a set of  antennas of which  are defective and  are functional

and assume that all of the defectives and all of the functionals are considered

indistinguishable. How many linear orderings are there in which no two

defectives are consecutive?

Solution

Imagine that the  functional antennas are lined up among themselves. Now,

if no two defectives are to be consecutive, then the spaces between the

functional antennas must each contain at most one defective antenna. That is, in

the  possible positions–represented in Figure 1.1  by carets–

between the  functional antennas, we must select  of these in which to

put the defective antennas. Hence, there are  possible orderings in

which there is at least one functional antenna between any two defective ones.

Figure 1.1 No consecutive defectives.

The figure shows No consecutive defectives

A useful combinatorial identity, known as Pascal’s identity, is

Equation (4.1)  may be proved analytically or by the following combinatorial

argument: Consider a group of  objects, and fix attention on some particular one of

ቆ
5

2
ቇ ቆ

7

3
ቇ

ቆ
5

2
ቇቆ

7

3
ቇ ൌ

5 ⋅ 4
2 ⋅ 1

.

7 ⋅ 6 ⋅ 5
3 ⋅ 2 ⋅ 1

ൌ 350

2

ቆ
2

2
ቇቆ

5

1
ቇ ൌ 5 ቆ

7

3
ቇ ൌ 35

35 െ 5 ൌ 30

ቆ
5

2
ቇ ൌ 10

30 ⋅ 10 ൌ 300

𝑛 𝑚 𝑛 െ𝑚

𝑛 െ𝑚

𝑛 െ𝑚൅ 1

𝑛 െ 𝑚 𝑚

ቆ
𝑛 െ𝑚൅ 1

𝑚
ቇ

ቆ
𝑛

𝑟
ቇ ൌ ቆ

𝑛 െ 1

𝑟 െ 1
ቇ ൅ ቆ

𝑛 െ 1

𝑟
ቇ 1 ൑ 𝑟 ൑ 𝑛

(4.1)

𝑛
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these objects–call it object 1. Now, there are  groups of size  that contain

object 1 (since each such group is formed by selecting  from the remaining

 objects). Also, there are  groups of size  that do not contain object 1.

As there is a total of  groups of size Equation (4.1)  follows.

The values  are often referred to as binomial coefficients because of their

prominence in the binomial theorem.

The binomial theorem

We shall present two proofs of the binomial theorem. The first is a proof by

mathematical induction, and the second is a proof based on combinatorial

considerations.

Proof of the Binomial Theorem by Induction: When Equation (4.2)

reduces to

Assume Equation (4.2)  for  Now,

Letting  in the first sum and  in the second sum, we find that

ቆ
𝑛 െ 1

𝑟 െ 1
ቇ 𝑟

𝑟 െ 1

𝑛 െ 1 ቆ
𝑛 െ 1

𝑟
ቇ 𝑟

ቆ
𝑛

𝑟
ቇ 𝑟,

ቆ
𝑛

𝑟
ቇ

ሺ𝑥 ൅ 𝑦ሻ௡ ൌ ෍
௞ ൌ ଴

௡

ቆ
𝑛

𝑘
ቇ 𝑥௞𝑦௡െ௞

(4.2)

𝑛 ൌ 1,

𝑥 ൅ 𝑦 ൌ ቆ
1

0
ቇ 𝑥଴𝑦ଵ ൅ ቆ

1

1
ቇ 𝑥ଵ𝑦଴ ൌ 𝑦 ൅ 𝑥

𝑛 െ 1.

ሺ𝑥 ൅ 𝑦ሻ௡ ൌ ሺ𝑥 ൅ 𝑦ሻሺ𝑥 ൅ 𝑦ሻ௡െଵ

ൌ ሺ𝑥 ൅ 𝑦ሻ ෍
௞ ൌ ଴

௡ ൌ ଵ

ቆ
𝑛 െ 1

𝑘
ቇ 𝑥௞𝑦௡െଵെ௞

ൌ ෍
௞ ൌ ଴

௡ െ ଵ

ቆ
𝑛 െ 1

𝑘
ቇ𝑥௞൅ଵ𝑦௡െଵെ௞ ൅ ෍

௞ ൌ ଴

௡ െ ଵ

ቆ
𝑛 െ 1

𝑘
ቇ 𝑥௞𝑦௡െ௞

𝑖 ൌ 𝑘 ൅ 1 𝑖 ൌ 𝑘
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where the next-to-last equality follows by Equation (4.1) . By induction, the

theorem is now proved.

Combinatorial Proof of the Binomial Theorem: Consider the product

Its expansion consists of the sum of  terms, each term being the product of 

factors. Furthermore, each of the  terms in the sum will contain as a factor either 

or  for each  For example,

Now, how many of the  terms in the sum will have  of the ’s and  of the

’s as factors? As each term consisting of  of the ’s and  of the ’s

corresponds to a choice of a group of  from the  values  there are 

such terms. Thus, letting  we see that

Example 4d

Expand 

Solution

ሺ𝑥 ൅ 𝑦ሻ௡ ൌ ෍
௜ ൌ ଵ

௡

ቆ
𝑛 െ 1

𝑖 െ 1
ቇ 𝑥௜𝑦௡െ௜ ൅ ෍

௜ ൌ ଴

௡ െ ଵ

ቆ
𝑛 െ 1

𝑖
ቇ 𝑥௜𝑦௡െ௜

ൌ ෍
௜ ൌ ଵ

௡ െ ଵ

ቆ
𝑛 െ 1

𝑖 െ 1
ቇ 𝑥௜𝑦௡െ௜ ൅ 𝑥௡ ൅ 𝑦௡ ൅ ෍

௜ ൌ ଵ

௡ െ ଵ

ቆ
𝑛 െ 1

𝑖
ቇ 𝑥௜𝑦௡െ௜

ൌ 𝑥௡ ൅ ෍
௜ ൌ ଵ

௡ െ ଵ

ቈቆ
𝑛 െ 1

𝑖 െ 1
ቇ ൅ ቆ

𝑛 െ 1

𝑖
ቇ቉ 𝑥௜𝑦௡െ௜ ൅ 𝑦௡

ൌ 𝑥௡ ൅ ෍
௜ ൌ ଵ

௡ െ ଵ

ቆ
𝑛

𝑖
ቇ 𝑥௜𝑦௡െ௜ ൅ 𝑦௡

ൌ ෍
௜ ൌ ଴

௡

ቆ
𝑛

𝑖
ቇ 𝑥௜𝑦௡െ௜

ሺ𝑥ଵ ൅ 𝑦ଵሻሺ𝑥ଶ ൅ 𝑦ଶሻ⋯ሺ𝑥௡ ൅ 𝑦௡ሻ

2௡ 𝑛

2௡ 𝑥௜
𝑦௜ 𝑖 ൌ 1, 2, . . . ,𝑛.

ሺ𝑥ଵ ൅ 𝑦ଵሻሺ𝑥ଶ ൅ 𝑦ଶሻ ൌ 𝑥ଵ𝑥ଶ ൅ 𝑥ଵ𝑦ଶ ൅ 𝑦ଵ𝑥ଶ ൅ 𝑦ଵ𝑦ଶ

2௡ 𝑘 𝑥௜ ሺ𝑛 െ 𝑘ሻ

𝑦௜ 𝑘 𝑥௜ ሺ𝑛 െ 𝑘ሻ 𝑦௜

𝑘 𝑛 𝑥ଵ,  𝑥ଶ…,  𝑥௡, ቆ
𝑛

𝑘
ቇ

𝑥௜ ൌ 𝑥, 𝑦௜ ൌ 𝑦, 𝑖 ൌ 1, . . . ,𝑛,

ሺ𝑥 ൅ 𝑦ሻ௡ ൌ ෍
௞ ൌ ଴

௡

ቆ
𝑛

𝑘
ቇ 𝑥௞𝑦௡െ௞

ሺ𝑥 ൅ 𝑦ሻଷ.

24 of 848



Example 4e

How many subsets are there of a set consisting of  elements?

Solution

Since there are  subsets of size  the desired answer is

This result could also have been obtained by assigning either the number 0 or

the number 1 to each element in the set. To each assignment of numbers, there

corresponds, in a one-to-one fashion, a subset, namely, that subset consisting of

all elements that were assigned the value 1. As there are  possible

assignments, the result follows.

Note that we have included the set consisting of 0 elements (that is, the null set)

as a subset of the original set. Hence, the number of subsets that contain at least

1 element is 

In this section, we consider the following problem: A set of  distinct items is to be

divided into  distinct groups of respective sizes  where 

How many different divisions are possible? To answer this question, we note that

there are  possible choices for the first group; for each choice of the first group,

there are  possible choices for the second group; for each choice of the first

two groups, there are  possible choices for the third group; and so on.

It then follows from the generalized version of the basic counting principle that there

are

ሺ𝑥 ൅ 𝑦ሻଷ ൌ ቆ
3

0
ቇ 𝑥଴𝑦ଷ ൅ ቆ

3

1
ቇ 𝑥ଵ𝑦ଶ ൅ ቆ

3

2
ቇ 𝑥ଶ𝑦ଵ ൅ ቆ

3

3
ቇ 𝑥ଷ𝑦଴

ൌ 𝑦ଷ ൅ 3𝑥𝑦ଶ ൅ 3𝑥ଶ𝑦 ൅ 𝑥ଷ

𝑛

ቆ
𝑛

𝑘
ቇ 𝑘,

෍
௞ ൌ ଴

௡

ቆ
𝑛

𝑘
ቇ ൌ ሺ1 ൅ 1ሻ௡ ൌ 2௡

2௡

2௡ െ 1.

𝑛

𝑟 𝑛ଵ,𝑛ଶ, . . . ,𝑛௥, ෍
௜ൌଵ

௥
𝑛௜ ൌ 𝑛.

ቆ
𝑛

𝑛ଵ
ቇ

൭
𝑛 െ 𝑛ଵ
𝑛ଶ

൱

൭
𝑛 െ 𝑛ଵ െ 𝑛ଶ

𝑛ଷ
൱
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possible divisions.

Another way to see this result is to consider the  values 

 where  appears  times, for  Every permutation of these values

corresponds to a division of the  items into the  groups in the following manner: Let

the permutation  correspond to assigning item  to group  item  to

group  and so on. For instance, if  and if  then the

permutation  corresponds to assigning items  to the first

group, items  to the second group, and item  to the third group. Because every

permutation yields a division of the items and every possible division results from

some permutation, it follows that the number of divisions of  items into  distinct

groups of sizes  is the same as the number of permutations of  items of

which  are alike, and  are alike,  and  are alike, which was shown in

Section 1.3  to equal 

Notation

If  we define  by

Thus,  represents the number of possible divisions of  distinct

objects into  distinct groups of respective sizes 

Example 5a

A police department in a small city consists of 10 officers. If the department

policy is to have 5 of the officers patrolling the streets, 2 of the officers working

full time at the station, and 3 of the officers on reserve at the station, how many

different divisions of the 10 officers into the 3 groups are possible?

Solution

ቆ
𝑛

𝑛ଵ
ቇ൭
𝑛 െ 𝑛ଵ
𝑛ଶ

൱⋯൭
𝑛 െ 𝑛ଵ െ 𝑛ଶ െ ⋯െ 𝑛௥െଵ

𝑛௥
൱

ൌ
𝑛!

ሺ𝑛 െ 𝑛ଵሻ! 𝑛ଵ !
ሺ𝑛 െ 𝑛ଵሻ!

ሺ𝑛 െ 𝑛ଵ െ 𝑛ଶሻ! 𝑛ଶ !
⋯
ሺ𝑛 െ 𝑛ଵ െ 𝑛ଶ െ ⋯െ 𝑛௥െଵሻ!

0! 𝑛௥ !

ൌ
𝑛!

𝑛ଵ ! 𝑛ଶ !⋯𝑛௥ !

𝑛  1,1, . . . ,1,2, . . . ,2, . . . ,

𝑟, . . . ,𝑟, 𝑖 𝑛௜ 𝑖 ൌ 1, . . . ,𝑟.

𝑛 𝑟

𝑖ଵ,𝑖ଶ, . . . ,𝑖௡ 1 𝑖ଵ, 2

𝑖ଶ, 𝑛 ൌ 8 𝑛ଵ ൌ 4,𝑛ଶ ൌ 3, and 𝑛ଷ ൌ 1,

1, 1, 2, 3, 2, 1, 2, 1 1, 2, 6, 8

3, 5, 7 4

𝑛 𝑟

𝑛ଵ,𝑛ଶ, . . . ,𝑛௥ 𝑛

𝑛ଵ 𝑛ଶ . . . , 𝑛௥

 
𝑛!

𝑛ଵ !𝑛ଶ !⋯𝑛௥ !
.

𝑛ଵ ൅ 𝑛ଶ ൅⋯൅ 𝑛௥ ൌ 𝑛, ቆ
𝑛

𝑛ଵ,𝑛ଶ, . . . ,𝑛௥
ቇ

ቆ
𝑛

𝑛ଵ,𝑛ଶ, . . . ,𝑛௥
ቇ ൌ

𝑛!
𝑛ଵ ! 𝑛ଶ !⋯𝑛௥ !

ቆ
𝑛

𝑛ଵ,𝑛ଶ, . . . ,𝑛௥
ቇ 𝑛

𝑟 𝑛ଵ,𝑛ଶ, . . . ,𝑛௥.
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There are  possible divisions.

Example 5b

Ten children are to be divided into an  team and a  team of 5 each. The 

team will play in one league and the  team in another. How many different

divisions are possible?

Solution

There are  possible divisions.

Example 5c

In order to play a game of basketball, 10 children at a playground divide

themselves into two teams of 5 each. How many different divisions are possible?

Solution

Note that this example is different from Example 5b  because now the order of

the two teams is irrelevant. That is, there is no  or  team, but just a division

consisting of 2 groups of 5 each. Hence, the desired answer is

The proof of the following theorem, which generalizes the binomial theorem, is left as

an exercise.

The multinomial theorem

That is, the sum is over all nonnegative integer-valued vectors 

such that 

The numbers  are known as multinomial coefficients.

Example 5d

In the first round of a knockout tournament involving  players, the 

10!
5! 2! 3!

ൌ 2520

𝐴 𝐵 𝐴

𝐵

10!
5! 5!

ൌ 252

𝐴 𝐵

10!/ሺ5! 5!ሻ
2!

ൌ 126

               ሺ𝑥ଵ ൅ 𝑥ଶ ൅ ⋯ ൅ 𝑥௥ሻ
௡ ൌ

෍

   ሺ௡ భ , .   .   . , ௡ ೝሻ :

௡ భ ൅ ⋯ ൅ ௡ ೝ ൌ ௡

  ቆ
𝑛

𝑛ଵ,𝑛ଶ, .   .   . ,𝑛௥
ቇ 𝑥ଵ

௡భ𝑥ଶ
௡మ⋯𝑥௥ 

௡ೝ

ሺ𝑛ଵ,𝑛ଶ, . . . ,𝑛௥ሻ

𝑛ଵ ൅ 𝑛ଶ ൅⋯ ൅ 𝑛௥ ൌ 𝑛.

ቆ
𝑛

𝑛ଵ,𝑛ଶ, . . . ,𝑛௥
ቇ

𝑛 ൌ 2௠ 𝑛
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players are divided into  pairs, with each of these pairs then playing a game.

The losers of the games are eliminated while the winners go on to the next

round, where the process is repeated until only a single player remains. Suppose

we have a knockout tournament of  players.

a. How many possible outcomes are there for the initial round? (For

instance, one outcome is that 1 beats 2, 3 beats 4, 5 beats 6, and 7 beats

8.)

b. How many outcomes of the tournament are possible, where an outcome

gives complete information for all rounds?

Solution

One way to determine the number of possible outcomes for the initial round is to

first determine the number of possible pairings for that round. To do so, note that

the number of ways to divide the  players into a first pair, a second pair, a third

pair, and a fourth pair is  Thus, the number of possible pairings

when there is no ordering of the  pairs is  For each such pairing, there are

 possible choices from each pair as to the winner of that game, showing that

there are  possible results of round  [Another way to see this is to

note that there are  possible choices of the  winners and, for each such

choice, there are  ways to pair the  winners with the  losers, showing that

there are  possible results for the first round.]

Similarly, for each result of round  there are  possible outcomes of round 

and for each of the outcomes of the first two rounds, there are  possible

outcomes of round  Consequently, by the generalized basic principle of

counting, there are  possible outcomes of the tournament. Indeed,

the same argument can be used to show that a knockout tournament of 

players has  possible outcomes.

Knowing the preceding result, it is not difficult to come up with a more direct

argument by showing that there is a one-to-one correspondence between the set

of possible tournament results and the set of permutations of  To obtain

such a correspondence, rank the players as follows for any tournament result:

Give the tournament winner rank  and give the final-round loser rank  For the

𝑛/2

8

8

ቆ
8

2,  2,  2,  2
ቇ ൌ

8!

2ସ .

4
8!

2ସ4!
.

2
8!2ସ

2ସ4!
ൌ

8!
4!

1.

ቆ
8

4
ቇ 4

4! 4 4

4!ቆ
8

4
ቇ ൌ

8!
4!

1,
4!
2!

2,

2!
1!

3.

 
8!
4!

4!
2!

2!
1!
ൌ 8!

𝑛 ൌ 2௠

𝑛!

1, . . . ,𝑛.

1, 2.
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two players who lost in the next-to-last round, give rank  to the one who lost to

the player ranked  and give rank  to the one who lost to the player ranked 

For the four players who lost in the second-to-last round, give rank  to the one

who lost to player ranked  rank  to the one who lost to the player ranked 

rank  to the one who lost to the player ranked  and rank  to the one who lost

to the player ranked  Continuing on in this manner gives a rank to each player.

(A more succinct description is to give the winner of the tournament rank  and

let the rank of a player who lost in a round having  matches be  plus the rank

of the player who beat him, for ) In this manner, the result of the

tournament can be represented by a permutation  where  is the

player who was given rank  Because different tournament results give rise to

different permutations, and because there is a tournament result for each

permutation, it follows that there are the same number of possible tournament

results as there are permutations of 

Example 5e

* Asterisks denote material that is optional.

An individual has gone fishing at Lake Ticonderoga, which contains four types of fish:

lake trout, catfish, bass, and bluefish. If we take the result of the fishing trip to be the

numbers of each type of fish caught, let us determine the number of possible

outcomes when a total of  fish are caught. To do so, note that we can denote the

outcome of the fishing trip by the vector  where  is the number of

trout that are caught,  is the number of catfish,  is the number of bass, and  is

the number of bluefish. Thus, the number of possible outcomes when a total of 

fish are caught is the number of nonnegative integer vectors  that sum

to 

3

1 4 2.

5

1, 6 2,

7 3, 8

4.

1

2௞ 2௞

𝑘 ൌ 0,  . . . , 𝑚 െ 1.

𝑖ଵ,𝑖ଶ, . . . ,𝑖௡, 𝑖௝
𝑗.

1, . . . ,𝑛.

ሺ𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ଷሻ
ଶ ൌ ቆ

2

2,  0,  0
ቇ 𝑥ଵ

ଶ𝑥ଶ
଴𝑥ଷ

଴ ൅ ቆ
2

0,  2,  0
ቇ 𝑥ଵ

଴𝑥ଶ
ଶ𝑥ଷ

଴

൅ቆ
2

0,  0,  2
ቇ 𝑥ଵ

଴𝑥ଶ
଴𝑥ଷ

ଶ ൅ ቆ
2

1,  1,  0
ቇ 𝑥ଵ

ଵ𝑥ଶ
ଵ𝑥ଷ

଴

൅ቆ
2

1,  0,  1
ቇ 𝑥ଵ

ଵ𝑥ଶ
଴𝑥ଷ

ଵ ൅ ቆ
2

0,  1,  1
ቇ 𝑥ଵ

଴𝑥ଶ
ଵ𝑥ଷ

ଵ

ൌ 𝑥ଵ
ଶ ൅ 𝑥ଶ

ଶ ൅ 𝑥ଷ
ଶ ൅ 2𝑥ଵ𝑥ଶ ൅ 2𝑥ଵ𝑥ଷ ൅ 2𝑥ଶ𝑥ଷ

10

ሺ𝑥ଵ, 𝑥ଶ,  𝑥ଷ,  𝑥ସሻ 𝑥ଵ
𝑥ଶ 𝑥ଷ 𝑥ସ

10

ሺ𝑥ଵ, 𝑥ଶ,  𝑥ଷ,  𝑥ସሻ

10.
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More generally, if we supposed there were  types of fish and that a total of  were

caught, then the number of possible outcomes would be the number of nonnegative

integer-valued vectors  such that

To compute this number, let us start by considering the number of positive integer-

valued vectors  that satisfy the preceding. To determine this number,

suppose that we have  consecutive zeroes lined up in a row:

Note that any selection of  of the  spaces between adjacent zeroes (see

Figure 1.2 ) corresponds to a positive solution of 6.1  by letting  be the

number of zeroes before the first chosen space,  be the number of zeroes between

the first and second chosen space,  and  being the number of zeroes following

the last chosen space.

Figure 1.2 Number of positive solutions.

For instance, if we have  and  then (with the choices represented by dots)

the choice

corresponds to the solution  As positive solutions of (6.1)

correspond, in a one-to-one fashion, to choices of  of the adjacent spaces, it

follows that the number of differerent positive solutions is equal to the number of

different selections of  of the  adjacent spaces. Consequently, we have the

following proposition.

Proposition 6.1

𝑟 𝑛

𝑥ଵ, . . . ,𝑥௥

𝑥ଵ ൅ 𝑥ଶ ൅ . . . ൅ 𝑥௥ ൌ 𝑛

(6.1)

𝑥ଵ, . . . ,𝑥௥
𝑛

0 0 0  . . .  0 0

𝑟 െ 1 𝑛 െ 1

𝑥ଵ
𝑥ଶ

. . . , 𝑥௡

𝑛 ൌ 8 𝑟 ൌ 3,

0.0 0 0 0.0 0 0

𝑥ଵ ൌ 1, 𝑥ଶ ൌ 4, 𝑥ଷ ൌ 3.

𝑟 െ 1

𝑟 െ 1 𝑛 െ 1
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There are  distinct positive integer-valued vectors 

satisfying the equation

To obtain the number of nonnegative (as opposed to positive) solutions, note that the

number of nonnegative solutions of  is the same as the number

of positive solutions of  (seen by letting ).

Hence, from Proposition 6.1 , we obtain the following proposition.

Proposition 6.2

There are  distinct nonnegative integer-valued vectors 

satisfying the equation

Thus, using Proposition 6.2 , we see that there are  possible

outcomes when a total of  Lake Ticonderoga fish are caught.

Example 6a

How many distinct nonnegative integer-valued solutions of  are

possible?

Solution

There are  such solutions: (0, 3), (1, 2), (2, 1), (3, 0).

Example 6b

An investor has $20,000 to invest among 4 possible investments. Each

investment must be in units of $1000. If the total $20,000 is to be invested, how

many different investment strategies are possible? What if not all the money

needs to be invested?

Solution

If we let  2, 3, 4, denote the number of thousands invested in investment

 then, when all is to be invested,  are integers satisfying the

equation

ቆ
𝑛 െ 1

𝑟 െ 1
ቇ ሺ𝑥ଵ, 𝑥ଶ, . . . ,𝑥௥ሻ

𝑥ଵ ൅ 𝑥ଶ ൅ ⋯൅ 𝑥௥ ൌ 𝑛, 𝑥௜ ൐ 0, 𝑖 ൌ 1, . . . ,𝑟

𝑥ଵ ൅ 𝑥ଶ ൅ ⋯ ൅ 𝑥௥ ൌ 𝑛

𝑦ଵ ൅ ⋯൅ 𝑦௥ ൌ 𝑛 ൅ 𝑟 𝑦௜ ൌ 𝑥௜ ൅ 1, 𝑖 ൌ 1, . . . ,𝑟

ቆ
𝑛 ൅ 𝑟 െ 1

𝑟 െ 1
ቇ ሺ𝑥ଵ,𝑥ଶ, . . . ,𝑥௥ሻ

𝑥ଵ ൅ 𝑥ଶ ൅ ⋯ ൅ 𝑥௥ ൌ 𝑛

ቆ
13

3
ቇ ൌ 286

10

𝑥ଵ ൅ 𝑥ଶ ൌ 3

ቆ
3 ൅ 2 െ 1

2 െ 1
ቇ ൌ 4

𝑥௜, 𝑖 ൌ 1,

𝑖, 𝑥ଵ,  𝑥ଶ,  𝑥ଷ,  𝑥ସ
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Hence, by Proposition 6.2 , there are  possible investment

strategies. If not all of the money needs to be invested, then if we let  denote

the amount kept in reserve, a strategy is a nonnegative integer-valued vector

 satisfying the equation

Hence, by Proposition 6.2 , there are now  possible strategies.

Example 6c

How many terms are there in the multinomial expansion of 

Solution

where the sum is over all nonnegative integer-valued  such that

 Hence, by Proposition 6.2 , there are  such

terms.

Example 6d

Let us consider again Example 4c , in which we have a set of  items, of

which  are (indistinguishable and) defective and the remaining  are (also

indistinguishable and) functional. Our objective is to determine the number of

linear orderings in which no two defectives are next to each other. To determine

this number, let us imagine that the defective items are lined up among

themselves and the functional ones are now to be put in position. Let us denote

 as the number of functional items to the left of the first defective,  as the

number of functional items between the first two defectives, and so on. That is,

schematically, we have

Now, there will be at least one functional item between any pair of defectives as

long as  Hence, the number of outcomes satisfying the

condition is the number of vectors  that satisfy the equation

𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ଷ ൅ 𝑥ସ ൌ 20 𝑥௜ ൒ 0

ቆ
23

3
ቇ ൌ 1771

𝑥ହ

ሺ𝑥ଵ,  𝑥ଶ,  𝑥ଷ,  𝑥ସ,  𝑥ହሻ

𝑥ଵ ൅ 𝑥ଶ ൅ 𝑥ଷ ൅ 𝑥ସ ൅ 𝑥ହ ൌ 20

ቆ
24

4
ቇ ൌ 10,626

ሺ𝑥ଵ ൅ 𝑥ଶ ൅ ⋯ ൅ 𝑥௥ሻ
௡?

ሺ𝑥ଵ ൅ 𝑥ଶ ൅ ⋯൅ 𝑥௥ሻ
௡ ൌ ෍ቆ

𝑛

𝑛ଵ, . . . ,𝑛௥
ቇ 𝑥ଵ

௡భ⋯𝑥௥
௡ೝ

ሺ𝑛ଵ, . . . ,𝑛௥ሻ

𝑛ଵ ൅ ⋯ ൅ 𝑛௥ ൌ 𝑛. ቆ
𝑛 ൅ 𝑟 െ 1

𝑟 െ 1
ቇ

𝑛

𝑚 𝑛 െ𝑚

𝑥ଵ 𝑥ଶ

𝑥ଵ 0 𝑥ଶ 0⋯𝑥௠ 0 𝑥௠൅ଵ

𝑥௜ ൐ 0, 𝑖 ൌ 2, . . . ,𝑚.

𝑥ଵ, . . . ,𝑥௠൅ଵ
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But, on letting  we see that this

number is equal to the number of positive vectors  that satisfy the

equation

Hence, by Proposition 6.1 , there are  such outcomes, in

agreement with the results of Example 4c .

Suppose now that we are interested in the number of outcomes in which each

pair of defective items is separated by at least 2 functional items. By the same

reasoning as that applied previously, this would equal the number of vectors

satisfying the equation

Upon letting  we see that

this is the same as the number of positive solutions of the equation

Hence, from Proposition 6.1 , there are  such outcomes.

The basic principle of counting states that if an experiment consisting of two phases

is such that there are  possible outcomes of phase 1 and, for each of these 

outcomes, there are  possible outcomes of phase 2, then there are nm possible

outcomes of the experiment.

There are  possible linear orderings of  items. The quantity 0!

is defined to equal 1.

Let

𝑥ଵ ൅ ⋯ ൅ 𝑥௠൅ଵ ൌ 𝑛 െ 𝑚, 𝑥ଵ ൒ 0, 𝑥௠൅ଵ ൒ 0, 𝑥௜ ൐ 0, 𝑖 ൌ 2, . . . ,𝑚

𝑦ଵ ൌ 𝑥ଵ ൅ 1, 𝑦௜ ൌ 𝑥௜, 𝑖 ൌ 2, . . . ,𝑚, 𝑦௠൅ଵ ൌ 𝑥௠൅ଵ ൅ 1,

ሺ𝑦ଵ, . . . ,𝑦௠൅ଵሻ

𝑦ଵ ൅ 𝑦ଶ ൅⋯൅ 𝑦௠൅ଵ ൌ 𝑛 െ 𝑚൅ 2

ቆ
𝑛 െ𝑚 ൅ 1

𝑚
ቇ

𝑥ଵ ൅⋯൅ 𝑥௠൅ଵ ൌ 𝑛 െ 𝑚, 𝑥ଵ ൒ 0, 𝑥௠൅ଵ ൒ 0, 𝑥௜ ൒ 2, 𝑖 ൌ 2, . . . ,𝑚

𝑦ଵ ൌ 𝑥ଵ ൅ 1, 𝑦௜ ൌ 𝑥௜ െ 1, 𝑖 ൌ 2, . . . ,𝑚, 𝑦௠൅ଵ ൌ 𝑥௠൅ଵ ൅ 1,

𝑦ଵ ൅ ⋯ ൅ 𝑦௠൅ଵ ൌ 𝑛 െ 2𝑚൅ 3

ቆ
𝑛 െ 2𝑚൅ 2

𝑚
ቇ

𝑛 𝑛

𝑚

𝑛! ൌ 𝑛ሺ𝑛 െ 1ሻ⋯3 ⋅ 2 ⋅ 1 𝑛

ቆ
𝑛

𝑖
ቇ ൌ

𝑛!
ሺ𝑛 െ 𝑖ሻ! 𝑖!
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when  and let it equal 0 otherwise. This quantity represents the number of

different subgroups of size  that can be chosen from a set of size  It is often called

a binomial coefficient because of its prominence in the binomial theorem, which

states that

For nonnegative integers  summing to 

is the number of divisions of  items into  distinct nonoverlapping subgroups of

sizes  These quantities are called multinomial coefficients.

0 ൑ 𝑖 ൑ 𝑛,

𝑖 𝑛.

ሺ𝑥 ൅ 𝑦ሻ௡ ൌ ෍
௜ ൌ ଴

௡

ቆ
𝑛

𝑖
ቇ 𝑥௜𝑦௡െ௜

𝑛ଵ, . . . ,𝑛௥ 𝑛,

ቆ
𝑛

𝑛ଵ,𝑛ଶ, .   .   . ,𝑛௥
ቇ ൌ

𝑛!
𝑛ଵ !𝑛ଶ !⋯𝑛௥ !

𝑛 𝑟

𝑛ଵ,𝑛ଶ . . . ,𝑛௥.

1.

a. How many different 7-place license plates are possible if the first

2 places are for letters and the other 5 for numbers?

b. Repeat part (a) under the assumption that no letter or number

can be repeated in a single license plate.

2. How many outcome sequences are possible when a die is rolled four

times, where we say, for instance, that the outcome is 3, 4, 3, 1 if the

first roll landed on 3, the second on 4, the third on 3, and the fourth on

1?

3. Twenty workers are to be assigned to 20 different jobs, one to each

job. How many different assignments are possible?

4. John, Jim, Jay, and Jack have formed a band consisting of 4

instruments. If each of the boys can play all 4 instruments, how many

different arrangements are possible? What if John and Jim can play all

4 instruments, but Jay and Jack can each play only piano and drums?

5. For years, telephone area codes in the United States and Canada

consisted of a sequence of three digits. The first digit was an integer

between 2 and 9, the second digit was either 0 or 1, and the third digit

was any integer from 1 to 9. How many area codes were possible?

How many area codes starting with a 4 were possible?

6. A well-known nursery rhyme starts as follows:
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“As I was going to St. Ives

I met a man with 7 wives.

Each wife had 7 sacks.

Each sack had 7 cats.

Each cat had 7 kittens ”

How many kittens did the traveler meet?

7.

a. In how many ways can 3 boys and 3 girls sit in a row?

b. In how many ways can 3 boys and 3 girls sit in a row if the boys

and the girls are each to sit together?

c. In how many ways if only the boys must sit together?

d. In how many ways if no two people of the same sex are allowed

to sit together?

8. When all letters are used, how many different letter arrangements

can be made from the letters

a. Fluke?

b. Propose?

c. Mississippi?

d. Arrange?

9. A child has 12 blocks, of which 6 are black, 4 are red, 1 is white, and

1 is blue. If the child puts the blocks in a line, how many arrangements

are possible?

10. In how many ways can 8 people be seated in a row if

a. there are no restrictions on the seating arrangement?

b. persons  and  must sit next to each other?

c. there are 4 men and 4 women and no 2 men or 2 women can sit

next to each other?

d. there are 5 men and they must sit next to one another?

e. there are 4 married couples and each couple must sit together?

11. In how many ways can 3 novels, 2 mathematics books, and 1

chemistry book be arranged on a bookshelf if

a. the books can be arranged in any order?

b. the mathematics books must be together and the novels must

be together?

c. the novels must be together, but the other books can be

arranged in any order?

. . .

𝐴 𝐵

35 of 848



12. How many  digit numbers  with  all ranging from  to 

have at least  of their digits equal. How many have exactly  equal

digits.

13. How many different letter permutations, of any length, can be made

using the letters M O T T O. (For instance, there are  possible

permutations of length )

14. Five separate awards (best scholarship, best leadership qualities,

and so on) are to be presented to selected students from a class of 30.

How many different outcomes are possible if

a. a student can receive any number of awards?

b. each student can receive at most 1 award?

15. Consider a group of 20 people. If everyone shakes hands with

everyone else, how many handshakes take place?

16. How many 5-card poker hands are there?

17. A dance class consists of 22 students, of which 10 are women and

12 are men. If 5 men and 5 women are to be chosen and then paired

off, how many results are possible?

18. A student has to sell 2 books from a collection of 6 math, 7 science,

and 4 economics books. How many choices are possible if

a. both books are to be on the same subject?

b. the books are to be on different subjects?

19. Seven different gifts are to be distributed among 10 children. How

many distinct results are possible if no child is to receive more than one

gift?

20. A committee of 7, consisting of 2 Republicans, 2 Democrats, and 3

Independents, is to be chosen from a group of 5 Republicans, 6

Democrats, and 4 Independents. How many committees are possible?

21. From a group of 8 women and 6 men, a committee consisting of 3

men and 3 women is to be formed. How many different committees are

possible if

a. 2 of the men refuse to serve together?

b. 2 of the women refuse to serve together?

c. 1 man and 1 woman refuse to serve together?

22. A person has 8 friends, of whom 5 will be invited to a party.

a. How many choices are there if 2 of the friends are feuding and

will not attend together?

b. How many choices if 2 of the friends will only attend together?

3 𝑥𝑦𝑧, 𝑥,  𝑦,  𝑧 0 9

2 2

3

1.
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23. Consider the grid of points shown at the top of the next column.

Suppose that, starting at the point labeled  you can go one step up or

one step to the right at each move. This procedure is continued until

the point labeled  is reached. How many different paths from  to 

are possible?

Hint: Note that to reach  from  you must take 4 steps to the right

and 3 steps upward.

24. In Problem 23 , how many different paths are there from  to 

that go through the point circled in the following lattice?

25. A psychology laboratory conducting dream research contains 3

rooms, with 2 beds in each room. If 3 sets of identical twins are to be

assigned to these 6 beds so that each set of twins sleeps in different

beds in the same room, how many assignments are possible?

26.

a. Show 

b. Simplify 

𝐴,

𝐵 𝐴 𝐵

𝐵 𝐴,

𝐴 𝐵

෍
௞ൌ଴

௡
ቆ
𝑛

𝑘
ቇ 2௞ ൌ 3௡

෍
௞ൌ଴

௡
ቆ
𝑛

𝑘
ቇ 𝑥௞
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27. Expand 

28. The game of bridge is played by 4 players, each of whom is dealt

13 cards. How many bridge deals are possible?

29. Expand 

30. If 12 people are to be divided into 3 committees of respective sizes

3, 4, and 5, how many divisions are possible?

31. If 8 new teachers are to be divided among 4 schools, how many

divisions are possible? What if each school must receive 2 teachers?

32. Ten weight lifters are competing in a team weight-lifting contest. Of

the lifters, 3 are from the United States, 4 are from Russia, 2 are from

China, and 1 is from Canada. If the scoring takes account of the

countries that the lifters represent, but not their individual identities,

how many different outcomes are possible from the point of view of

scores? How many different outcomes correspond to results in which

the United States has 1 competitor in the top three and 2 in the bottom

three?

33. Delegates from 10 countries, including Russia, France, England,

and the United States, are to be seated in a row. How many different

seating arrangements are possible if the French and English delegates

are to be seated next to each other and the Russian and U.S.

delegates are not to be next to each other?

* 34. If 8 identical blackboards are to be divided among 4 schools, how

many divisions are possible? How many if each school must receive at

least 1 blackboard?

* 35. An elevator starts at the basement with 8 people (not including the

elevator operator) and discharges them all by the time it reaches the

top floor, number 6. In how many ways could the operator have

perceived the people leaving the elevator if all people look alike to him?

What if the 8 people consisted of 5 men and 3 women and the operator

could tell a man from a woman?

* 36. We have $20,000 that must be invested among 4 possible

opportunities. Each investment must be integral in units of $1000, and

there are minimal investments that need to be made if one is to invest

in these opportunities. The minimal investments are $2000, $2000,

$3000, and $4000. How many different investment strategies are

available if

a. an investment must be made in each opportunity?

b. investments must be made in at least 3 of the 4 opportunities?

* 37. Suppose that  fish are caught at a lake that contains  distinct

types of fish.

ሺ3𝑥ଶ ൅ 𝑦ሻ
ହ
.

ሺ𝑥ଵ ൅ 2𝑥ଶ ൅ 3𝑥ଷሻ
ସ.

10 5
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a. How many different outcomes are possible, where an outcome

specifies the numbers of caught fish of each of the  types?

b. How many outcomes are possible when  of the  fish caught

are trout?

c. How many when at least  of the  are trout?

5

3 10

2 10

1. Prove the generalized version of the basic counting principle.

2. Two experiments are to be performed. The first can result in any one of 

possible outcomes. If the first experiment results in outcome  then the

second experiment can result in any of  possible outcomes, 

What is the number of possible outcomes of the two experiments?

3. In how many ways can  objects be selected from a set of  objects if the

order of selection is considered relevant?

4. There are  different linear arrangements of  balls of which  are black

and  are white. Give a combinatorial explanation of this fact.

5. Determine the number of vectors  such that each  is either 0 or

1 and

6. How many vectors  are there for which each  is a positive integer

such that  and 

7. Give an analytic proof of Equation (4.1) .

8. Prove that

Hint: Consider a group of  men and  women. How many groups of size 

are possible?

9. Use Theoretical Exercise 8  to prove that

10. From a group of  people, suppose that we want to choose a committee of

𝑚

𝑖,

𝑛௜ 𝑖 ൌ 1, 2, . . . ,𝑚.

𝑟 𝑛

ቆ
𝑛

𝑟
ቇ 𝑛 𝑟

𝑛 െ 𝑟

ሺ𝑥ଵ, . . . ,𝑥௡ሻ, 𝑥௜

෍
௜ ൌ ଵ

௡

𝑥௜ ൒ 𝑘

𝑥ଵ, . . . ,𝑥௞ 𝑥௜
1 ൑ 𝑥௜ ൑ 𝑛 𝑥ଵ ൏ 𝑥ଶ ൏ ⋯ ൏ 𝑥௞?

ቆ
𝑛 ൅𝑚

𝑟
ቇ ൌ ቆ

𝑛

0
ቇቆ
𝑚

𝑟
ቇ ൅ ቆ

𝑛

1
ቇቆ

𝑚

𝑟 െ 1
ቇ

൅⋯ ൅ ቆ
𝑛

𝑟
ቇቆ
𝑚

0
ቇ

𝑛 𝑚 𝑟

ቆ
2𝑛

𝑛
ቇ ൌ ෍

௞ ൌ ଴

௡

ቆ
𝑛

𝑘
ቇ
ଶ

𝑛
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 one of whom is to be designated as chairperson.

a. By focusing first on the choice of the committee and then on the choice

of the chair, argue that there are  possible choices.

b. By focusing first on the choice of the nonchair committee members and

then on the choice of the chair, argue that there are 

possible choices.

c. By focusing first on the choice of the chair and then on the choice of

the other committee members, argue that there are  possible

choices.

d. Conclude from parts (a), (b), and (c) that

e. Use the factorial definition of  to verify the identity in part (d).

11. The following identity is known as Fermat’s combinatorial identity:

Give a combinatorial argument (no computations are needed) to establish this

identity.

Hint: Consider the set of numbers 1 through  How many subsets of size 

have  as their highest numbered member?

12. Consider the following combinatorial identity:

a. Present a combinatorial argument for this identity by considering a set

of  people and determining, in two ways, the number of possible

selections of a committee of any size and a chairperson for the

committee.

Hint:

i. How many possible selections are there of a committee of size 

and its chairperson?

ii. How many possible selections are there of a chairperson and

the other committee members?

𝑘, 𝑘 ൑ 𝑛,

ቆ
𝑛

𝑘
ቇ 𝑘

ቆ
𝑛

𝑘 െ 1
ቇ ሺ𝑛 െ 𝑘 ൅ 1ሻ

𝑛 ቆ
𝑛 െ 1

𝑘 െ 1
ቇ

𝑘 ቆ
𝑛

𝑘
ቇ ൌ ሺ𝑛 െ 𝑘 ൅ 1ሻቆ

𝑛

𝑘 െ 1
ቇ ൌ 𝑛 ቆ

𝑛 െ 1

𝑘 െ 1
ቇ

ቆ
𝑚

𝑟
ቇ

ቆ
𝑛

𝑘
ቇ ൌ ෍

௜ ൌ ௞

௡

ቆ
𝑖 െ 1

𝑘 െ 1
ቇ 𝑛 ൒ 𝑘

𝑛. 𝑘

𝑖

෍
௞ ൌ ଵ

௡

𝑘 ቆ
𝑛

𝑘
ቇ ൌ 𝑛 ⋅ 2௡െଵ

𝑛

𝑘
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b. Verify the following identity for 

For a combinatorial proof of the preceding, consider a set of  people

and argue that both sides of the identity represent the number of

different selections of a committee, its chairperson, and its secretary

(possibly the same as the chairperson).

Hint:

i. How many different selections result in the committee containing

exactly  people?

ii. How many different selections are there in which the

chairperson and the secretary are the same? (ANSWER: 

)

iii. How many different selections result in the chairperson and the

secretary being different?

c. Now argue that

13. Show that, for 

Hint: Use the binomial theorem.

14. From a set of  people, a committee of size  is to be chosen, and from

this committee, a subcommittee of size  is also to be chosen.

a. Derive a combinatorial identity by computing, in two ways, the number

of possible choices of the committee and subcommittee–first by

supposing that the committee is chosen first and then the

subcommittee is chosen, and second by supposing that the

subcommittee is chosen first and then the remaining members of the

committee are chosen.

b. Use part (a) to prove the following combinatorial identity:

c. Use part (a) and Theoretical Exercise 13  to show that

𝑛 ൌ 1,  2,  3,  4,  5:

෍
௞ ൌ ଵ

௡

ቆ
𝑛

𝑘
ቇ 𝑘ଶ ൌ 2௡െଶ𝑛ሺ𝑛 ൅ 1ሻ

𝑛

𝑘

𝑛2௡െଵ.

෍
௞ ൌ ଵ

௡

ቆ
𝑛

𝑘
ቇ 𝑘ଷ ൌ 2௡െଷ𝑛ଶሺ𝑛 ൅ 3ሻ

𝑛 ൐ 0,

෍
௜ ൌ ଴

௡

ሺ െ 1ሻ௜ቆ
𝑛

𝑖
ቇ ൌ 0

𝑛 𝑗

𝑖,𝑖 ൑ 𝑗,

෍
௝ ൌ ௜

௡

ቆ
𝑛

𝑗
ቇቆ
𝑗

𝑖
ቇ ൌ ቆ

𝑛

𝑖
ቇ 2௡െ௜ 𝑖 ൑ 𝑛
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15. Let  be the number of vectors  for which each  is a

positive integer satisfying  and 

a. Without any computations, argue that

Hint: How many vectors are there in which 

b. Use the preceding recursion to compute 

Hint: First compute  for  2, 3, 4, 5.

16. Consider a tournament of  contestants in which the outcome is an

ordering of these contestants, with ties allowed. That is, the outcome

partitions the players into groups, with the first group consisting of the players

who tied for first place, the next group being those who tied for the next-best

position, and so on. Let  denote the number of different possible

outcomes. For instance,  since, in a tournament with 2 contestants,

player 1 could be uniquely first, player 2 could be uniquely first, or they could

tie for first

a. List all the possible outcomes when 

b. With (0) defined to equal 1, argue, without any computations, that

Hint: How many outcomes are there in which  players tie for last

place?

c. Show that the formula of part (b) is equivalent to the following:

d. Use the recursion to find (3) and (4).

17. Present a combinatorial explanation of why 

18. Argue that

෍
௝ ൌ ௜

௡

ቆ
𝑛

𝑗
ቇቆ
𝑗

𝑖
ቇ ሺ െ 1ሻ௡െ௝ ൌ 0 𝑖 ൏ 𝑛

𝐻௞ሺ𝑛ሻ 𝑥ଵ, . . . ,𝑥௞ 𝑥௜
1 ൑ 𝑥௜ ൑ 𝑛 𝑥ଵ ൑ 𝑥ଶ ൑ ⋯ ൑ 𝑥௞.

𝐻ଵሺ𝑛ሻ ൌ 𝑛

𝐻௞ሺ𝑛ሻ ൌ ෍
௝ ൌ ଵ

௡

𝐻௞െଵሺ𝑗ሻ 𝑘 ൐ 1

𝑥௞ ൌ 𝑗?

𝐻ଷሺ5ሻ.

𝐻ଶሺ𝑛ሻ 𝑛 ൌ 1,

𝑛

𝑁ሺ𝑛ሻ

𝑁ሺ2ሻ ൌ 3,

𝑛 ൌ 3.

𝑁

𝑁ሺ𝑛ሻ ൌ ෍
௜ ൌ ଵ

௡

ቆ
𝑛

𝑖
ቇ 𝑁ሺ𝑛 െ 𝑖ሻ

𝑖

𝑁ሺ𝑛ሻ ൌ ෍
௜ ൌ ଴

௡ െ ଵ

ቆ
𝑛

𝑖
ቇ 𝑁ሺ𝑖ሻ

𝑁 𝑁

ቆ
𝑛

𝑟
ቇ ൌ ቆ

𝑛

𝑟,  𝑛 െ 𝑟
ቇ
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Hint: Use an argument similar to the one used to establish Equation (4.1) .

19. Prove the multinomial theorem.

* 20. In how many ways can  identical balls be distributed into  urns so that

the th urn contains at least  balls, for each  Assume that

* 21. Argue that there are exactly  solutions of

for which exactly  of the  are equal to 0.

* 22. Consider a function  of  variables. How many different

partial derivatives of order  does  possess?

* 23. Determine the nu mber of vectors  such that each  is a

nonnegative integer and

ቆ
𝑛

𝑛ଵ,𝑛ଶ, .   .   . ,𝑛௥
ቇ ൌ ቆ

𝑛 െ 1

𝑛ଵ െ 1,𝑛ଶ, .   .   . ,𝑛௥
ቇ

൅ቆ
𝑛 െ 1

𝑛ଵ,𝑛ଶ െ 1, .   .   . ,𝑛௥
ቇ ൅⋯

൅ቆ
𝑛 െ 1

𝑛ଵ,𝑛ଶ, .   .   . ,𝑛௥ െ 1
ቇ

𝑛 𝑟

𝑖 𝑚௜ 𝑖 ൌ 1, . . . ,𝑟?

𝑛 ൒ ෍
௜ൌଵ

௥
𝑚௜.

ቆ
𝑟

𝑘
ቇቆ

𝑛 െ 1

𝑛 െ 𝑟 ൅ 𝑘
ቇ

𝑥ଵ ൅ 𝑥ଶ ൅ ⋯൅ 𝑥௥ ൌ 𝑛

𝑘 𝑥௜
𝑓ሺ𝑥ଵ, . . . ,𝑥௡ሻ 𝑛

𝑟 𝑓

ሺ𝑥ଵ, . . . ,𝑥௡ሻ 𝑥௜

෍
௜ ൌ ଵ

௡

𝑥௜ ൑ 𝑘

1. How many different linear arrangements are there of the letters A, B, C, D,

E, F for which

a. A and B are next to each other?

b. A is before B?

c. A is before B and B is before C?

d. A is before B and C is before D?

e. A and B are next to each other and C and D are also next to each

other?

f. E is not last in line?

2. If 4 Americans, 3 French people, and 3 British people are to be seated in a

row, how many seating arrangements are possible when people of the same

nationality must sit next to each other?
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3. A president, treasurer, and secretary, all different, are to be chosen from a

club consisting of 10 people. How many different choices of officers are

possible if

a. there are no restrictions?

b.  and  will not serve together?

c.  and  will serve together or not at all?

d.  must be an officer?

e.  will serve only if he is president?

4. A student is to answer 7 out of 10 questions in an examination. How many

choices has she? How many if she must answer at least 3 of the first 5

questions?

5. In how many ways can a man divide 7 gifts among his 3 children if the

eldest is to receive 3 gifts and the others 2 each?

6. How many different 7-place license plates are possible when 3 of the

entries are letters and 4 are digits? Assume that repetition of letters and

numbers is allowed and that there is no restriction on where the letters or

numbers can be placed.

7. Give a combinatorial explanation of the identity

8. Consider -digit numbers where each digit is one of the 10 integers

 How many such numbers are there for which

a. no two consecutive digits are equal?

b. 0 appears as a digit a total of  times, 

9. Consider three classes, each consisting of  students. From this group of 

 students, a group of 3 students is to be chosen.

a. How many choices are possible?

b. How many choices are there in which all 3 students are in the same

class?

c. How many choices are there in which 2 of the 3 students are in the

same class and the other student is in a different class?

d. How many choices are there in which all 3 students are in different

classes?

e. Using the results of parts (a) through (d), write a combinatorial identity.

10. How many 5-digit numbers can be formed from the integers  if no

digit can appear more than twice? (For instance, 41434 is not allowed.)

11. From  married couples, we want to select a group of  people that is not

𝐴 𝐵

𝐶 𝐷

𝐸

𝐹

ቆ
𝑛

𝑟
ቇ ൌ ቆ

𝑛

𝑛 െ 𝑟
ቇ

𝑛

0,1, . . . ,9.

𝑖 𝑖 ൌ 0, . . . ,𝑛?

𝑛 3

𝑛

1,2, . . . ,9

10 6
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allowed to contain a married couple.

a. How many choices are there?

b. How many choices are there if the group must also consist of  men

and  women?

12. A committee of 6 people is to be chosen from a group consisting of 7 men

and 8 women. If the committee must consist of at least 3 women and at least

2 men, how many different committees are possible?

* 13. An art collection on auction consisted of 4 Dalis, 5 van Goghs, and 6

Picassos. At the auction were 5 art collectors. If a reporter noted only the

number of Dalis, van Goghs, and Picassos acquired by each collector, how

many different results could have been recorded if all of the works were sold?

* 14. Determine the number of vectors  such that each  is a

positive integer and

where 

15. A total of  students are enrolled in a review course for the actuarial

examination in probability. The posted results of the examination will list the

names of those who passed, in decreasing order of their scores. For instance,

the posted result will be “Brown, Cho” if Brown and Cho are the only ones to

pass, with Brown receiving the higher score. Assuming that all scores are

distinct (no ties), how many posted results are possible?

16. How many subsets of size  of the set  contain at least

one of the elements 

17. Give an analytic verification of

Now, give a combinatorial argument for this identity.

18. In a certain community, there are 3 families consisting of a single parent

and 1 child, 3 families consisting of a single parent and 2 children, 5 families

consisting of 2 parents and a single child, 7 families consisting of 2 parents

and 2 children, and 6 families consisting of 2 parents and 3 children. If a

parent and child from the same family are to be chosen, how many possible

choices are there?

19. If there are no restrictions on where the digits and letters are placed, how

many 8-place license plates consisting of 5 letters and 3 digits are possible if

no repetitions of letters or digits are allowed? What if the 3 digits must be

consecutive?

3

3

ሺ𝑥ଵ, . . . ,𝑥௡ሻ 𝑥௜

෍
௜ ൌ ଵ

௡

𝑥௜ ൑ 𝑘

𝑘 ൒ 𝑛.

𝑛

4 𝑆 ൌ ሼ1, 2, . . . ,20ሽ
1, 2, 3, 4, 5?

ቆ
𝑛

2
ቇ ൌ ቆ

𝑘

2
ቇ ൅ 𝑘ሺ𝑛 െ 𝑘ሻ ൅ ቆ

𝑛 െ 𝑘

2
ቇ,    1 ൑ 𝑘 ൑ 𝑛
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2.1 Introduction

2.2 Sample Space and Events

2.3 Axioms of Probability

2.4 Some Simple Propositions

2.5 Sample Spaces Having Equally Likely Outcomes

2.6 Probability as a Continuous Set Function

2.7 Probability as a Measure of Belief

In this chapter, we introduce the concept of the probability of an event and then show

how probabilities can be computed in certain situations. As a preliminary, however,

we need to discuss the concept of the sample space and the events of an

experiment.

20. Verify the identity

a. by a combinatorial argument that first notes that  is the number of

different  letter sequences that can be formed from an alphabet

consisting of  letters, and then determines how many of these letter

sequences have letter 1 a total of  times and letter 2 a total of 

times and ... and letter  a total of  times;

b. by using the multinomial theorem.

21. Simplify 

෍
௫భ ൅ . . . ൅ ௫ ೝ ൌ ௡ ,  ௫ ೔ ൒ ଴

𝑛!
𝑥ଵ !𝑥ଶ !⋯𝑥௥ !

ൌ 𝑟௡

𝑟௡

𝑛

𝑟

𝑥ଵ 𝑥ଶ
𝑟 𝑥௥

𝑛 െ ቆ
𝑛

2
ቇ ൅ ቆ

𝑛

3
ቇ െ … ൅ ሺെ1ሻ௡൅ଵቆ

𝑛

𝑛
ቇ
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Consider an experiment whose outcome is not predictable with certainty. However,

although the outcome of the experiment will not be known in advance, let us suppose

that the set of all possible outcomes is known. This set of all possible outcomes of an

experiment is known as the sample space of the experiment and is denoted by S.

Following are some examples:

1. If the outcome of an experiment consists of the determination of the sex of a

newborn child, then

where the outcome  means that the child is a girl and  that it is a boy.

2. If the outcome of an experiment is the order of finish in a race among the 7

horses having post positions 1, 2, 3, 4, 5, 6, and 7, then

The outcome (2, 3, 1, 6, 5, 4, 7) means, for instance, that the number 2 horse

comes in first, then the number 3 horse, then the number 1 horse, and so on.

3. If the experiment consists of flipping two coins, then the sample space

consists of the following four points:

The outcome will be ( ) if both coins are heads, ( ) if the first coin is

heads and the second tails, ( ) if the first is tails and the second heads, and

( ) if both coins are tails.

4. If the experiment consists of tossing two dice, then the sample space consists

of the 36 points

where the outcome  is said to occur if  appears on the leftmost die and 

on the other die.

5. If the experiment consists of measuring (in hours) the lifetime of a transistor,

then the sample space consists of all nonnegative real numbers; that is,

Any subset  of the sample space is known as an event. In other words, an event is

a set consisting of possible outcomes of the experiment. If the outcome of the

experiment is contained in  then we say that  has occurred. Following are some

examples of events.

𝑆 ൌ ሼ𝑔, 𝑏ሽ

𝑔 𝑏

𝑆 ൌ ሼall 7! permutations of  ሺ1, 2, 3, 4, 5, 6, 7ሻሽ

𝑆 ൌ ሼሺℎ, ℎሻ, ሺℎ, 𝑡ሻ, ሺ𝑡, ℎሻ, ሺ𝑡, 𝑡ሻሽ

ℎ, ℎ ℎ, 𝑡

𝑡, ℎ

𝑡, 𝑡

𝑆 ൌ ሼሺ𝑖,  𝑗ሻ:  𝑖,  𝑗 ൌ 1, 2, 3, 4, 5, 6ሽ

ሺ𝑖, 𝑗ሻ 𝑖 𝑗

𝑆 ൌ ሼ𝑥:  0 ൑ 𝑥 ൏ ∞ሽ

𝐸

𝐸, 𝐸
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In the preceding Example 1, if  then  is the event that the child is a girl.

Similarly, if  then  is the event that the child is a boy.

In Example 2, if

then  is the event that horse 3 wins the race.

In Example 3, if  then  is the event that a head appears on the

first coin.

In Example 4, if  then  is the event that

the sum of the dice equals 7.

In Example 5, if  then  is the event that the transistor does not

last longer than 5 hours.

For any two events  and  of a sample space  we define the new event  to

consist of all outcomes that are either in  or in  or in both  and  That is, the

event  will occur if either E or  occurs. For instance, in Example 1, if  is

the event that the child is a girl and  is the event that the child is a boy, then

is the whole sample space  In Example 3, if  is the event that the

first coin lands heads, and  is the event that the second coin lands

heads, then

is the event that at least one of the coins lands heads and thus will occur provided

that both coins do not land tails.

The event  is called the union of the event  and the event 

Similarly, for any two events  and  we may also define the new event EF, called

the intersection of  and  to consist of all outcomes that are both in  and in  That

is, the event EF (sometimes written ) will occur only if both  and  occur. For

instance, in Example 3, if  is the event that at least 1 head

occurs and  is the event that at least 1 tail occurs, then

𝐸 ൌ ሼ𝑔ሽ, 𝐸

𝐹 ൌ ሼ𝑏ሽ, 𝐹

𝐸 ൌ ሼall outcomes in 𝑆 starting with a 3ሽ

𝐸

𝐸 ൌ ሼሺℎ, ℎሻ, ሺℎ, 𝑡ሻሽ, 𝐸

𝐸 ൌ ሼሺ1, 6ሻ, ሺ2, 5ሻ, ሺ3, 4ሻ, ሺ4, 3ሻ, ሺ5, 2ሻ, ሺ6, 1ሻሽ, 𝐸

𝐸 ൌ ሼ𝑥:  0 ൑ 𝑥 ൑ 5ሽ, 𝐸

𝐸 𝐹 𝑆, 𝐸 ∪ 𝐹

𝐸 𝐹 𝐸 𝐹.

𝐸 ∪ 𝐹 𝐹 𝐸 ൌ ሼ𝑔ሽ
𝐹 ൌ ሼ𝑏ሽ

𝐸 ∪ 𝐹 ൌ ሼ𝑔, 𝑏ሽ

𝑆. 𝐸 ൌ ሼሺℎ, ℎሻ, ሺℎ, 𝑡ሻሽ
𝐹 ൌ ሼሺ𝑡, ℎሻ, ሺℎ, ℎሻሽ

𝐸 ∪ 𝐹 ൌ ሼሺℎ, ℎሻ, ሺℎ, 𝑡ሻ, ሺ𝑡, ℎሻሽ

𝐸 ∪ 𝐹 𝐸 𝐹.

𝐸 𝐹,

𝐸 𝐹, 𝐸 𝐹.

𝐸 ∩ 𝐹 𝐸 𝐹

𝐸 ൌ ሼሺℎ, ℎሻ, ሺℎ, 𝑡ሻ, ሺ𝑡, ℎሻሽ
𝐹 ൌ ሼሺℎ, 𝑡ሻ, ሺ𝑡, ℎሻ, ሺ𝑡, 𝑡ሻሽ

𝐸𝐹 ൌ ሼሺℎ, 𝑡ሻ, ሺ𝑡, ℎሻሽ
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is the event that exactly 1 head and 1 tail occur. In Example 4, if

 is the event that the sum of the dice is 7

and  is the event that the sum is 6, then the

event EF does not contain any outcomes and hence could not occur. To give such an

event a name, we shall refer to it as the null event and denote it by  (That is, 

refers to the event consisting of no outcomes.) If  then  and  are said to be

mutually exclusive.

We define unions and intersections of more than two events in a similar manner. If

 are events, then the union of these events, denoted by  is defined

to be that event that consists of all outcomes that are in  for at least one value of

 Similarly, the intersection of the events  denoted by  is

defined to be the event consisting of those outcomes that are in all of the events

Finally, for any event  we define the new event  referred to as the complement of

 to consist of all outcomes in the sample space  that are not in  That is,  will

occur if and only if  does not occur. In Example 4, if event

 then  will occur when the sum of the

dice does not equal 7. Note that because the experiment must result in some

outcome, it follows that 

For any two events  and  if all of the outcomes in  are also in  then we say that

 is contained in  or  is a subset of  and write  (or equivalently, 

which we sometimes say as  is a superset of ). Thus, if  then the occurrence

of  implies the occurrence of  If  and  we say that  and  are equal

and write 

A graphical representation that is useful for illustrating logical relations among events

is the Venn diagram. The sample space  is represented as consisting of all the

outcomes in a large rectangle, and the events  are represented as

consisting of all the outcomes in given circles within the rectangle. Events of interest

can then be indicated by shading appropriate regions of the diagram. For instance, in

the three Venn diagrams shown in Figure 2.1 , the shaded areas represent,

respectively, the events EF, and  The Venn diagram in Figure 2.2

indicates that 

Figure 2.1 Venn diagrams.

𝐸 ൌ ሼሺ1, 6ሻ, ሺ2, 5ሻ, ሺ3, 4ሻ, ሺ4, 3ሻ, ሺ5, 2ሻ, ሺ6, 1ሻሽ
𝐹 ൌ ሼሺ1, 5ሻ, ሺ2, 4ሻ, ሺ3, 3ሻ, ሺ4, 2ሻ, ሺ5, 1ሻሽ

Ø. Ø

𝐸𝐹 ൌ Ø, 𝐸 𝐹

𝐸ଵ, 𝐸ଶ, ... ∪
௡ ൌ ଵ

ஶ 𝐸௡,

𝐸௡

𝑛 ൌ 1, 2, .... 𝐸௡, ∩
௡ ൌ ଵ

ஶ 𝐸௡,

𝐸௡, 𝑛 ൌ 1, 2, ... .

𝐸, 𝐸௖,

𝐸, 𝑆 𝐸. 𝐸௖

𝐸

𝐸 ൌ ሼሺ1, 6ሻ, ሺ2, 5ሻ, ሺ3, 4ሻ, ሺ4, 3ሻ, ሺ5, 2ሻ, ሺ6, 1ሻሽ, 𝐸௖

𝑆௖ ൌ Ø.

𝐸 𝐹, 𝐸 𝐹,

𝐸 𝐹, 𝐸 𝐹, 𝐸 ⊂ 𝐹 𝐹 ⊃ 𝐸,

𝐹 𝐸 𝐸 ⊂ 𝐹,

𝐸 𝐹. 𝐸 ⊂ 𝐹 𝐹 ⊂ 𝐸, 𝐸 𝐹

𝐸 ൌ 𝐹.

𝑆

𝐸, 𝐹, 𝐺, ...

𝐸 ∪ 𝐹, 𝐸௖.

𝐸 ⊂ 𝐹.
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(a) Shaded region: 

(b) Shaded region: FF

(b) Shaded region: E

Figure 2.2

𝐸 ∪ 𝐹 .

c

𝐸 ⊂ 𝐹 .
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The operations of forming unions, intersections, and complements of events obey

certain rules similar to the rules of algebra. We list a few of these rules:

These relations are verified by showing that any outcome that is contained in the

event on the left side of the equality sign is also contained in the event on the right

side, and vice versa. One way of showing this is by means of Venn diagrams. For

instance, the distributive law may be verified by the sequence of diagrams in Figure

2.3 .

Figure 2.3

(a) Shaded region: EG.

Commutative laws 𝐸 ∪ 𝐹 ൌ 𝐹 ∪ 𝐸 𝐸𝐹 ൌ 𝐹𝐸

Associative laws ሺE ∪ Fሻ ∪ G ൌ 𝐸 ∪ ሺ𝐹 ∪ 𝐺ሻ ሺ𝐸𝐹ሻ𝐺 ൌ 𝐸ሺ𝐹𝐺ሻ

Distributive laws ሺ𝐸 ∪ 𝐹ሻ𝐺 ൌ 𝐸𝐺 ∪ 𝐹𝐺 𝐸𝐹 ∪ 𝐺 ൌ ሺ𝐸 ∪ 𝐺ሻሺ𝐹 ∪ 𝐺ሻ

ሺ𝐸 ∪ 𝐹ሻ𝐺 ൌ 𝐸𝐺 ∪ 𝐹𝐺.
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(b) Shaded region: FG.

(c) Shaded region: 

The following useful relationships among the three basic operations of forming

unions, intersections, and complements are known as DeMorgan’s laws:

For instance, for two events E and F, DeMorgan’s laws state that

ሺ𝐸 ∪ 𝐹ሻ𝐺 .

ቌ
௜ ଵ

௡
𝐸௜ቍ

௖

ൌ
௜ ଵ

௡
𝐸௜
௖

ቌ
௜ ଵ

௡
𝐸௜ቍ

௖

ൌ
௜ ଵ

௡
𝐸௜
௖

ሺ𝐸 ∪ 𝐹ሻ௖ ൌ 𝐸௖𝐹௖ and ሺ𝐸𝐹ሻ௖ ൌ 𝐸௖ ∪ 𝐹௖
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which can be easily proven by using Venn diagrams (see Theoretical Exercise

7 ).

To prove DeMorgan’s laws for general  suppose first that  is an outcome of

 Then  is not contained in  which means that x is not

contained in any of the events  implying that  is contained in  for

all  and thus is contained in  To go the other way, suppose

that x is an outcome of Then  is contained in  for all 

which means that  is not contained in  for any  implying that x is not

contained in in turn implying that  is contained in  This proves the first

of DeMorgan’s laws.

To prove the second of DeMorgan’s laws, we use the first law to obtain

which, since  is equivalent to

Taking complements of both sides of the preceding equation yields the result we

seek, namely,

One way of defining the probability of an event is in terms of its long run relative

frequency. Such a definition usually goes as follows: We suppose that an

experiment, whose sample space is  is repeatedly performed under exactly the

same conditions. For each event  of the sample space  we define  to be the

number of times in the first  repetitions of the experiment that the event  occurs.

Then  the probability of the event E, is defined as

𝑛, 𝑥

ቆ ∪
௜ ൌ ଵ

௡
𝐸௜ቇ

௖

. 𝑥 ∪
௜ ൌ ଵ

௡
𝐸௜,

𝐸௜, 𝑖 ൌ 1, 2, ... , 𝑛, 𝑥 𝐸௜
௖

𝑖 ൌ 1,  2,   .   .   .  , ∩
௜ ൌ ଵ

௡
𝐸௜
௖ .

∩
௜ ൌ ଵ

௡
𝐸௜
௖ . 𝑥 𝐸௜

௖ 𝑖 ൌ 1, 2, . . . , 𝑛,

𝑥 𝐸௜ 𝑖 ൌ 1, 2, . . . , 𝑛,

∪
௜

௡
𝐸௜, 𝑥 ൬ ∪

ଵ

௡
𝐸௜൰

௖

.

ቆ
௜ ൌ ଵ

௡

𝐸௜
௖ቇ

௖

ൌ ∩
௜ ൌ ଵ

௡
ሺ𝐸௜

௖ሻ௖

ሺ𝐸௖ሻ௖ ൌ 𝐸,

൬ ∪
ଵ

௡
𝐸௜
௖൰

௖

ൌ ∩
ଵ

௡
𝐸௜

ଵ

௡

𝐸௜
௖ ൌ ቆ

ଵ

௡

𝐸௜ቇ
௖

𝑆,

𝐸 𝑆, 𝑛ሺ𝐸ሻ

𝑛 𝐸

𝑃ሺ𝐸ሻ,
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That is,  is defined as the (limiting) proportion of time that  occurs. It is thus the

limiting relative frequency of 

Although the preceding definition is certainly intuitively pleasing and should always

be kept in mind by the reader, it possesses a serious drawback: How do we know

that  will converge to some constant limiting value that will be the same for

each possible sequence of repetitions of the experiment? For example, suppose that

the experiment to be repeatedly performed consists of flipping a coin. How do we

know that the proportion of heads obtained in the first  flips will converge to some

value as  gets large? Also, even if it does converge to some value, how do we know

that, if the experiment is repeatedly performed a second time, we shall obtain the

same limiting proportion of heads?

Proponents of the relative frequency definition of probability usually answer this

objection by stating that the convergence of  to a constant limiting value is an

assumption, or an axiom, of the system. However, to assume that  will

necessarily converge to some constant value seems to be an extraordinarily

complicated assumption. For, although we might indeed hope that such a constant

limiting frequency exists, it does not at all seem to be a priori evident that this need

be the case. In fact, would it not be more reasonable to assume a set of simpler and

more self-evident axioms about probability and then attempt to prove that such a

constant limiting frequency does in some sense exist? The latter approach is the

modern axiomatic approach to probability theory that we shall adopt in this text. In

particular, we shall assume that, for each event  in the sample space  there exists

a value  referred to as the probability of  We shall then assume that all these

probabilities satisfy a certain set of axioms, which, we hope the reader will agree, is

in accordance with our intuitive notion of probability.

Consider an experiment whose sample space is  For each event  of the sample

space  we assume that a number  is defined and satisfies the following three

axioms:

The three axioms of probability

Axiom 1

Axiom 2

𝑃ሺ𝐸ሻ ൌ
௡ ஶ

𝑛ሺ𝐸ሻ
𝑛

𝑃ሺ𝐸ሻ 𝐸

𝐸.

𝑛ሺ𝐸ሻ/𝑛

𝑛

𝑛

𝑛ሺ𝐸ሻ/𝑛

𝑛ሺ𝐸ሻ/𝑛

𝐸 𝑆,

𝑃ሺ𝐸ሻ, 𝐸.

𝑆. 𝐸

𝑆, 𝑃ሺ𝐸ሻ

0 ൑ 𝑃ሺ𝐸ሻ ൑ 1

𝑃ሺ𝑆ሻ ൌ 1
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Axiom 3

For any sequence of mutually exclusive events  (that is, events for

which  when ),

We refer to  as the probability of the event 

Thus, Axiom 1  states that the probability that the outcome of the experiment is an

outcome in  is some number between 0 and 1. Axiom 2  states that, with

probability 1, the outcome will be a point in the sample space Axiom 3  states

that, for any sequence of mutually exclusive events, the probability of at least one of

these events occurring is just the sum of their respective probabilities.

If we consider a sequence of events , where and for

 then, because the events are mutually exclusive and because 

we have, from Axiom 3 ,

implying that

That is, the null event has probability 0 of occurring.

Note that it follows that, for any finite sequence of mutually exclusive events 

This equation follows from Axiom 3  by defining  as the null event for all values

of  greater than Axiom 3  is equivalent to Equation (3.1)  when the sample

space is finite. (Why?) However, the added generality of Axiom 3  is necessary

when the sample space consists of an infinite number of points.

Example 3a

If our experiment consists of tossing a coin and if we assume that a head is as

𝐸ଵ, 𝐸ଶ, ...

𝐸௜ 𝐸௝ ൌ Ø 𝑖 ് 𝑗

𝑃ቆ
௜ ൌ ଵ

ஶ

𝐸௜ቇ ൌ
௜ ൌ ଵ

ஶ
𝑃ሺ𝐸௜ሻ

𝑃ሺ𝐸ሻ 𝐸.

𝐸

𝑆.

𝐸ଵ,  𝐸ଶ,   .   .   .  , 𝐸ଵ ൌ 𝑆 𝐸ଵ ൌ ∅

𝑖 ൐ 1, 𝑆 ൌ ∪
௜ ൌ ଵ

ஶ 𝐸௜,

𝑃ሺ𝑆ሻ ൌ ෍
௜ ൌ ଵ

ஶ

𝑃ሺ𝐸௜ሻ ൌ 𝑃ሺ𝑆ሻ ൅ ෍
௜ ൌ ଶ

ஶ

𝑃ሺØሻ

𝑃ሺØሻ ൌ 0

𝐸ଵ,
𝐸ଶ, . . . , 𝐸௡,

𝑃൬ ∪
ଵ

௡
𝐸௜൰ ൌ Σ

௜ ൌ ଵ

௡
𝑃ሺ𝐸௜ሻ

(3.1)

𝐸௜
𝑖 𝑛.
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likely to appear as a tail, then we would have

On the other hand, if the coin were biased and we believed that a head were

twice as likely to appear as a tail, then we would have

Example 3b

If a die is rolled and we suppose that all six sides are equally likely to appear,

then we would have 

From Axiom 3 , it would thus follow that the probability of rolling an even

number would equal

The assumption of the existence of a set function  defined on the events of a

sample space  and satisfying Axioms 1 , 2 , and 3 , constitutes the modern

mathematical approach to probability theory. It is hoped that the reader will agree

that the axioms are natural and in accordance with our intuitive concept of probability

as related to chance and randomness. Furthermore, using these axioms, we shall be

able to prove that if an experiment is repeated over and over again, then, with

probability 1, the proportion of time during which any specific event E occurs will

equal  This result, known as the strong law of large numbers, is presented in

Chapter 8 . In addition, we present another possible interpretation of probability–

as being a measure of belief–in Section 2.7 .

Technical Remark. We have supposed that  is defined for all the events  of

the sample space. Actually, when the sample space is an uncountably infinite set,

 is defined only for a class of events called measurable. However, this restriction

need not concern us, as all events of any practical interest are measurable.

In this section, we prove some simple propositions regarding probabilities. We first

note that since  and  are always mutually exclusive and since  we

have, by Axioms 2  and 3 ,

𝑃ሺሼ𝐻ሽሻ ൌ 𝑃ሺሼ𝑇ሽሻ ൌ
1
2

𝑃ሺሼ𝐻ሽሻ ൌ
2
3
 𝑃ሺሼ𝑇ሽሻ ൌ

1
3

𝑃ሺሼ1ሽሻ ൌ 𝑃ሺሼ2ሽሻ ൌ 𝑃ሺሼ3ሽሻ ൌ 𝑃ሺሼ4ሽሻ ൌ 𝑃ሺሼ5ሽሻ ൌ 𝑃ሺሼ6ሽሻ ൌ
1
6

.

𝑃ሺሼ2,4,6ሽሻ ൌ 𝑃ሺሼ2ሽሻ ൅ 𝑃ሺሼ4ሽሻ ൅ 𝑃ሺሼ6ሽሻ ൌ
1
2

𝑃,

𝑆

𝑃ሺ𝐸ሻ.

𝑃ሺ𝐸ሻ 𝐸

𝑃ሺ𝐸ሻ

𝐸 𝐸௖ 𝐸 ∪ 𝐸௖ ൌ 𝑆,
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Or, equivalently, we have Proposition 4.1 .

Proposition 4.1

In words, Proposition 4.1  states that the probability that an event does not

occur is 1 minus the probability that it does occur. For instance, if the probability

of obtaining a head on the toss of a coin is  then the probability of obtaining a

tail must be 

Our second proposition states that if the event  is contained in the event  then

the probability of  is no greater than the probability of 

Proposition 4.2

If  then 

Proof. Since  it follows that we can express  as

Hence, because  and  are mutually exclusive, we obtain, from Axiom 3 ,

which proves the result, since 

Proposition 4.2  tells us, for instance, that the probability of rolling a 1 with a die is

less than or equal to the probability of rolling an odd value with the die.

The next proposition gives the relationship between the probability of the union of

two events, expressed in terms of the individual probabilities, and the probability of

the intersection of the events.

Proposition 4.3

Proof To derive a formula for  we first note that  can be written as

the union of the two disjoint events  and  Thus, from Axiom 3 , we obtain

1 ൌ 𝑃ሺ𝑆ሻ ൌ 𝑃ሺ𝐸 ∪ 𝐸௖ሻ ൌ 𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐸௖ሻ

𝑃ሺ𝐸௖ሻ ൌ 1 െ 𝑃ሺ𝐸ሻ

3
8

,

5
8

.

𝐸 𝐹,

𝐸 𝐹.

𝐸 ⊂ 𝐹, 𝑃ሺ𝐸ሻ ൑ 𝑃ሺ𝐹ሻ.

𝐸 ⊂ 𝐹, 𝐹

𝐹 ൌ 𝐸 ∪ 𝐸௖𝐹

𝐸 𝐸௖𝐹

𝑃ሺ𝐹ሻ ൌ 𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐸௖𝐹ሻ

𝑃ሺ𝐸௖𝐹ሻ ൒ 0.

𝑃ሺ𝐸 ∪ 𝐹ሻ ൌ 𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐹ሻ െ 𝑃ሺ𝐸𝐹ሻ

𝑃ሺ𝐸 ∪ 𝐹ሻ, 𝐸 ∪ 𝐹

𝐸 𝐸௖𝐹.
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Furthermore, since  we again obtain from Axiom 3

or, equivalently,

thereby completing the proof.

Proposition 4.3  could also have been proved by making use of the Venn diagram

in Figure 2.4 .

Figure 2.4 Venn diagram.

Let us divide  into three mutually exclusive sections, as shown in Figure 2.5 .

In words, section I represents all the points in  that are not in  (that is, ),

section II represents all points both in  and in  (that is, EF), and section III

represents all points in  that are not in  (that is, ).

Figure 2.5 Venn diagram in sections.

From Figure 2.5 , we see that

𝑃ሺ𝐸 ∪ 𝐹ሻ ൌ 𝑃ሺ𝐸 ∪ 𝐸௖𝐹ሻ

ൌ 𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐸௖𝐹ሻ

𝐹 ൌ 𝐸𝐹 ∪ 𝐸௖𝐹,

𝑃ሺ𝐹ሻ ൌ 𝑃ሺ𝐸𝐹ሻ ൅ 𝑃ሺ𝐸௖𝐹ሻ

𝑃ሺ𝐸௖𝐹ሻ ൌ 𝑃ሺ𝐹ሻ െ 𝑃ሺ𝐸𝐹ሻ

𝐸 ∪ 𝐹

𝐸 𝐹 𝐸𝐹௖

𝐸 𝐹

𝐹 𝐸 𝐸௖𝐹
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As I, II, and III are mutually exclusive, it follows from Axiom 3  that

which shows that

and Proposition 4.3  is proved, since II = EF.

Example 4a

J is taking two books along on her holiday vacation. With probability .5, she will

like the first book; with probability .4, she will like the second book; and with

probability .3, she will like both books. What is the probability that she likes

neither book?

Solution

Let  denote the event that J likes book  Then the probability that she

likes at least one of the books is

Because the event that J likes neither book is the complement of the event that

she likes at least one of them, we obtain the result

We may also calculate the probability that any one of the three events  and 

occurs, namely,

which, by Proposition 4.3 , equals

Now, it follows from the distributive law that the events  and  are

𝐸 ∪ 𝐹 ൌ I ∪ II ∪ III

𝐸 ൌ I ∪ II

𝐹 ൌ II ∪ III

𝑃ሺ𝐸 ∪ 𝐹ሻ ൌ 𝑃ሺIሻ ൅ 𝑃ሺIIሻ ൅ 𝑃ሺIIIሻ

𝑃ሺ𝐸ሻ ൌ 𝑃ሺIሻ ൅ 𝑃ሺIIሻ

𝑃ሺ𝐹ሻ ൌ 𝑃ሺIIሻ ൅ 𝑃ሺIIIሻ

𝑃ሺ𝐸 ∪ 𝐹ሻ ൌ 𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐹ሻ െ 𝑃ሺIIሻ

𝐵௜ 𝑖, 𝑖 ൌ 1, 2.

𝑃ሺ𝐵ଵ ∪ 𝐵ଶሻ ൌ 𝑃ሺ𝐵ଵሻ ൅ 𝑃ሺ𝐵ଶሻ െ 𝑃ሺ𝐵ଵ𝐵ଶሻ ൌ .5 ൅ .4 െ .3 ൌ .6

𝑃ሺ𝐵ଵ
௖𝐵ଶ

௖ሻ ൌ 𝑃൫ሺ𝐵ଵ ∪ 𝐵ଶሻ
௖൯ ൌ 1 െ 𝑃ሺ𝐵ଵ ∪ 𝐵ଶሻ ൌ .4

𝐸, 𝐹, 𝐺

𝑃ሺ𝐸 ∪ 𝐹 ∪ 𝐺ሻ ൌ 𝑃ሾሺ𝐸 ∪ 𝐹ሻ ∪ 𝐺ሿ

𝑃ሺ𝐸 ∪ 𝐹ሻ ൅ 𝑃ሺ𝐺ሻ െ 𝑃ሾሺ𝐸 ∪ 𝐹ሻ𝐺ሿ

ሺ𝐸 ∪ 𝐹ሻ𝐺 𝐸𝐺 ∪ 𝐹𝐺
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equivalent; hence, from the preceding equations, we obtain

In fact, the following proposition, known as the inclusion–exclusion identity, can be

proved by mathematical induction:

Proposition 4.4

The summation  is taken over all of the  possible

subsets of size  of the set 

In words, Proposition 4.4  states that the probability of the union of  events

equals the sum of the probabilities of these events taken one at a time, minus the

sum of the probabilities of these events taken two at a time, plus the sum of the

probabilities of these events taken three at a time, and so on.

Remarks 1. For a noninductive argument for Proposition 4.4 , note first that if

an outcome of the sample space is not a member of any of the sets  then its

probability does not contribute anything to either side of the equality. Now,

suppose that an outcome is in exactly  of the events  where  Then,

since it is in  its probability is counted once in  also, as this

outcome is contained in  subsets of the type  its probability is

counted

times on the right of the equality sign in Proposition 4.4 . Thus, for  we

𝑃ሺ𝐸 ∪ 𝐹 ∪ 𝐺ሻ

       ൌ 𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐹ሻ െ 𝑃ሺ𝐸𝐹ሻ ൅ 𝑃ሺ𝐺ሻ െ 𝑃ሺ𝐸𝐺 ∪ 𝐹𝐺ሻ

       ൌ 𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐹ሻ െ 𝑃ሺ𝐸𝐹ሻ ൅ 𝑃ሺ𝐺ሻ െ 𝑃ሺ𝐸𝐺ሻ െ 𝑃ሺ𝐹𝐺ሻ ൅ 𝑃ሺ𝐸𝐺𝐹𝐺ሻ

       ൌ 𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐹ሻ ൅ 𝑃ሺ𝐺ሻ ൅ 𝑃ሺ𝐸𝐹ሻ െ 𝑃ሺ𝐸𝐺ሻ െ 𝑃ሺ𝐹𝐺ሻ ൅ 𝑃ሺ𝐸𝐹𝐺ሻ

𝑃ሺ𝐸ଵ ∪ 𝐸ଶ ∪ ⋯ ∪ 𝐸௡ሻ ൌ ෍
௜ ൌ ଵ

௡

𝑃ሺ𝐸௜ሻ െ ෍
௜భ ழ ௜మ

𝑃ሺ𝐸௜భ𝐸௜మሻ ൅ ⋯

൅ሺ െ 1ሻ௥൅ଵ ෍
௜భ ழ ௜మ ழ ⋯ ழ ௜ೝ

𝑃ሺ𝐸௜భ𝐸௜మ⋯𝐸௜ೝሻ

൅⋯ ൅ ሺ െ 1ሻ௡൅ଵ𝑃ሺ𝐸ଵ𝐸ଶ⋯𝐸௡ሻ

෍
௜భ ழ ௜మ ழ ⋯ ழ ௜ೝ

𝑃ሺ𝐸௜భ𝐸௜మ⋯𝐸௜ೝሻ ቆ
𝑛

𝑟
ቇ

𝑟 ሼ1,  2 … ,𝑛ሽ .

𝑛

𝐸௜,

𝑚 𝐸௜, 𝑚 ൐ 0.

∪
௜
𝐸௜, 𝑃൬ ∪

௜
𝐸௜൰ ;

ቆ
𝑚

𝑘
ቇ 𝐸௜భ𝐸௜మ⋯𝐸௜ೖ ,

ቆ
𝑚

1
ቇ െ ቆ

𝑚

2
ቇ ൅ ቆ

𝑚

3
ቇ െ⋯േ ቆ

𝑚

𝑚
ቇ

𝑚 ൐ 0,
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must show that

However, since  the preceding equation is equivalent to

and the latter equation follows from the binomial theorem, since

2. The following is a succinct way of writing the inclusion–exclusion identity:

3. In the inclusion–exclusion identity, going out one term results in an upper

bound on the probability of the union, going out two terms results in a

lower bound on the probability, going out three terms results in an upper

bound on the probability, going out four terms results in a lower bound,

and so on. That is, for events  we have

and so on. To prove the validity of these bounds, note the identity

1 ൌ ቆ
𝑚

1
ቇ െ ቆ

𝑚

2
ቇ ൅ ቆ

𝑚

3
ቇ െ  ⋯  േ ቆ

𝑚

𝑚
ቇ

1 ൌ ቆ
𝑚

0
ቇ,

෍
௜ ൌ ଴

௠

ቆ
𝑚

𝑖
ቇሺ െ 1ሻ௜ ൌ 0

0 ൌ ሺ െ 1 ൅ 1ሻ௠ ൌ ෍
௜ ൌ ଴

௠

ቆ
𝑚

𝑖
ቇሺ െ 1ሻ௜ሺ1ሻ௠െ௜

𝑃ሺ ∪௜ൌଵ
௡ 𝐸௜ሻ ൌ ∑

௥ ൌ ଵ

௡
ሺ െ 1ሻ௥൅ଵ ∑

௜భ ழ ⋯ ழ ௜ೝ

𝑃ሺ𝐸௜భ⋯𝐸௜ೝሻ

𝐸ଵ,...,𝐸௡,

𝑃ሺ ∪௜ൌଵ
௡ 𝐸௜ሻ ൑ ∑

௜ ൌ ଵ

௡
𝑃ሺ𝐸௜ሻ

(4.1)

𝑃ሺ ∪௜ൌଵ
௡ 𝐸௜ሻ ൒ ∑

௜ ൌ ଵ

௡
𝑃ሺ𝐸௜ሻ െ ∑

௝ ழ ௜
𝑃ሺ𝐸௜𝐸௝ሻ

(4.2)

𝑃ሺ ∪௜ൌଵ
௡ 𝐸௜ሻ ൑ ∑

௜ ൌ ଵ

௡
𝑃ሺ𝐸௜ሻ െ ∑

௝ ழ ௜
𝑃ሺ𝐸௜𝐸௝ሻ ൅ ∑

௞ ழ ௝ ழ ௜
𝑃ሺ𝐸௜𝐸௝𝐸௞ሻ

(4.3)

∪௜ൌଵ
௡ 𝐸௜ ൌ 𝐸ଵ ∪ 𝐸ଵ

௖𝐸ଶ ∪ 𝐸ଵ
௖𝐸ଶ

௖𝐸ଷ ∪ ⋯ ∪ 𝐸ଵ
௖⋯𝐸௡െଵ

௖ 𝐸௡
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That is, at least one of the events  occurs if  occurs, or if  does not occur

but  does, or if  and  do not occur but  does, and so on. Because the

right-hand side is the union of disjoint events, we obtain

Now, let be the event that none of the first 

events occurs. Applying the identity

shows that

or, equivalently,

Substituting this equation into (4.4)  yields

Because probabilities are always nonnegative, Inequality (4.1) follows directly

from Equation (4.5) . Now, fixing  and applying Inequality (1) to 

yields

which, by Equation (4.5) , gives Inequality (4.2). Similarly, fixing i and applying

Inequality (4.2) to  yields

𝐸௜ 𝐸ଵ 𝐸ଵ
𝐸ଶ 𝐸ଵ 𝐸ଶ 𝐸ଷ

𝑃ሺ ∪௜ൌଵ
௡ 𝐸௜ሻ ൌ 𝑃ሺ𝐸ଵሻ ൅ 𝑃ሺ𝐸ଵ

௖𝐸ଶሻ ൅ 𝑃ሺ𝐸ଵ
௖𝐸ଶ

௖𝐸ଷሻ ൅ ... ൅ 𝑃ሺ𝐸ଵ
௖⋯𝐸௡െଵ

௖ 𝐸௡ሻ

ൌ 𝑃ሺ𝐸௜ሻ ൅
௜ ൌ ଶ

௡

𝑃ሺ𝐸ଵ
௖⋯𝐸௜െଵ

௖ 𝐸௜ሻ

(4.4)

𝐵௜ ൌ 𝐸ଵ
௖⋯𝐸௜െଵ

௖ ൌ ሺ ∪௝ ழ௜𝐸௝ሻ
௖ 𝑖 െ 1

𝑃ሺ𝐸௜ሻ ൌ 𝑃ሺ𝐵௜𝐸௜ሻ ൅ 𝑃ሺ𝐵௜
௖𝐸௜ሻ

𝑃ሺ𝐸௜ሻ ൌ 𝑃ሺ𝐸ଵ
௖…𝐸௜െଵ

௖ 𝐸௜ሻ ൌ 𝑃ሺ𝐸௜ሻ ൅ 𝑃ሺ ∪௝ழ௜ 𝐸௜𝐸௝ሻ

𝑃ሺ𝐸ଵ
௖⋯𝐸௜െଵ

௖ 𝐸௜ሻ ൌ 𝑃ሺ𝐸௜ሻ െ 𝑃ሺ ∪௝ழ௜ 𝐸௜𝐸௝ሻ

𝑃ሺ ∪௜ൌଵ
௡ 𝐸௜ሻ ൌ ෍

௜

𝑃ሺ𝐸௜ሻ െ෍
௜

𝑃ሺ ∪௝ழ௜ 𝐸௜𝐸௝ሻ

(4.5)

𝑖 𝑃ሺ ∪௝ழ௜ 𝐸௜𝐸௝ሻ

𝑃ሺ ∪௝ழ௜ 𝐸௜𝐸௝ሻ ൑ ෍
௝ ழ ௜

𝑃ሺ𝐸௜𝐸௝ሻ

𝑃ሺ ∪௝ழ௜ 𝐸௜𝐸௝ሻ

𝑃ሺ ∪௝ழ௜ 𝐸௜𝐸௝ሻ ൒ ෍
௝ ழ ௜

𝑃ሺ𝐸௜𝐸௝ሻ െ ෍
௞ ழ ௝ ழ ௜

𝑃ሺ𝐸௜𝐸௝𝐸௜𝐸௞ሻ

ൌ ෍
௝ ழ ௜

𝑃ሺ𝐸௜𝐸௝ሻ െ ෍
௞ ழ ௝ ழ ௜

𝑃ሺ𝐸௜𝐸௝𝐸௞ሻ
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which, by Equation (4.5) , gives Inequality (4.3). The next inclusion–exclusion

inequality is now obtained by fixing  and applying Inequality (4.3) to

 and so on.

The first inclusion-exclusion inequality, namely that

is known as Boole’s inequality.

In many experiments, it is natural to assume that all outcomes in the sample space

are equally likely to occur. That is, consider an experiment whose sample space  is

a finite set, say,  Then, it is often natural to assume that

which implies, from Axioms 2  and 3  (why?), that

From this equation, it follows from Axiom 3  that, for any event 

In words, if we assume that all outcomes of an experiment are equally likely to occur,

then the probability of any event  equals the proportion of outcomes in the sample

space that are contained in 

Example 5a

If two dice are rolled, what is the probability that the sum of the upturned faces

will equal 7?

Solution

We shall solve this problem under the assumption that all of the 36 possible

𝑖

 𝑃ሺ ∪௝ழ௜ 𝐸௜𝐸௝ሻ,

𝑃ሺ ∪௜ൌଵ
௡ 𝐸௜ሻ ൑ ෍

௜ ൌ ଵ

௡

𝑃ሺ𝐸௜ሻ

𝑆

𝑆 ൌ ሼ1, 2, ... , 𝑁 ሽ.

𝑃ሺሼ1ሽሻ ൌ 𝑃ሺሼ2ሽሻ ൌ ⋯ ൌ 𝑃ሺሼ𝑁ሽሻ

𝑃ሺሼ𝑖ሽሻ ൌ
1
𝑁
 𝑖 ൌ 1, 2, ... , 𝑁

𝐸,

𝑃ሺ𝐸ሻ ൌ
number of  outcomes in 𝐸
number of  outcomes in 𝑆

𝐸

𝐸.
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outcomes are equally likely. Since there are 6 possible outcomes–namely, (1, 6),

(2, 5), (3, 4), (4, 3), (5, 2), and (6, 1)–that result in the sum of the dice being

equal to 7, the desired probability is 

Example 5b

If 3 balls are “randomly drawn” from a bowl containing 6 white and 5 black balls,

what is the probability that one of the balls is white and the other two black?

Solution

If we regard the balls as being distinguishable and the order in which they are

selected as being relevant, then the sample space consists of 

outcomes. Furthermore, there are  outcomes in which the first ball

selected is white and the other two are black;  outcomes in which

the first is black, the second is white, and the third is black; and  in

which the first two are black and the third is white. Hence, assuming that

“randomly drawn” means that each outcome in the sample space is equally likely

to occur, we see that the desired probability is

This problem could also have been solved by regarding the outcome of the

experiment as the unordered set of drawn balls. From this point of view, there are

 outcomes in the sample space. Now, each set of 3 balls corresponds

to 3! outcomes when the order of selection is noted. As a result, if all outcomes

are assumed equally likely when the order of selection is noted, then it follows

that they remain equally likely when the outcome is taken to be the unordered set

of selected balls. Hence, using the latter representation of the experiment, we

see that the desired probability is

which, of course, agrees with the answer obtained previously.

When the experiment consists of a random selection of  items from a set of  items,

we have the flexibility of either letting the outcome of the experiment be the ordered

selection of the  items or letting it be the unordered set of items selected. In the

6
36

ൌ
1
6

.

11 ⋅ 10 ⋅ 9 ൌ 990

6 ⋅ 5 ⋅ 4 ൌ 120

5 ⋅ 6 ⋅ 4 ൌ 120

5 ⋅ 4 ⋅ 6 ൌ 120

120 ൅ 120 ൅ 120
990

ൌ
4

11

ቆ
11

3
ቇ ൌ 165

ቆ
6

1
ቇ ቆ

5

2
ቇ

ቆ
11

3
ቇ

ൌ
4

11

𝑘 𝑛

𝑘
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former case, we would assume that each new selection is equally likely to be any of

the so far unselected items of the set, and in the latter case, we would assume that

all  possible subsets of  items are equally likely to be the set selected. For

instance, suppose  people are to be randomly selected from a group of 20

individuals consisting of  married couples, and we want to determine  the

probability that the 5 chosen are all unrelated. (That is, no two are married to each

other.) If we regard the sample space as the set of  people chosen, then there are

 equally likely outcomes. An outcome that does not contain a married couple

can be thought of as being the result of a six-stage experiment: In the first stage,  of

the  couples to have a member in the group are chosen; in the next  stages, 1 of

the 2 members of each of these couples is selected. Thus, there are  possible

outcomes in which the  members selected are unrelated, yielding the desired

probability of

In contrast, we could let the outcome of the experiment be the ordered selection of

the  individuals. In this setting, there are  equally likely

outcomes, of which  outcomes result in a group of  unrelated

individuals, yielding the result

We leave it for the reader to verify that the two answers are identical.

Example 5c

A committee of 5 is to be selected from a group of 6 men and 9 women. If the

selection is made randomly, what is the probability that the committee consists of

3 men and 2 women?

Solution

Because each of the possible committees is equally likely to be selected,

the desired probability is

ቆ
𝑛

𝑘
ቇ 𝑘

5

10 𝑃ሺ𝑁ሻ,

5

ቆ
20

5
ቇ

5

10 5

ቆ
10

5
ቇ2ହ

5

𝑃ሺ𝑁ሻ ൌ
ቆ

10

5
ቇ2ହ

ቆ
20

5
ቇ

5 20 ⋅ 19 ⋅ 18 ⋅ 17 ⋅ 16

20 ⋅ 18 ⋅ 16 ⋅ 14 ⋅ 12 5

𝑃ሺ𝑁ሻ ൌ
20 ⋅ 18 ⋅ 16 ⋅ 14 ⋅ 12
20 ⋅ 19 ⋅ 18 ⋅ 17 ⋅ 16

ቆ
15

5
ቇ
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Example 5d

An urn contains  balls, one of which is special. If  of these balls are withdrawn

one at a time, with each selection being equally likely to be any of the balls that

remain at the time, what is the probability that the special ball is chosen?

Solution

Since all of the balls are treated in an identical manner, it follows that the set of 

balls selected is equally likely to be any of the  sets of  balls. Therefore,

We could also have obtained this result by letting  denote the event that the

special ball is the th ball to be chosen,  Then, since each one of the 

balls is equally likely to be the th ball chosen, it follows that  Hence,

because these events are clearly mutually exclusive, we have

We could also have argued that by noting that there are

! equally likely outcomes of the experiment, of

which !

result in the special ball being the th one chosen. From this reasoning, it follows

that

Example 5e

Suppose that  balls, of which  are red and  are blue, are arranged in a

linear order in such a way that all  possible orderings are equally likely. If

we record the result of this experiment by listing only the colors of the successive

ቆ
6

3
ቇቆ

9

2
ቇ

ቆ
15

5
ቇ

ൌ
240

1001

𝑛 𝑘

𝑘

ቆ
𝑛

𝑘
ቇ 𝑘

𝑃ሼspecial ball is selectedሽ ൌ
ቆ

1

1
ቇቆ
𝑛 െ 1

𝑘 െ 1
ቇ

ቆ
𝑛

𝑘
ቇ

ൌ
𝑘
𝑛

𝐴௜
𝑖 𝑖 ൌ 1, ... , 𝑘. 𝑛

𝑖 𝑃ሺ𝐴௜ሻ ൌ 1/𝑛.

𝑃ሼspecial ball is selectedሽ ൌ 𝑃ቆ ∪
௜ ൌ ଵ

௞
𝐴௜ቇ ൌ ෍

௜ ൌ ଵ

௞

𝑃ሺ𝐴௜ሻ ൌ
𝑘
𝑛

𝑃ሺ𝐴௜ሻ ൌ 1/𝑛,

𝑛ሺ𝑛 െ 1ሻ⋯ሺ𝑛 െ 𝑘 ൅ 1ሻ ൌ 𝑛!/ሺ𝑛 െ 𝑘ሻ

ሺ𝑛 െ 1ሻሺ𝑛 െ 2ሻ⋯ሺ𝑛 െ 𝑖 ൅ 1ሻሺ1ሻሺ𝑛 െ 𝑖ሻ⋯ሺ𝑛 െ 𝑘 ൅ 1ሻ ൌ ሺ𝑛 െ 1ሻ!/ሺ𝑛 െ 𝑘ሻ

𝑖

𝑃ሺ𝐴௜ሻ ൌ
ሺ𝑛 െ 1ሻ!

𝑛!
ൌ

1
𝑛

𝑛 ൅ 𝑚 𝑛 𝑚

ሺ𝑛 ൅ 𝑚ሻ!
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balls, show that all the possible results remain equally likely.

Solution

Consider any one of the  possible orderings, and note that any

permutation of the red balls among themselves and of the blue balls among

themselves does not change the sequence of colors. As a result, every ordering

of colorings corresponds to ! ! different orderings of the  balls, so every

ordering of the colors has probability of occurring.

For example, suppose that there are 2 red balls, numbered  and 2 blue

balls, numbered  Then, of the 4! possible orderings, there will be 2! 2!

orderings that result in any specified color combination. For instance, the

following orderings result in the successive balls alternating in color, with a red

ball first:

Therefore, each of the possible orderings of the colors has probability  of

occurring.

Example 5f

A poker hand consists of 5 cards. If the cards have distinct consecutive values

and are not all of the same suit, we say that the hand is a straight. For instance,

a hand consisting of the five of spades, six of spades, seven of spades, eight of

spades, and nine of hearts is a straight. What is the probability that one is dealt a

straight?

Solution

We start by assuming that all  possible poker hands are equally likely. To

determine the number of outcomes that are straights, let us first determine the

number of possible outcomes for which the poker hand consists of an ace, two,

three, four, and five (the suits being irrelevant). Since the ace can be any 1 of the

4 possible aces, and similarly for the two, three, four, and five, it follows that there

are  outcomes leading to exactly one ace, two, three, four, and five. Hence,

since in 4 of these outcomes all the cards will be of the same suit (such a hand is

called a straight flush), it follows that there are  hands that make up a

straight of the form ace, two, three, four, and five. Similarly, there are 

hands that make up a straight of the form ten, jack, queen, king, and ace. Thus,

there are  hands that are straights, and it follows that the desired

ሺ𝑛 ൅ 𝑚ሻ!

𝑛 𝑚 𝑛 ൅𝑚
𝑛!𝑚!

ሺ𝑛 ൅ 𝑚ሻ!

𝑟ଵ,𝑟ଶ,

𝑏ଵ,𝑏ଶ.

𝑟ଵ,  𝑏ଵ,  𝑟ଶ,  𝑏ଶ 𝑟ଵ,  𝑏ଶ,  𝑟ଶ,  𝑏ଵ 𝑟ଶ,  𝑏ଵ,  𝑟ଵ,  𝑏ଶ 𝑟ଶ,  𝑏ଶ,  𝑟ଵ,  𝑏ଵ

4
24

ൌ
1
6

ቆ
52

5
ቇ

4ହ

4ହ െ 4

4ହ െ 4

10ሺ4ହ െ 4ሻ
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probability is

Example 5g

A 5-card poker hand is said to be a full house if it consists of 3 cards of the same

denomination and 2 other cards of the same denomination (of course, different

from the first denomination). Thus, a full house is three of a kind plus a pair. What

is the probability that one is dealt a full house?

Solution

Again, we assume that all  possible hands are equally likely. To determine

the number of possible full houses, we first note that there are  different

combinations of, say, 2 tens and 3 jacks. Because there are 13 different choices

for the kind of pair and, after a pair has been chosen, there are 12 other choices

for the denomination of the remaining 3 cards, it follows that the probability of a

full house is

Example 5h

In the game of bridge, the entire deck of 52 cards is dealt out to 4 players. What

is the probability that

a. one of the players receives all 13 spades;

b. each player receives 1 ace?

Solution

a. Letting  be the event that hand  has all  spades, then

Because the events  are mutually exclusive, the probability

10ሺ4ହ െ 4ሻ

ቆ
52

5
ቇ

ൎ .0039

ቆ
52

5
ቇ

ቆ
4

2
ቇቆ

4

3
ቇ

13 ⋅ 12 ⋅ ቆ
4

2
ቇቆ

4

3
ቇ

ቆ
52

5
ቇ

ൎ .0014

𝐸௜ 𝑖 13

𝑃ሺ𝐸௜ሻ ൌ
1

ቆ
52

13
ቇ

, 𝑖 ൌ 1, 2, 3, 4

𝐸௜, 𝑖 ൌ 1, 2, 3, 4,
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that one of the hands is dealt all 13 spades is

b. Let the outcome of the experiment be the sets of 13 cards of each of the

players 1, 2, 3, 4. To determine the number of outcomes in which each of

the distinct players receives exactly 1 ace, put aside the aces and note

that there are  possible divisions of the other 48 cards

when each player is to receive 12. Because there are 4! ways of dividing

the 4 aces so that each player receives 1, we see that the number of

possible outcomes in which each player receives exactly 1 ace is

As there are possible hands, the desired probability is thus

Some results in probability are quite surprising when initially encountered. Our next

two examples illustrate this phenomenon.

Example 5i

If  people are present in a room, what is the probability that no two of them

celebrate their birthday on the same day of the year? How large need  be so

that this probability is less than 

Solution

As each person can celebrate his or her birthday on any one of 365 days, there

are a total of  possible outcomes. (We are ignoring the possibility of

someone having been born on February 29.) Assuming that each outcome is

equally likely, we see that the desired probability is

 It is a rather surprising fact that when

 this probability is less than  That is, if there are 23 or more people in a

room, then the probability that at least two of them have the same birthday

𝑃ሺ ∪௜ൌଵ
ସ 𝐸௜ሻ ൌ ∑

௜ ൌ ଵ

ସ
𝑃ሺ𝐸௜ሻ ൌ 4/ቆ

52

13
ቇ ൎ 6.3 ൈ 10െଵଶ

ቆ
48

12, 12, 12, 12
ቇ

4!ቆ
48

12, 12, 12, 12
ቇ.

ቆ
52

13,  13, 13, 13
ቇ

4!ቆ
48

12,12,12,12
ቇ

ቆ
52

13,13,13,13
ቇ

ൎ .1055

𝑛

𝑛
1
2

?

ሺ365ሻ௡

ሺ365ሻሺ364ሻሺ363ሻ ... ሺ365 െ 𝑛 ൅ 1ሻ/ሺ365ሻ௡.

𝑛 ൒ 23,
1
2

.
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exceeds  Many people are initially surprised by this result, since 23 seems so

small in relation to 365, the number of days of the year. However, every pair of

individuals has probability of having the same birthday, and in a

group of 23 people, there are  different pairs of individuals. Looked at

this way, the result no longer seems so surprising.

When there are 50 people in the room, the probability that at least two share the

same birthday is approximately .970, and with 100 persons in the room, the odds

are better than 3,000,000:1. (That is, the probability is greater than 

that at least two people have the same birthday.)

Example 5j

A deck of 52 playing cards is shuffled, and the cards are turned up one at a time

until the first ace appears. Is the next card–that is, the card following the first

ace–more likely to be the ace of spades or the two of clubs?

Solution

To determine the probability that the card following the first ace is the ace of

spades, we need to calculate how many of the (52)! possible orderings of the

cards have the ace of spades immediately following the first ace. To begin, note

that each ordering of the 52 cards can be obtained by first ordering the 51 cards

different from the ace of spades and then inserting the ace of spades into that

ordering. Furthermore, for each of the (51)! orderings of the other cards, there is

only one place where the ace of spades can be placed so that it follows the first

ace. For instance, if the ordering of the other 51 cards is

then the only insertion of the ace of spades into this ordering that results in its

following the first ace is

Therefore, there are (51)! orderings that result in the ace of spades following the

first ace, so

1
2

.

365

ሺ365ሻଶ
ൌ

1
365

ቆ
23

2
ቇ ൌ 253

3 ൈ 10଺

3 ൈ 10଺ ൅ 1

4𝑐, 6ℎ, 𝐽𝑑, 5𝑠, 𝐴𝑐, 7𝑑, ... , 𝐾ℎ

4𝑐, 6ℎ, 𝐽𝑑, 5𝑠, 𝐴𝑐, 𝐴𝑠, 7𝑑, ... , 𝐾ℎ

𝑃ሼthe ace of spades follows the ϐirst aceሽ ൌ
ሺ51ሻ!
ሺ52ሻ!

ൌ
1

52
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In fact, by exactly the same argument, it follows that the probability that the two

of clubs (or any other specified card) follows the first ace is also  In other

words, each of the 52 cards of the deck is equally likely to be the one that follows

the first ace!

Many people find this result rather surprising. Indeed, a common reaction is to

suppose initially that it is more likely that the two of clubs (rather than the ace of

spades) follows the first ace, since that first ace might itself be the ace of spades.

This reaction is often followed by the realization that the two of clubs might itself

appear before the first ace, thus negating its chance of immediately following the

first ace. However, as there is one chance in four that the ace of spades will be

the first ace (because all 4 aces are equally likely to be first) and only one chance

in five that the two of clubs will appear before the first ace (because each of the

set of 5 cards consisting of the two of clubs and the 4 aces is equally likely to be

the first of this set to appear), it again appears that the two of clubs is more likely.

However, this is not the case, and our more complete analysis shows that they

are equally likely.

Example 5k

A football team consists of 20 offensive and 20 defensive players. The players

are to be paired in groups of 2 for the purpose of determining roommates. If the

pairing is done at random, what is the probability that there are no offensive–

defensive roommate pairs? What is the probability that there are 2  offensive–

defensive roommate pairs, 

Solution

There are

ways of dividing the 40 players into 20 ordered pairs of two each. (That is, there

are ways of dividing the players into a first pair, a second pair, and so

on.) Hence, there are  ways of dividing the players into

(unordered) pairs of 2 each. Furthermore, since a division will result in no

offensive–defensive pairs if the offensive (and defensive) players are paired

among themselves, it follows that there are  such divisions.

Hence, the probability of no offensive–defensive roommate pairs, call it  is

given by

1
52

.

𝑖

𝑖 ൌ 1, 2, ... , 10?

ቆ
40

2, 2, ... , 2
ቇ ൌ

ሺ40ሻ!

ሺ2!ሻଶ଴

ሺ40ሻ!/2ଶ଴

ሺ40ሻ!/2ଶ଴ሺ20ሻ!

ሾሺ20ሻ!/2ଵ଴ሺ10ሻ!ሿ
ଶ

𝑃଴,
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To determine  the probability that there are 2  offensive–defensive pairs, we

first note that there are  ways of selecting the 2  offensive players and the

2  defensive players who are to be in the offensive–defensive pairs. These 4

players can then be paired up into (2 )! possible offensive–defensive pairs. (This

is so because the first offensive player can be paired with any of the 2  defensive

players, the second offensive player with any of the remaining  defensive

players, and so on.) As the remaining  offensive (and defensive) players

must be paired among themselves, it follows that there are

divisions that lead to 2  offensive–defensive pairs. Hence,

The  can now be computed, or they can be approximated by

making use of a result of Stirling, which shows that ! can be approximated by

 For instance, we obtain

Our next three examples illustrate the usefulness of the inclusion–exclusion identity

(Proposition 4.4) . In Example 51 , the introduction of probability enables us to

obtain a quick solution to a counting problem.

Example 5l

A total of 36 members of a club play tennis, 28 play squash, and 18 play

badminton. Furthermore, 22 of the members play both tennis and squash, 12

play both tennis and badminton, 9 play both squash and badminton, and 4 play

all three sports. How many members of this club play at least one of three

𝑃଴ ൌ
ቆ

ሺ20ሻ!

2ଵ଴ሺ10ሻ!
ቇ
ଶ

ሺ40ሻ!

2ଶ଴ሺ20ሻ!

ൌ
ሾሺ20ሻ!ሿଷ

ሾሺ10ሻ!ሿଶሺ40ሻ!

𝑃ଶ௜, 𝑖

ቆ
20

2𝑖
ቇ
ଶ

𝑖

𝑖 𝑖

𝑖

𝑖

2𝑖 െ 1

20 െ 2𝑖

ቆ
20

2𝑖
ቇ
ଶ

ሺ2𝑖ሻ!ቈ
ሺ20 െ 2𝑖ሻ!

2ଵ଴െ௜ሺ10 െ 𝑖ሻ!
቉
ଶ

𝑖

𝑃ଶ௜ ൌ

ቆ
20

2𝑖
ቇ
ଶ

ሺ2𝑖ሻ!ቈ
ሺ20 െ 2𝑖ሻ!

2ଵ଴െ௜ሺ10 െ 𝑖ሻ!
቉
ଶ

ሺ40ሻ!

2ଶ଴ሺ20ሻ!

  𝑖 ൌ 0, 1, ... , 10

𝑃ଶ௜, 𝑖 ൌ 0, 1, ..., 10,

𝑛

𝑛௡൅ଵ/ଶ𝑒െ௡ 2𝜋√ .

𝑃଴ ൎ 1.3403 ൈ 10െ଺

𝑃ଵ଴ ൎ .345861

𝑃ଶ଴ ൎ 7.6068 ൈ 10െ଺
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sports?

Solution

Let  denote the number of members of the club, and introduce probability by

assuming that a member of the club is randomly selected. If, for any subset  of

members of the club, we let  denote the probability that the selected member

is contained in  then

Now, with  being the set of members that plays tennis,  being the set that plays

squash, and  being the set that plays badminton, we have, from Proposition

4.4 ,

Hence, we can conclude that 43 members play at least one of the sports.

The next example in this section not only possesses the virtue of giving rise to a

somewhat surprising answer, but is also of theoretical interest.

Example 5m The Matching Problem

Suppose that each of  men at a party throws his hat into the center of the room.

The hats are first mixed up, and then each man randomly selects a hat. What is

the probability that none of the men selects his own hat?

Solution

We first calculate the complementary probability of at least one man selecting his

own hat. Let us denote by  the event that the th man selects his

own hat. Now, by the inclusion-exclusion identity  the probability that

at least one of the men selects his own hat, is given by

𝑁

𝐶

𝑃ሺ𝐶ሻ

𝐶,

𝑃ሺ𝐶ሻ ൌ
number of members in 𝐶

𝑁

𝑇 𝑆

𝐵

𝑃ሺ𝑇 ∪ 𝑆 ∪ 𝐵ሻ

ൌ 𝑃ሺ𝑇ሻ ൅ 𝑃ሺ𝑆ሻ ൅ 𝑃ሺ𝐵ሻ െ 𝑃ሺ𝑇𝑆ሻ െ 𝑃ሺ𝑇𝐵ሻ െ 𝑃ሺ𝑆𝐵ሻ ൅ 𝑃ሺ𝑇𝑆𝐵ሻ

ൌ
36 ൅ 28 ൅ 18 െ 22 െ 12 െ 9 ൅ 4

𝑁

ൌ
43
𝑁

𝑁

𝐸௜, 𝑖 ൌ 1, 2, ... , 𝑁 𝑖

𝑃ቆ ∪
௜ ൌ ଵ

ே
𝐸௜ቇ,
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If we regard the outcome of this experiment as a vector of N numbers, where the

th element is the number of the hat drawn by the th man, then there are !

possible outcomes. [The outcome  means, for example, that each

man selects his own hat.] Furthermore,  the event that each of the n

men  selects his own hat, can occur in any of

! possible ways; for, of the remaining 

men, the first can select any of  hats, the second can then select any of

 hats, and so on. Hence, assuming that all ! possible outcomes are

equally likely, we see that

Also, as there are  terms in  it follows that

Thus,

Hence, the probability that none of the men selects his own hat is

Upon letting  in the identity the preceding probability

when  is large is seen to be approximately equal to  In other words,

for  large, the probability that none of the men selects his own hat is

𝑃൭
௜ ൌ ଵ

ே

𝐸௜൱ ൌ ෍
௜ ൌ ଵ

ே

𝑃ሺ𝐸௜ሻ െ ෍
௜భ ழ ௜మ

𝑃ሺ𝐸௜భ𝐸௜మሻ ൅ ⋯

൅ሺ െ 1ሻ௡൅ଵ  ෍
௜భ ழ ௜మ⋯ ழ ௜೙

𝑃ሺ𝐸௜భ𝐸௜మ⋯𝐸௜೙ሻ

൅⋯ ൅ ሺ െ 1ሻே൅ଵ𝑃ሺ𝐸ଵ𝐸ଶ⋯𝐸ேሻ

𝑖 𝑖 𝑁

ሺ1, 2, 3, ... , 𝑁ሻ

𝐸௜భ𝐸௜మ ...𝐸௜೙ ,

𝑖ଵ, 𝑖ଶ, ..., 𝑖௡
ሺ𝑁 െ 𝑛ሻሺ𝑁 െ 𝑛 െ 1ሻ⋯3 ⋅ 2 ⋅ 1 ൌ ሺ𝑁 െ 𝑛ሻ 𝑁 െ 𝑛

𝑁 െ 𝑛

𝑁 െ 𝑛 െ 1 𝑁

𝑃ሺ𝐸௜భ𝐸௜మ⋯ 𝐸௜೙ሻ ൌ
ሺ𝑁 െ 𝑛ሻ!

𝑁!

ቆ
𝑁

𝑛
ቇ ෍

௜భ ழ ௜మ⋯ ழ ௜೙

𝑃ሺ𝐸௜భ𝐸௜మ⋯𝐸௜೙ሻ,

෍
௜భ ழ ௜మ⋯ ழ ௜೙

𝑃ሺ𝐸௜భ𝐸௜మ⋯𝐸௜೙ሻ ൌ
𝑁!

ሺ𝑁 െ 𝑛ሻ!𝑛!
ሺ𝑁 െ 𝑛ሻ!

𝑁!
ൌ

1
𝑛!

𝑃ቌ
௜ ଵ

ே
𝐸௜ቍ ൌ 1 െ

1
2!
൅

1
3!
െ⋯൅ ሺ െ 1ሻே൅ଵ

1
𝑁!

1 െ 1 ൅
1
2!
െ

1
3!
൅ ... ൅

ሺ െ 1ሻே

𝑁!
ൌ ෍

௜ ൌ ଴

ே

ሺ െ 1ሻ௜/𝑖!

𝑥 ൌ െ 1 𝑒௫ ൌ ෍
௜ ൌ ଴

ஶ

𝑥௜/𝑖!,

𝑁 𝑒െଵ ൎ .3679.

𝑁
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approximately .37. (How many readers would have incorrectly thought that this

probability would go to 1 as )

For another illustration of the usefulness of the inclusion-exclusion identity, consider

the following example.

Example 5n

Compute the probability that if 10 married couples are seated at random at a

round table, then no wife sits next to her husband.

Solution

If we let  denote the event that the th couple sit next to each

other, it follows that the desired probability is  Now, from the

inclusion-exclusion identity,

To compute  we first note that there are 19! ways of arranging 20

people around a round table. (Why?) The number of arrangements that result in

a specified set of  men sitting next to their wives can most easily be obtained by

first thinking of each of the  married couples as being single entities. If this were

the case, then we would need to arrange  entities around a round table,

and there are clearly  such arrangements. Finally, since each of the

 married couples can be arranged next to each other in one of two possible

ways, it follows that there are  arrangements that result in a

specified set of  men each sitting next to their wives. Therefore,

Thus, from Proposition 4.4 , we obtain that the probability that at least one

married couple sits together is

and the desired probability is approximately .3395.

𝑁 → ∞?

𝐸௜, 𝑖 ൌ 1, 2, ... , 10 𝑖

1 െ 𝑃ቆ ∪
௜ ൌ ଵ

ଵ଴
𝐸௜ቇ.

𝑃൭
ଵ

ଵ଴

𝐸௜൱ ൌ ෍
ଵ

ଵ଴

𝑃ሺ𝐸௜ሻ െ ⋯ ൅ ሺ െ 1ሻ௡൅ଵ ෍
௜భ ழ ௜మ ழ ⋯ ழ ௜೙

𝑃ሺ𝐸௜భ𝐸௜మ⋯𝐸௜೙ሻ

൅⋯ െ 𝑃ሺ𝐸ଵ𝐸ଶ⋯𝐸ଵ଴ሻ

𝑃ሺ𝐸௜భ𝐸௜మ⋯𝐸௜೙ሻ,

𝑛

𝑛

20 െ 𝑛

ሺ20 െ 𝑛 െ 1ሻ!

𝑛

2௡ሺ20 െ 𝑛 െ 1ሻ!

𝑛

𝑃ሺ𝐸௜భ𝐸௜మ⋯𝐸௜೙ሻ ൌ
2௡ሺ19 െ 𝑛ሻ!

ሺ19ሻ!

ቆ
10

1
ቇ2ଵ ሺ18ሻ!

ሺ19ሻ!
െ ቆ

10

2
ቇ2ଶ ሺ17ሻ!

ሺ19ሻ!
൅ ቆ

10

3
ቇ2ଷ ሺ16ሻ!

ሺ19ሻ!
െ⋯െ ቆ

10

10
ቇ2ଵ଴ 9!

ሺ19ሻ!
ൎ .6605
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*Example 5o Runs

Consider an athletic team that had just finished its season with a final record of 

wins and  losses. By examining the sequence of wins and losses, we are

hoping to determine whether the team had stretches of games in which it was

more likely to win than at other times. One way to gain some insight into this

question is to count the number of runs of wins and then see how likely that

result would be when all  orderings of the  wins and  losses

are assumed equally likely. By a run of wins, we mean a consecutive sequence

of wins. For instance, if  and the sequence of outcomes was

WWLLWWWLWLLLWWWW, then there would be 4 runs of wins–the first run

being of size 2, the second of size 3, the third of size 1, and the fourth of size 4.

Suppose now that a team has  wins and  losses. Assuming that all 

 orderings are equally likely, let us determine the probability

that there will be exactly  runs of wins. To do so, consider first any vector of

positive integers with  and let us see how many

outcomes result in r runs of wins in which the th run is of size  For

any such outcome, if we let  denote the number of losses before the first run of

wins,  the number of losses between the first 2 runs of wins,  the

number of losses after the last run of wins, then the  satisfy

and the outcome can be represented schematically as

Hence, the number of outcomes that result in  runs of wins the th of size

is equal to the number of integers  that satisfy the

foregoing, or, equivalently, to the number of positive integers

that satisfy

By Proposition 6.1  in Chapter 1 , there are such outcomes.

Hence, the total number of outcomes that result in  runs of wins is 

𝑛

𝑚

ሺ𝑛 ൅𝑚ሻ!/ሺ𝑛! 𝑚!ሻ 𝑛 𝑚

𝑛 ൌ 10, 𝑚 ൌ 6,

𝑛 𝑚 ሺ𝑛 ൅ 𝑚ሻ!/

ሺ𝑛! 𝑚!ሻ ൌ ቆ
𝑛 ൅𝑚

𝑛
ቇ

𝑟

𝑥ଵ, 𝑥ଶ, …, 𝑥௥ 𝑥ଵ ൅ ⋯ ൅ 𝑥௥ ൌ 𝑛,

𝑖 𝑥௜, 𝑖 ൌ 1, ... , 𝑟.

𝑦ଵ
𝑦ଶ ... , 𝑦௥൅ଵ

𝑦௜

𝑦ଵ ൅ 𝑦ଶ ൅ ⋯ ൅ 𝑦௥൅ଵ ൌ 𝑚  𝑦ଵ ൒ 0,𝑦௥൅ଵ ൒ 0,𝑦௜ ൐ 0,𝑖 ൌ 2, ... , 𝑟

𝐿𝐿 ... 𝐿
௬ భ

 𝑊𝑊 ... 𝑊
௫ భ

 𝐿 ... 𝐿
௬ మ

 𝑊𝑊 ... 𝑊
௫ మ

 ⋯ 𝑊𝑊
௫ ೝ

 𝐿 ... 𝐿
௬ ೝ൅భ

𝑟 𝑖

𝑥௜, 𝑖 ൌ 1,  … 𝑟 െ 𝑦ଵ , ... , 𝑦௥൅ଵ

𝑦̅̅ଵ ൌ 𝑦ଵ ൅ 1 𝑦̅ଵ̅ ൌ 𝑦௜,  𝑖 ൌ 2, …, 𝑟,  𝑦̅̅௥൅ଵ ൌ 𝑦௥൅ଵ ൅ 1

𝑦̅̅ଵ ൅ 𝑦̅̅ଶ ൅ ⋯ ൅ 𝑦̅௥̅൅ଵ ൌ 𝑚 ൅ 2

ቆ
𝑚 ൅ 1

𝑟
ቇ

𝑟 ቆ
𝑚 ൅ 1

𝑟
ቇ
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multiplied by the number of positive integral solutions of  Thus,

again from Proposition 6.1 , there are  outcomes resulting in

 runs of wins. As there are  equally likely outcomes, it follows that

For example, if  and  then the probability of 7 runs is

if all

outcomes are equally likely. Hence, if the outcome was WLWLWLWLWWLWLW,

then we might suspect that the team’s probability of winning was changing over

time. (In particular, the probability that the team wins seems to be quite high

when it lost its last game and quite low when it won its last game.) On the other

extreme, if the outcome were WWWWWWWWLLLLLL, then there would have

been only 1 run, and as it would thus

again seem unlikely that the team’s probability of winning remained unchanged

over its 14 games.

A sequence of events  is said to be an increasing sequence if

whereas it is said to be a decreasing sequence if

If  is an increasing sequence of events, then we define a new event,

denoted by by

𝑥ଵ ൅  ⋯  ൅  𝑥௥ ൌ 𝑛 .

ቆ
𝑚 ൅ 1

𝑟
ቇቆ
𝑛 െ 1

𝑟 െ 1
ቇ

𝑟 ቆ
𝑛 ൅ 𝑚

𝑛
ቇ

𝑃ሺሼ𝑟 runs of winsሽሻ ൌ
ቆ
𝑚 ൅ 1

𝑟
ቇቆ
𝑛 െ 1

𝑟 െ 1
ቇ

ቆ
𝑚 ൅ 𝑛

𝑛
ቇ

 𝑟 ൒ 1

𝑛 ൌ 8 𝑚 ൌ 6,

ቆ
7

7
ቇ ቆ

7

6
ቇ ቆ

14

8
ቇ ൌ 1/429

ቆ
14

8
ቇ

𝑃ሺሼ1 runሽሻ ൌ  ቆ
7

1
ቇቆ

7

0
ቇ ቆ

14

8
ቇ ൌ 1/429,

*

ሼ𝐸௡,𝑛 ൒ 1ሽ

𝐸ଵ ⊂ 𝐸ଶ ⊂ ⋯ ⊂ 𝐸௡ ⊂ 𝐸௡൅ଵ ⊂ ⋯

𝐸ଵ ⊃ 𝐸ଶ ⊃ ⋯ ⊃ 𝐸௡ ⊃ 𝐸௡൅ଵ ⊃ ⋯

ሼ𝐸௡,𝑛 ൒ 1ሽ
lim

௡ → ஶ
  𝐸௡,
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Similarly, if  is a decreasing sequence of events, we define  by

We now prove the following Proposition 6.1 :

Proposition 6.1

If  is either an increasing or a decreasing sequence of events, then

Proof Suppose, first, that  is an increasing sequence, and define the

events by

where we have used the fact that  since the events are

increasing. In words,  consists of those outcomes in  that are not in any of

the earlier  It is easy to verify that the  are mutually exclusive events

such that

Thus,

lim
௡ → ஶ

  𝐸௡ ൌ
௜ ଵ

ஶ
𝐸௜

ሼ𝐸௡,𝑛 ൒ 1ሽ lim
௡ → ஶ

𝐸௡,

lim
௡ → ஶ

  𝐸௡ ൌ
௜ ଵ

ஶ
𝐸௜

ሼ𝐸௡,𝑛 ൒ 1ሽ

lim
௡ → ஶ

𝑃ሺ𝐸௡ሻ ൌ 𝑃ሺ lim
௡ → ஶ

𝐸௡ሻ

ሼ𝐸௡,𝑛 ൒ 1ሽ
𝐹௡,  𝑛 ൒ 1,

𝐹ଵ ൌ 𝐸ଵ

𝐹௡ ൌ 𝐸௡൭
ଵ

௡ െ ଵ

𝐸௜൱

௖

ൌ 𝐸௡𝐸௡െଵ
௖  𝑛 ൐ 1

∪
ଵ

௡ െ ଵ
𝐸௜ ൌ 𝐸௡െଵ,

𝐹௡ 𝐸௡
𝐸௜,𝑖 ൏ 𝑛. 𝐹௡

௜ ଵ

ஶ
𝐹௜ ൌ

௜ ଵ

ஶ
𝐸௜ and 

௜ ଵ

௡
𝐹௜ ൌ

௜ ଵ

௡
𝐸௜ for all  𝑛 ൒ 1
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which proves the result when  is increasing.

If is a decreasing sequence, then  is an increasing

sequence; hence, from the preceding equations,

However, because  it follows that

or, equivalently,

or

which proves the result.

Example 6a Probability and a “Paradox”

𝑃ቆ
ଵ

ஶ
𝐸௜ቇ ൌ 𝑃ቆ

ଵ

ஶ
𝐹௜ቇ

ൌ
ଵ

ஶ
𝑃ሺ𝐹௜ሻ ሺby Axiom 3ሻ

ൌ lim
௡   →  ஶ ଵ

௡
𝑃ሺ𝐹௜ሻ

ൌ lim
௡   →  ஶ

𝑃൭
ଵ

௡
𝐹௜൱

ൌ lim
௡   →  ஶ

𝑃൭
ଵ

௡
𝐸௜൱

ൌ lim
௡   →  ஶ

𝑃ሺ𝐸௡ሻ

ሼ𝐸௡, 𝑛 ൒ 1ሽ

ሼ𝐸௡,𝑛 ൒ 1ሽ ሼ𝐸௡
௖ ,𝑛 ൒ 1ሽ

𝑃൬
ଵ

ஶ
𝐸௜
௖൰ ൌ lim

௡ → ஶ
𝑃ሺ𝐸௡

௖ሻ

ଵ

ஶ
𝐸௜
௖ ൌ ቆ

ଵ

ஶ
𝐸௜ቇ
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ሾ1 െ 𝑃ሺ𝐸௡ሻሿ ൌ 1 െ
௡ → ஶ

𝑃ሺ𝐸௡ሻ
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ଵ
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Suppose that we possess an infinitely large urn and an infinite collection of balls

labeled ball number 1, number 2, number 3, and so on. Consider an experiment

performed as follows: At 1 minute to 12 ඘.ඕ., balls numbered 1 through 10 are

placed in the urn and ball number 10 is withdrawn. (Assume that the withdrawal

takes no time.) At  minute to 12 ඘.ඕ., balls numbered 11 through 20 are placed

in the urn and ball number 20 is withdrawn. At  minute to 12 ඘.ඕ., balls

numbered 21 through 30 are placed in the urn and ball number 30 is withdrawn.

At  minute to 12 ඘.ඕ., and so on. The question of interest is, How many balls are

in the urn at 12 ඘.ඕ.?

The answer to this question is clearly that there is an infinite number of balls in

the urn at 12 ඘.ඕ., since any ball whose number is not of the form 10  will

have been placed in the urn and will not have been withdrawn before 12 ඘.ඕ.

Hence, the problem is solved when the experiment is performed as described.

However, let us now change the experiment and suppose that at 1 minute to 12

඘.ඕ., balls numbered 1 through 10 are placed in the urn and ball number 1 is

withdrawn; at  minute to 12 ඘.ඕ., balls numbered 11 through 20 are placed in the

urn and ball number 2 is withdrawn; at  minute to 12 P.M, balls numbered 21

through 30 are placed in the urn and ball number 3 is withdrawn; at  minute to

12 ඘.ඕ., balls numbered 31 through 40 are placed in the urn and ball number 4 is

withdrawn, and so on. For this new experiment, how many balls are in the urn at

12 ඘.ඕ.?

Surprisingly enough, the answer now is that the urn is empty at 12 ඘.ඕ. For,

consider any ball–say, ball number  At some time prior to 12 ඘.ඕ. [in particular,

at  minutes to 12 ඘.ඕ.], this ball would have been withdrawn from the urn.

Hence, for each  ball number  is not in the urn at 12 ඘.ඕ.; therefore, the urn

must be empty at that time.

Because for all  the number of balls in the urn after the nth interchange is the

same in both variations of the experiment, most people are surprised that the two

scenarios produce such different results in the limit. It is important to recognize

that the reason the results are different is not because there is an actual paradox,

or mathematical contradiction, but rather because of the logic of the situation,

and also that the surprise results because one’s initial intuition when dealing with

infinity is not always correct. (This latter statement is not surprising, for when the

theory of the infinite was first developed by the mathematician Georg Cantor in

the second half of the nineteenth century, many of the other leading

1
2

1
4

1
8

𝑛, 𝑛 ൒ 1,

ଵ

ଶ
1
4

1
8

𝑛.

ቀ1
2
ቁ
௡െଵ

𝑛, 𝑛

𝑛,
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mathematicians of the day called it nonsensical and ridiculed Cantor for making

such claims as that the set of all integers and the set of all even integers have

the same number of elements.)

We see from the preceding discussion that the manner in which the balls are

withdrawn makes a difference. For, in the first case, only balls numbered

 are ever withdrawn, whereas in the second case all of the balls are

eventually withdrawn. Let us now suppose that whenever a ball is to be

withdrawn, that ball is randomly selected from among those present. That is,

suppose that at 1 minute to 12 ඘.ඕ. balls numbered 1 through 10 are placed in

the urn and a ball is randomly selected and withdrawn, and so on. In this case,

how many balls are in the urn at 12 ඘.ඕ.?

Solution

We shall show that, with probability 1, the urn is empty at 12 ඘.ඕ. Let us first

consider ball number 1. Define  to be the event that ball number 1 is still in the

urn after the first  withdrawals have been made. Clearly,

[To understand this equation, just note that if ball number 1 is still to be in the urn

after the first  withdrawals, the first ball withdrawn can be any one of 9, the

second any one of 18 (there are 19 balls in the urn at the time of the second

withdrawal, one of which must be ball number 1), and so on. The denominator is

similarly obtained.]

Now, the event that ball number 1 is in the urn at 12 ඘.ඕ. is just the event

Because the events  are decreasing events, it follows from

Proposition 6.1  that

We now show that

10𝑛,𝑛 ൒ 1,

𝐸௡
𝑛

𝑃ሺ𝐸௡ሻ ൌ
9 ⋅ 18 ⋅ 27 ⋯ ሺ9𝑛ሻ

10 ⋅ 19 ⋅ 28 ⋯ ሺ9𝑛 ൅ 1ሻ

𝑛

∩
௡ ൌ ଵ

ஶ 𝐸௡ . 𝐸௡,𝑛 ൒ 1,

𝑃ሼball number 1 is in the urn at 12P.M.ሽ

     ൌ 𝑃൬ ∩
௡ ൌ ଵ

ஶ 𝐸௡൰

     ൌ lim
௡ → ஶ

𝑃ሺ𝐸௡ሻ

     ൌ Π
௡ ൌ ଵ

ஶ
ቀ

ଽ௡

ଽ௡൅ଵ
ቁ

Π
௡ ൌ ଵ

ஶ 9𝑛
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Since

this is equivalent to showing that

Now, for all 

Hence, letting  and using the fact that  yields

Thus, letting  denote the event that ball number  is in the urn at 12 ඘.ඕ., we

have shown that  Similarly, we can show that  for all 

(For instance, the same reasoning shows that  for

) Therefore, the probability that the urn is not empty at 12 ඘.ඕ.,

 satisfies

by Boole’s inequality.

Π
௡ ൌ ଵ

ஶ
ቆ
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Thus, with probability 1, the urn will be empty at 12 ඘.ඕ.

Thus far we have interpreted the probability of an event of a given experiment as

being a measure of how frequently the event will occur when the experiment is

continually repeated. However, there are also other uses of the term probability. For

instance, we have all heard such statements as “It is 90 percent probable that

Shakespeare actually wrote Hamlet” or “The probability that Oswald acted alone in

assassinating Kennedy is .8.” How are we to interpret these statements?

The most simple and natural interpretation is that the probabilities referred to are

measures of the individual’s degree of belief in the statements that he or she is

making. In other words, the individual making the foregoing statements is quite

certain that Oswald acted alone and is even more certain that Shakespeare wrote

Hamlet. This interpretation of probability as being a measure of the degree of one’s

belief is often referred to as the personal or subjective view of probability.

It seems logical to suppose that a “measure of the degree of one’s belief” should

satisfy all of the axioms of probability. For example, if we are 70 percent certain that

Shakespeare wrote Julius Caesar and 10 percent certain that it was actually

Marlowe, then it is logical to suppose that we are 80 percent certain that it was either

Shakespeare or Marlowe. Hence, whether we interpret probability as a measure of

belief or as a long-run frequency of occurrence, its mathematical properties remain

unchanged.

Example 7a

Suppose that in a 7-horse race, you believe that each of the first 2 horses has a

20 percent chance of winning, horses 3 and 4 each have a 15 percent chance,

and the remaining 3 horses have a 10 percent chance each. Would it be better

for you to wager at even money that the winner will be one of the first three

horses or to wager, again at even money, that the winner will be one of the

horses 1, 5, 6, and 7?

Solution

On the basis of your personal probabilities concerning the outcome of the race,

your probability of winning the first bet is  whereas it is

 for the second bet. Hence, the first wager is more attractive.

Note that in supposing that a person’s subjective probabilities are always consistent

.2 ൅ .2 ൅ .15 ൌ .55,

.2 ൅ .1 ൅ .1 ൅ .1 ൌ .5
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with the axioms of probability, we are dealing with an idealized rather than an actual

person. For instance, if we were to ask someone what he thought the chances were

of

a. rain today,

b. rain tomorrow,

c. rain both today and tomorrow,

d. rain either today or tomorrow,

it is quite possible that, after some deliberation, he might give 30 percent, 40 percent,

20 percent, and 60 percent as answers. Unfortunately, such answers (or such

subjective probabilities) are not consistent with the axioms of probability. (Why not?)

We would of course hope that after this was pointed out to the respondent, he would

change his answers. (One possibility we could accept is 30 percent, 40 percent, 10

percent, and 60 percent.)

Let  denote the set of all possible outcomes of an experiment.  is called the sample

space of the experiment. An event is a subset of  If  are events, then

 called the union of these events, consists of all outcomes that are in at

least one of the events  Similarly,  sometimes written as 

is called the intersection of the events  and consists of all outcomes that are in all

of the events 

For any event  we define  to consist of all outcomes in the sample space that are

not in  We call  the complement of the event A. The event  which is empty of

outcomes, is designated by Ø and is called the null set. If  then we say that 

and  are mutually exclusive.

For each event  of the sample space  we suppose that a number  called the

probability of  is defined and is such that

i. 
ii. 

iii. For mutually exclusive events 

𝑆 𝑆

𝑆. 𝐴௜,𝑖 ൌ 1,...,𝑛,

∪
௜ ൌ ଵ

௡
𝐴௜,

𝐴௜,𝑖 ൌ 1,...,𝑛. ∩
௜ ൌ ଵ

௡
𝐴௜, 𝐴ଵ⋯𝐴௡,

𝐴௜
𝐴௜,𝑖 ൌ 1,...,𝑛.

𝐴, 𝐴௖

𝐴. 𝐴௖ 𝑆௖,

𝐴𝐵 ൌ Ø, 𝐴

𝐵

𝐴 𝑆, 𝑃ሺ𝐴ሻ,

𝐴,

0 ൑ 𝑃ሺ𝐴ሻ ൑ 1
𝑃ሺ𝑆ሻ ൌ 1

𝐴௜,𝑖 ൒ 1,

𝑃൬ ∪
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 represents the probability that the outcome of the experiment is in 

It can be shown that

A useful result is that

which can be generalized to give

This result is known as the inclusion–exclusion identity.

If  is finite and each one point set is assumed to have equal probability, then

where  denotes the number of outcomes in the event 

 can be interpreted either as a long-run relative frequency or as a measure of

one’s degree of belief.

𝑃ሺ𝐴ሻ 𝐴.

𝑃ሺ𝐴௖ሻ ൌ 1 െ 𝑃ሺ𝐴ሻ

𝑃ሺ𝐴 ∪ 𝐵ሻ ൌ 𝑃ሺ𝐴ሻ ൅ 𝑃ሺ𝐵ሻ െ 𝑃ሺ𝐴𝐵ሻ

𝑃ቆ
௜ ൌ ଵ

௡

𝐴௜ቇ ൌ
௜ ଵ

௡
𝑃ሺ𝐴௜ሻ െ

௜ ழ ௝
𝑃ሺ𝐴௜𝐴௝ሻ

൅ ∑∑∑
௜ ழ ௝ ழ ௞

𝑃ሺ𝐴௜𝐴௝𝐴௞ሻ

൅⋯ ൅ ሺ െ 1ሻ௡൅ଵ𝑃ሺ𝐴ଵ⋯𝐴௡ሻ

𝑆

𝑃ሺ𝐴ሻ ൌ
|𝐴|
|𝑆|

|𝐸| 𝐸.

𝑃ሺ𝐴ሻ

1. A box contains 3 marbles: 1 red, 1 green, and 1 blue. Consider an

experiment that consists of taking 1 marble from the box and then replacing it

in the box and drawing a second marble from the box. Describe the sample

space. Repeat when the second marble is drawn without replacing the first

marble.

2. In an experiment, die is rolled continually until a 6 appears, at which point

the experiment stops. What is the sample space of this experiment? Let 

denote the event that  rolls are necessary to complete the experiment. What

points of the sample space are contained in  What is 

𝐸௡
𝑛

𝐸௡? ቆ
ଵ

ஶ
𝐸௡ቇ

௖
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3. Two dice are thrown. Let  be the event that the sum of the dice is odd, let

 be the event that at least one of the dice lands on 1, and let  be the event

that the sum is 5. Describe the events  and EFG.

4. A, B, and C take turns flipping a coin. The first one to get a head wins. The

sample space of this experiment can be defined by

a. Interpret the sample space.

b. Define the following events in terms of  10pt

i. A wins = A.

ii. B wins = B.

iii. 

Assume that A flips first, then B, then C, then A, and so on.

5. A system is composed of 5 components, each of which is either working or

failed. Consider an experiment that consists of observing the status of each

component, and let the outcome of the experiment be given by the vector

 where  is equal to 1 if component  is working and is

equal to 0 if component  is failed.

a. How many outcomes are in the sample space of this experiment?

b. Suppose that the system will work if components 1 and 2 are both

working, or if components 3 and 4 are both working, or if components

1, 3, and 5 are all working. Let  be the event that the system will

work. Specify all the outcomes in 

c. Let  be the event that components 4 and 5 are both failed. How many

outcomes are contained in the event 

d. Write out all the outcomes in the event AW.

6. A hospital administrator codes incoming patients suffering gunshot wounds

according to whether they have insurance (coding 1 if they do and 0 if they do

not) and according to their condition, which is rated as good (g), fair (f), or

serious (s). Consider an experiment that consists of the coding of such a

patient.

a. Give the sample space of this experiment.

b. Let  be the event that the patient is in serious condition. Specify the

outcomes in 

c. Let  be the event that the patient is uninsured. Specify the outcomes

in 

d. Give all the outcomes in the event 

𝐸

𝐹 𝐺

𝐸𝐹,𝐸 ∪ 𝐹,𝐹𝐺,𝐸𝐹௖,

𝑆 ൌ ቊ
1,01,001,0001,...,

0000⋯
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ሺ𝐴 ∪ 𝐵ሻ௖.
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𝐴
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7. Consider an experiment that consists of determining the type of job–either

blue collar or white collar–and the political affiliation Republican, Democratic,

or Independent–of the 15 members of an adult soccer team. How many

outcomes are

a. in the sample space?

b. in the event that at least one of the team members is a blue-collar

worker?

c. in the event that none of the team members considers himself or

herself an Independent?

8. Suppose that  and  are mutually exclusive events for which 

and  What is the probability that

a. either  or  occurs?

b.  occurs but  does not?

c. both  and  occur?

9. A retail establishment accepts either the American Express or the VISA

credit card. A total of 24 percent of its customers carry an American Express

card, 61 percent carry a VISA card, and 11 percent carry both cards. What

percentage of its customers carry a credit card that the establishment will

accept?

10. Sixty percent of the students at a certain school wear neither a ring nor a

necklace. Twenty percent wear a ring and 30 percent wear a necklace. If one

of the students is chosen randomly, what is the probability that this student is

wearing

a. a ring or a necklace?

b. a ring and a necklace?

11. A total of 28 percent of American males smoke cigarettes, 7 percent

smoke cigars, and 5 percent smoke both cigars and cigarettes.

a. What percentage of males smokes neither cigars nor cigarettes?

b. What percentage smokes cigars but not cigarettes?

12. An elementary school is offering 3 language classes: one in Spanish, one

in French, and one in German. The classes are open to any of the 100

students in the school. There are 28 students in the Spanish class, 26 in the

French class, and 16 in the German class. There are 12 students who are in

both Spanish and French, 4 who are in both Spanish and German, and 6 who

are in both French and German. In addition, there are 2 students taking all 3

classes.

a. If a student is chosen randomly, what is the probability that he or she is

𝐴 𝐵 𝑃ሺ𝐴ሻ ൌ .3

𝑃ሺ𝐵ሻ ൌ .5.

𝐴 𝐵

𝐴 𝐵

𝐴 𝐵
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not in any of the language classes?

b. If a student is chosen randomly, what is the probability that he or she is

taking exactly one language class?

c. If 2 students are chosen randomly, what is the probability that at least 1

is taking a language class?

13. A certain town with a population of 100,000 has 3 newspapers: I, II, and

III. The proportions of townspeople who read these papers are as follows:

I: 10 percent I and II: 8 percent I and II and III: 1 percent

II: 30 percent I and III: 2 percent

III: 5 percent II and III: 4 percent

(The list tells us, for instance, that 8000 people read newspapers I and II.)

a. Find the number of people who read only one newspaper.

b. How many people read at least two newspapers?

c. If I and III are morning papers and II is an evening paper, how many

people read at least one morning paper plus an evening paper?

d. How many people do not read any newspapers?

e. How many people read only one morning paper and one evening

paper?

14. The following data were given in a study of a group of 1000 subscribers to

a certain magazine: In reference to job, marital status, and education, there

were 312 professionals, 470 married persons, 525 college graduates, 42

professional college graduates, 147 married college graduates, 86 married

professionals, and 25 married professional college graduates. Show that the

numbers reported in the study must be incorrect.

Hint: Let  and  denote, respectively, the set of professionals, married

persons, and college graduates. Assume that one of the 1000 persons is

chosen at random, and use Proposition 4.4  to show that if the given

numbers are correct, then 

15. If it is assumed that all  poker hands are equally likely, what is the

probability of being dealt

a. a flush? (A hand is said to be a flush if all 5 cards are of the same suit.)

b. one pair? (This occurs when the cards have denominations 

where  and  are all distinct.)

c. two pairs? (This occurs when the cards have denominations 

where  and  are all distinct.)

d. three of a kind? (This occurs when the cards have denominations 

 where  and  are all distinct.)

e. four of a kind? (This occurs when the cards have denominations 

𝑀, 𝑊, 𝐺

𝑃ሺ𝑀 ∪𝑊∪ 𝐺ሻ ൐ 1.

ቆ
52

5
ቇ

𝑎, 𝑎, 𝑏, 𝑐, 𝑑,

𝑎, 𝑏, 𝑐, 𝑑

𝑎, 𝑎, 𝑏, 𝑏, 𝑐,

𝑎, 𝑏, 𝑐

𝑎, 𝑎,

𝑎, 𝑏, 𝑐, 𝑎, 𝑏, 𝑐

𝑎, 𝑎, 𝑎,
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)

16. Poker dice is played by simultaneously rolling 5 dice. Show that
a. 

b. 

c. 

d. 

e. 

f. 

g. 

17. Twenty five people, consisting of  women and  men are lined up in a

random order. Find the probability that the ninth woman to appear is in

position 17. That is, find the probability there are  women in positions  thru

 and a woman in position 

18. Two cards are randomly selected from an ordinary playing deck. What is

the probability that they form a blackjack? That is, what is the probability that

one of the cards is an ace and the other one is either a ten, a jack, a queen, or

a king?

19. Two symmetric dice have had two of their sides painted red, two painted

black, one painted yellow, and the other painted white. When this pair of dice

is rolled, what is the probability that both dice land with the same color face

up?

20. Suppose that you are playing blackjack against a dealer. In a freshly

shuffled deck, what is the probability that neither you nor the dealer is dealt a

blackjack?

21. A small community organization consists of 20 families, of which 4 have

one child, 8 have two children, 5 have three children, 2 have four children, and

1 has five children.

a. If one of these families is chosen at random, what is the probability it

has  children, 

b. If one of the children is randomly chosen, what is the probability that

child comes from a family having  children, 

22. Consider the following technique for shuffling a deck of  cards: For any

initial ordering of the cards, go through the deck one card at a time and at

each card, flip a fair coin. If the coin comes up heads, then leave the card

where it is; if the coin comes up tails, then move that card to the end of the

deck. After the coin has been flipped  times, say that one round has been

completed. For instance, if  and the initial ordering is 1, 2, 3, 4, then if

the successive flips result in the outcome  then the ordering at the end

of the round is 1, 4, 2, 3. Assuming that all possible outcomes of the sequence

𝑎, 𝑏.

𝑃ሼno two alikeሽ ൌ .0926;
𝑃ሼone pairሽ ൌ .4630;
𝑃ሼtwo pairሽ ൌ .2315;
𝑃ሼthree alikeሽ ൌ .1543;
𝑃ሼfull houseሽ ൌ .0386;
𝑃ሼfour alikeሽ ൌ .0193;
𝑃ሼϐive alikeሽ ൌ .0008.

15 10

8 1

16 17.

𝑖 𝑖 ൌ 1, 2, 3, 4, 5?

𝑖 𝑖 ൌ 1, 2, 3, 4, 5?

𝑛

𝑛

𝑛 ൌ 4

ℎ, 𝑡, 𝑡, ℎ,
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of  coin flips are equally likely, what is the probability that the ordering after

one round is the same as the initial ordering?

23. A pair of fair dice is rolled. What is the probability that the second die

lands on a higher value than does the first?

24. If two dice are rolled, what is the probability that the sum of the upturned

faces equals  Find it for 

25. A pair of dice is rolled until a sum of either 5 or 7 appears. Find the

probability that a 5 occurs first.

Hint: Let  denote the event that a 5 occurs on the th roll and no 5 or 7

occurs on the first  rolls. Compute  and argue that  is

the desired probability.

26. The game of craps is played as follows: A player rolls two dice. If the sum

of the dice is either a 2, 3, or 12, the player loses; if the sum is either a 7 or an

11, the player wins. If the outcome is anything else, the player continues to roll

the dice until she rolls either the initial outcome or a 7. If the 7 comes first, the

player loses, whereas if the initial outcome reoccurs before the 7 appears, the

player wins. Compute the probability of a player winning at craps.

Hint: Let  denote the event that the initial outcome is  and the player wins.

The desired probability is  To compute  define the events

 to be the event that the initial sum is i and the player wins on the th roll.

Argue that 

27. An urn contains 3 red and 7 black balls. Players  and  withdraw balls

from the urn consecutively until a red ball is selected. Find the probability that

 selects the red ball. (  draws the first ball, then  and so on. There is no

replacement of the balls drawn.)

28. An urn contains 5 red, 6 blue, and 8 green balls. If a set of 3 balls is

randomly selected, what is the probability that each of the balls will be (a) of

the same color? (b) of different colors? Repeat under the assumption that

whenever a ball is selected, its color is noted and it is then replaced in the urn

before the next selection. This is known as sampling with replacement.

29. An urn contains  white and  black balls, where  and  are positive

numbers.

a. If two balls are randomly withdrawn, what is the probability that they are

the same color?

b. If a ball is randomly withdrawn and then replaced before the second

one is drawn, what is the probability that the withdrawn balls are the

same color?

𝑛

𝑖? 𝑖 ൌ 2, 3,   ...   , 11, 12.

𝐸௡ 𝑛

𝑛 െ 1 𝑃ሺ𝐸௡ሻ ෍
௡ ൌ ଵ

ஶ

𝑃ሺ𝐸௡ሻ

𝐸௜ 𝑖

෍
௜ ൌ ଶ

ଵଶ

𝑃ሺ𝐸௜ሻ . 𝑃ሺ𝐸௜ሻ,

𝐸௜,௡ 𝑛

𝑃ሺ𝐸௜ሻ ൌ ෍
௡ ൌ ଵ

ஶ

𝑃ሺ𝐸௜,௡ሻ .

𝐴 𝐵

𝐴 𝐴 𝐵,

𝑛 𝑚 𝑛 𝑚
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c. Show that the probability in part (b) is always larger than the one in part

(a).

30. The chess clubs of two schools consist of, respectively, 8 and 9 players.

Four members from each club are randomly chosen to participate in a contest

between the two schools. The chosen players from one team are then

randomly paired with those from the other team, and each pairing plays a

game of chess. Suppose that Rebecca and her sister Elise are on the chess

clubs at different schools. What is the probability that

a. Rebecca and Elise will be paired?

b. Rebecca and Elise will be chosen to represent their schools but will not

play each other?

c. either Rebecca or Elise will be chosen to represent her school?

31. A 3-person basketball team consists of a guard, a forward, and a center.

a. If a person is chosen at random from each of three different such

teams, what is the probability of selecting a complete team?

b. What is the probability that all 3 players selected play the same

position?

32. A group of individuals containing  boys and  girls is lined up in random

order; that is, each of the  permutations is assumed to be equally

likely. What is the probability that the person in the th position, 

is a girl?

33. A forest contains 20 elk, of which 5 are captured, tagged, and then

released. A certain time later, 4 of the 20 elk are captured. What is the

probability that 2 of these 4 have been tagged? What assumptions are you

making?

34. The second Earl of Yarborough is reported to have bet at odds of 1000 to

1 that a bridge hand of 13 cards would contain at least one card that is ten or

higher. (By ten or higher we mean that a card is either a ten, a jack, a queen,

a king, or an ace.) Nowadays, we call a hand that has no cards higher than 9

Yarborough. What is the probability that a randomly selected bridge hand is

a Yarborough?

35. Seven balls are randomly withdrawn from an urn that contains  red, 16

blue, and 18 green balls. Find the probability that

a.  red,  blue, and  green balls are withdrawn;

b. at least  red balls are withdrawn;

c. all withdrawn balls are the same color;

d. either exactly  red balls or exactly 3 blue balls are withdrawn.

𝑏 𝑔

ሺ𝑏 ൅ 𝑔ሻ!

𝑖 1 ൑ 𝑖 ൑ 𝑏 ൅ 𝑔,

𝑎

12

3 2 2

2

3
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36. Two cards are chosen at random from a deck of 52 playing cards. What is

the probability that they

a. are both aces?

b. have the same value?

37. An instructor gives her class a set of 10 problems with the information that

the final exam will consist of a random selection of 5 of them. If a student has

figured out how to do 7 of the problems, what is the probability that he or she

will answer correctly

a. all 5 problems?

b. at least 4 of the problems?

38. There are n socks, 3 of which are red, in a drawer. What is the value of 

if, when 2 of the socks are chosen randomly, the probability that they are both

red is 

39. There are 5 hotels in a certain town. If 3 people check into hotels in a day,

what is the probability that they each check into a different hotel? What

assumptions are you making?

40. If  balls are randomly chosen from an urn containing  red,  white, 

blue, and  green balls, find the probability that

a. at least one of the  balls chosen is green;

b. one ball of each color is chosen.

41. If a die is rolled 4 times, what is the probability that 6 comes up at least

once?

42. Two dice are thrown n times in succession. Compute the probability that

double 6 appears at least once. How large need  be to make this probability

at least 

43.

a. If  people, including  and  are randomly arranged in a line, what is

the probability that  and  are next to each other?

b. What would the probability be if the people were randomly arranged in

a circle?

44. Five people, designated as  are arranged in linear order.

Assuming that each possible order is equally likely, what is the probability that

a. there is exactly one person between  and 

b. there are exactly two people between  and 

c. there are three people between  and 

𝑛

1
2

?

4 4 5 6

7

4

𝑛
1
2

?

𝑁 𝐴 𝐵,

𝐴 𝐵

𝐴, 𝐵, 𝐶, 𝐷, 𝐸,

𝐴 𝐵?

𝐴 𝐵?

𝐴 𝐵?
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45. A woman has  keys, of which one will open her door.

a. If she tries the keys at random, discarding those that do not work, what

is the probability that she will open the door on her th try?

b. What if she does not discard previously tried keys?

46. How many people have to be in a room in order that the probability that at

least two of them celebrate their birthday in the same month is at least 

Assume that all possible monthly outcomes are equally likely.

47. Suppose that  of the numbers  are chosen. Find the probability

that  is the third smallest value chosen.

48. Given 20 people, what is the probability that among the 12 months in the

year, there are 4 months containing exactly 2 birthdays and 4 containing

exactly 3 birthdays?

49. A group of 6 men and 6 women is randomly divided into 2 groups of size 6

each. What is the probability that both groups will have the same number of

men?

50. In a hand of bridge, find the probability that you have 5 spades and your

partner has the remaining 8.

51. Suppose that  balls are randomly distributed into  compartments. Find

the probability that  balls will fall into the first compartment. Assume that all

 arrangements are equally likely.

52. A closet contains 10 pairs of shoes. If 8 shoes are randomly selected,

what is the probability that there will be

a. no complete pair?

b. exactly 1 complete pair?

53. If  people, consisting of  couples, are randomly arranged in a row, find

the probability that no person is next to their partner.

54. Compute the probability that a bridge hand is void in at least one suit.

Note that the answer is not

(Why not?)

Hint: Use Proposition 4.4 .

55. Compute the probability that a hand of 13 cards contains

a. the ace and king of at least one suit;

b. all 4 of at least 1 of the 13 denominations.

𝑛

𝑘

1
2

?

5 1, 2, ... , 14

9

𝑛 𝑁

𝑚

𝑁௡

8 4

ቆ
4

1
ቇቆ

39

13
ቇ

ቆ
52

13
ቇ
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Prove the following relations:

56. Two players play the following game: Player  chooses one of the three

spinners pictured in Figure 2.6 , and then player  chooses one of the

remaining two spinners. Both players then spin their spinner, and the one that

lands on the higher number is declared the winner. Assuming that each

spinner is equally likely to land in any of its 3 regions, would you rather be

player A or player  Explain your answer!

Figure 2.6 Spinners

𝐴

𝐵

𝐵?

1. 

2. If  then 

3.  and 

4.  and

𝐸𝐹 ⊂ 𝐸 ⊂ 𝐸 ∪ 𝐹.

𝐸 ⊂ 𝐹, 𝐹௖ ⊂ 𝐸௖ .

𝐹 ൌ 𝐹𝐸 ∪ 𝐹𝐸௖ 𝐸 ∪ 𝐹 ൌ 𝐸 ∪ 𝐸௖𝐹.

൬ ∪
ଵ

ஶ 𝐸௜൰𝐹 ൌ ∪
ଵ

ஶ 𝐸௜𝐹

൬ ∩
ଵ

ஶ 𝐸௜൰ ∪ 𝐹 ൌ
ଵ

ஶ
ሺ𝐸௜ ∪ 𝐹ሻ .
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5. For any sequence of events  define a new sequence  of

disjoint events (that is, events such that  whenever ) such that

for all 

6. Let  and  be three events. Find expressions for the events so that, of

 and 

a. only  occurs;

b. both  and  but not  occur;

c. at least one of the events occurs;

d. at least two of the events occur;

e. all three events occur;

f. none of the events occurs;

g. at most one of the events occurs;

h. at most two of the events occur;

i. exactly two of the events occur;

j. at most three of the events occur.

7. Use Venn diagrams

a. to simplify the expression 

b. to prove DeMorgan’s laws for events  and  [That is, prove

 and 

8. Let  be a given set. If, for some  are mutually exclusive

nonempty subsets of  such that , then we call the set

 a partition of  Let  denote the number of different partitions of

 Thus,  (the only partition being ) and  (the two

partitions being 

a. Show, by computing all partitions, that 

b. Show that

and use this equation to compute 

Hint: One way of choosing a partition of  items is to call one of the

items special. Then we obtain different partitions by first choosing

 then a subset of size  of the nonspecial items, and

then any of the  partitions of the remaining  nonspecial items. By

adding the special item to the subset of size  we obtain a partition

𝐸ଵ,𝐸ଶ,..., 𝐹ଵ,𝐹ଶ,...

𝐹௜𝐹௝ ൌ Ø 𝑖 ് 𝑗

𝑛 ൒ 1,

ଵ

௡
𝐹௜ ൌ

ଵ

௡
𝐸௜

𝐸, 𝐹, 𝐺

𝐸, 𝐹, 𝐺,

𝐸

𝐸 𝐺, 𝐹,

ሺ𝐸 ∪ 𝐹ሻሺ𝐸 ∪ 𝐹௖ሻ;

𝐸 𝐹.

 ሺ𝐸 ∪ 𝐹ሻ௖ ൌ 𝐸௖𝐹௖,  ሺ𝐸𝐹ሻ௖ ൌ 𝐸௖ ∪ 𝐹௖.ሿ

𝑆 𝑘 ൐ 0, 𝑆ଵ,𝑆ଶ, ... , 𝑆௞

𝑆 ∪
௜ ൌ ଵ

௞
𝑆௜ ൌ 𝑆,

ሼ𝑆ଵ,𝑆ଶ,...,𝑆௞ሽ 𝑆. 𝑇௡
ሼ1,2,...,𝑛ሽ . 𝑇ଵ ൌ 1 𝑆ଵ ൌ ሼ1ሽ 𝑇ଶ ൌ 2

ሼሼ1,2,ሽሽ, ሼሼ1ሽ, ሼ2ሽ ሻ.
𝑇ଷ ൌ 5,𝑇ସ ൌ 15.

𝑇௡൅ଵ ൌ 1 ൅ ෍
௞ ൌ ଵ

௡

ቆ
𝑛

𝑘
ቇ𝑇௞

𝑇ଵ଴.

𝑛 ൅ 1

𝑘,𝑘 ൌ 0, 1, ... , 𝑛, 𝑛 െ 𝑘

𝑇௞ 𝑘

𝑛 െ 𝑘,
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of all  items.

9. Suppose that an experiment is performed  times. For any event  of the

sample space, let  denote the number of times that event  occurs and

define  Show that  satisfies Axioms 1, 2, and 3.

10. Prove that

11. If  and  show that  In general, prove

Bonferroni’s inequality, namely,

12. Show that the probability that exactly one of the events  or  occurs

equals 

13. Prove that

14. Prove Proposition 4.4  by mathematical induction.

15. An urn contains  white and  black balls. If a random sample of size  is

chosen, what is the probability that it contains exactly  white balls?

16. Use induction to generalize Bonferroni’s inequality to  events. That is,

show that

17. Consider the matching problem, Example 5m , and define  to be the

number of ways in which the  men can select their hats so that no man

selects his own. Argue that

This formula, along with the boundary conditions  can then be

solved for  and the desired probability of no matches would be 

Hint: After the first man selects a hat that is not his own, there remain 

men to select among a set of  hats that does not contain the hat of one

of these men. Thus, there is one extra man and one extra hat. Argue that we

can get no matches either with the extra man selecting the extra hat or with

the extra man not selecting the extra hat.

18. Let  denote the number of ways of tossing a coin  times such that

successive heads never appear. Argue that

Hint: How many outcomes are there that start with a head, and how many

start with a tail? If  denotes the probability that successive heads never

appear when a coin is tossed  times, find  (in terms of ) when all

possible outcomes of the  tosses are assumed equally likely. Compute 

𝑛 ൅ 1

𝑛 𝐸

𝑛ሺ𝐸ሻ 𝐸

𝑓ሺ𝐸ሻ ൌ 𝑛ሺ𝐸ሻ/𝑛. 𝑓ሺ ⋅ ሻ

𝑃ሺ𝐸 ∪ 𝐹 ∪ 𝐺ሻ ൌ 𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐹ሻ ൅ 𝑃ሺ𝐺ሻ െ 𝑃ሺ𝐸௖𝐹𝐺ሻ െ 𝑃ሺ𝐸𝐹௖𝐺ሻ െ 𝑃ሺ𝐸𝐹𝐺௖ሻ െ 𝑃ሺ𝐸𝐹𝐺௖ሻ െ 2𝑃ሺ𝐸𝐹𝐺

𝑃ሺ𝐸ሻ ൌ .9 𝑃ሺ𝐹ሻ ൌ .8, 𝑃ሺ𝐸𝐹ሻ ൒ .7.

𝑃ሺ𝐸𝐹ሻ ൒ 𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐹ሻ െ 1

𝐸 𝐹

𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐹ሻ െ 2𝑃ሺ𝐸𝐹ሻ.

𝑃ሺ𝐸𝐹௖ሻ ൌ 𝑃ሺ𝐸ሻ െ 𝑃ሺ𝐸𝐹ሻ .

𝑀 𝑁 𝑟

𝑘

𝑛

𝑃ሺ𝐸ଵ𝐸ଶ⋯𝐸௡ሻ ൒ 𝑃ሺ𝐸ଵሻ ൅ ⋯ ൅ 𝑃ሺ𝐸௡ሻ െ ሺ𝑛 െ 1ሻ

𝐴ே
𝑁

𝐴ே ൌ ሺ𝑁 െ 1ሻሺ𝐴ேെଵ ൅ 𝐴ேെଶሻ

𝐴ଵ ൌ 0, 𝐴ଶ ൌ 1,

𝐴ே, 𝐴ே/𝑁!.

𝑁 െ 1

𝑁 െ 1

𝑓௡ 𝑛

𝑓௡ ൌ 𝑓௡െଵ ൅ 𝑓௡െଶ  𝑛 ൒ 2, where 𝑓଴ ≡ 1, 𝑓ଵ ≡ 2

𝑃௡
𝑛 𝑃௡ 𝑓௡

𝑛 𝑃ଵ଴.
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19. An urn contains  red and  blue balls. They are withdrawn one at a time

until a total of  red balls have been withdrawn. Find the probability that

a total of  balls are withdrawn.

Hint: A total of  balls will be withdrawn if there are  red balls in the first

 withdrawals and the th withdrawal is a red ball.

20. Consider an experiment whose sample space consists of a countably

infinite number of points. Show that not all points can be equally likely. Can all

points have a positive probability of occurring?

*21. Consider Example 5o , which is concerned with the number of runs of

wins obtained when  wins and  losses are randomly permuted. Now

consider the total number of runs–that is, win runs plus loss runs–and show

that

𝑛 𝑚

𝑟,𝑟 ൑ 𝑛,

𝑘

𝑘 𝑟 െ 1

𝑘 െ 1 𝑘

𝑛 𝑚

𝑃ሼ2𝑘 runsሽ ൌ 2
ቆ
𝑚 െ 1

𝑘 െ 1
ቇቆ
𝑛 െ 1

𝑘 െ 1
ቇ

ቆ
𝑚 ൅ 𝑛

𝑛
ቇ

𝑃ሼ2𝑘 ൅ 1 𝑟𝑢𝑛𝑠ሽ

ൌ
ቆ
𝑚 െ 1

𝑘 െ 1
ቇቆ
𝑛 െ 1

𝑘
ቇ ൅ ቆ

𝑚 െ 1

𝑘
ቇቆ
𝑛 െ 1

𝑘 െ 1
ቇ

ቆ
𝑚 ൅ 𝑛

𝑛
ቇ

1. A cafeteria offers a three-course meal consisting of an entree, a starch, and

a dessert. The possible choices are given in the following table:

Course Choices

Entree Chicken or roast beef

Starch Pasta or rice or potatoes

Dessert Ice cream or Jello or apple pie or a peach

A person is to choose one course from each category.

a. How many outcomes are in the sample space?

b. Let  be the event that ice cream is chosen. How many outcomes are

in 

c. Let  be the event that chicken is chosen. How many outcomes are in

𝐴

𝐴?

𝐵
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d. List all the outcomes in the event AB.

e. Let  be the event that rice is chosen. How many outcomes are in 

f. List all the outcomes in the event ABC.

2. A customer visiting the suit department of a certain store will purchase a

suit with probability .22, a shirt with probability .30, and a tie with probability

.28. The customer will purchase both a suit and a shirt with probability .11,

both a suit and a tie with probability .14, and both a shirt and a tie with

probability .10. A customer will purchase all 3 items with probability .06. What

is the probability that a customer purchases

a. none of these items?

b. exactly 1 of these items?

3. A deck of cards is dealt out. What is the probability that the 14th card dealt

is an ace? What is the probability that the first ace occurs on the 14th card?

4. Let  denote the event that the midtown temperature in Los Angeles is 

 and let  denote the event that the midtown temperature in New York is 

. Also, let  denote the event that the maximum of the midtown temperatures

in New York and in Los Angeles is  If  and 

find the probability that the minimum of the two midtown temperatures is 

5. An ordinary deck of 52 cards is shuffled. What is the probability that the top

four cards have

a. different denominations?

b. different suits?

6. Urn  contains 3 red and 3 black balls, whereas urn  contains 4 red and 6

black balls. If a ball is randomly selected from each urn, what is the probability

that the balls will be the same color?

7. In a state lottery, a player must choose 8 of the numbers from 1 to 40. The

lottery commission then performs an experiment that selects 8 of these 40

numbers. Assuming that the choice of the lottery commission is equally likely

to be any of the combinations, what is the probability that a player has

a. all 8 of the numbers selected by the lottery commission?

b. 7 of the numbers selected by the lottery commission?

c. at least 6 of the numbers selected by the lottery commission?

8. From a group of 3 first-year students, 4 sophomores, 4 juniors, and 3

seniors, a committee of size 4 is randomly selected. Find the probability that

the committee will consist of

a. 1 from each class;

𝐵?

𝐶 𝐶?

𝐴 70∘F

, 𝐵 70∘F

𝐶

70∘F. 𝑃ሺ𝐴ሻ ൌ .3,𝑃ሺ𝐵ሻ ൌ .4, 𝑃ሺ𝐶ሻ ൌ .2,

70∘F.

𝐴 𝐵

ቆ
40

8
ቇ
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b. 2 sophomores and 2 juniors;

c. only sophomores or juniors.

9. For a finite set  let  denote the number of elements in 

a. Show that

b. More generally, show that

10. Consider an experiment that consists of 6 horses, numbered 1 through 6,

running a race, and suppose that the sample space consists of the 6! possible

orders in which the horses finish. Let  be the event that the number-1 horse

is among the top three finishers, and let  be the event that the number-2

horse comes in second. How many outcomes are in the event 

11. A 5-card hand is dealt from a well-shuffled deck of 52 playing cards. What

is the probability that the hand contains at least one card from each of the four

suits?

12. A basketball team consists of 6 frontcourt and 4 backcourt players. If

players are divided into roommates at random, what is the probability that

there will be exactly two roommate pairs made up of a backcourt and a

frontcourt player?

13. Suppose that a person chooses a letter at random from R E S E R V E

and then chooses one at random from V E R T I C A L. What is the probability

that the same letter is chosen?

14. Prove Boole’s inequality:

15. Show that if  for all  then 

16. Let  denote the number of partitions of the set  into 

nonempty subsets, where  (See Theoretical Exercise 8 for the

definition of a partition.) Argue that

Hint: In how many partitions is  a subset, and in how many is 1 an element

𝐴, 𝑁ሺ𝐴ሻ 𝐴.

𝑁ሺ𝐴 ∪ 𝐵ሻ ൌ 𝑁ሺ𝐴ሻ ൅ 𝑁ሺ𝐵ሻ െ 𝑁ሺ𝐴𝐵ሻ

𝑁ቆ
௜ ൌ ଵ

௡

𝐴௜ቇ ൌ ෍
௜

𝑁ሺ𝐴௜ሻ െ෍෍
௜ ழ ௝

𝑁ሺ𝐴௜𝐴௝ሻ

൅⋯ ൅ ሺ െ 1ሻ௡൅ଵ𝑁ሺ𝐴ଵ⋯𝐴௡ሻ

𝐴

𝐵

𝐴 ∪ 𝐵?

𝑃ቆ
௜ ଵ

ஶ
𝐴௜ቇ ൑ ෍

௜ ൌ ଵ

ஶ

𝑃ሺ𝐴௜ሻ

𝑃ሺ𝐴௜ሻ ൌ 1 𝑖 ൒ 1, 𝑃ቆ
௜ ଵ

ஶ
𝐴௜ቇ ൌ 1.

𝑇௞ሺ𝑛ሻ ሼ1,...,𝑛ሽ 𝑘

1 ൑ 𝑘 ൑ 𝑛.

𝑇௞ሺ𝑛ሻ ൌ 𝑘𝑇௞ሺ𝑛 െ 1ሻ ൅ 𝑇௞െଵሺ𝑛 െ 1ሻ

ሼ1ሽ
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3.1 Introduction

3.2 Conditional Probabilities

3.3 Bayes’s Formula

3.4 Independent Events

3.5 P(ꞏ|F) Is a Probability

of a subset that contains other elements?

17. Five balls are randomly chosen, without replacement, from an urn that

contains 5 red, 6 white, and 7 blue balls. Find the probability that at least one

ball of each color is chosen.

18. Four red, 8 blue, and 5 green balls are randomly arranged in a line.

a. What is the probability that the first  balls are blue?

b. What is the probability that none of the first  balls is blue?

c. What is the probability that the final  balls are of different colors?

d. What is the probability that all the red balls are together?

19. Ten cards are randomly chosen from a deck of  cards that consists of

 cards of each of  different suits. Each of the selected cards is put in one of

 piles, depending on the suit of the card.

a. What is the probability that the largest pile has  cards, the next largest

has  the next largest has  and the smallest has  card?

b. What is the probability that two of the piles have 3 cards, one has 4

cards, and one has no cards?

20. Balls are randomly removed from an urn initially containing  red and 10

blue balls. What is the probability that all of the red balls are removed before

all of the blue ones have been removed?

5

5

3

52

13 4

4

4

3, 2, 1

20
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In this chapter, we introduce one of the most important concepts in probability theory,

that of conditional probability. The importance of this concept is twofold. In the first

place, we are often interested in calculating probabilities when some partial

information concerning the result of an experiment is available; in such a situation,

the desired probabilities are conditional. Second, even when no partial information is

available, conditional probabilities can often be used to compute the desired

probabilities more easily.

Suppose that we toss 2 dice, and suppose that each of the 36 possible outcomes is

equally likely to occur and hence has probability  Suppose further that we

observe that the first die is a 3. Then, given this information, what is the probability

that the sum of the 2 dice equals 8? To calculate this probability, we reason as

follows: Given that the initial die is a 3, there can be at most 6 possible outcomes of

our experiment, namely, (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), and (3, 6). Since each of

these outcomes originally had the same probability of occurring, the outcomes

should still have equal probabilities. That is, given that the first die is a 3, the

(conditional) probability of each of the outcomes (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), and

(3, 6) is  whereas the (conditional) probability of the other 30 points in the sample

space is 0. Hence, the desired probability will be 

If we let  and  denote, respectively, the event that the sum of the dice is 8 and the

event that the first die is a 3, then the probability just obtained is called the

conditional probability that E occurs given that F has occurred and is denoted by

A general formula for  that is valid for all events  and  is derived in the same

manner: If the event  occurs, then, in order for  to occur, it is necessary that the

actual occurrence be a point both in  and in ; that is, it must be in  Now, since

we know that  has occurred, it follows that  becomes our new, or reduced, sample

space; hence, the probability that the event  occurs will equal the probability of EF

relative to the probability of . That is, we have the following definition.

Definition

1
36

.

1
6

,

1
6

.

𝐸 𝐹

𝑃ሺ𝐸 |𝐹ሻ

𝑃ሺ𝐸|𝐹ሻ 𝐸 𝐹

𝐹 𝐸

𝐸 𝐹 𝐸𝐹.

𝐹 𝐹

𝐸𝐹

𝐹
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If  then

Example 2a

Joe is  percent certain that his missing key is in one of the two pockets of his

hanging jacket, being  percent certain it is in the left-hand pocket and 

percent certain it is in the right-hand pocket. If a search of the left-hand pocket

does not find the key, what is the conditional probability that it is in the other

pocket?

Solution

If we let  be the event that the key is in the left-hand pocket of the jacket, and 

be the event that it is in the right-hand pocket, then the desired probability

 can be obtained as follows:

If each outcome of a finite sample space  is equally likely, then, conditional on the

event that the outcome lies in a subset  all outcomes in  become equally

likely. In such cases, it is often convenient to compute conditional probabilities of the

form  by using  as the sample space. Indeed, working with this reduced

sample space often results in an easier and better understood solution. Our next two

examples illustrate this point.

Example 2b

A coin is flipped twice. Assuming that all four points in the sample space

 are equally likely, what is the conditional probability

that both flips land on heads, given that (a) the first flip lands on heads? (b) at

least one flip lands on heads?

Solution

Let  be the event that both flips land on heads; let 

be the event that the first flip lands on heads; and let  be

𝑃ሺ𝐹ሻ ൐ 0,

𝑃ሺ𝐸|𝐹ሻ ൌ
𝑃ሺ𝐸𝐹ሻ
𝑃ሺ𝐹ሻ

(2.1)

80

40 40

𝐿 𝑅

𝑃ሺ𝑅||𝐿
௖ሻ

𝑃ሺ𝑅 ||𝐿
௖ሻ ൌ

𝑃ሺ𝑅𝐿௖ሻ
𝑃ሺ𝐿௖ሻ

ൌ
𝑃ሺ𝑅ሻ

1 െ 𝑃ሺ𝐿ሻ

ൌ 2/3

𝑆

𝐹 ⊂ 𝑆, 𝐹

𝑃ሺ𝐸 ||𝐹ሻ 𝐹

𝑆 ൌ ሼሺℎ, ℎሻ, ሺℎ, 𝑡ሻ, ሺ𝑡, ℎሻ, ሺ𝑡, 𝑡ሻሽ

𝐵 ൌ ሼሺℎ, ℎሻሽ 𝐹 ൌ ሼሺℎ, ℎሻ, ሺℎ, 𝑡ሻሽ
𝐴 ൌ ሼሺℎ, ℎሻ, ሺℎ, 𝑡ሻ, ሺ𝑡, ℎሻሽ
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the event that at least one flip lands on heads. The probability for (a) can be

obtained from

For (b), we have

Thus, the conditional probabilityhat both flips land on heads given that the first

one does is  whereas the conditional probability that both flips land on heads

given that at least one does is only  Many students initially find this latter

result surprising. They reason that given that at least one flip lands on heads,

there are two possible results: Either they both land on heads or only one does.

Their mistake, however, is in assuming that these two possibilities are equally

likely. Initially there are  equally likely outcomes. Because the information that at

least one flip lands on heads is equivalent to the information that the outcome is

not  we are left with the  equally likely outcomes  only one

of which results in both flips landing on heads.

Example 2c

In the card game bridge, the 52 cards are dealt out equally to 4 players–called

East, West, North, and South. If North and South have a total of 8 spades among

them, what is the probability that East has 3 of the remaining 5 spades?

Solution

Probably the easiest way to compute the desired probability is to work with the

reduced sample space. That is, given that North–South have a total of 8 spades

among their 26 cards, there remains a total of 26 cards, exactly 5 of them being

spades, to be distributed among the East–West hands. Since each distribution is

equally likely, it follows that the conditional probability that East will have exactly

𝑃ሺ𝐵 ||𝐹ሻ ൌ
𝑃ሺ𝐵𝐹ሻ
𝑃ሺ𝐹ሻ

ൌ
𝑃ሺሼሺℎ, ℎሻሽሻ

𝑃ሺሼሺℎ, ℎሻ, ሺℎ, 𝑡ሻሽሻ

ൌ
1/4
2/4

ൌ 1/2

𝑃ሺ𝐵 ||𝐴ሻ ൌ
𝑃ሺ𝐵𝐴ሻ
𝑃ሺ𝐴ሻ

ൌ
𝑃ሺሼሺℎ, ℎሻሽሻ

𝑃ሺሼሺℎ, ℎሻ, ሺℎ, 𝑡ሻ, ሺ𝑡, ℎሻሽሻ

ൌ
1/4
3/4

ൌ 1/3

1/2,

1/3.

4

ሺ𝑡, 𝑡ሻ, 3 ሺℎ, ℎሻ, ሺℎ, 𝑡ሻ, ሺ𝑡, ℎሻ,
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3 spades among his or her 13 cards is

Multiplying both sides of Equation (2.1)  by  we obtain

In words, Equation (2.2)  states that the probability that both  and  occur is

equal to the probability that  occurs multiplied by the conditional probability of 

given that  occurred. Equation (2.2)  is often quite useful in computing the

probability of the intersection of events.

Example 2d

Celine is undecided as to whether to take a French course or a chemistry course.

She estimates that her probability of receiving an A grade would be  in a French

course and  in a chemistry course. If Celine decides to base her decision on the

flip of a fair coin, what is the probability that she gets an A in chemistry?

Solution

Let C be the event that Celine takes chemistry and  denote the event that she

receives an A in whatever course she takes, then the desired probability is 

(CA), which is calculated by using Equation (2.2)  as follows:

Example 2e

Suppose that an urn contains 8 red balls and 4 white balls. We draw 2 balls from

the urn without replacement. (a) If we assume that at each draw, each ball in the

urn is equally likely to be chosen, what is the probability that both balls drawn are

red? (b) Now suppose that the balls have different weights, with each red ball

having weight  and each white ball having weight . Suppose that the

probability that a given ball in the urn is the next one selected is its weight divided

ቆ
5

3
ቇቆ

21

10
ቇ

ቆ
26

13
ቇ

ൎ .339

𝑃ሺ𝐹ሻ,

𝑃ሺ𝐸𝐹ሻ ൌ 𝑃ሺ𝐹ሻ𝑃ሺ𝐸 ||𝐹ሻ

(2.2)

𝐸 𝐹

𝐹 𝐸

𝐹

1
2

2
3

𝐴

𝑃

𝑃ሺ𝐶𝐴ሻ ൌ 𝑃ሺ𝐶ሻ𝑃ሺ𝐴 ||𝐶ሻ

ൌ ቆ
1
2
ቇቆ

2
3
ቇ ൌ

1
3

𝑟 𝑤
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by the sum of the weights of all balls currently in the urn. Now what is the

probability that both balls are red?

Solution

Let  and  denote, respectively, the events that the first and second balls

drawn are red. Now, given that the first ball selected is red, there are 7 remaining

red balls and 4 white balls, so  As  is clearly  the desired

probability is

Of course, this probability could have been computed by 

For part (b), we again let  be the event that the th ball chosen is red and use

Now, number the red balls, and let  be the event that the first ball

drawn is red ball number . Then

Moreover, given that the first ball is red, the urn then contains 7 red and 4 white

balls. Thus, by an argument similar to the preceding one,

Hence, the probability that both balls are red is

A generalization of Equation (2.2) , which provides an expression for the

probability of the intersection of an arbitrary number of events, is sometimes referred

to as the multiplication rule.

The multiplication rule

𝑅ଵ 𝑅ଶ

𝑃ሺ𝑅ଶ|𝑅ଵሻ ൌ
7

11
. 𝑃ሺ𝑅ଵሻ

8
12

,

𝑃ሺ𝑅ଵ𝑅ଶሻ ൌ 𝑃ሺ𝑅ଵሻ𝑃ሺ𝑅ଶ ||𝑅ଵሻ

ൌ ቆ
2
3
ቇቆ

7
11
ቇ ൌ

14
33

𝑃ቆ𝑅ଵ𝑅ଶቇ ൌ ቆ
8

2
ቇ/ቆ

12

2
ቇ.

𝑅௜ 𝑖

𝑃ሺ𝑅ଵ𝑅ଶሻ ൌ 𝑃ሺ𝑅ଵሻ𝑃ሺ𝑅ଶ|𝑅ଵሻ

𝐵௜, 𝑖 ൌ 1, …, 8

𝑖

𝑃ሺ𝑅ଵሻ ൌ 𝑃൬ ∪
೔ൌభ
଼ 𝐵௜൰ ൌ ∑

௜ ൌ ଵ

଼
𝑃ሺ𝐵௜ሻ ൌ 8 

𝑟
8𝑟 ൅ 4𝑤

𝑃ሺ𝑅ଶ|𝑅ଵሻ ൌ
7𝑟

7𝑟 ൅ 4𝑤

𝑃ቆ𝑅ଵ𝑅ଶቇ ൌ
8𝑟

8𝑟 ൅ 4𝑤
 

7𝑟
7𝑟 ൅ 4𝑤
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In words, the multiplication rule states that  the probability that all of the

events  occur, is equal to  the probability that  occurs, multiplied

by  the conditional probability that  occurs given that  has occurred,

multiplied by  the conditional probability that  occurs given that both 

and  have occurred, and so on.

To prove the multiplication rule, just apply the definition of conditional probability to its

right-hand side, giving

Example 2f

In the match problem stated in Example 5m  of Chapter 2 , it was shown

that  the probability that there are no matches when  people randomly select

from among their own  hats, is given by

What is the probability that exactly  of the  people have matches?

Solution

Let us fix our attention on a particular set of  people and determine the

probability that these  individuals have matches and no one else does. Letting 

denote the event that everyone in this set has a match, and letting  be the event

that none of the other  people have a match, we have

Now, let  be the event that the th member of the set has a match.

Then

𝑃ሺ𝐸ଵ𝐸ଶ𝐸ଷ⋯𝐸௡ሻ ൌ 𝑃ሺ𝐸ଵሻ𝑃ሺ𝐸ଶ ||𝐸ଵሻ𝑃ሺ𝐸ଷ ||𝐸ଵ𝐸ଶሻ⋯𝑃ሺ𝐸௡ ||𝐸ଵ⋯𝐸௡െଵሻ

𝑃ሺ𝐸ଵ𝐸ଶ⋯𝐸௡ሻ,
𝐸ଵ,𝐸ଶ, …,𝐸௡ 𝑃ሺ𝐸ଵሻ, 𝐸ଵ

𝑃ሺ𝐸ଶ ||𝐸ଵሻ, 𝐸ଶ 𝐸ଵ
𝑃ሺ𝐸ଷ ||𝐸ଵ𝐸ଶሻ, 𝐸ଷ 𝐸ଵ

𝐸ଶ

𝑃ቆ𝐸ଵቇ
𝑃ሺ𝐸ଵ𝐸ଶሻ
𝑃ሺ𝐸ଵሻ

𝑃ሺ𝐸ଵ𝐸ଶ𝐸ଷሻ
𝑃ሺ𝐸ଵ𝐸ଶሻ

⋯
𝑃ሺ𝐸ଵ𝐸ଶ⋯𝐸௡ሻ
𝑃ሺ𝐸ଵ𝐸ଶ⋯𝐸௡െଵሻ

ൌ 𝑃ቆ𝐸ଵ𝐸ଶ⋯𝐸௡ቇ

𝑃ே, 𝑁

𝑁

𝑃ே ൌ ෍
௜ ൌ ଴

ே

ሺ െ 1ሻ௜/𝑖!

𝑘 𝑁

𝑘

𝑘 𝐸

𝐺

𝑁 െ 𝑘

𝑃ሺ𝐸𝐺ሻ ൌ 𝑃ሺ𝐸ሻ𝑃ሺ𝐺|𝐸ሻ

𝐹௜, 𝑖 ൌ 1, …, 𝑘, 𝑖

𝑃ሺ𝐸ሻ ൌ 𝑃ሺ𝐹ଵ𝐹ଶ⋯𝐹௞ሻ

ൌ 𝑃ሺ𝐹ଵሻ𝑃ሺ𝐹ଶ ||𝐹ଵሻ𝑃ሺ𝐹ଷ ||𝐹ଵ𝐹ଶሻ⋯𝑃ሺ𝐹௞ ||𝐹ଵ⋯𝐹௞െଵሻ

ൌ
1
𝑁
 

1
𝑁 െ 1

 
1

𝑁െ 2
⋯

1
𝑁 െ 𝑘 ൅ 1

ൌ
ሺ𝑁 െ 𝑘ሻ!

𝑁!
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Given that everyone in the set of  has a match, the other  people will be

randomly choosing among their own  hats, so the probability that none of

them has a match is equal to the probability of no matches in a problem having

 people choosing among their own  hats. Therefore,

showing that the probability that a specified set of  people have matches and no

one else does is

Because there will be exactly  matches if the preceding is true for any of the

 sets of  individuals, the desired probability is

Example 2g

An ordinary deck of 52 playing cards is randomly divided into 4 piles of 13 cards

each. Compute the probability that each pile has exactly 1 ace.

Solution

Define events  as follows:

The desired probability is  and by the multiplication rule,

Now,

𝑘 𝑁 െ 𝑘

𝑁 െ 𝑘

𝑁 െ 𝑘 𝑁 െ 𝑘

𝑃ሺ𝐺|𝐸ሻ ൌ 𝑃ேെ௞ ൌ ∑
௜ ൌ ଴

ே െ ௞
ሺെ1ሻ௜/𝑖!

𝑘

𝑃ቆ𝐸𝐺ቇ ൌ
ሺ𝑁 െ 𝑘ሻ!

𝑁!
 𝑃ேെ௞

𝑘

ቆ
𝑁

𝑘
ቇ 𝑘

𝑃ሺexactly 𝑘 matchesሻ ൌ ቆ
𝑁

𝑘
ቇ𝑃ቆ𝐸𝐺ቇ

ൌ 𝑃ேെ௄/𝐾!

ൎ 𝑒െଵ/𝑘! when 𝑁 is large

𝐸௜, 𝑖 ൌ 1, 2, 3, 4,

𝐸ଵ ൌ ሼthe ace of  spades is in any one of  the pilesሽ

𝐸ଶ ൌ ሼthe ace of spades and the ace of hearts are in different pilesሽ

𝐸ଷ ൌ ሼthe aces of spades, hearts, and diamonds are all in different pilesሽ

𝐸ସ ൌ ሼall 4 aces are in different pilesሽ

𝑃ሺ𝐸ଵ𝐸ଶ𝐸ଷ𝐸ସሻ,

𝑃ሺ𝐸ଵ𝐸ଶ𝐸ଷ𝐸ସሻ ൌ 𝑃ሺ𝐸ଵሻ𝑃ሺ𝐸ଶ ||𝐸ଵሻ𝑃ሺ𝐸ଷ ||𝐸ଵ𝐸ଶሻ𝑃ሺ𝐸ସ ||𝐸ଵ𝐸ଶ𝐸ଷሻ
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since  is the sample space . To determine  consider the pile that

contains the ace of spades. Because its remaining  cards are equally likely to

be any  of the remaining  cards, the probability that the ace of hearts is

among them is  giving that

Also, given that the ace of spades and ace of hearts are in different piles, it

follows that the set of the remaining  cards of these two piles is equally likely to

be any set of  of the remaining  cards. As the probability that the ace of

diamonds is one of these  is  we see that

Because the same logic as used in the preceding yields that

the probability that each pile has exactly  ace is

That is, there is approximately a 10.5 percent chance that each pile will contain

an ace. (Problem 13  gives another way of using the multiplication rule to

solve this problem.)

Example 2h

Four of the eight teams in the quarterfinal round of the 2016 European

Champions League Football (soccer) tournament were the acknowledged strong

teams Barcelona, Bayern Munich, Real Madrid, and Paris St-Germain. The

pairings in this round are supposed to be totally random, in the sense that all

possible pairings are equally likely. Assuming this is so, find the probability that

none of the strong teams play each other in this round. (Surprisingly, it seems to

be a common occurrence in this tournament that, even though the pairings are

supposedly random, the very strong teams are rarely matched against each

other in this round.)

𝑃ሺ𝐸ଵሻ ൌ 1

𝐸ଵ 𝑆 𝑃ሺ𝐸ଶ ||𝐸ଵሻ,
12

12 51

12/51,

𝑃ሺ𝐸ଶ|𝐸ଵሻ ൌ 1 െ
12
51

ൌ
39
51

24

24 50

24 24/50,

𝑃ሺ𝐸ଷ|𝐸ଵ𝐸ଶሻ ൌ 1 െ
24
50

ൌ
26
50

𝑃ሺ𝐸ସ|𝐸ଵ𝐸ଶ𝐸ଷሻ ൌ 1 െ
36
49

ൌ
13
49

1

𝑃ቆ𝐸ଵ𝐸ଶ𝐸ଷ𝐸ସቇ ൌ
39 ⋅ 26 ⋅ 13
51 ⋅ 50 ⋅ 49

ൎ . 105
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Solution

If we number the four strong teams  through  and then let  be

the event that team  plays one of the four weak teams, then the desired

probability is  By the multiplication rule

The preceding follows by first noting that because team  is equally likely to be

matched with any of the other  teams, we have that  Now, given

that  occurs, team  is equally likely to be matched with any of five teams:

namely, teams  or any of the three weak teams not matched with team . As

three of these five teams are weak, we see that  Similarly,

given that events  and  have occurred, team  is equally likely to be

matched with any from a set of three teams, consisting of team  and the

remaining two weaker teams not matched with  or . Hence,

 Finally, given that  and  all occur, team  will be

matched with the remaining weak team not matched with any of  giving

that 

Remarks Our definition of  is consistent with the interpretation of probability

as being a long-run relative frequency. To see this, suppose that  repetitions of the

experiment are to be performed, where  is large. We claim that if we consider only

those experiments in which  occurs, then  will equal the long-run proportion

of them in which  also occurs. To verify this statement, note that since  is the

long-run proportion of experiments in which  occurs, it follows that in the 

repetitions of the experiment,  will occur approximately  times. Similarly, in

approximately  of these experiments, both  and  will occur. Hence, out of

the approximately  experiments in which  occurs, the proportion of them in

which  also occurs is approximately equal to

Because this approximation becomes exact as  becomes larger and larger, we have

the appropriate definition of 

1 4, 𝑊௜, 𝑖 ൌ 1, 2, 3, 4,

𝑖

𝑃ሺ𝑊ଵ𝑊ଶ𝑊ଷ𝑊ସሻ.

𝑃ሺ𝑊ଵ𝑊ଶ𝑊ଷ𝑊ସሻ ൌ 𝑃ሺ𝑊ଵሻ𝑃ሺ𝑊ଶ ||𝑊ଵሻ𝑃ሺ𝑊ଷ ||𝑊ଵ𝑊ଶሻ𝑃ሺ𝑊ସ ||𝑊ଵ𝑊ଶ𝑊ଷሻ

ൌ ሺ4/7ሻሺ3/5ሻሺ2/3ሻሺ1ሻ

ൌ 8/35

1

7  𝑃ሺ𝑊ଵሻ ൌ 4/7 .

𝑊ଵ 2

3, 4, 1

𝑃ሺ𝑊ଶ ||𝑊ଵሻ ൌ 3/5 .

𝑊ଵ 𝑊ଶ 3

4

1 2

𝑃ሺ𝑊ଷ ||𝑊ଵ𝑊ଶሻ ൌ 2/3. 𝑊ଵ, 𝑊ଶ, 𝑊ଷ 4

1, 2, 3,

𝑃ሺ𝑊ସ ||𝑊ଵ𝑊ଶ𝑊ଷሻ ൌ 1.

𝑃ሺ𝐸 ||𝐹ሻ
𝑛

𝑛

𝐹 𝑃ሺ𝐸 ||𝐹ሻ
𝐸 𝑃ሺ𝐹ሻ

𝐹 𝑛

𝐹 𝑛𝑃ሺ𝐹ሻ
𝑛𝑃ሺ𝐸𝐹ሻ 𝐸 𝐹

𝑛𝑃ሺ𝐹ሻ 𝐹

𝐸

𝑛𝑃ሺ𝐸𝐹ሻ
𝑛𝑃ሺ𝐹ሻ

ൌ
𝑃ሺ𝐸𝐹ሻ
𝑃ሺ𝐹ሻ

𝑛

𝑃ሺ𝐸 ||𝐹ሻ.
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Let  and  be events. We may express  as

for, in order for an outcome to be in  it must either be in both  and  or be in  but

not in . (See Figure 3.1 .) As EF and  are clearly mutually exclusive, we

have, by Axiom 3,

Figure 3.1 ; 

Equation (3.1)  states that the probability of the event  is a weighted average of

the conditional probability of  given that  has occurred and the conditional

probability of  given that  has not occurred—each conditional probability being

given as much weight as the event on which it is conditioned has of occurring. This is

an extremely useful formula, because its use often enables us to determine the

probability of an event by first “conditioning” upon whether or not some second event

has occurred. That is, there are many instances in which it is difficult to compute the

probability of an event directly, but it is straightforward to compute it once we know

whether or not some second event has occurred. We illustrate this idea with some

examples.

Example 3a

(Part 1)

An insurance company believes that people can be divided into two classes:

those who are accident prone and those who are not. The company’s statistics

show that an accident-prone person will have an accident at some time within a

fixed 1-year period with probability .4, whereas this probability decreases to .2 for

a person who is not accident prone. If we assume that 30 percent of the

𝐸 𝐹 𝐸

𝐸 ൌ 𝐸𝐹 ∪ 𝐸𝐹௖

𝐸, 𝐸 𝐹 𝐸

𝐹 𝐸𝐹௖

𝑃ሺ𝐸ሻ ൌ 𝑃ሺ𝐸𝐹ሻ ൅ 𝑃ሺ𝐸𝐹௖ሻ

ൌ 𝑃ሺ𝐸|𝐹ሻ𝑃ሺ𝐹ሻ ൅ 𝑃ሺ𝐸||𝐹
௖ሻ𝑃ሺ𝐹௖ሻ

ൌ 𝑃ሺ𝐸|𝐹ሻ𝑃ሺ𝐹ሻ ൅ 𝑃ሺ𝐸 ||𝐹
௖ሻሾ1 െ 𝑃ሺ𝐹ሻሿ

(3.1)

𝐸 ൌ 𝐸𝐹 ∪ 𝐸𝐹௖. 𝐸𝐹 ൌ Shaded Area 𝐸𝐹௖ ൌ Striped Area .

𝐸

𝐸 𝐹

𝐸 𝐹
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population is accident prone, what is the probability that a new policyholder will

have an accident within a year of purchasing a policy?

Solution

We shall obtain the desired probability by first conditioning upon whether or not

the policyholder is accident prone. Let  denote the event that the policyholder

will have an accident within a year of purchasing the policy, and let  denote the

event that the policyholder is accident prone. Hence, the desired probability is

given by

Example 3a

(Part 2)

Suppose that a new policyholder has an accident within a year of purchasing a

policy. What is the probability that he or she is accident prone?

Solution

The desired probability is

Example 3b

Consider the following game played with an ordinary deck of 52 playing cards:

The cards are shuffled and then turned over one at a time. At any time, the

player can guess that the next card to be turned over will be the ace of spades; if

it is, then the player wins. In addition, the player is said to win if the ace of

spades has not yet appeared when only one card remains and no guess has yet

been made. What is a good strategy? What is a bad strategy?

Solution

Every strategy has probability 1/52 of winning! To show this, we will use induction

to prove the stronger result that for an  card deck, one of whose cards is the ace

𝐴ଵ
𝐴

𝑃ሺ𝐴ଵሻ ൌ 𝑃ሺ𝐴ଵ ||𝐴ሻ𝑃ሺ𝐴ሻ ൅ 𝑃ሺ𝐴ଵ ||𝐴
௖ሻ𝑃ሺ𝐴௖ሻ

ൌ ሺ . 4ሻሺ . 3ሻ ൅ ሺ . 2ሻሺ . 7ሻ ൌ . 26

𝑃ሺ𝐴 ||𝐴ଵሻ ൌ
𝑃ሺ𝐴𝐴ଵሻ
𝑃ሺ𝐴ଵሻ

ൌ
𝑃ሺ𝐴ሻ𝑃ሺ𝐴ଵ ||𝐴ሻ

𝑃ሺ𝐴ଵሻ

ൌ
ሺ . 3ሻሺ . 4ሻ

. 26
ൌ

6
13

𝑛
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of spades, the probability of winning is 1/  no matter what strategy is employed.

Since this is clearly true for  assume it to be true for an  card deck,

and now consider an  card deck. Fix any strategy, and let  denote the

probability that the strategy guesses that the first card is the ace of spades.

Given that it does, the player’s probability of winning is 1/ . If, however, the

strategy does not guess that the first card is the ace of spades, then the

probability that the player wins is the probability that the first card is not the ace

of spades, namely,  multiplied by the conditional probability of winning

given that the first card is not the ace of spades. But this latter conditional

probability is equal to the probability of winning when using an  card deck

containing a single ace of spades; it is thus, by the induction hypothesis,

 Hence, given that the strategy does not guess the first card, the

probability of winning is

Thus, letting  be the event that the first card is guessed, we obtain

Example 3c

In answering a question on a multiple-choice test, a student either knows the

answer or guesses. Let  be the probability that the student knows the answer

and  be the probability that the student guesses. Assume that a student who

guesses at the answer will be correct with probability  where  is the

number of multiple-choice alternatives. What is the conditional probability that a

student knew the answer to a question given that he or she answered it

correctly?

Solution

Let  and  denote, respectively, the events that the student answers the

question correctly and the event that he or she actually knows the answer. Now,

𝑛,

𝑛 ൌ 1, 𝑛 െ 1

𝑛 𝑝

𝑛

ሺ𝑛 െ 1ሻ/𝑛,

𝑛 െ 1

1/ሺ𝑛 െ 1ሻ.

𝑛 െ 1
𝑛

1
𝑛 െ 1

ൌ
1
𝑛

𝐺

𝑃ሼwinሽ ൌ 𝑃ሼwin|𝐺ሽ𝑃ሺ𝐺ሻ ൅ 𝑃ሼwin||𝐺
௖ሽሺ1 െ 𝑃ሺ𝐺ሻሻ ൌ

1
𝑛
𝑝 ൅

1
𝑛
ሺ1 െ 𝑝ሻ

ൌ
1
𝑛

𝑝

1 െ 𝑝

1/𝑚, 𝑚

𝐶 𝐾
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For example, if  then the probability that the student knew the

answer to a question he or she answered correctly is 

Example 3d

A laboratory blood test is 95 percent effective in detecting a certain disease when

it is, in fact, present. However, the test also yields a “false positive” result for 1

percent of the healthy persons tested. (That is, if a healthy person is tested, then,

with probability .01, the test result will imply that he or she has the disease.) If .5

percent of the population actually has the disease, what is the probability that a

person has the disease given that the test result is positive?

Solution

Let  be the event that the person tested has the disease and  the event that

the test result is positive. Then the desired probability is

Thus, only 32 percent of those persons whose test results are positive actually

have the disease. Many students are often surprised at this result (they expect

the percentage to be much higher, since the blood test seems to be a good one),

so it is probably worthwhile to present a second argument that, although less

rigorous than the preceding one, is probably more revealing. We now do so.

Since .5 percent of the population actually has the disease, it follows that, on the

𝑃ሺ𝐾|𝐶ሻ ൌ
𝑃ሺ𝐾𝐶ሻ
𝑃ሺ𝐶ሻ

ൌ
𝑃ሺ𝐶 ||𝐾ሻ𝑃ሺ𝐾ሻ

𝑃ሺ𝐶 ||𝐾ሻ𝑃ሺ𝐾ሻ ൅ 𝑃ሺ𝐶 ||𝐾
௖ሻ𝑃ሺ𝐾௖ሻ

ൌ
𝑝

𝑝 ൅ ሺ1/𝑚ሻሺ1 െ 𝑝ሻ

ൌ
𝑚𝑝

1 ൅ ሺ𝑚 െ 1ሻ𝑝

𝑚 ൌ 5,𝑝 ൌ
1
2

,

5
6

.

𝐷 𝐸

𝑃ሺ𝐷|𝐸ሻ ൌ
𝑃ሺ𝐷𝐸ሻ
𝑃ሺ𝐸ሻ

ൌ
𝑃ሺ𝐸|𝐷ሻ𝑃ሺ𝐷ሻ

𝑃ሺ𝐸|𝐷ሻ𝑃ሺ𝐷ሻ ൅ 𝑃ሺ𝐸||𝐷
௖ሻ𝑃ሺ𝐷௖ሻ

ൌ
ሺ.95ሻሺ.005ሻ

ሺ.95ሻሺ.005ሻ ൅ ሺ.01ሻሺ.995ሻ

ൌ
95

294
ൎ .323
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average, 1 person out of every 200 tested will have it. The test will correctly

confirm that this person has the disease with probability .95. Thus, on the

average, out of every 200 persons tested, the test will correctly confirm that .95

person has the disease. On the other hand, out of the (on the average) 199

healthy people, the test will incorrectly state that (199)(.01) of these people have

the disease. Hence, for every .95 diseased persons that the test correctly states

is ill, there are (on the average) (199)(.01) healthy persons who the test

incorrectly states are ill. Thus, the proportion of time that the test result is correct

when it states that a person is ill is

Equation (3.1)  is also useful when one has to reassess one’s personal

probabilities in the light of additional information. For instance, consider the

examples that follow.

Example 3e

Consider a medical practitioner pondering the following dilemma: “If I’m at least

80 percent certain that my patient has this disease, then I always recommend

surgery, whereas if I’m not quite as certain, then I recommend additional tests

that are expensive and sometimes painful. Now, initially I was only 60 percent

certain that Jones had the disease, so I ordered the series A test, which always

gives a positive result when the patient has the disease and almost never does

when he is healthy. The test result was positive, and I was all set to recommend

surgery when Jones informed me, for the first time, that he was diabetic. This

information complicates matters because, although it doesn’t change my original

60 percent estimate of his chances of having the disease in question, it does

affect the interpretation of the results of the A test. This is so because the A test,

while never yielding a positive result when the patient is healthy, does

unfortunately yield a positive result 30 percent of the time in the case of diabetic

patients who are not suffering from the disease. Now what do I do? More tests or

immediate surgery?”

Solution

In order to decide whether or not to recommend surgery, the doctor should first

compute her updated probability that Jones has the disease given that the A test

result was positive. Let  denote the event that Jones has the disease and  the

event that the A test result is positive. The desired conditional probability is then

. 95
. 95 ൅ ሺ199ሻሺ . 01ሻ

ൌ
95

294
ൎ . 323

𝐷 𝐸
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Note that we have computed the probability of a positive test result by

conditioning on whether or not Jones has the disease and then using the fact that

because Jones is a diabetic, his conditional probability of a positive result given

that he does not have the disease,  equals .3. Hence, as the doctor

should now be more than 80 percent certain that Jones has the disease, she

should recommend surgery.

Example 3f

At a certain stage of a criminal investigation, the inspector in charge is 60 percent

convinced of the guilt of a certain suspect. Suppose, however, that a new piece

of evidence which shows that the criminal has a certain characteristic (such as

left-handedness, baldness, or brown hair) is uncovered. If 20 percent of the

population possesses this characteristic, how certain of the guilt of the suspect

should the inspector now be if it turns out that the suspect has the characteristic?

Solution

Letting  denote the event that the suspect is guilty and  the event that he

possesses the characteristic of the criminal, we have

where we have supposed that the probability of the suspect having the

characteristic if he is, in fact, innocent is equal to .2, the proportion of the

population possessing the characteristic.

Example 3g

𝑃ሺ𝐷 ||𝐸ሻ ൌ
𝑃ሺ𝐷𝐸ሻ
𝑃ሺ𝐸ሻ

ൌ
𝑃ሺ𝐷ሻ𝑃ሺ𝐸 ||𝐷ሻ

𝑃ሺ𝐸 ||𝐷ሻ𝑃ሺ𝐷ሻ ൅ 𝑃ሺ𝐸 ||𝐷
௖ሻ𝑃ሺ𝐷௖ሻ

ൌ
ሺ . 6ሻ1

1ሺ . 6ሻ ൅ ሺ . 3ሻሺ . 4ሻ

ൌ . 833

𝑃ሺ𝐸 ||𝐷
௖ሻ,

𝐺 𝐶

𝑃ሺ𝐺 ||𝐶ሻ ൌ
𝑃ሺ𝐺𝐶ሻ
𝑃ሺ𝐶ሻ

ൌ
𝑃ሺ𝐶 ||𝐺ሻ𝑃ሺ𝐺ሻ

𝑃ሺ𝐶 ||𝐺ሻ𝑃ሺ𝐺ሻ ൅ 𝑃ሺ𝐶 ||𝐺
௖ሻ𝑃ሺ𝐺௖ሻ

ൌ
1ሺ . 6ሻ

1ሺ . 6ሻ ൅ ሺ . 2ሻሺ . 4ሻ

ൎ . 882
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In the world bridge championships held in Buenos Aires in May 1965, the famous

British bridge partnership of Terrence Reese and Boris Schapiro was accused of

cheating by using a system of finger signals that could indicate the number of

hearts held by the players. Reese and Schapiro denied the accusation, and

eventually a hearing was held by the British bridge league. The hearing was in

the form of a legal proceeding with prosecution and defense teams, both having

the power to call and cross-examine witnesses. During the course of the

proceeding, the prosecutor examined specific hands played by Reese and

Schapiro and claimed that their playing these hands was consistent with the

hypothesis that they were guilty of having illicit knowledge of the heart suit. At

this point, the defense attorney pointed out that their play of these hands was

also perfectly consistent with their standard line of play. However, the prosecution

then argued that as long as their play was consistent with the hypothesis of guilt,

it must be counted as evidence toward that hypothesis. What do you think of the

reasoning of the prosecution?

Solution

The problem is basically one of determining how the introduction of new

evidence (in this example, the playing of the hands) affects the probability of a

particular hypothesis. If we let  denote a particular hypothesis (such as the

hypothesis that Reese and Schapiro are guilty) and  the new evidence, then

where P(H) is our evaluation of the likelihood of the hypothesis before the

introduction of the new evidence. The new evidence will be in support of the

hypothesis whenever it makes the hypothesis more likely—that is, whenever

 From Equation (3.2) , this will be the case whenever

or, equivalently, whenever

In other words, any new evidence can be considered to be in support of a

particular hypothesis only if its occurrence is more likely when the hypothesis is

𝐻

𝐸

𝑃ሺ𝐻 ||𝐸ሻ ൌ
𝑃ሺ𝐻𝐸ሻ
𝑃ሺ𝐸ሻ

ൌ
𝑃ሺ𝐸 ||𝐻ሻ𝑃ሺ𝐻ሻ

𝑃ሺ𝐸 ||𝐻ሻ𝑃ሺ𝐻ሻ ൅ 𝑃ሺ𝐸 ||𝐻
௖ሻሾ1 െ 𝑃ሺ𝐻ሻሿ

(3.2)

𝑃ሺ𝐻 ||𝐸ሻ ൒ 𝑃ሺ𝐻ሻ.

𝑃ሺ𝐸 ||𝐻ሻ ൒ 𝑃ሺ𝐸 ||𝐻ሻ𝑃ሺ𝐻ሻ ൅ 𝑃ሺ𝐸 ||𝐻
௖ሻሾ1 െ 𝑃ሺ𝐻ሻሿ

𝑃ሺ𝐸 ||𝐻ሻ ൒ 𝑃ሺ𝐸 ||𝐻
௖ሻ
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true than when it is false. In fact, the new probability of the hypothesis depends

on its initial probability and the ratio of these conditional probabilities, since, from

Equation (3.2) ,

Hence, in the problem under consideration, the play of the cards can be

considered to support the hypothesis of guilt only if such play would have been

more likely if the partnership were cheating than if it were not. As the prosecutor

never made this claim, his assertion that the evidence is in support of the guilt

hypothesis is invalid.

Example 3h

Twins can be either identical or fraternal. Identical, also called monozygotic, twins

form when a single fertilized egg splits into two genetically identical parts.

Consequently, identical twins always have the same set of genes. Fraternal, also

called dizygotic, twins develop when two eggs are fertilized and implant in the

uterus. The genetic connection of fraternal twins is no more or less the same as

siblings born at separate times. A Los Angeles County, California, scientist

wishing to know the current fraction of twin pairs born in the county that are

identical twins has assigned a county statistician to study this issue. The

statistician initially requested each hospital in the county to record all twin births,

indicating whether or not the resulting twins were identical. The hospitals,

however, told her that to determine whether newborn twins were identical was

not a simple task, as it involved the permission of the twins’ parents to perform

complicated and expensive DNA studies that the hospitals could not afford. After

some deliberation, the statistician just asked the hospitals for data listing all twin

births along with an indication as to whether the twins were of the same sex.

When such data indicated that approximately  percent of twin births were

same-sexed, the statistician declared that approximately  percent of all twins

were identical. How did she come to this conclusion?

Solution

The statistician reasoned that identical twins are always of the same sex,

whereas fraternal twins, having the same relationship to each other as any pair of

siblings, will have probability  of being of the same sex. Letting  be the event

that a pair of twins is identical, and  be the event that a pair of twins is of the

same sex, she computed the probability  by conditioning on whether the

twin pair was identical. This gave

𝑃ሺ𝐻|𝐸ሻ ൌ
𝑃ሺ𝐻ሻ

𝑃ሺ𝐻ሻ ൅ ሾ1 െ 𝑃ሺ𝐻ሻሿ
𝑃ሺ𝐸|𝐻௖ሻ
𝑃ሺ𝐸|𝐻ሻ

64

28

1/2 𝐼

𝑆𝑆

𝑃ሺ𝑆𝑆ሻ
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or

which, using that  yielded the result

The change in the probability of a hypothesis when new evidence is introduced can

be expressed compactly in terms of the change in the odds of that hypothesis, where

the concept of odds is defined as follows.

Definition

The odds of an event  are defined by

That is, the odds of an event  tell how much more likely it is that the event 

occurs than it is that it does not occur. For instance, if  then

 so the odds are 2. If the odds are equal to  then it is common

to say that the odds are “  to 1” in favor of the hypothesis.

Consider now a hypothesis  that is true with probability  and suppose that new

evidence  is introduced. Then, the conditional probabilities, given the evidence 

that  is true and that  is not true are respectively given by

Therefore, the new odds after the evidence  has been introduced are

That is, the new value of the odds of  is the old value multiplied by the ratio of the

conditional probability of the new evidence given that  is true to the conditional

probability given that  is not true. Thus, Equation (3.3)  verifies the result of

Example 3f , since the odds, and thus the probability of  increase whenever the

𝑃ሺ𝑆𝑆ሻ ൌ 𝑃ሺ𝑆𝑆 ||𝐼ሻ𝑃ሺ𝐼ሻ ൅ 𝑃ሺ𝑆𝑆 ||𝐼
௖ሻ𝑃ሺ𝐼௖ሻ

𝑃ሺ𝑆𝑆ሻ ൌ 1 ൈ 𝑃ሺ𝐼ሻ ൅
1
2
ൈ ሾ1 െ 𝑃ሺ𝐼ሻሿ ൌ

1
2
൅

1
2
 𝑃ሺ𝐼ሻ

𝑃ሺ𝑆𝑆ሻ ൎ . 64

𝑃ሺ𝐼ሻ ൎ . 28

𝐴

𝑃ሺ𝐴ሻ
𝑃ሺ𝐴௖ሻ

ൌ
𝑃ሺ𝐴ሻ

1 െ 𝑃ሺ𝐴ሻ

𝐴 𝐴

𝑃ቆ𝐴ቇ ൌ
2
3

,

𝑃ሺ𝐴ሻ ൌ 2𝑃ሺ𝐴௖ሻ, 𝛼,

𝛼

𝐻 𝑃ሺ𝐻ሻ,
𝐸 𝐸,

𝐻 𝐻

𝑃ሺ𝐻|𝐸ሻ ൌ
𝑃ሺ𝐸 ||𝐻ሻ𝑃ሺ𝐻ሻ

𝑃ሺ𝐸ሻ
𝑃ሺ𝐻௖|𝐸ሻ ൌ

𝑃ሺ𝐸||𝐻
௖ሻ𝑃ሺ𝐻௖ሻ

𝑃ሺ𝐸ሻ

𝐸

𝑃ሺ𝐻 ||𝐸ሻ
𝑃ሺ𝐻௖ ||𝐸ሻ

ൌ
𝑃ሺ𝐻ሻ
𝑃ሺ𝐻௖ሻ

𝑃ሺ𝐸 ||𝐻ሻ
𝑃ሺ𝐸 ||𝐻

௖ሻ

(3.3)

𝐻

𝐻

𝐻

𝐻,
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new evidence is more likely when  is true than when it is false. Similarly, the odds

decrease whenever the new evidence is more likely when  is false than when it is

true.

Example 3i

An urn contains two type  coins and one type  coin. When a type  coin is

flipped, it comes up heads with probability  whereas when a type  coin is

flipped, it comes up heads with probability  A coin is randomly chosen from

the urn and flipped. Given that the flip landed on heads, what is the probability

that it was a type  coin?

Solution

Let  be the event that a type  coin was flipped, and let  be the event that

a type  coin was flipped. We want  where heads is the event that

the flip landed on heads. From Equation (3.3) , we see that

Hence, the odds are  or, equivalently, the probability is  that a type 

coin was flipped.

Equation (3.1)  may be generalized as follows: Suppose that  are

mutually exclusive events such that

In other words, exactly one of the events  must occur. By writing

and using the fact that the events  are mutually exclusive, we obtain

𝐻

𝐻

𝐴 𝐵 𝐴

1/4, 𝐵

3/4.

𝐴

𝐴 𝐴 𝐵 ൌ 𝐴௖

𝐵 𝑃ሺ𝐴 ||  headsሻ,

𝑃ሺ𝐴|headsሻ
𝑃ሺ𝐴௖||headsሻ

ൌ
𝑃ሺ𝐴ሻ
𝑃ሺ𝐵ሻ

𝑃ሺ heads|𝐴ሻ
𝑃ሺ heads|𝐵ሻ

ൌ
2/3
1/3

 
1/4
3/4

ൌ 2/3

2/3:1, 2/5 𝐴

𝐹ଵ,𝐹ଶ, …,𝐹௡

∪
௜ ൌ ଵ

௡
𝐹௜ ൌ 𝑆

𝐹ଵ,𝐹ଶ, …,𝐹௡

𝐸 ൌ ∪
௜ ൌ ଵ

௡
𝐸𝐹௜

𝐸𝐹௜, 𝑖 ൌ 1, …,𝑛
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Thus, Equation (3.4) , often referred to as the law of total probability, shows how,

for given events  of which one and only one must occur, we can compute

 by first conditioning on which one of the  occurs. That is, Equation (3.4)

states that  is equal to a weighted average of  each term being

weighted by the probability of the event on which it is conditioned.

Example 3j

In Example 5j  of Chapter 2 , we considered the probability that, for a

randomly shuffled deck, the card following the first ace is some specified card,

and we gave a combinatorial argument to show that this probability is  Here

is a probabilistic argument based on conditioning: Let  be the event that the

card following the first ace is some specified card, say, card . To compute 

we ignore card  and condition on the relative ordering of the other 51 cards in

the deck. Letting  be the ordering gives

Now, given  there are 52 possible orderings of the cards, corresponding to

having card  being the th card in the deck,  But because all 

possible orderings were initially equally likely, it follows that, conditional on 

each of the 52 remaining possible orderings is equally likely. Because card  will

follow the first ace for only one of these orderings, we have 

implying that 

Again, let  be a set of mutually exclusive and exhaustive events (meaning

that exactly one of these events must occur).

Suppose now that  has occurred and we are interested in determining which one of

the  also occurred. Then, by Equation (3.4) , we have the following proposition.

Proposition 3.1

𝑃ሺ𝐸ሻ ൌ ෍
௜ ൌ ଵ

௡

𝑃ሺ𝐸𝐹௜ሻ

ൌ ෍
௜ ൌ ଵ

௡

𝑃ሺ𝐸 |𝐹௜ሻ𝑃ሺ𝐹௜ሻ

(3.4)

𝐹ଵ,𝐹ଶ, …,𝐹௡,

𝑃ሺ𝐸ሻ 𝐹௜
𝑃ሺ𝐸ሻ 𝑃ሺ𝐸 ||𝐹௜ሻ,

1
52

.

𝐸

𝑥 𝑃ሺ𝐸ሻ,
𝑥

𝐎

𝑃ቌ𝐸ቍ ൌ ෍
𝐎

𝑃ሺ𝐸|𝐎ሻ𝑃ሺ𝐎ሻ

𝐎,

𝑥 𝑖 𝑖 ൌ 1, …,52. 52!

𝐎,

𝑥

 𝑃ሺ𝐸|𝐎ሻ ൌ 1/52,

 𝑃ሺ𝐸ሻ ൌ 1/52.

𝐹ଵ, …,𝐹௡

𝐸

𝐹௝
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Equation (3.5)  is known as Bayes’s formula, after the English philosopher

Thomas Bayes. If we think of the events  as being possible “hypotheses” about

some subject matter, then Bayes’s formula may be interpreted as showing us how

opinions about these hypotheses held before the experiment was carried out [that is,

the ] should be modified by the evidence produced by the experiment.

Example 3k

A plane is missing, and it is presumed that it was equally likely to have gone

down in any of 3 possible regions. Let  denote the probability

that the plane will be found upon a search of the th region when the plane is, in

fact, in that region. (The constants  are called overlook probabilities, because

they represent the probability of overlooking the plane; they are generally

attributable to the geographical and environmental conditions of the regions.)

What is the conditional probability that the plane is in the th region given that a

search of region 1 is unsuccessful?

Solution

Let  be the event that the plane is in region  and let  be the event

that a search of region 1 is unsuccessful. From Bayes’s formula, we obtain

For 

𝑃൫𝐹௝ ห𝐸൯ ൌ
𝑃൫𝐸𝐹௝൯
𝑃ሺ𝐸ሻ

ൌ
𝑃൫𝐸ห𝐹௝൯𝑃൫𝐹௝൯

෍
௜ ൌ ଵ

௡

𝑃ሺ𝐸 |𝐹௜ሻ𝑃ሺ𝐹௜ሻ

(3.5)

𝐹௝

𝑃൫𝐹௝൯

1 െ 𝛽௜, 𝑖 ൌ 1, 2, 3,

𝑖

𝛽௜

𝑖

𝑅௜, 𝑖 ൌ 1, 2, 3, 𝑖, 𝐸

𝑃ሺ𝑅ଵ|𝐸ሻ ൌ
𝑃ሺ𝐸𝑅ଵሻ
𝑃ሺ𝐸ሻ

ൌ
𝑃ሺ𝐸|𝑅ଵሻ𝑃ሺ𝑅ଵሻ

∑௜ ൌ ଵ
ଷ 𝑃ሺ𝐸|𝑅௜ሻ𝑃ሺ𝑅௜ሻ

ൌ
൫𝛽ଵ൯

1
3

൫𝛽ଵ൯
1
3
൅ ሺ1ሻ

1
3
൅ ሺ1ሻ

1
3

ൌ
𝛽ଵ

𝛽ଵ ൅ 2

𝑗 ൌ 2, 3,
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Note that the updated (that is, the conditional) probability that the plane is in

region  given the information that a search of region 1 did not find it, is greater

than the initial probability that it was in region  when  and is less than the

initial probability when  This statement is certainly intuitive, since not finding

the plane in region 1 would seem to decrease its chance of being in that region

and increase its chance of being elsewhere. Further, the conditional probability

that the plane is in region 1 given an unsuccessful search of that region is an

increasing function of the overlook probability  This statement is also intuitive,

since the larger  is, the more it is reasonable to attribute the unsuccessful

search to “bad luck” as opposed to the plane’s not being there. Similarly,

 is a decreasing function of 

The next example has often been used by unscrupulous probability students to win

money from their less enlightened friends.

Example 3l

Suppose that we have 3 cards that are identical in form, except that both sides of

the first card are colored red, both sides of the second card are colored black,

and one side of the third card is colored red and the other side black. The 3 cards

are mixed up in a hat, and 1 card is randomly selected and put down on the

ground. If the upper side of the chosen card is colored red, what is the probability

that the other side is colored black?

Solution

Let RR, BB, and RB denote, respectively, the events that the chosen card is all

red, all black, or the red–black card. Also, let  be the event that the upturned

side of the chosen card is red. Then, the desired probability is obtained by

𝑃൫𝑅௝ ห𝐸൯ ൌ
𝑃൫𝐸ห𝑅௝൯𝑃൫𝑅௝൯

𝑃ሺ𝐸ሻ

ൌ
ቆ1ቇ

1
3

ቆ𝛽ଵቇ
1
3
൅

1
3
൅

1
3

ൌ
1

𝛽ଵ ൅ 2
 𝑗 ൌ 2, 3

𝑗,

𝑗 𝑗 ് 1

𝑗 ൌ 1.

𝛽ଵ.

𝛽ଵ

𝑃൫𝑅௝ ห𝐸൯, 𝑗 ് 1, 𝛽ଵ.

𝑅
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Hence, the answer is  Some students guess  as the answer by incorrectly

reasoning that given that a red side appears, there are two equally likely

possibilities: that the card is the all-red card or the red–black card. Their mistake,

however, is in assuming that these two possibilities are equally likely. For, if we

think of each card as consisting of two distinct sides, then we see that there are 6

equally likely outcomes of the experiment—namely, —where

the outcome is  if the first side of the all-red card is turned face up,  if the

second side of the all-red card is turned face up,  if the red side of the red–

black card is turned face up, and so on. Since the other side of the upturned red

side will be black only if the outcome is  we see that the desired probability is

the conditional probability of  given that either  or  or  occurred, which

obviously equals 

Example 3m

A new couple, known to have two children, has just moved into town. Suppose

that the mother is encountered walking with one of her children. If this child is a

girl, what is the probability that both children are girls?

Solution

Let us start by defining the following events:

G : The first (that is, the oldest) child is a girl.

G : The second child is a girl.

G: The child seen with the mother is a girl.

Also, let  and  denote similar events, except that “girl” is replaced by

“boy.” Now, the desired probability is  which can be expressed as

follows:

𝑃ሺ𝑅𝐵 ||𝑅ሻ ൌ
𝑃ሺ𝑅𝐵 ∩ 𝑅ሻ
𝑃ሺ𝑅ሻ

ൌ
𝑃ሺ𝑅 ||𝑅𝐵ሻ𝑃ሺ𝑅𝐵ሻ

𝑃ሺ𝑅 ||𝑅𝑅ሻ𝑃ሺ𝑅𝑅ሻ ൅ 𝑃ሺ𝑅 ||𝑅𝐵ሻ𝑃ሺ𝑅𝐵ሻ ൅ 𝑃ሺ𝑅 ||𝐵𝐵ሻ𝑃ሺ𝐵𝐵ሻ

ൌ
ቆ

1
2
ቇቆ

1
3
ቇ

ቆ1ቇቆ
1
3
ቇ ൅ ቆ

1
2
ቇቆ

1
3
ቇ ൅ 0ቆ

1
3
ቇ
ൌ

1
3

1
3

.
1
2

𝑅ଵ,𝑅ଶ,𝐵ଵ,𝐵ଶ,𝑅ଷ,𝐵ଷ
𝑅ଵ 𝑅ଶ

𝑅ଷ

𝑅ଷ,

𝑅ଷ 𝑅ଵ 𝑅ଶ 𝑅ଷ
1
3

.

1

2

𝐵ଵ,𝐵ଶ, 𝐵

𝑃ሺ𝐺ଵ𝐺ଶ ||𝐺ሻ,
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Also,

where the final equation used the results  and  If

we now make the usual assumption that all 4 gender possibilities are equally

likely, then we see that

Thus, the answer depends on whatever assumptions we want to make about the

conditional probabilities that the child seen with the mother is a girl given the

event  and that the child seen with the mother is a girl given the event 

For instance, if we want to assume, on the one hand, that, independently of the

genders of the children, the child walking with the mother is the elder child with

some probability  then it would follow that

implying under this scenario that

If, on the other hand, we were to assume that if the children are of different

genders, then the mother would choose to walk with the girl with probability 

independently of the birth order of the children, then we would have

implying that

𝑃ሺ𝐺ଵ𝐺ଶ ||𝐺ሻ ൌ
𝑃ሺ𝐺ଵ𝐺ଶ𝐺ሻ
𝑃ሺ𝐺ሻ

ൌ
𝑃ሺ𝐺ଵ𝐺ଶሻ
𝑃ሺ𝐺ሻ

𝑃ሺ𝐺ሻ ൌ 𝑃ሺ𝐺 ||𝐺ଵ𝐺ଶሻ𝑃ሺ𝐺ଵ𝐺ଶሻ ൅ 𝑃ሺ𝐺 ||𝐺ଵ𝐵ଶሻ𝑃ሺ𝐺ଵ𝐵ଶሻ ൅ 𝑃ሺ𝐺 ||𝐵ଵ𝐺ଶሻ𝑃ሺ𝐵ଵ𝐺ଶሻ ൅ 𝑃ሺ𝐺 ||𝐵ଵ𝐵ଶሻ𝑃ሺ𝐵

ൌ 𝑃ሺ𝐺ଵ𝐺ଶሻ ൅ 𝑃ሺ𝐺 ||𝐺ଵ𝐵ଶሻ𝑃ሺ𝐺ଵ𝐵ଶሻ ൅ 𝑃ሺ𝐺 ||𝐵ଵ𝐺ଶሻ𝑃ሺ𝐵ଵ𝐺ଶሻ

𝑃ሺ𝐺 ||𝐺ଵ𝐺ଶሻ ൌ 1 𝑃ሺ𝐺 ||𝐵ଵ𝐵ଶሻ ൌ 0.

𝑃ሺ𝐺ଵ𝐺ଶ|𝐺ሻ ൌ

1
4

1
4
൅ 𝑃ሺ𝐺|𝐺ଵ𝐵ଶሻ/4 ൅ 𝑃ሺ𝐺|𝐵ଵ𝐺ଶሻ/4

ൌ
1

1 ൅ 𝑃ሺ𝐺|𝐺ଵ𝐵ଶሻ ൅ 𝑃ሺ𝐺|𝐵ଵ𝐺ଶሻ

𝐺ଵ𝐵ଶ 𝐺ଶ𝐵ଵ.

𝑝,

𝑃ሺ𝐺 ||𝐺ଵ𝐵ଶሻ ൌ 𝑝 ൌ 1 െ 𝑃ሺ𝐺 ||𝐵ଵ𝐺ଶሻ

𝑃ሺ𝐺ଵ𝐺ଶ|𝐺ሻ ൌ
1
2

𝑞,

𝑃ሺ𝐺 ||𝐺ଵ𝐵ଶሻ ൌ 𝑃ሺ𝐺 ||𝐵ଵ𝐺ଶሻ ൌ 𝑞
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For instance, if we took  meaning that the mother would always choose to

walk with a daughter, then the conditional probability that she has two daughters

would be  which is in accord with Example 2b  because seeing the mother

with a daughter is now equivalent to the event that she has at least one daughter.

Hence, as stated, the problem is incapable of solution. Indeed, even when the

usual assumption about equally likely gender probabilities is made, we still need

to make additional assumptions before a solution can be given. This is because

the sample space of the experiment consists of vectors of the form  where

 is the gender of the older child,  is the gender of the younger child, and 

identifies the birth order of the child seen with the mother. As a result, to specify

the probabilities of the events of the sample space, it is not enough to make

assumptions only about the genders of the children; it is also necessary to

assume something about the conditional probabilities as to which child is with the

mother given the genders of the children.

Example 3n

A bin contains 3 types of disposable flashlights. The probability that a type 1

flashlight will give more than 100 hours of use is .7, with the corresponding

probabilities for type 2 and type 3 flashlights being .4 and .3, respectively.

Suppose that 20 percent of the flashlights in the bin are type 1, 30 percent are

type 2, and 50 percent are type 3.

a. What is the probability that a randomly chosen flashlight will give more

than 100 hours of use?

b. Given that a flashlight lasted more than 100 hours, what is the conditional

probability that it was a type  flashlight, 

Solution

a. Let  denote the event that the flashlight chosen will give more than 100

hours of use, and let  be the event that a type  flashlight is chosen,

 To compute  we condition on the type of the flashlight, to

obtain

There is a 41 percent chance that the flashlight will last for more than 100

hours.

𝑃ሺ𝐺ଵ𝐺ଶ|𝐺ሻ ൌ
1

1 ൅ 2𝑞

𝑞 ൌ 1,

1
3

,

𝑠ଵ, 𝑠ଶ, 𝑖,

𝑠ଵ 𝑠ଶ 𝑖

𝑗 𝑗 ൌ 1, 2, 3

𝐴

𝐹௝ 𝑗

𝑗 ൌ 1, 2, 3. 𝑃ሺ𝐴ሻ,

𝑃ሺ𝐴ሻ ൌ 𝑃ሺ𝐴 ||𝐹ଵሻ𝑃ሺ𝐹ଵሻ ൅ 𝑃ሺ𝐴 ||𝐹ଶሻ𝑃ሺ𝐹ଶሻ ൅ 𝑃ሺ𝐴 ||𝐹ଷሻ𝑃ሺ𝐹ଷሻ

ൌ ሺ . 7ሻሺ . 2ሻ ൅ ሺ . 4ሻሺ . 3ሻ ൅ ሺ . 3ሻሺ . 5ሻ ൌ . 41
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b. The probability is obtained by using Bayes’s formula:

Thus,

For instance, whereas the initial probability that a type 1 flashlight is

chosen is only .2, the information that the flashlight has lasted more than

100 hours raises the probability of this event to 

Example 3o

A crime has been committed by a solitary individual, who left some DNA at the

scene of the crime. Forensic scientists who studied the recovered DNA noted

that only five strands could be identified and that each innocent person,

independently, would have a probability of  of having his or her DNA match

on all five strands. The district attorney supposes that the perpetrator of the crime

could be any of the 1 million residents of the town. Ten thousand of these

residents have been released from prison within the past 10 years; consequently,

a sample of their DNA is on file. Before any checking of the DNA file, the district

attorney thinks that each of the 10,000 ex-criminals has probability  of being

guilty of the new crime, whereas each of the remaining 990,000 residents has

probability  where  (That is, the district attorney supposes that each

recently released convict is  times as likely to be the crime’s perpetrator as is

each town member who is not a recently released convict.) When the DNA that is

analyzed is compared against the database of the 10,000 ex-convicts, it turns out

that A. J. Jones is the only one whose DNA matches the profile. Assuming that

the district attorney’s estimate of the relationship between  and  is accurate,

what is the probability that A. J. is guilty?

Solution

To begin, note that because probabilities must sum to 1, we have

Thus,

𝑃൫𝐹௝ ห𝐴൯ ൌ
𝑃൫𝐴𝐹௝൯
𝑃ሺ𝐴ሻ

ൌ
𝑃൫𝐴ห𝐹௝൯𝑃൫𝐹௝൯

. 41

𝑃ሺ𝐹ଵ ||𝐴ሻ ൌ ሺ . 7ሻሺ . 2ሻ/ . 41 ൌ 14/41

𝑃ሺ𝐹ଶ ||𝐴ሻ ൌ ሺ . 4ሻሺ . 3ሻ/ . 41 ൌ 12/41

𝑃ሺ𝐹ଷ ||𝐴ሻ ൌ ሺ . 3ሻሺ . 5ሻ/ . 41 ൌ 15/41

14/41 ൎ . 341.

10െହ

𝛼

𝛽, 𝛼 ൌ 𝑐𝛽.

𝑐

𝛼 𝛽

1 ൌ 10, 000𝛼 ൅ 990, 000𝛽 ൌ ሺ10, 000𝑐 ൅ 990, 000ሻ𝛽
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Now, let  be the event that A. J. is guilty, and let  denote the event that A. J. is

the only one of the 10,000 on file to have a match. Then,

On the one hand, if A. J. is guilty, then he will be the only one to have a DNA

match if none of the others on file have a match. Therefore,

On the other hand, if A. J. is innocent, then in order for him to be the only match,

his DNA must match (which will occur with probability ), all others in the

database must be innocent, and none of these others can have a match. Now,

given that A. J. is innocent, the conditional probability that all the others in the

database are also innocent is

Also, the conditional probability, given their innocence, that none of the others in

the database will have a match is  Therefore,

Because  the preceding formula gives

Thus, if the district attorney’s initial thoughts were that an arbitrary ex-convict was

100 times more likely to have committed the crime than was a nonconvict (that is,

), then  and

𝛽 ൌ
1

10, 000𝑐 ൅ 990, 000
, 𝛼 ൌ

𝑐
10, 000𝑐 ൅ 990, 000

𝐺 𝑀

𝑃ሺ𝐺 ||𝑀ሻ ൌ
𝑃ሺ𝐺𝑀ሻ
𝑃ሺ𝑀ሻ

ൌ
𝑃ሺ𝐺ሻ𝑃ሺ𝑀 ||𝐺ሻ

𝑃ሺ𝑀 ||𝐺ሻ𝑃ሺ𝐺ሻ ൅ 𝑃ሺ𝑀 ||𝐺
௖ሻ𝑃ሺ𝐺௖ሻ

𝑃൫𝑀ห𝐺൯ ൌ ൫1 െ 10െହ൯
ଽଽଽଽ

10െହ

𝑃ሺ all others innocent|𝐴𝐽 innocentሻ ൌ
𝑃ሺ all in database innocentሻ

𝑃ሺ𝐴𝐽 innocentሻ

ൌ
1 െ 10, 000𝛼

1 െ 𝛼

൫1 െ 10െହ൯
ଽଽଽଽ

.

𝑃ሺ𝑀 ||𝐺
௖ሻ ൌ 10െହቆ

1 െ 10, 000𝛼
1 െ 𝛼

ቇቆ1 െ 10െହቇ
ଽଽଽଽ

𝑃ሺ𝐺ሻ ൌ 𝛼,

𝑃ሺ𝐺 ||𝑀ሻ ൌ
𝛼

𝛼 ൅ 10െହ൫1 െ 10, 000𝛼൯
ൌ

1

. 9 ൅
10െହ

𝛼

𝑐 ൌ 100 𝛼 ൌ
1

19, 900
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If the district attorney initially thought that the appropriate ratio was  then

 and

If the district attorney initially thought that the criminal was equally likely to be any

of the members of the town  then  and

Thus, the probability ranges from approximately 9 percent when the district

attorney’s initial assumption is that all the members of the population have the

same chance of being the perpetrator to approximately 91 percent when she

assumes that each ex-convict is 100 times more likely to be the criminal than is a

specified townsperson who is not an ex-convict.

The previous examples in this chapter show that  the conditional probability

of  given  is not generally equal to  the unconditional probability of . In other

words, knowing that  has occurred generally changes the chances of ’s

occurrence. In the special cases where  does in fact equal  we say that

 is independent of . That is,  is independent of  if knowledge that  has occurred

does not change the probability that  occurs.

Since  it follows that  is independent of  if

The fact that Equation (4.1)  is symmetric in  and  shows that whenever  is

independent of  is also independent of . We thus have the following definition.

Definition

Two events  and  are said to be independent if Equation (4.1)  holds.

Two events  and  that are not independent are said to be dependent.

𝑃ሺ𝐺|𝑀ሻ ൌ
1

1.099
ൎ 0.9099

𝑐 ൌ 10,

𝛼 ൌ
1

109, 000

𝑃ሺ𝐺|𝑀ሻ ൌ
1

1.99
ൎ 0.5025

ሺ𝑐 ൌ 1ሻ, 𝛼 ൌ 10െ଺

𝑃ሺ𝐺|𝑀ሻ ൌ
1

10.9
ൎ 0.0917

𝑃ሺ𝐸 ||𝐹ሻ,
𝐸 𝐹, 𝑃ሺ𝐸ሻ, 𝐸

𝐹 𝐸

𝑃ሺ𝐸 ||𝐹ሻ 𝑃ሺ𝐸ሻ,
𝐸 𝐹 𝐸 𝐹 𝐹

𝐸

𝑃ሺ𝐸 ||𝐹ሻ ൌ 𝑃ሺ𝐸𝐹ሻ/𝑃ሺ𝐹ሻ, 𝐸 𝐹

𝑃ሺ𝐸𝐹ሻ ൌ 𝑃ሺ𝐸ሻ𝑃ሺ𝐹ሻ

(4.1)

𝐸 𝐹 𝐸

𝐹, 𝐹 𝐸

𝐸 𝐹

𝐸 𝐹
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Example 4a

A card is selected at random from an ordinary deck of 52 playing cards. If  is the

event that the selected card is an ace and  is the event that it is a spade, then 

and  are independent. This follows because  whereas 

and 

Example 4b

Two coins are flipped, and all 4 outcomes are assumed to be equally likely. If  is

the event that the first coin lands on heads and  the event that the second lands

on tails, then  and  are independent, since  whereas

 and 

Example 4c

Suppose that we toss 2 fair dice. Let  denote the event that the sum of the dice

is 6 and  denote the event that the first die equals 4. Then

whereas

Hence,  and  are not independent. Intuitively, the reason for this is clear

because if we are interested in the possibility of throwing a 6 (with 2 dice), we

shall be quite happy if the first die lands on 4 (or, indeed, on any of the numbers

1, 2, 3, 4, and 5), for then we shall still have a possibility of getting a total of 6. If,

however, the first die landed on 6, we would be unhappy because we would no

longer have a chance of getting a total of 6. In other words, our chance of getting

a total of 6 depends on the outcome of the first die; thus,  and  cannot be

independent.

Now, suppose that we let  be the event that the sum of the dice equals 7. Is 

independent of ? The answer is yes, since

𝐸

𝐹 𝐸

𝐹 𝑃ቆ𝐸𝐹ቇ ൌ
1

52
, 𝑃ቆ𝐸ቇ ൌ

4
52

𝑃ቆ𝐹ቇ ൌ
13
52

.

𝐸

𝐹

𝐸 𝐹 𝑃ሺ𝐸𝐹ሻ ൌ 𝑃ሺሼሺ𝐻,𝑇ሻሽሻ ൌ
1
4

,

𝑃ሺ𝐸ሻ ൌ 𝑃ሺሼሺ𝐻,𝐻ሻ, ሺ𝐻,𝑇ሻሽሻ ൌ
1
2

𝑃ሺ𝐹ሻ ൌ 𝑃ሺሼሺ𝐻,𝑇ሻ, ሺ𝑇,𝑇ሻሽሻ ൌ
1
2

.

𝐸ଵ
𝐹

𝑃ሺ𝐸ଵ𝐹ሻ ൌ 𝑃ሺሼሺ4, 2ሻሽሻ ൌ
1

36

𝑃ሺ𝐸ଵሻ𝑃ሺ𝐹ሻ ൌ ቆ
5

36
ቇቆ

1
6
ቇ ൌ

5
216

𝐸ଵ 𝐹

𝐸ଵ 𝐹

𝐸ଶ 𝐸ଶ
𝐹

𝑃ሺ𝐸ଶ𝐹ሻ ൌ 𝑃ሺሼሺ4, 3ሻሽሻ ൌ
1

36
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whereas

We leave it for the reader to present the intuitive argument why the event that the

sum of the dice equals 7 is independent of the outcome on the first die.

Example 4d

If we let  denote the event that the next president is a Republican and  the

event that there will be a major earthquake within the next year, then most people

would probably be willing to assume that  and  are independent. However,

there would probably be some controversy over whether it is reasonable to

assume that  is independent of  where  is the event that there will be a

recession within two years after the election.

We now show that if  is independent of  then  is also independent of 

Proposition 4.1

If  and  are independent, then so are  and 

Proof. Assume that  and  are independent. Since  and EF and

 are obviously mutually exclusive, we have

or, equivalently,

and the result is proved.

Thus, if  is independent of  then the probability of ’s occurrence is unchanged by

information as to whether or not  has occurred.

Suppose now that  is independent of  and is also independent of . Is  then

necessarily independent of FG? The answer, somewhat surprisingly, is no, as the

following example demonstrates.

Example 4e

𝑃ሺ𝐸ଶሻ𝑃ሺ𝐹ሻ ൌ ቆ
1
6
ቇቆ

1
6
ቇ ൌ

1
36

𝐸 𝐹

𝐸 𝐹

𝐸 𝐺, 𝐺

𝐸 𝐹, 𝐸 𝐹௖.

𝐸 𝐹 𝐸 𝐹௖.

𝐸 𝐹 𝐸 ൌ 𝐸𝐹 ∪ 𝐸𝐹௖

𝐸𝐹௖

𝑃ሺ𝐸ሻ ൌ 𝑃ሺ𝐸𝐹ሻ ൅ 𝑃ሺ𝐸𝐹௖ሻ

ൌ 𝑃ሺ𝐸ሻ𝑃ሺ𝐹ሻ ൅ 𝑃ሺ𝐸𝐹௖ሻ

𝑃ሺ𝐸𝐹௖ሻ ൌ 𝑃ሺ𝐸ሻሾ1 െ 𝑃ሺ𝐹ሻሿ

ൌ 𝑃ሺ𝐸ሻ𝑃ሺ𝐹௖ሻ

𝐸 𝐹, 𝐸

𝐹

𝐸 𝐹 𝐺 𝐸
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Two fair dice are thrown. Let  denote the event that the sum of the dice is 7. Let

 denote the event that the first die equals 4 and  denote the event that the

second die equals 3. From Example 4c , we know that  is independent of 

and the same reasoning as applied there shows that  is also independent of ;

but clearly,  is not independent of FG [since 

It would appear to follow from Example 4e  that an appropriate definition of the

independence of three events  and  would have to go further than merely

assuming that all of the  pairs of events are independent. We are thus led to the

following definition.

Definition

Three events  and  are said to be independent if

Note that if  and  are independent, then  will be independent of any event

formed from  and . For instance,  is independent of  since

Of course, we may also extend the definition of independence to more than three

events. The events  are said to be independent if for every subset

 of these events,

Finally, we define an infinite set of events to be independent if every finite subset of

those events is independent.

Sometimes, a probability experiment under consideration consists of performing a

sequence of subexperiments. For instance, if the experiment consists of continually

tossing a coin, we may think of each toss as being a subexperiment. In many cases,

𝐸

𝐹 𝐺

𝐸 𝐹,

𝐸 𝐺

𝐸 𝑃ሺ𝐸 ||𝐹𝐺ሻ ൌ 1ሿ.

𝐸, 𝐹, 𝐺

ቆ
3

2
ቇ

𝐸, 𝐹, 𝐺

𝑃ሺ𝐸𝐹𝐺ሻ ൌ 𝑃ሺ𝐸ሻ𝑃ሺ𝐹ሻ𝑃ሺ𝐺ሻ

𝑃ሺ𝐸𝐹ሻ ൌ 𝑃ሺ𝐸ሻ𝑃ሺ𝐹ሻ

𝑃ሺ𝐸𝐺ሻ ൌ 𝑃ሺ𝐸ሻ𝑃ሺ𝐺ሻ

𝑃ሺ𝐹𝐺ሻ ൌ 𝑃ሺ𝐹ሻ𝑃ሺ𝐺ሻ

𝐸, 𝐹, 𝐺 𝐸

𝐹 𝐺 𝐸 𝐹 ∪ 𝐺,

𝑃ሾ𝐸ሺ𝐹 ∪ 𝐺ሻሿ ൌ 𝑃ሺ𝐸𝐹 ∪ 𝐸𝐺ሻ

ൌ 𝑃ሺ𝐸𝐹ሻ ൅ 𝑃ሺ𝐸𝐺ሻ െ 𝑃ሺ𝐸𝐹𝐺ሻ

ൌ 𝑃ሺ𝐸ሻ𝑃ሺ𝐹ሻ ൅ 𝑃ሺ𝐸ሻ𝑃ሺ𝐺ሻ െ 𝑃ሺ𝐸ሻ𝑃ሺ𝐹𝐺ሻ

ൌ 𝑃ሺ𝐸ሻሾ𝑃ሺ𝐹ሻ ൅ 𝑃ሺ𝐺ሻ െ 𝑃ሺ𝐹𝐺ሻሿ

ൌ 𝑃ሺ𝐸ሻ𝑃ሺ𝐹 ∪ 𝐺ሻ

𝐸ଵ,𝐸ଶ, …,𝐸௡
𝐸ଵᇱ ,𝐸ଶᇱ , …,𝐸௥ᇱ , 𝑟 ൑ 𝑛

𝑃ሺ𝐸ଵᇱ𝐸ଶᇱ⋯𝐸௥ᇱሻ ൌ 𝑃ሺ𝐸ଵᇱሻ𝑃ሺ𝐸ଶᇱ ሻ⋯𝑃ሺ𝐸௥ᇱሻ
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it is reasonable to assume that the outcomes of any group of the subexperiments

have no effect on the probabilities of the outcomes of the other subexperiments. If

such is the case, we say that the subexperiments are independent. More formally,

we say that the subexperiments are independent if  is necessarily an

independent sequence of events whenever  is an event whose occurrence is

completely determined by the outcome of the th subexperiment.

If each subexperiment has the same set of possible outcomes, then the

subexperiments are often called trials.

Example 4f

An infinite sequence of independent trials is to be performed. Each trial results in

a success with probability  and a failure with probability  What is the

probability that

a. at least 1 success occurs in the first  trials;

b. exactly  successes occur in the first  trials;

c. all trials result in successes?

Solution

In order to determine the probability of at least 1 success in the first  trials, it is

easiest to compute first the probability of the complementary event: that of no

successes in the first  trials. If we let  denote the event of a failure on the th

trial, then the probability of no successes is, by independence,

Hence, the answer to part (a) is 

To compute the answer to part (b), consider any particular sequence of the first 

outcomes containing  successes and  failures. Each one of these

sequences will, by the assumed independence of trials, occur with probability

 Since there are  such sequences [there are 

permutations of  successes and  failures], the desired probability in part (b)

is

To answer part (c), we note that, by part (a), the probability of the first  trials all

resulting in success is given by

𝐸ଵ,𝐸ଶ, …,𝐸௡, …

𝐸௜
𝑖

𝑝 1 െ 𝑝.

𝑛

𝑘 𝑛

𝑛

𝑛 𝐸௜ 𝑖

𝑃ሺ𝐸ଵ𝐸ଶ⋯𝐸௡ሻ ൌ 𝑃ሺ𝐸ଵሻ𝑃ሺ𝐸ଶሻ⋯𝑃ሺ𝐸௡ሻ ൌ ሺ1 െ 𝑝ሻ௡

1 െ ሺ1 െ 𝑝ሻ௡.

𝑛

𝑘 𝑛 െ 𝑘

𝑝௞൫1 െ 𝑝൯
௡െ௞

. ቆ
𝑛

𝑘
ቇ 𝑛!/𝑘!ሺ𝑛 െ 𝑘ሻ!

𝑘 𝑛 െ 𝑘

𝑃ሼexactly 𝑘 successesሽ ൌ ቆ
𝑛

𝑘
ቇ𝑝௞ሺ1 െ 𝑝ሻ௡െ௞

𝑛
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Thus, using the continuity property of probabilities (Section 2.6 ), we see that

the desired probability is given by

Example 4g

A system composed of  separate components is said to be a parallel system if it

functions when at least one of the components functions. (See Figure 3.2 .)

For such a system, if component  which is independent of the other

components, functions with probability  what is the probability that

the system functions?

Figure 3.2 Parallel system: functions if current flows from A to B.

Solution

Let  denote the event that component  functions. Then,

𝑃ሺ𝐸ଵ௖𝐸ଶ௖⋯𝐸௡௖ሻ ൌ 𝑝௡

𝑃൬ ∩
௜ ൌ ଵ

ஶ 𝐸௜
௖൰ ൌ 𝑃൬ lim

௡ → ஶ
∩

௜ ൌ ଵ

ஶ 𝐸௜
௖൰

ൌ lim
௡ → ஶ

𝑃൬ ∩
௜ ൌ ଵ

ஶ 𝐸௜
௖൰

ൌ lim
௡
𝑝௡ ൌ ቊ

0 if  𝑝 ൏ 1

1 if  𝑝 ൌ 1

𝑛

𝑖,

𝑝௜, 𝑖 ൌ 1, …,𝑛,

𝐴௜ 𝑖

𝑃ሼsystem functionsሽ ൌ 1 െ 𝑃ሼsystem does not functionሽ

ൌ 1 െ 𝑃ሼall components do not functionሽ

ൌ 1 െ 𝑃൬ ∩
௜
𝐴௜
௖൰

ൌ 1 െ ෑ
௜ ൌ ଵ

௜

൫1 െ 𝑝௜൯ by independence
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Example 4h

Independent trials consisting of rolling a pair of fair dice are performed. What is

the probability that an outcome of 5 appears before an outcome of 7 when the

outcome of a roll is the sum of the dice?

Solution

If we let  denote the event that no 5 or 7 appears on the first  trials and a

5 appears on the th trial, then the desired probability is

Now, since  and  we obtain, by the

independence of trials,

Thus,

This result could also have been obtained by the use of conditional probabilities.

If we let  be the event that a 5 occurs before a 7, then we can obtain the desired

probability,  by conditioning on the outcome of the first trial, as follows: Let 

be the event that the first trial results in a 5, let  be the event that it results in a

7, and let  be the event that the first trial results in neither a 5 nor a 7. Then,

conditioning on which one of these events occurs gives

However,

𝐸௡ 𝑛 െ 1

𝑛

𝑃൬ ∪
௡ ൌ ଵ

ஶ 𝐸௡൰ ൌ ෍
௡ ൌ ଵ

ஶ

𝑃൭𝐸௡൱

𝑃ሼ5 on any trialሽ ൌ
4

36
𝑃ሼ7 on any trialሽ ൌ

6
36

,

𝑃൭𝐸௡൱ ൌ ቆ1 െ
10
36
ቇ
௡െଵ 4

36

𝑃൬ ∪
௡ ൌ ଵ

ஶ 𝐸௡൰ ൌ
1
9
∑௡ ൌ ଵ
ஶ ቆ

13
18
ቇ
௡െଵ

ൌ
1
9

1

1 െ
13
18

ൌ
2
5

𝐸

𝑃ሺ𝐸ሻ, 𝐹

𝐺

𝐻

𝑃ሺ𝐸ሻ ൌ 𝑃ሺ𝐸 ||𝐹ሻ𝑃ሺ𝐹ሻ ൅ 𝑃ሺ𝐸 ||𝐺ሻ𝑃ሺ𝐺ሻ ൅ 𝑃ሺ𝐸 ||𝐻ሻ𝑃ሺ𝐻ሻ
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The first two equalities are obvious. The third follows because if the first outcome

results in neither a 5 nor a 7, then at that point the situation is exactly as it was

when the problem first started—namely, the experimenter will continually roll a

pair of fair dice until either a 5 or 7 appears. Furthermore, the trials are

independent; therefore, the outcome of the first trial will have no effect on

subsequent rolls of the dice. Since  and  it

follows that

or

The reader should note that the answer is quite intuitive. That is, because a 5

occurs on any roll with probability  and a 7 with probability  it seems

intuitive that the odds that a 5 appears before a 7 should be 6 to 4 against. The

probability should then be  as indeed it is.

The same argument shows that if  and  are mutually exclusive events of an

experiment, then, when independent trials of the experiment are performed, the

event  will occur before the event  with probability

Example 4i

Suppose there are  types of coupons and that each new coupon collected is,

independent of previous selections, a type  coupon with probability 

 Suppose  coupons are to be collected. If  is the event that there

is at least one type  coupon among those collected, then, for  find

a. 

𝑃ሺ𝐸 ||𝐹ሻ ൌ 1

𝑃ሺ𝐸 ||𝐺ሻ ൌ 0

𝑃ሺ𝐸 ||𝐻ሻ ൌ 𝑃ሺ𝐸ሻ

𝑃ቆ𝐹ቇ ൌ
4

36
,𝑃ሺ𝐺ሻ ൌ

6
36

, 𝑃ቆ𝐻ቇ ൌ
26
36

,

𝑃ሺ𝐸ሻ ൌ
1
9
൅ 𝑃ሺ𝐸ሻ

13
18

𝑃ቆ𝐸ቇ ൌ
2
5

4
36

6
36

,

4
10

,

𝐸 𝐹

𝐸 𝐹

𝑃ሺ𝐸ሻ
𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐹ሻ

𝑛

𝑖 𝑝௜,

෍
௜ൌଵ

௡
𝑝௜ ൌ 1. 𝑘 𝐴௜

𝑖 𝑖 ് 𝑗,

𝑃ሺ𝐴௜ሻ
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b. 

c. 

Solution

where the preceding used that each coupon is, independently, not of type  with

probability  Similarly,

where the preceding used that each coupon is, independently, neither of type 

nor type  with probability 

To determine  we will use the identity

which, in conjunction with parts (a) and (b), yields

Consequently,

The next example presents a problem that occupies an honored place in the history

of probability theory. This is the famous problem of the points. In general terms, the

problem is this: Two players put up stakes and play some game, with the stakes to

go to the winner of the game. An interruption requires them to stop before either has

won and when each has some sort of a “partial score.” How should the stakes be

𝑃൫𝐴௜ ∪ 𝐴௝൯

𝑃൫𝐴௜ ห𝐴௝൯

𝑃ሺ𝐴௜ሻ ൌ 1 െ 𝑃ሺ𝐴௜௖ሻ

ൌ 1 െ 𝑃ሼno coupon is type 𝑖ሽ

ൌ 1 െ ൫1 െ 𝑝௜൯
௞

𝑖

1 െ 𝑝௜ .

𝑃൫𝐴௜ ∪ 𝐴௝൯ ൌ 1 െ 𝑃ቀ൫𝐴௜ ∪ 𝐴௝൯
௖
ቁ

ൌ 1 െ 𝑃ሼno coupon is either type 𝑖 or type  𝑗ሽ

ൌ 1 െ ቀ1 െ 𝑝௜ െ 𝑝௝ቁ
௞

𝑖

𝑗 1 െ 𝑝௜ െ 𝑝௝ .

𝑃൫𝐴௜ ห𝐴௝൯,

𝑃൫𝐴௜ ∪ 𝐴௝൯ ൌ 𝑃൫𝐴௜൯ ൅ 𝑃൫𝐴௝൯ െ 𝑃൫𝐴௜𝐴௝൯

𝑃൫𝐴௜𝐴௝൯ ൌ 1 െ ቀ1 െ 𝑝௜ቁ
௞
൅ 1 െ ቀ1 െ 𝑝௝ቁ

௞
െ ቂ1 െ ቀ1 െ 𝑝௜ െ 𝑝௝ቁ

௞
ቃ

ൌ 1 െ ቀ1 െ 𝑝௜ቁ
௞
െ ቀ1 െ 𝑝௝ቁ

௞
൅ ቀ1 െ 𝑝௜ െ 𝑝௝ቁ

௞

𝑃൫𝐴௜ห𝐴௝൯ ൌ
𝑃൫𝐴௜𝐴௝൯

𝑃൫𝐴௝൯
ൌ

1 െ ൫1 െ 𝑝௜൯
௞
െ ቀ1 െ 𝑝௝ቁ

௞
൅ ቀ1 െ 𝑝௜ െ 𝑝௝ቁ

௞

1 െ ቀ1 െ 𝑝௝ቁ
௞
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divided?

This problem was posed to the French mathematician Blaise Pascal in 1654 by the

Chevalier de Méré, who was a professional gambler at that time. In attacking the

problem, Pascal introduced the important idea that the proportion of the prize

deserved by the competitors should depend on their respective probabilities of

winning if the game were to be continued at that point. Pascal worked out some

special cases and, more importantly, initiated a correspondence with the famous

Frenchman Pierre de Fermat, who had a reputation as a great mathematician. The

resulting exchange of letters not only led to a complete solution to the problem of the

points, but also laid the framework for the solution to many other problems

connected with games of chance. This celebrated correspondence, considered by

some as the birth date of probability theory, was also important in stimulating interest

in probability among the mathematicians in Europe, for Pascal and Fermat were both

recognized as being among the foremost mathematicians of the time. For instance,

within a short time of their correspondence, the young Dutch mathematician

Christiaan Huygens came to Paris to discuss these Problems and solutions, and

interest and activity in this new field grew rapidly.

Example 4j The problem of the points

Independent trials resulting in a success with probability  and a failure with

probability  are performed. What is the probability that  successes occur

before  failures? If we think of  and  as playing a game such that  gains 1

point when a success occurs and  gains 1 point when a failure occurs, then the

desired probability is the probability that  would win if the game were to be

continued in a position where  needed  and  needed  more points to win.

Solution

We shall present two solutions. The first comes from Pascal and the second from

Fermat.

Let us denote by  the probability that  successes occur before  failures.

By conditioning on the outcome of the first trial, we obtain

(Why? Reason it out.) Using the obvious boundary conditions 

we can solve these equations for  Rather than go through the tedious

details, let us instead consider Fermat’s solution.

Fermat argued that in order for  successes to occur before  failures, it is

necessary and sufficient that there be at least  successes in the first 

𝑝

1 െ 𝑝 𝑛

𝑚 𝐴 𝐵 𝐴

𝐵

𝐴

𝐴 𝑛 𝐵 𝑚

𝑃௡,௠ 𝑛 𝑚

𝑃௡,௠ ൌ 𝑝𝑃௡െଵ,௠ ൅ ൫1 െ 𝑝൯𝑃௡,௠െଵ𝑛 ൒ 1,𝑚 ൒ 1

𝑃௡,଴ ൌ 0,𝑃଴,௠ ൌ 1,

𝑃௡,௠.

𝑛 𝑚

𝑛 𝑚 ൅ 𝑛 െ 1
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trials. (Even if the game were to end before a total of  trials were

completed, we could still imagine that the necessary additional trials were

performed.) This is true, for if there are at least  successes in the first 

trials, there could be at most  failures in those  trials; thus, 

successes would occur before  failures. If, however, there were fewer than 

successes in the first  trials, there would have to be at least  failures

in that same number of trials; thus,  successes would not occur before 

failures.

Hence, since, as shown in Example 4f , the probability of exactly  successes

in  trials is  it follows that the desired

probability of  successes before  failures is

The following example gives another instance where determining the probability that

a player wins a match is made easier by assuming that the play continues even after

the match winner has been determined.

Example 4k Service protocol in a serve and rally game

Consider a serve and rally match (such as volleyball, badminton, or squash)

between two players,  and . The match consists of a sequence of rallies, with

each rally beginning with a serve by one of the players and continuing until one

of the players has won the rally. The winner of the rally receives a point, and the

match ends when one of the players has won a total of  points, with that player

being declared the winner of the match. Suppose whenever a rally begins with 

as the server, that  wins that rally with probability  and that  wins it with

probability  and that a rally that begins with  as the server is won by

 with probability  and by  with probability  Player  is to be the

initial server. There are two possible server protocols that are under

consideration: “winner serves,” which means that the winner of a rally is the

server for the next rally, or “alternating serve,” which means that the server

alternates from rally to rally, so that no two consecutive rallies have the same

server. Thus, for instance, if  then the successive servers under the “winner

serves” protocol would be  if  wins the first point, then  the next,

then  wins the next two. On the other hand, the sequence of servers under the

“alternating serve” protocol will always be  until the match winner

is decided. If you were player  which protocol would you prefer?

𝑚൅ 𝑛 െ 1

𝑛 𝑚 ൅ 𝑛 െ 1

𝑚െ 1 𝑚൅ 𝑛 െ 1 𝑛

𝑚 𝑛

𝑚 ൅ 𝑛 െ 1 𝑚

𝑛 𝑚

𝑘

𝑚൅ 𝑛 െ 1 ቆ
𝑚 ൅ 𝑛 െ 1

𝑘
ቇ𝑝௞ቆ1 െ 𝑝ቇ

௠൅௡െଵെ௞

,

𝑛 𝑚

𝑃௡,௠ ൌ ෍
௞ ൌ ௡

௠ ൅ ௡ െ ଵ

ቆ
𝑚 ൅ 𝑛 െ 1

𝑘
ቇ𝑝௞ቌ1 െ 𝑝ቍ

௠൅௡െଵെ௞

𝐴 𝐵

𝑛

𝐴

𝐴 𝑝஺ 𝐵

𝑞஺ ൌ 1 െ 𝑝஺, 𝐵

𝐴 𝑝஻ 𝐵 𝑞஻ ൌ 1 െ 𝑝஻ . 𝐴

𝑛 ൌ 3,

𝐴,𝐴,𝐵,𝐴,𝐴 𝐴 𝐵

𝐴

𝐴,𝐵,𝐴,𝐵,𝐴, . . .

𝐴,
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Solution

Surprisingly, it turns out that it makes no difference, in that the probability that 

is the match winner is the same under either protocol. To show that this is the

case, it is advantageous to suppose that the players continue to play until a total

of  rallies have been completed. The first player to win  rallies would then

be the one who has won at least  of the  rallies. To begin, note that if the

alternating serve protocol is being used, then player  will serve exactly  times

and player  will serve exactly  times in the  rallies.

Now consider the winner serve protocol, again assuming that the players

continue to play until  rallies have been completed. Because it makes no

difference who serves the “extra rallies” after the match winner has been

decided, suppose that at the point at which the match has been decided

(because one of the players has won  points), the remainder (if there are any) of

the  rallies are all served by the player who lost the match. Note that this

modified service protocol does not change the fact that the winner of the match

will still be the player who wins at least  of the  rallies. We claim that

under this modified service protocol,  will always serve  times and  will

always serve  times. Two cases show this.

Case 1: A wins the match.

Because  serves first, it follows that ’s second serve will immediately follow ’s

first point; ’s third serve will immediately follow ’s second point; and, in

particular, ’s th serve will immediately follow ’s  point. But this will be

the last serve of  before the match result is decided. This is so because either 

will win the point on that serve and so have  points, or  will lose the point and

so the serve will switch to, and remain with,  until  wins point number . Thus,

provided that  wins the match, it follows that  would have served a total of 

times at the moment the match is decided. Because, by the modified service

protocol,  will never again serve, it follows in this case that  serves exactly 

times.

Case 2: B wins the match.

Because  serves first, ’s first serve will come immediately after ’s first point; 

’s second serve will come immediately after ’s second point; and, in particular, 

’s  serve will come immediately after ’s  point. But that will be the

last serve of  before the match is decided because either  will win the point on

that serve and so have  points, or  will lose the point and so the serve will

switch to, and remain with,  until  wins point number . Thus, provided that 

wins the match, we see that  would have served a total of  times at the

𝐴

2𝑛 െ 1 𝑛

𝑛 2𝑛 െ 1

𝐴 𝑛

𝐵 𝑛 െ 1 2𝑛 െ 1

2𝑛 െ 1

𝑛

2𝑛 െ 1

𝑛 2𝑛 െ 1

𝐴 𝑛 𝐵

𝑛 െ 1

𝐴 𝐴 𝐴

𝐴 𝐴

𝐴 𝑛 𝐴 ሺ𝑛 െ 1ሻ
𝐴 𝐴

𝑛 𝐴

𝐵 𝐴 𝑛

𝐴 𝐴 𝑛

𝐴 𝐴 𝑛

𝐴 𝐵 𝐵 𝐵

𝐵 𝐵

ሺ𝑛 െ 1ሻ 𝐵 ሺ𝑛 െ 1ሻ
𝐵 𝐵

𝑛 𝐵

𝐴 𝐵 𝑛 𝐵

𝐵 𝑛 െ 1
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moment the match is decided. Because, by the modified service protocol,  will

never again serve, it follows in this case that  serves exactly  times, and,

as there are a total of  rallies, that  serves exactly  times.

Thus, we see that under either protocol,  will always serve  times and  will

serve  times and the winner of the match will be the one who wins at least 

points. But since  wins each rally that he serves with probability  and wins

each rally that  serves with probability  it follows that the probability that  is

the match winner is, under either protocol, equal to the probability that there are

at least  successes in  independent trials, when  of these trials result in

a success with probability  and the other  trials result in a success with

probability  Consequently, the win probabilities for both protocols are the

same.

Our next two examples deal with gambling problems, with the first having a

surprisingly elegant analysis.*

*The remainder of this section should be considered optional.

Example 4l

Suppose that initially there are  players, with player  having  units,

 At each stage, two of the players are chosen to play a game,

with the winner of the game receiving 1 unit from the loser. Any player whose

fortune drops to 0 is eliminated, and this continues until a single player has all

 units, with that player designated as the victor. Assuming that the

results of successive games are independent and that each game is equally

likely to be won by either of its two players, find  the probability that player  is

the victor.

Solution

To begin, suppose that there are  players, with each player initially having 1 unit.

Consider player . Each stage she plays will be equally likely to result in her

either winning or losing 1 unit, with the results from each stage being

independent.

In addition, she will continue to play stages until her fortune becomes either 0 or

. Because this is the same for all  players, it follows that each player has the

same chance of being the victor, implying that each player has probability  of

being the victor. Now, suppose these  players are divided into  teams, with

team  containing  players,  Then, the probability that the victor is a

member of team  is  But because

𝐵

𝐵 𝑛 െ 1

2𝑛 െ 1 𝐴 𝑛

𝐴 𝑛 𝐵

𝑛 െ 1 𝑛

𝐴 𝑝஺
𝐵 𝑝஻ 𝐴

𝑛 2𝑛 െ 1 𝑛

𝑝஺ 𝑛 െ 1

𝑝஻ .

𝑟 𝑖 𝑛௜
𝑛௜ ൐ 0, 𝑖 ൌ 1, …, 𝑟 .

𝑛 ≡ ෍
௜ൌଵ

௥
𝑛௜

𝑃௜, 𝑖

𝑛

𝑖

𝑛 𝑛

1/𝑛

𝑛 𝑟

𝑖 𝑛௜ 𝑖 ൌ 1, …, 𝑟 .

𝑖 𝑛௜/𝑛 .
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a. team  initially has a total fortune of  units,  and

b. each game played by members of different teams is equally likely to be

won by either player and results in the fortune of members of the winning

team increasing by 1 and the fortune of the members of the losing team

decreasing by 1,

it is easy to see that the probability that the victor is from team  is exactly the

probability we desire. Thus,  Interestingly, our argument shows that

this result does not depend on how the players in each stage are chosen.

In the gambler’s ruin problem, there are only 2 gamblers, but they are not assumed

to be of equal skill.

Example 4m The gambler’s ruin problem

Two gamblers,  and  bet on the outcomes of successive flips of a coin. On

each flip, if the coin comes up heads,  collects 1 unit from  whereas if it comes

up tails,  pays 1 unit to . They continue to do this until one of them runs out of

money. If it is assumed that the successive flips of the coin are independent and

each flip results in a head with probability  what is the probability that  ends up

with all the money if he starts with  units and  starts with  units?

Solution

Let  denote the event that  ends up with all the money when he starts with 

and  starts with  and to make clear the dependence on the initial fortune of

 let  We shall obtain an expression for P(E) by conditioning on the

outcome of the first flip as follows: Let  denote the event that the first flip lands

on heads; then

Now, given that the first flip lands on heads, the situation after the first bet is that

 has  units and  has  Since the successive flips are assumed

to be independent with a common probability  of heads, it follows that from that

point on, ’s probability of winning all the money is exactly the same as if the

game were just starting with  having an initial fortune of  and  having an

initial fortune of  Therefore,

and similarly,

𝑖 𝑛௜ 𝑖 ൌ 1, …, 𝑟,

𝑖
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𝐻
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𝐴
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Hence, letting  we obtain

By making use of the obvious boundary conditions  and  we shall

now solve Equation (4.2) . Since  these equations are equivalent to

or

Hence, since  we obtain, from Equation (4.3) ,

Adding the first  equations of (4.4 ) yields

𝑃ሺ𝐸 ||𝐻
௖ሻ ൌ 𝑃௜െଵ

𝑞 ൌ 1 െ 𝑝,
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or

Using the fact that  we obtain

Hence,

Let  denote the probability that  winds up with all the money when  starts

with  and  starts with  Then, by symmetry to the situation described, and

on replacing  by  and  by  it follows that

Moreover, since  is equivalent to  we have, when 
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This result also holds when  so

In words, this equation states that with probability 1, either  or  will wind up

with all of the money; in other words, the probability that the game continues

indefinitely with ’s fortune always being between 1 and  is zero. (The

reader must be careful because, a priori, there are three possible outcomes of

this gambling game, not two: Either  wins, or  wins, or the game goes on

forever with nobody winning. We have just shown that this last event has

probability 0.)

As a numerical illustration of the preceding result, if  were to start with 5 units

and  with 10, then the probability of ’s winning would be  if  were 

whereas it would jump to

if  were .6.

A special case of the gambler’s ruin problem, which is also known as the

problem of duration of play, was proposed to Huygens by Fermat in 1657. The

version Huygens proposed, which he himself solved, was that  and  have 12

coins each. They play for these coins in a game with 3 dice as follows: Whenever

11 is thrown (by either—it makes no difference who rolls the dice),  gives a coin

to . Whenever 14 is thrown,  gives a coin to . The person who first wins all

the coins wins the game. Since  and  we see

from Example 4h  that, for  this is just the gambler’s ruin problem with

 and  The general form of the gambler’s ruin problem was

solved by the mathematician James Bernoulli and published 8 years after his

death in 1713.

For an Application of the gambler’s ruin problem to drug testing, suppose that

two new drugs have been developed for treating a certain disease. Drug  has a

cure rate  in the sense that each patient treated with drug  will be

cured with probability  These cure rates are, however, not known, and we are

interested in finding a method for deciding whether  or  To decide
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on one of these alternatives, consider the following test: Pairs of patients are to

be treated sequentially, with one member of the pair receiving drug 1 and the

other drug 2. The results for each pair are determined, and the testing stops

when the cumulative number of cures from one of the drugs exceeds the

cumulative number of cures from the other by some fixed, predetermined

number. More formally, let

For a predetermined positive integer  the test stops after pair  where  is the

first value of  such that either

or

In the former case, we assert that  and in the latter that 

In order to help ascertain whether the foregoing is a good test, one thing we

would like to know is the probability that it leads to an incorrect decision. That is,

for given  and  where  what is the probability that the test will

incorrectly assert that ? To determine this probability, note that after each

pair is checked, the cumulative difference of cures using drug 1 versus drug 2 will

go up by 1 with probability —since this is the probability that drug 1

leads to a cure and drug 2 does not—or go down by 1 with probability 

or remain the same with probability  Hence, if we

consider only those pairs in which the cumulative difference changes, then the

difference will go up by 1 with probability

and down by 1 with probability

𝑋௝ ൌ ቊ
1 if the patient in the 𝑗th pair that receives drug 1 is cured

0 otherwise

𝑌௝ ൌ ቊ
1 if the patient in the 𝑗th pair that receives drug 2 is cured

0 otherwise

𝑀, 𝑁, 𝑁

𝑛

𝑋ଵ ൅ ⋯൅ 𝑋௡ െ ሺ𝑌ଵ ൅ ⋯൅ 𝑌௡ሻ ൌ 𝑀

𝑋ଵ ൅ ⋯൅ 𝑋௡ െ ሺ𝑌ଵ ൅ ⋯൅ 𝑌௡ሻ ൌ െ𝑀

𝑝ଵ ൐ 𝑝ଶ 𝑝ଶ ൐ 𝑝ଵ.

𝑝ଵ 𝑝ଶ, 𝑝ଵ ൐ 𝑝ଶ,

𝑝ଶ ൐ 𝑝ଵ

𝑝ଵ൫1 െ 𝑝ଶ൯

൫1 െ 𝑝ଵ൯𝑝ଶ,

𝑝ଵ𝑝ଶ ൅ ൫1 െ 𝑝ଵ൯൫1 െ 𝑝ଶ൯.

𝑝 ൌ 𝑃ሼup 1  ||  up 1 or down 1ሽ

ൌ
𝑝ଵ൫1 െ 𝑝ଶ൯
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𝑝ଶ൫1 െ 𝑝ଵ൯

𝑝ଵ൫1 െ 𝑝ଶ൯ ൅ ൫1 െ 𝑝ଵ൯𝑝ଶ
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Thus, the probability that the test will assert that  is equal to the

probability that a gambler who wins each (one-unit) bet with probability  will go

down  before going up . But Equation (4.5) , with  shows

that this probability is given by

where

For instance, if  and  then the probability of an incorrect decision

is .017 when  and reduces to .0003 when 

Example 4n

A total of  teams are selected to play in the end of season NCAA college

basketball tournament. These  are divided into four groups, called brackets, of

size  each, with the teams in each bracket being given seedings ranging from

 (the top rated team in the bracket) to  (the lowest rated team in the bracket).

The teams in each bracket play each other in a knockout style tournament,

meaning a loss knocks a team out of the tournament. Naming a team by its

seeding, the schedule of games to be played by the teams in a bracket is as

given by the following graph:

Figure 3.3 Ncaa tournament bracket format

𝑝ଶ ൐ 𝑝ଵ
𝑝

𝑀 𝑀 𝑖 ൌ 𝑀,𝑁 ൌ 2𝑀,

𝑝 ൌ 𝑃൛test asserts that 𝑝ଶ ൐ 𝑝ଵൟ

ൌ 1 െ
1 െ ቆ

1 െ 𝑝
𝑝

ቇ
ெ

1 െ ቆ
1 െ 𝑝
𝑝

ቇ
ଶெ

ൌ 1 െ
1

1 ൅ ቆ
1 െ 𝑝
𝑝

ቇ
ெ

ൌ
1

1 ൅ 𝛾ெ

𝛾 ൌ
𝑝

1 െ 𝑝
ൌ
𝑝ଵ൫1 െ 𝑝ଶ൯

𝑝ଶ൫1 െ 𝑝ଵ൯

𝑝ଵ ൌ . 6 𝑝ଶ ൌ . 4,

𝑀 ൌ 5 𝑀 ൌ 10.

64

64

16

1 16
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Thus, for instance, teams 1 and 16 play a game in round one, as do teams  and

 with the winners of these games then playing each other in round two. Let

 denote the round in which  and  would play if both teams

win up to that point. That is,  if  and  would play in round  if each won

8

9,

𝑟ሺ𝑖, 𝑗ሻ ൌ 𝑟ሺ𝑗, 𝑖ሻ, 𝑖 ് 𝑗 𝑖 𝑗

𝑟ሺ𝑖, 𝑗ሻ ൌ 𝑘 𝑖 𝑗 𝑘
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its first  games. For instance, 

Let us focus on a single one of the brackets, and let us suppose that, no matter

what has previously occurred, if  and  ever play each other then  will win with

probability  Let  be the probability that team  is the winner of the

bracket,  Because  is the probability that  wins  games, we will

compute the values  by determining the quantities 

where  is defined to be the probability that  wins its first  games. The

probabilities  will be determined recursively, first for  then for 

then for  and finally for  which will yield 

Let  be the set of possible opponents of  in round . To

compute  we will condition on which of the teams in  reaches round .

Because a team will reach round  if that team wins its first  games, this

gives

Now, because any team that plays a team in  in any of rounds  is

a possible opponent of team  in round  it follows that all games in rounds

 involving a team in  will be against another team in that set, and

thus the results of these games do not affect which teams  would play in its first

 games. Consequently, whether team  reaches round  is independent of

which team in  reaches round . Hence, for 

where the next to last equality follows because whether  wins its first 

games is independent of the event that  wins its first  games. Hence, from

(4.6 ) and the preceding equation, we have that

𝑘 െ 1 𝑟ሺ1, 16ሻ ൌ 1, 𝑟ሺ1, 8ሻ ൌ 2, 𝑟ሺ1, 5ሻ ൌ 3,
𝑟ሺ1, 6ሻ ൌ 4.

𝑖 𝑗 𝑖

𝑝௜,௝ ൌ 1 െ 𝑝௝,௜. 𝑃௜ 𝑖

𝑖 ൌ 1, …, 16. 𝑃௜ 𝑖 4

𝑃ଵ, …,𝑃ଵ଺ 𝑃௜ሺ𝑘ሻ, 𝑖 ൌ 1, …, 16,

𝑃௜ሺ𝑘ሻ 𝑖 𝑘

𝑃௜ሺ𝑘ሻ 𝑘 ൌ 1, 𝑘 ൌ 2,

𝑘 ൌ 3, 𝑘 ൌ 4 𝑃௜ ൌ 𝑃௜ሺ4ሻ.

𝑂௜ሺ𝑘ሻ ൌ ሼ𝑗:ሺ𝑟ሺ𝑖, 𝑗ሻ ൌ 𝑘ሽ 𝑖 𝑘

𝑃௜ሺ𝑘ሻ, 𝑂௜ሺ𝑘ሻ 𝑘

𝑘 𝑘 െ 1

𝑃௜൮𝑘൲ ൌ ෍

௝ ∈ ை ೔ሺ௞ ሻ
𝑃൮𝑖 win its ϐirst 𝑘 games|𝑗 reaches round 𝑘൲ 𝑃௝൮𝑘 െ 1൲

(4.6)

𝑂௜ሺ𝑘ሻ 1, …, 𝑘 െ 1

𝑖 𝑘,

1, …, 𝑘 െ 1 𝑂௜ሺ𝑘ሻ
𝑖

𝑘 െ 1 𝑖 𝑘

𝑂௜ሺ𝑘ሻ 𝑘 𝑗 ∈ 𝑂௜ሺ𝑘ሻ

𝑃ሺ𝑖 win its ϐirst 𝑘 games|𝑗 reaches round 𝑘ሻ

ൌ 𝑃ሺ𝑖 win its ϐirst 𝑘 െ 1 games, 𝑖 beats  𝑗|𝑗 reaches round 𝑘ሻ

ൌ 𝑃ሺ𝑖 win its ϐirst 𝑘 െ 1 gamesሻ𝑃ሺ𝑖 beats  𝑗|𝑖 and  𝑗 reach round 𝑘ሻ

ൌ 𝑃௜ቀ𝑘 െ 1ቁ 𝑝௜,௝

𝑖 𝑘 െ 1

𝑗 𝑘 െ 1
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Starting with  the preceding enables us to determine  for all 

which then enables us to determine  for all  and so on, up to 

To indicate how to apply the recursive equations (4.7) , suppose that

 Thus, for instance, the probability that team  (the second seed)

beats team  (the seventh seed) is  To compute,  the

probability that  wins the bracket, start with the quantities 

equal to the probabilities that each team wins its first game.

The quantities  are then obtained by using the preceding along with the

recursion (4.7 ). For instance, because the set of possible opponents of team 

in round  is  we have that

The other quantities  are obtained similarly, and are used to obtain

the quantities  which are then used to obtain 

𝑃௜ሺ𝑘ሻ ൌ ෍

௝ ∈ ை ೔ሺ௞ ሻ
𝑃௜൮𝑘 െ 1൲ 𝑝௜,௝ 𝑃௝൮𝑘 െ 1൲

ൌ 𝑃௜൮𝑘 െ 1൲ ෍

௝ ∈ ை ೔ሺ௞ ሻ
𝑃௝൮𝑘 െ 1൲ 𝑝௜,௝

(4.7)

𝑃௜ሺ0ሻ ൌ 1, 𝑃௜ሺ1ሻ 𝑖,

𝑃௜ሺ2ሻ 𝑖, 𝑃௜ ൌ 𝑃௜ሺ4ሻ .

𝑝௜,௝ ൌ
𝑗

𝑖 ൅ 𝑗
. 2

7 𝑝ଶ,଻ ൌ 7/9. 𝑃௜ ൌ 𝑃௜ሺ4ሻ,

𝑖 𝑃௜ሺ1ሻ, 𝑖 ൌ 1, …, 16,

𝑃ଵሺ1ሻ ൌ 𝑝ଵ,ଵ଺ ൌ 16/17 ൌ 1 െ 𝑃ଵ଺ቀ1ቁ

𝑃ଶሺ1ሻ ൌ 𝑝ଶ,ଵହ ൌ 15/17 ൌ 1 െ 𝑃ଵହቀ1ቁ

𝑃ଷሺ1ሻ ൌ 𝑝ଷ,ଵସ ൌ 14/17 ൌ 1 െ 𝑃ଵସቀ1ቁ

𝑃ସሺ1ሻ ൌ 𝑝ସ,ଵଷ ൌ 13/17 ൌ 1 െ 𝑃ଵଷቀ1ቁ

𝑃ହሺ1ሻ ൌ 𝑝ହ,ଵଶ ൌ 12/17 ൌ 1 െ 𝑃ଵଶቀ1ቁ

𝑃଺ሺ1ሻ ൌ 𝑝଺,ଵଵ ൌ 11/17 ൌ 1 െ 𝑃ଵଵቀ1ቁ

𝑃଻ሺ1ሻ ൌ 𝑝଻,ଵ଴ ൌ 10/17 ൌ 1 െ 𝑃ଵ଴ቀ1ቁ

𝑃଼ሺ1ሻ ൌ 𝑝଼,ଽ ൌ 9/17  ൌ 1 െ 𝑃ଽቀ1ቁ

𝑃௜ሺ2ሻ
1

2 𝑂ଵሺ2ሻ ൌ ሼ8, 9ሽ,

𝑃ଵቆ2ቇ ൌ 𝑃ଵቆ1ቇቀ𝑃଼ቀ1ቁ𝑝ଵ,଼ ൅ 𝑃ଽቀ1ቁ𝑝ଵ,ଽቁ ൌ
16
17

ቆ
9

17
8
9
൅

8
17

9
10
ቇ ൎ . 8415

𝑃௜ሺ2ሻ, …,𝑃ଵ଺ሺ2ሻ
𝑃௜ሺ3ሻ, 𝑖 ൌ 1, …, 16, 𝑃௜ ൌ 𝑃௜ሺ4ሻ,

𝑖 ൌ 1, …, 16 .
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Suppose that we are presented with a set of elements and we want to determine

whether at least one member of the set has a certain property. We can attack this

question probabilistically by randomly choosing an element of the set in such a way

that each element has a positive probability of being selected. Then the original

question can be answered by a consideration of the probability that the randomly

selected element does not have the property of interest. If this probability is equal to

 then none of the elements of the set has the property; if it is less than  then at

least one element of the set has the property.

The final example of this section illustrates this technique.

Example 4o

The complete graph having  vertices is defined to be a set of  points (called

vertices) in the plane and the  lines (called edges) connecting each pair of

vertices. The complete graph having 3 vertices is shown in Figure 3.4 .

Suppose now that each edge in a complete graph having  vertices is to be

colored either red or blue. For a fixed integer  a question of interest is, Is there

a way of coloring the edges so that no set of  vertices has all of its 

connecting edges the same color? It can be shown by a probabilistic argument

that if  is not too large, then the answer is yes.

Figure 3.4:

The argument runs as follows: Suppose that each edge is, independently, equally

likely to be colored either red or blue. That is, each edge is red with probability 

Number the  sets of  vertices and define the events  as

follows:

1, 1,

𝑛 𝑛

ቆ
𝑛

2
ቇ

𝑛

𝑘,

𝑘 ቆ
𝑘

2
ቇ

𝑛

1
2

.

ቆ
𝑛

𝑘
ቇ 𝑘 𝐸௜, 𝑖 ൌ 1, …,ቆ

𝑛

𝑘
ቇ

𝐸௜ ൌ ሼall of the connecting edges of the 𝑖th set of 𝑘 vertices are the same colorሽ
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Now, since each of the  connecting edges of a set of  vertices is equally

likely to be either red or blue, it follows that the probability that they are all the

same color is

Therefore, because

we find that  the probability that there is a set of  vertices all of whose

connecting edges are similarly colored, satisfies

Hence, if

or, equivalently, if

then the probability that at least one of the  sets of  vertices has all of its

connecting edges the same color is less than 1. Consequently, under the

preceding condition on  and  it follows that there is a positive probability that

no set of  vertices has all of its connecting edges the same color. But this

conclusion implies that there is at least one way of coloring the edges for which

no set of  vertices has all of its connecting edges the same color.

Remarks

a. Whereas the preceding argument established a condition on  and  that

guarantees the existence of a coloring scheme satisfying the desired property,

ቆ
𝑘

2
ቇ 𝑘

𝑃ቌ𝐸௜ቍ ൌ 2ቆ
1
2
ቇ
௞൫௞െଵ൯/ଶ

𝑃൬ ∪
௜
𝐸௜൰ ൑ ෍

௜

𝑃ሺ𝐸௜ሻ ቌ Boole′s inequalityቍ

𝑃൬ ∪
௜
𝐸௜൰, 𝑘

𝑃൬ ∪
௜
𝐸௜൰ ൑ ቆ

𝑛

𝑘
ቇቆ

1
2
ቇ
௞൫௞െଵ൯/ଶെଵ

ቆ
𝑛

𝑘
ቇቆ

1
2
ቇ
௞൫௞െଵ൯/ଶെଵ

൏ 1

ቆ
𝑛

𝑘
ቇ ൏ 2௞൫௞െଵ൯/ଶെଵ

ቆ
𝑛

𝑘
ቇ 𝑘

𝑛 𝑘,

𝑘

𝑘

𝑛 𝑘
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it gives no information about how to obtain such a scheme (although one

possibility would be simply to choose the colors at random, check to see if the

resulting coloring satisfies the property, and repeat the procedure until it

does).

b. The method of introducing probability into a problem whose statement is

purely deterministic has been called the probabilistic method.† Other

examples of this method are given in Theoretical Exercise 24  and

Examples 2t and 2u of Chapter 7 .

†See N. Alon, J. Spencer, and P. Erdos, The Probabilistic Method (New York: John

Wiley & Sons, Inc., 1992).

Conditional probabilities satisfy all of the properties of ordinary probabilities, as is

proved by Proposition 5.1 , which shows that  satisfies the three axioms of

a probability.

Proposition 5.1

a. 

b. 

c. If are mutually exclusive events, then

Proof. To prove part (a), we must show that  The left-side

inequality is obvious, whereas the right side follows because  which

implies that  Part (b) follows because

Part (c) follows from

𝑃ሺ𝐸 ||𝐹ሻ

0 ൑ 𝑃ሺ𝐸 ||𝐹ሻ ൑ 1.
𝑃ሺ𝑆 ||𝐹ሻ ൌ 1.

𝐸௜, 𝑖 ൌ 1, 2, …,

𝑃൬ ∪
௜ ൌ ଵ

ஶ 𝐸௜ ฬ𝐹൰ ൌ ෍
௜ ൌ ଵ

ஶ

𝑃ቌ𝐸௜ ቮ𝐹ቍ

0 ൑ 𝑃ሺ𝐸𝐹ሻ/𝑃ሺ𝐹ሻ ൑ 1.

𝐸𝐹 ⊂ 𝐹,

𝑃ሺ𝐸𝐹ሻ ൑ 𝑃ሺ𝐹ሻ.

𝑃ሺ𝑆|𝐹ሻ ൌ
𝑃ሺ𝑆𝐹ሻ
𝑃ሺ𝐹ሻ

ൌ
𝑃ሺ𝐹ሻ
𝑃ሺ𝐹ሻ

ൌ 1
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where the next-to-last equality follows because  implies that

If we define  then, from Proposition 5.1 , Q(E) may be regarded

as a probability function on the events of . Hence, all of the propositions previously

proved for probabilities apply to  For instance, we have

or, equivalently,

Also, if we define the conditional probability  by

 then, from Equation (3.1) , we have

Since

𝑃൬ ∪
௜ ൌ ଵ

ஶ
𝐸௜|𝐹൰ ൌ

𝑃൬൬
௜ ൌ ଵ

ஶ
𝐸௜൰𝐹൰

𝑃ሺ𝐹ሻ

ൌ
𝑃൬

ଵ

ஶ
𝐸௜𝐹൰

𝑃ሺ𝐹ሻ
 since ൬ ∪

ଵ

ஶ
𝐸௜൰𝐹 ൌ ∪

ଵ

ஶ
𝐸௜𝐹

ൌ

෍
ଵ

ஶ

𝑃ሺ𝐸௜𝐹ሻ

𝑃ሺ𝐹ሻ

ൌ ෍
ଵ

ஶ

𝑃ሺ𝐸௜|𝐹ሻ

𝐸௜𝐸௝ ൌ  Ø 
𝐸௜𝐹𝐸௝𝐹 ൌ  Ø .

𝑄ሺ𝐸ሻ ൌ 𝑃ሺ𝐸 ||𝐹ሻ,
𝑆

𝑄ሺ𝐸ሻ.

𝑄ሺ𝐸ଵ ∪ 𝐸ଶሻ ൌ 𝑄ሺ𝐸ଵሻ ൅ 𝑄ሺ𝐸ଶሻ െ 𝑄ሺ𝐸ଵ𝐸ଶሻ

𝑃ሺ𝐸ଵ ∪ 𝐸ଶ ||𝐹ሻ ൌ 𝑃ሺ𝐸ଵ ||𝐹ሻ ൅ 𝑃ሺ𝐸ଶ ||𝐹ሻ െ 𝑃ሺ𝐸ଵ𝐸ଶ ||𝐹ሻ

𝑄ሺ𝐸ଵ ||𝐸ଶሻ
𝑄ሺ𝐸ଵ ||𝐸ଶሻ ൌ 𝑄ሺ𝐸ଵ𝐸ଶሻ/𝑄ሺ𝐸ଶሻ,

𝑄ሺ𝐸ଵሻ ൌ 𝑄ሺ𝐸ଵ||𝐸ଶሻ𝑄ሺ𝐸ଶሻ ൅ 𝑄ሺ𝐸ଵ||𝐸ଶ
௖ሻ𝑄ሺ𝐸ଶ

௖ሻ

(5.1)
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Equation (5.1)  is equivalent to

Example 5a

Consider Example 3a , which is concerned with an insurance company that

believes that people can be divided into two distinct classes: those who are

accident prone and those who are not. During any given year, an accident-prone

person will have an accident with probability .4, whereas the corresponding figure

for a person who is not prone to accidents is .2. What is the conditional

probability that a new policyholder will have an accident in his or her second year

of policy ownership, given that the policyholder has had an accident in the first

year?

Solution

If we let  be the event that the policyholder is accident prone and we let

 be the event that he or she has had an accident in the th year, then

the desired probability  may be obtained by conditioning on whether or

not the policyholder is accident prone, as follows:

Now,

However,  is assumed to equal  and it was shown in Example 3a  that

 Hence,

𝑄ሺ𝐸ଵ|𝐸ଶሻ ൌ
𝑄ሺ𝐸ଵ𝐸ଶሻ
𝑄ሺ𝐸ଶሻ

ൌ
𝑃ሺ𝐸ଵ𝐸ଶ|𝐹ሻ
𝑃ሺ𝐸ଶ|𝐹ሻ

ൌ

𝑃ሺ𝐸ଵ𝐸ଶ𝐹ሻ
𝑃ሺ𝐹ሻ
𝑃ሺ𝐸ଶ𝐹ሻ
𝑃ሺ𝐹ሻ

ൌ 𝑃ሺ𝐸ଵ|𝐸ଶ𝐹ሻ

𝑃ሺ𝐸ଵ||𝐹ሻ ൌ 𝑃ሺ𝐸ଵ||𝐸ଶ𝐹ሻ𝑃ሺ𝐸ଶ||𝐹ሻ ൅ 𝑃ሺ𝐸ଵ||𝐸ଶ
௖𝐹ሻ𝑃ሺ𝐸ଶ௖ ||𝐹ሻ

𝐴

𝐴௜, 𝑖 ൌ 1, 2, 𝑖

𝑃ሺ𝐴ଶ ||𝐴ଵሻ

𝑃ሺ𝐴ଶ ||𝐴ଵሻ ൌ 𝑃ሺ𝐴ଶ ||𝐴𝐴ଵሻ𝑃ሺ𝐴 ||𝐴ଵሻ ൅ 𝑃ሺ𝐴ଶ ||𝐴
௖𝐴ଵሻ𝑃ሺ𝐴௖ ||𝐴ଵሻ

𝑃ሺ𝐴|𝐴ଵሻ ൌ
𝑃ሺ𝐴ଵ𝐴ሻ
𝑃ሺ𝐴ଵሻ

ൌ
𝑃ሺ𝐴ଵ|𝐴ሻ𝑃ሺ𝐴ሻ

𝑃ሺ𝐴ଵሻ

𝑃ሺ𝐴ሻ
3

10
,

𝑃ሺ𝐴ଵሻ ൌ . 26.
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Thus,

Since  and  it follows

that

Example 5b

A female chimp has given birth. It is not certain, however, which of two male

chimps is the father. Before any genetic analysis has been performed, it is

believed that the probability that male number  is the father is  and the

probability that male number  is the father is  DNA obtained from the

mother, male number  and male number  indicates that on one specific

location of the genome, the mother has the gene pair  male number  has

the gene pair  and male number  has the gene pair  If a DNA test

shows that the baby chimp has the gene pair  what is the probability that

male number  is the father?

Solution

Let all probabilities be conditional on the event that the mother has the gene pair

 male number  has the gene pair  and male number  has the gene

pair  Now, let  be the event that male number  is the father, and

let  be the event that the baby chimp has the gene pair  Then,

 is obtained as follows:

𝑃ሺ𝐴|𝐴ଵሻ ൌ
ሺ.4ሻሺ.3ሻ

.26
ൌ

6
13

𝑃ሺ𝐴௖|𝐴ଵሻ ൌ 1 െ 𝑃ሺ𝐴|𝐴ଵሻ ൌ
7

13

𝑃ሺ𝐴ଶ ||𝐴𝐴ଵሻ ൌ 𝑃ሺ𝐴ଶ ||𝐴ሻ ൌ . 4 𝑃ሺ𝐴ଶ ||𝐴
௖𝐴ଵሻ ൌ 𝑃ሺ𝐴ଶ ||𝐴

௖ሻ ൌ . 2,

𝑃ሺ𝐴ଶ|𝐴ଵሻ ൌ ሺ.4ሻ
6

13
൅ ሺ.2ሻ

7
13

ൎ .29

1 𝑝

2 1 െ 𝑝 .

1, 2

ሺ𝐴,𝐴ሻ, 1

ሺ𝑎, 𝑎ሻ, 2 ሺ𝐴,𝑎ሻ.
ሺ𝐴,𝑎ሻ,

1

ሺ𝐴,𝐴ሻ, 1 ሺ𝑎,𝑎ሻ, 2

ሺ𝐴,𝑎ሻ. 𝑀௜ 𝑖, 𝑖 ൌ 1, 2,

𝐵஺,௔ ሺ𝐴,𝑎ሻ .

𝑃൫𝑀ଵ ห𝐵஺,௔൯

𝑃൫𝑀ଵ ห𝐵஺,௔൯ ൌ
𝑃൫𝑀ଵ𝐵஺,௔൯

𝑃൫𝐵஺,௔൯

ൌ
𝑃൫𝐵஺,௔ ห𝑀ଵ൯𝑃൫𝑀ଵ൯

𝑃൫𝐵஺,௔ ห𝑀ଵ൯𝑃൫𝑀ଵ൯ ൅ 𝑃൫𝐵஺,௔ ห𝑀ଶ൯𝑃൫𝑀ଶ൯

ൌ
1 ⋅ 𝑝

1 ⋅ 𝑝 ൅ ሺ1/2ሻሺ1 െ 𝑝ሻ

ൌ
2𝑝

1 ൅ 𝑝
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Because  when  the information that the baby’s gene pair is 

increases the probability that male number  is the father. This result is intuitive

because it is more likely that the baby would have gene pair  if  is true

than if  is true (the respective conditional probabilities being  and ).

The next example deals with a problem in the theory of runs.

Example 5c

Independent trials, each resulting in a success with probability  or a failure with

probability  are performed. We are interested in computing the

probability that a run of  consecutive successes occurs before a run of 

consecutive failures.

Solution

Let  be the event that a run of  consecutive successes occurs before a run of

 consecutive failures. To obtain  we start by conditioning on the outcome

of the first trial. That is, letting  denote the event that the first trial results in a

success, we obtain

Now, given that the first trial was successful, one way we can get a run of 

successes before a run of  failures would be to have the next  trials all

result in successes. So, let us condition on whether or not that occurs. That is,

letting  be the event that trials 2 through  all are successes, we obtain

On the one hand, clearly, ; on the other hand, if the event 

occurs, then the first trial would result in a success, but there would be a failure

some time during the next  trials. However, when this failure occurs, it would

wipe out all of the previous successes, and the situation would be exactly as if

we started out with a failure. Hence,

Because the independence of trials implies that  and  are independent, and

because  it follows from Equation (5.3)  that

2𝑝
1 ൅ 𝑝

൐ 𝑝 𝑝 ൏ 1, ሺ𝐴,𝑎ሻ

1

ሺ𝐴,𝑎ሻ 𝑀ଵ

𝑀ଶ 1 1/2

𝑝

𝑞 ൌ 1 െ 𝑝,

𝑛 𝑚

𝐸 𝑛

𝑚 𝑃ሺ𝐸ሻ,
𝐻

𝑃ሺ𝐸ሻ ൌ 𝑝𝑃ሺ𝐸 ||𝐻ሻ ൅ 𝑞𝑃ሺ𝐸 ||𝐻
௖ሻ

(5.2)

𝑛

𝑚 𝑛 െ 1

𝐹 𝑛

𝑃ሺ𝐸 ||𝐻ሻ ൌ 𝑃ሺ𝐸 ||𝐹𝐻ሻ𝑃ሺ𝐹 ||𝐻ሻ ൅ 𝑃ሺ𝐸 ||𝐹
௖𝐻ሻ𝑃ሺ𝐹௖ ||𝐻ሻ

(5.3)

𝑃ሺ𝐸 ||𝐹𝐻ሻ ൌ 1 𝐹௖𝐻

𝑛 െ 1

𝑃ሺ𝐸 ||𝐹
௖𝐻ሻ ൌ 𝑃ሺ𝐸 ||𝐻

௖ሻ

𝐹 𝐻

𝑃ሺ𝐹ሻ ൌ 𝑝௡െଵ,
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We now obtain an expression for  in a similar manner. That is, we let 

denote the event that trials 2 through  are all failures. Then,

Now,  is the event that the first  trials all result in failures, so 

Also, if  occurs, then the first trial is a failure, but there is at least one

success in the next  trials. Hence, since this success wipes out all previous

failures, we see that

Thus, because  we obtain, from (5.5 ),

Solving Equations (5.4)  and (5.6 ) yields

and

Thus,

It is interesting to note that by the symmetry of the problem, the probability of

obtaining a run of  failures before a run of  successes would be given by

𝑃ሺ𝐸 ||𝐻ሻ ൌ 𝑝௡െଵ ൅ ሺ1 െ 𝑝௡െଵሻ𝑃ሺ𝐸 ||𝐻
௖ሻ

(5.4)

𝑃ሺ𝐸 ||𝐻
௖ሻ 𝐺

𝑚

𝑃ሺ𝐸 ||𝐻
௖ሻ ൌ 𝑃ሺ𝐸 ||𝐺𝐻

௖ሻ𝑃ሺ𝐺 ||𝐻
௖ሻ ൅ 𝑃ሺ𝐸 ||𝐺

௖𝐻௖ሻ𝑃ሺ𝐺௖ ||𝐻
௖ሻ

(5.5)

𝐺𝐻௖ 𝑚 𝑃ሺ𝐸 ||𝐺𝐻
௖ሻ ൌ 0.

𝐺௖𝐻௖

𝑚 െ 1

𝑃ሺ𝐸 ||𝐺
௖𝐻௖ሻ ൌ 𝑃ሺ𝐸 ||𝐻ሻ

𝑃ሺ𝐺௖ ||𝐻
௖ሻ ൌ 𝑃ሺ𝐺௖ሻ ൌ 1 െ 𝑞௠െଵ,

𝑃ሺ𝐸 ||𝐻
௖ሻ ൌ ሺ1 െ 𝑞௠െଵሻ𝑃ሺ𝐸 ||𝐻ሻ

(5.6)

𝑃ሺ𝐸|𝐻ሻ ൌ
𝑝௡െଵ

𝑝௡െଵ ൅ 𝑞௠െଵ െ 𝑝௡െଵ𝑞௠െଵ

𝑃ሺ𝐸||𝐻
௖ሻ ൌ

ሺ1 െ 𝑞௠െଵሻ𝑝௡െଵ

𝑝௡െଵ ൅ 𝑞௠െଵ െ 𝑝௡െଵ𝑞௠െଵ

𝑃ሺ𝐸ሻ ൌ 𝑝𝑃ሺ𝐸 ||𝐻ሻ ൅ 𝑞𝑃ሺ𝐸 ||𝐻
௖ሻ

ൌ
𝑝௡ ൅ 𝑞𝑝௡െଵሺ1 െ 𝑞௠െଵሻ

𝑝௡െଵ ൅ 𝑞௠െଵ െ 𝑝௡െଵ𝑞௠െଵ

ൌ
𝑝௡െଵሺ1 െ 𝑞௠ሻ

𝑝௡െଵ ൅ 𝑞௠െଵ െ 𝑝௡െଵ𝑞௠െଵ

(5.7)

𝑚 𝑛
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Equation (5.7)  with  and  interchanged and  and  interchanged. Hence,

this probability would equal

Since Equations (5.7)  and (5.8 ) sum to 1, it follows that, with probability 1,

either a run of  successes or a run of  failures will eventually occur.

As an example of Equation (5.7) , we note that, in tossing a fair coin, the

probability that a run of 2 heads will precede a run of 3 tails is  For 2

consecutive heads before 4 consecutive tails, the probability rises to 

In our next example, we return to the matching problem and obtain a solution by

using conditional probabilities.

Example 5d

At a party,  people take off their hats. The hats are then mixed up, and each

person randomly selects one. We say that a match occurs if a person selects his

or her own hat. What is the probability of

a. no matches?

b. exactly  matches?

Solution

a. Let  denote the event that no matches occur, and to make explicit the

dependence on  write  We start by conditioning on whether or

not the first person selects his or her own hat—call these events  and

 respectively. Then,

Clearly,  so

Now,  is the probability of no matches when  people select

from a set of  hats, when one person, called the “extra” person, does

𝑝 𝑞 𝑛 𝑚

𝑃ሼrun of  𝑚 failures before a run of  𝑛 successesሽ

ൌ
𝑞௠െଵሺ1 െ 𝑝௡ሻ

𝑞௠െଵ ൅ 𝑝௡െଵ െ 𝑞௠െଵ𝑝௡െଵ

(5.8)

𝑛 𝑚

7
10

.

5
6

.

𝑛

𝑘

𝐸

𝑛, 𝑃௡ ൌ 𝑃ሺ𝐸ሻ.
𝑀

𝑀௖,
𝑃௡ ൌ 𝑃ሺ𝐸ሻ ൌ 𝑃ሺ𝐸 ||𝑀ሻ𝑃ሺ𝑀ሻ ൅ 𝑃ሺ𝐸 ||𝑀

௖ሻ𝑃ሺ𝑀௖ሻ

𝑃ሺ𝐸 ||𝑀ሻ ൌ 0,

𝑃௡ ൌ 𝑃ሺ𝐸||𝑀
௖ሻ
𝑛 െ 1
𝑛

(5.9)

𝑃ሺ𝐸 ||𝑀
௖ሻ 𝑛 െ 1

𝑛 െ 1
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not have their hat in the collection, and one hat, called the “extra” hat,

does not belong to any of the people. This can happen in either of two

mutually exclusive ways: Either there are no matches and the extra

person does not select the extra hat (this being the hat of the person who

chose first) or there are no matches and the extra person does select the

extra hat. The probability of the first of these events is just  which is

seen by regarding the extra hat as “belonging” to the extra person.

Because the second event has probability  we have

Thus, from Equation (5.9) ,

or, equivalently,

However, since  is the probability of no matches when  people select

among their own hats, we have

So, from Equation (5.10) ,

and, in general,

b. To obtain the probability of exactly  matches, we consider any fixed group

of  people. The probability that they, and only they, select their own hats

is

where  is the conditional probability that the other  people,

𝑃௡െଵ,

ሾ1/ሺ𝑛 െ 1ሻሿ𝑃௡െଶ,

𝑃ሺ𝐸||𝑀
௖ሻ ൌ 𝑃௡െଵ ൅

1
𝑛 െ 1

𝑃௡െଶ

𝑃௡ ൌ
𝑛 െ 1
𝑛

𝑃௡െଵ ൅
1
𝑛
𝑃௡െଶ

𝑃௡ െ 𝑃௡െଵ ൌ െ
1
𝑛
ቆ𝑃௡െଵ െ 𝑃௡െଶቇ

(5.10)

𝑃௡ 𝑛

𝑃ଵ ൌ 0 𝑃ଶ ൌ
1
2

𝑃ଷ െ 𝑃ଶ ൌ െ
ሺ𝑃ଶ െ 𝑃ଵሻ

3
ൌ െ

1
3!
  or  𝑃ଷ ൌ

1
2!
െ

1
3!

𝑃ସ െ 𝑃ଷ ൌ െ
ሺ𝑃ଷ െ 𝑃ଶሻ

4
ൌ

1
4!
  or  𝑃ସ ൌ

1
2!
െ

1
3!
൅

1
4!

𝑃௡ ൌ
1
2!
െ

1
3!
൅

1
4!
െ⋯൅

ሺ െ 1ሻ௡

𝑛!

𝑘

𝑘

1
𝑛

1
𝑛 െ 1

⋯
1

𝑛 െ ሺ𝑘 െ 1ሻ
𝑃௡െ௞ ൌ

ሺ𝑛 െ 𝑘ሻ!
𝑛!

𝑃௡െ௞

𝑃௡െ௞ 𝑛 െ 𝑘
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selecting among their own hats, have no matches. Since there are 

choices of a set of  people, the desired probability of exactly  matches is

An important concept in probability theory is that of the conditional independence

of events. We say that the events  and  are conditionally independent given

 if given that  occurs, the conditional probability that  occurs is unchanged

by information as to whether or not  occurs. More formally,  and  are said

to be conditionally independent given  if

or, equivalently,

The notion of conditional independence can easily be extended to more than two

events, and this extension is left as an exercise.

The reader should note that the concept of conditional independence was

implicitly employed in Example 5a , where it was assumed that the events that

a policyholder had an accident in his or her th year,  were conditionally

independent given whether or not the person was accident prone. The following

example, sometimes referred to as Laplace’s rule of succession, further

illustrates the concept of conditional independence.

Example 5e Laplace’s rule of succession

There are  coins in a box. When flipped, the th coin will turn up heads with

probability  A coin is randomly selected from the box and is then

repeatedly flipped. If the first  flips all result in heads, what is the conditional

probability that the  flip will do likewise?

Solution

Letting  denote the event that the first  flips all land heads, the desired

probability is

ቆ
𝑛

𝑘
ቇ

𝑘 𝑘

𝑃௡െ௞
𝑘!

ൌ

1
2!
െ

1
3!
൅⋯൅

ሺ െ 1ሻ௡െ௞

ሺ𝑛 െ 𝑘ሻ!
𝑘!

𝐸ଵ 𝐸ଶ
𝐹 𝐹 𝐸ଵ

𝐸ଶ 𝐸ଵ 𝐸ଶ
𝐹

𝑃ሺ𝐸ଵ ||𝐸ଶ𝐹ሻ ൌ 𝑃ሺ𝐸ଵ ||𝐹ሻ

(5.11)

𝑃ሺ𝐸ଵ𝐸ଶ ||𝐹ሻ ൌ 𝑃ሺ𝐸ଵ ||𝐹ሻ𝑃ሺ𝐸ଶ ||𝐹ሻ

(5.12)

𝑖 𝑖 ൌ 1, 2, …,

𝑘 ൅ 1 𝑖

𝑖/𝑘, 𝑖 ൌ 0, 1, …, 𝑘.

𝑛

ሺ𝑛 ൅ 1ሻ

𝐻௡ 𝑛
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To compute  we condition on which coin is chosen. That is, letting 

denote the event that coin  is selected, we have that

Now, given that coin  is selected, it is reasonable to assume that the outcomes

will be conditionally independent, with each one resulting in a head with

probability  Hence,

As  this yields that

Thus,

If  is large, we can use the integral approximations

So, for  large,

Example 5f Updating information sequentially

𝑃ሺ𝐻௡൅ଵ|𝐻௡ሻ ൌ
𝑃ሺ𝐻௡൅ଵ𝐻௡ሻ
𝑃ሺ𝐻௡ሻ

ൌ
𝑃ሺ𝐻௡൅ଵሻ
𝑃ሺ𝐻௡ሻ

𝑃ሺ𝐻௡ሻ, 𝐶௜
𝑖

𝑃ሺ𝐻௡ሻ ൌ ෍
௜ ൌ ଴

௞

𝑃ሺ𝐻௡|𝐶௜ሻ𝑃ሺ𝐶௜ሻ

𝑖

𝑖/𝑘 .

𝑃ሺ𝐻௡|𝐶௜ሻ ൌ ሺ𝑖/𝑘ሻ௡

𝑃ቆ𝐶௜ቇ ൌ
1

𝑘 ൅ 1
,

𝑃ቌ𝐻௡ቍ ൌ
1

𝑘 ൅ 1
෍

௜ ൌ ଴

௞

ቌ𝑖/𝑘ቍ

௡

𝑃ሺ𝐻௡൅ଵ|𝐻௡ሻ ൌ
∑௜ ൌ ଴
௞ ሺ𝑖/𝑘ሻ௡൅ଵ

∑௜ ൌ ଴
௞ ሺ𝑖/𝑘ሻ௡

𝑘

1
𝑘

෍
௜ ൌ ଴

௞

൬
𝑖
𝑘
൰
௡൅ଵ

ൎ ඲

଴

ଵ

𝑥௡൅ଵ𝑑𝑥 ൌ
1

𝑛 ൅ 2

1
𝑘

෍
௝ ൌ ଴

௞

൬
𝑗
𝑘
൰
௡

ൎ ඲

଴

ଵ

𝑥௡𝑑𝑥 ൌ
1

𝑛 ൅ 1

𝑘

𝑃ሺ𝐻௡൅ଵ|𝐻௡ሻ ൎ
𝑛 ൅ 1
𝑛 ൅ 2
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Suppose there are  mutually exclusive and exhaustive possible hypotheses,

with initial (sometimes referred to as prior) probabilities 

Now, if information that the event  has occurred is received, then the conditional

probability that  is the true hypothesis (sometimes referred to as the updated or

posterior probability of ) is

Suppose now that we learn first that  has occurred and then that  has

occurred. Then, given only the first piece of information, the conditional

probability that  is the true hypothesis is

whereas given both pieces of information, the conditional probability that  is the

true hypothesis is  which can be computed by

One might wonder, however, when one can compute  by using the

right side of Equation (5.13)  with  and with  replaced by

 That is, when is it legitimate to regard  as

the prior probabilities and then use (5.13 ) to compute the posterior

probabilities?

Solution

The answer is that the preceding is legitimate, provided that for each 

the events  and  are conditionally independent, given  For if this is the

case, then

Therefore,

𝑛

𝑃ሺ𝐻௜ሻ, ∑௜ൌଵ
௡ 𝑃൫𝐻௜൯ ൌ 1.

𝐸

𝐻௜

𝐻௜

𝑃ሺ𝐻௜|𝐸ሻ ൌ
௉൫ாหு೔൯௉൫ு೔൯

෍
ೕ
௉ቀாቚுೕቁ௉ቀுೕቁ

(5.13)

𝐸ଵ 𝐸ଶ

𝐻௜

𝑃ሺ𝐻௜|𝐸ଵሻ ൌ
𝑃ሺ𝐸ଵ|𝐻௜ሻ𝑃ሺ𝐻௜ሻ

𝑃ሺ𝐸ଵሻ
ൌ

௉൫ாభหு೔൯௉൫ு೔൯

෍
ೕ
௉ቀாభቚுೕቁ௉ቀுೕቁ

𝐻௜

𝑃ሺ𝐻௜ ||𝐸ଵ𝐸ଶሻ,

𝑃ሺ𝐻௜|𝐸ଵ𝐸ଶሻ ൌ
௉൫ாభாమหு೔൯௉൫ு೔൯

෍
ೕ
௉ቀாభாమቚுೕቁ௉ቀுೕቁ

𝑃ሺ𝐻௜ ||𝐸ଵ𝐸ଶሻ
𝐸 ൌ 𝐸ଶ 𝑃൫𝐻௝൯

𝑃൫𝐻௝ ห𝐸ଵ൯, 𝑗 ൌ 1, …,𝑛. 𝑃൫𝐻௝ ห𝐸ଵ൯, 𝑗 ൒ 1,

𝑗 ൌ 1, …,𝑛,

𝐸ଵ 𝐸ଶ 𝐻௝.

𝑃൫𝐸ଵ𝐸ଶ ห𝐻௝൯ ൌ 𝑃൫𝐸ଶ ห𝐻௝൯𝑃൫𝐸ଵ ห𝐻௝൯, 𝑗 ൌ 1, …,𝑛
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where  Since the preceding equation is valid for all  we

obtain, upon summing,

showing that

and yielding the result

For instance, suppose that one of two coins is chosen to be flipped. Let  be the

event that coin  is chosen, and suppose that when coin  is flipped, it

lands on heads with probability  Then, the preceding equations show

that to sequentially update the probability that coin  is the one being flipped,

given the results of the previous flips, all that must be saved after each new flip is

the conditional probability that coin  is the coin being used. That is, it is not

necessary to keep track of all earlier results.

For events  and  the conditional probability of  given that  has occurred is

denoted by  and is defined by

𝑃ሺ𝐻௜ ||𝐸ଵ𝐸ଶሻ ൌ
𝑃ሺ𝐸ଶ ||𝐻௜ሻ𝑃ሺ𝐸ଵ ||𝐻௜ሻ𝑃ሺ𝐻௜ሻ

𝑃ሺ𝐸ଵ𝐸ଶሻ

ൌ
𝑃ሺ𝐸ଶ ||𝐻௜ሻ𝑃ሺ𝐸ଵ𝐻௜ሻ

𝑃ሺ𝐸ଵ𝐸ଶሻ

ൌ
𝑃ሺ𝐸ଶ ||𝐻௜ሻ𝑃ሺ𝐻௜ ||𝐸ଵሻ𝑃ሺ𝐸ଵሻ

𝑃ሺ𝐸ଵ𝐸ଶሻ

ൌ
𝑃ሺ𝐸ଶ ||𝐻௜ሻ𝑃ሺ𝐻௜ ||𝐸ଵሻ

𝑄ሺ1, 2ሻ

𝑄ቆ1, 2ቇ ൌ
𝑃ሺ𝐸ଵ𝐸ଶሻ
𝑃ሺ𝐸ଵሻ

. 𝑖,

1 ൌ ෍
௜ ൌ ଵ

௡

𝑃ሺ𝐻௜|𝐸ଵ𝐸ଶሻ ൌ ෍
௜ ൌ ଵ

௡
𝑃ሺ𝐸ଶ|𝐻௜ሻ𝑃ሺ𝐻௜|𝐸ଵሻ

𝑄ሺ1, 2ሻ

𝑄ሺ1, 2ሻ ൌ ෍

௜ ൌ ଵ

௡

𝑃ሺ𝐸ଶ|𝐻௜ሻ𝑃ሺ𝐻௜|𝐸ଵሻ

𝑃ሺ𝐻௜|𝐸ଵ𝐸ଶሻ ൌ
𝑃ሺ𝐸ଶ|𝐻௜ሻ𝑃ሺ𝐻௜|𝐸ଵሻ

∑௜ ൌ ଵ
௡ 𝑃ሺ𝐸ଶ|𝐻௜ሻ𝑃ሺ𝐻௜ |𝐸ଵሻ

𝐻௜

𝑖, 𝑖 ൌ 1, 2, 𝑖

𝑝௜, 𝑖 ൌ 1, 2.

1

1

𝐸 𝐹, 𝐸 𝐹

𝑃ሺ𝐸 ||𝐹ሻ
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The identity

is known as the multiplication rule of probability.

A valuable identity is

which can be used to compute  by “conditioning” on whether  occurs.

 is called the odds of the event . The identity

shows that when new evidence  is obtained, the value of the odds of  becomes its

old value multiplied by the ratio of the conditional probability of the new evidence

when  is true to the conditional probability when  is not true.

Let  be mutually exclusive events whose union is the entire sample

space. The identity

is known as Bayes’s formula. If the events  are competing hypotheses,

then Bayes’s formula shows how to compute the conditional probabilities of these

hypotheses when additional evidence  becomes available.

The denominator of Bayes’s formula uses that

which is called the law of total probability.

If  then we say that the events  and  are independent. This

condition is equivalent to  and to  Thus, the events 
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and  are independent if knowledge of the occurrence of one of them does not affect

the probability of the other.

The events  are said to be independent if, for any subset  of them,

For a fixed event  can be considered to be a probability function on the

events  of the sample space.

𝐹

𝐸ଵ, …,𝐸௡ 𝐸௜భ , …,𝐸௜ೝ

𝑃൫𝐸௜భ⋯𝐸௜ೝ൯ ൌ 𝑃൫𝐸௜భ൯⋯𝑃൫𝐸௜ೝ൯

𝐹, 𝑃ሺ𝐸 ||𝐹ሻ
𝐸

3.1. Two fair dice are rolled. What is the conditional probability that at least

one lands on 6 given that the dice land on different numbers?

3.2. If two fair dice are rolled, what is the conditional probability that the first

one lands on 6 given that the sum of the dice is ? Compute for all values of 

between 2 and 12.

3.3. Use Equation (2.1)  to compute in a hand of bridge the conditional

probability that East has 3 spades given that North and South have a

combined total of 8 spades.

3.4. What is the probability that at least one of a pair of fair dice lands on 6,

given that the sum of the dice is 

3.5. An urn contains 6 white and 9 black balls. If 4 balls are to be randomly

selected without replacement, what is the probability that the first 2 selected

are white and the last 2 black?

3.6. Consider an urn containing 12 balls, of which 8 are white. A sample of

size 4 is to be drawn with replacement (without replacement). What is the

conditional probability (in each case) that the first and third balls drawn will be

white given that the sample drawn contains exactly 3 white balls?

3.7. The king comes from a family of 2 children. What is the probability that

the other child is his sister?

3.8. A couple has 2 children. What is the probability that both are girls if the

older of the two is a girl?

3.9. Consider 3 urns. Urn  contains 2 white and 4 red balls, urn  contains 8

white and 4 red balls, and urn  contains 1 white and 3 red balls. If 1 ball is

selected from each urn, what is the probability that the ball chosen from urn 

was white given that exactly 2 white balls were selected?

3.10. Three cards are randomly selected, without replacement, from an

ordinary deck of 52 playing cards. Compute the conditional probability that the

first card selected is a spade given that the second and third cards are

spades.

𝑖 𝑖

𝑖, 𝑖 ൌ 2, 3, …, 12?

𝐴 𝐵

𝐶

𝐴
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3.11. Two cards are randomly chosen without replacement from an ordinary

deck of  cards. Let  be the event that both cards are aces, let  be the

event that the ace of spades is chosen, and let  be the event that at least

one ace is chosen. Find
a. 

b. 

3.12. Suppose distinct values are written on each of  cards, which are then

randomly given the designations  and . Given that card A’s value is less

than card B’s value, find the probability it is also less than card C’s value.

3.13. A recent college graduate is planning to take the first three actuarial

examinations in the coming summer. She will take the first actuarial exam in

June. If she passes that exam, then she will take the second exam in July,

and if she also passes that one, then she will take the third exam in

September. If she fails an exam, then she is not allowed to take any others.

The probability that she passes the first exam is .9. If she passes the first

exam, then the conditional probability that she passes the second one is .8,

and if she passes both the first and the second exams, then the conditional

probability that she passes the third exam is .7.

a. What is the probability that she passes all three exams?

b. Given that she did not pass all three exams, what is the conditional

probability that she failed the second exam?

3.14. Suppose that an ordinary deck of 52 cards (which contains 4 aces) is

randomly divided into 4 hands of 13 cards each. We are interested in

determining  the probability that each hand has an ace. Let  be the event

that the th hand has exactly one ace. Determine  by using

the multiplication rule.

3.15. An urn initially contains 5 white and 7 black balls. Each time a ball is

selected, its color is noted and it is replaced in the urn along with 2 other balls

of the same color. Compute the probability that

a. the first 2 balls selected are black and the next 2 are white;

b. of the first 4 balls selected, exactly 2 are black.

3.16. An ectopic pregnancy is twice as likely to develop when the pregnant

woman is a smoker as it is when she is a nonsmoker. If 32 percent of women

of childbearing age are smokers, what percentage of women having ectopic

pregnancies are smokers?

3.17. Ninety-eight percent of all babies survive delivery. However, 15 percent

of all births involve Cesarean (C) sections, and when a C section is

performed, the baby survives 96 percent of the time. If a randomly chosen

52 𝐵 𝐴௦
𝐴
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pregnant woman does not have a C section, what is the probability that her

baby survives?

3.18. In a certain community, 36 percent of the families own a dog and 22

percent of the families that own a dog also own a cat. In addition, 30 percent

of the families own a cat. What is

a. the probability that a randomly selected family owns both a dog and a

cat?

b. the conditional probability that a randomly selected family owns a dog

given that it owns a cat?

3.19. A total of 46 percent of the voters in a certain city classify themselves as

Independents, whereas 30 percent classify themselves as Liberals and 24

percent say that they are Conservatives. In a recent local election, 35 percent

of the Independents, 62 percent of the Liberals, and 58 percent of the

Conservatives voted. A voter is chosen at random. Given that this person

voted in the local election, what is the probability that he or she is

a. an Independent?

b. a Liberal?

c. a Conservative?

d. What percent of voters participated in the local election?

3.20. A total of 48 percent of the women and 37 percent of the men who took

a certain “quit smoking” class remained nonsmokers for at least one year after

completing the class. These people then attended a success party at the end

of a year. If 62 percent of the original class was male,

a. what percentage of those attending the party were women?

b. what percentage of the original class attended the party?

3.21. Fifty-two percent of the students at a certain college are females. Five

percent of the students in this college are majoring in computer science. Two

percent of the students are women majoring in computer science. If a student

is selected at random, find the conditional probability that

a. the student is female given that the student is majoring in computer

science;

b. this student is majoring in computer science given that the student is

female.

3.22. A total of 500 married working couples were polled about their annual

salaries, with the following information resulting:

Wife Husband

167 of 848



Less than $125,000 More than $125,000

Less than $125,000 212 198

More than $125,000 36 54

For instance, in 36 of the couples, the wife earned more and the husband

earned less than $125,000. If one of the couples is randomly chosen, what is

a. the probability that the husband earns less than $125,000?

b. the conditional probability that the wife earns more than $125,000 given

that the husband earns more than this amount?

c. the conditional probability that the wife earns more than $125,000 given

that the husband earns less than this amount?

3.23. A red die, a blue die, and a yellow die (all six sided) are rolled. We are

interested in the probability that the number appearing on the blue die is less

than that appearing on the yellow die, which is less than that appearing on the

red die. That is, with  and  denoting, respectively, the number appearing

on the blue, yellow, and red die, we are interested in 

a. What is the probability that no two of the dice land on the same

number?

b. Given that no two of the dice land on the same number, what is the

conditional probability that 

c. What is 

3.24. Urn I contains 2 white and 4 red balls, whereas urn II contains 1 white

and 1 red ball. A ball is randomly chosen from urn I and put into urn II, and a

ball is then randomly selected from urn II. What is

a. the probability that the ball selected from urn II is white?

b. the conditional probability that the transferred ball was white given that

a white ball is selected from urn II?

3.25. Twenty percent of B’s phone calls are with her daughter. Sixty five

percent of the time that B speaks with her daughter she hangs up the phone

with a smile on her face. Given that B has just hung up the phone with a smile

on her face, we are interested in the conditional probability that the phone call

was with her daughter. Do we have enough information to determine this

probability. If yes, what is it; if no, what additional information is needed.

3.26. Each of 2 balls is painted either black or gold and then placed in an urn.

Suppose that each ball is colored black with probability  and that these

𝐵,𝑌, 𝑅

𝑃ሺ𝐵 ൏ 𝑌 ൏ 𝑅ሻ.

𝐵 ൏ 𝑌 ൏ 𝑅?

𝑃ሺ𝐵 ൏ 𝑌 ൏ 𝑅ሻ
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events are independent.

a. Suppose that you obtain information that the gold paint has been used

(and thus at least one of the balls is painted gold). Compute the

conditional probability that both balls are painted gold.

b. Suppose now that the urn tips over and 1 ball falls out. It is painted

gold. What is the probability that both balls are gold in this case?

Explain.

3.27. The following method was proposed to estimate the number of people

over the age of 50 who reside in a town of known population 100,000: “As you

walk along the streets, keep a running count of the percentage of people you

encounter who are over 50. Do this for a few days; then multiply the

percentage you obtain by 100,000 to obtain the estimate.” Comment on this

method.

Hint: Let  denote the proportion of people in the town who are over 50.

Furthermore, let  denote the proportion of time that a person under the age

of 50 spends in the streets, and let  be the corresponding value for those

over 50. What quantity does the method suggested estimate? When is the

estimate approximately equal to 

3.28. Suppose that 5 percent of men and 0.25 percent of women are color

blind. A color-blind person is chosen at random. What is the probability of this

person being male? Assume that there are an equal number of males and

females. What if the population consisted of twice as many males as females?

3.29. All the workers at a certain company drive to work and park in the

company’s lot. The company is interested in estimating the average number of

workers in a car. Which of the following methods will enable the company to

estimate this quantity? Explain your answer.

A. Randomly choose  workers, find out how many were in the cars in

which they were driven, and take the average of the  values.

B. Randomly choose  cars in the lot, find out how many were driven in

those cars, and take the average of the  values.

3.30 Suppose that an ordinary deck of 52 cards is shuffled and the cards are

then turned over one at a time until the first ace appears. Given that the first

ace is the 20th card to appear, what is the conditional probability that the card

following it is the

a. ace of spades?

b. two of clubs?

3.31. There are 15 tennis balls in a box, of which 9 have not previously been

used. Three of the balls are randomly chosen, played with, and then returned

𝑝

𝛼ଵ
𝛼ଶ
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𝑛
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𝑛
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to the box. Later, another 3 balls are randomly chosen from the box. Find the

probability that none of these balls has ever been used.

3.32. Consider two boxes, one containing 1 black and 1 white marble, the

other 2 black and 1 white marble. A box is selected at random, and a marble

is drawn from it at random. What is the probability that the marble is black?

What is the probability that the first box was the one selected given that the

marble is white?

3.33. Ms. Aquina has just had a biopsy on a possibly cancerous tumor. Not

wanting to spoil a weekend family event, she does not want to hear any bad

news in the next few days. But if she tells the doctor to call only if the news is

good, then if the doctor does not call, Ms. Aquina can conclude that the news

is bad. So, being a student of probability, Ms. Aquina instructs the doctor to

flip a coin. If it comes up heads, the doctor is to call if the news is good and

not call if the news is bad. If the coin comes up tails, the doctor is not to call.

In this way, even if the doctor doesn’t call, the news is not necessarily bad. Let

 be the probability that the tumor is cancerous; let  be the conditional

probability that the tumor is cancerous given that the doctor does not call.

a. Which should be larger,  or 

b. Find  in terms of  and prove your answer in part (a).

3.34. A family has  children with probability  where

 A child from this family is randomly

chosen. Given that this child is the eldest child in the family, find the

conditional probability that the family has

a. only  child;

b.  children.

Redo (a) and (b) when the randomly selected child is the youngest child of the

family.

3.35. On rainy days, Joe is late to work with probability .3; on nonrainy days,

he is late with probability .1. With probability .7, it will rain tomorrow.

a. Find the probability that Joe is early tomorrow.

b. Given that Joe was early, what is the conditional probability that it

rained?

3.36. In Example 3f , suppose that the new evidence is subject to different

possible interpretations and in fact shows only that it is 90 percent likely that

the criminal possesses the characteristic in question. In this case, how likely

would it be that the suspect is guilty (assuming, as before, that he has the

characteristic)?

3.37. With probability .6, the present was hidden by mom; with probability .4, it

𝛼 𝛽

𝛼 𝛽

𝛽 𝛼,

𝑗 𝑝௝,
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was hidden by dad. When mom hides the present, she hides it upstairs 70

percent of the time and downstairs 30 percent of the time. Dad is equally likely

to hide it upstairs or downstairs.

a. What is the probability that the present is upstairs?

b. Given that it is downstairs, what is the probability it was hidden by dad?

3.38. Stores  and  have 50, 75, and 100 employees, respectively, and

50, 60, and 70 percent of them respectively are women. Resignations are

equally likely among all employees, regardless of sex. One woman employee

resigns. What is the probability that she works in store 

3.39.

a. A gambler has a fair coin and a two-headed coin in his pocket. He

selects one of the coins at random; when he flips it, it shows heads.

What is the probability that it is the fair coin?

b. Suppose that he flips the same coin a second time and, again, it shows

heads. Now what is the probability that it is the fair coin?

c. Suppose that he flips the same coin a third time and it shows tails. Now

what is the probability that it is the fair coin?

3.40. Urn  has 5 white and 7 black balls. Urn  has 3 white and 12 black

balls. We flip a fair coin. If the outcome is heads, then a ball from urn  is

selected, whereas if the outcome is tails, then a ball from urn  is selected.

Suppose that a white ball is selected. What is the probability that the coin

landed tails?

3.41. In Example 3a , what is the probability that someone has an accident

in the second year given that he or she had no accidents in the first year?

3.42. Consider a sample of size 3 drawn in the following manner: We start

with an urn containing 5 white and 7 red balls. At each stage, a ball is drawn

and its color is noted. The ball is then returned to the urn, along with an

additional ball of the same color. Find the probability that the sample will

contain exactly

a. 0 white balls;

b. 1 white ball;

c. 3 white balls;

d. 2 white balls.

3.43. A deck of cards is shuffled and then divided into two halves of 26 cards

each. A card is drawn from one of the halves; it turns out to be an ace. The

ace is then placed in the second half-deck. The half is then shuffled, and a

card is drawn from it. Compute the probability that this drawn card is an ace.

Hint: Condition on whether or not the interchanged card is selected.

𝐴, 𝐵, 𝐶

𝐶?

𝐴 𝐵

𝐴
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3.44. Twelve percent of all U.S. households are in California. A total of 1.3

percent of all U.S. households earn more than $250,000 per year, while a total

of 3.3 percent of all California households earn more than $250,000 per year.

a. What proportion of all non-California households earn more than

$250,000 per year?

b. Given that a randomly chosen U.S. household earns more than

$250,000 per year, what is the probability it is a California household?

3.45. There are 3 coins in a box. One is a two-headed coin, another is a fair

coin, and the third is a biased coin that comes up heads 75 percent of the

time. When one of the 3 coins is selected at random and flipped, it shows

heads. What is the probability that it was the two-headed coin?

3.46. Three prisoners are informed by their jailer that one of them has been

chosen at random to be executed and the other two are to be freed. Prisoner

 asks the jailer to tell him privately which of his fellow prisoners will be set

free, claiming that there would be no harm in divulging this information

because he already knows that at least one of the two will go free. The jailer

refuses to answer the question, pointing out that if  knew which of his fellow

prisoners were to be set free, then his own probability of being executed

would rise from  to  because he would then be one of two prisoners. What

do you think of the jailer’s reasoning?

3.47. There is a  percent chance that  can fix her busted computer. If 

cannot, then there is a  percent chance that her friend B can fix it.

a. Find the probability it will be fixed by either A or B.

b. If it is fixed, what is the probability it will be fixed by B.

3.48. In any given year, a male automobile policyholder will make a claim with

probability  and a female policyholder will make a claim with probability 

where  The fraction of the policyholders that are male is 

A policyholder is randomly chosen. If  denotes the event that this

policyholder will make a claim in year  show that

Give an intuitive explanation of why the preceding inequality is true.

3.49. An urn contains 5 white and 10 black balls. A fair die is rolled and that

number of balls is randomly chosen from the urn. What is the probability that

all of the balls selected are white? What is the conditional probability that the

die landed on 3 if all the balls selected are white?

3.50. Each of 2 cabinets identical in appearance has 2 drawers. Cabinet 

contains a silver coin in each drawer, and cabinet  contains a silver coin in

one of its drawers and a gold coin in the other. A cabinet is randomly selected,
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one of its drawers is opened, and a silver coin is found. What is the probability

that there is a silver coin in the other drawer?

3.51. Prostate cancer is the most common type of cancer found in males. As

an indicator of whether a male has prostate cancer, doctors often perform a

test that measures the level of the prostate-specific antigen (PSA) that is

produced only by the prostate gland. Although PSA levels are indicative of

cancer, the test is notoriously unreliable. Indeed, the probability that a

noncancerous man will have an elevated PSA level is approximately 

increasing to approximately  if the man does have cancer. If, on the basis

of other factors, a physician is  percent certain that a male has prostate

cancer, what is the conditional probability that he has the cancer given that

a. the test indicated an elevated PSA level?

b. the test did not indicate an elevated PSA level?

Repeat the preceding calculation, this time assuming that the physician

initially believes that there is a  percent chance that the man has prostate

cancer.

3.52. Suppose that an insurance company classifies people into one of three

classes: good risks, average risks, and bad risks. The company’s records

indicate that the probabilities that good-, average-, and bad-risk persons will

be involved in an accident over a 1-year span are, respectively, .05, .15, and

.30. If 20 percent of the population is a good risk, 50 percent an average risk,

and 30 percent a bad risk, what proportion of people have accidents in a fixed

year? If policyholder  had no accidents in 2012, what is the probability that

he or she is a good risk? is an average risk?

3.53. A worker has asked her supervisor for a letter of recommendation for a

new job. She estimates that there is an 80 percent chance that she will get the

job if she receives a strong recommendation, a 40 percent chance if she

receives a moderately good recommendation, and a 10 percent chance if she

receives a weak recommendation. She further estimates that the probabilities

that the recommendation will be strong, moderate, and weak are .7, .2, and .1,

respectively.

a. How certain is she that she will receive the new job offer?

b. Given that she does receive the offer, how likely should she feel that

she received a strong recommendation? a moderate recommendation?

a weak recommendation?

c. Given that she does not receive the job offer, how likely should she feel

that she received a strong recommendation? a moderate

recommendation? a weak recommendation?

3.54. Players  are randomly lined up. The first two players in line
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then play a game; the winner of that game then plays a game with the person

who is third in line; the winner of that game then plays a game with the person

who is fourth in line. The winner of that last game is considered the winner of

the tournament. If A wins each game it plays with probability  determine the

probability that A is the winner of the tournament.

3.55. Players  are playing a tournament. Two of these three players are

randomly chosen to play a game in round one, with the winner then playing

the remaining player in round two. The winner of round two is the tournament

victor. Assume that all games are independent and that  wins when playing

against  with probability 

a. Find the probability that  is the tournament victor.

b. If  is the tournament victor, find the conditional probability that  did

not play in round one.

3.56. Suppose there are two coins, with coin  landing heads when flipped

with probability  and coin  with probability  Suppose also that we

randomly select one of these coins and then continually flip it. Let  denote

the event that flip  lands heads. Also, let  be the event that coin 

was chosen, 

a. Find 

b. Find 

c. Find 

d. Find 

3.57. In a  game series played with two teams, the first team to win a total of

 games is the winner. Suppose that each game played is independently won

by team A with probability .

a. Given that one team leads  to  what is the probability that it is team

 that leads.

b. Given that one team leads  to  what is the probability that team wins

the series.

3.58. A parallel system functions whenever at least one of its components

works. Consider a parallel system of  components, and suppose that each

component works independently with probability  Find the conditional

probability that component 1 works given that the system is functioning.

3.59. If you had to construct a mathematical model for events  and  as

described in parts (a) through (e), would you assume that they were

independent events? Explain your reasoning.

a.  is the event that a businesswoman has blue eyes, and  is the event
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.

1

1 1

1

. 3 2 . 5.

𝐻௝

𝑗, 𝑗 ൒ 1, 𝐶௜ 𝑖

𝑖 ൌ 1, 2.

𝑃ሺ𝐻ଵሻ.
𝑃ሺ𝐻ଶ ||𝐻ଵሻ.
𝑃ሺ𝐶ଵ ||𝐻ଵሻ.
𝑃ሺ𝐻ଶ𝐻ଷ𝐻ସ ||𝐻ଵሻ.

7

4

𝑝

3 0,

𝐴

3 0,

𝑛
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2

.
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that her secretary has blue eyes.

b.  is the event that a professor owns a car, and  is the event that he is

listed in the telephone book.

c.  is the event that a man is under 6 feet tall, and  is the event that he

weighs more than 200 pounds.

d.  is the event that a woman lives in the United States, and  is the

event that she lives in the Western Hemisphere.

e.  is the event that it will rain tomorrow, and  is the event that it will rain

the day after tomorrow.

3.60. In a class, there are 4 first-year boys, 6 first-year girls, and 6 sophomore

boys. How many sophomore girls must be present if sex and class are to be

independent when a student is selected at random?

3.61. Suppose that you continually collect coupons and that there are 

different types. Suppose also that each time a new coupon is obtained, it is a

type  coupon with probability  Suppose that you have just

collected your th coupon. What is the probability that it is a new type?

Hint: Condition on the type of this coupon.

3.62. A simplified model for the movement of the price of a stock supposes

that on each day the stock’s price either moves up 1 unit with probability  or

moves down 1 unit with probability  The changes on different days are

assumed to be independent.

a. What is the probability that after 2 days the stock will be at its original

price?

b. What is the probability that after 3 days the stock’s price will have

increased by 1 unit?

c. Given that after 3 days the stock’s price has increased by 1 unit, what

is the probability that it went up on the first day?

3.63. Suppose that we want to generate the outcome of the flip of a fair coin,

but that all we have at our disposal is a biased coin that lands on heads with

some unknown probability  that need not be equal to  Consider the

following procedure for accomplishing our task:

1. Flip the coin.

2. Flip the coin again.

3. If both flips land on heads or both land on tails, return to step 1.

4. Let the result of the last flip be the result of the experiment.

a. Show that the result is equally likely to be either heads or tails.

b. Could we use a simpler procedure that continues to flip the coin until

the last two flips are different and then lets the result be the outcome of

𝐸 𝐹

𝐸 𝐹

𝐸 𝐹

𝐸 𝐹

𝑚

𝑖 𝑝௜, 𝑖 ൌ 1, …,𝑚.

𝑛

𝑝

1 െ 𝑝.

𝑝
1
2

.
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the final flip?

3.64. Independent flips of a coin that lands on heads with probability  are

made. What is the probability that the first four outcomes are
a. 
b. 
c. What is the probability that the pattern  occurs before the

pattern 

Hint for part (c): How can the pattern  occur first?

3.65. The color of a person’s eyes is determined by a single pair of genes. If

they are both blue-eyed genes, then the person will have blue eyes; if they are

both brown-eyed genes, then the person will have brown eyes; and if one of

them is a blue-eyed gene and the other a brown-eyed gene, then the person

will have brown eyes. (Because of the latter fact, we say that the brown-eyed

gene is dominant over the blue-eyed one.) A newborn child independently

receives one eye gene from each of its parents, and the gene it receives from

a parent is equally likely to be either of the two eye genes of that parent.

Suppose that Smith and both of his parents have brown eyes, but Smith’s

sister has blue eyes.

a. What is the probability that Smith possesses a blueeyed gene?

b. Suppose that Smith’s wife has blue eyes. What is the probability that

their first child will have blue eyes?

c. If their first child has brown eyes, what is the probability that their next

child will also have brown eyes?

3.66. Genes relating to albinism are denoted by  and . Only those people

who receive the  gene from both parents will be albino. Persons having the

gene pair  are normal in appearance and, because they can pass on the

trait to their offspring, are called carriers. Suppose that a normal couple has

two children, exactly one of whom is an albino. Suppose that the nonalbino

child mates with a person who is known to be a carrier for albinism.

a. What is the probability that their first offspring is an albino?

b. What is the conditional probability that their second offspring is an

albino given that their firstborn is not?

3.67. Barbara and Dianne go target shooting. Suppose that each of Barbara’s

shots hits a wooden duck target with probability  while each shot of

Dianne’s hits it with probability  Suppose that they shoot simultaneously at

the same target. If the wooden duck is knocked over (indicating that it was

hit), what is the probability that

a. both shots hit the duck?

𝑝

𝐻, 𝐻, 𝐻, 𝐻?
𝑇, 𝐻, 𝐻, 𝐻?

𝐻, 𝐻, 𝐻, 𝐻?

𝑇, 𝐻, 𝐻, 𝐻?

𝐻, 𝐻, 𝐻, 𝐻?

𝐴 𝑎

𝑎

𝐴, 𝑎

𝑝ଵ,

𝑝ଶ.
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b. Barbara’s shot hit the duck?

What independence assumptions have you made?

3.68.  and  are involved in a duel. The rules of the duel are that they are to

pick up their guns and shoot at each other simultaneously. If one or both are

hit, then the duel is over. If both shots miss, then they repeat the process.

Suppose that the results of the shots are independent and that each shot of 

will hit  with probability  and each shot of  will hit  with probability 

What is

a. the probability that  is not hit?

b. the probability that both duelists are hit?

c. the probability that the duel ends after the th round of shots?

d. the conditional probability that the duel ends after the th round of

shots given that  is not hit?

e. the conditional probability that the duel ends after the th round of

shots given that both duelists are hit?

3.69. Assume, as inExample 3h , that 64 percent of twins are of the same

sex. Given that a newborn set of twins is of the same sex, what is the

conditional probability that the twins are identical?

3.70. The probability of the closing of the th relay in the circuits shown in

Figure 3.5  is given by  2, 3, 4, 5. If all relays function

independently, what is the probability that a current flows between  and  for

the respective circuits?

Figure 3.5 Circuits for problem 3.70

𝐴 𝐵

𝐴

𝐵 𝑝஺, 𝐵 𝐴 𝑝஻.

𝐴

𝑛

𝑛

𝐴

𝑛

𝑖

𝑝௜, 𝑖 ൌ 1,

𝐴 𝐵

177 of 848



Hint for (b): Condition on whether relay 3 closes.

3.71. An engineering system consisting of  components is said to be a -out-

of-  system  if the system functions if and only if at least  of the 

components function. Suppose that all components function independently of

one another.

a. If the th component functions with probability  2, 3, 4, compute

the probability that a 2-out-of-4 system functions.

b. Repeat part (a) for a 3-out-of-5 system.

c. Repeat for a -out-of-  system when all the  equal  (that is,

).

3.72. In Problem 3.70a , find the conditional probability that relays 1 and 2

are both closed given that a current flows from  to .

3.73. A certain organism possesses a pair of each of 5 different genes (which

we will designate by the first 5 letters of the English alphabet). Each gene

appears in 2 forms (which we designate by lowercase and capital letters). The

capital letter will be assumed to be the dominant gene, in the sense that if an

organism possesses the gene pair xX, then it will outwardly have the

appearance of the  gene. For instance, if  stands for brown eyes and  for

blue eyes, then an individual having either gene pair XX or xX will have brown

eyes, whereas one having gene pair xx will have blue eyes. The characteristic

appearance of an organism is called its phenotype, whereas its genetic

constitution is called its genotype. (Thus, 2 organisms with respective

genotypes aA, bB, cc, dD, ee and AA, BB, cc, DD, ee would have different

genotypes but the same phenotype.) In a mating between 2 organisms, each

one contributes, at random, one of its gene pairs of each type. The 5

contributions of an organism (one of each of the 5 types) are assumed to be

independent and are also independent of the contributions of the organism’s

mate. In a mating between organisms having genotypes aA, bB, cC, dD, eE

and aa, bB, cc, Dd, ee what is the probability that the progeny will (i)

phenotypically and (ii) genotypically resemble

𝑛 𝑘

𝑛 ሺ𝑘 ൑ 𝑛ሻ 𝑘 𝑛

𝑖 𝑃௜, 𝑖 ൌ 1,

𝑘 𝑛 𝑃௜ 𝑝

𝑃௜ ൌ 𝑝, 𝑖 ൌ 1, 2, …,𝑛

𝐴 𝐵

𝑋 𝑋 𝑥
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a. the first parent?

b. the second parent?

c. either parent?

d. neither parent?

3.74. There is a 50–50 chance that the queen carries the gene for hemophilia.

If she is a carrier, then each prince has a 50–50 chance of having hemophilia.

If the queen has had three princes without the disease, what is the probability

that the queen is a carrier? If there is a fourth prince, what is the probability

that he will have hemophilia?

3.75. A town council of 7 members contains a steering committee of size 3.

New ideas for legislation go first to the steering committee and then on to the

council as a whole if at least 2 of the 3 committee members approve the

legislation. Once at the full council, the legislation requires a majority vote (of

at least 4) to pass. Consider a new piece of legislation, and suppose that each

town council member will approve it, independently, with probability . What is

the probability that a given steering committee member’s vote is decisive in

the sense that if that person’s vote were reversed, then the final fate of the

legislation would be reversed? What is the corresponding probability for a

given council member not on the steering committee?

3.76.Suppose that each child born to a couple is equally likely to be a boy or a

girl, independently of the sex distribution of the other children in the family. For

a couple having 5 children, compute the probabilities of the following events:

a. All children are of the same sex.

b. The 3 eldest are boys and the others girls.

c. Exactly 3 are boys.

d. The 2 oldest are girls.

e. There is at least 1 girl.

3.77.  and  alternate rolling a pair of dice, stopping either when  rolls the

sum 9 or when  rolls the sum 6. Assuming that  rolls first, find the

probability that the final roll is made by .

3.78. In a certain village, it is traditional for the eldest son (or the older son in a

two-son family) and his wife to be responsible for taking care of his parents as

they age. In recent years, however, the women of this village, not wanting that

responsibility, have not looked favorably upon marrying an eldest son.

a. If every family in the village has two children, what proportion of all

sons are older sons?

b. If every family in the village has three children, what proportion of all

sons are eldest sons?

Assume that each child is, independently, equally likely to be either a

𝑝

𝐴 𝐵 𝐴

𝐵 𝐴

𝐴
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boy or a girl.

3.79. Suppose that  and  are mutually exclusive events of an experiment.

Show that if independent trials of this experiment are performed, then  will

occur before  with probability 

3.80. Consider an unending sequence of independent trials, where each trial

is equally likely to result in any of the outcomes  or . Given that outcome

 is the last of the three outcomes to occur, find the conditional probability that

a. the first trial results in outcome ;

b. the first two trials both result in outcome .

3.81.  and  play a series of games. Each game is independently won by 

with probability  and by  with probability  They stop when the total

number of wins of one of the players is two greater than that of the other

player. The player with the greater number of total wins is declared the winner

of the series.

a. Find the probability that a total of 4 games are played.

b. Find the probability that A is the winner of the series.

3.82. In successive rolls of a pair of fair dice, what is the probability of getting

2 sevens before 6 even numbers?

3.83. In a certain contest, the players are of equal skill and the probability is 

that a specified one of the two contestants will be the victor. In a group of 

players, the players are paired off against each other at random. The 

winners are again paired off randomly, and so on, until a single winner

remains. Consider two specified contestants,  and  and define the events

 by

a. Find 

b. Find 

c. Let  Show that

and use this formula to check the answer you obtained in part (b).

Hint: Find  by conditioning on which of the events 

occur. In simplifying your answer, use the algebraic identity

𝐸 𝐹

𝐸

𝐹 𝑃ሺ𝐸ሻ/ሾ𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐹ሻሿ.

1, 2, 3

3

1

1

𝐴 𝐵 𝐴

𝑝 𝐵 1 െ 𝑝.

1
2

2௡

2௡െଵ

𝐴 𝐵,

𝐴௜, 𝑖 ൑ 𝑛,𝐸
𝐴௜ : 𝐴 plays in exactly 𝑖 contests

𝐸: 𝐴 and 𝐵 never play each other

𝑃ሺ𝐴௜ሻ, 𝑖 ൌ 1, …,𝑛.

𝑃ሺ𝐸ሻ.
𝑃௡ ൌ 𝑃ሺ𝐸ሻ.

𝑃௡ ൌ
1

2௡ െ 1
൅

2௡ െ 2
2௡ െ 1

ቆ
1
2
ቇ
ଶ

𝑃௡െଵ
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For another approach to solving this problem, note that there are a total

of  games played.

d. Explain why  games are played.

Number these games, and let  denote the event that  and  play

each other in game 

e. What is 

f. Use part (e) to find 

3.84. An investor owns shares in a stock whose present value is 25. She has

decided that she must sell her stock if it goes either down to 10 or up to 40. If

each change of price is either up 1 point with probability .55 or down 1 point

with probability .45, and the successive changes are independent, what is the

probability that the investor retires a winner?

3.85.  and  flip coins.  starts and continues flipping until a tail occurs, at

which point  starts flipping and continues until there is a tail. Then  takes

over, and so on. Let  be the probability of the coin landing on heads when 

flips and  when  flips. The winner of the game is the first one to get

a. 2 heads in a row;

b. a total of 2 heads;

c. 3 heads in a row;

d. a total of 3 heads.

In each case, find the probability that  wins.

3.86. Die  has 4 red and 2 white faces, whereas die  has 2 red and 4 white

faces. A fair coin is flipped once. If it lands on heads, the game continues with

die ; if it lands on tails, then die  is to be used.

a. Show that the probability of red at any throw is 

b. If the first two throws result in red, what is the probability of red at the

third throw?

c. If red turns up at the first two throws, what is the probability that it is die

 that is being used?

3.87. An urn contains 12 balls, of which 4 are white. Three players—  and

 successively draw from the urn,  first, then  then  then  and so on.

The winner is the first one to draw a white ball. Find the probability of winning

for each player if

a. each ball is replaced after it is drawn;

෍
௜ ൌ ଵ

௡ െ ଵ

𝑖𝑥௜െଵ ൌ
1 െ 𝑛𝑥௡െଵ ൅ ሺ𝑛 െ 1ሻ𝑥௡

ሺ1 െ 𝑥ሻଶ

2௡ െ 1

2௡ െ 1

𝐵௜ 𝐴 𝐵

𝑖, 𝑖 ൌ 1, …, 2௡ െ 1.

𝑃ሺ𝐵௜ሻ
𝑃ሺ𝐸ሻ.

𝐴 𝐵 𝐴

𝐵 𝐴

𝑃ଵ 𝐴

𝑃ଶ 𝐵

𝐴

𝐴 𝐵

𝐴 𝐵
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.

𝐴
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b. the balls that are withdrawn are not replaced.

3.88. Repeat Problem 3.87  when each of the 3 players selects from his

own urn. That is, suppose that there are 3 different urns of 12 balls with 4

white balls in each urn.

3.89. Let  and suppose that  and  are, independently, equally

likely to be any of the  subsets (including the null set and  itself) of .

a. Show that

Hint: Let  denote the number of elements in . Use

Show that 

3.90. Consider an eight team tournament with the format given in Figure

3.6 . If the probability that team  beats team  if they play is  find the

probability that team  wins the tournament.

Figure 3.6

𝑆 ൌ ሼ1, 2, …,𝑛ሽ 𝐴 𝐵

2௡ 𝑆 𝑆

𝑃ሼ𝐴 ⊂ 𝐵ሽ ൌ ቆ
3
4
ቇ
௡

𝑁ሺ𝐵ሻ 𝐵

𝑃ሼ𝐴 ⊂ 𝐵ሽ ൌ ∑
௜ ൌ ଴

௡
𝑃ሼ𝐴 ⊂ 𝐵||𝑁ሺ𝐵ሻ ൌ 𝑖ሽ𝑃ሼ𝑁ሺ𝐵ሻ ൌ 𝑖ሽ

𝑃൝𝐴𝐵 ൌ  Øൡ ൌ ቆ
3
4
ቇ
௡

.

𝑖 𝑗
𝑗

𝑖 ൅ 𝑗
,

1
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3.91. ConsiderExample 2a , but now suppose that when the key is in a

certain pocket, there is a  percent chance that a search of that pocket will

not find the key. Let  and  be, respectively, the events that the key is in the

right-hand pocket of the jacket and that it is in the left-hand pocket. Also, let 

be the event that a search of the right-hand jacket pocket will be successful in

10

𝑅 𝐿

𝑆ோ
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finding the key, and let  be the event that a search of the left-hand jacket

pocket will be unsuccessful and, thus, not find the key. Find  the

conditional probability that a search of the right-hand pocket will find the key

given that a search of the left-hand pocket did not, by

a. using the identity

determining  by conditioning on whether or not the key is in the

right-hand pocket, and determining  by conditioning on whether

or not the key is in the left-hand pocket;

b. using the identity

3.92. InExample 5e , what is the conditional probability that the th coin was

selected given that the first  trials all result in heads?

3.93. In Laplace’s rule of succession (Example 5e ), are the outcomes of

the successive flips independent? Explain.

3.94. A person tried by a 3-judge panel is declared guilty if at least 2 judges

cast votes of guilty. Suppose that when the defendant is in fact guilty, each

judge will independently vote guilty with probability .7, whereas when the

defendant is in fact innocent, this probability drops to .2. If 70 percent of

defendants are guilty, compute the conditional probability that judge number 3

votes guilty given that

a. judges 1 and 2 vote guilty;

b. judges 1 and 2 cast 1 guilty and 1 not guilty vote;

c. judges 1 and 2 both cast not guilty votes.

Let  denote the event that judge  casts a guilty vote. Are these

events independent? Are they conditionally independent? Explain.

3.95. Each of  workers is independently qualified to do an incoming job with

probability . If none of them is qualified then the job is rejected; otherwise the

job is assigned to a randomly chosen one of the qualified workers. Find the

probability that worker  is assigned to the first incoming job. Hint: Condition

on whether or not at least one worker is qualified.

3.96. Suppose in the preceding problem that  and that worker  is

qualified with probability 

a. Find the probability that worker  is assigned to the first incoming job.

b. Given that worker  is assigned to the first job, find the conditional

probability that worker  was qualified for that job.

𝑈௅
𝑃ሺ𝑆ோ ||𝑈௅ሻ,

𝑃ሺ𝑆ோ|𝑈௅ሻ ൌ
𝑃ሺ𝑆ோ𝑈௅ሻ
𝑃ሺ𝑈௅ሻ

𝑃ሺ𝑆ோ𝑈௅ሻ
𝑃ሺ𝑈௅ሻ

𝑃ሺ𝑆ோ|𝑈௅ሻ ൌ 𝑃ሺ𝑆ோ|𝑅𝑈௅ሻ𝑃ሺ𝑅|𝑈௅ሻ ൅  𝑃ሺ𝑆ோ||𝑅
௖𝑈௅ሻ𝑃ሺ𝑅

௖|𝑈௅ሻ

𝑖

𝑛
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3.97. Each member of a population of size  is, independently of other

members, female with probability  or male with probability  Two

individuals of the same sex will, independently of other pairs, be friends with

probability ; whereas two individuals of opposite sex will be friends with

probability  Let  be the event that persons  and  are friends.

a. Find 

b. Are  and  independent.

c. Are  and  conditionally independent given the sex of person 1.

d. Find 

𝑛

𝑝 1 െ 𝑝.

𝛼

𝛽 . 𝐴௞,௥ 𝑘 𝑟

𝑃൫𝐴ଵ,ଶ൯.

𝐴ଵ,ଶ 𝐴ଵ,ଷ

𝐴ଵ,ଶ 𝐴ଵ,ଷ

𝑃൫𝐴ଵ,ଶ𝐴ଵ,ଷ൯.

3.1. Show that if  then

3.2. Let  Express the following probabilities as simply as possible:

3.3. Consider a school community of  families, with  of them having 

children,  Consider the following two methods for

choosing a child:

A. Choose one of the  families at random and then randomly choose a

child from that family.

B. Choose one of the  children at random.

Show that method 1 is more likely than method 2 to result in the choice of a

firstborn child.

Hint: In solving this problem, you will need to show that

To do so, multiply the sums and show that for all pairs  the coefficient of

the term  is greater in the expression on the left than in the one on the

right.

3.4. A ball is in any one of  boxes and is in the th box with probability  If

the ball is in box  a search of that box will uncover it with probability  Show

that the conditional probability that the ball is in box  given that a search of

box  did not uncover it, is

𝑃ሺ𝐴ሻ ൐ 0,

𝑃ሺ𝐴𝐵|𝐴ሻ ൒ 𝑃ሺ𝐴𝐵|𝐴 𝐵ሻ

𝐴 ⊂ 𝐵.
𝑃ሺ𝐴|𝐵ሻ, 𝑃ሺ𝐴||𝐵

௖ሻ, 𝑃ሺ𝐵|𝐴ሻ, 𝑃ሺ𝐵||𝐴
௖ሻ
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3.5.

a. Prove that if  and  are mutually exclusive, then

b. Prove that if  are mutually exclusive, then

3.6. Prove that if  are independent events, then

3.7.

a. An urn contains  white and  black balls. The balls are withdrawn one

at a time until only those of the same color are left. Show that with

probability  they are all white.

Hint: Imagine that the experiment continues until all the balls are

removed, and consider the last ball withdrawn.

b. A pond contains 3 distinct species of fish, which we will call the Red,

Blue, and Green fish. There are  Red,  Blue, and  Green fish.

Suppose that the fish are removed from the pond in a random order.

(That is, each selection is equally likely to be any of the remaining fish.)

What is the probability that the Red fish are the first species to become

extinct in the pond?

Hint: Write  and compute the probabilities on

the right by first conditioning on the last species to be removed.

3.8. Let  and  be events relating to the experiment of rolling a pair of

dice.

a. If

either prove that  or give a counterexample by defining

events  and  for which that relationship is not true.

b. If

𝑝௝
1 െ 𝛼௜𝑝௜

if   𝑗 ് 𝑖

൫1 െ 𝛼௜൯𝑝௜
1 െ 𝛼௜𝑝௜

if   𝑗 ൌ 𝑖

𝐸 𝐹

𝑃ሺ𝐸|𝐸 ∪ 𝐹ሻ ൌ
𝑃ሺ𝐸ሻ

𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐹ሻ

𝐸௜, 𝑖 ൒ 1

𝑃ሺ𝐸𝑗| ∪௜ൌଵஶ 𝐸௜ሻ ൌ
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∑௜ ൌ ଵ
ஶ 𝑃ሺ𝐸௜ሻ
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௜ ൌ ଵ

௡
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𝑛 𝑚
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𝑟 𝑏 𝑔

𝑃ሼ𝑅ሽ ൌ 𝑃ሼ𝑅𝐵𝐺ሽ ൅ 𝑃ሼ𝑅𝐺𝐵ሽ,

𝐴,𝐵, 𝐶

𝑃ሺ𝐴 ||𝐶ሻ ൐ 𝑃ሺ𝐵 ||𝐶ሻ  and  𝑃ሺ𝐴 ||𝐶
௖ሻ ൐ 𝑃ሺ𝐵 ||𝐶

௖ሻ
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𝐴,𝐵, 𝐶
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either prove that  or give a counterexample by

defining events  and  for which that relationship is not true.

Hint: Let  be the event that the sum of a pair of dice is ; let  be the event

that the first die lands on ; let  be the event that the second die lands on .

3.9. Consider two independent tosses of a fair coin. Let  be the event that

the first toss results in heads, let  be the event that the second toss results in

heads, and let  be the event that in both tosses the coin lands on the same

side. Show that the events  and  are pairwise independent—that is, 

and  are independent,  and  are independent, and  and  are

independent—but not independent.

3.10. Two percent of women age 45 who participate in routine screening have

breast cancer. Ninety percent of those with breast cancer have positive

mammographies. Eight percent of the women who do not have breast cancer

will also have positive mammographies. Given that a woman has a positive

mammography, what is the probability she has breast cancer?

3.11. In each of  independent tosses of a coin, the coin lands on heads with

probability . How large need  be so that the probability of obtaining at least

one head is at least 

3.12. Show that  then

Hint: Suppose that an infinite number of coins are to be flipped. Let  be the

probability that the th coin lands on heads, and consider when the first head

occurs.

3.13. The probability of getting a head on a single toss of a coin is . Suppose

that  starts and continues to flip the coin until a tail shows up, at which point

 starts flipping. Then  continues to flip until a tail comes up, at which point 

takes over, and so on. Let  denote the probability that  accumulates a

total of  heads before  accumulates . Show that

* 3.14. Suppose that you are gambling against an infinitely rich adversary and

at each stage you either win or lose 1 unit with respective probabilities  and

 Show that the probability that you eventually go broke is

𝑃ሺ𝐴 ||𝐶ሻ ൐ 𝑃ሺ𝐴 ||𝐶
௖ሻ and 𝑃ሺ𝐵 ||𝐶ሻ ൐ 𝑃ሺ𝐵 ||𝐶

௖ሻ

𝑃ሺ𝐴𝐵 ||𝐶ሻ ൐ 𝑃ሺ𝐴𝐵 ||𝐶
௖ሻ

𝐴,𝐵, 𝐶
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𝐴

𝐵

𝐶
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𝑛
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𝑖
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where  and where  is your initial fortune.

3.15. Independent trials that result in a success with probability  are

successively performed until a total of  successes is obtained. Show that the

probability that exactly  trials are required is

Use this result to solve the problem of the points (Example 4j .

Hint: In order for it to take  trials to obtain  successes, how many successes

must occur in the first  trials?

3.16. Independent trials that result in a success with probability  and a failure

with probability  are called Bernoulli trials. Let  denote the probability

that  Bernoulli trials result in an even number of successes (0 being

considered an even number). Show that

and use this formula to prove (by induction) that

3.17. Suppose that  independent trials are performed, with trial  being a

success with probability  Let  denote the probability that the total

number of successes that result is an odd number.

a. Find  for 

b. Conjecture a general formula for 

c. Derive a formula for  in terms of 

d. Verify that your conjecture in part (b) satisfies the recursive formula in

part (c). Because the recursive formula has a unique solution, this then

proves that your conjecture is correct.

3.18. Let  denote the probability that no run of 3 consecutive heads appears

in  tosses of a fair coin. Show that

Find 

Hint: Condition on the first tail.

3.19. Consider the gambler’s ruin problem, with the exception that  and 

agree to play no more than  games. Let  denote the probability that 

winds up with all the money when  starts with  and  starts with 

Derive an equation for  in terms of  and  and compute

𝑞 ൌ 1 െ 𝑝 𝑖

𝑝

𝑟

𝑛
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𝑛 𝑟

𝑛 െ 1

𝑝

1 െ 𝑝 𝑃௡
𝑛
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𝑛 𝑖
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𝑃௡ 𝑛 ൌ 1, 2, 3, 4, 5.

𝑃௡.

𝑃௡ 𝑃௡െଵ .
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3.20. Consider two urns, each containing both white and black balls. The

probabilities of drawing white balls from the first and second urns are,

respectively,  and  Balls are sequentially selected with replacement as

follows: With probability  a ball is initially chosen from the first urn, and with

probability  it is chosen from the second urn. The subsequent selections

are then made according to the rule that whenever a white ball is drawn (and

replaced), the next ball is drawn from the same urn, but when a black ball is

drawn, the next ball is taken from the other urn. Let  denote the probability

that the th ball is chosen from the first urn. Show that

and use this formula to prove that

Let  denote the probability that the th ball selected is white. Find  Also,

compute  and 

3.21. The Ballot Problem. In an election, candidate  receives  votes and

candidate  receives  votes, where  Assuming that all of the

 orderings of the votes are equally likely, let  denote the

probability that  is always ahead in the counting of the votes.

a. Compute 

b. Find 

c. On the basis of your results in parts (a) and (b), conjecture the value of

d. Derive a recursion for  in terms of  and  by

conditioning on who receives the last vote.

e. Use part (d) to verify your conjecture in part (c) by an induction proof on

3.22. As a simplified model for weather forecasting, suppose that the weather

(either wet or dry) tomorrow will be the same as the weather today with

probability . Show that the weather is dry on January 1, then  the

probability that it will be dry  days later, satisfies

Prove that

𝑃଻,ଷ, 𝑁 ൌ 5.
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3.23. A bag contains  white and  black balls. Balls are chosen from the bag

according to the following method:

A. A ball is chosen at random and is discarded.

B. A second ball is then chosen. If its color is different from that of the

preceding ball, it is replaced in the bag and the process is repeated

from the beginning. If its color is the same, it is discarded and we start

from step 2.

In other words, balls are sampled and discarded until a change in color

occurs, at which point the last ball is returned to the urn and the process starts

anew. Let  denote the probability that the last ball in the bag is white.

Prove that

Hint: Use induction on 

3.24. A round-robin tournament of  contestants is a tournament in which

each of the  pairs of contestants play each other exactly once, with the

outcome of any play being that one of the contestants wins and the other

loses. For a fixed integer  a question of interest is whether it is

possible that the tournament outcome is such that for every set of  players,

there is a player who beat each member of that set. Show that if

then such an outcome is possible.

Hint: Suppose that the results of the games are independent and that each

game is equally likely to be won by either contestant. Number the  sets of

 contestants, and let  denote the event that no contestant beat all of the 

players in the th set. Then use Boole’s inequality to bound 

3.25. Prove directly that

3.26. Prove the equivalence of Equations (5.11)  and (5.12 ).

3.27. Extend the definition of conditional independence to more than 2 events.

3.28. Prove or give a counterexample. If  and  are independent, then they

are conditionally independent given .

3.29. In Laplace’s rule of succession (Example 5e ), show that if the first 

flips all result in heads, then the conditional probability that the next  flips
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also result in all heads is approximately  when  is large.

3.30. In Laplace’s rule of succession (Example 5e ), suppose that the first 

flips resulted in  heads and  tails. Show that the probability that the

 flip turns up heads is  To do so, you will have to prove

and use the identity

Hint: To prove the identity, let  Integrating by

parts yields

Starting with  prove the identity by induction on .

3.31. Suppose that a nonmathematical, but philosophically minded, friend of

yours claims that Laplace’s rule of succession must be incorrect because it

can lead to ridiculous conclusions. “For instance,” says he, “the rule states

that if a boy is 10 years old, having lived 10 years, the boy has probability 

of living another year. On the other hand, if the boy has an 80-year-old

grandfather, then, by Laplace’s rule, the grandfather has probability  of

surviving another year. However, this is ridiculous. Clearly, the boy is more

likely to survive an additional year than the grandfather is.” How would you

answer your friend?

ሺ𝑛 ൅ 1ሻ/ሺ𝑛 ൅ 𝑚 െ 1ሻ 𝑘
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11
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81
82

3.1. In a game of bridge, West has no aces. What is the probability of

his partner’s having (a) no aces? (b) 2 or more aces? (c) What would

the probabilities be if West had exactly 1 ace?

3.2. The probability that a new car battery functions for more than

10,000 miles is .8, the probability that it functions for more than

20,000 miles is .4, and the probability that it functions for more than

30,000 miles is .1. If a new car battery is still working after 10,000

miles, what is the probability that

a. its total life will exceed 20,000 miles?

b. its additional life will exceed 20,000 miles?
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3.3. How can 20 balls, 10 white and 10 black, be put into two urns so

as to maximize the probability of drawing a white ball if an urn is

selected at random and a ball is drawn at random from it?

3.4. Urn  contains 2 white balls and 1 black ball, whereas urn 

contains 1 white ball and 5 black balls. A ball is drawn at random

from urn  and placed in urn . A ball is then drawn from urn . It

happens to be white. What is the probability that the ball transferred

was white?

3.5. An urn has  red and  white balls that are randomly removed

one at a time. Let  be the event that the th ball removed is red.

Find
a. 

b. 

c. 

3.6. An urn contains  black balls and  red balls. One of the balls is

drawn at random, but when it is put back in the urn,  additional balls

of the same color are put in with it. Now, suppose that we draw

another ball. Show that the probability that the first ball was black,

given that the second ball drawn was red, is 

3.7. A friend randomly chooses two cards, without replacement, from

an ordinary deck of 52 playing cards. In each of the following

situations, determine the conditional probability that both cards are

aces.

a. You ask your friend if one of the cards is the ace of spades,

and your friend answers in the affirmative.

b. You ask your friend if the first card selected is an ace, and

your friend answers in the affirmative.

c. You ask your friend if the second card selected is an ace, and

your friend answers in the affirmative.

d. You ask your friend if either of the cards selected is an ace,

and your friend answers in the affirmative.

3.8. Show that

Suppose that, before new evidence is observed, the hypothesis  is

three times as likely to be true as is the hypothesis . If the new

evidence is twice as likely when  is true than it is when  is true,

which hypothesis is more likely after the evidence has been

observed?
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3.9. You ask your neighbor to water a sickly plant while you are on

vacation. Without water, it will die with probability .8; with water, it will

die with probability .15. You are 90 percent certain that your neighbor

will remember to water the plant.

a. What is the probability that the plant will be alive when you

return?

b. If the plant is dead upon your return, what is the probability

that your neighbor forgot to water it?

3.10. Six balls are to be randomly chosen from an urn containing 8

red, 10 green, and 12 blue balls.

a. What is the probability at least one red ball is chosen?

b. Given that no red balls are chosen, what is the conditional

probability that there are exactly 2 green balls among the 6

chosen?

3.11. A type C battery is in working condition with probability 

whereas a type D battery is in working condition with probability  A

battery is randomly chosen from a bin consisting of 8 type C and 6

type D batteries.

a. What is the probability that the battery works?

b. Given that the battery does not work, what is the conditional

probability that it was a type C battery?

3.12. Maria will take two books with her on a trip. Suppose that the

probability that she will like book 1 is  the probability that she will

like book 2 is  and the probability that she will like both books is

 Find the conditional probability that she will like book  given that

she did not like book 1.

3.13. Balls are randomly removed from an urn that initially contains

20 red and 10 blue balls.

a. What is the probability that all of the red balls are removed

before all of the blue ones have been removed? Now suppose

that the urn initially contains 20 red, 10 blue, and 8 green

balls.

b. Now what is the probability that all of the red balls are

removed before all of the blue ones have been removed?

c. What is the probability that the colors are depleted in the order

blue, red, green?

d. What is the probability that the group of blue balls is the first of

the three groups to be removed?

. 7,

. 4.

. 6,

. 5,

. 4. 2
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3.14. A coin having probability  of landing on heads is flipped. 

observes the result—either heads or tails—and rushes off to tell .

However, with probability  will have forgotten the result by the

time he reaches . If  has forgotten, then, rather than admitting this

to  he is equally likely to tell  that the coin landed on heads or that

it landed tails. (If he does remember, then he tells  the correct

result.)

a. What is the probability that  is told that the coin landed on

heads?

b. What is the probability that  is told the correct result?

c. Given that  is told that the coin landed on heads, what is the

probability that it did in fact land on heads?

3.15. In a certain species of rats, black dominates over brown.

Suppose that a black rat with two black parents has a brown sibling.

a. What is the probability that this rat is a pure black rat (as

opposed to being a hybrid with one black and one brown

gene)?

b. Suppose that when the black rat is mated with a brown rat, all

5 of their offspring are black. Now what is the probability that

the rat is a pure black rat?

3.16.

a. In Problem 3.70b , find the probability that a current flows

from  to  by conditioning on whether relay 1 closes.

b. Find the conditional probability that relay 3 is closed given that

a current flows from  to .

3.17. For the -out-of-  system described in Problem 3.71 ,

assume that each component independently works with probability

 Find the conditional probability that component 1 is working, given

that the system works, when

a. ;
b. 

3.18. Mr. Jones has devised a gambling system for winning at

roulette. When he bets, he bets on red and places a bet only when

the 10 previous spins of the roulette have landed on a black number.

He reasons that his chance of winning is quite large because the

probability of 11 consecutive spins resulting in black is quite small.

What do you think of this system?
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3.19. Three players simultaneously toss coins. The coin tossed by

 turns up heads with probability  If one person

gets an outcome different from those of the other two, then he is the

odd man out. If there is no odd man out, the players flip again and

continue to do so until they get an odd man out. What is the

probability that  will be the odd man?

3.20. Suppose that there are  possible outcomes of a trial, with

outcome  resulting with probability  If two

independent trials are observed, what is the probability that the result

of the second trial is larger than that of the first?

3.21. If  flips  and  flips  fair coins, show that the probability

that  gets more heads than  is 

Hint: Condition on which player has more heads after each has

flipped  coins. (There are three possibilities.)

3.22. Prove or give counterexamples to the following statements:

a. If  is independent of  and  is independent of  then  is

independent of 

b. If  is independent of  and  is independent of  and

 then  is independent of 

c. If  is independent of  and  is independent of  and  is

independent of FG, then  is independent of EF.

3.23. Let  and  be events having positive probability. State

whether each of the following statements is (i) necessarily true, (ii)

necessarily false, or (iii) possibly true.

a. If  and  are mutually exclusive, then they are independent.

b. If  and  are independent, then they are mutually exclusive.

c.  and  and  are mutually exclusive.

d.  and  and  are independent.

3.24. Rank the following from most likely to least likely to occur:

A. A fair coin lands on heads.

B. Three independent trials, each of which is a success with

probability .8, all result in successes.

C. Seven independent trials, each of which is a success with

probability .9, all result in successes.

3.25. Two local factories,  and  produce radios. Each radio

produced at factory  is defective with probability .05, whereas each

𝐴ሺ𝐵ሻሾ𝐶ሿ 𝑃ଵሺ𝑃ଶሻሾ𝑃ଷሿ.

𝐴

𝑛

𝑖 𝑝௜, 𝑖 ൌ 1, …,𝑛, ෍
௜ ൌ ଵ

௡

𝑝௜ ൌ 1.

𝐴 𝑛 ൅ 1 𝐵 𝑛

𝐴 𝐵
1
2

𝑛

𝐸 𝐹 𝐸 𝐺, 𝐸

𝐹 ∪ 𝐺 .

𝐸 𝐹, 𝐸 𝐺,

𝐹𝐺 ൌ  Ø , 𝐸 𝐹 ∪ 𝐺 .

𝐸 𝐹, 𝐹 𝐺, 𝐸

𝐺

𝐴 𝐵

𝐴 𝐵

𝐴 𝐵

𝑃ሺ𝐴ሻ ൌ 𝑃ሺ𝐵ሻ ൌ . 6, 𝐴 𝐵

𝑃ሺ𝐴ሻ ൌ 𝑃ሺ𝐵ሻ ൌ . 6, 𝐴 𝐵

𝐴 𝐵,

𝐴
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one produced at factory  is defective with probability .01. Suppose

you purchase two radios that were produced at the same factory,

which is equally likely to have been either factory  or factory . If

the first radio that you check is defective, what is the conditional

probability that the other one is also defective?

3.26. Show that if  then 

3.27. An urn initially contains 1 red and 1 blue ball. At each stage, a

ball is randomly withdrawn and replaced by two other balls of the

same color. (For instance, if the red ball is initially chosen, then there

would be 2 red and 1 blue balls in the urn when the next selection

occurs.) Show by mathematical induction that the probability that

there are exactly  red balls in the urn after  stages have been

completed is 

3.28. A total of 2  cards, of which 2 are aces, are to be randomly

divided among two players, with each player receiving  cards. Each

player is then to declare, in sequence, whether he or she has

received any aces. What is the conditional probability that the second

player has no aces, given that the first player declares in the

affirmative, when (a) ? (b) ? (c) ? To what does

the probability converge as  goes to infinity? Why?

3.29. There are  distinct types of coupons, and each coupon

obtained is, independently of prior types collected, of type  with

probability 

a. If  coupons are collected, what is the probability that one of

each type is obtained?

b. Now suppose that  Let  be the

event that there are no type  coupons among the  collected.

Apply the inclusion–exclusion identity for the probability of the

union of events to  to prove the identity

3.30. Show that for any events  and 

Hint: Compute  by conditioning on whether  occurs.

3.31.

a. If the odds of  is  what is the probability that  occurs.

b. If the odds of  is  what is the probability that  occurs.

𝐵

𝐴 𝐵

𝑃ሺ𝐴 ||𝐵ሻ ൌ 1, 𝑃ሺ𝐵௖ ||𝐴
௖ሻ ൌ 1.

𝑖 𝑛
1

𝑛 ൅ 1
, 1 ൑ 𝑖 ൑ 𝑛 ൅ 1.

𝑛

𝑛

𝑛 ൌ 2 𝑛 ൌ 10 𝑛 ൌ 100

𝑛

𝑛

𝑖

𝑝௜, ∑௜ ൌ ଵ
௡ 𝑝௜ ൌ 1.

𝑛

𝑝ଵ ൌ 𝑝ଶ ൌ … ൌ 𝑝௡ ൌ 1/𝑛. 𝐸௜
𝑖 𝑛

𝑃ሺ ∪௜ 𝐸௜ሻ

𝑛! ൌ ෍
௞ ൌ ଴

௡

ሺ െ 1ሻ௞ቆ
𝑛

𝑘
ቇሺ𝑛 െ 𝑘ሻ௡

𝐸 𝐹,
𝑃ሺ𝐸 ||𝐸 ∪ 𝐹ሻ ൒ 𝑃ሺ𝐸 ||𝐹ሻ

𝑃ሺ𝐸 ||𝐸 ∪ 𝐹ሻ 𝐹

𝐴 2/3, 𝐴

𝐴 5, 𝐴
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3.32. A fair coin is flipped  times. Let  be the event that all flips

land heads.

a. What is the odds of the event .

b. What is the conditional odds of the event  given that at least

one of the coins landed heads.

3.33. If the events  are independent, show that

3.34. Players  are in a contest. Two of them are randomly

chosen to play a game in round one, with the winner then playing the

remaining player in round two. The winner of the round two game is

the winner of the contest. Assuming that all games are independent

and that  wins when playing against  with probability  find the

probability that  is the winner of the contest. Given that  is the

winner, what is the conditional probability that  did not play in the

first round.

3.35. If  balls are randomly chosen from an urn containing  red, 

white,  blue, and  green balls, find the conditional probability they

are all white given that all balls are of the same color.

3.36. In a 4 player tournament, player 1 plays player 2, player 3 plays

player 4, with the winners then playing for the championship.

Suppose that a game between player  and player  is won by player

 with probability  Find the probability that player  wins the

championship.

3.37. In a tournament involving players  players  and  play a

game, with the loser departing and the winner then playing against

player  with the loser of that game departing and the winner then

playing player  and so on. The winner of the game against player 

is the tournament winner. Suppose that a game between players 

and  is won by player  with probability 

a. Find the probability that player  is the tournament winner.

b. If  find the probability that player  is the tournament

winner.

3 𝐸

𝐸

𝐸

𝐸, 𝐹, 𝐺
 𝑃ሺ𝐸 ||𝐹𝐺

௖ሻ ൌ 𝑃ሺ𝐸ሻ.
1, 2, 3,

𝑖 𝑗
𝑖

𝑖 ൅ 𝑗
,

1 1

1

4 4 5

6 7

𝑖 𝑗

𝑖
𝑖

𝑖 ൅ 𝑗
. 1

1, …,𝑛, 1 2

3,

4, 𝑛

𝑖

𝑗 𝑖
𝑖

𝑖 ൅ 𝑗
.

3

𝑛 ൌ 4, 4
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4.1 Random Variables

4.2 Discrete Random Variables

4.3 Expected Value

4.4 Expectation of a Function of a Random Variable

4.5 Variance

4.6 The Bernoulli and Binomial Random Variables

4.7 The Poisson Random Variable

4.8 Other Discrete Probability Distributions

4.9 Expected Value of Sums of Random Variables

4.10 Properties of the Cumulative Distribution function

When an experiment is performed, we are frequently interested mainly in some

function of the outcome as opposed to the actual outcome itself. For instance, in

tossing dice, we are often interested in the sum of the two dice and are not really

concerned about the separate values of each die. That is, we may be interested in

knowing that the sum is 7 and may not be concerned over whether the actual

outcome was (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), or (6, 1). Also, in flipping a coin, we

may be interested in the total number of heads that occur and not care at all about

the actual head–tail sequence that results. These quantities of interest, or, more

formally, these real-valued functions defined on the sample space, are known as

random variables.

Because the value of a random variable is determined by the outcome of the

experiment, we may assign probabilities to the possible values of the random

variable.

Example 1a

Suppose that our experiment consists of tossing 3 fair coins. If we let  denote

the number of heads that appear, then  is a random variable taking on one of

the values 0, 1, 2, and 3 with respective probabilities

𝑌

𝑌
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Since  must take on one of the values 0 through 3, we must have

which, of course, is in accord with the preceding probabilities.

Example 1b

A life insurance agent has  elderly clients, each of whom has a life insurance

policy that pays $100,000 upon death. Let  be the event that the younger one

dies in the following year, and let  be the event that the older one dies in the

following year. Assume that  and  are independent, with respective

probabilities  and  If  denotes the total amount of money

(in units of ) that will be paid out this year to any of these clients’

beneficiaries, then  is a random variable that takes on one of the possible

values  with respective probabilities

Example 1c

Four balls are to be randomly selected, without replacement, from an urn that

contains  balls numbered 1 through 20. If  is the largest numbered ball

selected, then  is a random variable that takes on one of the values 

Because each of the  possible selections of  of the  balls is equally likely,

the probability that  takes on each of its possible values is

𝑃ሼ𝑌 ൌ 0ሽ ൌ 𝑃ሼሺ𝑡, 𝑡, 𝑡ሻሽ ൌ
1
8

𝑃ሼ𝑌 ൌ 1ሽ ൌ 𝑃ሼሺ𝑡, 𝑡, ℎሻ, ሺ𝑡, ℎ, 𝑡ሻ, ሺℎ, 𝑡, 𝑡ሻሽ ൌ
3
8

𝑃ሼ𝑌 ൌ 2ሽ ൌ 𝑃ሼሺ𝑡, ℎ, ℎሻ, ሺℎ, 𝑡, ℎሻ, ሺℎ, ℎ, 𝑡ሻሽ ൌ
3
8

𝑃ሼ𝑌 ൌ 3ሽ ൌ 𝑃ሼሺℎ, ℎ, ℎሻሽ ൌ
1
8

𝑌

1 ൌ 𝑃൭
௒ ൌ ௜

ଷ

ሼ𝑌 ൌ 𝑖ሽ൱ ൌ ෍
௜ ൌ ଴

ଷ

𝑃ሼ𝑌 ൌ 𝑖ሽ

2

𝑌

𝑂

𝑌 𝑂

𝑃ሺ𝑌ሻ ൌ . 05 𝑃ሺ𝑂ሻ ൌ . 10 . 𝑋

$100, 000

𝑋

0, 1, 2

𝑃ሼ𝑋 ൌ 0ሽ ൌ 𝑃ሺ𝑌௖𝑂௖ሻ ൌ 𝑃ሺ𝑌௖ሻ𝑃ሺ𝑂௖ሻ ൌ ሺ.95ሻሺ.9ሻ ൌ .855

𝑃ሼ𝑋 ൌ 1ሽ ൌ 𝑃ሺ𝑌𝑂௖ሻ ൅ 𝑃ሺ𝑌௖𝑂ሻ ൌ ሺ.05ሻሺ.9ሻ ൅ ሺ.95ሻሺ.1ሻ ൌ .140

𝑃ሼ𝑋 ൌ 2ሽ ൌ 𝑃ሺ𝑌𝑂ሻ ൌ ሺ.05ሻሺ.1ሻ ൌ .005

20 𝑋

𝑋 4, 5, …, 20 .

ቆ
20

4
ቇ 4 20

𝑋
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This is so because the number of selections that result in  is the number of

selections that result in ball numbered  and three of the balls numbered 

through  being selected. As there are  such selections, the

preceding equation follows.

Suppose now that we want to determine . One way, of course, is to just

use the preceding to obtain

However, a more direct approach for determining  would be to use

where the preceding results because  will be less than or equal to  when the

 balls chosen are among balls numbered  through .

Example 1d

Independent trials consisting of the flipping of a coin having probability  of

coming up heads are continually performed until either a head occurs or a total of

 flips is made. If we let  denote the number of times the coin is flipped, then 

is a random variable taking on one of the values  with respective

probabilities

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ
ቆ
𝑖 െ 1

3
ቇ

ቆ
20

4
ቇ

, 𝑖 ൌ 4, …, 20

𝑋 ൌ 𝑖

𝑖 1

𝑖 െ 1 ቆ
1

1
ቇቆ
𝑖 െ 1

3
ቇ

𝑃ሼ𝑋 ൐ 10ሽ

𝑃ሼ𝑋 ൐ 10ሽ ൌ ෍
௜ ൌ ଵଵ

ଶ଴

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ ෍
௜ ൌ ଵଵ

ଶ଴ ቆ
𝑖 െ 1

3
ቇ

ቆ
20

4
ቇ

𝑃ሺ𝑋 ൐ 10ሻ

𝑃ሼ𝑋 ൐ 10ሽ ൌ 1 െ 𝑃ሼ𝑋 ൑ 10ሽ ൌ 1 െ
ቆ

10

4
ቇ

ቆ
20

4
ቇ

𝑋 10

4 1 10

𝑝

𝑛 𝑋 𝑋

1, 2, 3, …,𝑛
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As a check, note that

Example 1e

Suppose that there are  distinct types of coupons and that each time one

obtains a coupon, it is, independently of previous selections, equally likely to be

any one of the  types. One random variable of interest is , the number of

coupons that need to be collected until one obtains a complete set of at least one

of each type. Rather than derive  directly, let us start by considering the

probability that  is greater than . To do so, fix  and define the events

 as follows:  is the event that no type  coupon is contained among

the first  coupons collected, . Hence, by the inclusion-exclusion

identity

𝑃ሼ𝑋 ൌ 1ሽ ൌ 𝑃ሼℎሽ ൌ 𝑝

𝑃ሼ𝑋 ൌ 2ሽ ൌ 𝑃ሼሺ𝑡, ℎሻሽ ൌ ሺ1 െ 𝑝ሻ𝑝

𝑃ሼ𝑋 ൌ 3ሽ ൌ 𝑃ሼሺ𝑡, 𝑡, ℎሻሽ ൌ ሺ1 െ 𝑝ሻଶ𝑝

⋮

𝑃ሼ𝑋 ൌ 𝑛 െ 1ሽ ൌ 𝑃൝ሺ𝑡, 𝑡, …, 𝑡,
௡ െ ଶ

ℎሻൡ ൌ ሺ1 െ 𝑝ሻ௡െଶ𝑝

𝑃ሼ𝑋 ൌ 𝑛ሽ ൌ 𝑃൝ሺ𝑡, 𝑡, …, 𝑡,
௡ െ ଵ

𝑡ሻ, ሺ𝑡, 𝑡, …, 𝑡,
௡ െ ଵ

ℎሻൡ ൌ ሺ1 െ 𝑝ሻ௡െଵ

𝑃ቆ
௑ ൌ ௜

௡

ሼ𝑋 ൌ 𝑖ሽቇ ൌ ෍
௜ ൌ ଵ

௡

𝑃ሼ𝑋 ൌ 𝑖ሽ

ൌ ෍
௜ ൌ ଵ

௡ െ ଵ

𝑝ሺ1 െ 𝑝ሻ௜െଵ ൅ ሺ1 െ 𝑝ሻ௡െଵ

ൌ 𝑝൥
1 െ ሺ1 െ 𝑝ሻ௡െଵ

1 െ ሺ1 െ 𝑝ሻ
൩ ൅ ሺ1 െ 𝑝ሻ௡െଵ

ൌ 1 െ ሺ1 െ 𝑝ሻ௡െଵ ൅ ሺ1 െ 𝑝ሻ௡െଵ

ൌ 1

𝑟

𝑟 𝑇

𝑃ሼ𝑇 ൌ 𝑛ሽ
𝑇 𝑛 𝑛

𝐴ଵ,𝐴ଶ, …,𝐴௥ 𝐴௝ 𝑗

𝑛 𝑗 ൌ 1, …, 𝑟
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Now,  will occur if each of the  coupons collected is not of type . Since each

of the coupons will not be of type  with probability , we have, by the

assumed independence of the types of successive coupons,

Also, the event  will occur if none of the first  coupons collected is of

either type  or type . Thus, again using independence, we see that

The same reasoning gives

and we see that for ,

The probability that  equals  can now be obtained from the preceding formula

by the use of

𝑃ሼ𝑇 ൐ 𝑛ሽ ൌ 𝑃ቆ
௝ ൌ ଵ

௥

𝐴௝ቇ

ൌ ∑
௝
𝑃ሺ𝐴௝ሻ െ ∑

௝ భ ழ ௝ మ

∑𝑃ሺ𝐴௝భ𝐴௝మሻ ൅ ⋯

൅ሺ െ 1ሻ௞൅ଵ ∑
௝ భ ழ ௝ మ ழ ⋯   ழ ௝ ೖ

∑∑𝑃ሺ𝐴௝భ𝐴௝మ⋯𝐴௝ೖሻ⋯

൅ሺ െ 1ሻ௥൅ଵ𝑃ሺ𝐴ଵ𝐴ଶ⋯𝐴௥ሻ

𝐴௝ 𝑛 𝑗

𝑗 ሺ𝑟 െ 1ሻ/𝑟

𝑃ሺ𝐴௝ሻ ൌ ቆ
𝑟 െ 1
𝑟

ቇ
௡

𝐴௝భ𝐴௝మ 𝑛

𝑗ଵ 𝑗ଶ

𝑃ሺ𝐴௝భ𝐴௝మሻ ൌ ቆ
𝑟 െ 2
𝑟

ቇ
௡

𝑃ሺ𝐴௝భ𝐴௝మ⋯𝐴௝ೖሻ ൌ ቆ
𝑟 െ 𝑘
𝑟

ቇ
௡

𝑛 ൐ 0

𝑃ሼ𝑇 ൐ 𝑛ሽ ൌ 𝑟ቆ
𝑟 െ 1
𝑟

ቇ
௡

െ ቆ
𝑟

2
ቇቆ
𝑟 െ 2
𝑟

ቇ
௡

൅ ቆ
𝑟

3
ቇቆ
𝑟 െ 3
𝑟

ቇ െ⋯

൅ሺെ1ሻ௥ቆ
𝑟

𝑟 െ 1
ቇቆ

1
𝑟
ቇ
௡

ൌ ෍
௜ ൌ ଵ

௥ െ ଵ

ቆ
𝑟

𝑖
ቇ൬
𝑟 െ 𝑖
𝑟

൰
௡

ሺ െ 1ሻ௜൅ଵ

(1.1)

𝑇 𝑛

𝑃ሼ𝑇 ൐ 𝑛 െ 1ሽ ൌ 𝑃ሼ𝑇 ൌ 𝑛ሽ ൅ 𝑃ሼ𝑇 ൐ 𝑛ሽ
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or, equivalently,

Another random variable of interest is the number of distinct types of coupons

that are contained in the first  selections—call this random variable . To

compute , let us start by fixing attention on a particular set of  distinct

types, and let us then determine the probability that this set constitutes the set of

distinct types obtained in the first  selections. Now, in order for this to be the

situation, it is necessary and sufficient that of the first  coupons obtained,

A: each is one of these k types

B: each of these k types is represented

Now, each coupon selected will be one of the  types with probability k/r, so the

probability that  will be valid is . Also, given that a coupon is of one of the

 types under consideration, it is easy to see that it is equally likely to be of any

one of these  types. Hence, the conditional probability of  given that  occurs

is the same as the probability that a set of  coupons, each equally likely to be

any of  possible types, contains a complete set of all  types. But this is just the

probability that the number needed to amass a complete set, when choosing

among  types, is less than or equal to  and is thus obtainable from Equation

(1.1)  with  replacing . Thus, we have

Finally, as there are  possible choices for the set of  types, we arrive at

Remark We can obtain a useful bound on

by using Boole’s inequality along with the inequality .

𝑃ሼ𝑇 ൌ 𝑛ሽ ൌ 𝑃ሼ𝑇 ൐ 𝑛 െ 1ሽ െ 𝑃ሼ𝑇 ൐ 𝑛ሽ

𝑛 𝐷௡
𝑃ሼ𝐷௡ ൌ 𝑘ሽ 𝑘

𝑛

𝑛

𝑘

𝐴 ሺ𝑘/𝑟ሻ௡

𝑘

𝑘 𝐵 𝐴

𝑛

𝑘 𝑘

𝑘 𝑛

𝑘 𝑟

𝑃ሺ𝐴ሻ ൌ ቆ
𝑘
𝑟
ቇ
௡

𝑃ሺ𝐵|𝐴ሻ ൌ 1 െ ෍
௜ ൌ ଵ

௞ െ ଵ

ቆ
𝑘

𝑖
ቇቆ
𝑘 െ 𝑖
𝑘

ቇ
௡

ሺ െ 1ሻ௜൅ଵ

ቆ
𝑟

𝑘
ቇ 𝑘

𝑃ሼ𝐷௡ ൌ 𝑘ሽ ൌ ቆ
𝑟

𝑘
ቇ𝑃ቆ𝐴𝐵ቇ

ൌ ቆ
𝑟

𝑘
ቇቆ
𝑘
𝑟
ቇ
௡

቎1 െ ෍
௜ ൌ ଵ

௞ െ ଵ

ቆ
𝑘

𝑖
ቇቆ
𝑘 െ 𝑖
𝑘

ቇ
௡

ሺ െ 1ሻ௜൅ଵ቏

𝑃ሺ𝑇 ൐ 𝑛ሻ ൌ 𝑃ቀ ௝ൌଵ
௥ 𝐴௝ቁ

𝑒െ௫ ൒ 1 െ 𝑥
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The first inequality is Boole’s inequality, which says that the probability of the

union of events is always less than or equal to the sum of the probabilities of

these events, and the last inequality uses that .

For a random variable , the function  defined by

is called the cumulative distribution function or, more simply, the distribution function

of . Thus, the distribution function specifies, for all real values , the probability that

the random variable is less than or equal to .

Now, suppose that . Then, because the event  is contained in the event

, it follows that , the probability of the former, is less than or equal to ,

the probability of the latter. In other words,  is a nondecreasing function of .

Other general properties of the distribution function are given in Section 4.10 .

A random variable that can take on at most a countable number of possible values is

said to be discrete. For a discrete random variable , we define the probability mass

function  of  by

The probability mass function  is positive for at most a countable number of

values of . That is, if  must assume one of the values , then

Since  must take on one of the values , we have

𝑃ሺ𝑇 ൐ 𝑛ሻ ൌ 𝑃൫ ௝ൌଵ
௥ 𝐴௝൯

൑ ෍
௝ ൌ ଵ

௥

𝑃ሺ𝐴௝ሻ

ൌ 𝑟ቆ1 െ
1
𝑟
ቇ
௡

൑ 𝑟𝑒െ௡/௥

𝑒െଵ/௥ ൒ 1 െ 1/𝑟

𝑋 𝐹

𝐹ሺ𝑥ሻ ൌ 𝑃ሼ𝑋 ൑ 𝑥ሽ  െ ∞ ൏ 𝑥 ൏ ∞

𝑋 𝑥

𝑥

𝑎 ൑ 𝑏 ሼ𝑋 ൑ 𝑎ሽ
ሼ𝑋 ൑ 𝑏ሽ 𝐹ሺ𝑎ሻ 𝐹ሺ𝑏ሻ

𝐹ሺ𝑥ሻ 𝑥

𝑋

𝑝ሺ𝑎ሻ 𝑋

𝑝ሺ𝑎ሻ ൌ 𝑃ሼ𝑋 ൌ 𝑎ሽ

𝑝ሺ𝑎ሻ

𝑎 𝑋 𝑥ଵ, 𝑥ଶ, …

𝑝ሺ𝑥௜ሻ ൒ 0 for 𝑖 ൌ 1, 2, …

𝑝ሺ𝑥ሻ ൌ 0 for all other values of 𝑥

𝑋 𝑥௜
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It is often instructive to present the probability mass function in a graphical format by

plotting  on the -axis against  on the -axis. For instance, if the probability

mass function of  is

we can represent this function graphically as shown in Figure 4.1 . Similarly, a

graph of the probability mass function of the random variable representing the sum

when two dice are rolled looks like Figure 4.2 .

Figure 4.1

Figure 4.2

෍
௜ ൌ ଵ

ஶ

𝑝ሺ𝑥௜ሻ ൌ 1

𝑝ሺ𝑥௜ሻ 𝑦 𝑥௜ 𝑥

𝑋

𝑝ሺ0ሻ ൌ
1
4

𝑝ሺ1ሻ ൌ
1
2

𝑝ሺ2ሻ ൌ
1
4
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Example 2a

The probability mass function of a random variable  is given by

, where  is some positive value. Find (a)  and

(b) .

Solution

Since  we have

which, because , implies that

Hence,

a. 

b. 

𝑋

𝑝ሺ𝑖ሻ ൌ 𝑐𝜆௜/𝑖!, 𝑖 ൌ 0, 1, 2, … 𝜆 𝑃ሼ𝑋 ൌ 0ሽ
𝑃ሼ𝑋 ൐ 2ሽ

෍
௜ ൌ ଴

ஶ

𝑝ሺ𝑖ሻ ൌ 1,

𝑐 ෍
௜ ൌ ଴

ஶ 𝜆௜

𝑖!
ൌ 1

𝑒 ௫ ൌ ෍
௜ ൌ ଴

ஶ

𝑥௜/𝑖!

𝑐𝑒ఒ ൌ 1 or 𝑐 ൌ 𝑒െఒ

𝑃൛𝑋 ൌ 0ൟ ൌ 𝑒െఒ𝜆଴/0! ൌ 𝑒െఒ

𝑃ሼ𝑋 ൐ 2ሽ ൌ 1 െ 𝑃ሼ𝑋 ൑ 2ሽ ൌ 1 െ 𝑃ሼ𝑋 ൌ 0ሽ െ 𝑃ሼ𝑋 ൌ 1ሽ

െ𝑃ሼ𝑋 ൌ 2ሽ

ൌ 1 െ 𝑒െఒ െ 𝜆𝑒െఒ െ
𝜆ଶ𝑒െఒ

2
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The cumulative distribution function  can be expressed in terms of  by

If  is a discrete random variable whose possible values are , where

, then the distribution function  of  is a step function. That is, the

value of  is constant in the intervals  and then takes a step (or jump) of

size  at . For instance, if  has a probability mass function given by

then its cumulative distribution function is

This function is depicted graphically in Figure 4.3 .

Figure 4.3

𝐹 𝑝ሺ𝑎ሻ

𝐹ሺ𝑎ሻ ൌ ෍
all  ௫   ൑  ௔

𝑝ሺ𝑥ሻ

𝑋 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, …

𝑥ଵ ൏ 𝑥ଶ ൏ 𝑥ଷ ൏ ⋯ 𝐹 𝑋

𝐹 ሺ𝑥௜െଵ, 𝑥௜ሻ

𝑝ሺ𝑥௜ሻ 𝑥௜ 𝑋

𝑝ሺ1ሻ ൌ
1
4

𝑝ሺ2ሻ ൌ
1
2

𝑝ሺ3ሻ ൌ
1
8

𝑝ሺ4ሻ ൌ
1
8

𝐹ሺ𝑎ሻ ൌ

⎧

⎨

⎩

⎪
⎪
⎪

⎪
⎪
⎪

0 𝑎 ൏ 1

1
4

1 ൑ 𝑎 ൏ 2

3
4

2 ൑ 𝑎 ൏ 3

7
8

3 ൑ 𝑎 ൏ 4

1 4 ൑ 𝑎
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Note that the size of the step at any of the values 1, 2, 3, and 4 is equal to the

probability that  assumes that particular value.

One of the most important concepts in probability theory is that of the expectation of

a random variable. If  is a discrete random variable having a probability mass

function , then the expectation, or the expected value, of , denoted by , is

defined by

In words, the expected value of  is a weighted average of the possible values that 

can take on, each value being weighted by the probability that  assumes it. For

instance, on the one hand, if the probability mass function of  is given by

then

is just the ordinary average of the two possible values, 0 and 1, that  can assume.

On the other hand, if

then

is a weighted average of the two possible values 0 and 1, where the value 1 is given

twice as much weight as the value 0, since .

Another motivation of the definition of expectation is provided by the frequency

interpretation of probabilities. This interpretation (partially justified by the strong law

of large numbers, to be presented in Chapter 8 ) assumes that if an infinite

𝑋

𝑋

𝑝ሺ𝑥ሻ 𝑋 𝐸ሾ𝑋ሿ

𝐸ሾ𝑋ሿ ൌ ෍
௫ : ௣ ሺ௫ ሻ வ ଴

𝑥𝑝ሺ𝑥ሻ

𝑋 𝑋

𝑋

𝑋

𝑝ሺ0ሻ ൌ
1
2
ൌ 𝑝ሺ1ሻ

𝐸ሾ𝑋ሿ ൌ 0ቆ
1
2
ቇ ൅ 1ቆ

1
2
ቇ ൌ

1
2

𝑋

𝑝ሺ0ሻ ൌ
1
3
  𝑝ሺ1ሻ ൌ

2
3

𝐸ሾ𝑋ሿ ൌ 0ቆ
1
3
ቇ ൅ 1ቆ

2
3
ቇ ൌ

2
3

𝑝ሺ1ሻ ൌ 2𝑝ሺ0ሻ
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sequence of independent replications of an experiment is performed, then, for any

event , the proportion of time that  occurs will be . Now, consider a random

variable  that must take on one of the values  with respective probabilities

, and think of  as representing our winnings in a single game of

chance. That is, with probability , we shall win  units . By the

frequency interpretation, if we play this game continually, then the proportion of time

that we win  will be . Since this is true for all , it follows that our

average winnings per game will be

Example 3a

Find , where  is the outcome when we roll a fair die.

Solution

Since , we obtain

Example 3b

We say that  is an indicator variable for the event  if

Find .

Solution

Since , we have

That is, the expected value of the indicator variable for the event  is equal to the

probability that  occurs.

Example 3c

A contestant on a quiz show is presented with two questions, questions 1 and 2,

𝐸 𝐸 𝑃ሺ𝐸ሻ

𝑋 𝑥ଵ, 𝑥ଶ, …𝑥௡
𝑝ሺ𝑥ଵሻ,𝑝ሺ𝑥ଶሻ, …,𝑝ሺ𝑥௡ሻ 𝑋

𝑝ሺ𝑥௜ሻ 𝑥௜ 𝑖 ൌ 1, 2, …,𝑛

𝑥௜ 𝑝ሺ𝑥௜ሻ 𝑖, 𝑖 ൌ 1, 2, …,𝑛

෍
௜ ൌ ଵ

௡

𝑥௜𝑝ሺ𝑥௜ሻ ൌ 𝐸ሾ𝑋ሿ

𝐸ሾ𝑋ሿ 𝑋

𝑝ሺ1ሻ ൌ 𝑝ሺ2ሻ ൌ 𝑝ሺ3ሻ ൌ 𝑝ሺ4ሻ ൌ 𝑝ሺ5ሻ ൌ 𝑝ሺ6ሻ ൌ
1
6

𝐸ሾ𝑋ሿ ൌ 1ቆ
1
6
ቇ ൅ 2ቆ

1
6
ቇ ൅ 3ቆ

1
6
ቇ ൅ 4ቆ

1
6
ቇ ൅ 5ቆ

1
6
ቇ ൅ 6ቆ

1
6
ቇ ൌ

7
2

𝐼 𝐴

𝐼 ൌ ቊ
1  if  𝐴 occurs 

0  if  𝐴௖ occurs 

𝐸ሾ𝐼ሿ

𝑝ሺ1ሻ ൌ 𝑃ሺ𝐴ሻ, 𝑝ሺ0ሻ ൌ 1 െ 𝑃ሺ𝐴ሻ

𝐸ሾ𝐼ሿ ൌ 𝑃ሺ𝐴ሻ

𝐴

𝐴
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which he is to attempt to answer in some order he chooses. If he decides to try

question  first, then he will be allowed to go on to question , , only if his

answer to question  is correct. If his initial answer is incorrect, he is not allowed

to answer the other question. The contestant is to receive  dollars if he

answers question  correctly, . For instance, he will receive  dollars

if he answers both questions correctly. If the probability that he knows the answer

to question  is , which question should he attempt to answer first so as

to maximize his expected winnings? Assume that the events , that he

knows the answer to question  are independent events.

Solution

On the one hand, if he attempts to answer question 1 first, then he will win

Hence, his expected winnings in this case will be

On the other hand, if he attempts to answer question 2 first, his expected

winnings will be

Therefore, it is better to try question 1 first if

or, equivalently, if

For example, if he is 60 percent certain of answering question 1, worth $200,

correctly and he is 80 percent certain of answering question 2, worth $100,

correctly, then he should attempt to answer question 2 first because

Example 3d

𝑖 𝑗 𝑗 ് 𝑖

𝑖

𝑉௜
𝑖 𝑖 ൌ 1, 2 𝑉ଵ ൅ 𝑉ଶ

𝑖 𝑃௜, 𝑖 ൌ 1, 2

𝐸௜, 𝑖 ൌ 1, 2

𝑖

0  with probability 1   െ 𝑃ଵ

𝑉ଵ  with probability  𝑃ଵሺ1 െ 𝑃ଶሻ

𝑉ଵ ൅ 𝑉ଶ  with probability  𝑃ଵ𝑃ଶ

𝑉ଵ𝑃ଵሺ1 െ 𝑃ଶሻ ൅ ሺ𝑉ଵ ൅ 𝑉ଶሻ𝑃ଵ𝑃ଶ

𝑉ଶ𝑃ଶሺ1 െ 𝑃ଵሻ ൅ ሺ𝑉ଵ ൅ 𝑉ଶሻ𝑃ଵ𝑃ଶ

𝑉ଵ𝑃ଵሺ1 െ 𝑃ଶሻ ൒ 𝑉ଶ𝑃ଶሺ1 െ 𝑃ଵሻ

𝑉ଵ𝑃ଵ
1 െ 𝑃ଵ

൒
𝑉ଶ𝑃ଶ

1 െ 𝑃ଶ

400 ൌ
ሺ100ሻሺ.8ሻ

.2
൐
ሺ200ሻሺ.6ሻ

.4
ൌ 300
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A school class of 120 students is driven in 3 buses to a symphonic performance.

There are 36 students in one of the buses, 40 in another, and 44 in the third bus.

When the buses arrive, one of the 120 students is randomly chosen. Let 

denote the number of students on the bus of that randomly chosen student, and

find .

Solution

Since the randomly chosen student is equally likely to be any of the 120

students, it follows that

Hence,

However, the average number of students on a bus is , showing that

the expected number of students on the bus of a randomly chosen student is

larger than the average number of students on a bus. This is a general

phenomenon, and it occurs because the more students there are on a bus, the

more likely it is that a randomly chosen student would have been on that bus. As

a result, buses with many students are given more weight than those with fewer

students. (See Self-Test Problem 4.4 )

Remark The probability concept of expectation is analogous to the physical concept

of the center of gravity of a distribution of mass. Consider a discrete random variable

 having probability mass function . If we now imagine a weightless rod in

which weights with mass , are located at the points  (see Figure

4.4 ), then the point at which the rod would be in balance is known as the center of

gravity. For those readers acquainted with elementary statics, it is now a simple

matter to show that this point is at .†

Figure 4.4

𝑋

𝐸ሾ𝑋ሿ

𝑃ሼ𝑋 ൌ 36ሽ ൌ
36

120
𝑃ሼ𝑋 ൌ 40ሽ ൌ

40
120

𝑃ሼ𝑋 ൌ 44ሽ ൌ
44

120

𝐸ሾ𝑋ሿ ൌ 36ቆ
3

10
ቇ ൅ 40ቆ

1
3
ቇ ൅ 44ቆ

11
30
ቇ ൌ

1208
30

ൌ 40 . 2667

120/3 ൌ 40

𝑋 𝑝ሺ𝑥௜ሻ, 𝑖 ൒ 1

𝑝ሺ𝑥௜ሻ, 𝑖 ൒ 1 𝑥௜, 𝑖 ൒ 1

𝐸ሾ𝑋ሿ

211 of 848



To prove this, we must show that the sum of the torques tending to

turn the point around  is equal to 0. That is, we must show that

, which is immediate.

Suppose that we are given a discrete random variable along with its probability mass

function and that we want to compute the expected value of some function of , say,

. How can we accomplish this? One way is as follows: Since  is itself a

discrete random variable, it has a probability mass function, which can be

determined from the probability mass function of . Once we have determined the

probability mass function of , we can compute  by using the definition of

expected value.

Example 4a

Let  denote a random variable that takes on any of the values , 0, and 1 with

respective probabilities

Compute .

Solution

Let . Then the probability mass function of  is given by

Hence,

Note that

†

𝐸ሾ𝑋ሿ

0 ൌ ෍
௜

ሺ𝑥௜ െ 𝐸ሾ𝑋ሿሻ𝑝ሺ𝑥௜ሻ

𝑋

𝑔ሺ𝑋ሻ 𝑔ሺ𝑋ሻ

𝑋

𝑔ሺ𝑋ሻ 𝐸ሾ𝑔ሺ𝑋ሻሿ

𝑋 െ1

𝑃ሼ𝑋 ൌ െ 1ሽ ൌ . 2 𝑃ሼ𝑋 ൌ 0ሽ ൌ . 5 𝑃ሼ𝑋 ൌ 1ሽ ൌ . 3

𝐸ൣ𝑋ଶ൧

𝑌 ൌ 𝑋ଶ 𝑌

𝑃ሼ𝑌 ൌ 1ሽ ൌ 𝑃ሼ𝑋 ൌ െ 1ሽ ൅ 𝑃ሼ𝑋 ൌ 1ሽ ൌ .5

𝑃ሼ𝑌 ൌ 0ሽ ൌ 𝑃ሼ𝑋 ൌ 0ሽ ൌ .5

𝐸ሾ𝑋ଶሿ ൌ 𝐸ሾ𝑌ሿ ൌ 1ሺ . 5ሻ ൅ 0ሺ . 5ሻ ൌ . 5

. 5 ൌ 𝐸ሾ𝑋ଶሿ ് ሺ𝐸ሾ𝑋ሿሻଶ ൌ . 01
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Although the preceding procedure will always enable us to compute the expected

value of any function of  from a knowledge of the probability mass function of ,

there is another way of thinking about : Since  will equal  whenever

 is equal to , it seems reasonable that  should just be a weighted average

of the values , with  being weighted by the probability that  is equal to .

That is, the following result is quite intuitive.

Proposition 4.1

If  is a discrete random variable that takes on one of the values , with

respective probabilities , then, for any real-valued function ,

Before proving this proposition, let us check that it is in accord with the results of

Example 4a . Applying it to that example yields

which is in agreement with the result given in Example 4a .

Proof of Proposition 4.1 The proof of Proposition 4.1  proceeds, as in the

preceding verification, by grouping together all the terms in  having the

same value of . Specifically, suppose that , represent the different

values of . Then, grouping all the  having the same value gives

Example 4b

𝑋 𝑋

𝐸ሾ𝑔ሺ𝑋ሻሿ 𝑔ሺ𝑋ሻ 𝑔ሺ𝑥ሻ

𝑋 𝑥 𝐸ሾ𝑔ሺ𝑋ሻሿ

𝑔ሺ𝑥ሻ 𝑔ሺ𝑥ሻ 𝑋 𝑥

𝑋 𝑥௜, 𝑖 ൒ 1

𝑝ሺ𝑥௜ሻ 𝑔

𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ ෍

௜

𝑔ሺ𝑥௜ሻ𝑝ሺ𝑥௜ሻ

𝐸൛𝑋ଶൟ ൌ ሺ െ 1ሻଶሺ.2ሻ ൅ 0ଶሺ.5ሻ ൅ 1ଶሺ.3ሻ

ൌ 1ሺ.2 ൅ .3ሻ ൅ 0ሺ.5ሻ

ൌ .5

෍
௜

𝑔ሺ𝑥௜ሻ𝑝ሺ𝑥௜ሻ

𝑔ሺ𝑥௜ሻ 𝑦௝, 𝑗 ൒ 1

𝑔ሺ𝑥௜ሻ, 𝑖 ൒ 1 𝑔ሺ𝑥௜ሻ

෍
௜

𝑔ሺ𝑥௜ሻ𝑝ሺ𝑥௜ሻ ൌ ෍
௝

෍
௜ : ௚ ሺ௫ ೔ሻ ൌ ௬ ೕ

𝑔ሺ𝑥௜ሻ𝑝ሺ𝑥௜ሻ

ൌ ෍
௝

෍
௜ : ௚ ሺ௫ ೔ሻ ൌ ௬ ೕ

𝑦௝𝑝ሺ𝑥௜ሻ

ൌ ෍
௝

𝑦௝ ෍
௜ : ௚ ሺ௫ ೔ሻ ൌ ௬ ೕ

𝑝ሺ𝑥௜ሻ

ൌ ෍
௝

𝑦௝𝑃൛𝑔ሺ𝑋ሻ ൌ 𝑦௜ൟ

ൌ 𝐸ሾ𝑔ሺ𝑋ሻሿ
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A product that is sold seasonally yields a net profit of  dollars for each unit sold

and a net loss of  dollars for each unit left unsold when the season ends. The

number of units of the product that are ordered at a specific department store

during any season is a random variable having probability mass function

. If the store must stock this product in advance, determine the number

of units the store should stock so as to maximize its expected profit.

Solution

Let  denote the number of units ordered. If  units are stocked, then the profit—

call it —can be expressed as

Hence, the expected profit equals

To determine the optimum value of , let us investigate what happens to the profit

when we increase  by 1 unit. By substitution, we see that the expected profit in

this case is given by

Therefore,

𝑏

ℓ

𝑝ሺ𝑖ሻ, 𝑖 ൒ 0

𝑋 𝑠

𝑃ሺ𝑠ሻ

𝑃ሺ𝑠ሻ ൌ 𝑏𝑋 െ ሺ𝑠 െ 𝑋ሻℓ if 𝑋 ൑ 𝑠

ൌ 𝑠𝑏 if 𝑋 ൐ 𝑠

𝐸ሾ𝑃ሺ𝑠ሻሿ ൌ ෍
௜ ൌ ଴

௦

ሾ𝑏𝑖 െ ሺ𝑠 െ 𝑖ሻℓሿ𝑝ሺ𝑖ሻ ൅ ෍
௜ ൌ ௦ ൅ ଵ

ஶ

𝑠𝑏𝑝ሺ𝑖ሻ

ൌ ሺ𝑏 ൅ ℓሻ ෍
௜ ൌ ଴

௦

𝑖𝑝ሺ𝑖ሻ െ 𝑠ℓ ෍
௜ ൌ ଴

௦

𝑝ሺ𝑖ሻ ൅ 𝑠𝑏቎1 െ ෍
௜ ൌ ଴

௦

𝑝ሺ𝑖ሻ቏

ൌ ሺ𝑏 ൅ ℓሻ ෍
௜ ൌ ଴

௦

𝑖𝑝ሺ𝑖ሻ െ ሺ𝑏 ൅ ℓሻ𝑠 ෍
௜ ൌ ଴

௦

𝑝ሺ𝑖ሻ ൅ 𝑠𝑏

ൌ 𝑠𝑏 ൅ ሺ𝑏 ൅ ℓሻ ෍
௜ ൌ ଴

௦

ሺ𝑖 െ 𝑠ሻ𝑝ሺ𝑖ሻ

𝑠

𝑠

𝐸ሾ𝑃ሺ𝑠 ൅ 1ሻሿ ൌ 𝑏ሺ𝑠 ൅ 1ሻ ൅ ሺ𝑏 ൅ ℓሻ ෍
௜ ൌ ଴

௦ ൅ ଵ

ሺ𝑖 െ 𝑠 െ 1ሻ𝑝ሺ𝑖ሻ

ൌ 𝑏ሺ𝑠 ൅ 1ሻ ൅ ሺ𝑏 ൅ ℓሻ ෍
௜ ൌ ଴

௦

ሺ𝑖 െ 𝑠 െ 1ሻ𝑝ሺ𝑖ሻ
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Thus, stocking  units will be better than stocking  units whenever

Because the left-hand side of Equation (4.1)  is increasing in  while the right-

hand side is constant, the inequality will be satisfied for all values of ,

where s  is the largest value of  satisfying Equation (4.1) . Since

it follows that stocking  items will lead to a maximum expected profit.

Example 4c Utility

Suppose that you must choose one of two possible actions, each of which can

result in any of  consequences, denoted as . Suppose that if the first

action is chosen, then consequence  will result with probability ,

whereas if the second action is chosen, then consequence  will result with

probability , where . The following approach

can be used to determine which action to choose: Start by assigning numerical

values to the different consequences. First, identify the least and the most

desirable consequences—call them  and , respectively; give consequence 

the value 0 and give  the value 1. Now consider any of the other 

consequences, say, . To value this consequence, imagine that you are given

the choice between either receiving  or taking part in a random experiment that

either earns you consequence  with probability  or consequence  with

probability . Clearly, your choice will depend on the value of . On the one

hand, if , then the experiment is certain to result in consequence , and

since  is the most desirable consequence, you will prefer participating in the

experiment to receiving . On the other hand, if , then the experiment will

result in the least desirable consequence—namely, —so in this case you will

prefer the consequence  to participating in the experiment. Now, as 

decreases from 1 to 0, it seems reasonable that your choice will at some point

switch from participating in the experiment to the certain return of , and at that

𝐸ሾ𝑃ሺ𝑠 ൅ 1ሻሿ െ 𝐸ሾ𝑃ሺ𝑠ሻሿ ൌ 𝑏 െ ሺ𝑏 ൅ ℓ ሻ ෍
௜ ൌ ଴

௦

𝑝ሺ𝑖ሻ

𝑠 ൅ 1 𝑠

෍
௜ ൌ ଴

௦

𝑝ሺ𝑖ሻ ൏
𝑏

𝑏 ൅ ℓ

(4.1)

𝑠

𝑠 ൑ 𝑠*

* 𝑠

𝐸ሾ𝑃ሺ0ሻሿ ൏ ⋯ ൏ 𝐸ሾ𝑃ሺ𝑠*ሻሿ ൏ 𝐸ሾ𝑃ሺ𝑠* ൅ 1ሻሿ ൐ 𝐸ሾ𝑃ሺ𝑠* ൅ 2ሻሿ ൐ ⋯

𝑠* ൅ 1

𝑛 𝐶ଵ, …,𝐶௡
𝐶௜ 𝑝௜, 𝑖 ൌ 1, …,𝑛

𝐶௜

𝑞௜, 𝑖 ൌ 1, …,𝑛 ෍
௜ ൌ ଵ

௡

𝑝௜ ൌ ෍
௜ ൌ ଵ

௡

𝑞௜ ൌ 1

𝑐 𝐶 𝑐

𝐶 𝑛 െ 2

𝐶௜
𝐶௜

𝐶 𝑢 𝑐

1 െ 𝑢 𝑢

𝑢 ൌ 1 𝐶

𝐶

𝐶௜ 𝑢 ൌ 0

𝑐

𝐶௜ 𝑢

𝐶௜
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critical switch point you will be indifferent between the two alternatives. Take that

indifference probability  as the value of the consequence . In other words, the

value of  is that probability  such that you are indifferent between either

receiving the consequence  or taking part in an experiment that returns

consequence  with probability  or consequence  with probability . We

call this indifference probability the utility of the consequence , and we

designate it as .

To determine which action is superior, we need to evaluate each one. Consider

the first action, which results in consequence  with probability . We

can think of the result of this action as being determined by a two-stage

experiment. In the first stage, one of the values  is chosen according to the

probabilities ; if value  is chosen, you receive consequence . However,

since  is equivalent to obtaining consequence  with probability  or

consequence  with probability , it follows that the result of the two-

stage experiment is equivalent to an experiment in which either consequence 

or consequence  is obtained, with  being obtained with probability

Similarly, the result of choosing the second action is equivalent to taking part in

an experiment in which either consequence  or consequence  is obtained, with

 being obtained with probability

Since  is preferable to , it follows that the first action is preferable to the second

action if

In other words, the worth of an action can be measured by the expected value of

the utility of its consequence, and the action with the largest expected utility is the

most preferable.

A simple logical consequence of Proposition 4.1  is Corollary 4.1 .

Corollary 4.1

𝑢 𝐶௜
𝐶௜ 𝑢

𝐶௜
𝐶 𝑢 𝑐 1 െ 𝑢

𝐶௜
𝑢ሺ𝐶௜ሻ

𝐶௜ 𝑝௜, 𝑖 ൌ 1, …,𝑛

1, …,𝑛

𝑝ଵ, …,𝑝௡ 𝑖 𝐶௜
𝐶௜ 𝐶 𝑢ሺ𝐶௜ሻ

𝑐 1 െ 𝑢ሺ𝐶௜ሻ

𝐶

𝑐 𝐶

෍
௜ ൌ ଵ

௡

𝑝௜𝑢ሺ𝐶௜ሻ

𝐶 𝑐

𝐶

෍
௜ ൌ ଵ

௡

𝑞௜𝑢ሺ𝐶௜ሻ

𝐶 𝑐

෍
௜ ൌ ଵ

௡

𝑝௜𝑢ሺ𝐶௜ሻ ൐ ෍
௜ ൌ ଵ

௡

𝑞௜𝑢ሺ𝐶௜ሻ
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If  and  are constants, then

Proof

The expected value of a random variable , , is also referred to as the mean or

the first moment of X. The quantity , is called the nth moment of X. By

Proposition 4.1 , we note that

Given a random variable  along with its distribution function , it would be extremely

useful if we were able to summarize the essential properties of  by certain suitably

defined measures. One such measure would be , the expected value of .

However, although  yields the weighted average of the possible values of , it

does not tell us anything about the variation, or spread, of these values. For

instance, although random variables , , and  having probability mass functions

determined by

all have the same expectation—namely, 0—there is a much greater spread in the

𝑎 𝑏

𝐸ሾ𝑎𝑋 ൅ 𝑏ሿ ൌ 𝑎𝐸ሾ𝑋ሿ ൅ 𝑏

𝐸ሾ𝑎𝑋 ൅ 𝑏ሿ ൌ ෍
௫ : ௣ ሺ௫ ሻ வ ଴

ሺ𝑎𝑥 ൅ 𝑏ሻ𝑝ሺ𝑥ሻ

ൌ 𝑎 ෍
௫ : ௣ ሺ௫ ሻ வ ଴

𝑥𝑝ሺ𝑥ሻ ൅ 𝑏 ෍
௫ : ௣ ሺ௫ ሻ வ ଴

𝑝ሺ𝑥ሻ

ൌ 𝑎𝐸ሾ𝑋ሿ ൅ 𝑏

𝑋 𝐸ሾ𝑋ሿ

𝐸ሾ𝑋௡ሿ,𝑛 ൒ 1

𝐸ሾ𝑋௡ሿ ൌ ෍
௫ : ௣ ሺ௫ ሻ வ ଴

𝑥௡𝑝ሺ𝑥ሻ

𝑋 𝐹

𝐹

𝐸ሾ𝑋ሿ 𝑋

𝐸ሾ𝑋ሿ 𝑋

𝑊 𝑌 𝑍

𝑊  ൌ 0 with probability 1

𝑌 ൌ

⎧

⎨

⎩

⎪

⎪

െ1 with probability  
1
2

൅1 with probability 
1
2

𝑍 ൌ

⎧

⎨

⎩

⎪

⎪

െ100 with probability 
1
2

൅100 with probability 
1
2
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possible values of  than in those of  (which is a constant) and in the possible

values of  than in those of .

Because we expect  to take on values around its mean , it would appear that a

reasonable way of measuring the possible variation of  would be to look at how far

apart  would be from its mean, on the average. One possible way to measure this

variation would be to consider the quantity , where . However, it

turns out to be mathematically inconvenient to deal with this quantity, so a more

tractable quantity is usually considered—namely, the expectation of the square of the

difference between  and its mean. We thus have the following definition.

Definition

If  is a random variable with mean , then the variance of , denoted by Var

, is defined by

An alternative formula for Var  is derived as follows:

That is,

In words, the variance of  is equal to the expected value of  minus the square of

its expected value. In practice, this formula frequently offers the easiest way to

compute Var .

Example 5a

Calculate Var  if  represents the outcome when a fair die is rolled.

𝑌 𝑊

𝑍 𝑌

𝑋 𝐸ሾ𝑋ሿ

𝑋

𝑋

𝐸ሾ ||𝑋 െ 𝜇 || ሿ 𝜇 ൌ 𝐸ሾ𝑋ሿ

𝑋

𝑋 𝜇 𝑋

ሺ𝑋ሻ

Varሺ𝑋ሻ ൌ 𝐸ሾሺ𝑋 െ 𝜇ሻଶሿ

ሺ𝑋ሻ

Varሺ𝑋ሻ ൌ 𝐸ሾሺ𝑋 െ 𝜇ሻଶ൧

ൌ ෍
௫

ሺ𝑥 െ 𝜇ሻଶ𝑝ሺ𝑥ሻ

ൌ ෍
௫

ሺ𝑥ଶ െ 2𝜇𝑥 ൅ 𝜇ଶሻ𝑝ሺ𝑥ሻ

ൌ ෍
௫

𝑥ଶ𝑝ሺ𝑥ሻ െ 2𝜇෍
௫

𝑥𝑝ሺ𝑥ሻ ൅ 𝜇ଶ෍
௫

𝑝ሺ𝑥ሻ

ൌ 𝐸ൣ𝑋ଶ൧ െ 2𝜇ଶ ൅ 𝜇ଶ

ൌ 𝐸ൣ𝑋ଶ൧ െ 𝜇ଶ

Varሺ𝑋ሻ ൌ 𝐸ሾ𝑋ଶሿ െ ሺ𝐸ሾ𝑋ሿሻଶ

𝑋 𝑋ଶ

ሺ𝑋ሻ

ሺ𝑋ሻ 𝑋
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Solution

It was shown in Example 3a  that . Also,

Hence,

Because  is the sum of nonnegative

terms, it follows that  or equivalently, that

That is, the expected value of the square of a random variable is at least as large as

the square of its expected value.

Example 5b

The friendship paradox is often expressed as saying that on average your friends

have more friends than you do. More formally, suppose that there are  people in

a certain population, labeled , and that certain pairs of these individuals

are friends. This friendship network can be graphically represented by having a

circle for each person and then having a line between circles to indicate that

those people are friends. For instance, Figure 4.5  indicates that there are 

people in the community and that persons  and  are friends, persons  and 

are friends, persons  and  are friends, and persons  and  are friends.

Figure 4.5 A friendship graph

𝐸ሾ𝑋ሿ ൌ
7
2

𝐸ൣ𝑋ଶ൧  ൌ 1ଶቆ
1
6
ቇ ൅ 2ଶቆ

1
6
ቇ ൅ 3ଶቆ

1
6
ቇ ൅ 4ଶቆ

1
6
ቇ ൅ 5ଶቆ

1
6
ቇ ൅ 6ଶቆ

1
6
ቇ

ൌ ቆ
1
6
ቇቆ91ቇ

Varሺ𝑋ሻ ൌ
91
6
െ ቆ

7
2
ቇ
ଶ

ൌ
35
12

Var ሺ𝑋ሻ ൌ 𝐸ሾሺ𝑋 െ 𝜇ሻଶሿ ൌ ෍
௫
ሺ𝑥 െ 𝜇ሻଶ𝑃ሺ𝑋 ൌ 𝑥ሻ

Var ሺ𝑋ሻ ൒ 0

𝐸ൣ𝑋ଶ൧ ൒ ሺ𝐸ሾ𝑋ሿሻଶ

𝑛

1, 2, …,𝑛

4

1 2 1 3

1 4 2 4
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Let  denote the number of friends of person  and let . (Thus,

for the network of Figure 4.5 , , , ,  and

.) Now, let  be a randomly chosen individual, equally likely to be any of

. That is,

Letting  in Proposition 4.1 , it follows that , the expected

number of friends of , is

Also, letting , it follows from Proposition 4.1  that , the

expected value of the square of the number of friends of , is

𝑓ሺ𝑖ሻ 𝑖 𝑓 ൌ ෍
௜ൌଵ

௡
𝑓ሺ𝑖ሻ

𝑓ሺ1ሻ ൌ 3 𝑓ሺ2ሻ ൌ 2 𝑓ሺ3ሻ ൌ 1 𝑓ሺ4ሻ ൌ 2

𝑓 ൌ 8 𝑋

1, 2, …,𝑛

𝑃ሺ𝑋 ൌ 𝑖ሻ ൌ 1/𝑛,  𝑖 ൌ 1, …,𝑛 .

𝑔ሺ𝑖ሻ ൌ 𝑓ሺ𝑖ሻ 𝐸ሾ𝑓ሺ𝑋ሻሿ

𝑋

𝐸ሾ𝑓ሺ𝑋ሻሿ ൌ ෍
௜ ൌ ଵ

௡

𝑓ሺ𝑖ሻ𝑃ሺ𝑋 ൌ 𝑖ሻ ൌ ෍
௜ ൌ ଵ

௡

𝑓ሺ𝑖ሻ/𝑛 ൌ 𝑓/𝑛

𝑔ሺ𝑖ሻ ൌ 𝑓ଶሺ𝑖ሻ 𝐸ሾ𝑓ଶሺ𝑋ሻሿ

𝑋

𝐸ሾ𝑓ଶሺ𝑋ሻሿ ൌ ෍
௜ ൌ ଵ

௡

𝑓ଶሺ𝑖ሻ𝑃ሺ𝑋 ൌ 𝑖ሻ ൌ ෍
௜ ൌ ଵ

௡

𝑓ଶሺ𝑖ሻ/𝑛
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Consequently, we see that

Now suppose that each of the  individuals writes the names of all their friends,

with each name written on a separate sheet of paper. Thus, an individual with 

friends will use  separate sheets. Because person  has  friends, there will

be  separate sheets of paper, with each sheet containing one of

the  names. Now choose one of these sheets at random and let  denote the

name on that sheet. Let us compute , the expected number of friends of

the person whose name is on the chosen sheet. Now, because person  has 

friends, it follows that  is the name on  of the sheets, and thus  is the name

on the chosen sheet with probability . That is,

Consequently,

Thus, from (5.1 ), we see that

where the inequality follows because the expected value of the square of any

random variable is always at least as large as the square of its expectation.

Thus, , which says that the average number of friends that a

randomly chosen individual has is less than (or equal to if all the individuals have

the same number of friends) the average number of friends of a randomly chosen

friend.

Remark The intuitive reason for the friendship paradox is that  is equally likely

to be any of the  individuals. On the other hand  is chosen with a probability

proportional to its number of friends; that is, the more friends an individual has

𝐸ൣ𝑓ଶሺ𝑋ሻ൧
𝐸ሾ𝑓ሺ𝑋ሻሿ

ൌ
෍

௜ൌଵ

௡
𝑓ଶሺ𝑖ሻ

𝑓

(5.1)

𝑛

𝑘

𝑘 𝑖 𝑓ሺ𝑖ሻ

𝑓 ൌ ෍
௜ൌଵ

௡
𝑓ሺ𝑖ሻ

𝑛 𝑌

𝐸ሾ𝑓ሺ𝑌ሻሿ
𝑖 𝑓ሺ𝑖ሻ

𝑖 𝑓ሺ𝑖ሻ 𝑖
𝑓ሺ𝑖ሻ
𝑓

𝑃ሺ𝑌 ൌ 𝑖ሻ ൌ
𝑓ሺ𝑖ሻ
𝑓

, 𝑖 ൌ 1, …,𝑛 .

𝐸ሾ𝑓ሺ𝑌ሻሿ ൌ ෍
௜ ൌ ଵ

௡

𝑓ሺ𝑖ሻ𝑃ሺ𝑌 ൌ 𝑖ሻ ൌ ෍
௜ ൌ ଵ

௡

𝑓ଶሺ𝑖ሻ/𝑓

(5.2)

𝐸ሾ𝑓ሺ𝑌ሻሿ ൌ
𝐸ሾ𝑓ଶሺ𝑋ሻሿ
𝐸ሾ𝑓ሺ𝑋ሻሿ

൒ 𝐸ሾ𝑓ሺ𝑋ሻሿ

𝐸ሾ𝑓ሺ𝑋ሻሿ ൑ 𝐸ሾ𝑓ሺ𝑌ሻሿ

𝑋

𝑛 𝑌
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the more likely that individual will be . Thus,  is biased towards individuals with

a large number of friends and so it is not surprising that the average number of

friends that  has is larger than the average number of friends that  has.

The following is a further example illustrating the usefulness of the inequality that the

expected value of a square is at least as large as the square of the expected value.

Example 5c

Suppose there are  days in a year, and that each person is independently born

on day  with probability , , . Let  be the event that

persons  and  are born on the same day.

a. Find 

b. Find 

c. Show 

Solution

a. Because the event that  and  have the same birthday is the union of the

 mutually exclusive events that they were both born on day ,

we have that

b. Using the definition of conditional probability we obtain that

where the preceding used that  is the union of the  mutually

exclusive events that  were all born on day .

c. It follows from parts (a) and (b) that  is equivalent to

. To prove this inequality, let  be a random variable

that is equal to  with probability . That is, , .

Then

𝑌 𝑌

𝑌 𝑋

𝑚

𝑟 𝑝௥ 𝑟 ൌ 1, …,𝑚 ෍
௥ൌଵ

௠
𝑝௥ ൌ 1 𝐴௜,௝

𝑖 𝑗

𝑃ሺ𝐴ଵ,ଷሻ

𝑃ሺ𝐴ଵ,ଷ ห𝐴ଵ,ଶሻ

𝑃ሺ𝐴ଵ,ଷ ห𝐴ଵ,ଶሻ ൒ 𝑃ሺ𝐴ଵ,ଷሻ

1 3

𝑚 𝑟, 𝑟 ൌ 1, …,𝑚

𝑃ሺ𝐴ଵ,ଷሻ ൌ ෍
௥

𝑝ଶ௥ .

𝑃ሺ𝐴ଵ,ଷ ห𝐴ଵ,ଶሻ ൌ
𝑃ሺ𝐴ଵ,ଶ𝐴ଵ,ଷሻ
𝑃ሺ𝐴ଵ,ଶሻ

ൌ
෍

௥
𝑝ଷ௥

෍
௥
𝑝ଶ௥

𝐴ଵ,ଶ𝐴ଵ,ଷ 𝑚

1, 2, 3 𝑟, 𝑟 ൌ 1, …,𝑚

𝑃ሺ𝐴ଵ,ଷ ห𝐴ଵ,ଶሻ ൒ 𝑃ሺ𝐴ଵ,ଷሻ

෍
௥
𝑝ଷ௥ ൒ ൬෍

௥
𝑝ଶ௥൰

ଶ

𝑋

𝑝௥ 𝑝௥ 𝑃ሺ𝑋 ൌ 𝑝௥ሻ ൌ 𝑝௥ 𝑟 ൌ 1, …,𝑚

𝐸ሾ𝑋ሿ ൌ ෍
௥

𝑝௥𝑃ሺ𝑋 ൌ 𝑝௥ሻ ൌ ෍
௥

𝑝ଶ௥ , 𝐸ൣ𝑋ଶ൧ ൌ ෍
௥

𝑝ଶ௥𝑃ሺ𝑋 ൌ 𝑝௥ሻ ൌ ෍
௥

𝑝ଷ௥
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and the result follows because 

Remark The intuitive reason for why part (c) is true is that if the “popular days”

are the ones whose probabilities are relatively large, then knowing that  and 

share the same birthday makes it more likely (than when we have no information)

that the birthday of  is a popular day and that makes it more likely that  will

have the same birthday as does .

A useful identity is that for any constants  and ,

To prove this equality, let  and note from Corollary 4.1  that

. Therefore,

Remarks

a. Analogous to the means being the center of gravity of a distribution of mass,

the variance represents, in the terminology of mechanics, the moment of

inertia.

b. The square root of the Var  is called the standard deviation of , and we

denote it by SD . That is,

Discrete random variables are often classified according to their probability mass

functions. In the next few sections, we consider some of the more common types.

Suppose that a trial, or an experiment, whose outcome can be classified as either a

success or a failure is performed. If we let  when the outcome is a success and

 when it is a failure, then the probability mass function of  is given by

𝐸ൣ𝑋ଶ൧ ൒ ሺ𝐸ሾ𝑋ሿሻଶ .

1 2

1 3

1
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ൌ 𝑎ଶVarሺ𝑋ሻ

ሺ𝑋ሻ 𝑋

ሺ𝑋ሻ
𝑆𝐷ሺ𝑋ሻ ൌ Varሺ𝑋ሻඥ

𝑋 ൌ 1

𝑋 ൌ 0 𝑋

223 of 848



where , , is the probability that the trial is a success.

A random variable  is said to be a Bernoulli random variable (after the Swiss

mathematician James Bernoulli) if its probability mass function is given by

Equations (6.1)  for some .

Suppose now that  independent trials, each of which results in a success with

probability  or in a failure with probability , are to be performed. If  represents

the number of successes that occur in the  trials, then  is said to be a binomial

random variable with parameters ( , ). Thus, a Bernoulli random variable is just a

binomial random variable with parameters (1, ).

The probability mass function of a binomial random variable having parameters ( )

is given by

The validity of Equation (6.2)  may be verified by first noting that the probability of

any particular sequence of  outcomes containing  successes and  failures is,

by the assumed independence of trials, . Equation (6.2)  then follows,

since there are  different sequences of the  outcomes leading to  successes

and  failures. This perhaps can most easily be seen by noting that there are 

different choices of the  trials that result in successes. For instance, if ,

then there are  ways in which the four trials can result in two successes,

namely, any of the outcomes ( , , , ), ( , , , ), ( , , , ), ( , , , ), ( , , , ),

and ( , , , ), where the outcome ( , , , ) means, for instance, that the first two

trials are successes and the last two failures. Since each of these outcomes has

probability  of occurring, the desired probability of two successes in the

four trials is .

Note that, by the binomial theorem, the probabilities sum to 1; that is,

𝑝ሺ0ሻ ൌ 𝑃ሼ𝑋 ൌ 0ሽ ൌ 1 െ 𝑝

𝑝ሺ1ሻ ൌ 𝑃ሼ𝑋 ൌ 1ሽ ൌ 𝑝

(6.1)
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Example 6a

Five fair coins are flipped. If the outcomes are assumed independent, find the

probability mass function of the number of heads obtained.

Solution

If we let  equal the number of heads (successes) that appear, then  is a

binomial random variable with parameters . Hence, by Equation

(6.2) ,

Example 6b

It is known that screws produced by a certain company will be defective with

probability .01, independently of one another. The company sells the screws in

packages of 10 and offers a money-back guarantee that at most 1 of the 10

screws is defective. What proportion of packages sold must the company

replace?

Solution

If  is the number of defective screws in a package, then  is a binomial random

variable with parameters (10, .01). Hence, the probability that a package will

have to be replaced is

෍
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Thus, only .4 percent of the packages will have to be replaced.

Example 6c

The following gambling game, known as the wheel of fortune (or chuck-a-luck), is

quite popular at many carnivals and gambling casinos: A player bets on one of

the numbers 1 through 6. Three dice are then rolled, and if the number bet by the

player appears  times, , then the player wins  units; if the number bet

by the player does not appear on any of the dice, then the player loses 1 unit. Is

this game fair to the player? (Actually, the game is played by spinning a wheel

that comes to rest on a slot labeled by three of the numbers 1 through 6, but this

variant is mathematically equivalent to the dice version.)

Solution

If we assume that the dice are fair and act independently of one another, then the

number of times that the number bet appears is a binomial random variable with

parameters . Hence, letting  denote the player’s winnings in the game, we

have

In order to determine whether or not this is a fair game for the player, let us

calculate . From the preceding probabilities, we obtain

Hence, in the long run, the player will lose 17 units per every 216 games he
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plays.

In the next example, we consider the simplest form of the theory of inheritance as

developed by Gregor Mendel (1822—1884).

Example 6d

Suppose that a particular trait (such as eye color or left-handedness) of a person

is classified on the basis of one pair of genes, and suppose also that 

represents a dominant gene and  a recessive gene. Thus, a person with dd

genes is purely dominant, one with rr is purely recessive, and one with rd is

hybrid. The purely dominant and the hybrid individuals are alike in appearance.

Children receive 1 gene from each parent. If, with respect to a particular trait, 2

hybrid parents have a total of 4 children, what is the probability that 3 of the 4

children have the outward appearance of the dominant gene?

The preceding Figure 4.6a  and b  shows what can happen when hybrid

yellow (dominant) and green (recessive) seeds are crossed.

Figure 4.6 (a) Crossing pure yellow seeds with pure green seeds; (b)

Crossing hybrid first-generation seeds.

𝑑

𝑟
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Solution

If we assume that each child is equally likely to inherit either of 2 genes from

each parent, the probabilities that the child of 2 hybrid parents will have dd, rr,

and rd pairs of genes are, respectively,  and . Hence, since an offspring will

have the outward appearance of the dominant gene if its gene pair is either dd or

rd, it follows that the number of such children is binomially distributed with

parameters . Thus, the desired probability is

Example 6e

Consider a jury trial in which it takes 8 of the 12 jurors to convict the defendant;

that is, in order for the defendant to be convicted, at least 8 of the jurors must

vote him guilty. If we assume that jurors act independently and that whether or

not the defendant is guilty, each makes the right decision with probability , what

is the probability that the jury renders a correct decision?

Solution

The problem, as stated, is incapable of solution, for there is not yet enough

information. For instance, if the defendant is innocent, the probability of the jury

rendering a correct decision is

1
4
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4
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whereas, if he is guilty, the probability of a correct decision is

Therefore, if  represents the probability that the defendant is guilty, then, by

conditioning on whether or not he is guilty, we obtain the probability that the jury

renders a correct decision:

Example 6f

A communication system consists of  components, each of which will,

independently, function with probability . The total system will be able to operate

effectively if at least one-half of its components function.

a. For what values of  is a 5-component system more likely to operate

effectively than a 3-component system?

b. In general, when is a -component system better than a 

-component system?

Solution

a. Because the number of functioning components is a binomial random

variable with parameters ( ), it follows that the probability that a

5-component system will be effective is

whereas the corresponding probability for a 3-component system is

Hence, the 5-component system is better if

෍
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which reduces to

or

b. In general, a system with  components will be better than one with

 components if (and only if) . To prove this, consider a system

of  components and let  denote the number of the first  that

function. Then

which follows because the -component system will be effective if

either

i. ;

ii.  and at least one of the remaining 2 components function; or

iii.  and both of the next 2 components function.

Since

we obtain

We will now examine the properties of a binomial random variable with parameters 

and . To begin, let us compute its expected value and variance. To begin, note that
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Using the identity

gives

where  is a binomial random variable with parameters , . Setting  in the

preceding equation yields

That is, the expected number of successes that occur in  independent trials when

each is a success with probability  is equal to np. Setting  in the preceding

equation and using the preceding formula for the expected value of a binomial

random variable yields

Since , we obtain

Summing up, we have shown the following:
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If  is a binomial random variable with parameters  and , then

The following proposition details how the binomial probability mass function first

increases and then decreases.

Proposition 6.1

If  is a binomial random variable with parameters ( ), where , then

as  goes from 0 to  first increases monotonically and then decreases

monotonically, reaching its largest value when  is the largest integer less than or

equal to .

Proof We prove the proposition by considering  and

determining for what values of  it is greater or less than 1. Now,

Hence,  if and only if

or, equivalently, if and only if

and the proposition is proved.

As an illustration of Proposition 6.1 , consider Figure 4.7 , the graph of the

probability mass function of a binomial random variable with parameters .
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Example 6g

In a U.S. presidential election, the candidate who gains the maximum number of

votes in a state is awarded the total number of electoral college votes allocated

to that state. The number of electoral college votes of a given state is roughly

proportional to the population of that state—that is, a state with population  has

roughly nc electoral votes. (Actually, it is closer to , as a state is given an

electoral vote for each member it has in the House of Representatives, with the

number of such representatives being roughly proportional to the population of

the state, and one electoral college vote for each of its two senators.) Let us

determine the average power of a citizen in a state of size  in a close

presidential election, where, by average power in a close election, we mean that

a voter in a state of size  will be decisive if the other  voters split

their votes evenly between the two candidates. (We are assuming here that  is

odd, but the case where  is even is quite similar.)

Because the election is close, we shall suppose that each of the other 

voters acts independently and is equally likely to vote for either candidate.

Hence, the probability that a voter in a state of size  will make a

difference to the outcome is the same as the probability that  tosses of a fair

coin land heads and tails an equal number of times. That is,

𝑛

𝑛𝑐 ൅ 2

𝑛

𝑛 ൌ 2𝑘 ൅ 1 𝑛 െ 1

𝑛

𝑛

𝑛 െ 1 ൌ 2𝑘

𝑛 ൌ 2𝑘 ൅ 1

2𝑘
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To approximate the preceding equality, we make use of Stirling’s approximation,

which says that for  large,

where we say that  when the ratio  approaches 1 as  approaches

. Hence, it follows that

Because such a voter (if he or she makes a difference) will affect nc electoral

votes, the expected number of electoral votes a voter in a state of size  will

affect—or the voter’s average power—is given by

Thus, the average power of a voter in a state of size  is proportional to the

square root of , showing that in presidential elections, voters in large states

have more power than do those in smaller states.

Suppose that  is binomial with parameters ( , ). The key to computing its

distribution function

is to utilize the following relationship between  and , which was

𝑃ሼ voter in state of  size  2𝑘 ൅  1 makes a difference ሽ

   ൌ ቆ
2𝑘

𝑘
ቇቆ

1
2
ቇ
௞

ቆ
1
2
ቇ
௞

   ൌ
ሺ2𝑘ሻ!

𝑘!𝑘!2ଶ௞

𝑘

𝑘! ∼ 𝑘௞൅ଵ/ଶ𝑒െ௞ 2𝜋√

𝑎௞ ∼ 𝑏௞ 𝑎௞/𝑏௞ 𝑘

∞

𝑃ሼvoter in state of  size  2𝑘 ൅  1 makes a differenceሽ

   ∼
ሺ2𝑘ሻଶ௞൅ଵ/ଶ𝑒െଶ௞ 2𝜋√

𝑘ଶ௞൅ଵ𝑒െଶ௞ሺ2𝜋ሻ2ଶ௞ ൌ
1

𝑘𝜋√

𝑛

 average power  ൌ 𝑛𝑐𝑃ሼmakes a differenceሽ

∼
𝑛𝑐

𝑛𝜋/2ඥ

ൌ 𝑐 2𝑛/𝜋ඥ

𝑛

𝑛

𝑋 𝑛 𝑝

𝑃ሼ𝑋 ൑ 𝑖ሽ ൌ ෍
௞ ൌ ଴

௜

ቆ
𝑛

𝑘
ቇ𝑝௞ሺ1 െ 𝑝ሻ௡െ௞ 𝑖 ൌ 0, 1, …,𝑛

𝑃ሼ𝑋 ൌ 𝑘 ൅ 1ሽ 𝑃ሼ𝑋 ൌ 𝑘ሽ
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established in the proof of Proposition 6.1 :

Example 6h

Let  be a binomial random variable with parameters . Then,

starting with  and recursively employing Equation (6.3) , we

obtain

A computer program that utilizes the recursion (6.3 ) to compute the binomial

distribution function is easily written. To compute , the program should first

compute  and then use the recursion to successively compute

, and so on.

Historical note

Independent trials having a common probability of success  were first studied

by the Swiss mathematician Jacques Bernoulli (1654–1705). In his book Ars

Conjectandi (The Art of Conjecturing), published by his nephew Nicholas eight

years after his death in 1713, Bernoulli showed that if the number of such trials

were large, then the proportion of them that were successes would be close to

 with a probability near 1.

Jacques Bernoulli was from the first generation of the most famous

mathematical family of all time. Altogether, there were between 8 and 12

Bernoullis, spread over three generations, who made fundamental contributions

to probability, statistics, and mathematics. One difficulty in knowing their exact

𝑃ሼ𝑋 ൌ 𝑘 ൅ 1ሽ ൌ
𝑝

1 െ 𝑝
𝑛 െ 𝑘
𝑘 ൅ 1

𝑃ሼ𝑋 ൌ 𝑘ሽ

(6.3)

𝑋 𝑛 ൌ 6,  𝑝 ൌ . 4

𝑃ሼ𝑋 ൌ 0ሽ ൌ ሺ . 6ሻ଺

𝑃ሼ𝑋 ൌ 0ሽ ൌ ሺ.6ሻ଺ ൎ .0467

𝑃ሼ𝑋 ൌ 1ሽ ൌ
4
6

6
1
𝑃ሼ𝑋 ൌ 0ሽ ൎ .1866

𝑃ሼ𝑋 ൌ 2ሽ ൌ
4
6

5
2
𝑃ሼ𝑋 ൌ 1ሽ ൎ .3110

𝑃ሼ𝑋 ൌ 3ሽ ൌ
4
6

4
3
𝑃ሼ𝑋 ൌ 2ሽ ൎ .2765

𝑃ሼ𝑋 ൌ 4ሽ ൌ
4
6

3
4
𝑃ሼ𝑋 ൌ 3ሽ ൎ .1382

𝑃ሼ𝑋 ൌ 5ሽ ൌ
4
6

2
5
𝑃ሼ𝑋 ൌ 4ሽ ൎ .0369

𝑃ሼ𝑋 ൌ 6ሽ ൌ
4
6

1
6
𝑃ሼ𝑋 ൌ 5ሽ ൎ .0041

𝑃ሼ𝑋 ൑ 𝑖ሽ
𝑃ሼ𝑋 ൌ 𝑖ሽ

𝑃ሼ𝑋 ൌ 𝑖 െ 1ሽ,𝑃ሼ𝑋 ൌ 𝑖 െ 2ሽ

𝑝

𝑝
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number is the fact that several had the same name. (For example, two of the

sons of Jacques’s brother Jean were named Jacques and Jean.) Another

difficulty is that several of the Bernoullis were known by different names in

different places. Our Jacques (sometimes written Jaques) was, for instance,

also known as Jakob (sometimes written Jacob) and as James Bernoulli. But

whatever their number, their influence and output were prodigious. Like the

Bachs of music, the Bernoullis of mathematics were a family for the ages!

Example 6i

If  is a binomial random variable with parameters  and , find

 and .

Solution

A binomial calculator can be used to obtain the following solutions:

Figure 4.8

A random variable  that takes on one of the values  is said to be a Poisson

random variable with parameter  if, for some ,

Equation (7.1)  defines a probability mass function, since

𝑋 𝑛 ൌ 100 𝑝 ൌ . 75

𝑃ሼ𝑋 ൌ 70ሽ 𝑃ሼ𝑋 ൑ 70ሽ

𝑋 0, 1, 2, …

𝜆 𝜆 ൐ 0

𝑝ሺ𝑖ሻ ൌ 𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ 𝑒െఒ
𝜆௜

𝑖!
 𝑖 ൌ 0, 1, 2, …

(7.1)
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The Poisson probability distribution was introduced by Siméon Denis Poisson in a

book he wrote regarding the application of probability theory to lawsuits, criminal

trials, and the like. This book, published in 1837, was entitled Recherches sur la

probabilité des jugements en matière criminelle et en matière civile (Investigations

into the Probability of Verdicts in Criminal and Civil Matters).

The Poisson random variable has a tremendous range of applications in diverse

areas because it may be used as an approximation for a binomial random variable

with parameters ( ) when  is large and  is small enough so that np is of

moderate size. To see this, suppose that  is a binomial random variable with

parameters ( ), and let . Then

Now, for  large and  moderate,

Hence, for  large and  moderate,

In other words, if  independent trials, each of which results in a success with

probability , are performed, then when  is large and  is small enough to make np

moderate, the number of successes occurring is approximately a Poisson random

variable with parameter . This value  (which will later be shown to equal the

expected number of successes) will usually be determined empirically.

Some examples of random variables that generally obey the Poisson probability law

[that is, they obey Equation (7.1) ] are as follows:

1. The number of misprints on a page (or a group of pages) of a book

෍
௜ ൌ ଴

ஶ

𝑝ሺ𝑖ሻ ൌ 𝑒െఒ ෍
௜ ൌ ଴

ஶ 𝜆௜

𝑖!
ൌ 𝑒െఒ𝑒ఒ ൌ 1

𝑛, 𝑝 𝑛 𝑝

𝑋

𝑛, 𝑝 𝜆 ൌ 𝑛𝑝

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ
𝑛!

ሺ𝑛 െ 𝑖ሻ!𝑖!
𝑝௜ሺ1 െ 𝑝ሻ௡െ௜

ൌ
𝑛!

ሺ𝑛 െ 𝑖ሻ!𝑖!
ሺ
𝜆
𝑛
ሻ
௜

ሺ1 െ
𝜆
𝑛
ሻ
௡െ௜

ൌ
𝑛ሺ𝑛 െ 1ሻ ⋯ ሺ𝑛 െ 𝑖 ൅ 1ሻ

𝑛௜
𝜆௜

𝑖!
ሺ1 െ 𝜆/𝑛ሻ௡

ሺ1 െ 𝜆/𝑛ሻ௜

𝑛 𝜆

ቆ1 െ
𝜆
𝑛
ቇ
௡

ൎ 𝑒െఒ 
𝑛ሺ𝑛 െ 1ሻ ⋯ ሺ𝑛 െ 𝑖 ൅ 1ሻ

𝑛௜
ൎ 1 ቆ1 െ

𝜆
𝑛
ቇ
௜

ൎ 1

𝑛 𝜆

𝑃ሼ𝑋 ൌ 𝑖ሽ ൎ 𝑒െఒ
𝜆௜

𝑖!

𝑛

𝑝 𝑛 𝑝

𝜆 ൌ 𝑛𝑝 𝜆
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2. The number of people in a community who survive to age 100

3. The number of wrong telephone numbers that are dialed in a day

4. The number of packages of dog biscuits sold in a particular store each day

5. The number of customers entering a post office on a given day

6. The number of vacancies occurring during a year in the federal judicial system

7. The number of -particles discharged in a fixed period of time from some

radioactive material

Each of the preceding and numerous other random variables are approximately

Poisson for the same reason—namely, because of the Poisson approximation to the

binomial. For instance, we can suppose that there is a small probability  that each

letter typed on a page will be misprinted. Hence, the number of misprints on a page

will be approximately Poisson with , where  is the number of letters on a

page. Similarly, we can suppose that each person in a community has some small

probability of reaching age 100. Also, each person entering a store may be thought

of as having some small probability of buying a package of dog biscuits, and so on.

Example 7a

Suppose that the number of typographical errors on a single page of this book

has a Poisson distribution with parameter . Calculate the probability that

there is at least one error on this page.

Solution

Letting  denote the number of errors on this page, we have

Example 7b

Suppose that the probability that an item produced by a certain machine will be

defective is .1. Find the probability that a sample of 10 items will contain at most

1 defective item.

Solution

The desired probability is , whereas

the Poisson approximation yields the value .

Example 7c

Consider an experiment that consists of counting the number of  particles given

𝛼

𝑝

𝜆 ൌ 𝑛𝑝 𝑛

𝜆 ൌ
1
2

𝑋

𝑃൛𝑋 ൒ 1ൟ ൌ 1 െ 𝑃൛𝑋 ൌ 0ൟ ൌ 1 െ 𝑒െଵ/ଶ ൎ . 393

ቆ
10

0
ቇሺ . 1ሻ଴ሺ . 9ሻଵ଴ ൅ ቆ

10

1
ቇሺ . 1ሻଵሺ . 9ሻଽ ൌ . 7361

𝑒െଵ ൅ 𝑒െଵ ൎ . 7358

𝛼
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off in a 1-second interval by 1 gram of radioactive material. If we know from past

experience that on the average, 3.2 such  particles are given off, what is a good

approximation to the probability that no more than 2  particles will appear?

Solution

If we think of the gram of radioactive material as consisting of a large number 

of atoms, each of which has probability of  of disintegrating and sending off

an  particle during the second considered, then we see that to a very close

approximation, the number of  particles given off will be a Poisson random

variable with parameter . Hence, the desired probability is

Before computing the expected value and variance of the Poisson random variable

with parameter , recall that this random variable approximates a binomial random

variable with parameters  and  when  is large,  is small, and . Since such

a binomial random variable has expected value  and variance

 (since  is small), it would seem that both the expected

value and the variance of a Poisson random variable would equal its parameter .

We now verify this result:

Thus, the expected value of a Poisson random variable  is indeed equal to its

parameter . To determine its variance, we first compute :

𝛼

𝛼

𝑛

3.2/𝑛

𝛼

𝛼

𝜆 ൌ 3 . 2

𝑃ሼ𝑋 ൑ 2ሽ ൌ 𝑒െଷ.ଶ ൅ 3.2𝑒െଷ.ଶ ൅
ሺ3.2ሻଶ

2
𝑒െଷ.ଶ

ൎ .3799

𝜆

𝑛 𝑝 𝑛 𝑝 𝜆 ൌ 𝑛𝑝

𝑛𝑝 ൌ 𝜆

𝑛𝑝ሺ1 െ 𝑝ሻ ൌ 𝜆ሺ1 െ 𝑝ሻ ൎ 𝜆 𝑝

𝜆

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଴

ஶ 𝑖𝑒െఒ𝜆௜

𝑖!

ൌ 𝜆 ෍
௜ ൌ ଵ

ஶ 𝑒െఒ𝜆௜െଵ

ሺ𝑖 െ 1ሻ!

ൌ 𝜆𝑒െఒ ෍
௝ ൌ ଴

ஶ 𝜆௝

𝑗!
 
 by letting 

𝑗 ൌ 𝑖 െ 1

ൌ 𝜆 since ෍
௝ ൌ ଴

ஶ 𝜆௝

𝑗!
ൌ 𝑒ఒ

𝑋

𝜆 𝐸ൣ𝑋ଶ൧
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where the final equality follows because the first sum is the expected value of a

Poisson random variable with parameter  and the second is the sum of the

probabilities of this random variable. Therefore, since we have shown that ,

we obtain

Hence, the expected value and variance of a Poisson random variable are both

equal to its parameter .

We have shown that the Poisson distribution with parameter np is a very good

approximation to the distribution of the number of successes in  independent trials

when each trial has probability  of being a success, provided that  is large and 

small. In fact, it remains a good approximation even when the trials are not

independent, provided that their dependence is weak. For instance, recall the

matching problem (Example 5m  of Chapter 2 ) in which  men randomly

select hats from a set consisting of one hat from each person. From the point of view

of the number of men who select their own hat, we may regard the random selection

as the result of  trials where we say that trial  is a success if person  selects his

own hat, . Defining the events , by

it is easy to see that

Thus, we see that although the events  are not independent, their

dependence, for large , appears to be weak. Because of this, it seems reasonable

𝐸ሾ𝑋ଶሿ ൌ ෍
௜ ൌ ଴

ஶ 𝑖𝑒െఒ𝜆௜

𝑖!

ൌ 𝜆 ෍
௜ ൌ ଵ

ஶ 𝑒െఒ𝜆௜െଵ

ሺ𝑖 െ 1ሻ!

ൌ 𝜆 ෍
௝ ൌ ଴

ஶ ሺ𝑗 ൅ 1ሻ𝑒െఒ𝜆௝

𝑗!
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𝑗 ൌ 𝑖 െ 1

ൌ 𝜆 ቎ ෍
௝ ൌ ଴

ஶ 𝑗𝑒െఒ𝜆௝

𝑗!
൅ ෍

௝ ൌ ଴

ஶ 𝑒െఒ𝜆௝

𝑗!
቏

𝜆

𝐸ሾ𝑋ሿ ൌ 𝜆

Varሺ𝑋ሻ ൌ 𝐸ൣ𝑋ଶ൧ െ ሺ𝐸ሾ𝑋ሿሻଶ

ൌ 𝜆

𝜆

𝑛

𝑝 𝑛 𝑝

𝑛

𝑛 𝑖 𝑖

𝑖 ൌ 1, …,𝑛 𝐸௜, 𝑖 ൌ 1, …,𝑛
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𝑃ሼ𝐸௜ሽ ൌ
1
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to expect that the number of successes will approximately have a Poisson

distribution with parameter  and indeed this is verified in Example 5m

of Chapter 2 .

For a second illustration of the strength of the Poisson approximation when the trials

are weakly dependent, let us consider again the birthday problem presented in

Example 5i  of Chapter 2 . In this example, we suppose that each of  people

is equally likely to have any of the 365 days of the year as his or her birthday, and

the problem is to determine the probability that a set of  independent people all

have different birthdays. A combinatorial argument was used to determine this

probability, which was shown to be less than  when .

We can approximate the preceding probability by using the Poisson approximation

as follows: Imagine that we have a trial for each of the  pairs of individuals  and

, and say that trial ,  is a success if persons  and  have the same birthday. If

we let  denote the event that trial ,  is a success, then, whereas the  events

, are not independent (see Theoretical Exercise 4.21 ), their

dependence appears to be rather weak. (Indeed, these events are even pairwise

independent, in that any 2 of the events  and  are independent—again, see

Theoretical Exercise 4.21 ). Since , it is reasonable to suppose

that the number of successes should approximately have a Poisson distribution with

mean . Therefore,

To determine the smallest integer  for which this probability is less than , note that

is equivalent to

Taking logarithms of both sides, we obtain

𝑛 ൈ 1/𝑛 ൌ 1

𝑛

𝑛

1
2

𝑛 ൌ 23

ቆ
𝑛

2
ቇ 𝑖

𝑗, 𝑖 ് 𝑗 𝑖 𝑗 𝑖 𝑗

𝐸௜௝ 𝑖 𝑗 ቆ
𝑛

2
ቇ

𝐸௜௝, 1 ൑ 𝑖 ൏ 𝑗 ൑ 𝑛

𝐸௜௝ 𝐸௞௟
𝑃ሺ𝐸௜௝ሻ ൌ 1/365

ቆ
𝑛

2
ቇ/365 ൌ 𝑛ሺ𝑛 െ 1ሻ/730

𝑃ሼ no 2 people have the same birthday ሽ ൌ 𝑃ሼ0  successesሽ

ൎ expቊ
െ𝑛ሺ𝑛 െ 1ሻ

730
ቋ

𝑛
1
2

expቊ
െ𝑛ሺ𝑛 െ 1ሻ

730
ቋ ൑

1
2

expቊ
𝑛ሺ𝑛 െ 1ሻ

730
ቋ ൒ 2
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which yields the solution , in agreement with the result of Example 5i  of

Chapter 2 .

Suppose now that we wanted the probability that among the  people, no 3 of them

have their birthday on the same day. Whereas this now becomes a difficult

combinatorial problem, it is a simple matter to obtain a good approximation. To begin,

imagine that we have a trial for each of the  triplets , , , where

, and call the , ,  trial a success if persons , , and  all have

their birthday on the same day. As before, we can then conclude that the number of

successes is approximately a Poisson random variable with parameter

Hence,

This probability will be less than  when  is such that

which is equivalent to . Thus, the approximate probability that at least 3

people in a group of size 84 or larger will have the same birthday exceeds .

For the number of events to occur to approximately have a Poisson distribution, it is

not essential that all the events have the same probability of occurrence, but only

that all of these probabilities be small. The following is referred to as the Poisson

paradigm.

Poisson paradigm

Consider  events, with  equal to the probability that event  occurs,

 If all the  are “small” and the trials are either independent or at

most “weakly dependent,” then the number of these events that occur

𝑛ሺ𝑛 െ 1ሻ ൒ 730 log 2
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ቆ
𝑛
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𝑛
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799350
ቋ

1
2

𝑛
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approximately has a Poisson distribution with mean 

Our next example not only makes use of the Poisson paradigm, but also illustrates a

variety of the techniques we have studied so far.

Example 7d Length of the longest run

A coin is flipped  times. Assuming that the flips are independent, with each one

coming up heads with probability , what is the probability that there is a string of

 consecutive heads?

Solution

We will first use the Poisson paradigm to approximate this probability. Now, if for

, we let  denote the event that flips  all land

on heads, then the desired probability is that at least one of the events  occur.

Because  is the event that starting with flip , the next  flips all land on heads,

it follows that . Thus, when  is small, we might think that the number

of the  that occur should have an approximate Poisson distribution. However,

such is not the case, because, although the events all have small probabilities,

some of their dependencies are too great for the Poisson distribution to be a

good approximation. For instance, because the conditional probability that flips

 are all heads given that flips  are all heads is equal to the

probability that flip  is a head, it follows that

which is far greater than the unconditional probability of .

The trick that enables us to use a Poisson approximation is to note that there will

be a string of  consecutive heads either if there is such a string that is

immediately followed by a tail or if the final  flips all land on heads.

Consequently, for , let  be the event that flips  are all

heads and flip  is a tail; also, let  be the event that flips 

are all heads. Note that

Thus, when  is small, each of the events  has a small probability of

occurring. Moreover, for , if the events  and  refer to nonoverlapping

sequences of flips, then ; if they refer to overlapping sequences,

then . Hence, in both cases, the conditional probabilities are close to

the unconditional ones, indicating that , the number of the events  that occur,

෍
௜ൌଵ

௡
𝑝௜ .

𝑛

𝑝

𝑘

𝑖 ൌ 1, …,𝑛 െ 𝑘 ൅ 1 𝐻௜ 𝑖, 𝑖 ൅ 1, …, 𝑖 ൅ 𝑘 െ 1

𝐻௜

𝐻௜ 𝑖 𝑘

𝑃ሺ𝐻௜ሻ ൌ 𝑝௞ 𝑝௞

𝐻௜

2, …, 𝑘 ൅ 1 1, …, 𝑘

𝑘 ൅ 1

𝑃ሺ𝐻ଶ |𝐻ଵሻ ൌ 𝑝

𝐻ଶ

𝑘

𝑘

𝑖 ൌ 1, …,𝑛 െ 𝑘 𝐸௜ 𝑖, …, 𝑖 ൅ 𝑘 െ 1

𝑖 ൅ 𝑘 𝐸௡െ௞൅ଵ 𝑛 െ 𝑘 ൅ 1, …,𝑛

𝑃ሺ𝐸௜ሻ ൌ 𝑝௞ሺ1 െ 𝑝ሻ,  𝑖 ൑ 𝑛 െ 𝑘

𝑃ሺ𝐸௡െ௞൅ଵሻ ൌ 𝑝௞

𝑝௞ 𝐸௜
𝑖 ് 𝑗 𝐸௜ 𝐸௝
𝑃ሺ𝐸௜ |𝐸௝ሻ ൌ 𝑃ሺ𝐸௜ሻ

𝑃ሺ𝐸௜ |𝐸௝ሻ ൌ 0

𝑁 𝐸௜
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should have an approximate Poisson distribution with mean

Because there will not be a run of  heads if (and only if) , the preceding

gives

If we let  denote the largest number of consecutive heads in the  flips, then,

because  will be less than  if (and only if) there are no head strings of length 

, the preceding equation can be written as

Now, let us suppose that the coin being flipped is fair; that is, suppose that

. Then the preceding gives

where the final approximation supposes that  (that is, that ).

Let , and assume that  is an integer. For ,

Consequently,

which implies that

For instance,

𝐸ሾ𝑁ሿ ൌ ෍
௜ ൌ ଵ

௡ െ ௞ ൅ ଵ

𝑃ሺ𝐸௜ሻ ൌ ሺ𝑛 െ 𝑘ሻ𝑝௞ሺ1 െ 𝑝ሻ ൅ 𝑝௞

𝑘 𝑁 ൌ 0

𝑃ሺ no head strings of  length 𝑘 ሻ ൌ 𝑃ሺ𝑁 ൌ 0ሻ ൎ exp൛ െ ሺ𝑛 െ 𝑘ሻ𝑝௞ሺ1 െ 𝑝ሻ െ 𝑝௞ൟ

𝐿௡ 𝑛

𝐿௡ 𝑘 𝑘

𝑃൛𝐿௡ ൏ 𝑘ൟ ൎ exp൛ െ  ሺ𝑛 െ 𝑘ሻ𝑝௞ሺ1 െ 𝑝ሻ െ 𝑝௞ൟ

𝑝 ൌ 1/2

𝑃ሼ𝐿௡ ൏ 𝑘ሽ ൎ expቊ െ  
𝑛 െ 𝑘 ൅ 2

2௞൅ଵ ቋ ൎ exp൜ െ
𝑛

2௞൅ଵൠ

𝑒
ೖെమ

మೖ൅భ ൎ 1
𝑘 െ 2

2௞൅ଵ ൎ 0

𝑗 ൌ logଶ 𝑛 𝑗 𝑘 ൌ 𝑗 ൅ 𝑖

𝑛

2௞൅ଵ ൌ
𝑛

2௝2௜൅ଵ ൌ
1

2௜൅ଵ

𝑃ሼ𝐿௡ ൏ 𝑗 ൅ 𝑖ሽ ൎ expሼ െ ሺ1/2ሻ௜൅ଵሽ

𝑃ሼ𝐿௡ ൌ 𝑗 ൅ 𝑖ሽ ൌ 𝑃ሼ𝐿௡ ൏ 𝑗 ൅ 𝑖 ൅ 1ሽ െ 𝑃ሼ𝐿௡ ൏ 𝑗 ൅ 𝑖ሽ

ൎ exp൛െሺ1/2ሻ௜൅ଶൟ െ exp൛െሺ1/2ሻ௜൅ଵൟ
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Thus, we observe the rather interesting fact that no matter how large  is, the

length of the longest run of heads in a sequence of  flips of a fair coin will be

within  of  with a probability approximately equal to .

We now derive an exact expression for the probability that there is a string of 

consecutive heads when a coin that lands on heads with probability  is flipped 

times. With the events , as defined earlier, and with 

denoting, as before, the length of the longest run of heads,

The inclusion–exclusion identity for the probability of a union can be written as

Let  denote the set of flip numbers to which the event  refers. (So, for

instance, .) Now, consider one of the -way intersection

probabilities that does not include the event . That is, consider

 where . On the one hand, if there is any

overlap in the sets  then this probability is . On the other hand, if there

is no overlap, then the events  are independent. Therefore,

We must now determine the number of different choices of

 for which there is no overlap in the sets . To do

so, note first that each of the , , refer to  flips, so, without any

𝑃ሼ𝐿௡ ൏ 𝑗 െ 3ሽ ൎ 𝑒െସ ൎ .0183

𝑃ሼ𝐿௡ ൌ 𝑗 െ 3ሽ ൎ 𝑒െଶ െ 𝑒െସ ൎ .1170

𝑃ሼ𝐿௡ ൌ 𝑗 െ 2ሽ ൎ 𝑒െଵ െ 𝑒െଶ ൎ .2325

𝑃ሼ𝐿௡ ൌ 𝑗 െ 1ሽ ൎ 𝑒െଵ/ଶ െ 𝑒െଵ ൎ .2387

𝑃ሼ𝐿௡ ൌ 𝑗ሽ ൎ 𝑒െଵ/ସ െ 𝑒െଵ/ଶ ൎ .1723

𝑃ሼ𝐿௡ ൌ 𝑗 ൅ 1ሽ ൎ 𝑒െଵ/଼ െ 𝑒െଵ/ସ ൎ .1037

𝑃ሼ𝐿௡ ൌ 𝑗 ൅ 2ሽ ൎ 𝑒െଵ/ଵ଺ െ 𝑒െଵ/଼ ൎ .0569

𝑃ሼ𝐿௡ ൌ 𝑗 ൅ 3ሽ ൎ 𝑒െଵ/ଷଶ െ 𝑒െଵ/ଵ଺ ൎ .0298

𝑃ሼ𝐿௡ ൒ 𝑗 ൅ 4ሽ ൎ 1 െ 𝑒െଵ/ଷଶ ൎ .0308

𝑛

𝑛

2 logଶሺ𝑛ሻ െ 1 . 86

𝑘

𝑝 𝑛

𝐸௜, 𝑖 ൌ 1, …,𝑛 െ 𝑘 ൅ 1 𝐿௡

𝑃ሺ𝐿௡ ൒ 𝑘ሻ ൌ 𝑃ሺ there is a string of  𝑘 consecutive heads ሻ ൌ 𝑃ቀ ௜ൌଵ
௡െ௞൅ଵ 𝐸௜ቁ

𝑃ሺ ∪௜ൌଵ
௡െ௞൅ଵ 𝐸௜ሻ ൌ ෍

௥ ൌ ଵ

௡ െ ௞ ൅ ଵ

ሺ െ 1ሻ௥൅ଵ ෍
௜భ ழ ⋯ ழ ௜ೝ

𝑃ሺ𝐸௜భ⋯𝐸௜ೝሻ

𝑆௜ 𝐸௜
𝑆ଵ ൌ ሼ1, …, 𝑘 ൅ 1ሽ 𝑟

𝐸௡െ௞൅ଵ
𝑃ሺ𝐸௜భ⋯𝐸௜ೝሻ 𝑖ଵ ൏ ⋯ ൏ 𝑖௥ ൏ 𝑛 െ 𝑘 ൅ 1

𝑆௜భ , …, 𝑆௜ೝ 0

𝐸௜భ , …,𝐸௜ೝ

𝑃ሺ𝐸௜భ⋯𝐸௜ೝሻ ൌ ൝
0,   if  there is any overlap in 𝑆௜భ , …, 𝑆௜ೝ  

𝑝௥௞ሺ1 െ 𝑝ሻ௥,   if  there is no overlap 

𝑖ଵ ൏ ⋯ ൏ 𝑖௥ ൏ 𝑛 െ 𝑘 ൅ 1 𝑆௜భ , …, 𝑆௜ೝ
𝑆௜ೕ 𝑗 ൌ 1, …, 𝑟 𝑘 ൅ 1
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overlap, they together refer to  flips. Now consider any permutation of 

identical letters  and of  identical letters . Interpret the number of 

‘s before the first  as the number of flips before , the number of ‘s between

the first and second  as the number of flips between  and , and so on, with

the number of ‘s after the final  representing the number of flips after .

Because there are  permutations of  letters  and of  letters

, with every such permutation corresponding (in a one-to-one fashion) to a

different nonoverlapping choice, it follows that

We must now consider -way intersection probabilities of the form

where . Now, this probability will equal  if there is any

overlap in  if there is no overlap, then the events of the

intersection will be independent, so

By a similar argument as before, the number of nonoverlapping sets ,

 will equal the number of permutations of  letters  (one for each of the

sets  and of  letters  (one

for each of the trials that are not part of any of . Since there

are  permutations of  letters  and of  letters , we

have

Putting it all together yields the exact expression, namely,

where we utilize the convention that  if .

𝑟ሺ𝑘 ൅ 1ሻ 𝑟

𝑎 𝑛 െ 𝑟ሺ𝑘 ൅ 1ሻ 𝑏 𝑏

𝑎 𝑆௜భ 𝑏

𝑎 𝑆௜భ 𝑆௜మ
𝑏 𝑎 𝑆௜ೝ

ቆ
𝑛 െ 𝑟𝑘

𝑟
ቇ 𝑟 𝑎 𝑛 െ 𝑟ሺ𝑘 ൅ 1ሻ

𝑏

෍
௜భ ழ … ழ ௜ೝ ழ ௡ െ ௞ ൅ ଵ

𝑃ሺ𝐸௜భ⋯𝐸௜ೝሻ ൌ ቆ
𝑛 െ 𝑟𝑘

𝑟
ቇ𝑝௥௞ሺ1 െ 𝑝ሻ௥

𝑟

𝑃ሺ𝐸௜భ⋯𝐸௜ೝെభ𝐸௡െ௞൅ଵሻ,

𝑖ଵ ൏ … ൏ 𝑖௥െଵ ൏ 𝑛 െ 𝑘 ൅ 1 0

𝑆௜భ , …, 𝑆௜ೝെభ , 𝑆௡െ௞;

𝑃ሺ𝐸௜భ⋯𝐸௜ೝെభ𝐸௡െ௞൅ଵሻ ൌ ൣ𝑝௞ሺ1 െ 𝑝ሻ൧௥െଵ𝑝௞ ൌ 𝑝௞௥ሺ1 െ 𝑝ሻ௥െଵ

𝑆௜భ , …, 𝑆௜ೝെభ
𝑆௡െ௞ 𝑟 െ 1 𝑎

𝑆௜భ , …, 𝑆௜ೝെభሻ 𝑛 െ ሺ𝑟 െ 1ሻሺ𝑘 ൅ 1ሻ െ 𝑘 ൌ 𝑛 െ 𝑟𝑘 െ ሺ𝑟 െ 1ሻ 𝑏

𝑆௜భ , …, 𝑆௜ೝെభ , 𝑆௡െ௞൅ଵሻ

ቆ
𝑛 െ 𝑟𝑘

𝑟 െ 1
ቇ 𝑟 െ 1 𝑎 𝑛 െ 𝑟𝑘 െ ሺ𝑟 െ 1ሻ 𝑏

෍
௜భ ழ … ழ ௜ೝെభ ழ ௡ െ ௞ ൅ ଵ

𝑃ሺ𝐸௜భ⋯𝐸௜ೝെభ𝐸௡െ௞൅ଵሻ ൌ ቆ
𝑛 െ 𝑟𝑘

𝑟 െ 1
ቇ𝑝௞௥ሺ1 െ 𝑝ሻ௥െଵ

𝑃ሺ𝐿௡ ൒ 𝑘ሻ ൌ ෍
௥ ൌ ଵ

௡ െ ௞ ൅ ଵ

ሺ െ 1ሻ௥൅ଵ቎ቆ
𝑛 െ 𝑟𝑘

𝑟
ቇ ൅

1
𝑝
ቆ
𝑛 െ 𝑟𝑘

𝑟 െ 1
ቇ቏𝑝௞௥ሺ1 െ 𝑝ሻ௥

ቆ
𝑚 ൌ 0

𝑗
ቇ 𝑚 ൏ 𝑗
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From a computational point of view, a more efficient method for computing the

desired probability than the use of the preceding identity is to derive a set of

recursive equations. To do so, let  be the event that there is a string of 

consecutive heads in a sequence of  flips, and let  We will derive a

set of recursive equations for  by conditioning on when the first tail appears.

For , let  be the event that the first tail appears on flip , and let  be

the event that the first  flips are all heads. Because the events  are

mutually exclusive and exhaustive (that is, exactly one of these events must

occur), we have

Now, given that the first tail appears on flip , where , it follows that those 

flips are wasted as far as obtaining a string of  heads in a row; thus, the

conditional probability of this event is the probability that such a string will occur

among the remaining  flips. Therefore,

Because , the preceding equation gives

Starting with , , and , we can use the latter formula to

recursively compute , and so on, up to . For instance, suppose we

want the probability that there is a run of  consecutive heads when a fair coin is

flipped  times. Then, with , we have , . Because, when

, the recursion becomes

we obtain

𝐴௡ 𝑘

𝑛 𝑃௡ ൌ 𝑃ሺ𝐴௡ሻ .

𝑃௡
𝑗 ൌ 1, …, 𝑘 𝐹௝ 𝑗 𝐻

𝑘 𝐹ଵ, …,𝐹௞,𝐻

𝑃ሺ𝐴௡ሻ ൌ ෍
௝ ൌ ଵ

௞

𝑃ሺ𝐴௡ |𝐹௝ሻ𝑃ሺ𝐹௝ሻ ൅ 𝑃ሺ𝐴௡ |𝐻ሻ𝑃ሺ𝐻ሻ

𝑗 𝑗 ൏ 𝑘 𝑗

𝑘

𝑛 െ 𝑗

𝑃ሺ𝐴௡ |𝐹௝ሻ ൌ 𝑃௡െ௝

𝑃ሺ𝐴௡ |𝐻ሻ ൌ 1

𝑃௡ ൌ 𝑃ሺ𝐴௡ሻ

ൌ ෍
௝ ൌ ଵ

௞

𝑃௡െ௝ 𝑃ሺ𝐹௝ሻ ൅ 𝑃ሺ𝐻ሻ

ൌ ෍
௝ ൌ ଵ

௞

𝑃௡െ௝ 𝑝 ௝
െଵሺ1 െ 𝑝ሻ ൅ 𝑝௞

𝑃௝ ൌ 0 𝑗 ൏ 𝑘 𝑃௞ ൌ 𝑝௞

𝑃௞൅ଵ,𝑃௞൅ଶ 𝑃௡
2

4 𝑘 ൌ 2 𝑃ଵ ൌ 0 𝑃ଶ ൌ ሺ1/2ሻଶ

𝑝 ൌ 1/2

𝑃௡ ൌ ෍
௝ ൌ ଵ

௞

𝑃௡െ௝ ሺ1/2ሻ௝ ൅ ሺ1/2ሻ௞

𝑃ଷ ൌ 𝑃ଶሺ1/2ሻ ൅ 𝑃ଵሺ1/2ሻଶ ൅ ሺ1/2ሻଶ ൌ 3/8
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and

which is clearly true because there are  outcomes that result in a string of 

consecutive heads: hhhh, hhht, hhth, hthh, thhh, hhtt, thht, and tthh. Each of

these outcomes occurs with probability .

Another use of the Poisson probability distribution arises in situations where “events”

occur at certain points in time. One example is to designate the occurrence of an

earthquake as an event; another possibility would be for events to correspond to

people entering a particular establishment (bank, post office, gas station, and so on);

and a third possibility is for an event to occur whenever a war starts. Let us suppose

that events are indeed occurring at certain (random) points of time, and let us

assume that for some positive constant , the following assumptions hold true:

1. The probability that exactly 1 event occurs in a given interval of length  is

equal to , where  stands for any function  for which

. [For instance,  is , whereas  is not.]

2. The probability that 2 or more events occur in an interval of length  is equal

to .

3. For any integers  and any set of  nonoverlapping intervals, if

we define  to be the event that exactly  of the events under consideration

occur in the th of these intervals, then events  are independent.

Loosely put, assumptions 1 and 2 state that for small values of , the probability that

exactly 1 event occurs in an interval of size  equals  plus something that is small

compared with , whereas the probability that 2 or more events occur is small

compared with . Assumption 3 states that whatever occurs in one interval has no

(probability) effect on what will occur in other, nonoverlapping intervals.

We now show that under assumptions 1, 2, and 3, the number of events occurring in

any interval of length  is a Poisson random variable with parameter . To be

precise, let us call the interval [0, ] and denote the number of events occurring in

that interval by . To obtain an expression for , we start by breaking

the interval [0, ] into  nonoverlapping subintervals, each of length t/n (Figure

4.9 ).

Figure 4.9

𝑃ସ ൌ 𝑃ଷሺ1/2ሻ ൅ 𝑃ଶሺ1/2ሻଶ ൅ ሺ1/2ሻଶ ൌ 1/2

8 2

1/16

𝜆

ℎ

𝜆ℎ ൅ 𝑜ሺℎሻ 𝑜ሺℎሻ 𝑓ሺℎሻ

lim
௛ → ଴

𝑓ሺℎሻ/ℎ ൌ 0 𝑓ሺℎሻ ൌ ℎଶ 𝑜ሺℎሻ 𝑓ሺℎሻ ൌ ℎ

ℎ

𝑜ሺℎሻ

𝑛,   𝑗ଵ,  𝑗ଶ, …,   𝑗௡ 𝑛

𝐸௜ 𝑗௜
𝑖 𝐸ଵ,𝐸ଶ, …,𝐸௡

ℎ

ℎ 𝜆ℎ

ℎ

ℎ

𝑡 𝜆𝑡

𝑡

𝑁ሺ𝑡ሻ 𝑃ሼ𝑁ሺ𝑡ሻ ൌ 𝑘ሽ
𝑡 𝑛
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Now,

The preceding equation holds because the event on the left side of Equation

(7.2) , that is, , is clearly equal to the union of the two mutually exclusive

events on the right side of the equation. Letting  and  denote the two mutually

exclusive events on the right side of Equation (7.2) , we have

Now, for any  as , so  as , by the definition

of . Hence,

Moreover, since assumptions 1 and 2 imply that†

The sum of two functions, both of which are o(h), is also o(h). This is

so because if , then

.

𝑃ሼ𝑁ሺ𝑡ሻ ൌ 𝑘ሽ ൌ 𝑃ሼ 𝑘 of  the 𝑛 subintervals contain exactly 1 event and the other 𝑛 െ 𝑘 contain 0 eve

൅𝑃ሼ𝑁ሺ𝑡ሻ ൌ 𝑘  and at least 1 subinterval contains 2 or more events ሽ

(7.2)

ሼ𝑁ሺ𝑡ሻ ൌ 𝑘ሽ
𝐴 𝐵

𝑃ሺ𝐵ሻ ൑ 𝑃ሼ at least one subinterval contains 2 or more events ሽ

ൌ 𝑃ቆ
௜ ൌ ଵ

௡

ሼ𝑖th subinterval contains 2 or more events ሽቇ

൑ ෍
௜ ൌ ଵ

௡

𝑃ሼ𝑖th subinterval contains 2 or more events ሽ 
 by Boole′s 

inequality

ൌ ෍
௜ ൌ ଵ

௡

𝑜൬
𝑡
𝑛
൰  by assumption 2 

ൌ ൌ 𝑛𝑜൬
𝑡
𝑛
൰

ൌ 𝑡ቈ
𝑜ሺ𝑡/𝑛ሻ
𝑡/𝑛

቉

𝑡, 𝑡/𝑛 → 0 𝑛 → ∞ 𝑜ሺ𝑡/𝑛ሻ/ሺ𝑡/𝑛ሻ → 0 𝑛 → ∞

𝑜ሺℎሻ

𝑃ሺ𝐵ሻ → 0 as 𝑛 → ∞

(7.3)

𝑃ሼ 0 events occur in an interval of  length  hሽ

   ൌ 1 െ ሾ𝜆ℎ ൅ 𝑜ሺℎሻ ൅ 𝑜ሺℎሻሿ ൌ 1 െ 𝜆ℎ െ 𝑜ሺℎሻ

†

lim௛→଴𝑓ሺℎሻ/ℎ ൌ lim௛→଴𝑔ሺℎሻ/ℎ ൌ 0

lim௛→଴ሾ𝑓ሺℎሻ ൅ 𝑔ሺℎሻሿ/ℎ ൌ 0
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we see from the independence assumption (number 3) that

However, since

it follows, by the same argument that verified the Poisson approximation to the

binomial, that

Thus, from Equations (7.2) , (7.3) , and (7.4) , by letting , we obtain

Hence, if assumptions 1, 2, and 3 are satisfied, then the number of events occurring

in any fixed interval of length  is a Poisson random variable with mean , and we

say that the events occur in accordance with a Poisson process having rate . The

value , which can be shown to equal the rate per unit time at which events occur, is

a constant that must be empirically determined.

The preceding discussion explains why a Poisson random variable is usually a good

approximation for such diverse phenomena as the following:

1. The number of earthquakes occurring during some fixed time span

2. The number of wars per year

3. The number of electrons emitted from a heated cathode during a fixed time

period

4. The number of deaths, in a given period of time, of the policyholders of a life

insurance company

Example 7e

𝑃ሺ𝐴ሻ ൌ 𝑃ሼ𝑘  of  the subintervals contain exactly 1 event and the other 

  𝑛 െ 𝑘  contain 0 events ሽ

ൌ ቆ
𝑛

𝑘
ቇቈ
𝜆𝑡
𝑛
൅ 𝑜൬

𝑡
𝑛
൰቉

௞

ቈ1 െ ቆ
𝜆𝑡
𝑛
ቇ െ 𝑜൬

𝑡
𝑛
൰቉

௡െ௞

𝑛ቈ
𝜆𝑡
𝑛
൅ 𝑜൬

𝑡
𝑛
൰቉ ൌ 𝜆𝑡 ൅ 𝑡ቈ

𝑜ሺ𝑡/𝑛ሻ
𝑡/𝑛

቉ → 𝜆𝑡 as 𝑛 → ∞

𝑃ሺ𝐴ሻ → 𝑒െఒ௧
ሺ𝜆𝑡ሻ௞

𝑘!
as 𝑛 → ∞

(7.4)

𝑛 → ∞

𝑃ሼ𝑁ሺ𝑡ሻ ൌ 𝑘ሽ ൌ 𝑒െఒ௧
ሺ𝜆𝑡ሻ௞

𝑘!
𝑘 ൌ 0, 1, …

(7.5)

𝑡 𝜆𝑡

𝜆

𝜆
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Suppose that earthquakes occur in the western portion of the United States in

accordance with assumptions 1, 2, and 3, with  and with 1 week as the unit

of time. (That is, earthquakes occur in accordance with the three assumptions at

a rate of 2 per week.)

a. Find the probability that at least 3 earthquakes occur during the next 2

weeks.

b. Find the probability distribution of the time, starting from now, until the next

earthquake.

Solution

a. From Equation (7.5) , we have

b. Let  denote the amount of time (in weeks) until the next earthquake.

Because  will be greater than  if and only if no events occur within the

next  units of time, we have, from Equation (7.5) ,

so the probability distribution function  of the random variable  is given

by

If  is Poisson with parameter , then

Starting with , we can use (7.6 ) to compute successively

𝜆 ൌ 2

𝑃ሼ𝑁ሺ2ሻ ൒ 3ሽ ൌ 1 െ 𝑃ሼ𝑁ሺ2ሻ ൌ 0ሽ െ 𝑃ሼ𝑁ሺ2ሻ ൌ 1ሽ െ 𝑃ሼ𝑁ሺ2ሻ ൌ 2ሽ

ൌ 1 െ 𝑒െସ െ 4𝑒െସ െ
4ଶ

2
𝑒െସ

ൌ 1 െ 13𝑒െସ

𝑋

𝑋 𝑡

𝑡

𝑃൛𝑋 ൐ 𝑡ൟ ൌ 𝑃൛𝑁ሺ𝑡ሻ ൌ 0ൟ ൌ 𝑒െఒ௧

𝐹 𝑋

𝐹ሺ𝑡ሻ ൌ 𝑃ሼ𝑋 ൑ 𝑡ሽ ൌ 1 െ 𝑃ሼ𝑋 ൐ 𝑡ሽ ൌ 1 െ 𝑒െఒ௧

ൌ 1 െ 𝑒െଶ௧

𝑋 𝜆

𝑃ሼ𝑋 ൌ 𝑖 ൅ 1ሽ
𝑃ሼ𝑋 ൌ 𝑖ሽ

ൌ
𝑒െఒ𝜆௜൅ଵ/ሺ𝑖 ൅ 1ሻ!

𝑒െఒ𝜆௜/𝑖!
ൌ

𝜆
𝑖 ൅ 1

(7.6)

𝑃൛𝑋 ൌ 0ൟ ൌ 𝑒െఒ
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We can use a module to compute the Poisson probabilities for Equation (7.6) .

Example 7f

a. Determine  when  is Poisson with mean 100.

b. Determine  when  is Poisson with mean 1000.

Solution

Using the Poisson calculator of StatCrunch yields the solutions:

a. 

b. 

Suppose that independent trials, each having a probability , of being a

success, are performed until a success occurs. If we let  equal the number of trials

required, then

Equation (8.1)  follows because, in order for  to equal , it is necessary and

sufficient that the first  trials are failures and the th trial is a success. Equation

(8.1)  then follows, since the outcomes of the successive trials are assumed to be

independent.

Since

𝑃ሼ𝑋 ൌ 1ሽ ൌ 𝜆𝑃ሼ𝑋 ൌ 0ሽ

𝑃ሼ𝑋 ൌ 2ሽ ൌ
𝜆
2
𝑃ሼ𝑋 ൌ 1ሽ

⋮

𝑃ሼ𝑋 ൌ 𝑖 ൅ 1ሽ ൌ
𝜆

𝑖 ൅ 1
𝑃ሼ𝑋 ൌ 𝑖ሽ

𝑃ሼ𝑋 ൑ 90ሽ 𝑋

𝑃ሼ𝑌 ൑ 1075ሽ 𝑌

𝑃ሼ𝑋 ൑ 90ሽ ൌ . 17138
𝑃ሼ𝑌 ൑ 1075ሽ ൌ . 99095

𝑝, 0 ൏ 𝑝 ൏ 1

𝑋

𝑃ሼ𝑋 ൌ 𝑛ሽ ൌ ሺ1 െ 𝑝ሻ௡െଵ𝑝 𝑛 ൌ 1, 2, …

(8.1)

𝑋 𝑛

𝑛 െ 1 𝑛

෍
௡ ൌ ଵ

ஶ

𝑃ሼ𝑋 ൌ 𝑛ሽ ൌ 𝑝 ෍
௡ ൌ ଵ

ஶ

ሺ1 െ 𝑝ሻ௡െଵ ൌ
𝑝

1 െ ሺ1 െ 𝑝ሻ
ൌ 1
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it follows that with probability 1, a success will eventually occur. Any random variable

 whose probability mass function is given by Equation (8.1)  is said to be a

geometric random variable with parameter .

Example 8a

An urn contains  white and  black balls. Balls are randomly selected, one at a

time, until a black one is obtained. If we assume that each ball selected is

replaced before the next one is drawn, what is the probability that

a. exactly  draws are needed?

b. at least  draws are needed?

Solution

If we let  denote the number of draws needed to select a black ball, then 

satisfies Equation (8.1)  with . Hence,

a. 

b. 

Of course, part (b) could have been obtained directly, since the probability that at

least  trials are necessary to obtain a success is equal to the probability that the

first  trials are all failures. That is, for a geometric random variable,

Example 8b

Find the expected value of a geometric random variable.

Solution

With , we have

𝑋

𝑝

𝑁 𝑀

𝑛

𝑘

𝑋 𝑋

𝑝 ൌ 𝑀/ሺ𝑀 ൅ 𝑁ሻ

𝑃ሼ𝑋 ൌ 𝑛ሽ ൌ ቆ
𝑁

𝑀 ൅𝑁
ቇ
௡െଵ 𝑀

𝑀൅𝑁
ൌ

𝑀𝑁௡െଵ

ሺ𝑀 ൅ 𝑁ሻ௡

𝑃ሼ𝑋 ൒ 𝑘ሽ ൌ
𝑀

𝑀൅ 𝑁
෍

௡ ൌ ௞

ஶ

ቆ
𝑁

𝑀൅ 𝑁
ቇ

௡െଵ

ൌ ቆ
𝑀

𝑀൅𝑁
ቇቆ

𝑁
𝑀 ൅𝑁

ቇ
௞െଵ

⎡
⎣
1 െ

𝑁
𝑀൅ 𝑁

⎤
⎦

ൌ ቆ
𝑁

𝑀൅𝑁
ቇ
௞െଵ

𝑘

𝑘 െ 1

𝑃ሼ𝑋 ൒ 𝑘ሽ ൌ ሺ1 െ 𝑝ሻ௞െଵ

𝑞 ൌ 1 െ 𝑝
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Hence,

yielding the result

In other words, if independent trials having a common probability  of being

successful are performed until the first success occurs, then the expected

number of required trials equals 1/ . For instance, the expected number of rolls

of a fair die that it takes to obtain the value 1 is 6.

Example 8c

Find the variance of a geometric random variable.

Solution

To determine Var , let us first compute . With , we have

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

ஶ

𝑖𝑞௜െଵ𝑝

ൌ ෍
௜ ൌ ଵ

ஶ

ሺ𝑖 െ 1 ൅ 1ሻ𝑞௜െଵ𝑝

ൌ ෍
௜ ൌ ଵ

ஶ

ሺ𝑖 െ 1ሻ𝑞௜െଵ𝑝 ൅ ෍
௜ ൌ ଵ

ஶ

𝑞௜െଵ𝑝

ൌ ෍
௜ ൌ ଵ

ஶ

𝑗𝑞௜𝑝 ൅ 1

ൌ 𝑞 ෍
௝ ൌ ଵ

ஶ

𝑗𝑞௝െଵ𝑝 ൅ 1

ൌ 𝑞𝐸ሾ𝑋ሿ ൅ 1

𝑝𝐸ሾ𝑋ሿ ൌ 1

𝐸ሾ𝑋ሿ ൌ
1
𝑝

𝑝

𝑝

ሺ𝑋ሻ 𝐸ൣ𝑋ଶ൧ 𝑞 ൌ 1 െ 𝑝
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Using , the equation for  yields

Hence,

giving the result

Suppose that independent trials, each having probability , of being a

success are performed until a total of  successes is accumulated. If we let  equal

the number of trials required, then

Equation (8.2)  follows because, in order for the th success to occur at the th

trial, there must be  successes in the first  trials and the th trial must be a

success. The probability of the first event is

𝐸ሾ𝑋ଶሿ ൌ ෍
௜ ൌ ଵ

ஶ

𝑖ଶ𝑞௜െଵ𝑝

ൌ ෍
௜ ൌ ଵ

ஶ

ሺ𝑖 െ 1 ൅ 1ሻଶ𝑞௜െଵ𝑝

ൌ ෍
௜ ൌ ଵ

ஶ

ሺ𝑖 െ 1ሻଶ𝑞௜െଵ𝑝 ൅ ෍
௜ ൌ ଵ

ஶ

2ሺ𝑖 െ 1ሻ𝑞௜െଵ𝑝 ൅ ෍
௜ ൌ ଵ

ஶ

𝑞௜െଵ𝑝

ൌ ෍
௜ ൌ ଵ

ஶ

𝑗ଶ𝑞௝𝑝 ൅ 2 ෍
௝ ൌ ଵ

ஶ

𝑗𝑞௝𝑝 ൅ 1

ൌ 𝑞𝐸ሾ𝑋ଶሿ ൅ 2𝑞𝐸ሾ𝑋ሿ ൅ 1

𝐸ሾ𝑋ሿ ൌ 1/𝑝 𝐸ൣ𝑋ଶ൧

𝑝𝐸ሾ𝑋ଶሿ ൌ
2𝑞
𝑝
൅ 1

𝐸ሾ𝑋ଶሿ ൌ
2𝑞 ൅ 𝑝
𝑝ଶ

ൌ
𝑞 ൅ 1
𝑝ଶ

Varሺ𝑋ሻ ൌ
𝑞 ൅ 1
𝑝ଶ

െ
1
𝑝ଶ

ൌ
𝑞
𝑝ଶ

ൌ
1 െ 𝑝
𝑝ଶ

𝑝, 0 ൏ 𝑝 ൏ 1

𝑟 𝑋

𝑃ሼ𝑋 ൌ 𝑛ሽ ൌ ቆ
𝑛 െ 1

𝑟 െ 1
ቇ𝑝௥ሺ1 െ 𝑝ሻ௡െ௥ 𝑛 ൌ 𝑟, 𝑟 ൅ 1, …

(8.2)

𝑟 𝑛

𝑟 െ 1 𝑛 െ 1 𝑛
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and the probability of the second is ; thus, by independence, Equation (8.2)  is

established. To verify that a total of  successes must eventually be accumulated,

either we can prove analytically that

or we can give a probabilistic argument as follows: The number of trials required to

obtain  successes can be expressed as , where  equals the

number of trials required for the first success,  the number of additional trials after

the first success until the second success occurs,  the number of additional trials

until the third success, and so on. Because the trials are independent and all have

the same probability of success, it follows that  are all geometric random

variables. Hence, each is finite with probability 1, so  must also be finite,

establishing Equation (8.3) .

Any random variable  whose probability mass function is given by Equation

(8.2)  is said to be a negative binomial random variable with parameters ( , ).

Note that a geometric random variable is just a negative binomial with parameter (1,

).

In the next example, we use the negative binomial to obtain another solution of the

problem of the points.

Example 8d

If independent trials, each resulting in a success with probability , are

performed, what is the probability of  successes occurring before  failures?

Solution

The solution will be arrived at by noting that  successes will occur before 

failures if and only if the th success occurs no later than the ( ) trial. This

follows because if the th success occurs before or at the ( ) trial, then it

must have occurred before the th failure, and conversely. Hence, from Equation

(8.2) , the desired probability is

ቆ
𝑛 െ 1

𝑟 െ 1
ቇ𝑝௥െଵሺ1 െ 𝑝ሻ௡െ௥

𝑝

𝑟

෍
௡ ൌ ௥

ஶ

𝑃ሼ𝑋 ൌ 𝑛ሽ ൌ ෍
௡ ൌ ௥

ஶ

ቆ
𝑛 െ 1

𝑟 െ 1
ቇ𝑝௥ሺ1 െ 𝑝ሻ௡െ௥ ൌ 1

(8.3)

𝑟 𝑌ଵ ൅ 𝑌ଶ ൅⋯ ൅ 𝑌௥ 𝑌ଵ
𝑌ଶ

𝑌ଷ

𝑌ଵ,𝑌ଶ, …,𝑌௥

෍
௜ ൌ ଵ

௥

𝑌௜

𝑋

𝑟 𝑝

𝑝

𝑝

𝑟 𝑠

𝑟 𝑠

𝑟 𝑟 ൅ 𝑠 െ 1

𝑟 𝑟 ൅ 𝑠 െ 1

𝑠
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Example 8e The Banach match problem

At all times, a pipe-smoking mathematician carries 2 matchboxes—1 in his left-

hand pocket and 1 in his right-hand pocket. Each time he needs a match, he is

equally likely to take it from either pocket. Consider the moment when the

mathematician first discovers that one of his matchboxes is empty. If it is

assumed that both matchboxes initially contained  matches, what is the

probability that there are exactly  matches, , in the other box?

Solution

Let  denote the event that the mathematician first discovers that the right-hand

matchbox is empty and that there are  matches in the left-hand box at the time.

Now, this event will occur if and only if the  choice of the right-hand

matchbox is made at the ( ) trial. Hence, from Equation (8.2)

(with ), we see that

Since there is an equal probability that it is the left-hand box that is first

discovered to be empty and there are  matches in the right-hand box at that

time, the desired result is

Example 8f

Compute the expected value and the variance of a negative binomial random

variable with parameters  and .

Solution

We have

෍
௡ ൌ ௥

௥ ൅ ௦ െ ଵ

ቆ
𝑛 െ 1

𝑟 െ 1
ቇ𝑝௥ሺ1 െ 𝑝ሻ௡െ௥

𝑁

𝑘 𝑘 ൌ 0, 1, …,𝑁

𝐸

𝑘

ሺ𝑁 ൅ 1ሻ

𝑁 ൅ 1 ൅𝑁 െ 𝑘

𝑝 ൌ
1
2

, 𝑟 ൌ 𝑁 ൅ 1, and 𝑛 ൌ 2𝑁 െ 𝑘 ൅ 1

𝑃ሺ𝐸ሻ ൌ ቆ
2𝑁 െ 𝑘

𝑁
ቇቆ

1
2
ቇ
ଶேെ௞൅ଵ

𝑘

2𝑃ሺ𝐸ሻ ൌ ቆ
2𝑁 െ 𝑘

𝑁
ቇቆ

1
2
ቇ
ଶேെ௞

𝑟 𝑝
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where  is a negative binomial random variable with parameters . Setting

 in the preceding equation yields

Setting  in the equation for  and using the formula for the expected

value of a negative binomial random variable gives

Therefore,

Thus, from Example 8f , if independent trials, each of which is a success with

probability , are performed, then the expected value and variance of the number of

trials that it takes to amass  successes is r/p and , respectively.

Since a geometric random variable is just a negative binomial with parameter ,

it follows from the preceding example that the variance of a geometric random

variable with parameter  is equal to , which checks with the result of

Example 8c .

Example 8g

Find the expected value and the variance of the number of times one must throw

𝐸ൣ𝑋௞൧ ൌ ෍
௡ ൌ ௥

ஶ

𝑛௞ቆ
𝑛 െ 1

𝑟 െ 1
ቇ𝑝௥ሺ1 െ 𝑝ሻ௡െ௥

ൌ
𝑟
𝑝

෍
௡ ൌ ௥

ஶ

𝑛௞െଵቆ
𝑛

𝑟
ቇ𝑝௥൅ଵሺ1 െ 𝑝ሻ௡െ௥ since 𝑛ቆ

𝑛 െ 1

𝑟 െ 1
ቇ ൌ 𝑟ቆ

𝑛

𝑟
ቇ

ൌ
𝑟
𝑝

෍
௠ ൌ ௥ ൅ ଵ

ஶ

ሺ𝑚 െ 1ሻ௞െଵቆ
𝑚 െ 1

𝑟
ቇ𝑝௥൅ଵሺ1 െ 𝑝ሻ௠െሺ௥൅ଵሻ 

by setting 

𝑚 ൌ 𝑛 ൅ 1

ൌ
𝑟
𝑝
𝐸ൣሺ𝑌 െ 1ሻ௞െଵ൧

𝑌 𝑟 ൅ 1,𝑝

𝑘 ൌ 1

𝐸ሾ𝑋ሿ ൌ
𝑟
𝑝

𝑘 ൌ 2 𝐸ሾ𝑋௞ሿ

𝐸ൣ𝑋ଶ൧ ൌ
𝑟
𝑝
𝐸ሾ𝑌 െ 1ሿ

ൌ
𝑟
𝑝
ቆ
𝑟 ൅ 1
𝑝

െ 1ቇ

Varሺ𝑋ሻ ൌ
𝑟
𝑝
ቆ
𝑟 ൅ 1
𝑝

െ 1ቇ െ ቆ
𝑟
𝑝
ቇ
ଶ

ൌ
𝑟ሺ1 െ 𝑝ሻ

𝑝ଶ

𝑝

𝑟 𝑟ሺ1 െ 𝑝ሻ/𝑝ଶ

𝑟 ൌ 1

𝑝 ሺ1 െ 𝑝ሻ/𝑝ଶ
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a die until the outcome 1 has occurred 4 times.

Solution

Since the random variable of interest is a negative binomial with parameters

 and , it follows that

Now, let us suppose that the independent trials are not ended when there have been

a total of  successes, but that they continue on. Aside from , the number of trials

until there have been  successes, some other random variables of interest are, for

,

Y : the number of trials until there have been  failures;

V : the number of trials until there have been either  successes or  failures;

Z : the number of trials until there have been both at least  successes and at least 

failures.

Because each trial is independently a failure with probability , it follows that  is

a negative binomial random variable with probability mass function

To determine the probability mass function of , note that the possible

values of  are all less than . Suppose . If either the  success or the

 failure occurs at time  then, because , the other event would not yet

have occurred. Consequently,  will equal  if either  or  is equal to . Because we

cannot have both that  and that , this yields

To determine the probability mass function of , note that . For

, if either the  success or the  failure occurs at time  then the other

𝑟 ൌ 4 𝑝 ൌ
1
6

𝐸ሾ𝑋ሿ ൌ 24

Varሺ𝑋ሻ ൌ
4ቆ

5
6
ቇ

ቆ
1
6
ቇ
ଶ ൌ 120

𝑟 𝑋

𝑟

𝑠 ൐ 0

𝑠

𝑟 𝑠

𝑟 𝑠

1 െ 𝑝 𝑌

𝑃ሺ𝑌 ൌ 𝑛ሻ ൌ ቆ
𝑛 െ 1

𝑠 െ 1
ቇሺ1 െ 𝑝ሻ௦𝑝௡െ௦ , 𝑛 ൒ 𝑠

𝑉 ൌ minሺ𝑋,𝑌ሻ

𝑉 𝑟 ൅ 𝑠 𝑛 ൏ 𝑟 ൅ 𝑠 𝑟௧௛

𝑠௧௛ 𝑛 𝑛 ൏ 𝑟 ൅ 𝑠

𝑉 𝑛 𝑋 𝑌 𝑛

𝑋 ൌ 𝑛 𝑌 ൌ 𝑛

𝑃ሺ𝑉 ൌ 𝑛ሻ ൌ 𝑃ሺ𝑋 ൌ 𝑛ሻ ൅ 𝑃ሺ𝑌 ൌ 𝑛ሻ

ൌ ቆ
𝑛 െ 1

𝑟 െ 1
ቇ𝑝௥ሺ1 െ 𝑝ሻ௡െ௥ ൅ ቆ

𝑛 െ 1

𝑠 െ 1
ቇሺ1 െ 𝑝ሻ௦𝑝௡െ௦ , 𝑛 ൏ 𝑟 ൅ 𝑠

𝑍 ൌ maxሺ𝑋,𝑌ሻ 𝑍 ൒ 𝑟 ൅ 𝑠

𝑛 ൒ 𝑟 ൅ 𝑠 𝑟௧௛ 𝑠௧௛ 𝑛
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event must have already occurred by time . Consequently, for ,  will equal

 if either  or  is equal to . This gives

Suppose that a sample of size  is to be chosen randomly (without replacement)

from an urn containing  balls, of which  are white and  are black. If we let 

denote the number of white balls selected, then

A random variable  whose probability mass function is given by Equation (8.4)

for some values of , ,  is said to be a hypergeometric random variable.

Remark Although we have written the hypergeometric probability mass function with

 going from 0 to  will actually be 0, unless  satisfies the inequalities

. However, Equation (8.4)  is always valid because of

our convention that  is equal to 0 when either  or .

Example 8h

An unknown number, say, , of animals inhabit a certain region. To obtain some

information about the size of the population, ecologists often perform the

following experiment: They first catch a number, say, , of these animals, mark

them in some manner, and release them. After allowing the marked animals time

to disperse throughout the region, a new catch of size, say, , is made. Let 

denote the number of marked animals in this second capture. If we assume that

the population of animals in the region remained fixed between the time of the

two catches and that each time an animal was caught it was equally likely to be

any of the remaining uncaught animals, it follows that  is a hypergeometric

random variable such that

𝑛 𝑛 ൒ 𝑟 ൅ 𝑠 𝑍

𝑛 𝑋 𝑌 𝑛

𝑃ሺ𝑍 ൌ 𝑛ሻ ൌ 𝑃ሺ𝑋 ൌ 𝑛ሻ ൅ 𝑃ሺ𝑌 ൌ 𝑛ሻ

ൌ ቆ
𝑛 െ 1

𝑟 െ 1
ቇ𝑝௥ሺ1 െ 𝑝ሻ௡െ௥ ൅ ቆ

𝑛 െ 1

𝑠 െ 1
ቇሺ1 െ 𝑝ሻ௦𝑝௡െ௦ , 𝑛 ൏ 𝑟 ൅ 𝑠

𝑛

𝑁 𝑚 𝑁െ𝑚 𝑋

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ
ቆ
𝑚

𝑖
ቇቆ
𝑁 െ𝑚

𝑛 െ 𝑖
ቇ

ቆ
𝑁

𝑛
ቇ

𝑖 ൌ 0, 1, …,𝑛

(8.4)

𝑋

𝑛 𝑁 𝑚

𝑖 𝑛,𝑃ሼ𝑋 ൌ 𝑖ሽ 𝑖

𝑛 െ ሺ𝑁 െ𝑚ሻ ൑ 𝑖 ൑ minሺ𝑛,𝑚ሻ

ቆ
𝑟

𝑘
ቇ 𝑘 ൏ 0 𝑟 ൏ 𝑘

𝑁

𝑚

𝑛 𝑋

𝑋
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Suppose now that  is observed to equal . Then, since  represents the

probability of the observed event when there are actually  animals present in

the region, it would appear that a reasonable estimate of  would be the value of

 that maximizes . Such an estimate is called a maximum likelihood

estimate. (See Theoretical Exercises 13  and 18  for other examples of this

type of estimation procedure.)

The maximization of  can be done most simply by first noting that

Now, the preceding ratio is greater than 1 if and only if

or, equivalently, if and only if

Thus,  is first increasing and then decreasing and reaches its maximum

value at the largest integral value not exceeding mn/i. This value is the maximum

likelihood estimate of . For example, suppose that the initial catch consisted of

 animals, which are marked and then released. If a subsequent catch

consists of  animals of which  are marked, then we would estimate

that there are some 500 animals in the region. (Note that the preceding estimate

could also have been obtained by assuming that the proportion of marked

animals in the region, m/N, is approximately equal to the proportion of marked

animals in our second catch, i/n.)

Example 8i

A purchaser of electrical components buys them in lots of size 10. It is his policy

to inspect 3 components randomly from a lot and to accept the lot only if all 3 are

nondefective. If 30 percent of the lots have 4 defective components and 70

percent have only 1, what proportion of lots does the purchaser reject?

Solution

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ
ቆ
𝑚

𝑖
ቇቆ
𝑁 െ𝑚

𝑛 െ 𝑖
ቇ

ቆ
𝑁

𝑛
ቇ

≡ 𝑃௜ሺ𝑁ሻ

𝑋 𝑖 𝑃௜ሺ𝑁ሻ

𝑁

𝑁

𝑁 𝑃௜ሺ𝑁ሻ

𝑃௜ሺ𝑁ሻ

𝑃௜ሺ𝑁ሻ
𝑃௜ሺ𝑁 െ 1ሻ

ൌ
ሺ𝑁 െ𝑚ሻሺ𝑁 െ 𝑛ሻ
𝑁ሺ𝑁 െ𝑚െ 𝑛 ൅ 𝑖ሻ

ሺ𝑁 െ 𝑚ሻሺ𝑁 െ 𝑛ሻ ൒ 𝑁ሺ𝑁 െ𝑚െ 𝑛 ൅ 𝑖ሻ

𝑁 ൑
𝑚𝑛
𝑖

𝑃௜ሺ𝑁ሻ

𝑁

𝑚 ൌ 50

𝑛 ൌ 40 𝑖 ൌ 4
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Let  denote the event that the purchaser accepts a lot. Now,

Hence, 46 percent of the lots are rejected.

If  balls are randomly chosen without replacement from a set of  balls of which the

fraction  is white, then the number of white balls selected is hypergeometric.

Now, it would seem that when  and  are large in relation to , it shouldn’t make

much difference whether the selection is being done with or without replacement,

because, no matter which balls have previously been selected, when  and  are

large, each additional selection will be white with a probability approximately equal to

. In other words, it seems intuitive that when  and  are large in relation to , the

probability mass function of  should approximately be that of a binomial random

variable with parameters  and . To verify this intuition, note that if  is

hypergeometric, then, for ,

Example 8j

Determine the expected value and the variance of , a hypergeometric random

variable with parameters , , and .

𝐴

𝑃ሺ𝐴ሻ ൌ 𝑃ሺ𝐴| lot has 4 defectives ሻ
3

10
൅ 𝑃ሺ𝐴| lot has 1 defective ሻ

7
10

ൌ
ቆ

4

0
ቇቆ

6

3
ቇ

ቆ
10

3
ቇ

ቆ
3

10
ቇ ൅

ቆ
1

0
ቇቆ

9

3
ቇ

ቆ
10

3
ቇ

ቆ
7

10
ቇ

ൌ
54

100

𝑛 𝑁

𝑝 ൌ 𝑚/𝑁

𝑚 𝑁 𝑛

𝑚 𝑁

𝑝 𝑚 𝑁 𝑛

𝑋

𝑛 𝑝 𝑋

𝑖 ൑ 𝑛

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ
ቆ
𝑚

𝑖
ቇቆ
𝑁 െ𝑚

𝑛 െ 𝑖
ቇ

ቆ
𝑁

𝑛
ቇ

ൌ
𝑚!

ሺ𝑚 െ 𝑖ሻ! 𝑖!
ሺ𝑁 െ𝑚ሻ!

ሺ𝑁 െ 𝑚 െ 𝑛 ൅ 𝑖ሻ! ሺ𝑛 െ 𝑖ሻ!
ሺ𝑁 െ 𝑛ሻ! 𝑛!

𝑁!

ൌ ቆ
𝑛

𝑖
ቇ
𝑚
𝑁
𝑚െ 1
𝑁 െ 1

⋯
𝑚െ 𝑖 ൅ 1
𝑁െ 𝑖 ൅ 1

𝑁െ𝑚
𝑁െ 𝑖

𝑁 െ𝑚െ 1
𝑁 െ 𝑖 െ 1

⋯
𝑁െ𝑚െ ሺ𝑛 െ 𝑖 െ 1ሻ
𝑁 െ 𝑖 െ ሺ𝑛 െ 𝑖 െ 1ሻ

ൎ ቆ
𝑛

𝑖
ቇ𝑝௜ሺ1 െ 𝑝ሻ௡െ௜ 

when 𝑝 ൌ 𝑚/𝑁 and 𝑚 and 𝑁 are

large in relation to 𝑛 and 𝑖 

𝑋

𝑛 𝑁 𝑚
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Solution

Using the identities

we obtain

where  is a hypergeometric random variable with parameters , , and

. Hence, upon setting , we have

In words, if  balls are randomly selected from a set of  balls, of which  are

white, then the expected number of white balls selected is nm/N.

Upon setting  in the equation for , we obtain

where the final equality uses our preceding result to compute the expected value

of the hypergeometric random variable .

Because , we can conclude that

𝐸ൣ𝑋௞൧ ൌ ෍
௜ ൌ ଴

௡

𝑖௞𝑃ሼ𝑋 ൌ 𝑖ሽ

ൌ ෍
௜ ൌ ଵ

௡

𝑖௞ቆ
𝑚

𝑖
ቇቆ
𝑁 െ𝑚

𝑛 െ 𝑖
ቇ ቆ

𝑁

𝑛
ቇ

𝑖ቆ
𝑚

𝑖
ቇ ൌ 𝑚ቆ

𝑚 െ 1

𝑖 െ 1
ቇ and 𝑛ቆ

𝑁

𝑛
ቇ ൌ 𝑁ቆ

𝑁 െ 1

𝑛 െ 1
ቇ

𝐸ൣ𝑋௞൧ ൌ
𝑛𝑚
𝑁

෍
௜ ൌ ଵ

௡

𝑖௞െଵቆ
𝑚 െ 1

𝑖 െ 1
ቇቆ
𝑁 െ𝑚

𝑛 െ 𝑖
ቇ ቆ

𝑁 െ 1

𝑛 െ 1
ቇ

ൌ
𝑛𝑚
𝑁

෍
௝ ൌ ଴

௡ െ ଵ

ሺ𝑗 ൅ 1ሻ௞െଵቆ
𝑚 െ 1

𝑗
ቇቆ

𝑁 െ𝑚

𝑛 െ 1 െ 𝑗
ቇ ቆ

𝑁 െ 1

𝑛 െ 1
ቇ

ൌ
𝑛𝑚
𝑁

𝐸ൣሺ𝑌 ൅ 1ሻ௞െଵ൧

𝑌 𝑛 െ 1 𝑁 െ 1

𝑚െ 1 𝑘 ൌ 1

𝐸ሾ𝑋ሿ ൌ
𝑛𝑚
𝑁

𝑛 𝑁 𝑚

𝑘 ൌ 2 𝐸ൣ𝑋௞൧

𝐸ൣ𝑋ଶ൧ ൌ
𝑛𝑚
𝑁

𝐸ሾ𝑌 ൅ 1ሿ

ൌ
𝑛𝑚
𝑁

ቈ
ሺ𝑛 െ 1ሻሺ𝑚 െ 1ሻ

𝑁 െ 1
൅ 1቉

𝑌

𝐸ሾ𝑋ሿ ൌ 𝑛𝑚/𝑁
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Letting  and using the identity

shows that

Remark We have shown in Example 8j  that if  balls are randomly selected

without replacement from a set of  balls, of which the fraction  are white, then the

expected number of white balls chosen is np. In addition, if  is large in relation to 

[so that  is approximately equal to 1], then

In other words,  is the same as when the selection of the balls is done with

replacement (so that the number of white balls is binomial with parameters  and ),

and if the total collection of balls is large, then Var  is approximately equal to what

it would be if the selection were done with replacement. This is, of course, exactly

what we would have guessed, given our earlier result that when the number of balls

in the urn is large, the number of white balls chosen approximately has the mass

function of a binomial random variable.

A random variable is said to have a zeta (sometimes called the Zipf) distribution if its

probability mass function is given by

for some value of . Since the sum of the foregoing probabilities must equal 1, it

follows that

Varሺ𝑋ሻ ൌ
𝑛𝑚
𝑁
ቈ
ሺ𝑛 െ 1ሻሺ𝑚 െ 1ሻ

𝑁 െ 1
൅ 1 െ

𝑛𝑚
𝑁
቉

𝑝 ൌ 𝑚/𝑁

𝑚െ 1
𝑁 െ 1

ൌ
𝑁𝑝 െ 1
𝑁 െ 1

ൌ 𝑝 െ
1 െ 𝑝
𝑁 െ 1

Varሺ𝑋ሻ ൌ 𝑛𝑝⎡
⎣
ሺ𝑛 െ 1ሻ𝑝 െ ሺ𝑛 െ 1ሻ

1 െ 𝑝
𝑁 െ 1

൅ 1 െ 𝑛𝑝⎤
⎦

ൌ 𝑛𝑝ሺ1 െ 𝑝ሻቆ1 െ
𝑛 െ 1
𝑁െ 1

ቇ

𝑛

𝑁 𝑝

𝑁 𝑛

ሺ𝑁 െ 𝑛ሻ/ሺ𝑁 െ 1ሻ

Varሺ𝑋ሻ ൎ 𝑛𝑝ሺ1 െ 𝑝ሻ

𝐸ሾ𝑋ሿ

𝑛 𝑝

ሺ𝑋ሻ

𝑃ሼ𝑋 ൌ 𝑘ሽ ൌ
𝐶

𝑘ఈ൅ଵ
 𝑘 ൌ 1, 2, …

𝛼 ൐ 0
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The zeta distribution owes its name to the fact that the function

is known in mathematical disciplines as the Riemann zeta function (after the German

mathematician G. F. B. Riemann).

The zeta distribution was used by the Italian economist V. Pareto to describe the

distribution of family incomes in a given country. However, it was G. K. Zipf who

applied zeta distribution to a wide variety of problems in different areas and, in doing

so, popularized its use.

A very important property of expectations is that the expected value of a sum of

random variables is equal to the sum of their expectations. In this section, we will

prove this result under the assumption that the set of possible values of the

probability experiment—that is, the sample space —is either finite or countably

infinite. Although the result is true without this assumption (and a proof is outlined in

the theoretical exercises), not only will the assumption simplify the argument, but it

will also result in an enlightening proof that will add to our intuition about

expectations. So, for the remainder of this section, suppose that the sample space 

is either a finite or a countably infinite set.

For a random variable , let  denote the value of  when  is the outcome of

the experiment. Now, if  and  are both random variables, then so is their sum. That

is,  is also a random variable. Moreover, 

Example 9a

Suppose that the experiment consists of flipping a coin  times, with the outcome

being the resulting sequence of heads and tails. Suppose  is the number of

heads in the first  flips and  is the number of heads in the final  flips. Let

 Then, for instance, for the outcome ,

𝐶 ൌ ቎ ෍
௞ ൌ ଵ

ஶ

ቆ
1
𝑘
ቇ
ఈ൅ଵ

቏െଵ

𝜁ሺ𝑠ሻ ൌ 1 ൅ ቆ
1
2
ቇ
௦

൅ ቆ
1
3
ቇ
௦

൅ ⋯ ൅ ቆ
1
𝑘
ቇ
௦

൅ ⋯

𝑆

𝑆

𝑋 𝑋ሺ𝑠ሻ 𝑋 𝑠 ∈ 𝑆

𝑋 𝑌

𝑍 ൌ X ൅ Y  𝑍ሺ𝑠ሻ ൌ 𝑋ሺ𝑠ሻ ൅ 𝑌ሺ𝑠ሻ .

5

𝑋

3 𝑌 2

𝑍 ൌ 𝑋 ൅ 𝑌 . 𝑠 ൌ ሺℎ, 𝑡, ℎ, 𝑡, ℎሻ
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meaning that the outcome  results in  heads in the first three flips, 

head in the final two flips, and a total of  heads in the five flips.

Let  be the probability that  is the outcome of the experiment. Because

we can write any event  as the finite or countably infinite union of the mutually

exclusive events , it follows by the axioms of probability that

When , the preceding equation gives

Now, let  be a random variable, and consider . Because  is the value of 

when  is the outcome of the experiment, it seems intuitive that —the weighted

average of the possible values of , with each value weighted by the probability that

 assumes that value—should equal a weighted average of the values 

with  weighted by the probability that  is the outcome of the experiment. We

now prove this intuition.

Proposition 9.1

Proof Suppose that the distinct values of  are  For each , let  be the

event that  is equal to . That is, . Then,

𝑋ሺ𝑠ሻ ൌ 2

𝑌ሺ𝑠ሻ ൌ 1

𝑍ሺ𝑠ሻ ൌ 𝑋ሺ𝑠ሻ ൅ 𝑌ሺ𝑠ሻ ൌ 3

ሺℎ, 𝑡, ℎ, 𝑡, ℎሻ 2 1

3

𝑝ሺ𝑠ሻ ൌ 𝑃ሺሼ𝑠ሽሻ 𝑠

𝐴

ሼ𝑠ሽ, 𝑠 ∈ 𝐴

𝑃ሺ𝐴ሻ ൌ ෍
௦ ∈ ஺

𝑝ሺ𝑠ሻ

𝐴 ൌ 𝑆

1 ൌ ෍
௦ ∈ ௌ

𝑝ሺ𝑠ሻ

𝑋 𝐸ሾ𝑋ሿ 𝑋ሺ𝑠ሻ 𝑋

𝑠 𝐸ሾ𝑋ሿ

𝑋

𝑋 𝑋ሺ𝑠ሻ, 𝑠  ∈  𝑆,

𝑋ሺ𝑠ሻ 𝑠

𝐸ሾ𝑋ሿ ൌ ෍
௦ ∈ ௌ

𝑋ሺ𝑠ሻ 𝑝ሺ𝑠ሻ

𝑋 𝑥௜, 𝑖 ൒ 1 . 𝑖 𝑆௜
𝑋 𝑥௜ 𝑆௜ ൌ ሼ𝑠:𝑋ሺ𝑠ሻ ൌ 𝑥௜ሽ
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where the final equality follows because  are mutually exclusive events

whose union is .

Example 9b

Suppose that two independent flips of a coin that comes up heads with

probability  are made, and let  denote the number of heads obtained. Because

it follows from the definition of expected value that

which agrees with

We now prove the important and useful result that the expected value of a sum of

random variables is equal to the sum of their expectations.

Corollary 9.2

For random variables ,

𝐸ሾ𝑋ሿ ൌ ෍
௜

𝑥௜𝑃ሼ𝑋 ൌ 𝑥௜ሽ

ൌ ෍
௜

𝑥௜𝑃ሼ𝑆௜ሽ

ൌ ෍
௜

𝑥௜ ෍
௦ ∈ ௌ ೔

𝑝ሺ𝑠ሻ

ൌ ෍
௜

෍
௦ ∈ ௌ ೔

𝑥௜𝑝ሺ𝑠ሻ

ൌ ෍
௜

෍
௦ ∈ ௌ ೔

𝑋ሺ𝑠ሻ𝑝ሺ𝑠ሻ

ൌ ෍
௦ ∈ ௌ

𝑋ሺ𝑠ሻ𝑝ሺ𝑠ሻ

𝑆ଵ, 𝑆ଶ, …

𝑆

𝑝 𝑋

𝑃ሺ𝑋 ൌ 0ሻ ൌ 𝑃ሺ𝑡, 𝑡ሻ ൌ ሺ1 െ 𝑝ሻଶ,

𝑃ሺ𝑋 ൌ 1ሻ ൌ 𝑃ሺℎ, 𝑡ሻ ൅ 𝑃ሺ𝑡, ℎሻ ൌ 2𝑝ሺ1 െ 𝑝ሻ

𝑃ሺ𝑋 ൌ 2ሻ ൌ 𝑃ሺℎ, ℎሻ ൌ 𝑝ଶ

𝐸ሾ𝑋ሿ ൌ 0 ⋅ ሺ1 െ 𝑝ሻଶ ൅ 1 ⋅ 2𝑝ሺ1 െ 𝑝ሻ ൅ 2 ⋅ 𝑝ଶ ൌ 2𝑝

𝐸ሾ𝑋ሿ ൌ 𝑋ሺℎ, ℎሻ𝑝ଶ ൅ 𝑋ሺℎ, 𝑡ሻ𝑝ሺ1 െ 𝑝ሻ ൅ 𝑋ሺ𝑡, ℎሻሺ1 െ 𝑝ሻ𝑝 ൅ 𝑋ሺ𝑡, 𝑡ሻሺ1 െ 𝑝ሻଶ

ൌ  2𝑝ଶ ൅ 𝑝ሺ1 െ 𝑝ሻ ൅ ሺ1 െ 𝑝ሻ𝑝

ൌ  2𝑝

𝑋ଵ,𝑋ଶ, …,𝑋௡
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Proof Let . Then, by Proposition 9.1 ,

Example 9c

Find the expected value of the sum obtained when  fair dice are rolled.

solution

Let  be the sum. We will compute  by using the representation

where  is the upturned value on die . Because  is equally likely to be any of

the values from  to , it follows that

which yields the result

Example 9d

Find the expected total number of successes that result from  trials when trial 

is a success with probability 

𝐸቎ ෍
௜ ൌ ଵ

௡

𝑋௜቏ ൌ ෍
௜ ൌ ଵ

௡

𝐸ሾ𝑋௜ሿ

𝑍 ൌ ෍
௜ൌଵ

௡
𝑋௜

𝐸ሾ𝑍ሿ ൌ ෍
௦ ∈ ௌ

𝑍ሺ𝑠ሻ𝑝ሺ𝑠ሻ

ൌ ෍
௦ ∈ ௌ

ሺ𝑋ଵሺ𝑠ሻ ൅ 𝑋ଶሺ𝑠ሻ ൅ … ൅ 𝑋௡ሺ𝑠ሻሻ𝑝ሺ𝑠ሻ

ൌ ෍
௦ ∈ ௌ

𝑋ଵሺ𝑠ሻ𝑝ሺ𝑠ሻ ൅ ෍
௦ ∈ ௌ

𝑋ଶሺ𝑠ሻ𝑝ሺ𝑠ሻ ൅ … ൅ ෍
௦ ∈ ௌ

𝑋௡ሺ𝑠ሻ𝑝ሺ𝑠ሻ

ൌ 𝐸ሾ𝑋ଵሿ൅𝐸ሾ𝑋ଶሿ൅… ൅ 𝐸ሾ𝑋௡ሿ

𝑛

𝑋 𝐸ሾ𝑋ሿ

𝑋 ൌ ෍
௜ ൌ ଵ

௡

𝑋௜

𝑋௜ 𝑖 𝑋௜
1 6

𝐸ሾ𝑋௜ሿ ൌ ෍
௜ ൌ ଵ

଺

𝑖ሺ1/6ሻ ൌ 21/6 ൌ 7/2

𝐸ሾ𝑋ሿ ൌ 𝐸቎ ෍
௜ ൌ ଵ

௡

𝑋௜቏ ൌ ෍
௜ ൌ ଵ

௡

𝐸ሾ𝑋௜ሿ ൌ 3 . 5 𝑛

𝑛 𝑖

𝑝௜,  𝑖 ൌ 1, …,𝑛 .
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solution

Letting

we have the representation

Consequently,

Note that this result does not require that the trials be independent. It includes as

a special case the expected value of a binomial random variable, which assumes

independent trials and all  and thus has mean . It also gives the

expected value of a hypergeometric random variable representing the number of

white balls selected when  balls are randomly selected, without replacement,

from an urn of  balls of which  are white. We can interpret the hypergeometric

as representing the number of successes in  trials, where trial  is said to be a

success if the th ball selected is white. Because the th ball selected is equally

likely to be any of the  balls and thus has probability  of being white, it

follows that the hypergeometric is the number of successes in  trials in which

each trial is a success with probability . Hence, even though these

hypergeometric trials are dependent, it follows from the result of Example 9d

that the expected value of the hypergeometric is .

Example 9e

Derive an expression for the variance of the number of successful trials in

Example 9d , and apply it to obtain the variance of a binomial random variable

with parameters  and , and of a hypergeometric random variable equal to the

number of white balls chosen when  balls are randomly chosen from an urn

containing  balls of which  are white.

Solution

Letting  be the number of successful trials, and using the same representation

𝑋௜ ൌ ቊ
1,  if  trial 𝑖 is a success 

0,  if  trial 𝑖 is a failure 

𝑋 ൌ ෍
௜ ൌ ଵ

௡

𝑋௜

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

௡

𝐸ሾ𝑋௜ሿ ൌ ෍
௜ ൌ ଵ

௡

𝑝௜

𝑝௜ ൌ 𝑝, 𝑛𝑝

𝑛

𝑁 𝑚

𝑛 𝑖

𝑖 𝑖

𝑁 𝑚/𝑁

𝑛

𝑝 ൌ 𝑚/𝑁

𝑛𝑝 ൌ 𝑛𝑚/𝑁

𝑛 𝑝

𝑛

𝑁 𝑚

𝑋
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for —namely, —as in the previous example, we have

where the final equation used that  However, because the possible

values of both  and  are  or , it follows that

Hence,

Thus, with , the preceding and the result of Example

9d  yield that

If  is binomial with parameters , , then  and, by the independence of

trials, , . Consequently, Equation (9.1)  yields that

On the other hand, if  is hypergeometric, then as each of the  balls is equally

𝑋 𝑋 ൌ ෍
௜ൌଵ

௡
𝑋௜

𝐸ൣ𝑋ଶ൧ ൌ 𝐸቎ቌ ෍
௜ ൌ ଵ

௡

𝑋௜ቍቌ ෍
௝ ൌ ଵ

௡

𝑋௝ቍ቏

ൌ 𝐸቎ ෍
௜ ൌ ଵ

௡

𝑋௜ቌ𝑋௜ ൅ ෍
௝ ஷ ଵ

𝑋௝ቍ቏

ൌ 𝐸቎ ෍
௜ ൌ ଵ

௡

𝑋
೔
ଶ ൅ ෍

௜ ൌ ଵ

௡

෍
௝ ஷ ଵ

𝑋௜𝑋௝቏

ൌ ෍
௜ ൌ ଵ

௡

𝐸ൣ𝑋
೔
ଶ൧ ൅ ෍

௜ ൌ ଵ

௡

෍
௝ ஷ ଵ

𝐸ൣ𝑋௜𝑋௝൧

ൌ ෍
௜

𝑝௜ ൅ ෍
௜ ൌ ଵ

௡

෍
௝ ஷ ଵ

𝐸ൣ𝑋௜𝑋௝൧

𝑋ଶ௜ ൌ 𝑋௜ .

𝑋௜ 𝑋௝ 0 1

𝑋௜𝑋௝ ൌ ቊ
1, if  𝑋௜ ൌ 1,𝑋௝ ൌ 1

0, otherwise

𝐸ൣ𝑋௜𝑋௝൧ ൌ 𝑃൛𝑋௜ ൌ 1,𝑋௝ ൌ 1ൟ ൌ 𝑃ሺtrials 𝑖 and 𝑗  are successes ሻ

𝑝௜,௝ ൌ 𝑃ሺ𝑋௜ ൌ 1,𝑋௝ ൌ 1ሻ

 Var ሺ𝑋ሻ ൌ ෍
௜ ൌ ଵ

௡

𝑝௜ ൅ ෍
௜ ൌ ଵ

௡

෍
௝ ஷ ௜

𝑝௜,௝ െ ሺ ෍
௜ ൌ ଵ

௡

𝑝௜ሻ
ଶ

(9.1)

𝑋 𝑛 𝑝 𝑝௜ ൌ 𝑝

𝑝௜,௝ ൌ 𝑝ଶ 𝑖 ് 𝑗

 Var ሺ𝑋ሻ ൌ 𝑛𝑝 ൅ 𝑛ሺ𝑛 െ 1ሻ𝑝ଶ െ 𝑛ଶ𝑝ଶ ൌ 𝑛𝑝ሺ1 െ 𝑝ሻ

𝑋 𝑁
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likely to be the  ball chosen, it follows that . Also, for 

which follows because given that the  ball selected is white, each of the other

 balls, of which  are white, is equally likely to be the  ball selected.

Consequently, (9.1 ) yields that

which, as shown in Example 8j , can be simplified to yield

where 

Recall that for the distribution function  of ,  denotes the probability that the

random variable  takes on a value that is less than or equal to . The following are

some properties of the cumulative distribution function (c.d.f.) :

1.  is a nondecreasing function; that is, if , then .

2. .

3. .

4.  is right continuous. That is, for any  and any decreasing sequence

, that converges to .

Property 1 follows, as was noted in Section 4.1 , because, for , the event

 is contained in the event  and so cannot have a larger probability.

Properties 2, 3, and 4 all follow from the continuity property of probabilities (Section

2.6 ). For instance, to prove property 2, we note that if  increases to , then the

events , are increasing events whose union is the event .

Hence, by the continuity property of probabilities,

𝑖௧௛ 𝑝௜ ൌ 𝑚/𝑁 𝑖 ് 𝑗

𝑝௜,௝ ൌ 𝑃ሺ𝑋௜ ൌ 1,𝑋௝ ൌ 1ሻ ൌ 𝑃ሺ𝑋௜ ൌ 1ሻ𝑃ሺ𝑋௝ ൌ 1 |𝑋௜ ൌ 1ሻ ൌ
𝑚
𝑁
 
𝑚 െ 1
𝑁 െ 1

𝑖௧௛

𝑁 െ 1 𝑚െ 1 𝑗௧௛

Varሺ𝑋ሻ ൌ
𝑛𝑚
𝑁

൅ 𝑛ሺ𝑛 െ 1ሻ 
𝑚
𝑁
 
𝑚 െ 1
𝑁െ 1

െ ൬
𝑛𝑚
𝑁
൰
ଶ

Varሺ𝑋ሻ ൌ 𝑛𝑝ሺ1 െ 𝑝ሻቆ1 െ
𝑛 െ 1
𝑁 െ 1

ቇ

𝑝 ൌ 𝑚/𝑁 .

𝐹 𝑋 𝐹ሺ𝑏ሻ

𝑋 𝑏

𝐹

𝐹 𝑎 ൏ 𝑏 𝐹ሺ𝑎ሻ ൑ 𝐹ሺ𝑏ሻ

lim
௕ → ஶ

𝐹ሺ𝑏ሻ ൌ 1

lim
௕ → െ ஶ

𝐹ሺ𝑏ሻ ൌ 0

𝐹 𝑏

𝑏௡,𝑛 ൒ 1 𝑏, lim
௡ → ஶ

𝐹ሺ𝑏௡ሻ ൌ 𝐹ሺ𝑏ሻ

𝑎 ൏ 𝑏

ሼ𝑋 ൑ 𝑎ሽ ሼ𝑋 ൑ 𝑏ሽ

𝑏௡ ∞

ሼ𝑋 ൑ 𝑏௡ሽ,𝑛 ൒ 1 ሼ𝑋 ൏ ∞ ሽ

lim
௡ → ஶ

𝑃ሼ𝑋 ൑ 𝑏௡ሽ ൌ 𝑃ሼ𝑋 ൏ ∞ ሽ ൌ 1
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which proves property 2.

The proof of property 3 is similar and is left as an exercise. To prove property 4, we

note that if  decreases to , then , are decreasing events whose

intersection is . The continuity property then yields

which verifies property 4.

All probability questions about  can be answered in terms of the c.d.f., . For

example,

This equation can best be seen to hold if we write the event  as the union of

the mutually exclusive events  and . That is,

so

which establishes Equation (10.1) .

If we want to compute the probability that  is strictly less than , we can again apply

the continuity property to obtain

Note that  does not necessarily equal , since  also includes the

probability that  equals .

Example 10a

The distribution function of the random variable  is given by

𝑏௡ 𝑏 ሼ𝑋 ൑ 𝑏௡ሽ,𝑛 ൒ 1

ሼ𝑋 ൑ 𝑏ሽ

lim
௡ → ஶ

𝑃ሼ𝑋 ൑ 𝑏௡ሽ ൌ 𝑃ሼ𝑋 ൑ 𝑏ሽ

𝑋 𝐹

𝑃ሼ𝑎 ൏ 𝑋 ൑ 𝑏ሽ ൌ 𝐹ሺ𝑏ሻ െ 𝐹ሺ𝑎ሻ for all  𝑎 ൏ 𝑏

(10.1)

ሼ𝑋 ൑ 𝑏ሽ
ሼ𝑋 ൑ 𝑎ሽ ሼ𝑎 ൏ 𝑋 ൑ 𝑏ሽ

ሼ𝑋 ൑ 𝑏ሽ ൌ ሼ𝑋 ൑ 𝑎ሽ ∪ ሼ𝑎 ൏ 𝑋 ൑ 𝑏ሽ

𝑃ሼ𝑋 ൑ 𝑏ሽ ൌ 𝑃ሼ𝑋 ൑ 𝑎ሽ ൅ 𝑃ሼ𝑎 ൏ 𝑋 ൑ 𝑏ሽ

𝑋 𝑏

𝑃ሼ𝑋 ൏ 𝑏ሽ ൌ 𝑃ቆ lim
௡ → ஶ

ቊ𝑋 ൑ 𝑏 െ
1
𝑛
ቋቇ

ൌ lim
௡ → ஶ

𝑃ቆ𝑋 ൑ 𝑏 െ
1
𝑛
ቇ

ൌ lim
௡ → ஶ

𝐹ቆ𝑏 െ
1
𝑛
ቇ

𝑃ሼ𝑋 ൏ 𝑏ሽ 𝐹ሺ𝑏ሻ 𝐹ሺ𝑏ሻ

𝑋 𝑏

𝑋
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A graph of  is presented in Figure 4.10 . Compute (a) , (b)

, (c) , and (d) .

Figure 4.10 Graph of .

Solution

a. 

b. 

c. 

d. 

𝐹ሺ𝑥ሻ ൌ

⎧

⎨

⎩

⎪
⎪
⎪

⎪
⎪
⎪

0 𝑥 ൏ 0

𝑥
2

0 ൑ 𝑥 ൏ 1

2
3

1 ൑ 𝑥 ൏ 2

11
12

2 ൑ 𝑥 ൏ 3

1 3 ൑ 𝑥

𝐹ሺ𝑥ሻ 𝑃ሼ𝑋 ൏ 3ሽ

𝑃ሼ𝑋 ൌ 1ሽ 𝑃ሼ𝑋 ൐
1
2
ሽ 𝑃ሼ2 ൏ 𝑋 ൑ 4ሽ

𝑓ሺ𝑥ሻ

𝑃ሼ𝑋 ൏ 3ሽ ൌ lim
௡
𝑃ቊ𝑋 ൑ 3 െ

1
𝑛
ቋ ൌ lim

௡
𝐹ቆ3 െ

1
𝑛
ቇ ൌ

11
12

𝑃ሼ𝑋 ൌ 1ሽ ൌ 𝑃ሼ𝑋 ൑ 1ሽ െ 𝑃ሼ𝑋 ൏ 1ሽ

ൌ 𝐹ሺ1ሻ െ lim
௡
 𝐹ቆ1 െ

1
𝑛
ቇ ൌ

2
3
െ

1
2
ൌ

1
6

𝑃ቊ𝑋 ൐
1
2
ቋ ൌ 1 െ 𝑃ቊ𝑋 ൑

1
2
ቋ

ൌ 1 െ 𝐹ቆ
1
2
ቇ ൌ

3
4

𝑃ሼ2 ൏ 𝑋 ൑ 4ሽ ൌ 𝐹ሺ4ሻ െ 𝐹ሺ2ሻ

ൌ
1

12
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A real-valued function defined on the outcome of a probability experiment is called a

random variable.

If  is a random variable, then the function  defined by

is called the distribution function of . All probabilities concerning  can be stated in

terms of .

A random variable whose set of possible values is either finite or countably infinite is

called discrete. If  is a discrete random variable, then the function

is called the probability mass function of . Also, the quantity  defined by

is called the expected value of .  is also commonly called the mean or the

expectation of .

A useful identity states that for a function ,

The variance of a random variable , denoted by Var , is defined by

The variance, which is equal to the expected square of the difference between  and

its expected value, is a measure of the spread of the possible values of . A useful

identity is

The quantity  is called the standard deviation of .

We now note some common types of discrete random variables. The random

𝑋 𝐹ሺ𝑥ሻ

𝐹ሺ𝑥ሻ ൌ 𝑃ሼ𝑋 ൑ 𝑥ሽ

𝑋 𝑋

𝐹

𝑋

𝑝ሺ𝑥ሻ ൌ 𝑃ሼ𝑋 ൌ 𝑥ሽ

𝑋 𝐸ሾ𝑋ሿ

𝐸ሾ𝑋ሿ ൌ ෍
௫ : ௣ ሺ௫ ሻ வ ଴

𝑥𝑝ሺ𝑥ሻ

𝑋 𝐸ሾ𝑋ሿ

𝑋

𝑔

𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ ෍
௫ : ௣ ሺ௫ ሻ வ ଴

𝑔ሺ𝑥ሻ𝑝ሺ𝑥ሻ

𝑋 ሺ𝑋ሻ

Varሺ𝑋ሻ ൌ 𝐸ሾሺ𝑋 െ 𝐸ሾ𝑋ሿሻଶሿ

𝑋

𝑋

Varሺ𝑋ሻ ൌ 𝐸ൣ𝑋ଶ൧ െ ሺ𝐸ሾ𝑋ሿሻଶ

Varሺ𝑋ሻඥ 𝑋
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variable  whose probability mass function is given by

is said to be a binomial random variable with parameters  and . Such a random

variable can be interpreted as being the number of successes that occur when 

independent trials, each of which results in a success with probability , are

performed. Its mean and variance are given by

The random variable  whose probability mass function is given by

is said to be a Poisson random variable with parameter . If a large number of

(approximately) independent trials are performed, each having a small probability of

being successful, then the number of successful trials that result will have a

distribution that is approximately that of a Poisson random variable. The mean and

variance of a Poisson random variable are both equal to its parameter . That is,

The random variable  whose probability mass function is given by

is said to be a geometric random variable with parameter . Such a random variable

represents the trial number of the first success when each trial is independently a

success with probability . Its mean and variance are given by

The random variable  whose probability mass function is given by

is said to be a negative binomial random variable with parameters  and . Such a

random variable represents the trial number of the th success when each trial is

independently a success with probability . Its mean and variance are given by

𝑋

𝑝ሺ𝑖ሻ ൌ ቆ
𝑛

𝑖
ቇ𝑝௜ሺ1 െ 𝑝ሻ௡െ௜ 𝑖 ൌ 0, …,𝑛

𝑛 𝑝

𝑛

𝑝

𝐸ሾ𝑋ሿ ൌ 𝑛𝑝 Varሺ𝑋ሻ ൌ 𝑛𝑝ሺ1 െ 𝑝ሻ

𝑋

𝑝ሺ𝑖ሻ ൌ
𝑒െఒ𝜆௜

𝑖!
𝑖 ൒ 0

𝜆

𝜆

𝐸ሾ𝑋ሿ ൌ Varሺ𝑋ሻ ൌ 𝜆

𝑋

𝑝ሺ𝑖ሻ ൌ 𝑝ሺ1 െ 𝑝ሻ௜െଵ 𝑖 ൌ 1, 2, …

𝑝

𝑝

𝐸ሾ𝑋ሿ ൌ
1
𝑝

Varሺ𝑋ሻ ൌ
1 െ 𝑝
𝑝ଶ

𝑋

𝑝ሺ𝑖ሻ ൌ ቆ
𝑖 െ 1

𝑟 െ 1
ቇ𝑝௥ሺ1 െ 𝑝ሻ௜െ௥ 𝑖 ൒ 𝑟

𝑟 𝑝

𝑟

𝑝
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A hypergeometric random variable  with parameters , , and  represents the

number of white balls selected when  balls are randomly chosen from an urn that

contains  balls of which  are white. The probability mass function of this random

variable is given by

With , its mean and variance are

An important property of the expected value is that the expected value of a sum of

random variables is equal to the sum of their expected values. That is,

𝐸ሾ𝑋ሿ ൌ
𝑟
𝑝

Varሺ𝑋ሻ ൌ
𝑟ሺ1 െ 𝑝ሻ

𝑝ଶ

𝑋 𝑛 𝑁 𝑚

𝑛

𝑁 𝑚

𝑝ሺ𝑖ሻ ൌ
ቆ
𝑚

𝑖
ቇቆ
𝑁 െ𝑚

𝑛 െ 𝑖
ቇ

ቆ
𝑁

𝑛
ቇ

𝑖 ൌ 0, …,𝑚

𝑝 ൌ 𝑚/𝑁

𝐸ሾ𝑋ሿ ൌ 𝑛𝑝 Varሺ𝑋ሻ ൌ
𝑁 െ 𝑛
𝑁 െ 1

𝑛𝑝ሺ1 െ 𝑝ሻ

𝐸቎ ෍
௜ ൌ ଵ

௡

𝑋௜቏ ൌ ෍
௜ ൌ ଵ

௡

𝐸ሾ𝑋௜ሿ

4.1. Two balls are chosen randomly from an urn containing 8 white, 4

black, and 2 orange balls. Suppose that we win $2 for each black ball

selected and we lose $1 for each white ball selected. Let  denote

our winnings. What are the possible values of , and what are the

probabilities associated with each value?

4.2. Two fair dice are rolled. Let  equal the product of the 2 dice.

Compute  for .

4.3. Three dice are rolled. By assuming that each of the 

possible outcomes is equally likely, find the probabilities attached to

the possible values that  can take on, where  is the sum of the 3

dice.

4.4. Five men and 5 women are ranked according to their scores on

an examination. Assume that no two scores are alike and all 10!

possible rankings are equally likely. Let  denote the highest ranking

achieved by a woman. (For instance,  if the top-ranked person

𝑋

𝑋

𝑋

𝑃ሼ𝑋 ൌ 𝑖ሽ 𝑖 ൌ 1, …, 36

6ଷ ൌ 216

𝑋 𝑋

𝑋

𝑋 ൌ 1
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is female.) Find .

4.5. Let  represent the difference between the number of heads and

the number of tails obtained when a coin is tossed  times. What are

the possible values of ?

4.6. In Problem 4.5 , for , if the coin is assumed fair, what

are the probabilities associated with the values that  can take on?

4.7. Suppose that a die is rolled twice. What are the possible values

that the following random variables can take on:

a. the maximum value to appear in the two rolls;

b. the minimum value to appear in the two rolls;

c. the sum of the two rolls;

d. the value of the first roll minus the value of the second roll?

4.8. If the die in Problem 4.7  is assumed fair, calculate the

probabilities associated with the random variables in parts (a)

through (d).

4.9. Repeat Example 1c  when the balls are selected with

replacement.

4.10. Let  be the winnings of a gambler. Let  and

suppose that

Compute the conditional probability that the gambler wins

 given that he wins a positive amount.

4.11. The random variable  is said to follow the distribution of

Benford’s Law if

It has been shown to be a good fit for the distribution of the first digit

of many real life data values.

a. Verify that the preceding is a probability mass function by

showing that .

b. Find .

4.12. In the game of Two-Finger Morra, 2 players show 1 or 2 fingers

and simultaneously guess the number of fingers their opponent will

show. If only one of the players guesses correctly, he wins an

amount (in dollars) equal to the sum of the fingers shown by him and

his opponent. If both players guess correctly or if neither guesses

𝑃ሼ𝑋  ൌ 𝑖ሽ,  𝑖 ൌ 1,  2,  3, …,  8,  9,  10
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correctly, then no money is exchanged. Consider a specified player,

and denote by  the amount of money he wins in a single game of

Two-Finger Morra.

a. If each player acts independently of the other, and if each

player makes his choice of the number of fingers he will hold

up and the number he will guess that his opponent will hold up

in such a way that each of the 4 possibilities is equally likely,

what are the possible values of  and what are their

associated probabilities?

b. Suppose that each player acts independently of the other. If

each player decides to hold up the same number of fingers

that he guesses his opponent will hold up, and if each player

is equally likely to hold up 1 or 2 fingers, what are the possible

values of  and their associated probabilities?

4.13. A salesman has scheduled two appointments to sell vacuum

cleaners. His first appointment will lead to a sale with probability .3,

and his second will lead independently to a sale with probability .6.

Any sale made is equally likely to be either for the deluxe model,

which costs $1000, or the standard model, which costs $500.

Determine the probability mass function of , the total dollar value of

all sales.

4.14. Five distinct numbers are randomly distributed to players

numbered 1 through 5. Whenever two players compare their

numbers, the one with the higher one is declared the winner. Initially,

players 1 and 2 compare their numbers; the winner then compares

her number with that of player 3, and so on. Let  denote the number

of times player 1 is a winner. Find .

4.15. The National Basketball Association (NBA) draft lottery involves

the 11 teams that had the worst won–lost records during the year. A

total of 66 balls are placed in an urn. Each of these balls is inscribed

with the name of a team: Eleven have the name of the team with the

worst record, 10 have the name of the team with the second-worst

record, 9 have the name of the team with the third-worst record, and

so on (with 1 ball having the name of the team with the 11th-worst

record). A ball is then chosen at random, and the team whose name

is on the ball is given the first pick in the draft of players about to

enter the league. Another ball is then chosen, and if it “belongs” to a

team different from the one that received the first draft pick, then the

team to which it belongs receives the second draft pick. (If the ball

belongs to the team receiving the first pick, then it is discarded and

𝑋

𝑋

𝑋

𝑋

𝑋

𝑃ሼ𝑋 ൌ 𝑖ሽ, 𝑖 ൌ 0, 1, 2, 3, 4
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another one is chosen; this continues until the ball of another team is

chosen.) Finally, another ball is chosen, and the team named on the

ball (provided that it is different from the previous two teams)

receives the third draft pick. The remaining draft picks 4 through 11

are then awarded to the 8 teams that did not “win the lottery,” in

inverse order of their won–lost records. For instance, if the team with

the worst record did not receive any of the 3 lottery picks, then that

team would receive the fourth draft pick. Let  denote the draft pick

of the team with the worst record. Find the probability mass function

of .

4.16. A deck of  cards numbered  through  are to be turned over

one a time. Before each card is shown you are to guess which card it

will be. After making your guess, you are told whether or not your

guess is correct but not which card was turned over. It turns out that

the strategy that maximizes the expected number of correct guesses

fixes a permutation of the  cards, say , and then continually

guesses  until it is correct, then continually guesses  until either it

is correct or all cards have been turned over, and then continually

guesses , and so on. Let  denote the number of correct guesses

yielded by this strategy. Determine .

Hint: In order for  to be at least  what must be the order of cards

.

4.17. Suppose that the distribution function of  is given by

a. Find .

b. Find .

4.18. Four independent flips of a fair coin are made. Let  denote the

number of heads obtained. Plot the probability mass function of the

random variable .

4.19. If the distribution function of  is given by

𝑋
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calculate the probability mass function of .

4.20. A gambling book recommends the following “winning strategy”

for the game of roulette: Bet $1 on red. If red appears (which has

probability ), then take the $1 profit and quit. If red does not

appear and you lose this bet (which has probability  of occurring),

make additional $1 bets on red on each of the next two spins of the

roulette wheel and then quit. Let  denote your winnings when you

quit.

a. Find .

b. Are you convinced that the strategy is indeed a “winning”

strategy? Explain your answer!

c. Find .

4.21. Four buses carrying 148 students from the same school arrive

at a football stadium. The buses carry, respectively, 40, 33, 25, and

50 students. One of the students is randomly selected. Let  denote

the number of students who were on the bus carrying the randomly

selected student. One of the 4 bus drivers is also randomly selected.

Let  denote the number of students on her bus.

a. Which of  or  do you think is larger? Why?

b. Compute  and .

4.22. Suppose that two teams play a series of games that ends when

one of them has won  games. Suppose that each game played is,

independently, won by team  with probability . Find the expected

number of games that are played when (a)  and (b) . Also,

show in both cases that this number is maximized when .

4.23. You have $1000, and a certain commodity presently sells for $2

per ounce. Suppose that after one week the commodity will sell for
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either $1 or $4 an ounce, with these two possibilities being equally

likely.

a. If your objective is to maximize the expected amount of money

that you possess at the end of the week, what strategy should

you employ?

b. If your objective is to maximize the expected amount of the

commodity that you possess at the end of the week, what

strategy should you employ?

4.24.  and  play the following game:  writes down either number

1 or number 2, and  must guess which one. If the number that 

has written down is  and  has guessed correctly,  receives  units

from . If  makes a wrong guess,  pays  unit to . If 

randomizes his decision by guessing 1 with probability  and 2 with

probability , determine his expected gain if (a)  has written

down number 1 and (b)  has written down number 2.

What value of  maximizes the minimum possible value of ‘s

expected gain, and what is this maximin value? (Note that ‘s

expected gain depends not only on , but also on what  does.)

Consider now player . Suppose that she also randomizes her

decision, writing down number 1 with probability . What is ‘s

expected loss if (c)  chooses number 1 and (d)  chooses number

2?

What value of  minimizes ‘s maximum expected loss? Show that

the minimum of ‘s maximum expected loss is equal to the maximum

of ‘s minimum expected gain. This result, known as the minimax

theorem, was first established in generality by the mathematician

John von Neumann and is the fundamental result in the

mathematical discipline known as the theory of games. The common

value is called the value of the game to player .

4.25. Two coins are to be flipped. The first coin will land on heads

with probability .6, the second with probability .7. Assume that the

results of the flips are independent, and let  equal the total number

of heads that result.

a. Find .

b. Determine .

4.26. One of the numbers 1 through 10 is randomly chosen. You are

to try to guess the number chosen by asking questions with “yes–no”

answers. Compute the expected number of questions you will need

to ask in each of the following two cases:
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a. Your th question is to be “Is it ?” .

b. With each question you try to eliminate one-half of the

remaining numbers, as nearly as possible.

4.27. An insurance company writes a policy to the effect that an

amount of money  must be paid if some event  occurs within a

year. If the company estimates that  will occur within a year with

probability , what should it charge the customer in order that its

expected profit will be 10 percent of ?

4.28. A sample of 3 items is selected at random from a box

containing 20 items of which 4 are defective. Find the expected

number of defective items in the sample.

4.29. There are two possible causes for a breakdown of a machine.

To check the first possibility would cost  dollars, and, if that were

the cause of the breakdown, the trouble could be repaired at a cost

of  dollars. Similarly, there are costs  and  associated with the

second possibility. Let  and  denote, respectively, the

probabilities that the breakdown is caused by the first and second

possibilities. Under what conditions on , should we

check the first possible cause of breakdown and then the second, as

opposed to reversing the checking order, so as to minimize the

expected cost involved in returning the machine to working order?

Note: If the first check is negative, we must still check the other

possibility.

4.30. A person tosses a fair coin until a tail appears for the first time.

If the tail appears on the th flip, the person wins  dollars. Let 

denote the player’s winnings. Show that . This problem

is known as the St. Petersburg paradox.

a. Would you be willing to pay $1 million to play this game once?

b. Would you be willing to pay $1 million for each game if you

could play for as long as you liked and only had to settle up

when you stopped playing?

4.31. Each night different meteorologists give us the probability that it

will rain the next day. To judge how well these people predict, we will

score each of them as follows: If a meteorologist says that it will rain

with probability , then he or she will receive a score of

We will then keep track of scores over a certain time span and
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conclude that the meteorologist with the highest average score is the

best predictor of weather. Suppose now that a given meteorologist is

aware of our scoring mechanism and wants to maximize his or her

expected score. If this person truly believes that it will rain tomorrow

with probability , what value of  should he or she assert so as to

maximize the expected score?

4.32. To determine whether they have a certain disease, 100 people

are to have their blood tested. However, rather than testing each

individual separately, it has been decided first to place the people

into groups of 10. The blood samples of the 10 people in each group

will be pooled and analyzed together. If the test is negative, one test

will suffice for the 10 people, whereas if the test is positive, each of

the 10 people will also be individually tested and, in all, 11 tests will

be made on this group. Assume that the probability that a person has

the disease is .1 for all people, independently of one another, and

compute the expected number of tests necessary for each group.

(Note that we are assuming that the pooled test will be positive if at

least one person in the pool has the disease.)

4.33. A newsboy purchases papers at 10 cents and sells them at 15

cents. However, he is not allowed to return unsold papers. If his daily

demand is a binomial random variable with ,

approximately how many papers should he purchase so as to

maximize his expected profit?

4.34. In Example 4b , suppose that the department store incurs an

additional cost of  for each unit of unmet demand. (This type of cost

is often referred to as a goodwill cost because the store loses the

goodwill of those customers whose demands it cannot meet.)

Compute the expected profit when the store stocks  units, and

determine the value of  that maximizes the expected profit.

4.35. A box contains 5 red and 5 blue marbles. Two marbles are

withdrawn randomly. If they are the same color, then you win $1.10; if

they are different colors, then you win . (That is, you lose

$1.00.) Calculate

a. the expected value of the amount you win;

b. the variance of the amount you win.

4.36. Consider the friendship network described by Figure 4.5 .

Let  be a randomly chosen person and let  be a randomly chosen

friend of . With  equal to the number of friends of person , show

that .

4.37. Consider Problem 4.22  with . Find the variance of the
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number of games played, and show that this number is maximized

when .

4.38. Find Var  and Var  for  and  as given in Problem

4.21 .

4.39. If  and , find

a. ;

b. .

4.40. A ball is drawn from an urn containing 3 white and 3 black

balls. After the ball is drawn, it is replaced and another ball is drawn.

This process goes on indefinitely. What is the probability that of the

first 4 balls drawn, exactly 2 are white?

4.41. On a multiple-choice exam with 3 possible answers for each of

the 5 questions, what is the probability that a student will get 4 or

more correct answers just by guessing?

4.42. A man claims to have extrasensory perception. As a test, a fair

coin is flipped 10 times and the man is asked to predict the outcome

in advance. He gets 7 out of 10 correct. What is the probability that

he would have done at least this well if he did not have ESP?

4.43. A and B will take the same -question examination. Each

question will be answered correctly by A with probability ,

independently of her results on other questions. Each question will

be answered correctly by B with probability , independently both of

her results on the other questions and on the performance of A.

a. Find the expected number of questions that are answered

correctly by both A and B.

b. Find the variance of the number of questions that are

answered correctly by either A or B.

4.44. A communications channel transmits the digits 0 and 1.

However, due to static, the digit transmitted is incorrectly received

with probability .2. Suppose that we want to transmit an important

message consisting of one binary digit. To reduce the chance of

error, we transmit 00000 instead of 0 and 11111 instead of 1. If the

receiver of the message uses “majority” decoding, what is the

probability that the message will be wrong when decoded? What

independence assumptions are you making?

4.45. A satellite system consists of  components and functions on

any given day if at least  of the  components function on that day.

On a rainy day, each of the components independently functions with

probability , whereas on a dry day, each independently functions
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with probability . If the probability of rain tomorrow is , what is the

probability that the satellite system will function?

4.46. A student is getting ready to take an important oral examination

and is concerned about the possibility of having an “on” day or an

“off” day. He figures that if he has an on day, then each of his

examiners will pass him, independently of one another, with

probability .8, whereas if he has an off day, this probability will be

reduced to .4. Suppose that the student will pass the examination if a

majority of the examiners pass him. If the student believes that he is

twice as likely to have an off day as he is to have an on day, should

he request an examination with 3 examiners or with 5 examiners?

4.47. Suppose that it takes at least 9 votes from a 12-member jury to

convict a defendant. Suppose also that the probability that a juror

votes a guilty person innocent is .2, whereas the probability that the

juror votes an innocent person guilty is .1. If each juror acts

independently and if 65 percent of the defendants are guilty, find the

probability that the jury renders a correct decision. What percentage

of defendants is convicted?

4.48. In some military courts, 9 judges are appointed. However, both

the prosecution and the defense attorneys are entitled to a

peremptory challenge of any judge, in which case that judge is

removed from the case and is not replaced. A defendant is declared

guilty if the majority of judges cast votes of guilty, and he or she is

declared innocent otherwise. Suppose that when the defendant is, in

fact, guilty, each judge will (independently) vote guilty with probability

.7, whereas when the defendant is, in fact, innocent, this probability

drops to .3.

a. What is the probability that a guilty defendant is declared

guilty when there are (i) 9, (ii) 8, and (iii) 7 judges?

b. Repeat part (a) for an innocent defendant.

c. If the prosecuting attorney does not exercise the right to a

peremptory challenge of a judge, and if the defense is limited

to at most two such challenges, how many challenges should

the defense attorney make if he or she is 60 percent certain

that the client is guilty?

4.49. It is known that diskettes produced by a certain company will

be defective with probability .01, independently of one another. The

company sells the diskettes in packages of size 10 and offers a

money-back guarantee that at most 1 of the 10 diskettes in the

package will be defective. The guarantee is that the customer can

𝑝ଶ 𝛼
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return the entire package of diskettes if he or she finds more than 1

defective diskette in it. If someone buys 3 packages, what is the

probability that he or she will return exactly 1 of them?

4.50. When coin  is flipped, it lands on heads with probability ;

when coin  is flipped, it lands on heads with probability . One of

these coins is randomly chosen and flipped  times.

a. What is the probability that the coin lands on heads on exactly

 of the  flips?

b. Given that the first of these 10 flips lands heads, what is the

conditional probability that exactly  of the  flips land on

heads?

4.51. Each member of a population of size  is, independently,

female with probability  or male with probability . Let  be the

number of the other  members of the population that are the

same sex as is person . (So  if all  people are of the

same sex.)

a. Find .

Now suppose that two people of the same sex will, independently of

other pairs, be friends with probability ; whereas two persons of

opposite sexes will be friends with probability . Find the probability

mass function of the number of friends of person .

4.52. In a tournament involving players  players  and  play

a game, with the loser departing and the winner then playing against

player , with the loser of that game departing and the winner then

playing player The winner of the game involving player  is the

tournament winner. Suppose that a game between players  and  is

won by player  with probability .

a. Find the expected number of games played by player .

b. Find the expected number of games played by player .

4.53. Suppose that a biased coin that lands on heads with probability

 is flipped 10 times. Given that a total of 6 heads results, find the

conditional probability that the first 3 outcomes are

a. , ,  (meaning that the first flip results in heads, the second

in tails, and the third in tails);

b. , , .

4.54. The expected number of typographical errors on a page of a

certain magazine is .2. What is the probability that the next page you
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read contains (a) 0 and (b) 2 or more typographical errors? Explain

your reasoning!

4.55. The monthly worldwide average number of airplane crashes of

commercial airlines is 3.5. What is the probability that there will be

a. at least 2 such accidents in the next month;

b. at most 1 accident in the next month? Explain your reasoning!

4.56. Approximately 80,000 marriages took place in the state of New

York last year. Estimate the probability that for at least one of these

couples,

a. both partners were born on April 30;

b. both partners celebrated their birthday on the same day of the

year.

State your assumptions.

4.57. State your assumptions. Suppose that the average number of

cars abandoned weekly on a certain highway is 2.2. Approximate the

probability that there will be

a. no abandoned cars in the next week;

b. at least 2 abandoned cars in the next week.

4.58. A certain typing agency employs 2 typists. The average

number of errors per article is 3 when typed by the first typist and 4.2

when typed by the second. If your article is equally likely to be typed

by either typist, approximate the probability that it will have no errors.

4.59. How many people are needed so that the probability that at

least one of them has the same birthday as you is greater than ?

4.60. Suppose that the number of accidents occurring on a highway

each day is a Poisson random variable with parameter .

a. Find the probability that 3 or more accidents occur today.

b. Repeat part (a) under the assumption that at least 1 accident

occurs today.

4.61. Compare the Poisson approximation with the correct binomial

probability for the following cases:

a.  when , ;

b.  when , ;

c.  when , ;

d.  when , .

4.62. If you buy a lottery ticket in 50 lotteries, in each of which your

1
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chance of winning a prize is , what is the (approximate)

probability that you will win a prize

a. at least once?

b. exactly once?

c. at least twice?

4.63. The number of times that a person contracts a cold in a given

year is a Poisson random variable with parameter . Suppose

that a new wonder drug (based on large quantities of vitamin C) has

just been marketed that reduces the Poisson parameter to  for

75 percent of the population. For the other 25 percent of the

population, the drug has no appreciable effect on colds. If an

individual tries the drug for a year and has 2 colds in that time, how

likely is it that the drug is beneficial for him or her?

4.64. The probability of being dealt a full house in a hand of poker is

approximately .0014. Find an approximation for the probability that in

1000 hands of poker, you will be dealt at least 2 full houses.

4.65. Consider  independent trials, each of which results in one of

the outcomes  with respective probabilities

 Show that if all the  are small, then the

probability that no trial outcome occurs more than once is

approximately equal to 

4.66. People enter a gambling casino at a rate of 1 every 2 minutes.

a. What is the probability that no one enters between 12:00 and

12:05?

b. What is the probability that at least 4 people enter the casino

during that time?

4.67. The suicide rate in a certain state is 1 suicide per 100,000

inhabitants per month.

a. Find the probability that in a city of 400,000 inhabitants within

this state, there will be 8 or more suicides in a given month.

b. What is the probability that there will be at least 2 months

during the year that will have 8 or more suicides?

c. Counting the present month as month number 1, what is the

probability that the first month to have 8 or more suicides will

be month number ? What assumptions are you

making?

1
100

𝜆 ൌ 5

𝜆 ൌ 3

𝑛

1, …, 𝑘

𝑝ଵ, …,𝑝௞,  ෍
௜ൌଵ

௞
𝑝௜ ൌ 1 . 𝑝௜
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௜
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4.68. Each of 500 soldiers in an army company independently has a

certain disease with probability . This disease will show up in a

blood test, and to facilitate matters, blood samples from all 500

soldiers are pooled and tested.

a. What is the (approximate) probability that the blood test will be

positive (that is, at least one person has the disease)?

Suppose now that the blood test yields a positive result.

b. What is the probability, under this circumstance, that more

than one person has the disease?

Now, suppose one of the 500 people is Jones, who knows that

he has the disease.

c. What does Jones think is the probability that more than one

person has the disease?

Because the pooled test was positive, the authorities have

decided to test each individual separately. The first  of

these tests were negative, and the th one–which was on

Jones–was positive.

d. Given the preceding scenario, what is the probability, as a

function of , that any of the remaining people have the

disease?

4.69. A total of  people, consisting of  married couples, are

randomly seated (all possible orderings being equally likely) at a

round table. Let  denote the event that the members of couple  are

seated next to each other, 

a. Find .

b. For  find .

c. Approximate the probability, for  large, that there are no

married couples who are seated next to each other.

4.70. Repeat the preceding problem when the seating is random but

subject to the constraint that the men and women alternate.

4.71. In response to an attack of 10 missiles, 500 antiballistic

missiles are launched. The missile targets of the antiballistic missiles

are independent, and each antiballstic missile is equally likely to go

towards any of the target missiles. If each antiballistic missile

independently hits its target with probability , use the Poisson

paradigm to approximate the probability that all missiles are hit.

4.72. A fair coin is flipped 10 times. Find the probability that there is a

string of  consecutive heads by

a. using the formula derived in the text;

1/10ଷ

𝑖 െ 1

𝑖

𝑖

2𝑛 𝑛

𝐶௜ 𝑖

𝑖 ൌ 1, …,𝑛 .

𝑃ሺ𝐶௜ሻ

𝑗 ് 𝑖, 𝑃ሺ𝐶௝ |𝐶௜ሻ

𝑛

. 1

4
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b. using the recursive equations derived in the text.

c. Compare your answer with that given by the Poisson

approximation.

4.73. At time , a coin that comes up heads with probability  is

flipped and falls to the ground. Suppose it lands on heads. At times

chosen according to a Poisson process with rate  the coin is picked

up and flipped. (Between these times, the coin remains on the

ground.) What is the probability that the coin is on its head side at

time ?

Hint: What would be the conditional probability if there were no

additional flips by time , and what would it be if there were additional

flips by time ?

4.74. Consider a roulette wheel consisting of 38 numbers 1 through

36, 0, and double 0. If Smith always bets that the outcome will be

one of the numbers 1 through 12, what is the probability that

a. Smith will lose his first 5 bets;

b. his first win will occur on his fourth bet?

4.75. Two athletic teams play a series of games; the first team to win

4 games is declared the overall winner. Suppose that one of the

teams is stronger than the other and wins each game with probability

.6, independently of the outcomes of the other games. Find the

probability, for , that the stronger team wins the series in

exactly  games. Compare the probability that the stronger team wins

with the probability that it would win a 2-out-of-3 series.

4.76. Suppose in Problem 4.75  that the two teams are evenly

matched and each has probability  of winning each game. Find the

expected number of games played.

4.77. An interviewer is given a list of people she can interview. If the

interviewer needs to interview 5 people, and if each person

(independently) agrees to be interviewed with probability , what is

the probability that her list of people will enable her to obtain her

necessary number of interviews if the list consists of (a) 5 people and

(b) 8 people? For part (b), what is the probability that the interviewer

will speak to exactly (c) 6 people and (d) 7 people on the list?

4.78. A fair coin is continually flipped until heads appears for the 10th

time. Let  denote the number of tails that occur. Compute the

probability mass function of .

4.79. Solve the Banach match problem (Example 8e ) when the

0 𝑝

𝜆,

𝑡

𝑡

𝑡

𝑖 ൌ 4,  5,  6,  7

𝑖

1
2

2
3

𝑋

𝑋
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left-hand matchbox originally contained  matches and the right-

hand box contained  matches.

4.80. In the Banach matchbox problem, find the probability that at the

moment when the first box is emptied (as opposed to being found

empty), the other box contains exactly  matches.

4.81. An urn contains 4 white and 4 black balls. We randomly choose

4 balls. If 2 of them are white and 2 are black, we stop. If not, we

replace the balls in the urn and again randomly select 4 balls. This

continues until exactly 2 of the 4 chosen are white. What is the

probability that we shall make exactly  selections?

4.82. Suppose that a batch of 100 items contains 6 that are defective

and 94 that are not defective. If  is the number of defective items in

a randomly drawn sample of 10 items from the batch, find (a)

 and (b) .

4.83. A game popular in Nevada gambling casinos is Keno, which is

played as follows: Twenty numbers are selected at random by the

casino from the set of numbers 1 through 80. A player can select

from 1 to 15 numbers; a win occurs if some fraction of the player’s

chosen subset matches any of the 20 numbers drawn by the house.

The payoff is a function of the number of elements in the player’s

selection and the number of matches. For instance, if the player

selects only 1 number, then he or she wins if this number is among

the set of 20, and the payoff is $2.20 won for every dollar bet. (As the

player’s probability of winning in this case is , it is clear that the

“fair” payoff should be $3 won for every $1 bet.) When the player

selects 2 numbers, a payoff (of odds) of $12 won for every $1 bet is

made when both numbers are among the 20.

a. What would be the fair payoff in this case?

Let  denote the probability that exactly  of the  numbers

chosen by the player are among the 20 selected by the house.

b. Compute 

c. The most typical wager at Keno consists of selecting 10

numbers. For such a bet, the casino pays off as shown in the

following table. Compute the expected payoff:

Keno Payoffs in 10 Number Bets

Number of matches Dollars won for each $1 bet

0—4 –1

𝑁ଵ

𝑁ଶ

𝑘

𝑛

𝑋

𝑃ሼ𝑋 ൌ 0ሽ 𝑃ሼ𝑋 ൐ 2ሽ
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4
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Keno Payoffs in 10 Number Bets

Number of matches Dollars won for each $1 bet

5 1

6 17

7 179

8 1,299

9 2,599

10 24,999

4.84. In Example 8i , what percentage of  defective lots does the

purchaser reject? Find it for . Given that a lot is rejected, what

is the conditional probability that it contained 4 defective

components?

4.85. A purchaser of transistors buys them in lots of 20. It is his

policy to randomly inspect 4 components from a lot and to accept the

lot only if all 4 are nondefective. If each component in a lot is,

independently, defective with probability .1, what proportion of lots is

rejected?

4.86. There are three highways in the county. The number of daily

accidents that occur on these highways are Poisson random

variables with respective parameters , and  Find the

expected number of accidents that will happen on any of these

highways today.

4.87. Suppose that  balls are put into  boxes, with each ball

independently being put in box  with probability 

a. Find the expected number of boxes that do not have any balls.

b. Find the expected number of boxes that have exactly  ball.

4.88. There are  types of coupons. Independently of the types of

previously collected coupons, each new coupon collected is of type 

with probability  If  coupons are collected, find the

expected number of distinct types that appear in this set. (That is,

𝑖

𝑖 ൌ 1, 4

. 3, . 5 . 7 .

10 5

𝑖 𝑝௜,  ෍
௜ൌଵ

ହ
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𝑘

𝑖
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find the expected number of types of coupons that appear at least

once in the set of  coupons.)

4.89. An urn contains  red,  black, and  green balls. One of the

colors is chosen at random (meaning that the chosen color is equally

likely to be any of the  colors), and then  balls are randomly

chosen from the urn. Let  be the number of these balls that are of

the chosen color.

a. Find .

b. Let  equal  if the  ball selected is of the chosen color,

and let it equal  otherwise. Find , .

c. Find .

Hint: Express  in terms of , , , .

𝑛

10 8 7

3 4

𝑋

𝑃ሺ𝑋 ൌ 0ሻ

𝑋௜ 1 𝑖௧௛

0 𝑃ሺ𝑋௜ ൌ 1ሻ 𝑖 ൌ 1, 2, 3, 4

𝐸ሾ𝑋ሿ

𝑋 𝑋ଵ 𝑋ଶ 𝑋ଷ 𝑋ସ

4.1. There are  distinct types of coupons, and each time one is obtained it

will, independently of past choices, be of type  with probability .

Let  denote the number one need select to obtain at least one of each type.

Compute .

Hint: Use an argument similar to the one used in Example 1e .

4.2. If  has distribution function , what is the distribution function of ?

4.3. If  has distribution function , what is the distribution function of the

random variable , where  and  are constants, ?

4.4. The random variable  is said to have the Yule-Simons distribution if

a. Show that the preceding is actually a probability mass function. That is,

show that 

b. Show that 

c. Show that 

Hint: For (a), first use that  then

use that .

4.5. Let  be a nonnegative integer-valued random variable. For nonnegative

values , show that

𝑁

𝑖 𝑃௜, 𝑖 ൌ 1, …,𝑁

𝑇
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Then show that

and

4.6. Let  be such that

Find  such that .

4.7. Let  be a random variable having expected value  and variance .

Find the expected value and variance of

4.8. Find  if

4.9. Show how the derivation of the binomial probabilities

leads to a proof of the binomial theorem

when  and  are nonnegative.

Hint: Let 

4.10. Let  be a binomial random variable with parameters  and . Show that

4.11. Let  be the number of successes that result from  independent trials,

when each trial is a success with probability . Show that  is a

෍
௝ ൌ ଵ

ஶ

ሺ𝑎ଵ ൅ … ൅ 𝑎௝ሻ𝑃ሼ𝑁 ൌ 𝑗ሽ ൌ ෍
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ஶ
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decreasing function of .

4.12. Consider  independent sequential trials, each of which is successful

with probability . If there is a total of  successes, show that each of the

 possible arrangements of the  successes and  failures is

equally likely.

4.13. There are  components lined up in a linear arrangement. Suppose that

each component independently functions with probability . What is the

probability that no 2 neighboring components are both nonfunctional?

Hint: Condition on the number of defective components and use the results of

Example 4c  of Chapter 1 .

4.14. Let  be a binomial random variable with parameters ( , ). What value

of  maximizes ? This is an example of a statistical

method used to estimate  when a binomial ( , ) random variable is

observed to equal . If we assume that  is known, then we estimate  by

choosing that value of  that maximizes . This is known as the

method of maximum likelihood estimation.

4.15. A family has  children with probability , where .

a. What proportion of families has no children?

b. If each child is equally likely to be a boy or a girl (independently of each

other), what proportion of families consists of  boys (and any number

of girls)?

4.16. Suppose that  independent tosses of a coin having probability  of

coming up heads are made. Show that the probability that an even number of

heads results is , where . Do this by proving and then

utilizing the identity

where [ /2] is the largest integer less than or equal to /2. Compare this

exercise with Theoretical Exercise 3.5  of Chapter 3 .

4.17. Let  be a Poisson random variable with parameter . Show that

 increases monotonically and then decreases monotonically as 

increases, reaching its maximum when  is the largest integer not exceeding 

.

Hint: Consider .

4.18. Let  be a Poisson random variable with parameter .

a. Show that

𝑛
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by using the result of Theoretical Exercise 4.15  and the

relationship between Poisson and binomial random variables.

b. Verify the formula in part (a) directly by making use of the expansion of

.

4.19. Let  be a Poisson random variable with parameter . What value of 

maximizes ?

4.20. Show that  is a Poisson random variable with parameter , then

Now use this result to compute .

4.21. Consider  coins, each of which independently comes up heads with

probability . Suppose that  is large and  is small, and let . Suppose

that all  coins are tossed; if at least one comes up heads, the experiment

ends; if not, we again toss all  coins, and so on. That is, we stop the first time

that at least one of the  coins come up heads. Let  denote the total number

of heads that appear. Which of the following reasonings concerned with

approximating  is correct (in all cases,  is a Poisson random variable

with parameter )?

a. Because the total number of heads that occur when all  coins are

rolled is approximately a Poisson random variable with parameter ,

b. Because the total number of heads that occur when all  coins are

rolled is approximately a Poisson random variable with parameter ,

and because we stop only when this number is positive,

c. Because at least one coin comes up heads,  will equal 1 if none of the

other  coins come up heads. Because the number of heads

resulting from these  coins is approximately Poisson with mean

,

4.22. From a set of  randomly chosen people, let  denote the event that

persons  and  have the same birthday. Assume that each person is equally

likely to have any of the 365 days of the year as his or her birthday. Find

a. ;

b. ;

c. . What can you conclude from your answers to parts
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(a)—(c) about the independence of the  events ?

4.23. An urn contains 2  balls, of which 2 are numbered 1, 2 are numbered

, and 2 are numbered . Balls are successively withdrawn 2 at a time

without replacement. Let  denote the first selection in which the balls

withdrawn have the same number (and let it equal infinity if none of the pairs

withdrawn has the same number). We want to show that, for ,

To verify the preceding formula, let  denote the number of pairs withdrawn

in the first  selections, .

Argue that when  is large,  can be regarded as the number of successes

in  (approximately) independent trials.

a. Approximate  when  is large.

b. Write the event  in terms of the value of one of the variables

.

c. Verify the limiting probability given for .

4.24. Consider a random collection of  individuals. In approximating the

probability that no  of these individuals share the same birthday, a better

Poisson approximation than that obtained in the text (at least for values of 

between  and ) is obtained by letting  be the event that there are at

least  birthdays on day , .

a. Find .

b. Give an approximation for the probability that no 3 individuals share the

same birthday.

c. Evaluate the preceding when . (The exact probability is derived

in Example 1g  of Chapter 6 .)

4.25. Here is another way to obtain a set of recursive equations for

determining , the probability that there is a string of  consecutive heads in

a sequence of  flips of a fair coin that comes up heads with probability :

a. Argue that for , there will be a string of  consecutive heads if

either

1. there is a string of  consecutive heads within the first 

flips, or

2. there is no string of  consecutive heads within the first 

flips, flip  is a tail, and flips  are all heads.

b. Using the preceding, relate  to . Starting with , the
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recursion can be used to obtain , then , and so on, up to .

4.26. Suppose that the number of events that occur in a specifiedime is a

Poisson random variable with parameter . If each event is counted with

probability , independently of every other event, show that the number of

events that are counted is a Poisson random variable with parameter . Also,

give an intuitive argument as to why this should be so. As an application of the

preceding result, suppose that the number of distinct uranium deposits in a

given area is a Poisson random variable with parameter . If, in a fixed

period of time, each deposit is discovered independently with probability ,

find the probability that (a) exactly 1, (b) at least 1, and (c) at most 1 deposit is

discovered during that time.

4.27. Prove

Hint: Use integration by parts.

4.28. If  is a geometric random variable, show analytically that

Using the interpretation of a geometric random variable, give a verbal

argument as to why the preceding equation is true.

4.29. Let  be a negative binomial random variable with parameters  and ,

and let  be a binomial random variable with parameters  and . Show that

Hint: Either one could attempt an analytical proof of the preceding equation,

which is equivalent to proving the identity

or one could attempt a proof that uses the probabilistic interpretation of these

random variables. That is, in the latter case, start by considering a sequence

of independent trials having a common probability  of success. Then try to

express the events  and  in terms of the outcomes of this

sequence.

4.30. For a hypergeometric random variable, determine

𝑃௞൅ଵ 𝑃௞൅ଶ 𝑃௡
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඲
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4.31. Balls numbered 1 through  are in an urn. Suppose that , of

them are randomly selected without replacement. Let  denote the largest

number selected.

a. Find the probability mass function of .

b. Derive an expression for [ ] and then use Fermat’s combinatorial

identity (see Theoretical Exercise 11  of Chapter 1 ) to simplify

the expression.

4.32. A jar contains  chips, numbered . A set of size  is

drawn. If we let  denote the number of chips drawn having numbers that

exceed each of the numbers of those remaining, compute the probability

mass function of .

4.33. A jar contains  chips. Suppose that a boy successively draws a chip

from the jar, each time replacing the one drawn before drawing another. The

process continues until the boy draws a chip that he has previously drawn. Let

 denote the number of draws, and compute its probability mass function.

4.34. Repeat Theoretical Exercise 4.33 , this time assuming that

withdrawn chips are not replaced before the next selection.

4.35. From a set of  elements, a nonempty subset is chosen at random in the

sense that all of the nonempty subsets are equally likely to be selected. Let 

denote the number of elements in the chosen subset. Using the identities

given in Theoretical Exercise 12  of Chapter 1 , show that

Show also that for  large,

in the sense that the ratio Var( ) to /4 approaches 1 as  approaches .

Compare this formula with the limiting form of Var  when

.

4.36. An urn initially contains one red and one blue ball. At each stage, a ball

is randomly chosen and then replaced along with another of the same color.

Let  denote the selection number of the first chosen ball that is blue. For

instance, if the first selection is red and the second blue, then  is equal to 2.

a. Find .

b. Show that with probability 1, a blue ball is eventually chosen. (That is,

𝑁 𝑛,𝑛 ൑ 𝑁

𝑌
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𝑋
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show that .)

c. Find .

4.37. Suppose the possible values of  are , the possible values of  are

, and the possible values of  are  Let  denote the set of all

pairs of indices  such that ; that is, 

a. Argue that

b. Show that

c. Using the formula from part (b), argue that

d. Show that

e. Prove that

𝑃ሼ𝑋 ൏ ∞ ሽ ൌ 1

𝐸ሾ𝑋ሿ

𝑋 ሼ𝑥௜ሽ 𝑌
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𝑃ሼ𝑋 ൅ 𝑌 ൌ 𝑧௞ሽ ൌ ෍
ሺ௜ , ௝ ሻ ∈ ஺ ೖ

𝑃ሼ𝑋 ൌ 𝑥௜,𝑌 ൌ 𝑦௝ሽ

𝐸ሾ𝑋 ൅ 𝑌ሿ ൌ ෍
௞

෍
ሺ௜ , ௝ ሻ ∈ ஺ ೖ

ሺ𝑥௜ ൅ 𝑦௝ሻ𝑃ቄ𝑋 ൌ 𝑥௜,𝑌 ൌ 𝑦௝ቅ

𝐸ሾ𝑋 ൅ 𝑌ሿ ൌ ෍
௜

෍
௝
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𝑃ሺ𝑋 ൌ 𝑥௜ሻ ൌ ෍
௝

𝑃ሺ𝑋 ൌ 𝑥௜,𝑌 ൌ 𝑦௝ሻ,
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௝

𝑃ሺ𝑋 ൌ 𝑥௜,𝑌 ൌ 𝑦௝ሻ,

𝐸ሾ𝑋 ൅ 𝑌ሿ ൌ 𝐸ሾ𝑋ሿ ൅ 𝐸ሾ𝑌ሿ

4.1. Suppose that the random variable  is equal to the number of hits

obtained by a certain baseball player in his next 3 at bats. If

, and , find .

4.2. Suppose that  takes on one of the values 0, 1, and 2. If for some

constant , find .

4.3. A coin that when flipped comes up heads with probability  is

flipped until either heads or tails has occurred twice. Find the expected

number of flips.

4.4. A certain community is composed of  families,  of which have 

𝑋

𝑃ሼ𝑋 ൌ 1ሽ ൌ . 3,𝑃ሼ𝑋 ൌ 2ሽ ൌ . 2 𝑃ሼ𝑋 ൌ 0ሽ ൌ 3𝑃ሼ𝑋 ൌ 3ሽ 𝐸ሾ𝑋ሿ

𝑋
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𝑝
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children,  If one of the families is randomly chosen, let 

denote the number of children in that family. If one of the 

children is randomly chosen, let  denote the total number of children

in the family of that child. Show that .

4.5. Suppose that . If , find

.

4.6. There are 2 coins in a bin. When one of them is flipped, it lands on

heads with probability .6, and when the other is flipped, it lands on

heads with probability .3. One of these coins is to be randomly chosen

and then flipped. Without knowing which coin is chosen, you can bet

any amount up to $10, and you then either win that amount if the coin

comes up heads or lose it if it comes up tails. Suppose, however, that

an insider is willing to sell you, for an amount , the information as to

which coin was selected. What is your expected payoff if you buy this

information? Note that if you buy it and then bet , you will end up

either winning  or  (that is, losing  in the latter case).

Also, for what values of  does it pay to purchase the information?

4.7. A philanthropist writes a positive number  on a piece of red paper,

shows the paper to an impartial observer, and then turns it face down

on the table. The observer then flips a fair coin. If it shows heads, she

writes the value  and, if tails, the value , on a piece of blue paper,

which she then turns face down on the table. Without knowing either

the value  or the result of the coin flip, you have the option of turning

over either the red or the blue piece of paper. After doing so and

observing the number written on that paper, you may elect to receive

as a reward either that amount or the (unknown) amount written on the

other piece of paper. For instance, if you elect to turn over the blue

paper and observe the value 100, then you can elect either to accept

100 as your reward or to take the amount (either 200 or 50) on the red

paper. Suppose that you would like your expected reward to be large.

a. Argue that there is no reason to turn over the red paper first,

because if you do so, then no matter what value you observe, it

is always better to switch to the blue paper.

b. Let  be a fixed nonnegative value, and consider the following

strategy: Turn over the blue paper, and if its value is at least ,

then accept that amount. If it is less than , then switch to the

red paper. Let  denote the reward obtained if the

philanthropist writes the amount  and you employ this strategy.
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Find . Note that  is the expected reward if the

philanthropist writes the amount  when you employ the strategy

of always choosing the blue paper.

4.8. Let , represent a binomial random variable with parameters

 and . Argue that

Hint: The number of successes less than or equal to  is equivalent to

what statement about the number of failures?

4.9. If  is a binomial random variable with expected value 6 and

variance 2.4, find .

4.10. An urn contains  balls numbered 1 through . If you withdraw 

balls randomly in sequence, each time replacing the ball selected

previously, find , where  is the maximum of the 

chosen numbers.

Hint: First find .

4.11. Teams  and  play a series of games, with the first team to win 3

games being declared the winner of the series. Suppose that team 

independently wins each game with probability . Find the conditional

probability that team  wins

a. the series given that it wins the first game;

b. the first game given that it wins the series.

4.12. A local soccer team has 5 more games left to play. If it wins its

game this weekend, then it will play its final 4 games in the upper

bracket of its league, and if it loses, then it will play its final games in

the lower bracket. If it plays in the upper bracket, then it will

independently win each of its games in this bracket with probability .4,

and if it plays in the lower bracket, then it will independently win each of

its games with probability .7. If the probability that the team wins its

game this weekend is .5, what is the probability that it wins at least 3 of

its final 4 games?

4.13. Each of the members of a 7-judge panel independently makes a

correct decision with probability . If the panel’s decision is made by

majority rule, what is the probability that the panel makes the correct

decision? Given that  of the judges agreed, what is the probability that

the panel made the correct decision?

4.14. On average, 5.2 hurricanes hit a certain region in a year. What is

the probability that there will be 3 or fewer hurricanes hitting this year?

4.15. The number of eggs laid on a tree leaf by an insect of a certain

𝐸ൣ𝑅௬ሺ𝑥ሻ൧ 𝐸ሾ𝑅଴ሺ𝑥ሻሿ

𝑥
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type is a Poisson random variable with parameter . However, such a

random variable can be observed only if it is positive, since if it is 0,

then we cannot know that such an insect was on the leaf. If we let 

denote the observed number of eggs, then

where  is Poisson with parameter . Find .

4.16. Each of  boys and  girls, independently and randomly, chooses

a member of the other sex. If a boy and girl choose each other, they

become a couple. Number the girls, and let  be the event that girl

number  is part of a couple. Let  be the

probability that no couples are formed.

a. What is ?

b. What is 

c. When  is large, approximate .

d. When  is large, approximate , the probability that exactly 

couples are formed.

e. Use the inclusion—exclusion identity to evaluate 

4.17. A total of  people, consisting of  married couples, are

randomly divided into  pairs. Arbitrarily number the women, and let 

denote the event that woman  is paired with her husband.

a. Find .

b. For , find 

c. When  is large, approximate the probability that no wife is

paired with her husband.

d. If each pairing must consist of a man and a woman, what does

the problem reduce to?

4.18. A casino patron will continue to make $5 bets on red in roulette

until she has won 4 of these bets.

a. What is the probability that she places a total of 9 bets?

b. What are her expected winnings when she stops?

Remark: On each bet, she will either win $5 with probability 

or lose $5 with probability .

4.19. When three friends go for coffee, they decide who will pay the

check by each flipping a coin and then letting the “odd person” pay. If

all three flips produce the same result (so that there is no odd person),

then they make a second round of flips, and they continue to do so until

𝜆

𝑌
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there is an odd person. What is the probability that

a. exactly 3 rounds of flips are made?

b. more than 4 rounds are needed?

4.20. Show that if  is a geometric random variable with parameter ,

then

Hint: You will need to evaluate an expression of the form . To

do so, write , and then interchange the sum and the

integral.

4.21. Suppose that

a. Show that  is a Bernoulli random variable.

b. Find Var .

4.22. Each game you play is a win with probability . You plan to play 5

games, but if you win the fifth game, then you will keep on playing until

you lose.

a. Find the expected number of games that you play.

b. Find the expected number of games that you lose.

4.23. Balls are randomly withdrawn, one at a time without replacement,

from an urn that initially has  white and  black balls. Find the

probability that  white balls are drawn before  black balls,

.

4.24. Ten balls are to be distributed among 5 urns, with each ball going

into urn  with probability  Let  denote the number of

balls that go into urn . Assume that events corresponding to the

locations of different balls are independent.

a. What type of random variable is  Be as specific as possible.

b. For , what type of random variable is 

c. Find .

4.25. For the match problem (Example 5m  in Chapter 2 ), find

𝑋 𝑝
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െ𝑝 logሺ𝑝ሻ
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a. the expected number of matches.

b. the variance of the number of matches.

4.26. Let  be the probability that a geometric random variable  with

parameter  is an even number.

a. Find  by using the identity .

b. Find  by conditioning on whether  or 

4.27. Two teams will play a series of games, with the winner being the

first team to win a total of  games. Suppose that, independently of

earlier results, team  wins each game it plays with probability ,

. Let  denote the number of games that are played.

a. Show that  with equality only when 

.

b. Give an intuitive explanation for why equality results when

.

Hint: Consider what needs to be true in order for the number of

games to be either  or .

c. If , find the probability that the team that wins the first

game wins the series.

4.28. An urn has  white and  black balls. Balls are randomly

withdrawn, without replacement, until a total of  white balls have

been withdrawn. The random variable  equal to the total number of

balls that are withdrawn is said to be a negative hypergeometric

random variable.

a. Explain how such a random variable differs from a negative

binomial random variable.

b. Find 

Hint for (b): In order for  to happen, what must be the results of

the first  withdrawals?

4.29. There are  coins which when flipped come up heads,

respectively, with probabilities , , . One of these coins is

randomly chosen and continually flipped.

a. Find the probability that there are a total of  heads in the first 

flips.

b. Find the probability that the first head occurs on flip .

4.30. If  is a binomial random variable with parameters  and , what

type of random variable is .
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5.1 Introduction

5.2 Expectation and Variance of Continuous Random Variables

5.3 The Uniform Random Variable

5.4 Normal Random Variables

5.5 Exponential Random Variables

5.6 Other Continuous Distributions

5.7 The Distribution of a Function of a Random Variable

In Chapter 4 , we considered discrete random variable—that is, random variables

whose set of possible values is either finite or countably infinite. However, there also

exist random variables whose set of possible values is uncountable. Two examples

4.31. Let  be the  smallest number in a random sample of  of the

numbers . Find the probability mass function of .

4.32. Balls are randomly removed from an urn consisting of  red and

 blue balls. Let  denote the number of balls that have to be removed

until a total of  red balls have been removed.  is said to be a negative

hypergeometric random variable.

a. Find the probability mass function of .

b. Find the probability mass function of , equal to the number of

balls that have to be removed until either  red balls or  blue

balls have been removed.

c. Find the probability mass function of , equal to the number of

balls that have to be removed until both at least  red balls and

at least  blue balls have been removed.

d. Find the probability that  red balls are removed before  blue

balls have been removed.

𝑋 𝑖௧௛ 𝑛

1, …,𝑛 ൅𝑚 𝑋

𝑛

𝑚 𝑋

𝑟 𝑋

𝑋

𝑉

𝑟 𝑠

𝑍

𝑟

𝑠

𝑟 𝑠
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are the time that a train arrives at a specified stop and the lifetime of a transistor. Let

 be such a random variable. We say that  is a continuous † random variable if

there exists a nonnegative function  defined for all real  having the

property that for any set  of real numbers, ‡

† Sometimes called absolutely continuous.

 Actually, for technical reasons, Equation (1.1)  is true only for the

measurable sets  which, fortunately, include all sets of practical

interest.

The function  is called the probability density function of the random variable 

(See Figure 5.1 .)

Figure 5.1 Probability density function 

In words, Equation (1.1)  states that the probability that  will be in  may be

obtained by integrating the probability density function over the set  Since  must

assume some value,  must satisfy

𝑋 𝑋

𝑓, 𝑥 ∈ ሺ െ ∞,∞ሻ,

𝐵

𝑃ሼ𝑋 ∈ 𝐵ሽ ൌ ඲

஻

𝑓ሺ𝑥ሻ𝑑𝑥

(1.1)

‡

𝐵,

𝑓 𝑋 .

𝑓 .

𝑋 𝐵

𝐵 . 𝑋

𝑓
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All probability statements about  can be answered in terms of  For instance, from

Equation (1.1) , letting  we obtain

If we let  in Equation (1.2) , we get

In words, this equation states that the probability that a continuous random variable

will assume any fixed value is zero. Hence, for a continuous random variable,

Example 1a

Suppose that  is a continuous random variable whose probability density

function is given by

a. What is the value of 

b. Find 

Solution

a. Since  is a probability density function, we must have 

implying that

1 ൌ 𝑃ሼ𝑋 ∈ ሺ െ ∞,∞ሻሽ ൌ ඲
െஶ

ஶ

𝑓ሺ𝑥ሻ 𝑑𝑥

𝑋 𝑓 .

𝐵 ൌ ሾ𝑎,𝑏ሿ,

𝑃ሼ𝑎 ൑ 𝑋 ൑ 𝑏ሽ ൌ ඲

௔

௕

𝑓ሺ𝑥ሻ 𝑑𝑥

(1.2)

𝑎 ൌ 𝑏

𝑃ሼ𝑋 ൌ 𝑎ሽ ൌ ඲

௔

௔

𝑓ሺ𝑥ሻ 𝑑𝑥 ൌ 0

𝑃ሼ𝑋 ൏ 𝑎ሽ ൌ 𝑃ሼ𝑋 ൑ 𝑎ሽ ൌ 𝐹ሺ𝑎ሻ ൌ ඲
െஶ

௔

𝑓ሺ𝑥ሻ 𝑑𝑥

𝑋

𝑓ሺ𝑥ሻ ൌ ൝
𝐶ሺ4𝑥 െ 2𝑥ଶሻ 0 ൏ 𝑥 ൏ 2

0 otherwise

𝐶?

𝑃ሼ𝑋 ൐ 1ሽ.

𝑓 ඲
െஶ

ஶ

𝑓ሺ𝑥ሻ 𝑑𝑥 ൌ 1,

𝐶඲

଴

ଶ

ሺ4𝑥 െ 2𝑥ଶሻ 𝑑𝑥 ൌ 1
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or

or

Hence,

b. 

Example 1b

The amount of time in hours that a computer functions before breaking down is a

continuous random variable with probability density function given by

What is the probability that

a. a computer will function between 50 and 150 hours before breaking

down?

b. it will function for fewer than 100 hours?

Solution

a. Since

we obtain

Hence, the probability that a computer will function between 50 and 150

hours before breaking down is given by

𝐶ቈ2𝑥ଶ െ
2𝑥ଷ

3
቉ ቤ
௫ൌ଴

௫ൌଶ

ൌ 1

𝐶 ൌ
3
8

𝑃ሼ𝑋 ൐ 1ሽ ൌ ඲

ଵ

ஶ

𝑓ሺ𝑥ሻ 𝑑𝑥 ൌ
3
8
඲

ଵ

ଶ

ሺ4𝑥 െ 2𝑥ଶሻ𝑑𝑥 ൌ
1
2

𝑓ሺ𝑥ሻ ൌ ቊ
𝜆𝑒െ௫/ଵ଴଴ 𝑥 ൒ 0

0 𝑥 ൏ 0

1 ൌ ඲
െஶ

ஶ

𝑓ሺ𝑥ሻ 𝑑𝑥 ൌ 𝜆඲

଴

ஶ

𝑒െ௫/ଵ଴଴ 𝑑𝑥

1 ൌ െ 𝜆ሺ100ሻ𝑒െ௫/ଵ଴଴ |
||
|଴

ஶ

ൌ 100𝜆 o𝑟 𝜆 ൌ
1

100

𝑃ሼ50 ൏ 𝑋 ൏ 150ሽ ൌ ඲

ହ଴

ଵହ଴

ଵ

ଵ଴଴
𝑒െ௫/ଵ଴଴ 𝑑𝑥 ൌ െ 𝑒െ௫/ଵ଴଴ቤ

ହ଴

ଵହ଴

ൌ 𝑒െଵ/ଶ െ 𝑒െଷ/ଶ ൎ .383
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b. Similarly,

In other words, approximately 63.2 percent of the time, a computer will fail before

registering 100 hours of use.

Example 1c

The lifetime in hours of a certain kind of radio tube is a random variable having a

probability density function given by

What is the probability that exactly 2 of 5 such tubes in a radio set will have to be

replaced within the first 150 hours of operation? Assume that the events

 that the ith such tube will have to be replaced within this time are

independent.

Solution

From the statement of the problem, we have

Hence, from the independence of the events  it follows that the desired

probability is

The relationship between the cumulative distribution  and the probability density  is

expressed by

𝑃ሼ𝑋 ൏ 100ሽ ൌ ඲

଴

ଵ଴଴
1

100
𝑒െ௫/ଵ଴଴ 𝑑𝑥 ൌ െ 𝑒െ௫/ଵ଴଴ቤ

଴

ଵ଴଴

ൌ 1 െ 𝑒െଵ ൎ .632

𝑓ሺ𝑥ሻ ൌ ቐ
0 𝑥 ൑ 100
ଵ଴଴

௫మ
𝑥 ൐ 100

𝐸௜, 𝑖 ൌ 1,2,3,4,5,

𝑃ሺ𝐸௜ሻ ൌ ඲

଴

ଵହ଴

𝑓ሺ𝑥ሻ 𝑑𝑥

ൌ 100඲

ଵ଴଴

ଵହ଴

𝑥െଶ 𝑑𝑥

ൌ
1
3

𝐸௜,

൭
5

2
൱ቆ

1
3
ቇ
ଶ

ቆ
2
3
ቇ
ଷ

ൌ
80

243

𝐹 𝑓
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Differentiating both sides of the preceding equation yields

That is, the density is the derivative of the cumulative distribution function. A

somewhat more intuitive interpretation of the density function may be obtained from

Equation (1.2)  as follows:

when  is small and when  is continuous at  In other words, the probability

that  will be contained in an interval of length  around the point  is approximately

 From this result, we see that  is a measure of how likely it is that the

random variable will be near 

Example 1d

If  is continuous with distribution function  and density function  find the

density function of 

Solution

We will determine  in two ways. The first way is to derive, and then

differentiate, the distribution function of 

Differentiation gives

Another way to determine  is to note that

𝐹ሺ𝑎ሻ ൌ 𝑃ሼ𝑋 ∈ ሺ െ∞,𝑎ሿሽ ൌ ඲
െஶ

௔

𝑓ሺ𝑥ሻ 𝑑𝑥

𝑑
𝑑𝑎

𝐹ሺ𝑎ሻ ൌ 𝑓ሺ𝑎ሻ

𝑃൜𝑎 െ
𝜀
2
൑ 𝑋 ൑ 𝑎 ൅

𝜀
2
ൠ ൌ ඲

௔െఌ/ଶ

௔൅ఌ/ଶ

𝑓ሺ𝑥ሻ 𝑑𝑥 ൎ 𝜀𝑓ሺ𝑎ሻ

𝜀 𝑓ሺ ⋅ ሻ 𝑥 ൌ 𝑎.

𝑋 𝜀 𝑎

𝜀𝑓ሺ𝑎ሻ. 𝑓ሺ𝑎ሻ

𝑎 .

𝑋 𝐹௑ 𝑓௑,

𝑌 ൌ 2𝑋.

𝑓௒
𝑌:

𝐹௒ሺ𝑎ሻ ൌ 𝑃ሼ𝑌 ൑ 𝑎ሽ

ൌ 𝑃ሼ2𝑋 ൑ 𝑎ሽ

ൌ 𝑃ሼ𝑋 ൑ 𝑎/2ሽ

ൌ 𝐹௑ሺ𝑎/2ሻ

𝑓௒ሺ𝑎ሻ ൌ
1
2
𝑓௑ሺ𝑎/2ሻ

𝑓௒
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Dividing through by  gives the same result as before.

In Chapter 4 , we defined the expected value of a discrete random variable  by

If  is a continuous random variable having probability density function  then,

because

it is easy to see that the analogous definition is to define the expected value of  by

Example 2a

Find  when the density function of  is

Solution

𝜀𝑓௒ሺ𝑎ሻ ൎ 𝑃ቄ𝑎 െ
ఌ

ଶ
൑ 𝑌 ൑ 𝑎 ൅

ఌ

ଶ
ቅ

ൌ 𝑃ቄ𝑎 െ
ఌ

ଶ
൑ 2𝑋 ൑ 𝑎 ൅

ఌ

ଶ
ቅ

ൌ 𝑃ቄ
௔

ଶ
െ

ఌ

ସ
൑ 𝑋 ൑

௔

ଶ
൅

ఌ

ସ
ቅ

ൎ
ఌ

ଶ
𝑓௑ሺ𝑎/2ሻ

𝜀

𝑋

𝐸ሾ𝑋ሿ ൌ ෍
௫

𝑥𝑃ሼ𝑋 ൌ 𝑥ሽ

𝑋 𝑓ሺ𝑥ሻ,

𝑓ሺ𝑥ሻ 𝑑𝑥 ൎ 𝑃ሼ𝑥 ൑ 𝑋 ൑ 𝑥 ൅ 𝑑𝑥ሽ for 𝑑𝑥 small

𝑋

𝐸ሾ𝑋ሿ ൌ ඲
െஶ

ஶ

𝑥𝑓ሺ𝑥ሻ 𝑑𝑥

𝐸ሾ𝑋ሿ 𝑋

𝑓ሺ𝑥ሻ ൌ ቊ
2𝑥 if 0 ൑ 𝑥 ൑ 1

0 otherwise

312 of 848



Example 2b

The density function of  is given by

Find 

Solution

Let  We start by determining  the cumulative distribution function of 

Now, for 

By differentiating  we can conclude that the probability density function of 

is given by

Hence,

𝐸ሾ𝑋ሿ ൌ ඲𝑥𝑓ሺ𝑥ሻ 𝑑𝑥

ൌ ඲

଴

ଵ

2𝑥ଶ 𝑑𝑥

ൌ
ଶ

ଷ

𝑋

𝑓ሺ𝑥ሻ ൌ ቊ
1 if 0 ൑ 𝑥 ൑ 1

0 otherwise

𝐸ሾ𝑒௑ሿ.

𝑌 ൌ 𝑒௑. 𝐹௒, 𝑌 .

1 ൑ 𝑥 ൑ 𝑒,

𝐹௒ሺ𝑥ሻ ൌ 𝑃ሼ𝑌 ൑ 𝑥ሽ

ൌ 𝑃ሼ𝑒௑ ൑ 𝑥ሽ

ൌ 𝑃ሼ𝑋 ൑ logሺ𝑥ሻሽ

ൌ ඲

଴

୪୭୥ሺ௫ሻ

𝑓ሺ𝑦ሻ𝑑𝑦

ൌ logሺ𝑥ሻ

𝐹௒ሺ𝑥ሻ, 𝑌

𝑓௒ሺ𝑥ሻ ൌ
1
𝑥
  1 ൑ 𝑥 ൑ 𝑒

313 of 848



Although the method employed in Example 2b  to compute the expected value of

a function of  is always applicable, there is, as in the discrete case, an alternative

way of proceeding. The following is a direct analog of Proposition 4.1  of Chapter

4 .

Proposition 2.1

If  is a continuous random variable with probability density function  then,

for any real-valued function 

An application of Proposition 2.1  to Example 2b  yields

which is in accord with the result obtained in that example.

The proof of Proposition 2.1  is more involved than that of its discrete random

variable analog. We will present such a proof under the provision that the random

variable  is nonnegative. (The general proof, which follows the argument in

the case we present, is indicated in Theoretical Exercises 5.2  and 5.3 .)

We will need the following lemma, which is of independent interest.

Lemma 2.1

For a nonnegative random variable 

𝐸ሾ𝑒௑ሿ ൌ 𝐸ሾ𝑌ሿ ൌ

െஶ

ஶ

𝑥𝑓௒ሺ𝑥ሻ 𝑑𝑥

ൌ

ଵ

௘

𝑑𝑥

ൌ 𝑒 െ 1

𝑋

𝑋 𝑓ሺ𝑥ሻ,

𝑔,

𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ ඲
െஶ

ஶ

𝑔ሺ𝑥ሻ𝑓ሺ𝑥ሻ 𝑑𝑥

𝐸ሾ𝑒௑ሿ ൌ ඲

଴

ଵ

𝑒௫ 𝑑𝑥  since 𝑓ሺ𝑥ሻ ൌ 1, 0 ൏ 𝑥 ൏ 1

ൌ 𝑒 െ 1

𝑔ሺ𝑋ሻ

𝑌,
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Proof We present a proof when  is a continuous random variable with

probability density function  We have

where we have used the fact that  Interchanging the

order of integration in the preceding equation yields

Proof of Proposition 2.1 From Lemma 2.1 , for any function  for which 

which completes the proof.

Example 2c

A stick of length 1 is split at a point  having density function 

𝐸ሾ𝑌ሿ ൌ ඲

଴

ஶ

𝑃ሼ𝑌 ൐ 𝑦ሽ 𝑑𝑦

𝑌

𝑓௒.

඲

଴

ஶ

𝑃ሼ𝑌 ൐ 𝑦ሽ 𝑑𝑦 ൌ ඲

଴

ஶ

඲

௬

ஶ

𝑓௒ሺ𝑥ሻ 𝑑𝑥 𝑑𝑦

𝑃ሼ𝑌 ൐ 𝑦ሽ ൌ ඲

௬

ஶ

𝑓௒ሺ𝑥ሻ 𝑑𝑥.

඲

଴

ஶ

𝑃ሼ𝑌 ൐ 𝑦ሽ 𝑑𝑦 ൌ ඲

଴

ஶ

ቌ඲

଴

௫

𝑑𝑦ቍ𝑓௒ሺ𝑥ሻ 𝑑𝑥

ൌ ඲

଴

ஶ

𝑥𝑓௒ሺ𝑥ሻ 𝑑𝑥

ൌ 𝐸ሾ𝑌ሿ

𝑔 𝑔ሺ𝑥ሻ ൒ 0
,

𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ ඲

଴

ஶ

𝑃ሼ𝑔ሺ𝑋ሻ ൐ 𝑦ሽ 𝑑𝑦

ൌ ඲

଴

ஶ

඲

௫:௚ሺ௫ሻவ௬

𝑓ሺ𝑥ሻ 𝑑𝑥 𝑑𝑦

ൌ ඲

௫:௚ሺ௫ሻவ଴

඲

଴

௚ሺ௫ሻ

𝑑𝑦 𝑓ሺ𝑥ሻ 𝑑𝑥

ൌ ඲

௫:௚ሺ௫ሻவ଴

𝑔ሺ𝑥ሻ𝑓ሺ𝑥ሻ 𝑑𝑥

𝑈 𝑓ሺ𝑢ሻ ൌ 1, 0 ൏ 𝑢 ൏ 1.
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Determine the expected length of the piece that contains the point 

Solution

Let  denote the length of the substick that contains the point  and note

that

(See Figure 5.2 .) Hence, from Proposition 2.1 ,

Figure 5.2 Substick containing point  (a)  (b) 

Since  is maximized when  it is interesting to note that the

expected length of the substick containing the point  is maximized when  is the

midpoint of the original stick.

Example 2d

Suppose that if you are  minutes early for an appointment, then you incur the

cost cs, and if you are  minutes late, then you incur the cost ks. Suppose also

that the travel time from where you presently are to the location of your

appointment is a continuous random variable having probability density function

 Determine the time at which you should depart if you want to minimize your

expected cost.

𝑝, 0 ൑ 𝑝 ൑ 1.

𝐿௣ሺ𝑈ሻ 𝑝,

𝐿௣ሺ𝑈ሻ ൌ ቊ
1 െ 𝑈 𝑈 ൏ 𝑝

𝑈 𝑈 ൐ 𝑝

𝐸ሾ𝐿௣ሺ𝑈ሻሿ ൌ ඲

଴

ଵ

𝐿௣ሺ𝑢ሻ𝑑𝑢

ൌ ඲

଴

௣

ሺ1 െ 𝑢ሻ𝑑𝑢 ൅඲

௣

ଵ

𝑢𝑑𝑢

ൌ
1
2
െ
ሺ1 െ 𝑝ሻଶ

2
൅

1
2
െ
𝑝ଶ

2

ൌ
1
2
൅ 𝑝ሺ1 െ 𝑝ሻ

𝑝: 𝑈 ൏ 𝑝; 𝑈 ൐ 𝑝.

𝑝ሺ1 െ 𝑝ሻ 𝑝 ൌ
1
2

,

𝑝 𝑝

𝑠

𝑠

𝑓 .
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Solution

Let  denote the travel time. If you leave  minutes before your appointment, then

your cost—call it —is given by

Therefore,

The value of  that minimizes  can now be obtained by calculus.

Differentiation yields

Equating the rightmost side to zero shows that the minimal expected cost is

obtained when you leave  minutes before your appointment, where  satisfies

As in Chapter 4 , we can use Proposition 2.1  to show the following.

Corollary 2.1

If  and  are constants, then

The proof of Corollary 2.1  for a continuous random variable  is the same as

the one given for a discrete random variable. The only modification is that the

sum is replaced by an integral and the probability mass function by a probability

density function.

𝑋 𝑡

𝐶௧ሺ𝑋ሻ

𝐶௧ሺ𝑋ሻ ൌ ൝
𝑐ሺ𝑡 െ 𝑋ሻ if  𝑋 ൑ 𝑡

𝑘ሺ𝑋 െ 𝑡ሻ if  𝑋 ൒ 𝑡

𝐸ሾ𝐶௧ሺ𝑋ሻሿ ൌ ඲

଴

ஶ

𝐶௧ሺ𝑥ሻ𝑓ሺ𝑥ሻ 𝑑𝑥

ൌ ඲

଴

௧

𝑐ሺ𝑡 െ 𝑥ሻ𝑓ሺ𝑥ሻ 𝑑𝑥 ൅඲

௧

ஶ

𝑘ሺ𝑥 െ 𝑡ሻ𝑓ሺ𝑥ሻ 𝑑𝑥

ൌ 𝑐𝑡඲

଴

௧

𝑓ሺ𝑥ሻ 𝑑𝑥 െ 𝑐඲

଴

௧

𝑥𝑓ሺ𝑥ሻ 𝑑𝑥 ൅ 𝑘඲

௧

ஶ

𝑥𝑓ሺ𝑥ሻ 𝑑𝑥 െ 𝑘𝑡඲

௧

ஶ

𝑓ሺ𝑥ሻ 𝑑𝑥

𝑡 𝐸ሾ𝐶௧ሺ𝑋ሻሿ

ௗ

ௗ௧
𝐸ሾ𝐶௧ሺ𝑋ሻሿ ൌ 𝑐𝑡 𝑓ሺ𝑡ሻ ൅ 𝑐𝐹ሺ𝑡ሻ െ 𝑐𝑡 𝑓ሺ𝑡ሻ െ 𝑘𝑡 𝑓ሺ𝑡ሻ ൅ 𝑘𝑡 𝑓ሺ𝑡ሻ െ 𝑘ሾ1 െ 𝐹ሺ𝑡ሻሿ

ൌ ሺ𝑘 ൅ 𝑐ሻ𝐹ሺ𝑡ሻ െ 𝑘

𝑡* 𝑡*

𝐹ሺ𝑡*ሻ ൌ
𝑘

𝑘 ൅ 𝑐

𝑎 𝑏

𝐸ሾ𝑎𝑋 ൅ 𝑏ሿ ൌ 𝑎𝐸ሾ𝑋ሿ ൅ 𝑏

𝑋
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The variance of a continuous random variable is defined exactly as it is for a

discrete random variable, namely, if  is a random variable with expected value 

 then the variance of  is defined (for any type of random variable) by

The alternative formula,

is established in a manner similar to its counterpart in the discrete case.

Example 2e

Find Var  for  as given in Example 2a .

Solution

We first compute 

Hence, since  we obtain

It can be shown that, for constants  and 

The proof mimics the one given for discrete random variables.

There are several important classes of continuous random variables that appear

frequently in applications of probability; the next few sections are devoted to a study

of some of them.

𝑋 𝜇

, 𝑋

Varሺ𝑋ሻ ൌ 𝐸ሾሺ𝑋 െ 𝜇ሻଶሿ

Varሺ𝑋ሻ ൌ 𝐸ሾ𝑋ଶሿ െ ሺ𝐸ሾ𝑋ሿሻଶ

ሺ𝑋ሻ 𝑋

𝐸ሾ𝑋ଶሿ.

𝐸ሾ𝑋ଶሿ ൌ ඲
െஶ

ஶ

𝑥ଶ𝑓ሺ𝑥ሻ 𝑑𝑥

ൌ ඲

଴

ଵ

2𝑥ଷ 𝑑𝑥

ൌ
1
2

𝐸ሾ𝑋ሿ ൌ
2
3

,

Varሺ𝑋ሻ ൌ
1
2
െ ቆ

2
3
ቇ
ଶ

ൌ
1

18

𝑎 𝑏,

Varሺ𝑎𝑋 ൅ 𝑏ሻ ൌ 𝑎ଶVarሺ𝑋ሻ
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A random variable is said to be uniformly distributed over the interval (0, 1) if its

probability density function is given by

Note that Equation (3.1)  is a density function, since  and

 Because  only when  it follows that 

must assume a value in interval (0, 1). Also, since  is constant for  is

just as likely to be near any value in (0, 1) as it is to be near any other value. To

verify this statement, note that for any 

In other words, the probability that  is in any particular subinterval of (0, 1) equals

the length of that subinterval.

In general, we say that  is a uniform random variable on the interval  if the

probability density function of  is given by

Since  it follows from Equation (3.2)  that the distribution

function of a uniform random variable on the interval  is given by

Figure 5.3  presents a graph of  and 

𝑓ሺ𝑥ሻ ൌ ቊ
1 0 ൏ 𝑥 ൏ 1

0 otherwise

(3.1)

𝑓ሺ𝑥ሻ ൒ 0

඲
െஶ

ஶ

𝑓ሺ𝑥ሻ 𝑑𝑥 ൌ ඲

଴

ଵ

𝑑𝑥 ൌ 1. 𝑓ሺ𝑥ሻ ൐ 0 𝑥 ∈ ሺ0,1ሻ, 𝑋

𝑓ሺ𝑥ሻ 𝑥 ∈ ሺ0,1ሻ, 𝑋

0 ൏ 𝑎 ൏ 𝑏 ൏ 1,

𝑃ሼ𝑎 ൑ 𝑋 ൑ 𝑏ሽ ൌ ඲

௔

௕

𝑓ሺ𝑥ሻ 𝑑𝑥 ൌ 𝑏 െ 𝑎

𝑋

𝑋 ሺ𝛼, 𝛽ሻ

𝑋

𝑓ሺ𝑥ሻ ൌ ൝
ଵ

ఉെఈ
if  𝛼 ൏ 𝑥 ൏ 𝛽

0 otherwise

(3.2)

𝐹ሺ𝑎ሻ ൌ ඲
െஶ

௔

𝑓ሺ𝑥ሻ 𝑑𝑥,

ሺ𝛼, 𝛽ሻ

𝐹ሺ𝑎ሻ ൌ

⎧

⎨
⎩

⎪

⎪

0 𝑎 ൑ 𝛼
௔െఈ

ఉെఈ
𝛼 ൏ 𝑎 ൏ 𝛽

1 𝑎 ൒ 𝛽

𝑓ሺ𝑎ሻ 𝐹ሺ𝑎ሻ.
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Figure 5.3 Graph of (a)  and (b)  for a uniform  random variable.

Example 3a

Let  be uniformly distributed over  Find (a) [ ] and (b) Var

Solution

a. 

𝑓ሺ𝑎ሻ 𝐹ሺ𝑎ሻ ሺ𝛼, 𝛽ሻ

𝑋 ሺ𝛼, 𝛽ሻ. 𝐸 𝑋 ሺ𝑋ሻ.

𝐸ሾ𝑋ሿ ൌ ඲
െஶ

ஶ

𝑥𝑓ሺ𝑥ሻ 𝑑𝑥

ൌ ඲

ఈ

ఉ
𝑥

𝛽 െ 𝛼
𝑑𝑥

ൌ
𝛽ଶ െ 𝛼ଶ

2ሺ𝛽 െ 𝛼ሻ

ൌ
𝛽 ൅ 𝛼

2
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In words, the expected value of a random variable that is uniformly

distributed over some interval is equal to the midpoint of that interval.

b. To find Var  we first calculate 

Hence,

Therefore, the variance of a random variable that is uniformly distributed

over some interval is the square of the length of that interval divided by 12.

Example 3b

If  is uniformly distributed over (0, 10), calculate the probability that (a) 

(b)  and (c) 

Solution

a. 

b. 

c. 

Example 3c

Buses arrive at a specified stop at 15-minute intervals starting at 7 ඉ.ඕ. That is,

they arrive at 7, 7:15, 7:30, 7:45, and so on. If a passenger arrives at the stop at

a time that is uniformly distributed between 7 and 7:30, find the probability that he

waits

a. less than 5 minutes for a bus;

ሺ𝑋ሻ, 𝐸ሾ𝑋ଶሿ.

𝐸ሾ𝑋ଶሿ ൌ ඲

ఈ

ఉ
1

𝛽 െ 𝛼
𝑥ଶ 𝑑𝑥

ൌ
𝛽ଷ െ 𝛼ଷ

3ሺ𝛽 െ 𝛼ሻ

ൌ
𝛽ଶ ൅ 𝛼𝛽 ൅ 𝛼ଶ

3

Varሺ𝑋ሻ ൌ
𝛽ଶ ൅ 𝛼𝛽 ൅ 𝛼ଶ

3
െ
ሺ𝛼 ൅ 𝛽ሻଶ

4

ൌ
ሺ𝛽 െ 𝛼ሻଶ

12

𝑋 𝑋 ൏ 3,

𝑋 ൐ 6, 3 ൏ 𝑋 ൏ 8.

𝑃ሼ𝑋 ൏ 3ሽ ൌ ඲

଴

ଷ
1

10
𝑑𝑥 ൌ

3
10

𝑃ሼ𝑋 ൐ 6ሽ ൌ ඲

଺

ଵ଴
1

10
𝑑𝑥 ൌ

4
10

𝑃ሼ3 ൏ 𝑋 ൏ 8ሽ ൌ ඲

ଷ

଼
1

10
𝑑𝑥 ൌ

1
2
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b. more than 10 minutes for a bus.

Solution

Let  denote the number of minutes past 7 that the passenger arrives at the stop.

Since  is a uniform random variable over the interval (0, 30), it follows that the

passenger will have to wait less than 5 minutes if (and only if) he arrives between

7:10 and 7:15 or between 7:25 and 7:30. Hence, the desired probability for part

(a) is

Similarly, he would have to wait more than 10 minutes if he arrives between 7

and 7:05 or between 7:15 and 7:20, so the probability for part (b) is

The next example was first considered by the French mathematician Joseph L. F.

Bertrand in 1889 and is often referred to as Bertrand’s paradox. It represents our

initial introduction to a subject commonly referred to as geometrical probability.

Example 3d

Consider a random chord of a circle. What is the probability that the length of the

chord will be greater than the side of the equilateral triangle inscribed in that

circle?

Solution

As stated, the problem is incapable of solution because it is not clear what is

meant by a random chord. To give meaning to this phrase, we shall reformulate

the problem in two distinct ways.

The first formulation is as follows: The position of the chord can be determined by

its distance from the center of the circle. This distance can vary between 0 and 

the radius of the circle. Now, the length of the chord will be greater than the side

of the equilateral triangle inscribed in the circle if the distance from the chord to

the center of the circle is less than /2. Hence, by assuming that a random chord

is a chord whose distance  from the center of the circle is uniformly distributed

between 0 and  we see that the probability that the length of the chord is

greater than the side of an inscribed equilateral triangle is

𝑋

𝑋

𝑃ሼ10 ൏ 𝑋 ൏ 15ሽ ൅ 𝑃ሼ25 ൏ 𝑋 ൏ 30ሽ ൌ ඲

ଵ଴

ଵହ
1

30
𝑑𝑥 ൅඲

ଶହ

ଷ଴
1

30
𝑑𝑥 ൌ

1
3

𝑃ሼ0 ൏ 𝑋 ൏ 5ሽ ൅ 𝑃ሼ15 ൏ 𝑋 ൏ 20ሽ ൌ
1
3

𝑟,

𝑟

𝐷

𝑟,
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For our second formulation of the problem, consider an arbitrary chord of the

circle; through one end of the chord, draw a tangent. The angle  between the

chord and the tangent, which can vary from  to  determines the position of

the chord. (See Figure 5.4 .) Furthermore, the length of the chord will be

greater than the side of the inscribed equilateral triangle if the angle  is between

 and  Hence, assuming that a random chord is a chord whose angle  is

uniformly distributed between  and  we see that the desired answer in this

formulation is

Figure 5.4

Note that random experiments could be performed in such a way that  or 

would be the correct probability. For instance, if a circular disk of radius  is

thrown on a table ruled with parallel lines a distance  apart, then one and only

one of these lines would cross the disk and form a chord. All distances from this

chord to the center of the disk would be equally likely, so that the desired

probability that the chord’s length will be greater than the side of an inscribed

equilateral triangle is  In contrast, if the experiment consisted of rotating a

needle freely about a point  on the edge (see Figure 5.4 ) of the circle, the

desired answer would be 

𝑃൜𝐷 ൏
𝑟
2
ൠ ൌ

𝑟/2
𝑟

ൌ
1
2

𝜃

0∘ 180∘,

𝜃

60∘ 120∘. 𝜃

0∘ 180∘,

𝑃ሼ60 ൏ 𝜃 ൏ 120ሽ ൌ
120 െ 60

180
ൌ

1
3

1
2

1
3

𝑟

2𝑟

1
2

.

𝐴
1
3

.
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We say that  is a normal random variable, or simply that  is normally distributed,

with parameters  and  if the density of  is given by

This density function is a bell-shaped curve that is symmetric about  (See Figure

5.5 .)

Figure 5.5 Normal density function: (a)  (b) arbitrary 

The normal distribution was introduced by the French mathematician Abraham

DeMoivre in 1733, who used it to approximate probabilities associated with binomial

random variables when the binomial parameter  is large. This result was later

extended by Laplace and others and is now encompassed in a probability theorem

known as the central limit theorem, which is discussed in Chapter 8 . The central

limit theorem, one of the two most important results in probability theory,† gives a

theoretical base to the often noted empirical observation that, in practice, many

random phenomena obey, at least approximately, a normal probability distribution.

Some examples of random phenomena obeying this behavior are the height of a

man or woman, the velocity in any direction of a molecule in gas, and the error made

in measuring a physical quantity.

𝑋 𝑋

𝜇 𝜎ଶ 𝑋

𝑓ሺ𝑥ሻ ൌ
1

2𝜋√ 𝜎
𝑒െሺ௫െఓሻ

మ/ଶఙమ  െ∞ ൏ 𝑥 ൏ ∞

𝜇 .

𝜇 ൌ 0, 𝜎 ൌ 1; 𝜇, 𝜎ଶ.

𝑛
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† The other is the strong law of large numbers.

To prove that  is indeed a probability density function, we need to show that

Making the substitution  we see that

Hence, we must show that

Toward this end, let  Then

We now evaluate the double integral by means of a change of variables to polar

coordinates. (That is, let  and ) Thus,

Hence,  and the result is proved.

𝑓ሺ𝑥ሻ

1

2𝜋√ 𝜎
඲
െஶ

ஶ

𝑒െሺ௫െఓሻ
మ/ଶఙమ 𝑑𝑥 ൌ 1

𝑦 ൌ ሺ𝑥 െ 𝜇ሻ/𝜎,

1

2𝜋√ 𝜎
඲
െஶ

ஶ

𝑒െሺ௫െఓሻ
మ/ଶఙమ 𝑑𝑥 ൌ

1

2𝜋√
඲
െஶ

ஶ

𝑒െ௬
మ/ଶ 𝑑𝑦

඲
െஶ

ஶ

𝑒െ௬
మ/ଶ 𝑑𝑦 ൌ 2𝜋√

𝐼 ൌ ඲
െஶ

ஶ

𝑒െ௬
మ/ଶ 𝑑𝑦.

𝐼ଶ ൌ ඲
െஶ

ஶ

𝑒െ௬
మ/ଶ 𝑑𝑦඲

െஶ

ஶ

𝑒െ௫
మ/ଶ 𝑑𝑥

ൌ ඲
െஶ

ஶ

඲
െஶ

ஶ

𝑒െሺ௬
మ൅௫మሻ/ଶ 𝑑𝑦 𝑑𝑥

𝑥 ൌ 𝑟 cos𝜃, 𝑦 ൌ 𝑟 sin𝜃, 𝑑𝑦 𝑑𝑥 ൌ 𝑟 𝑑𝜃 𝑑𝑟.

𝐼ଶ ൌ ඲

଴

ஶ

඲

଴

ଶగ

𝑒െ௥
మ/ଶ𝑟 𝑑𝜃 𝑑𝑟

ൌ 2𝜋඲

଴

ஶ

𝑟𝑒െ௥
మ/ଶ 𝑑𝑟

ൌ െ2𝜋𝑒െ௥
మ/ଶ|

|଴
ஶ

ൌ 2𝜋

𝐼 ൌ 2𝜋√ ,
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An important fact about normal random variables is that if  is normally distributed

with parameters  and  then  is normally distributed with parameters

 and  To prove this statement, suppose that  (The proof when 

is similar.) Let  denote the cumulative distribution function of  Then

where  is the cumulative distribution function of  By differentiation, the density

function of  is then

which shows that  is normal with parameters  and 

An important implication of the preceding result is that if  is normally distributed with

parameters  and  then  is normally distributed with parameters 

and  Such a random variable is said to be a standard, or a unit, normal random

variable.

We now show that the parameters  and  of a normal random variable represent,

respectively, its expected value and variance.

Example 4a

Find  and  when  is a normal random variable with parameters  and

Solution

Let us start by finding the mean and variance of the standard normal random

variable  We have

𝑋

𝜇 𝜎ଶ, 𝑌 ൌ 𝑎𝑋 ൅ 𝑏

𝑎𝜇 ൅ 𝑏 𝑎ଶ𝜎ଶ. 𝑎 ൐ 0. 𝑎 ൏ 0

𝐹௒ 𝑌 .

𝐹௒ሺ𝑥ሻ ൌ 𝑃ሼ𝑌 ൑ 𝑥ሽ

ൌ 𝑃ሼ𝑎𝑋 ൅ 𝑏 ൑ 𝑥ሽ

ൌ 𝑃ቄ𝑋 ൑
௫െ௕

௔
ቅ

ൌ 𝐹௑ቀ
௫െ௕

௔
ቁ

𝐹௑ 𝑋 .

𝑌

𝑓௒ሺ𝑥ሻ ൌ
1
𝑎
𝑓௑ቆ

𝑥 െ 𝑏
𝑎

ቇ

ൌ
1

2𝜋√ 𝑎𝜎
exp൝െቆ

𝑥 െ 𝑏
𝑎

െ 𝜇ቇ
ଶ

/2𝜎ଶൡ

ൌ
1

2𝜋√ 𝑎𝜎
expሼ െ ሺ𝑥 െ 𝑏 െ 𝑎𝜇ሻଶ/2ሺ𝑎𝜎ሻଶሽ

𝑌 𝑎𝜇 ൅ 𝑏 𝑎ଶ𝜎ଶ.

𝑋

𝜇 𝜎ଶ, 𝑍 ൌ ሺ𝑋 െ 𝜇ሻ/𝜎 0

1 .

𝜇 𝜎ଶ

𝐸ሾ𝑋ሿ Varሺ𝑋ሻ 𝑋 𝜇
𝜎ଶ.

𝑍 ൌ ሺ𝑋 െ 𝜇ሻ/𝜎.
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Thus,

Integration by parts (with  and  now gives

Because  the preceding yields the results

and

It is customary to denote the cumulative distribution function of a standard normal

random variable by  That is,

The values of  for nonnegative  are given in Table 5.1 . For negative values

of  can be obtained from the relationship

𝐸ሾ𝑍ሿ ൌ ඲
െஶ

ஶ

𝑥𝑓௓ሺ𝑥ሻ 𝑑𝑥

ൌ
ଵ

ଶగ√
඲
െஶ

ஶ

𝑥𝑒െ௫
మ/ଶ 𝑑𝑥

ൌ െ
ଵ

ଶగ√
𝑒െ௫

మ/ଶቚ
െஶ

ஶ

ൌ 0

Varሺ𝑍ሻ ൌ 𝐸ሾ𝑍ଶሿ

ൌ
ଵ

ଶగ√
඲
െஶ

ஶ

𝑥ଶ𝑒െ௫
మ/ଶ 𝑑𝑥

𝑢 ൌ 𝑥 𝑑𝑣 ൌ 𝑥𝑒െ௫
మ/ଶሻ

Varሺ𝑍ሻ ൌ
ଵ

ଶగ√
ቌെ𝑥𝑒െ௫

మ/ଶቤ
െஶ

ஶ

൅඲
െஶ

ஶ

𝑒െ௫
మ/ଶ 𝑑𝑥ቍ

ൌ
ଵ

ଶగ√
඲
െஶ

ஶ

𝑒െ௫
మ/ଶ 𝑑𝑥

ൌ 1

𝑋 ൌ 𝜇 ൅ 𝜎𝑍,

𝐸ሾ𝑋ሿ ൌ 𝜇 ൅ 𝜎𝐸ሾ𝑍ሿ ൌ 𝜇

Varሺ𝑋ሻ ൌ 𝜎ଶVarሺ𝑍ሻ ൌ 𝜎ଶ

Φ ሺ𝑥ሻ.

Φ ሺ𝑥ሻ ൌ
1

2𝜋√
඲
െஶ

௫

𝑒െ௬
మ/ଶ 𝑑𝑦

Φ ሺ𝑥ሻ 𝑥

𝑥, Φ ሺ𝑥ሻ
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Table 5.1 Area  Under the Standard Normal Curve to the Left of 

Φ ሺ െ 𝑥ሻ ൌ 1 െ Φ ሺ𝑥ሻ  െ∞ ൏ 𝑥 ൏ ∞

(4.1)

Φ ሺ𝑥ሻ 𝑋 .

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

𝑋
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The proof of Equation (4.1) , which follows from the symmetry of the standard

normal density, is left as an exercise. This equation states that if  is a standard

normal random variable, then

Since  is a standard normal random variable whenever  is normally

distributed with parameters  and  it follows that the distribution function of  can

be expressed as

Example 4b

If  is a normal random variable with parameters  and  find (a)

 (b)  (c) 

Solution

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

𝑋

𝑍

𝑃ሼ𝑍 ൑ െ 𝑥ሽ ൌ 𝑃ሼ𝑍 ൐ 𝑥ሽ  െ∞ ൏ 𝑥 ൏ ∞

𝑍 ൌ ሺ𝑋 െ 𝜇ሻ/𝜎 𝑋

𝜇 𝜎ଶ, 𝑋

𝐹௑ሺ𝑎ሻ ൌ 𝑃ሼ𝑋 ൑ 𝑎ሽ ൌ 𝑃ቆ
𝑋 െ 𝜇
𝜎

൑
𝑎 െ 𝜇
𝜎

ቇ ൌ Φ ൬
𝑎 െ 𝜇
𝜎

൰

𝑋 𝜇 ൌ 3 𝜎ଶ ൌ 9,

𝑃ሼ2 ൏ 𝑋 ൏ 5ሽ; 𝑃ሼ𝑋 ൐ 0ሽ; 𝑃ሼ ||𝑋 െ 3 || ൐ 6ሽ.
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a. 

b. 

c. 

Example 4c

An examination is frequently regarded as being good (in the sense of

determining a valid grade spread for those taking it) if the test scores of those

taking the examination can be approximated by a normal density function. (In

other words, a graph of the frequency of grade scores should have approximately

the bell-shaped form of the normal density.) The instructor often uses the test

scores to estimate the normal parameters  and  and then assigns the letter

grade A to those whose test score is greater than  B to those whose score

is between  and  C to those whose score is between  and  D to

those whose score is between  and  and F to those getting a score

below  (This strategy is sometimes referred to as grading “on the curve.”)

Since

𝑃ሼ2 ൏ 𝑋 ൏ 5ሽ ൌ 𝑃ቊ
2 െ 3

3
൏
𝑋 െ 3

3
൏

5 െ 3
3

ቋ

ൌ 𝑃ቊെ
1
3
൏ 𝑍 ൏

2
3
ቋ

ൌ Φ ቆ
2
3
ቇ െ Φ ቆെ

1
3
ቇ

ൌ Φ ቆ
2
3
ቇ െ ቈ1 െ Φ ቆ

1
3
ቇ቉ ൎ .3779

𝑃ሼ𝑋 ൐ 0ሽ ൌ 𝑃ቊ
𝑋 െ 3

3
൐

0 െ 3
3

ቋ ൌ 𝑃ሼ𝑍 ൐ െ 1ሽ

ൌ 1 െ Φ ሺ െ 1ሻ

ൌ Φ ሺ1ሻ

ൎ .8413

𝑃ሼ ||𝑋 െ 3 || ൐ 6ሽ ൌ 𝑃ሼ𝑋 ൐ 9ሽ ൅ 𝑃ሼ𝑋 ൏ െ 3ሽ

ൌ 𝑃ቊ
𝑋 െ 3

3
൐

9 െ 3
3

ቋ ൅ 𝑃ቊ
𝑋 െ 3

3
൏
െ3 െ 3

3
ቋ

ൌ 𝑃ሼ𝑍 ൐ 2ሽ ൅ 𝑃ሼ𝑍 ൏ െ 2ሽ

ൌ 1 െ Φ ሺ2ሻ ൅ Φ ሺ െ 2ሻ

ൌ 2ሾ1 െ Φ ሺ2ሻሿ

ൎ .0456

𝜇 𝜎ଶ

𝜇 ൅ 𝜎,

𝜇 𝜇 ൅ 𝜎, 𝜇 െ 𝜎 𝜇,

𝜇 െ 2𝜎 𝜇 െ 𝜎,

𝜇 െ 2𝜎.
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it follows that approximately 16 percent of the class will receive an A grade on

the examination, 34 percent a B grade, 34 percent a C grade, and 14 percent a D

grade; 2 percent will fail.

Example 4d

An expert witness in a paternity suit testifies that the length (in days) of human

gestation is approximately normally distributed with parameters  and

 The defendant in the suit is able to prove that he was out of the country

during a period that began 290 days before the birth of the child and ended 240

days before the birth. If the defendant was, in fact, the father of the child, what is

the probability that the mother could have had the very long or very short

gestation indicated by the testimony?

Solution

Let  denote the length of the gestation, and assume that the defendant is the

father. Then the probability that the birth could occur within the indicated period is

Example 4e

Suppose that a binary message either 0 or 1 must be transmitted by wire from

location  to location  However, the data sent over the wire are subject to a

channel noise disturbance, so, to reduce the possibility of error, the value 2 is

sent over the wire when the message is 1 and the value  is sent when the

message is 0. If  is the value sent at location  then  the value

𝑃ሼ𝑋 ൐ 𝜇 ൅ 𝜎ሽ ൌ 𝑃ቄ
௑െఓ

ఙ
൐ 1ቅ ൌ 1 െ Φ ሺ1ሻ ൎ  .1587

𝑃ሼ𝜇 ൏ 𝑋 ൏ 𝜇 ൅ 𝜎ሽ ൌ 𝑃ቄ0 ൏
௑െఓ

ఙ
൏ 1ቅ ൌ Φ ሺ1ሻ െ Φ ሺ0ሻ ൎ  .3413

𝑃ሼ𝜇 െ 𝜎 ൏ 𝑋 ൏ 𝜇ሽ ൌ 𝑃ቄെ1 ൏
௑െఓ

ఙ
൏ 0ቅ

ൌ Φ ሺ0ሻ െ Φ ሺ െ 1ሻ ൎ  .3413

𝑃ሼ𝜇 െ 2𝜎 ൏ 𝑋 ൏ 𝜇 െ 𝜎ሽ ൌ 𝑃ቄെ2 ൏
௑െఓ

ఙ
൏ െ 1ቅ

ൌ Φ ሺ2ሻ െ Φ ሺ1ሻ ൎ  .1359

𝑃ሼ𝑋 ൏ 𝜇 െ 2𝜎ሽ ൌ 𝑃ቄ
௑െఓ

ఙ
൏ െ 2ቅ ൌ Φ ሺ െ 2ሻ ൎ  .0228

𝜇 ൌ 270

𝜎ଶ ൌ 100.

𝑋

𝑃ሼ𝑋 ൐ 290 or 𝑋 ൏ 240ሽ ൌ 𝑃ሼ𝑋 ൐ 290ሽ ൅ 𝑃ሼ𝑋 ൏ 240ሽ

ൌ 𝑃ቄ
௑െଶ଻଴

ଵ଴
൐ 2ቅ ൅ 𝑃ቄ

௑െଶ଻଴

ଵ଴
൏ െ 3ቅ

ൌ 1 െ Φ ሺ2ሻ ൅ 1 െ Φ ሺ3ሻ

ൎ .0241

𝐴 𝐵 .

െ2

𝑥,𝑥 ൌ േ 2, 𝐴, 𝑅,
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received at location  is given by  where  is the channel noise

disturbance. When the message is received at location  the receiver decodes it

according to the following rule:

If  then 1 is concluded.

If  then 0 is concluded.

Because the channel noise is often normally distributed, we will determine the

error probabilities when  is a standard normal random variable.

Two types of errors can occur: One is that the message 1 can be incorrectly

determined to be 0, and the other is that 0 can be incorrectly determined to be 1.

The first type of error will occur if the message is 1 and  whereas the

second will occur if the message is 0 and  Hence,

and

Example 4f

Value at Risk (VAR) has become a key concept in financial calculations. The VAR

of an investment is defined as that value  such that there is only a  percent

chance that the loss from the investment will be greater than  If  the gain

from an investment, is a normal random variable with mean  and variance 

then because the loss is equal to the negative of the gain, the VAR of such an

investment is that value  such that

Using that  is normal with mean  and variance  we see that

Because, as indicated by Table 5.1 ,  we see that

𝐵, 𝑅 ൌ 𝑥 ൅ 𝑁, 𝑁

𝐵,

𝑅 ൒ .5,

𝑅 ൏ .5,

𝑁

2 ൅ 𝑁 ൏ .5,

െ2 ൅ 𝑁 ൒ .5.

𝑃ሼerror| message is 1ሽ ൌ 𝑃ሼ𝑁 ൏ െ 1.5ሽ

ൌ 1 െ Φ ሺ1.5ሻ ൎ .0668

𝑃ሼerror| message is 0ሽ ൌ 𝑃ሼ𝑁 ൒ 2.5ሽ

ൌ 1 െ Φ ሺ2.5ሻ ൎ .0062

𝑣 1

𝑣 . 𝑋,

𝜇 𝜎ଶ,

𝑣

.01 ൌ 𝑃ሼ െ 𝑋 ൐ 𝜈ሽ

െ𝑋 െ𝜇 𝜎ଶ,

.01 ൌ 𝑃ቄ
െ௑൅ఓ

ఙ
൐

ఔ൅ఓ

ఙ
ቅ

ൌ 1 െ Φ ቀ
௩൅ఓ

ఙ
ቁ

Φ ሺ2.33ሻ ൌ .99,
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That is,

Consequently, among a set of investments all of whose gains are normally

distributed, the investment having the smallest VAR is the one having the largest

value of 

An important result in probability theory known as the DeMoivre–Laplace limit

theorem states that when  is large, a binomial random variable with parameters 

and  will have approximately the same distribution as a normal random variable with

the same mean and variance as the binomial. This result was proved originally for

the special case of  by DeMoivre in 1733 and was then extended to general 

by Laplace in 1812. It formally states that if we “standardize” the binomial by first

subtracting its mean np and then dividing the result by its standard deviation

 then the distribution function of this standardized random variable

(which has mean 0 and variance 1) will converge to the standard normal distribution

function as 

The DeMoivre–Laplace Limit Theorem

If  denotes the number of successes that occur when  independent trials,

each resulting in a success with probability  are performed, then, for any

as 

Because the preceding theorem is only a special case of the central limit theorem,

which is presented in Chapter 8 , we shall not present a proof.

Note that we now have two possible approximations to binomial probabilities: the

Poisson approximation, which is good when  is large and  is small, and the normal

approximation, which can be shown to be quite good when  is large. (See

Figure 5.6 .) [The normal approximation will, in general, be quite good for values

𝜈 ൅ 𝜇
𝜎

ൌ 2.33

𝜈 ൌ 𝑉𝐴𝑅 ൌ 2.33𝜎 െ 𝜇

𝜇 െ 2.33𝜎.

𝑛 𝑛

𝑝

𝑝 ൌ
1
2

𝑝

𝑛𝑝ሺ1 െ 𝑝ሻඥ ,

𝑛 → ∞.

𝑆௡ 𝑛

𝑝,
𝑎 ൏ 𝑏,

𝑃൝𝑎 ൑
𝑆௡ െ 𝑛𝑝

𝑛𝑝ሺ1 െ 𝑝ሻඥ
൑ 𝑏ൡ → Φ ሺ𝑏ሻ െ Φ ሺ𝑎ሻ

𝑛 → ∞.

𝑛 𝑝

𝑛𝑝ሺ1 െ 𝑝ሻ
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of  satisfying ]

Figure 5.6 The probability mass function of a binomial (n, p) random variable

becomes more and more “normal” as n becomes larger and larger.

Example 4g

Let  be the number of times that a fair coin that is flipped 40 times lands on

heads. Find the probability that  Use the normal approximation and then

compare it with the exact solution.

Solution

To employ the normal approximation, note that because the binomial is a discrete

integer-valued random variable, whereas the normal is a continuous random

variable, it is best to write  as  before applying

the normal approximation (this is called the continuity correction). Doing so gives

𝑛 𝑛𝑝ሺ1 െ 𝑝ሻ ൒ 10.

𝑋

𝑋 ൌ 20.

𝑃ሼ𝑋 ൌ 𝑖ሽ 𝑃ሼ𝑖 െ 1/2 ൏ 𝑋 ൏ 𝑖 ൅ 1/2ሽ

𝑃ሼ𝑋 ൌ 20ሽ ൌ 𝑃ሼ19.5 ൏ 𝑋 ൏ 20.5ሽ

ൌ 𝑃ቊ
19.5 െ 20

10√
൏
𝑋 െ 20

10√
൏

20.5 െ 20

10√
ቋ

ൎ 𝑃ቊെ.16 ൏
𝑋 െ 20

10√
൏ .16ቋ

ൎ Φ ሺ.16ሻ െ Φ ሺ െ .16ሻ ൎ .1272
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The exact result is

Example 4h

The ideal size of a first-year class at a particular college is 150 students. The

college, knowing from past experience that, on the average, only 30 percent of

those accepted for admission will actually attend, uses a policy of approving the

applications of 450 students. Compute the probability that more than 150 first-

year students attend this college.

Solution

If  denotes the number of students who attend, then  is a binomial random

variable with parameters  and  Using the continuity correction, we

see that the normal approximation yields

Hence, less than 6 percent of the time do more than 150 of the first 450 accepted

actually attend. (What independence assumptions have we made?)

Example 4i

To determine the effectiveness of a certain diet in reducing the amount of

cholesterol in the bloodstream, 100 people are put on the diet. After they have

been on the diet for a sufficient length of time, their cholesterol count will be

taken. The nutritionist running this experiment has decided to endorse the diet if

at least 65 percent of the people have a lower cholesterol count after going on

the diet. What is the probability that the nutritionist endorses the new diet if, in

fact, it has no effect on the cholesterol level?

Solution

Let us assume that if the diet has no effect on the cholesterol count, then, strictly

by chance, each person’s count will be lower than it was before the diet with

probability  Hence, if  is the number of people whose count is lowered, then

the probability that the nutritionist will endorse the diet when it actually has no

effect on the cholesterol count is

𝑃ሼ𝑋 ൌ 20ሽ ൌ ቆ
40

20
ቇቆ

1
2
ቇ
ସ଴

ൎ .1254

𝑋 𝑋

𝑛 ൌ 450 𝑝 ൌ .3.

𝑃ሼ𝑋 ൒ 150.5ሽ ൌ 𝑃൝
𝑋 െ ሺ450ሻሺ.3ሻ

450ሺ.3ሻሺ.7ሻඥ
൒

150.5 െ ሺ450ሻሺ.3ሻ

450ሺ.3ሻሺ.7ሻඥ
ൡ

ൎ 1 െ Φ ሺ1.59ሻ

ൎ .0559

1
2

. 𝑋
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Example 4j

Fifty-two percent of the residents of New York City are in favor of outlawing

cigarette smoking on university campuses. Approximate the probability that more

than 50 percent of a random sample of  people from New York are in favor of

this prohibition when

a. 
b. 
c. 

How large would  have to be to make this probability exceed .95?

Solution

Let  denote the number of residents of New York City. To answer the preceding

question, we must first understand that a random sample of size  is a sample

such that the  people were chosen in such a manner that each of the 

subsets of  people had the same chance of being the chosen subset.

Consequently,  the number of people in the sample who are in favor of the

smoking prohibition, is a hypergeometric random variable. That is,  has the

same distribution as the number of white balls obtained when  balls are chosen

from an urn of  balls, of which .52  are white. But because  and .52  are both

large in comparison with the sample size  it follows from the binomial

approximation to the hypergeometric (see Section 4.8.3 ) that the distribution

of  is closely approximated by a binomial distribution with parameters  and

 The normal approximation to the binomial distribution then shows that

෍
௜ ൌ ଺ହ

ଵ଴଴

ቆ
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𝑖
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ൎ .0019

𝑛
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𝑛 ൌ 101
𝑛 ൌ 1001
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𝑁
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ቇ
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Thus,

In order for this probability to be at least .95, we would need 

Because  is an increasing function and  this means that

or

That is, the sample size would have to be at least 1692.

Historical notes concerning the normal distribution

The normal distribution was introduced by the French mathematician Abraham

DeMoivre in 1733. DeMoivre, who used this distribution to approximate

probabilities connected with coin tossing, called it the exponential bell-shaped

curve. Its usefulness, however, became truly apparent only in 1809, when the

famous German mathematician Karl Friedrich Gauss used it as an integral part

of his approach to predicting the location of astronomical entities. As a result, it

became common after this time to call it the Gaussian distribution.

During the mid- to late 19th century, however, most statisticians started to

believe that the majority of data sets would have histograms conforming to the

Gaussian bell-shaped form. Indeed, it came to be accepted that it was “normal”

for any well-behaved data set to follow this curve. As a result, following the lead

of the British statistician Karl Pearson, people began referring to the Gaussian

curve by calling it simply the normal curve. (A partial explanation as to why so

many data sets conform to the normal curve is provided by the central limit

theorem, which is presented in Chapter 8 .)

Abraham DeMoivre (1667–1754)

𝑃ሼ𝑆௡ ൐ .5𝑛ሽ ൌ 𝑃൝
𝑆௡ െ .52𝑛

𝑛ሺ.52ሻሺ.48ሻඥ
൐

.5𝑛 െ .52𝑛

𝑛ሺ.52ሻሺ.48ሻඥ
ൡ

ൌ 𝑃൝
𝑆௡ െ .52𝑛

𝑛ሺ.52ሻሺ.48ሻඥ
൐ .04 𝑛√ ൡ

ൎ Φ ሺ.04 𝑛√ ሻ

𝑃ሼ𝑆௡ ൐ .5𝑛ሽ ൎ

⎧

⎨
⎩

⎪

⎪

Φ ሺ.1328ሻ ൌ .5528, 𝑖𝑓 𝑛 ൌ 11

Φ ሺ.4020ሻ ൌ .6562, 𝑖𝑓 𝑛 ൌ 101

Φ ሺ1.2665ሻ ൌ .8973, 𝑖𝑓 𝑛 ൌ 1001

Φ ሺ.04 𝑛√ ሻ ൐ .95.

Φ ሺ𝑥ሻ Φ ሺ1.645ሻ ൌ .95,

.04 𝑛√ ൐ 1.645

𝑛 ൒ 1691.266
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Today there is no shortage of statistical consultants, many of whom ply their

trade in the most elegant of settings. However, the first of their breed worked, in

the early years of the 18th century, out of a dark, grubby betting shop in Long

Acres, London, known as Slaughter’s Coffee House. He was Abraham

DeMoivre, a Protestant refugee from Catholic France, and, for a price, he would

compute the probability of gambling bets in all types of games of chance.

Although DeMoivre, the discoverer of the normal curve, made his living at the

coffee shop, he was a mathematician of recognized abilities. Indeed, he was a

member of the Royal Society and was reported to be an intimate of Isaac

Newton.

Listen to Karl Pearson imagining DeMoivre at work at Slaughter’s Coffee

House: “I picture DeMoivre working at a dirty table in the coffee house with a

broken-down gambler beside him and Isaac Newton walking through the crowd

to his corner to fetch out his friend. It would make a great picture for an inspired

artist.”

Karl Friedrich Gauss

Karl Friedrich Gauss (1777–1855), one of the earliest users of the normal

curve, was one of the greatest mathematicians of all time. Listen to the words

of the well-known mathematical historian E. T. Bell, as expressed in his 1954

book Men of Mathematics: In a chapter entitled “The Prince of Mathematicians,”

he writes, “Archimedes, Newton, and Gauss; these three are in a class by

themselves among the great mathematicians, and it is not for ordinary mortals

to attempt to rank them in order of merit. All three started tidal waves in both

pure and applied mathematics. Archimedes esteemed his pure mathematics

more highly than its applications;

Newton appears to have found the chief justification for his mathematical

inventions in the scientific uses to which he put them; while Gauss declared it

was all one to him whether he worked on the pure or on the applied side.”

A continuous random variable whose probability density function is given, for some

 by𝜆 ൐ 0,

𝑓ሺ𝑥ሻ ൌ ቊ
𝜆𝑒െఒ௫ 𝑖𝑓 𝑥 ൒ 0

0 𝑖𝑓 𝑥 ൏ 0
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is said to be an exponential random variable (or, more simply, is said to be

exponentially distributed) with parameter  The cumulative distribution function 

of an exponential random variable is given by

Note that  as, of course, it must. The parameter  will now

be shown to equal the reciprocal of the expected value.

Example 5a

Let  be an exponential random variable with parameter  Calculate (a) [ ]

and (b) Var

Solution

(a) Since the density function is given by

we obtain, for 

Integrating by parts (with  and ) yields

Letting  and then  gives

𝜆 . 𝐹ሺ𝑎ሻ
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(b) Hence,

Thus, the mean of the exponential is the reciprocal of its parameter  and the

variance is the mean squared.

In practice, the exponential distribution often arises as the distribution of the amount

of time until some specific event occurs. For instance, the amount of time (starting

from now) until an earthquake occurs, or until a new war breaks out, or until a

telephone call you receive turns out to be a wrong number are all random variables

that tend in practice to have exponential distributions. (For a theoretical explanation

of this phenomenon, see Section 4.7 .)

Example 5b

Suppose that the length of a phone call in minutes is an exponential random

variable with parameter  If someone arrives immediately ahead of you at

a public telephone booth, find the probability that you will have to wait

a. more than 10 minutes;

b. between 10 and 20 minutes.

Solution

Let  denote the length of the call made by the person in the booth. Then the

desired probabilities are

a. 

b. 

We say that a nonnegative random variable  is memoryless if

If we think of  as being the lifetime of some instrument, Equation (5.1)  states

that the probability that the instrument survives for at least  hours, given that it

has survived  hours, is the same as the initial probability that it survives for at least 

Varሺ𝑋ሻ ൌ
2
𝜆2

െ ቆ
1
𝜆
ቇ
ଶ

ൌ
1

𝜆ଶ

𝜆,

𝜆 ൌ
1

10
.

𝑋

𝑃ሼ𝑋 ൐ 10ሽ ൌ 1 െ 𝐹ሺ10ሻ

ൌ 𝑒െଵ ൎ .368

𝑃ሼ10 ൏ 𝑋 ൏ 20ሽ ൌ 𝐹ሺ20ሻ െ 𝐹ሺ10ሻ

ൌ 𝑒െଵ െ 𝑒െଶ ൎ .233

𝑋

𝑃ሼ𝑋 ൐ 𝑠 ൅ 𝑡  ||  𝑋 ൐ 𝑡ሽ ൌ 𝑃ሼ𝑋 ൐ 𝑠ሽ for all 𝑠, 𝑡  ൒  0

(5.1)

𝑋

𝑠 ൅ 𝑡

𝑡 𝑠
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hours. In other words, if the instrument is alive at age  the distribution of the

remaining amount of time that it survives is the same as the original lifetime

distribution. (That is, it is as if the instrument does not “remember” that it has already

been in use for a time )

Equation (5.1)  is equivalent to

or

Since Equation (5.2)  is satisfied when  is exponentially distributed (for

), it follows that exponentially distributed random variables are

memoryless.

Example 5c

Consider a post office that is staffed by two clerks. Suppose that when Mr. Smith

enters the system, he discovers that Ms. Jones is being served by one of the

clerks and Mr. Brown by the other. Suppose also that Mr. Smith is told that his

service will begin as soon as either Ms. Jones or Mr. Brown leaves. If the amount

of time that a clerk spends with a customer is exponentially distributed with

parameter  what is the probability that of the three customers, Mr. Smith is the

last to leave the post office?

Solution

The answer is obtained by reasoning as follows: Consider the time at which Mr.

Smith first finds a free clerk. At this point, either Ms. Jones or Mr. Brown would

have just left, and the other one would still be in service. However, because the

exponential is memoryless, it follows that the additional amount of time that this

other person (either Ms. Jones or Mr. Brown) would still have to spend in the post

office is exponentially distributed with parameter  That is, it is the same as if

service for that person were just starting at this point. Hence, by symmetry, the

probability that the remaining person finishes before Smith leaves must equal 

It turns out that not only is the exponential distribution memoryless, but it is also the

unique distribution possessing this property. To see this, suppose that  is

memoryless and let  Then, by Equation (5.2) ,

𝑡,

𝑡 .

𝑃ሼ𝑋 ൐ 𝑠 ൅ 𝑡,𝑋 ൐ 𝑡ሽ
𝑃ሼ𝑋 ൐ 𝑡ሽ

ൌ 𝑃ሼ𝑋 ൐ 𝑠ሽ

𝑃ሼ𝑋 ൐ 𝑠 ൅ 𝑡ሽ ൌ 𝑃ሼ𝑋 ൐ 𝑠ሽ𝑃ሼ𝑋 ൐ 𝑡ሽ

(5.2)

𝑋

𝑒െఒሺ௦൅௧ሻ ൌ 𝑒െఒ௦𝑒െఒ௧

𝜆,

𝜆 .

1
2

.

𝑋

𝐹̅̅̅ሺ̅𝑥ሻ ൌ 𝑃ሼ𝑋 ൐ 𝑥ሽ.
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That is,  satisfies the functional equation

However, it turns out that the only right continuous solution of this functional equation

is

†One can prove Equation (5.3)  as follows: If 

then

and repeating this yields  Also,

Hence,  which, since  is right continuous,

implies that  Because  we obtain

 where 

and, since a distribution function is always right continuous, we must have

which shows that  is exponentially distributed.

Example 5d

Suppose that the number of miles that a car can run before its battery wears out

is exponentially distributed with an average value of 10,000 miles. If a person

desires to take a 5000-mile trip, what is the probability that he or she will be able

to complete the trip without having to replace the car battery? What can be said

𝐹̅̅̅ሺ̅𝑠 ൅ 𝑡ሻ ൌ 𝐹̅̅̅ሺ̅𝑠ሻ𝐹̅̅̅ሺ̅𝑡ሻ

𝐹̅̅̅ሺ̅ ⋅ ሻ

𝑔ሺ𝑠 ൅ 𝑡ሻ ൌ 𝑔ሺ𝑠ሻ𝑔ሺ𝑡ሻ

†

𝑔ሺ𝑠 ൅ 𝑡ሻ ൌ 𝑔ሺ𝑠ሻ𝑔ሺ𝑡ሻ,

𝑔ቆ
2
𝑛
ቇ ൌ 𝑔ቆ

1
𝑛
൅

1
𝑛
ቇ ൌ 𝑔ଶቆ

1
𝑛
ቇ

𝑔ሺ𝑚/𝑛ሻ ൌ 𝑔௠ሺ1/𝑛ሻ.

𝑔ሺ1ሻ ൌ 𝑔ቆ
1
𝑛
൅

1
𝑛
൅⋯ ൅

1
𝑛
ቇ ൌ 𝑔௡ቆ

1
𝑛
ቇ 𝑜𝑟 𝑔ቆ

1
𝑛
ቇ ൌ ሺ𝑔ሺ1ሻሻଵ/௡

𝑔ሺ𝑚/𝑛ሻ ൌ ሺ𝑔ሺ1ሻሻ௠/௡, 𝑔

𝑔ሺ𝑥ሻ ൌ ሺ𝑔ሺ1ሻሻ௫. 𝑔ሺ1ሻ ൌ ቆ𝑔ቆ
1
2
ቇቇ

ଶ

൒ 0,

𝑔ሺ𝑥ሻ ൌ 𝑒െఒ௫, 𝜆 ൌ െ logሺ𝑔ሺ1ሻሻ.

𝑔ሺ𝑥ሻ ൌ 𝑒െఒ௫
(5.3)

𝐹̅̅̅ሺ̅𝑥ሻ ൌ 𝑒െఒ௫ or 𝐹ሺ𝑥ሻ ൌ 𝑃ሼ𝑋 ൑ 𝑥ሽ ൌ 1 െ 𝑒െఒ௫

𝑋
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when the distribution is not exponential?

Solution

It follows by the memoryless property of the exponential distribution that the

remaining lifetime (in thousands of miles) of the battery is exponential with

parameter  Hence, the desired probability is

However, if the lifetime distribution F is not exponential, then the relevant

probability is

where  is the number of miles that the battery had been in use prior to the start

of the trip. Therefore, if the distribution is not exponential, additional information

is needed (namely, the value of ) before the desired probability can be

calculated.

A variation of the exponential distribution is the distribution of a random variable that

is equally likely to be either positive or negative and whose absolute value is

exponentially distributed with parameter  Such a random variable is said to

have a Laplace distribution,  and its density is given by

‡ It also is sometimes called the double exponential random variable.

Its distribution function is given by

𝜆 ൌ
1

10
.

𝑃ሼremaining lifetime  ൐  5ሽ ൌ 1 െ 𝐹ሺ5ሻ ൌ 𝑒െହఒ ൌ 𝑒െଵ/ଶ ൎ .607

𝑃ሼlifetime ൐ 𝑡 ൅ 5 | lifetime ൐ 𝑡ሽ ൌ
1 െ 𝐹ሺ𝑡 ൅ 5ሻ

1 െ 𝐹ሺ𝑡ሻ

𝑡

𝑡

𝜆,𝜆̇ ൒ 0.
‡

𝑓ሺ𝑥ሻ ൌ
1
2
𝜆𝑒െఒห௫ห  െ∞ ൏ 𝑥 ൏ ∞
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Example 5e

Consider again Example 4e , which supposes that a binary message is to be

transmitted from  to  with the value 2 being sent when the message is 1 and

 when it is 0. However, suppose now that rather than being a standard normal

random variable, the channel noise  is a Laplacian random variable with

parameter  Suppose again that if  is the value received at location  then

the message is decoded as follows:

If  then 1 is concluded.

If  then 0 is concluded.

In this case, where the noise is Laplacian with parameter  the two types of

errors will have probabilities given by

On comparing this with the results of Example 4e , we see that the error

probabilities are higher when the noise is Laplacian with  than when it is a

standard normal variable.

𝐹ሺ𝑥ሻ ൌ

⎧

⎨

⎩

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪

ଵ

ଶ

െஶ

௫

𝜆𝑒ఒ௬ 𝑑𝑦 𝑥 ൏ 0

ଵ

ଶ

െஶ

଴

𝜆𝑒ఒ௬ 𝑑𝑦 ൅
ଵ

ଶ

଴

௫

𝜆𝑒െఒ௬ 𝑑𝑦 𝑥 ൐ 0

ൌ ൞

ଵ

ଶ
𝑒ఒ௫ 𝑥 ൏ 0

1 െ
ଵ

ଶ
𝑒െఒ௫ 𝑥 ൐ 0

𝐴 𝐵,

െ2

𝑁

𝜆 ൌ 1. 𝑅 𝐵,

𝑅 ൒ .5,

𝑅 ൏ .5,

𝜆 ൌ 1,

𝑃ሼerror|| message 1 is sentሽ ൌ 𝑃ሼ𝑁 ൏ െ 1.5ሽ

ൌ
ଵ

ଶ
𝑒െଵ.ହ

ൎ .1116

𝑃ሼerror|| message 0 is sentሽ ൌ 𝑃ሼ𝑁 ൒ 2.5ሽ

ൌ
ଵ

ଶ
𝑒െଶ.ହ

ൎ .041

𝜆 ൌ 1
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Consider a positive continuous random variable  that we interpret as being the

lifetime of some item. Let  have distribution function  and density  The hazard

rate (sometimes called the failure rate) function  of  is defined by

To interpret  suppose that the item has survived for a time  and we desire the

probability that it will not survive for an additional time dt. That is, consider

 Now,

Thus,  represents the conditional probability intensity that a -unit-old item will

fail.

Suppose now that the lifetime distribution is exponential. Then, by the memoryless

property, it follows that the distribution of remaining life for a -year-old item is the

same as that for a new item. Hence,  should be constant. In fact, this checks out,

since

Thus, the failure rate function for the exponential distribution is constant. The

parameter  is often referred to as the rate of the distribution.

It turns out that the failure rate function  uniquely determines the

distribution function  To prove this, we integrate  from  to  to obtain

𝑋

𝑋 𝐹 𝑓 .

𝜆ሺ𝑡ሻ 𝐹

𝜆ሺ𝑡ሻ ൌ
𝑓ሺ𝑡ሻ
𝐹̅̅̅ሺ̅𝑡ሻ

, where 𝐹̅̅̅ ̅  ൌ  1  െ  𝐹

𝜆ሺ𝑡ሻ, 𝑡

𝑃ሼ𝑋 ∈ ሺ𝑡,𝑡 ൅ 𝑑𝑡ሻ ||𝑋 ൐ 𝑡ሽ.

𝑃ሼ𝑋 ∈ ሺ𝑡, 𝑡 ൅ 𝑑𝑡ሻ|𝑋 ൐ 𝑡ሽ ൌ
௉൛௑∈ሺ௧,௧൅ௗ௧ሻ,௑வ௧ൟ

௉൛௑வ௧ൟ

ൌ
௉൛௑∈ሺ௧,௧൅ௗ௧ሻൟ

௉൛௑வ௧ൟ

ൎ
௙ሺ௧ሻ

ி̅̅̅ሺ̅௧ሻ
𝑑𝑡

𝜆ሺ𝑡ሻ 𝑡

𝑡

𝜆ሺ𝑡ሻ

𝜆ሺ𝑡ሻ ൌ
௙ሺ௧ሻ

ி̅̅̅ሺ̅௧ሻ

ൌ
ఒ௘െഊ೟

௘െഊ೟

ൌ 𝜆

𝜆

𝜆ሺ𝑠ሻ, 𝑠 ൒ 0,

𝐹 . 𝜆ሺ𝑠ሻ 0 𝑡
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where the second equality used that  and the final equality used that

 Solving the preceding equation for  gives

Hence, a distribution function of a positive continuous random variable can be

specified by giving its hazard rate function. For instance, if a random variable has a

linear hazard rate function—that is, if

then its distribution function is given by

and differentiation yields its density, namely,

When  the preceding equation is known as the Rayleigh density function.

Example 5f

One often hears that the death rate of a person who smokes is, at each age,

twice that of a nonsmoker. What does this mean? Does it mean that a

nonsmoker has twice the probability of surviving a given number of years as

does a smoker of the same age?

Solution

If  denotes the hazard rate of a smoker of age  and  that of a

nonsmoker of age  then the statement at issue is equivalent to the statement

଴

௧

𝜆ሺ𝑠ሻ𝑑𝑠 ൌ

଴

௧

௙ሺ௦ሻ

ଵെிሺ௦ሻ
𝑑𝑠

ൌ െ logሺ1 െ 𝐹ሺ𝑠ሻሻ||଴
௧

ൌ െ logሺ1 െ 𝐹ሺ𝑡ሻሻ ൅ logሺ1 െ 𝐹ሺ0ሻሻ

ൌ െ logሺ1 െ 𝐹ሺ𝑡ሻሻ

𝑓ሺ𝑠ሻ ൌ
ௗ

ௗ௦
𝐹ሺ𝑠ሻ

𝐹ሺ0ሻ ൌ 0. 𝐹ሺ𝑡ሻ

𝐹ሺ𝑡ሻ ൌ 1 െ expቐെ඲

଴

௧

𝜆ሺ𝑠ሻ 𝑑𝑠ቑ

(5.4)

𝜆ሺ𝑡ሻ ൌ 𝑎 ൅ 𝑏𝑡

𝐹ሺ𝑡ሻ ൌ 1 െ 𝑒െ௔௧െ௕௧
మ/ଶ

𝑓ሺ𝑡ሻ ൌ ሺ𝑎 ൅ 𝑏𝑡ሻ𝑒െሺ௔௧൅௕௧
మ/ଶሻ 𝑡 ൒ 0

𝑎 ൌ 0,

𝜆௦ሺ𝑡ሻ 𝑡 𝜆௡ሺ𝑡ሻ

𝑡,
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that

The probability that an -year-old nonsmoker will survive until age  is

whereas the corresponding probability for a smoker is, by the same reasoning,

In other words, for two people of the same age, one of whom is a smoker and the

other a nonsmoker, the probability that the smoker survives to any given age is

the square (not one-half) of the corresponding probability for a nonsmoker. For

instance, if  then the probability that a 50-year-old

nonsmoker reaches age 60 is  whereas the corresponding

probability for a smoker is 

Equation (5.4)  can be used to show that only exponential random variables are

memoryless. For if a random variable has a memoryless distribution then the

remaining life of a  year old must be the same for all  That is, if  is memoryless,

then  But, by Equation (5.4) , this implies that the distribution function of

 is  showing that  is exponential with rate 

𝜆௦ሺ𝑡ሻ ൌ 2𝜆௡ሺ𝑡ሻ

𝐴 𝐵, 𝐴 ൏ 𝐵,

𝑃ሼ𝐴-year-old nonsmoker reaches age 𝐵ሽ

  ൌ 𝑃ሼnonsmoker's lifetime  ൐  𝐵 || nonsmoker's  lifetime  ൐  𝐴ሽ

  ൌ
1 െ 𝐹nonሺ𝐵ሻ
1 െ 𝐹nonሺ𝐴ሻ

  ൌ
exp𝑦ቄെ׬଴

஻
𝜆௡ሺ𝑡ሻ 𝑑𝑡ቅ

expቄെ׬଴
஺
𝜆௡ሺ𝑡ሻ 𝑑𝑡ቅ

  ൌ expቄെ׬஺
஻
𝜆௡ሺ𝑡ሻ 𝑑𝑡ቅ

from (5.4)

𝑃ሼ𝐴-year-old smoker reaches age 𝐵ሽ ൌ exp

⎧

⎨

⎩

⎪

⎪

െ

஺

஻

𝜆௦ሺ𝑡ሻ 𝑑𝑡

⎫

⎬

⎭

⎪

⎪

ൌ expቄെ2׬஺
஻
𝜆௡ሺ𝑡ሻ 𝑑𝑡ቅ

ൌ

⎡

⎣

⎢
⎢
⎢
⎢

exp

⎧

⎨

⎩

⎪

⎪

െ

஺

஻

𝜆௡ሺ𝑡ሻ 𝑑𝑡

⎫

⎬

⎭

⎪

⎪

⎤

⎦

⎥
⎥
⎥
⎥

ଶ

𝜆௡ሺ𝑡ሻ ൌ
1

30
, 50 ൑ 𝑡 ൑ 60,

𝑒െଵ/ଷ ൎ .7165,

𝑒െଶ/ଷ ൎ .5134.

𝑠 𝑠 . 𝑋

𝜆ሺ𝑠ሻ ൌ 𝑐.

𝑋 𝐹ሺ𝑡ሻ ൌ 1 െ 𝑒െ௖௧, 𝑋 𝑐 .
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A random variable is said to have a gamma distribution with parameters 

 if its density function is given by

where  called the gamma function, is defined as

Integration of  by parts yields

For integral values of  say,  we obtain, by applying Equation (6.1)

repeatedly,

Since  it follows that, for integral values of 

ሺ𝛼,𝜆ሻ, 𝜆 ൐ 0,

𝛼 ൐ 0,

𝑓ሺ𝑥ሻ ൌ ቐ
ఒ௘െഊೣሺఒ௫ሻഀെభ

୻ሺఈሻ
𝑥 ൒ 0

0 𝑥 ൏ 0

𝛤ሺ𝛼ሻ,

Γ ሺ𝛼ሻ ൌ ඲

଴

ஶ

𝑒െ௬𝑦ఈെଵ 𝑑𝑦

Γ ሺ𝛼ሻ

Γ ሺ𝛼ሻ ൌ െ 𝑒െ௬𝑦ఈെଵอ
଴

ஶ

൅

଴

ஶ

𝑒െ௬ሺ𝛼 െ 1ሻ𝑦ఈെଶ 𝑑𝑦

ൌ ሺ𝛼 െ 1ሻ

଴

ஶ

𝑒െ௬𝑦ఈെଶ 𝑑𝑦

ൌ ሺ𝛼 െ 1ሻ Γ ሺ𝛼 െ 1ሻ

(6.1)

𝛼, 𝛼 ൌ 𝑛,

Γ ሺ𝑛ሻ ൌ ሺ𝑛 െ 1ሻ Γ ሺ𝑛 െ 1ሻ

ൌ ሺ𝑛 െ 1ሻሺ𝑛 െ 2ሻ Γ ሺ𝑛 െ 2ሻ

ൌ ⋯

ൌ ሺ𝑛 െ 1ሻሺ𝑛 െ 2ሻ⋯3 ⋅ 2 Γ ሺ1ሻ

Γ ሺ1ሻ ൌ ඲

଴

ஶ

𝑒െ௫ 𝑑𝑥 ൌ 1, 𝑛,

Γ ሺ𝑛ሻ ൌ ሺ𝑛 െ 1ሻ!
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When  is a positive integer, say,  the gamma distribution with parameters

 often arises, in practice as the distribution of the amount of time one has to

wait until a total of  events has occurred. More specifically, if events are occurring

randomly and in accordance with the three axioms of Section 4.7 , then it turns

out that the amount of time one has to wait until a total of  events has occurred will

be a gamma random variable with parameters  To prove this, let  denote the

time at which the th event occurs, and note that  is less than or equal to  if and

only if the number of events that have occurred by time  is at least  That is, with

 equal to the number of events in [0, ],

where the final identity follows because the number of events in [0, ] has a Poisson

distribution with parameter  Differentiation of the preceding now yields the density

function of 

Hence,  has the gamma distribution with parameters  (This distribution is

often referred to in the literature as the n-Erlang distribution.) Note that when 

this distribution reduces to the exponential distribution.

The gamma distribution with  and  a positive integer, is called the 

(read “chi-squared”) distribution with  degrees of freedom. The chi-squared

distribution often arises in practice as the distribution of the error involved in

attempting to hit a target in -dimensional space when each coordinate error is

normally distributed. This distribution will be studied in Chapter 6 , where its

relation to the normal distribution is detailed.

Example 6a

𝛼 𝛼 ൌ 𝑛,

ሺ𝛼, 𝜆ሻ

𝑛

𝑛

ሺ𝑛, 𝜆ሻ. 𝑇௡
𝑛 𝑇௡ 𝑡

𝑡 𝑛 .

𝑁ሺ𝑡ሻ 𝑡

𝑃ሼ𝑇௡ ൑ 𝑡ሽ ൌ 𝑃ሼ𝑁ሺ𝑡ሻ ൒ 𝑛ሽ

ൌ ෍
௝ ൌ ௡

ஶ

𝑃ሼ𝑁ሺ𝑡ሻ ൌ 𝑗ሽ

ൌ ෍
௝ ൌ ௡

ஶ 𝑒െఒ௧ሺ𝜆𝑡ሻ௝

𝑗!

𝑡

𝜆𝑡.

𝑇௡ :

𝑓ሺ𝑡ሻ ൌ ෍
௝ ൌ ௡

ஶ 𝑒െఒ௧𝑗ሺ𝜆𝑡ሻ௝െଵ𝜆
𝑗!

െ ෍
௝ ൌ ௡

ஶ 𝜆𝑒െఒ௧ሺ𝜆𝑡ሻ௝

𝑗!

ൌ ෍
௝ ൌ ௡

ஶ 𝜆𝑒െఒ௧ሺ𝜆𝑡ሻ௝െଵ

ሺ𝑗 െ 1ሻ!
െ ෍

௝ ൌ ௡

ஶ 𝜆𝑒െఒ௧ሺ𝜆𝑡ሻ௝

𝑗!

ൌ
ఒ௘െഊ೟ሺఒ௧ሻ೙െభ

ሺ௡െଵሻ!

𝑇௡ ሺ𝑛,𝜆ሻ.

𝑛 ൌ 1,

𝜆 ൌ
1
2

𝛼 ൌ 𝑛/2, 𝑛 𝜒௡
ଶ

𝑛

𝑛
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Let  be a gamma random variable with parameters  and  Calculate (a) [ ]

and (b) Var

Solution

a. 

b. By first calculating  we can show that

The details are left as an exercise.

The Weibull distribution is widely used in engineering practice due to its versatility. It

was originally proposed for the interpretation of fatigue data, but now its use has

been extended to many other engineering problems. In particular, it is widely used in

the field of life phenomena as the distribution of the lifetime of some object,

especially when the “weakest link” model is appropriate for the object. That is,

consider an object consisting of many parts, and suppose that the object

experiences death (failure) when any of its parts fails. It has been shown (both

theoretically and empirically) that under these conditions, a Weibull distribution

provides a close approximation to the distribution of the lifetime of the item.

The Weibull distribution function has the form

A random variable whose cumulative distribution function is given by Equation

(6.2)  is said to be a Weibull random variable with parameters  and 

Differentiation yields the density:

𝑋 𝛼 𝜆 . 𝐸 𝑋

ሺ𝑋ሻ.

𝐸ሾ𝑋ሿ ൌ
ଵ

୻ሺఈሻ
଴׬
ஶ
𝜆𝑥𝑒െఒ௫ሺ𝜆𝑥ሻఈെଵ 𝑑𝑥

ൌ
ଵ

ఒ୻ሺఈሻ
଴׬
ஶ
𝜆𝑒െఒ௫ሺ𝜆𝑥ሻఈ 𝑑𝑥

ൌ
୻ሺఈ൅ଵሻ

ఒ୻ሺఈሻ

ൌ
ఈ

ఒ
 by Equation ሺ6.1ሻ

𝐸ሾ𝑋ଶሿ,

Varሺ𝑋ሻ ൌ
𝛼

𝜆ଶ

𝐹ሺ𝑥ሻ ൌ ቐ
0 𝑥 ൑ 𝜈

1 െ exp൜െቀ
௫െఔ

ఈ
ቁ
ఉ
ൠ 𝑥 ൐ 𝜈

(6.2)

𝜈, 𝛼, 𝛽 .
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A random variable is said to have a Cauchy distribution with parameter 

 if its density is given by

Example 6b

Suppose that a narrow-beam flashlight is spun around its center, which is located

a unit distance from the -axis. (See figure 5.7 .) Consider the point  at which

the beam intersects the -axis when the flashlight has stopped spinning. (If the

beam is not pointing toward the -axis, repeat the experiment.)

Figure 5.7

As indicated in Figure 5.7 , the point  is determined by the angle  between

the flashlight and the -axis, which, from the physical situation, appears to be

uniformly distributed between  and  The distribution function of  is

thus given by

where the last equality follows since  being uniform over  has

distribution

𝑓ሺ𝑥ሻ ൌ ቐ
0 𝑥 ൑ 𝜈

ఉ

ఈ
ቀ
௫െఔ

ఈ
ቁ
ఉെଵ

exp൜െቀ
௫െఔ

ఈ
ቁ
ఉ
ൠ 𝑥 ൐ 𝜈

𝜃,

െ∞ ൏ 𝜃 ൏ ∞,

𝑓ሺ𝑥ሻ ൌ
1
𝜋

1

1 ൅ ሺ𝑥 െ 𝜃ሻଶ
  െ∞ ൏ 𝑥 ൏ ∞

𝑥 𝑋

𝑥

𝑥

𝑋 𝜃

𝑦

െ𝜋/2 𝜋/2. 𝑋

𝐹ሺ𝑥ሻ ൌ 𝑃ሼ𝑋 ൑ 𝑥ሽ

ൌ 𝑃ሼtan𝜃 ൑ 𝑥ሽ

ൌ 𝑃ሼ𝜃 ൑ tanെଵ 𝑥ሽ

ൌ
ଵ

ଶ
൅

ଵ

గ
tanെଵ 𝑥

𝜃, ሺ െ 𝜋/2, 𝜋/2ሻ,
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Hence, the density function of  is given by

and we see that  has the Cauchy distribution.

‡ That  can be seen as follows: If

 then  so

or

A random variable is said to have a beta distribution if its density is given by

where

The beta distribution can be used to model a random phenomenon whose set of

possible values is some finite interval [ ]—which, by letting  denote the origin and

taking  as a unit measurement, can be transformed into the interval [0, 1].

When  the beta density is symmetric about  giving more and more weight to

𝑃ሼ𝜃 ൑ 𝑎ሽ ൌ
𝑎 െ ሺ െ 𝜋/2ሻ

𝜋
ൌ

1
2
൅
𝑎
𝜋
  െ

𝜋
2
൏ 𝑎 ൏

𝜋
2

𝑋

𝑓ሺ𝑥ሻ ൌ
𝑑
𝑑𝑥

𝐹ሺ𝑥ሻ ൌ
1

𝜋ሺ1 ൅ 𝑥ଶሻ
  െ∞ ൏ 𝑥 ൏ ∞

𝑋 ‡

ௗ

ௗ௫
ሺ െଵ 𝑥ሻ ൌ 1/ሺ1 ൅ 𝑥ଶሻ

𝑦 ൌ െଵ 𝑥, tan 𝑦 ൌ 𝑥,

1 ൌ
𝑑
𝑑𝑥
ሺtan𝑦ሻ ൌ

𝑑
𝑑𝑦
ሺtan 𝑦ሻ

𝑑𝑦
𝑑𝑥

ൌ
𝑑
𝑑𝑦

ቆ
sin𝑦
cos𝑦

ቇ
𝑑𝑦
𝑑𝑥

ൌ ൭
ଶ 𝑦 ൅

ଶ
𝑦

ଶ 𝑦
൱
𝑑𝑦
𝑑𝑥

𝑑𝑦
𝑑𝑥

ൌ
ଶ 𝑦

ଶ
𝑦 ൅ ଶ 𝑦

ൌ
1
ଶ 𝑦 ൅ 1

ൌ
1

𝑥ଶ ൅ 1

𝑓ሺ𝑥ሻ ൌ ቐ
ଵ

஻ሺ௔,௕ሻ
𝑥௔െଵሺ1 െ 𝑥ሻ௕െଵ 0 ൏ 𝑥 ൏ 1

0 otherwise

𝐵ሺ𝑎,𝑏ሻ ൌ ඲

଴

ଵ

𝑥௔െଵሺ1 െ 𝑥ሻ௕െଵ 𝑑𝑥

𝑐, 𝑑 𝑐

𝑑 െ 𝑐

𝑎 ൌ 𝑏,
1
2

,
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regions about  as the common value  increases. When  the beta

distribution reduces to the uniform  distribution. (See Figure 5.8 .) When

 the density is skewed to the left (in the sense that smaller values become

more likely), and it is skewed to the right when  (See Figure 5.9 .)

Figure 5.8 Beta densities with parameters ( ) when 

Figure 5.9 Beta densities with parameters ( ) when 

1
2

𝑎 𝑎 ൌ 𝑏 ൌ 1,

ሺ0,1ሻ

𝑏 ൐ 𝑎,

𝑎 ൐ 𝑏.

𝑎, 𝑏 𝑎 ൌ 𝑏.

𝑎, 𝑏 𝑎/ሺ𝑎 ൅ 𝑏ሻ ൌ 1/20.
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The relationship

can be shown to exist between

and the gamma function.

Using Equation (6.3)  along with the identity  which was given

in Equation (6.1)  it follows that

The preceding enables us to easily derive the mean and variance of a beta random

variable with parameters  and  For if  is such a random variable, then

𝐵ሺ𝑎,𝑏ሻ ൌ
Γ ሺ𝑎ሻ Γ ሺ𝑏ሻ
Γ ሺ𝑎 ൅ 𝑏ሻ

(6.3)

𝐵ሺ𝑎,𝑏ሻ ൌ ඲

଴

ଵ

𝑥௔െଵሺ1 െ 𝑥ሻ௕െଵ 𝑑𝑥

Γ ሺ𝑥 ൅ 1ሻ ൌ 𝑥 Γ ሺ𝑥ሻ,

𝐵ሺ𝑎 ൅ 1, 𝑏ሻ
𝐵ሺ𝑎, 𝑏ሻ

ൌ
Γ ሺ𝑎 ൅ 1ሻ Γ ሺ𝑏ሻ
Γ ሺ𝑎 ൅ 𝑏 ൅ 1ሻ

 
Γ ሺ𝑎 ൅ 𝑏ሻ
Γ ሺ𝑎ሻ Γ ሺ𝑏ሻ

ൌ
𝑎

𝑎 ൅ 𝑏

𝑎 𝑏 . 𝑋
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Similarly, it follows that

The identity  now yields

Remark A verification of Equation (6.3)  appears in Example 7c  of Chapter

6 .

If  is an exponential random variable with rate  and  then

is said to be a Pareto random variable with parameters  and  The parameter

 is called the index parameter, and  is called the minimum parameter (because

). The distribution function of  is derived as follows: For 

𝐸ሾ𝑋ሿ ൌ
ଵ

஻ሺ௔,  ௕ሻ

଴

ଵ

𝑥௔ሺ1 െ 𝑥ሻ௕െଵ 𝑑𝑥

ൌ
஻ሺ௔൅ଵ,  ௕ሻ

஻ሺ௔,  ௕ሻ

ൌ
௔

௔൅௕

𝐸ሾ𝑋ଶሿ ൌ
ଵ

஻ሺ௔,௕ሻ
଴׬
ଵ
𝑥௔൅ଵሺ1 െ 𝑥ሻ௕െଵ 𝑑𝑥

ൌ
஻ሺ௔൅ଶ,௕ሻ

஻ሺ௔,௕ሻ

ൌ
஻ሺ௔൅ଶ,௕ሻ

஻ሺ௔൅ଵ,௕ሻ

஻ሺ௔൅ଵ,௕ሻ

஻ሺ௔,௕ሻ

ൌ
ሺ௔൅ଵሻ௔

ሺ௔൅௕൅ଵሻሺ௔൅௕ሻ

Varሺ𝑋ሻ ൌ 𝐸ሾ𝑋ଶሿ െ ሺ𝐸ሾ𝑋ሿሻଶ

Varሺ𝑋ሻ ൌ
௔ሺ௔൅ଵሻ

ሺ௔൅௕ሻሺ௔൅௕൅ଵሻ
െ ሺ

௔

௔൅௕
ሻ
ଶ

ൌ
௔௕

ሺ௔൅௕ሻమሺ௔൅௕൅ଵሻ

𝑋 𝜆 𝑎 ൐ 0,

𝑌 ൌ 𝑎𝑒௑

𝑎 𝜆 .

𝜆 ൐ 0 𝑎

𝑃ሼ𝑌 ൐ 𝑎ሽ ൌ 1 𝑌 𝑦 ൒ 𝑎,
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Hence, the distribution function of  is

Differentiating the distribution function yields the density function of 

When  it is easily checked that  When 

 will be finite only when  In this case,

Hence, when 

Remarks (a) We could also have derived the moments of  by using the

representation  where  is exponential with rate  This yields, for 

𝑃ሺ𝑌 ൐ 𝑦ሻ ൌ 𝑃ሺ𝑎𝑒௑ ൐ 𝑦ሻ

ൌ 𝑃ሺ𝑒௑ ൐ 𝑦/𝑎ሻ

ൌ 𝑃ሺ𝑋 ൐ logሺ𝑦/𝑎ሻሻ

ൌ 𝑒െ୪୭୥ሺ௬/௔ሻ

ൌ 𝑒െ୪୭୥ሺሺ௬/௔ሻഊሻ

ൌ ሺ𝑎/𝑦ሻఒ

𝑌

𝐹௒ሺ𝑦ሻ ൌ 1 െ 𝑃ሺ𝑌 ൐ 𝑦ሻ ൌ 1 െ 𝑎ఒ𝑦െఒ, 𝑦 ൒ 𝑎

𝑌:

𝑓௒ሺ𝑦ሻ ൌ 𝜆𝑎ఒ𝑦െሺఒ൅ଵሻ, 𝑦 ൒ 𝑎

𝜆 ൑ 1 𝐸ሾ𝑌ሿ ൌ ∞. 𝜆 ൐ 1,

𝐸ሾ𝑌ሿ ൌ ௔׬
ஶ
𝜆𝑎ఒ𝑦െఒ 𝑑𝑦

ൌ 𝜆𝑎ఒ
௬భെഊ

ଵെఒ
ฬ
௔

ஶ

ൌ 𝜆𝑎ఒ
௔భെഊ

ఒെଵ

ൌ
ఒ௔

ఒെଵ

𝐸ሾ𝑌ଶሿ 𝜆 ൐ 2.

𝐸ሾ𝑌ଶሿ ൌ ௔׬
ஶ
𝜆𝑎ఒ𝑦ଵെఒ 𝑑𝑦

ൌ 𝜆𝑎ఒ
௬మെഊ

ଶെఒ
ฬ
௔

ஶ

ൌ
ఒ௔మ

ఒെଶ

𝜆 ൐ 2

Varሺ𝑌ሻ ൌ
𝜆𝑎ଶ

𝜆 െ 2
െ

2ఒ𝑎ଶ

ሺ𝜆 െ 1ሻଶ
ൌ

𝜆𝑎ଶ

ሺ𝜆 െ 2ሻሺ𝜆 െ 1ሻଶ

𝑌

𝑌 ൌ 𝑎𝑒௑, 𝑋 𝜆  . 𝜆 ൐ 𝑛,
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(b) Where the density function  of the Pareto is positive (that is, when ) it is

a constant times a power of  and for this reason it is called a power law density.

(c) The Pareto distribution has been found to be useful in applications relating to

such things as

i. the income or wealth of members of a population;

ii. the file size of internet traffic (under the TCP protocol);

iii. the time to compete a job assigned to a supercomputer;

iv. the size of a meteorite;

v. the yearly maximum one day rainfalls in different regions.

Further properties of the Pareto distribution will be developed in later chapters.

Often, we know the probability distribution of a random variable and are interested in

determining the distribution of some function of it. For instance, suppose that we

know the distribution of  and want to find the distribution of  To do so, it is

necessary to express the event that  in terms of  being in some set. We

illustrate with the following examples.

Example 7a

Let  be uniformly distributed over (0, 1). We obtain the distribution of the

random variable  defined by  as follows: For 

For instance, the density function of  is given by

𝐸ሾ𝑌௡ሿ ൌ 𝑎௡𝐸ሾ𝑒௡௑ሿ ൌ 𝑎௡඲

଴

ஶ

𝑒௡௫𝑒െ௫ 𝑑𝑥 ൌ 𝑎௡඲

଴

ஶ

𝑒െሺെ௡ሻ௫ 𝑑𝑥 ൌ
𝑎௡

െ𝑛

𝑓ሺ𝑦ሻ 𝑦 ൐ 𝑎

𝑦,

𝑋 𝑔ሺ𝑋ሻ.

𝑔ሺ𝑋ሻ ൑ 𝑦 𝑋

𝑋

𝑌, 𝑌 ൌ 𝑋௡, 0 ൑ 𝑦 ൑ 1,

𝐹௒ሺ𝑦ሻ ൌ 𝑃ሼ𝑌 ൑ 𝑦ሽ

ൌ 𝑃ሼ𝑋௡ ൑ 𝑦ሽ

ൌ 𝑃൛𝑋 ൑ 𝑦ଵ/௡ൟ

ൌ 𝐹௑ሺ𝑦ଵ/௡ሻ

ൌ 𝑦ଵ/௡

𝑌
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Example 7b

If  is a continuous random variable with probability density  then the

distribution of  is obtained as follows: For 

Differentiation yields

Example 7c

If  has a probability density  then  has a density function that is

obtained as follows: For 

Hence, on differentiation, we obtain

The method employed in Examples 7a through 7c can be used to prove

Theorem 7.1 .

Theorem 7.1

Let  be a continuous random variable having probability density function 

Suppose that  is a strictly monotonic (increasing or decreasing),

differentiable (and thus continuous) function of  Then the random variable 

defined by  has a probability density function given by

𝑓௒ሺ𝑦ሻ ൌ ൝
ଵ

௡
𝑦ଵ/௡െଵ 0 ൑ 𝑦 ൑ 1

0 otherwise

𝑋 𝑓௑,

𝑌 ൌ 𝑋ଶ 𝑦 ൒ 0,

𝐹௒ሺ𝑦ሻ ൌ 𝑃ሼ𝑌 ൑ 𝑦ሽ

ൌ 𝑃൛𝑋ଶ ൑ 𝑦ൟ

ൌ 𝑃൛ െ 𝑦ඥ ൑ 𝑋 ൑ 𝑦ඥ ൟ

ൌ 𝐹௑ሺ 𝑦ඥ ሻ െ 𝐹௑ሺ െ 𝑦ඥ ሻ

𝑓௒ሺ𝑦ሻ ൌ
1

2 𝑦ඥ
ሾ𝑓௑ሺ 𝑦ඥ ሻ ൅ 𝑓௑ሺ െ 𝑦ඥ ሻሿ

𝑋 𝑓௑, 𝑌 ൌ |𝑋|

𝑦 ൒ 0,

𝐹௒ሺ𝑦ሻ ൌ 𝑃ሼ𝑌 ൑ 𝑦ሽ

ൌ 𝑃ሼ|𝑋| ൑ 𝑦ሽ

ൌ 𝑃ሼ െ 𝑦 ൑ 𝑋 ൑ 𝑦ሽ

ൌ 𝐹௑ሺ𝑦ሻ െ 𝐹௑ሺ െ 𝑦ሻ

𝑓௒ሺ𝑦ሻ ൌ 𝑓௑ሺ𝑦ሻ ൅ 𝑓௑ሺ െ 𝑦ሻ  𝑦 ൒ 0

𝑋 𝑓௑.

𝑔ሺ𝑥ሻ

𝑥 . 𝑌

𝑌 ൌ 𝑔ሺ𝑋ሻ
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where  is defined to equal that value of  such that 

We shall prove Theorem 7.1  when  is an increasing function.

Proof Suppose that  for some  Then, with 

Differentiation gives

which agrees with Theorem 7.1 , since  is nondecreasing, so its derivative

is nonnegative.

When  for any  then  is either 0 or 1, and in either case 

Example 7d

Let  be a continuous nonnegative random variable with density function  and

let  Find  the probability density function of 

Solution

If  then

and

Hence, from Theorem 7.1 , we obtain, for y  0,

For  this gives

𝑓௒ሺ𝑦ሻ ൌ ൞
𝑓௑ሾ𝑔

െଵሺ𝑦ሻሿฬ
ௗ

ௗ௬
𝑔െଵሺ𝑦ሻฬ 𝑖𝑓 𝑦  ൌ  𝑔ሺ𝑥ሻ for some 𝑥

0 𝑖𝑓 𝑦  ്  𝑔ሺ𝑥ሻ for all 𝑥

𝑔െଵሺ𝑦ሻ 𝑥 𝑔ሺ𝑥ሻ ൌ 𝑦.

𝑔ሺ𝑥ሻ

𝑦 ൌ 𝑔ሺ𝑥ሻ 𝑥 . 𝑌 ൌ 𝑔ሺ𝑋ሻ,

𝐹௒ሺ𝑦ሻ ൌ 𝑃ሼ𝑔ሺ𝑋ሻ ൑ 𝑦ሽ

ൌ 𝑃ሼ𝑋 ൑ 𝑔െଵሺ𝑦ሻሽ

ൌ 𝐹௑ሺ𝑔
െଵሺ𝑦ሻሻ

𝑓௒ሺ𝑦ሻ ൌ 𝑓௑ሺ𝑔
െଵሺ𝑦ሻሻ

𝑑
𝑑𝑦

𝑔െଵሺ𝑦ሻ

𝑔െଵሺ𝑦ሻ

𝑦 ് 𝑔ሺ𝑥ሻ 𝑥, 𝐹௒ሺ𝑦ሻ 𝑓௒ሺ𝑦ሻ ൌ 0.

𝑋 𝑓,

𝑌 ൌ 𝑋௡. 𝑓௒, 𝑌 .

𝑔ሺ𝑥ሻ ൌ 𝑥௡,

𝑔െଵሺ𝑦ሻ ൌ 𝑦ଵ/௡

𝑑
𝑑𝑦
ሼ𝑔െଵሺ𝑦ሻሽ ൌ

1
𝑛
𝑦ଵ/௡െଵ

൒

𝑓௒ሺ𝑦ሻ ൌ
1
𝑛
𝑦ଵ/௡െଵ𝑓ሺ𝑦ଵ/௡ሻ

𝑛 ൌ 2,
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which (since ) is in agreement with the result of Example 7b .

Example 7e The Lognormal Distribution

If  is a normal random variable with mean  and variance  then the random

variable

is said to be a lognormal random variable with parameters  and  Thus, a

random variable  is lognormal if  is a normal random variable. The

lognormal is often used as the distribution of the ratio of the price of a security at

the end of one day to its price at the end of the prior day. That is, if  is the price

of some security at the end of day  then it is often supposed that  is a

lognormal random variable, implying that  is normal. Thus, to

assume that  is lognormal is to assume that

where  is normal.

Let us now use Theorem 7.1  to derive the density of a lognormal random

variable  with parameters  and  Because  where  is normal with

mean  and variance  we need to determine the inverse of the function

 Because

we obtain upon taking logarithms that

Using that Theorem 7.1  yields the density:

𝑓௒ሺ𝑦ሻ ൌ
1

2 𝑦ඥ
𝑓ሺ 𝑦ඥ ሻ

𝑋 ൒ 0

𝑋 𝜇 𝜎ଶ,

𝑌 ൌ 𝑒௑

𝜇 𝜎ଶ.

𝑌 logሺ𝑌ሻ

𝑆௡
𝑛,

ௌ೙
ௌ೙െభ

𝑋 ≡ log൬
ௌ೙

ௌ೙െభ
൰

ௌ೙
ௌ೙െభ

𝑆௡ ൌ 𝑆௡െଵ𝑒௑

𝑋

𝑌 𝜇 𝜎ଶ. 𝑌 ൌ 𝑒௑, 𝑋

𝜇 𝜎ଶ,

𝑔ሺ𝑥ሻ ൌ 𝑒௫.

𝑦 ൌ 𝑔ሺ𝑔െଵሺ𝑦ሻሻ ൌ 𝑒௚
െభሺ௬ሻ

𝑔െଵሺ𝑦ሻ ൌ logሺ𝑦ሻ

 
ௗ

ௗ௬
𝑔െଵሺ𝑦ሻ ൌ 1/𝑦,

𝑓௒ሺ𝑦ሻ ൌ
1

2𝜋√  𝜎𝑦
expሼ െ ሺlogሺ𝑦ሻ െ 𝜇ሻଶ/2𝜎ଶሽ, 𝑦 ൐ 0

360 of 848



A random variable  is continuous if there is a nonnegative function  called the

probability density function of  such that, for any set 

If  is continuous, then its distribution function  will be differentiable and

The expected value of a continuous random variable  is defined by

A useful identity is that for any function 

As in the case of a discrete random variable, the variance of  is defined by

A random variable  is said to be uniform over the interval ( ) if its probability

density function is given by

Its expected value and variance are

A random variable  is said to be normal with parameters  and  if its probability

density function is given by

𝑋 𝑓,

𝑋, 𝐵,

𝑃ሼ𝑋 ∈ 𝐵ሽ ൌ ඲

஻

𝑓ሺ𝑥ሻ 𝑑𝑥

𝑋 𝐹

𝑑
𝑑𝑥

𝐹ሺ𝑥ሻ ൌ 𝑓ሺ𝑥ሻ

𝑋

𝐸ሾ𝑋ሿ ൌ ඲
െஶ

ஶ

𝑥𝑓ሺ𝑥ሻ 𝑑𝑥

𝑔,

𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ ඲
െஶ

ஶ

𝑔ሺ𝑥ሻ𝑓ሺ𝑥ሻ 𝑑𝑥

𝑋

Varሺ𝑋ሻ ൌ 𝐸ሾሺ𝑋 െ 𝐸ሾ𝑋ሿሻଶሿ

𝑋 𝑎, 𝑏

𝑓ሺ𝑥ሻ ൌ ൝
ଵ

௕െ௔
𝑎 ൑ 𝑥 ൑ 𝑏

0 otherwise

𝐸ሾ𝑋ሿ ൌ
𝑎 ൅ 𝑏

2
 Varሺ𝑋ሻ ൌ

ሺ𝑏 െ 𝑎ሻଶ

12

𝑋 𝜇 𝜎ଶ

𝑓ሺ𝑥ሻ ൌ
1

2𝜋√ 𝜎
𝑒െሺ௫െఓሻ

మ/ଶఙమ  െ∞ ൏ 𝑥 ൏ ∞
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It can be shown that

If  is normal with mean  and variance  then  defined by

is normal with mean 0 and variance 1. Such a random variable is said to be a

standard normal random variable. Probabilities about  can be expressed in terms of

probabilities about the standard normal variable  whose probability distribution

function can be obtained either from Table 5.1 , the normal calculator on

StatCrunch, or a website.

When  is large, the probability distribution function of a binomial random variable

with parameters  and  can be approximated by that of a normal random variable

having mean np and variance 

A random variable whose probability density function is of the form

is said to be an exponential random variable with parameter  Its expected value

and variance are, respectively,

A key property possessed only by exponential random variables is that they are

memoryless, in the sense that, for positive  and 

If  represents the life of an item, then the memoryless property states that for any 

the remaining life of a -year-old item has the same probability distribution as the life

of a new item. Thus, one need not remember the age of an item to know its

distribution of remaining life.

Let  be a nonnegative continuous random variable with distribution function  and

density function  The function

𝜇 ൌ 𝐸ሾ𝑋ሿ 𝜎ଶ ൌ Varሺ𝑋ሻ

𝑋 𝜇 𝜎ଶ, 𝑍,

𝑍 ൌ
𝑋 െ 𝜇
𝜎

𝑋

𝑍,

𝑛

𝑛 𝑝

𝑛𝑝ሺ1 െ 𝑝ሻ.

𝑓ሺ𝑥ሻ ൌ ቊ
𝜆𝑒െఒ௫ 𝑥 ൒ 0

 0 otherwise

𝜆 .

𝐸ሾ𝑋ሿ ൌ
1
𝜆
 Varሺ𝑋ሻ ൌ

1

𝜆ଶ

𝑠 𝑡,

𝑃ሼ𝑋 ൐ 𝑠 ൅ 𝑡 ||𝑋 ൐ 𝑡ሽ ൌ 𝑃ሼ𝑋 ൐ 𝑠ሽ

𝑋 𝑡,

𝑡

𝑋 𝐹

𝑓 .

𝜆ሺ𝑡ሻ ൌ
𝑓ሺ𝑡ሻ

1 െ 𝐹ሺ𝑡ሻ
 𝑡 ൒ 0
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is called the hazard rate, or failure rate, function of  If we interpret  as being the

life of an item, then for small values of  is approximately the probability that

a -unit-old item will fail within an additional time dt. If  is the exponential distribution

with parameter  then

In addition, the exponential is the unique distribution having a constant failure rate.

A random variable is said to have a gamma distribution with parameters  and  if its

probability density function is equal to

and is 0 otherwise. The quantity  is called the gamma function and is defined

by

The expected value and variance of a gamma random variable are, respectively,

A random variable is said to have a beta distribution with parameters ( ) if its

probability density function is equal to

and is equal to 0 otherwise. The constant ( ) is given by

The mean and variance of such a random variable are, respectively,

𝐹 . 𝑋

𝑑𝑡, 𝜆ሺ𝑡ሻ 𝑑𝑡

𝑡 𝐹

𝜆,

𝜆ሺ𝑡ሻ ൌ 𝜆 𝑡 ൒ 0

𝛼 𝜆

𝑓ሺ𝑥ሻ ൌ
𝜆𝑒െఒ௫ሺ𝜆𝑥ሻఈെଵ

Γ ሺ𝛼ሻ
 𝑥 ൒ 0

Γ ሺ𝛼ሻ

Γ ሺ𝛼ሻ ൌ ඲

଴

ஶ

𝑒െ௫𝑥ఈെଵ 𝑑𝑥

𝐸ሾ𝑋ሿ ൌ
𝛼
𝜆
 Varሺ𝑋ሻ ൌ

𝛼

𝜆ଶ

𝑎, 𝑏

𝑓ሺ𝑥ሻ ൌ
1

𝐵ሺ𝑎,𝑏ሻ
𝑥௔െଵሺ1 െ 𝑥ሻ௕െଵ 0 ൑ 𝑥 ൑ 1

𝐵 𝑎, 𝑏

𝐵ሺ𝑎,𝑏ሻ ൌ ඲

଴

ଵ

𝑥௔െଵሺ1 െ 𝑥ሻ௕െଵ 𝑑𝑥

𝐸ሾ𝑋ሿ ൌ
𝑎

𝑎 ൅ 𝑏
 Varሺ𝑋ሻ ൌ

𝑎𝑏

ሺ𝑎 ൅ 𝑏ሻଶሺ𝑎 ൅ 𝑏 ൅ 1ሻ
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5.1. Let  be a random variable with probability density function

a. What is the value of 

b. What is the cumulative distribution function of 

5.2. A system consisting of one original unit plus a spare can function for a

random amount of time  If the density of  is given (in units of months) by

what is the probability that the system functions for at least 5 months?

5.3. Consider the function

Could  be a probability density function? If so, determine C. Repeat if 

were given by

5.4. The probability density function of  the lifetime of a certain type of

electronic device (measured in hours), is given by

a. Find 

b. What is the cumulative distribution function of 

c. What is the probability that of 6 such types of devices, at least 3 will

function for at least 15 hours? What assumptions are you making?

5.5. A filling station is supplied with gasoline once a week. If its weekly volume

of sales in thousands of gallons is a random variable with probability density

function

𝑋

𝑓ሺ𝑥ሻ ൌ ൝
𝑐ሺ1 െ 𝑥ଶሻ െ1 ൏ 𝑥 ൏ 1

0 otherwise

𝑐?

𝑋?

𝑋 . 𝑋

𝑓ሺ𝑥ሻ ൌ ൝
𝐶𝑥𝑒െ௫/ଶ 𝑥 ൐ 0

0 𝑥 ൑ 0

𝑓ሺ𝑥ሻ ൌ ቐ
𝐶ሺ2𝑥 െ 𝑥ଷሻ 0 ൏ 𝑥 ൏

5
2

0 otherwise

𝑓 𝑓ሺ𝑥ሻ

𝑓ሺ𝑥ሻ ൌ ቐ
𝐶ሺ2𝑥 െ 𝑥ଶሻ 0 ൏ 𝑥 ൏

5
2

0 otherwise

𝑋,

𝑓ሺ𝑥ሻ ൌ ቐ
ଵ଴

௫మ
𝑥 ൐ 10

0 𝑥 ൑ 10

𝑃ሼ𝑋 ൐ 20ሽ.

𝑋?
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what must the capacity of the tank be so that the probability of the supply

being exhausted in a given week is .01?

5.6. Compute [ ] if  has a density function given by

a. 

b. 

c. 

5.7. The density function of  is given by

If  find  and 

5.8. The lifetime in hours of an electronic tube is a random variable having a

probability density function given by

Compute the expected lifetime of such a tube.

5.9. Consider Example 4b  of Chapter 4 , but now suppose that the

seasonal demand is a continuous random variable having probability density

function  Show that the optimal amount to stock is the value s* that satisfies

where  is net profit per unit sale,  is the net loss per unit unsold, and  is the

cumulative distribution function of the seasonal demand.

5.10. Trains headed for destination  arrive at the train station at 15-minute

intervals starting at 7 ඉ.ඕ., whereas trains headed for destination  arrive at

15-minute intervals starting at 7:05 ඉ.ඕ.

a. If a certain passenger arrives at the station at a time uniformly

distributed between 7 and 8 ඉ.ඕ. and then gets on the first train that

arrives, what proportion of time does he or she go to destination 

b. What if the passenger arrives at a time uniformly distributed between

7:10 and 8:10 ඉ.ඕ.?

𝑓ሺ𝑥ሻ ൌ ൝
5ሺ1 െ 𝑥ሻସ 0 ൏ 𝑥 ൏ 1

0 otherwise

𝐸 𝑋 𝑋

𝑓ሺ𝑥ሻ ൌ ൝
ଵ

ସ
𝑥𝑒െ௫/ଶ 𝑥 ൐ 0

0 otherwise
;

𝑓ሺ𝑥ሻ ൌ ൝
𝑐ሺ1 െ 𝑥ଶሻ െ1 ൏ 𝑥 ൏ 1

0 otherwise
;

𝑓ሺ𝑥ሻ ൌ ቐ
ହ

௫మ
𝑥 ൐ 5

0 𝑥 ൑ 5
.

𝑋

𝑓ሺ𝑥ሻ ൌ ቊ
𝑎 ൅ 𝑏𝑥ଶ 0 ൑ 𝑥 ൑ 1

0 otherwise

𝐸ሾ𝑋ሿ ൌ
3
5

, 𝑎 𝑏 .

𝑓ሺ𝑥ሻ ൌ 𝑥𝑒െ௫  𝑥 ൒ 0

𝑓 .

𝐹ሺ𝑠*ሻ ൌ
𝑏

𝑏 ൅ ℓ

𝑏 ℓ 𝐹

𝐴

𝐵

𝐴?
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5.11. A point is chosen at random on a line segment of length  Interpret this

statement, and find the probability that the ratio of the shorter to the longer

segment is less than 

5.12. A bus travels between the two cities  and  which are 100 miles apart.

If the bus has a breakdown, the distance from the breakdown to city  has a

uniform distribution over (0, 100). There is a bus service station in city  in 

and in the center of the route between  and  It is suggested that it would

be more efficient to have the three stations located 25, 50, and 75 miles,

respectively, from  Do you agree? Why?

5.13. You arrive at a bus stop at 10 ඉ.ඕ., knowing that the bus will arrive at

some time uniformly distributed between 10 and 10:30.

a. What is the probability that you will have to wait longer than 10

minutes?

b. If, at 10:15, the bus has not yet arrived, what is the probability that you

will have to wait at least an additional 10 minutes?

5.14. Let  be a uniform (0, 1) random variable. Compute  by using

Proposition 2.1 , and then check the result by using the definition of

expectation.

5.15. If  is a normal random variable with parameters  and 

compute
a. 
b. 
c. 
d. 
e. 

5.16. The annual rainfall (in inches) in a certain region is normally distributed

with  and  What is the probability that starting with this year, it will

take more than 10 years before a year occurs having a rainfall of more than

50 inches? What assumptions are you making?

5.17. The salaries of physicians in a certain speciality are approximately

normally distributed. If  percent of these physicians earn less than $180,000

and  percent earn more than $320,000, approximately what fraction earn

a. less than $200,000?

b. between $280,000 and $320,000?

5.18. Suppose that  is a normal random variable with mean 5. If

 approximately what is Var

5.19. Let  be a normal random variable with mean 12 and variance 4. Find

the value of  such that 

𝐿 .

1
4

.

𝐴 𝐵,

𝐴

𝐴, 𝐵,

𝐴 𝐵 .

𝐴 .

𝑋 𝐸ሾ𝑋௡ሿ

𝑋 𝜇 ൌ 10 𝜎ଶ ൌ 36,

𝑃ሼ𝑋 ൐ 5ሽ;
𝑃ሼ4 ൏ 𝑋 ൏ 16ሽ;
𝑃ሼ𝑋 ൏ 8ሽ;
𝑃ሼ𝑋 ൏ 20ሽ;
𝑃ሼ𝑋 ൐ 16ሽ.

𝜇 ൌ 40 𝜎 ൌ 4.

25

25

𝑋

𝑃ሼ𝑋 ൐ 9ሽ ൌ .2, ሺ𝑋ሻ?

𝑋

𝑐 𝑃ሼ𝑋 ൐ 𝑐ሽ ൌ .10.

366 of 848



5.20. If 65 percent of the population of a large community is in favor of a

proposed rise in school taxes, approximate the probability that a random

sample of 100 people will contain

a. at least 50 who are in favor of the proposition;

b. between 60 and 70 inclusive who are in favor;

c. fewer than 75 in favor.

5.21. Suppose that the height, in inches, of a 25-year-old man is a normal

random variable with parameters  and  What percentage of

25-year-old men are taller than 6 feet, 2 inches? What percentage of men in

the 6-footer club are taller than 6 feet, 5 inches?

5.22. Every day Jo practices her tennis serve by continually serving until she

has had a total of 50 successful serves. If each of her serves is, independently

of previous ones, successful with probability  approximately what is the

probability that she will need more than  serves to accomplish her goal?

Hint: Imagine even if Jo is successful that she continues to serve until she

has served exactly  times. What must be true about her first  serves if

she is to reach her goal?

5.23. One thousand independent rolls of a fair die will be made. Compute an

approximation to the probability that the number 6 will appear between 150

and 200 times inclusively. If the number 6 appears exactly 200 times, find the

probability that the number 5 will appear less than 150 times.

5.24. The lifetimes of interactive computer chips produced by a certain

semiconductor manufacturer are normally distributed with parameters

 hours and  hours. What is the approximate

probability that a batch of 100 chips will contain at least 20 whose lifetimes are

less than 

5.25. Each item produced by a certain manufacturer is, independently, of

acceptable quality with probability .95. Approximate the probability that at

most 10 of the next 150 items produced are unacceptable.

5.26. Two types of coins are produced at a factory: a fair coin and a biased

one that comes up heads 55 percent of the time. We have one of these coins

but do not know whether it is a fair coin or a biased one. In order to ascertain

which type of coin we have, we shall perform the following statistical test: We

shall toss the coin 1000 times. If the coin lands on heads 525 or more times,

then we shall conclude that it is a biased coin, whereas if it lands on heads

fewer than 525 times, then we shall conclude that it is a fair coin. If the coin is

actually fair, what is the probability that we shall reach a false conclusion?

What would it be if the coin were biased?

5.27. In 10,000 independent tosses of a coin, the coin landed on heads 5800

times. Is it reasonable to assume that the coin is not fair? Explain.

𝜇 ൌ 71 𝜎ଶ ൌ 6.25.

.4,

100

100 100

𝜇 ൌ 1.4 ൈ 10଺ 𝜎 ൌ 3 ൈ 10ହ

1.8 ൈ 10଺?
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5.28. Twelve percent of the population is left handed. Approximate the

probability that there are at least 20 left-handers in a school of 200 students.

State your assumptions.

5.29. A model for the movement of a stock supposes that if the present price

of the stock is  then after one period, it will be either us with probability  or

ds with probability  Assuming that successive movements are

independent, approximate the probability that the stock’s price will be up at

least 30 percent after the next 1000 periods if  and

5.30. An image is partitioned into two regions, one white and the other black.

A reading taken from a randomly chosen point in the white section will be

normally distributed with  and  whereas one taken from a

randomly chosen point in the black region will have a normally distributed

reading with parameters (6, 9). A point is randomly chosen on the image and

has a reading of 5. If the fraction of the image that is black is  for what value

of  would the probability of making an error be the same, regardless of

whether one concluded that the point was in the black region or in the white

region?

5.31.

a. A fire station is to be located along a road of length  If fires

occur at points uniformly chosen on (0, ), where should the station be

located so as to minimize the expected distance from the fire? That is,

choose  so as to

when  is uniformly distributed over (0, ).

b. Now suppose that the road is of infinite length—stretching from point 0

outward to  If the distance of a fire from point 0 is exponentially

distributed with rate  where should the fire station now be located?

That is, we want to minimize  where  is now exponential

with rate 

5.32. The time (in hours) required to repair a machine is an exponentially

distributed random variable with parameter  What is

a. What is the probability that a repair time exceeds 2 hours?

b. the conditional probability that a repair takes at least 10 hours, given

that its duration exceeds 9 hours?

5.33. If  is uniformly distributed on  find the distribution of

5.34. Jones figures that the total number of thousands of miles that a racing

𝑠, 𝑝

1 െ 𝑝.

𝑢 ൌ 1.012, 𝑑 ൌ 0.990,
𝑝 ൌ .52.

𝜇 ൌ 4 𝜎ଶ ൌ 4,

𝛼,

𝛼

𝐴,𝐴 ൏ ∞.

𝐴

𝑎
minimize 𝐸ሾ |𝑋 െ 𝑎 | ሿ

𝑋 𝐴

∞ .

𝜆,

𝐸ሾ ||𝑋 െ 𝑎 || ሿ, 𝑋

𝜆 .

𝜆 ൌ
1
2

.

𝑈 ሺ0,  1ሻ,
𝑌 ൌ െ logሺ𝑈ሻ.
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auto can be driven before it would need to be junked is an exponential

random variable with parameter  Smith has a used car that he claims has

been driven only 10,000 miles. If Jones purchases the car, what is the

probability that she would get at least 20,000 additional miles out of it? Repeat

under the assumption that the lifetime mileage of the car is not exponentially

distributed, but rather is (in thousands of miles) uniformly distributed over (0,

40).

5.35. If  is an exponential random variable with parameter  and  find

the density function of  What kind of random variable is 

5.36. The lung cancer hazard rate  of a -year-old male smoker is such

that

Assuming that a 40-year-old male smoker survives all other hazards, what is

the probability that he survives to (a) age 50 and (b) age 60 without

contracting lung cancer?

5.37. Suppose that the life distribution of an item has the hazard rate function

 What is the probability that

a. the item survives to age 2?

b. the item’s lifetime is between .4 and 1.4?

c. a 1-year-old item will survive to age 2?

5.38. If  is uniformly distributed over  find

(a) 

(b) the density function of the random variable 

5.39. If  is uniformly distributed over (0, 5), what is the probability that the

roots of the equation  are both real?

5.40. If  is an exponential random variable with parameter  compute

the probability density function of the random variable  defined by 

5.41. If  is uniformly distributed over  find  and  if 

5.42. If  is uniformly distributed over (0, 1), find the density function of 

5.43. Find the distribution of  where  is a fixed constant and  is

uniformly distributed on  Such a random variable R arises in the

theory of ballistics. If a projectile is fired from the origin at an angle  from the

earth with a speed  then the point  at which it returns to the earth can be

expressed as  where  is the gravitational constant, equal to

980 centimeters per second squared.

5.44. Let  be a lognormal random variable (see Example 7e  for its

definition) and let  be a constant. Answer true or false to the following,

1
20

.

𝑋 𝜆, 𝑐 ൐ 0,

𝑐𝑋. 𝑐𝑋.

𝜆ሺ𝑡ሻ 𝑡

𝜆ሺ𝑡ሻ ൌ .027 ൅ .00025ሺ𝑡 െ 40ሻଶ  𝑡 ൒ 40

𝜆ሺ𝑡ሻ ൌ 𝑡ଷ, 𝑡 ൐ 0.

𝑋 ሺ െ 1,1ሻ,

𝑃ሼ |𝑋 | ൐
1
2
ሽ;

|𝑋 | .

𝑌

4𝑥ଶ ൅ 4𝑥𝑌 ൅ 𝑌 ൅ 2 ൌ 0

𝑋 𝜆 ൌ 1,

𝑌 𝑌 ൌ log𝑋.

𝑋 ሺ𝑎, 𝑏ሻ, 𝑎 𝑏 𝐸ሾ𝑋ሿ ൌ 10,
Varሺ𝑋ሻ ൌ 48.

𝑋 𝑌 ൌ 𝑒௑.

𝑅 ൌ 𝐴 sin 𝜃, 𝐴 𝜃

ሺ െ 𝜋/2,𝜋/2ሻ.

𝛼

𝜈, 𝑅

𝑅 ൌ ሺ𝑣ଶ/𝑔ሻ sin2𝛼, 𝑔

𝑌

𝑐 ൐ 0
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and then give an explanation for your answer.

a.  is lognormal;

b.  is lognormal.

𝑐𝑌

𝑐 ൅ 𝑌

5.1. The speed of a molecule in a uniform gas at equilibrium is a random

variable whose probability density function is given by

where  and  and  denote, respectively, Boltzmann’s

constant, the absolute temperature of the gas, and the mass of the molecule.

Evaluate  in terms of 

5.2. Show that

Hint: Show that

5.3. Show that if  has density function  then

Hint: Using Theoretical Exercise 5.2 , start with

and then proceed as in the proof given in the text when 

5.4. Prove Corollary 2.1 .

5.5. Use the result that for a nonnegative random variable 

𝑓ሺ𝑥ሻ ൌ ൝
𝑎𝑥ଶ𝑒െ௕௫

మ
𝑥 ൒ 0

0 𝑥 ൏ 0

𝑏 ൌ 𝑚/2𝑘𝑇 𝑘, 𝑇, 𝑚

𝑎 𝑏 .

𝐸ሾ𝑌ሿ ൌ ඲

଴

ஶ

𝑃ሼ𝑌 ൐ 𝑦ሽ 𝑑𝑦 െ඲

଴

ஶ

𝑃ሼ𝑌 ൏ െ 𝑦ሽ 𝑑𝑦

඲

଴

ஶ

𝑃൜𝑌 ൏ െ 𝑦ൠ 𝑑𝑦 ൌ െ඲
െஶ

଴

𝑥𝑓௒ሺ𝑥ሻ 𝑑𝑥

඲

଴

ஶ

𝑃ቊ𝑌 ൐ 𝑦ቋ 𝑑𝑦 ൌ ඲

଴

ஶ

𝑥𝑓௒ሺ𝑥ሻ 𝑑𝑥

𝑋 𝑓,

𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ ඲
െஶ

ஶ

𝑔ሺ𝑥ሻ𝑓ሺ𝑥ሻ 𝑑𝑥

𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ ඲

଴

ஶ

𝑃ሼ𝑔ሺ𝑋ሻ ൐ 𝑦ሽ𝑑𝑦 െ඲

଴

ஶ

𝑃ሼ𝑔ሺ𝑋ሻ ൏ െ 𝑦ሽ𝑑𝑦

𝑔ሺ𝑋ሻ ൒ 0.

𝑌,
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to show that for a nonnegative random variable 

Hint: Start with

and make the change of variables 

5.6. Define a collection of events  having the property that

 for all  but 

Hint: Let  be uniform over (0, 1) and define each  in terms of 

5.7. The standard deviation of  denoted SD(X), is given by

Find  if  has variance 

5.8. Let  be a random variable that takes on values between 0 and  That

is,  Show that

Hint: One approach is to first argue that

and then use this inequality to show that

5.9. Show that  is a standard normal random variable; then, for 
a. 
b. 

c. 

5.10. Let  denote the probability density function of a normal random

variable with mean  and variance  Show that  and  are points of

inflection of this function. That is, show that  when  or

𝐸ሾ𝑌ሿ ൌ ඲

଴

ஶ

𝑃ሼ𝑌 ൐ 𝑡ሽ𝑑𝑡

𝑋,

𝐸ሾ𝑋௡ሿ ൌ ඲

଴

ஶ

𝑛𝑥௡െଵ𝑃ሼ𝑋 ൐ 𝑥ሽ𝑑𝑥

𝐸ሾ𝑋௡ሿ ൌ ඲

଴

ஶ

𝑃ሼ𝑋௡ ൐ 𝑡ሽ𝑑𝑡

𝑡 ൌ 𝑥௡.

𝐸௔, 0 ൏ 𝑎 ൏ 1,

𝑃ሺ𝐸௔ሻ ൌ 1 𝑎 𝑃ቀ ∩
௔
𝐸௔ቁ ൌ 0.

𝑋 𝐸௔ 𝑋 .

𝑋,
𝑆𝐷ሺ𝑋ሻ ൌ Varሺ𝑋ሻඥ

𝑆𝐷ሺ𝑎𝑋 ൅ 𝑏ሻ 𝑋 𝜎ଶ.

𝑋 𝑐 .

𝑃ሼ0 ൑ 𝑋 ൑ 𝑐ሽ ൌ 1.

Varሺ𝑋ሻ ൑
𝑐ଶ

4

𝐸ሾ𝑋ଶሿ ൑ 𝑐𝐸ሾ𝑋ሿ

Varሺ𝑋ሻ ൑ 𝑐ଶሾ𝛼ሺ1 െ 𝛼ሻሿ where 𝛼 ൌ
𝐸ሾ𝑋ሿ
𝑐

𝑍 𝑥 ൐ 0,
𝑃ሼ𝑍 ൐ 𝑥ሽ ൌ 𝑃ሼ𝑍 ൏ െ 𝑥ሽ;
𝑃ሼ |𝑍 | ൐ 𝑥ሽ ൌ 2𝑃ሼ𝑍 ൐ 𝑥ሽ;
𝑃ሼ |𝑍 |   ൏  𝑥ሽ ൌ 2𝑃ሼ𝑍 ൏ 𝑥ሽ െ 1 .

𝑓ሺ𝑥ሻ

𝜇 𝜎ଶ. 𝜇 െ 𝜎 𝜇 ൅ 𝜎

𝑓ᇱ
ᇱ
ሺ𝑥ሻ ൌ 0 𝑥 ൌ 𝜇 െ 𝜎

𝑥 ൌ 𝜇 ൅ 𝜎.
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5.11. Let  be a standard normal random variable  and let  be a

differentiable function with derivative 

a. Show that 

b. Show that 

c. Find 

5.12. Use the identity of Theoretical Exercises 5.5  to derive  when 

is an exponential random variable with parameter 

5.13. The median of a continuous random variable having distribution function

 is that value  such that  That is, a random variable is just as

likely to be larger than its median as it is to be smaller. Find the median of  if

 is

a. uniformly distributed over ( );

b. normal with parameters 

c. exponential with rate 

5.14. The mode of a continuous random variable having density  is the value

of  for which  attains its maximum. Compute the mode of  in cases (a),

(b), and (c) of Theoretical Exercises 5.13 .

5.15. If  is an exponential random variable with parameter  and 

show that cX is exponential with parameter 

5.16. Compute the hazard rate function of  when  is uniformly distributed

over (0, ).

5.17. If  has hazard rate function  compute the hazard rate function of

aX where  is a positive constant.

5.18. Verify that the gamma density function integrates to 1.

5.19. If  is an exponential random variable with mean  show that

Hint: Make use of the gamma density function to evaluate 

5.20. Verify that

when  is a gamma random variable with parameters  and 

5.21. Show that 

Hint:  Make the change of variables  and

then relate the resulting expression to the normal distribution.

𝑍 𝑍, 𝑔

𝑔 '.

 𝐸ሾ𝑔 'ሺ𝑍ሻሿ ൌ 𝐸ሾ𝑍𝑔ሺ𝑍ሻሿ;

 𝐸ሾ𝑍௡൅ଵሿ ൌ 𝑛𝐸ሾ𝑍௡െଵሿ.

𝐸ሾ𝑍ସሿ.

𝐸ሾ𝑋ଶሿ 𝑋

𝜆 .

𝐹 𝑚 𝐹ሺ𝑚ሻ ൌ
1
2

.

𝑋

𝑋

𝑎, 𝑏

𝜇, 𝜎ଶ;

𝜆 .

𝑓

𝑥 𝑓ሺ𝑥ሻ 𝑋

𝑋 𝜆, 𝑐 ൐ 0,

𝜆/𝑐.

𝑋 𝑋

𝑎

𝑋 𝜆௑ሺ𝑡ሻ,

𝑎

𝑋 1/𝜆,

𝐸ሾ𝑋௞ሿ ൌ
𝑘!

𝜆௞
  𝑘 ൌ 1, 2, ...

𝐸ሾ𝑋௞ሿ.

Varሺ𝑋ሻ ൌ
𝛼

𝜆ଶ

𝑋 𝛼 𝜆 .

Γ ቆ
1
2
ቇ ൌ 𝜋√ .

Γ ቆ
1
2
ቇ ൌ ඲

଴

ஶ

𝑒െ௫𝑥െଵ/ଶ 𝑑𝑥. 𝑦 ൌ 2𝑥√
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5.22. Compute the hazard rate function of a gamma random variable with

parameters  and show it is increasing when  and decreasing when

5.23. Compute the hazard rate function of a Weibull random variable and

show it is increasing when  and decreasing when 

5.24. Show that a plot of  against log  will be a straight

line with slope  when  is a Weibull distribution function. Show also that

approximately 63.2 percent of all observations from such a distribution will be

less than  Assume that 

5.25. Let

Show that if  is a Weibull random variable with parameters  and  then

 is an exponential random variable with parameter  and vice versa.

5.26. Let  be a continuous distribution function. If  is uniformly distributed

on  find the distribution function of  where  is the inverse

function of  (That is,  if )

5.27. If  is uniformly distributed over ( ), what random variable, having a

linear relation with  is uniformly distributed over (0, 1)?

5.28. Consider the beta distribution with parameters ( ). Show that

a. when  and  the density is unimodal (that is, it has a unique

mode) with mode equal to 

b. when  and  the density is either unimodal with

mode at 0 or 1 or U-shaped with modes at both 0 and 1;

c. when  all points in [0, 1] are modes.

5.29. Let  be a continuous random variable having cumulative distribution

function F. Define the random variable  by  Show that  is uniformly

distributed over (0, 1).

5.30. Let  have probability density  Find the probability density function of

the random variable  defined by 

5.31. Find the probability density function of  when  is normally

distributed with parameters  and  The random variable  is said to have a

lognormal distribution (since log  has a normal distribution) with parameters

 and 

5.32. Let  and  be independent random variables that are both equally likely

to be either  where  is very large. Let  denote the greatest

common divisor of  and  and let 

a. Give a heuristic argument that 

Hint: Note that in order for  to equal  must divide both  and 

ሺ𝛼,𝜆ሻ 𝛼 ൒ 1
𝛼 ൑ 1.

𝛽 ൒ 1 𝛽 ൑ 1.

logሺlogሺ1 െ 𝐹ሺ𝑥ሻሻെଵሻ 𝑥

𝛽 𝐹ሺ ⋅ ሻ

𝛼 . 𝑣 ൌ 0.

𝑌 ൌ ቆ
𝑋 െ 𝜈
𝛼

ቇ
ఉ

𝑋 𝜈, 𝛼, 𝛽,

𝑌 𝜆 ൌ 1

𝐹 𝑈

ሺ0, 1ሻ, 𝑌 ൌ 𝐹െଵሺ𝑈ሻ, 𝐹െଵ

𝐹 . 𝑦 ൌ 𝐹െଵሺ𝑥ሻ 𝐹ሺ𝑦ሻ ൌ 𝑥 .

𝑋 𝑎, 𝑏

𝑋,

𝑎, 𝑏

𝑎 ൐ 1 𝑏 ൐ 1,

ሺ𝑎 െ 1ሻ/ሺ𝑎 ൅ 𝑏 െ 2ሻ;

𝑎 ൑ 1, 𝑏 ൑ 1, 𝑎 ൅ 𝑏 ൏ 2,

𝑎 ൌ 1 ൌ 𝑏,

𝑋

𝑌 𝑌 ൌ 𝐹ሺ𝑋ሻ. 𝑌

𝑋 𝑓௑.

𝑌 𝑌 ൌ 𝑎𝑋 ൅ 𝑏.

𝑌 ൌ 𝑒௑ 𝑋

𝜇 𝜎ଶ. 𝑌

𝑌

𝜇 𝜎ଶ.

𝑋 𝑌

1, 2, ... , ሺ10ሻே, 𝑁 𝐷

𝑋 𝑌, 𝑄௞ ൌ 𝑃ሼ𝐷 ൌ 𝑘ሽ.

𝑄௞ ൌ
ଵ

௞మ
𝑄ଵ.

𝐷 𝑘, 𝑘 𝑋 𝑌
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and also  and  must be relatively prime. (That is,  and

 must have a greatest common divisor equal to 1.)

b. Use part (a) to show that

It is a well-known identity that  so  (In

number theory, this is known as the Legendre theorem.)

c. Now argue that

where  is the ith-smallest prime greater than 1.

Hint: X and Y will be relatively prime if they have no common prime

factors. Hence, from part (b), we see that

5.33. Prove Theorem 7.1  when  is a decreasing function.

𝑋/𝑘, 𝑌/𝑘 𝑋/𝑘,

𝑌/𝑘

𝑄ଵ ൌ 𝑃ሼ𝑋 and 𝑌 are relatively primeሽ

ൌ
ଵ

෍
ೖൌభ

ಮ

ଵ/௞మ

෍
ଵ

ஶ

1/𝑘ଶ ൌ 𝜋ଶ/6, 𝑄ଵ ൌ 6/𝜋ଶ .

𝑄ଵ ൌ ෑ
௜ ൌ ଵ

ஶ

ቆ
𝑃௜
ଶ െ 1

𝑃௜
ଶ ቇ

𝑃௜

ෑ
௜ ൌ ଵ

ஶ

ቆ
𝑃௜
ଶ െ 1

𝑃௜
ଶ ቇ ൌ

6
𝜋ଶ

𝑔ሺ𝑥ሻ

5.1. The number of minutes of playing time of a certain high school basketball

player in a randomly chosen game is a random variable whose probability

density function is given in the following figure:

Find the probability that the player plays

a. more than 15 minutes;

b. between 20 and 35 minutes;

c. less than 30 minutes;

d. more than 36 minutes.
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5.2. For some constant  the random variable  has the probability density

function

Find (a)  and (b) 

5.3. For some constant  the random variable  has the probability density

function

Find (a) [ ] and (b) Var

5.4. The random variable  has the probability density function

If  find (a)  and (b) Var

5.5. The random variable  is said to be a discrete uniform random variable

on the integers  if

For any nonnegative real number  let Int  (sometimes written as [ ]) be

the largest integer that is less than or equal to  Show that if  is a uniform

random variable on (0, 1), then  is a discrete uniform random

variable on 

5.6. Your company must make a sealed bid for a construction project. If you

succeed in winning the contract (by having the lowest bid), then you plan to

pay another firm $100,000 to do the work. If you believe that the minimum bid

(in thousands of dollars) of the other participating companies can be modeled

as the value of a random variable that is uniformly distributed on (70, 140),

how much should you bid to maximize your expected profit?

5.7. To be a winner in a certain game, you must be successful in three

successive rounds. The game depends on the value of  a uniform random

variable on (0, 1). If  then you are successful in round 1; if  then

you are successful in round 2; and if  then you are successful in round

3.

a. Find the probability that you are successful in round 1.

b. Find the conditional probability that you are successful in round 2 given

that you were successful in round 1.

c. Find the conditional probability that you are successful in round 3 given

𝑐, 𝑋

𝑓ሺ𝑥ሻ ൌ ቊ
𝑐𝑥௡ 0 ൏ 𝑥 ൏ 1

0 otherwise

𝑐 𝑃ሼ𝑋 ൐ 𝑥ሽ, 0 ൏ 𝑥 ൏ 1.

𝑐, 𝑋

𝑓ሺ𝑥ሻ ൌ ቊ
𝑐𝑥ସ 0 ൏ 𝑥 ൏ 2

0 otherwise

𝐸 𝑋 ሺ𝑋ሻ.

𝑋

𝑓ሺ𝑥ሻ ൌ ቊ
𝑎𝑥 ൅ 𝑏𝑥ଶ 0 ൏ 𝑥 ൏ 1

0 otherwise

𝐸ሾ𝑋ሿ ൌ .6, 𝑃ሼ𝑋 ൏
1
2
ሽ ሺ𝑋ሻ.

𝑋

1,2, ..., 𝑛

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ
1
𝑛
 𝑖 ൌ 1,2,..., 𝑛

𝑥, ሺ𝑥ሻ 𝑥

𝑥 . 𝑈

𝑋 ൌ Int ሺ𝑛𝑈ሻ ൅ 1

1, ..., 𝑛.

𝑈,

𝑈 ൐ .1, 𝑈 ൐ .2,

𝑈 ൐ .3,
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that you were successful in rounds 1 and 2.

d. Find the probability that you are a winner.

5.8. A randomly chosen IQ test taker obtains a score that is approximately a

normal random variable with mean 100 and standard deviation 15. What is the

probability that the score of such a person is (a) more than 125; (b) between

90 and 110?

5.9. Suppose that the travel time from your home to your office is normally

distributed with mean 40 minutes and standard deviation 7 minutes. If you

want to be 95 percent certain that you will not be late for an office appointment

at 1 ඘.ඕ., what is the latest time that you should leave home?

5.10. The life of a certain type of automobile tire is normally distributed with

mean 34,000 miles and standard deviation 4000 miles.

a. What is the probability that such a tire lasts more than 40,000 miles?

b. What is the probability that it lasts between 30,000 and 35,000 miles?

c. Given that it has survived 30,000 miles, what is the conditional

probability that the tire survives another 10,000 miles?

5.11. The annual rainfall in Cleveland, Ohio, is approximately a normal

random variable with mean 40.2 inches and standard deviation 8.4 inches.

What is the probability that

a. next year’s rainfall will exceed 44 inches?

b. the yearly rainfalls in exactly 3 of the next 7 years will exceed 44

inches?

Assume that if  is the event that the rainfall exceeds 44 inches in year 

(from now), then the events  are independent.

5.12. The following table uses 1992 data concerning the percentages of male

and female full-time workers whose annual salaries fall into different ranges:

Earnings range Percentage of female Percentage of males

9999 8.6 4.4

10,000–19,999 38.0 21.1

20,000–24,999 19.4 15.8

25,000–49,999 29.2 41.5

50,000 4.8 17.2

𝐴௜ 𝑖

𝐴௜, 𝑖 ൒ 1,

൑

൒
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Suppose that random samples of 200 male and 200 female full-time workers

are chosen. Approximate the probability that

a. at least 70 of the women earn $25,000 or more;

b. at most 60 percent of the men earn $25,000 or more;

c. at least three-fourths of the men and at least half the women earn

$20,000 or more.

5.13. At a certain bank, the amount of time that a customer spends being

served by a teller is an exponential random variable with mean 5 minutes. If

there is a customer in service when you enter the bank, what is the probability

that he or she will still be with the teller after an additional 4 minutes?

5.14. Suppose that the cumulative distribution function of the random variable

 is given by

Evaluate (a)  (b)  (c) the hazard rate function of  (d) 

[ ]; (e) Var

Hint: For parts (d) and (e), you might want to make use of the results of

Theoretical Exercise 5.5.

5.15. The number of years that a washing machine functions is a random

variable whose hazard rate function is given by

a. What is the probability that the machine will still be working 6 years

after being purchased?

b. If it is still working 6 years after being purchased, what is the

conditional probability that it will fail within the next 2 years?

5.16. A standard Cauchy random variable has density function

Show that if  is a standard Cauchy random variable, then 1/  is also a

standard Cauchy random variable.

5.17. A roulette wheel has 38 slots, numbered 0, 00, and 1 through 36. If you

bet 1 on a specified number, then you either win 35 if the roulette ball lands on

that number or lose 1 if it does not. If you continually make such bets,

approximate the probability that

a. you are winning after 34 bets;

𝑋

𝐹ሺ𝑥ሻ ൌ 1 െ 𝑒െ௫
మ
 𝑥 ൐ 0

𝑃ሼ𝑋 ൐ 2ሽ; 𝑃ሼ1 ൏ 𝑋 ൏ 3ሽ; 𝐹; 𝐸

𝑋 ሺ𝑋ሻ.

𝜆ሺ𝑡ሻ ൌ ൞

.2 0 ൏ 𝑡 ൏ 2

.2 ൅ .3ሺ𝑡 െ 2ሻ 2 ൑ 𝑡 ൏ 5

1.1 𝑡 ൐ 5

𝑓ሺ𝑥ሻ ൌ
1

𝜋ሺ1 ൅ 𝑥ଶሻ
  െ∞ ൏ 𝑥 ൏ ∞

𝑋 𝑋
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b. you are winning after 1000 bets;

c. you are winning after 100,000 bets.

Assume that each roll of the roulette ball is equally likely to land on any of the

38 numbers.

5.18. There are two types of batteries in a bin. When in use, type  batteries

last (in hours) an exponentially distributed time with rate  A battery

that is randomly chosen from the bin will be a type  battery with probability

 If a randomly chosen battery is still operating after  hours of

use, what is the probability that it will still be operating after an additional 

hours?

5.19. Evidence concerning the guilt or innocence of a defendant in a criminal

investigation can be summarized by the value of an exponential random

variable  whose mean  depends on whether the defendant is guilty. If

innocent,  if guilty,  The deciding judge will rule the defendant

guilty if  for some suitably chosen value of 

a. If the judge wants to be  percent certain that an innocent man will not

be convicted, what should be the value of c?

b. Using the value of c found in part (a), what is the probability that a

guilty defendant will be convicted?

5.20. For any real number  define  by

Let  be a constant.

a. Show that

when  is a standard normal random variable.

b. Find  when  is normal with mean  and variance 

5.21. With  being the probability that a normal random variable with

mean  and variance  is less than  which of the following are true:
a. 
b. 
c. 

5.22. Let  be a uniform  random variable, and let  be constants.

a. Show that if  then  is uniformly distributed on  and if

𝑖

𝜆௜,  𝑖 ൌ 1,  2. .

𝑖

𝑝௜, ෍
௜ ൌ ଵ

ଶ

𝑝௜ ൌ 1. 𝑡

𝑠

𝑋 𝜇

𝜇 ൌ 1; 𝜇 ൌ 2.

𝑋 ൐ 𝑐 𝑐 .

95

𝑦, 𝑦൅

𝑦൅ ൌ
𝑦, if  𝑦 ൒ 0

0, if  𝑦 ൏ 0

𝑐

𝐸ሾሺ𝑍 െ 𝑐ሻ൅ሿ ൌ
1

2𝜋√
𝑒െ௖

మ/ଶ െ 𝑐ሺ1 െ Φ ሺ𝑐ሻሻ

𝑍

𝐸ሾሺ𝑋 െ 𝑐ሻ൅ሿ 𝑋 𝜇 𝜎ଶ.

Φ ሺ𝑥ሻ

0 1 𝑥,
Φ ሺ െ 𝑥ሻ ൌ Φ ሺ𝑥ሻ
Φ ሺ𝑥ሻ ൅ Φ ሺ െ 𝑥ሻ ൌ 1
Φ ሺ െ 𝑥ሻ ൌ 1/ Φ ሺ𝑥ሻ

𝑈 ሺ0, 1ሻ 𝑎 ൏ 𝑏

𝑏 ൐ 0, 𝑏𝑈 ሺ0, 𝑏ሻ,
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6.1 Joint Distribution Functions

 then  is uniformly distributed on 

b. Show that  is uniformly distributed on 

c. What function of  is uniformly distributed on 

d. Show that  is a uniform  random variable.

e. Show that  is a uniform  random variable.

5.23. Let

a. Show that  is a probability density function. (That is, show that

 and )

b. If  has density function  find 

5.24. Let

where 

a. Show that  is a density function. That is, show that  and

that 

b. Find 

c. Find 

𝑏 ൏ 0, 𝑏𝑈 ሺ𝑏, 0ሻ.

𝑎 ൅ 𝑈 ሺ𝑎, 1 ൅ 𝑎ሻ.

𝑈 ሺ𝑎, 𝑏ሻ?

minሺ𝑈, 1 െ 𝑈ሻ ሺ0, 1/2ሻ

maxሺ𝑈, 1 െ 𝑈ሻ ሺ1/2, 1ሻ

𝑓ሺ𝑥ሻ ൌ

⎧

⎨

⎩

⎪

⎪

ଵ

ଷ
𝑒௫, if   𝑥 ൏ 0

ଵ

ଷ
if   0 ൑ 𝑥 ൏ 1

ଵ

ଷ
𝑒െሺ௫െଵሻ if   𝑥 ൒ 1

𝑓

𝑓ሺ𝑥ሻ ൒ 0, ඲
െஶ

ஶ

𝑓ሺ𝑥ሻ 𝑑𝑥 ൌ 1.

𝑋 𝑓, 𝐸ሾ𝑋ሿ.

𝑓ሺ𝑥ሻ ൌ
𝜃ଶ

1 ൅ 𝜃
ሺ1 ൅ 𝑥ሻ𝑒െఏ௫, 𝑥 ൐ 0

𝜃 ൐ 0.

𝑓ሺ𝑥ሻ 𝑓ሺ𝑥ሻ ൒ 0,

඲

଴

ஶ

𝑓ሺ𝑥ሻ 𝑑𝑥 ൌ 1.

𝐸ሾ𝑋ሿ

Varሺ𝑋ሻ.
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6.2 Independent Random Variables

6.3 Sums of Independent Random Variables

6.4 Conditional Distributions: Discrete Case

6.5 Conditional Distributions: Continuous Case

6.6 Order Statistics

6.7 Joint Probability Distribution of Functions of Random Variables

6.8 Exchangeable Random Variables

Thus far, we have concerned ourselves only with probability distributions for single

random variables. However, we are often interested in probability statements

concerning two or more random variables. In order to deal with such probabilities, we

define, for any two random variables  and , the joint cumulative probability

distribution function of  and  by

All joint probability statements about  and  can, in theory, be answered in terms of

their joint distribution function. For instance,

whenever . To verify Equation (1.1) , note that for ,

giving that

Also, because for ,

we have that when , 

𝑋 𝑌

𝑋 𝑌

𝐹ሺ𝑎, 𝑏ሻ ൌ 𝑃ሼ𝑋 ൑ 𝑎,𝑌 ൑ 𝑏ሽ  െ ∞ ൏ 𝑎, 𝑏 ൏ ∞

𝑋 𝑌

𝑃ሺ𝑎ଵ ൏ 𝑋 ൑ 𝑎ଶ,  𝑏ଵ ൏ 𝑌 ൑ 𝑏ଶሻ ൌ 𝐹ሺ𝑎ଶ, 𝑏ଶሻ ൅ 𝐹ሺ𝑎ଵ, 𝑏ଵሻ െ 𝐹ሺ𝑎ଵ, 𝑏ଶሻ െ 𝐹ሺ𝑎ଶ, 𝑏ଵሻ

(1.1)

𝑎ଵ ൏ 𝑎ଶ,  𝑏ଵ ൏ 𝑏ଶ 𝑎ଵ ൏ 𝑎ଶ

𝑃ሺ𝑋 ൑ 𝑎ଶ,  𝑌 ൑ 𝑏ሻ ൌ 𝑃ሺ𝑋 ൑ 𝑎ଵ,  𝑌 ൑ 𝑏ሻ ൅ 𝑃ሺ𝑎ଵ ൏ 𝑋 ൑ 𝑎ଶ,  𝑌 ൑ 𝑏ሻ

𝑃ሺ𝑎ଵ ൏ 𝑋 ൑ 𝑎ଶ,  𝑌 ൑ 𝑏ሻ ൌ 𝐹ሺ𝑎ଶ, 𝑏ሻ െ 𝐹ሺ𝑎ଵ, 𝑏ሻ

(1.2)

𝑏ଵ ൏ 𝑏ଶ

𝑃ሺ𝑎ଵ ൏ 𝑋 ൑ 𝑎ଶ,  𝑌 ൑ 𝑏ଶሻ ൌ 𝑃ሺ𝑎ଵ ൏ 𝑋 ൑ 𝑎ଶ,  𝑌 ൑ 𝑏ଵሻ ൅ 𝑃ሺ𝑎ଵ ൏ 𝑋 ൑ 𝑎ଶ,  𝑏ଵ ൏ 𝑌 ൑ 𝑏ଶሻ

𝑎ଵ ൏ 𝑎ଶ 𝑏ଵ ൏ 𝑏ଶ
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where the final equality used Equation (1.2) .

When  and  are discrete random variables, with  taking on one of the values ,

, and  one of the values  it is convenient to define the joint probability

mass function of  and  by

Using that the event  is the union of the mutually exclusive events

, , it follows that the probability mass function of  can be

obtained from the joint probability mass function by

Similarly, the probability mass function of  is obtained from

Example 1a

Suppose that 3 balls are randomly selected from an urn containing 3 red, 4 white,

and 5 blue balls. If we let  and  denote, respectively, the number of red and

white balls chosen, then the joint probability mass function of  and

 is obtained by noting that  if, of the  balls

selected,  are red,  are white, and  are blue. Because all subsets of

size  are equally likely to be chosen, it follows that

𝑃ሺ𝑎ଵ ൏ 𝑋 ൑ 𝑎ଶ,  𝑏ଵ ൏ 𝑌 ൑ 𝑏ଶሻ ൌ 𝑃ሺ𝑎ଵ ൏ 𝑋 ൑ 𝑎ଶ,  𝑌 ൑ 𝑏ଶሻ െ 𝑃ሺ𝑎ଵ ൏ 𝑋 ൑ 𝑎ଶ,  𝑌 ൑ 𝑏ଵሻ

ൌ 𝐹ሺ𝑎ଶ, 𝑏ଶሻ െ 𝐹ሺ𝑎ଵ, 𝑏ଶሻ െ 𝐹ሺ𝑎ଶ, 𝑏ଵሻ ൅ 𝐹ሺ𝑎ଵ, 𝑏ଵሻ

𝑋 𝑌 𝑋 𝑥௜
𝑖 ൒ 1 𝑌 𝑦௝,   𝑗 ൒ 1,

𝑋 𝑌

𝑝ሺ𝑥,𝑦ሻ ൌ 𝑃ሺ𝑋 ൌ 𝑥,𝑌 ൌ 𝑦ሻ

ሼ𝑋 ൌ 𝑥ሽ

ሼ𝑋 ൌ 𝑥,𝑌 ൌ 𝑦௝ቅ 𝑗 ൒ 1 𝑋

𝑝௑ሺ𝑥ሻ ൌ 𝑃ሺ𝑋 ൌ 𝑥ሻ

ൌ 𝑃ቀ ௝ ቄ𝑋 ൌ 𝑥,𝑌 ൌ 𝑦௝ቅቁ

ൌ ෍
௝

𝑃ሺ𝑋 ൌ 𝑥,𝑌 ൌ 𝑦௝ሻ

ൌ ෍
௝

𝑝ሺ𝑥,𝑦௝ሻ

𝑌

𝑝௒ሺ𝑦ሻ ൌ ෍
௜

𝑝ሺ𝑥௜,𝑦ሻ

𝑋 𝑌

𝑋

𝑌,𝑝ሺ𝑖, 𝑗ሻ ൌ 𝑃ሼ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗ሽ, 𝑋 ൌ 𝑖, 𝑌 ൌ 𝑗 3

𝑖 𝑗 3 െ 𝑖 െ 𝑗

3

𝑝ሺ𝑖, 𝑗ሻ ൌ
ቆ

3

𝑖
ቇቆ

4

𝑗
ቇቆ

5

3 െ 𝑖 െ 𝑗
ቇ

ቆ
12

3
ቇ
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Consequently,

These probabilities can most easily be expressed in tabular form, as in Table

6.1 . The reader should note that the probability mass function of  is obtained

by computing the row sums, whereas the probability mass function of  is

obtained by computing the column sums. Because the individual probability mass

functions of  and  thus appear in the margin of such a table, they are often

referred to as the marginal probability mass functions of  and  respectively.

Table 6.1 

𝑝ሺ0, 0ሻ ൌ ቆ
5

3
ቇ/ቆ

12

3
ቇ ൌ

10
220

𝑝ሺ0, 1ሻ ൌ ቆ
4

1
ቇቆ

5

2
ቇ/ቆ

12

3
ቇ ൌ

40
220

𝑝ሺ0, 2ሻ ൌ ቆ
4

2
ቇቆ

5

1
ቇ/ቆ

12

3
ቇ ൌ

30
220

𝑝ሺ0, 3ሻ ൌ ቆ
4

3
ቇ/ቆ

12

3
ቇ ൌ

4
220

𝑝ሺ1, 0ሻ ൌ ቆ
3

1
ቇቆ

5

2
ቇ/ቆ

12

3
ቇ ൌ

30
220

𝑝ሺ1, 1ሻ ൌ ቆ
3

1
ቇቆ

4

1
ቇቆ

5

1
ቇ/ቆ

12

3
ቇ ൌ

60
220

𝑝ሺ1, 2ሻ ൌ ቆ
3

1
ቇቆ

4

2
ቇ/ቆ

12

3
ቇ ൌ

18
220

𝑝ሺ2, 0ሻ ൌ ቆ
3

2
ቇቆ

5

1
ቇ/ቆ

12

3
ቇ ൌ

15
220

𝑝ሺ2, 1ሻ ൌ ቆ
3

2
ቇቆ

4

1
ቇ/ቆ

12

3
ቇ ൌ

12
220

𝑝ሺ3, 0ሻ ൌ ቆ
3

3
ቇ/ቆ

12

3
ቇ ൌ

1
220

𝑋

𝑌

𝑋 𝑌

𝑋 𝑌,

𝑃ሼ𝑋 ൌ 𝑖, 𝑌 ൌ 𝑗ሽ .
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Example 1b

Suppose that 15 percent of the families in a certain community have no children,

20 percent have 1 child, 35 percent have 2 children, and 30 percent have 3.

Suppose further that in each family each child is equally likely (independently) to

be a boy or a girl. If a family is chosen at random from this community, then 

the number of boys, and  the number of girls, in this family will have the joint

probability mass function shown in Table 6.2 .

Table 6.2 

The probabilities shown in Table 6.2  are obtained as follows:

𝐵,

𝐺,

𝑃ሼ𝐵 ൌ 𝑖,𝐺 ൌ 𝑗ሽ .
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We leave the verification of the remaining probabilities in the table to the reader.

Example 1c

Consider independent trials where each trial is a success with probability  Let

 denote the number of trials until there have been  successes, and let 

denote the number of trials until there have been  failures. Suppose we want to

derive their joint probability mass function  To do so, first

consider the case  In this case, write

Now, if there have been  successes after trial  then there have been 

failures by that point. Hence, the conditional distribution of  given that 

is the distribution of  plus the number of additional trials after trial  until there

have been an additional  failures. Hence,

Because  is a negative binomial random variable with parameters  and

 is a negative binomial random variable with parameters 

the preceding yields

We leave it as an exercise to determine the analogous expression when 

We say that  and  are jointly continuous if there exists a function  defined

for all real  and  having the property that for every set  of pairs of real numbers

(that is,  is a set in the two-dimensional plane),

𝑃ሼ𝐵 ൌ 0,𝐺 ൌ 0ሽ ൌ 𝑃ሼ no children ሽ ൌ .15

𝑃ሼ𝐵 ൌ 0,𝐺 ൌ 1ሽ ൌ 𝑃ሼ 1 girl and total of  1 child ሽ

ൌ 𝑃ሼ 1 child ሽ𝑃ቊ 1 girl  |  1 child ቋ ൌ ሺ.20ሻቆ
1
2
ቇ

𝑃ሼ𝐵 ൌ 0,𝐺 ൌ 2ሽ ൌ 𝑃ሼ 2 girls and total of  2 children ሽ

ൌ 𝑃ሼ 2 children ሽ𝑃ሼ 2 girls  |  2 children ሽ ൌ ሺ.35ሻቆ
1
2
ቇ
ଶ

𝑝 .

𝑋௥ 𝑟 𝑌௦
𝑠

𝑃ሺ𝑋௥ ൌ 𝑖,𝑌௦ ൌ 𝑗ሻ .

𝑖 ൏ 𝑗 .

𝑃ሺ𝑋௥ ൌ 𝑖,𝑌௦ ൌ 𝑗ሻ ൌ 𝑃ሺ𝑋௥ ൌ 𝑖ሻ𝑃ሺ𝑌௦ ൌ 𝑗 ||𝑋௥ ൌ 𝑖ሻ

𝑟 𝑖 𝑖 െ 𝑟

𝑌௦, 𝑋௥ ൌ 𝑖,

𝑖 𝑖

𝑠 െ 𝑖 ൅ 𝑟

𝑃ሺ𝑋௥ ൌ 𝑖,𝑌௦ ൌ 𝑗ሻ ൌ 𝑃ሺ𝑋௥ ൌ 𝑖ሻ𝑃ሺ𝑌௦െ௜൅௥ ൌ 𝑗 െ 𝑖ሻ , 𝑖 ൏ 𝑗

𝑋௥ ሺ𝑟,𝑝ሻ

𝑌௦െ௜൅௥ ሺ𝑠 െ 𝑖 ൅ 𝑟, 1 െ 𝑝ሻ,

𝑃ሺ𝑋௥ ൌ 𝑖,𝑌௦ ൌ 𝑗ሻ ൌ ቆ
𝑖 െ 1

𝑟 െ 1
ቇ𝑝௥ሺ1 െ 𝑝ሻ௜െ௥ ቆ

𝑗 െ 𝑖 െ 1

𝑠 െ 𝑖 ൅ 𝑟 െ 1
ቇሺ1 െ 𝑝ሻ௦െ௜൅௥𝑝௝െ௦െ௥ , 𝑖 ൏ 𝑗

𝑗 ൏ 𝑖 .

𝑋 𝑌 𝑓ሺ𝑥,𝑦ሻ,

𝑥 𝑦, 𝐶

𝐶
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The function  is called the joint probability density function of  and  If  and

 are any sets of real numbers, then by defining  we see

from Equation (1.3)  that

Because

it follows, upon differentiation, that

wherever the partial derivatives are defined. Another interpretation of the joint density

function, obtained from Equation (1.4) , is

when  and  are small and  is continuous at  Hence,  is a

measure of how likely it is that the random vector ( ) will be near ( ).

If  and  are jointly continuous, they are individually continuous, and their

probability density functions can be obtained as follows:

where

𝑃ሼሺ𝑋,𝑌ሻ ∈ 𝐶ሽ ൌ ׬׬
ሺ௫ , ௬ ሻ ∈ ஼

 𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥 𝑑𝑦

(1.3)

𝑓ሺ𝑥,𝑦ሻ 𝑋 𝑌 . 𝐴

𝐵 𝐶 ൌ ሼሺ𝑥,𝑦ሻ:𝑥 ∈ 𝐴,𝑦 ∈ 𝐵ሽ,

𝑃ሼ𝑋 ∈ 𝐴,𝑌 ∈ 𝐵ሽ ൌ ඲

஻

඲

஺

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥 𝑑𝑦

(1.4)

𝐹ሺ𝑎, 𝑏ሻ ൌ 𝑃ሼ𝑋 ∈ ሺ െ∞,  𝑎ሿ,𝑌 ∈ ሺ െ∞, 𝑏ሿሽ

ൌ െஶ׬
௕

െஶ׬
௔

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥 𝑑𝑦

𝑓ሺ𝑎, 𝑏ሻ ൌ
∂ଶ

∂𝑎∂𝑏
𝐹ሺ𝑎, 𝑏ሻ

𝑃ሼ𝑎 ൏ 𝑋 ൏ 𝑎 ൅ 𝑑𝑎, 𝑏 ൏ 𝑌 ൏ 𝑏 ൅ 𝑑𝑏ሽ ൌ ௕׬
ௗ൅ௗ௕

௔׬
௔൅ௗ௔

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥 𝑑𝑦

ൎ 𝑓ሺ𝑎, 𝑏ሻ 𝑑𝑎 𝑑𝑏

𝑑𝑎 𝑑𝑏 𝑓ሺ𝑥,𝑦ሻ 𝑎, 𝑏 . 𝑓ሺ𝑎, 𝑏ሻ

𝑋, 𝑌 𝑎, 𝑏

𝑋 𝑌

𝑃ሼ𝑋 ∈ 𝐴ሽ ൌ 𝑃ሼ𝑋 ∈ 𝐴,𝑌 ∈ ሺ െ∞,∞ሻሽ

ൌ െஶ׬஺׬
ஶ

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑦 𝑑𝑥

ൌ ஺𝑓௑ሺ𝑥ሻ 𝑑𝑥׬
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is thus the probability density function of  Similarly, the probability density function

of  is given by

Example 1d

The joint density function of  and  is given by

Compute (a)  (b)  and (c) 

Solution

a. 

Now,

giving that

𝑓௑ሺ𝑥ሻ ൌ ඲
െஶ

ஶ

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑦

𝑋 .

𝑌

𝑓௒ሺ𝑦ሻ ൌ ඲

െಮ

ஶ

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ ቊ
2𝑒െ௫𝑒െଶ௬  0 ൏ 𝑥 ൏ ∞,   0 ൏ 𝑦 ൏ ∞

0  otherwise

𝑃ሼ𝑋 ൐ 1,𝑌 ൏ 1ሽ, 𝑃ሼ𝑋 ൏ 𝑌ሽ, 𝑃ሼ𝑋 ൏ 𝑎ሽ .

𝑃ሺ𝑋 ൐ 1,  𝑌 ൏ 1ሻ ൌ ඲

଴

ଵ

඲

ଵ

ஶ

2𝑒െ௫𝑒െଶ௬ 𝑑𝑥 𝑑𝑦

඲

ଵ

ஶ

𝑒െ௫𝑑𝑥 ൌ െ 𝑒െ௫ |ଵ
ஶ ൌ 𝑒െଵ

𝑃ሺ𝑋 ൐ 1,  𝑌 ൏ 1ሻ ൌ 𝑒െଵ඲

଴

ଵ

2𝑒െଶ௬𝑑𝑦 ൌ 𝑒െଵሺ1 െ 𝑒െଶሻ
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b. 

c. 

Example 1e

Consider a circle of radius  and suppose that a point within the circle is

randomly chosen in such a manner that all regions within the circle of equal area

are equally likely to contain the point. (In other words, the point is uniformly

distributed within the circle.) If we let the center of the circle denote the origin and

define  and  to be the coordinates of the point chosen (Figure 6.1 ), then,

since ( ) is equally likely to be near each point in the circle, it follows that the

joint density function of  and  is given by

Figure 6.1 Joint probability distribution.

𝑃ሼ𝑋 ൏ 𝑌ሽ ൌ     ׬׬
ሺ௫ , ௬ ሻ: ௫ ழ ௬

2𝑒െ௫𝑒െଶ௬ 𝑑𝑥 𝑑𝑦

ൌ ଴׬
ஶ
଴׬
௬

2𝑒െ௫𝑒െଶ௬ 𝑑𝑥 𝑑𝑦

ൌ ଴׬
ஶ

2𝑒െଶ௬ሺ1 െ 𝑒െ௬ሻ𝑑𝑦

ൌ ଴׬
ஶ

2𝑒െଶ௬𝑑𝑦 െ ଴׬
ஶ

2𝑒െଷ௬𝑑𝑦

ൌ 1 െ
2
3

ൌ
1
3

𝑃ሼ𝑋 ൏ 𝑎ሽ ൌ ଴׬
௔
଴׬
ஶ

2𝑒െଶ௬𝑒െ௫ 𝑑𝑦 𝑑𝑥

ൌ ଴׬
௔
𝑒െ௫𝑑𝑥

ൌ 1 െ 𝑒െ௔

𝑅,

𝑋 𝑌

𝑋, 𝑌

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ ൝
𝑐 if   𝑥ଶ ൅ 𝑦ଶ ൑ 𝑅ଶ

0 if   𝑥ଶ ൅ 𝑦ଶ ൐ 𝑅ଶ
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for some value of 

a. Determine 

b. Find the marginal density functions of  and 

c. Compute the probability that  the distance from the origin of the point

selected, is less than or equal to 

d. Find  [ ].

Solution

a. Because

it follows that

We can evaluate either by using polar coordinates or,

more simply, by noting that it represents the area of the circle and is thus

𝑐 .

𝑐 .

𝑋 𝑌 .

𝐷,

𝑎 .

𝐸 𝐷

඲
െஶ

ஶ

඲
െஶ

ஶ

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑦 𝑑𝑥 ൌ 1

𝑐     ඲඲

௫ మ ൅ ௬ మ ൑ ோ మ

 𝑑𝑦 𝑑𝑥 ൌ 1

௫మ൅௬మ൑ோమ 𝑑𝑦 𝑑𝑥׬׬
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equal to  Hence,

b. 

and it equals 0 when  By symmetry, the marginal density of  is

given by

c. The distribution function of  the distance from the origin, is

obtained as follows: For 

where we have used the fact that is the area of a circle

of radius a and thus is equal to πα .

d. From part (c), the density function of  is

Hence,

𝜋𝑅ଶ .

𝑐 ൌ
1

𝜋𝑅ଶ

𝑓௑ሺ𝑥ሻ ൌ െஶ׬
ஶ

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑦

ൌ
1

𝜋𝑅ଶ
௫మ൅௬మ൑ோమ׬  𝑑𝑦

ൌ
1

𝜋𝑅ଶ
׬
െೌ

௔
 𝑑𝑦, where 𝑎 ൌ Rଶ െ xଶඥ

ൌ
2

𝜋𝑅ଶ
𝑅ଶ െ 𝑥ଶඥ , 𝑥ଶ ൑ 𝑅ଶ

𝑥ଶ ൐ 𝑅ଶ . 𝑌

𝑓௒ሺ𝑦ሻ ൌ
2

𝜋𝑅ଶ
𝑅ଶ െ 𝑦ଶට , 𝑦ଶ ൑ 𝑅ଶ

ൌ 0 𝑦ଶ ൐ 𝑅ଶ

𝐷 ൌ 𝑋ଶ ൅ 𝑌ଶඥ ,

0 ൑ 𝑎 ൑ 𝑅,

𝐹஽ሺ𝑎ሻ ൌ 𝑃ቄ 𝑋ଶ ൅ 𝑌ଶඥ ൑ 𝑎ቅ

ൌ 𝑃൛𝑋ଶ ൅ 𝑌ଶ ൑ 𝑎ଶൟ

ൌ   ׬׬
௫ మ ൅ ௬ మ  ൑   ௔ మ

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑦 𝑑𝑥

ൌ
1

𝜋𝑅ଶ
     ׬׬
௫ మ ൅ ௬ మ  ൑   ௔ మ

 𝑑𝑦 𝑑𝑥

ൌ
𝜋𝑎ଶ

𝜋𝑅ଶ

ൌ
𝑎ଶ

𝑅ଶ

௫మ൅௬మ ൑׬׬  ௔మ  𝑑𝑦 𝑑𝑥
2

𝐷

𝑓஽ሺ𝑎ሻ ൌ
2𝑎

𝑅ଶ
 0 ൑ 𝑎 ൑ 𝑅

𝐸ሾ𝐷ሿ ൌ
2

𝑅ଶ
඲

଴

ோ

𝑎ଶ𝑑𝑎 ൌ
2𝑅
3
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Example 1f

The joint density of  and  is given by

Find the density function of the random variable 

Solution

We start by computing the distribution function of  For 

Differentiation shows that the density function of  is given by

We can also define joint probability distributions for  random variables in exactly the

same manner as we did for  For instance, the joint cumulative probability

distribution function  of the  random variables  is defined

by

Further, the  random variables are said to be jointly continuous if there exists a

function  called the joint probability density function, such that, for any

set  in -space,

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ ቊ
𝑒െሺ௫൅௬ሻ 0 ൏ 𝑥 ൏ ∞,   0 ൏ 𝑦 ൏ ∞

0 otherwise

𝑋/𝑌 .

𝑋/𝑌 . 𝑎 ൐ 0,

𝐹௑/௒ሺ𝑎ሻ ൌ 𝑃ቊ
𝑋
𝑌
൑ 𝑎ቋ

ൌ   ׬׬
௫ /௬   ൑  ௔

 𝑒െሺ௫൅௬ሻ 𝑑𝑥 𝑑𝑦

ൌ ଴׬
ஶ
଴׬
௔௬
𝑒െሺ௫൅௬ሻ 𝑑𝑥 𝑑𝑦

ൌ ଴׬
ஶ
ሺ1 െ 𝑒െ௔௬ሻ𝑒െ௬𝑑𝑦

ൌ ቊെ𝑒െ௬ ൅
𝑒െሺ௔൅ଵሻ௬

𝑎 ൅ 1
ቋቤ
଴

ஶ

ൌ 1 െ
1

𝑎 ൅ 1

𝑋/𝑌
𝑓௑/௒ሺ𝑎ሻ ൌ 1/ሺ𝑎 ൅ 1ሻଶ, 0 ൏ 𝑎 ൏ ∞ .

𝑛

𝑛 ൌ 2 .

𝐹ሺ𝑎ଵ,𝑎ଶ, … ,𝑎௡ሻ 𝑛 𝑋ଵ,𝑋ଶ, … ,𝑋௡

𝐹ሺ𝑎ଵ,𝑎ଶ, … ,𝑎௡ሻ ൌ 𝑃ሼ𝑋ଵ ൑ 𝑎ଵ,𝑋ଶ ൑ 𝑎ଶ, … ,𝑋௡ ൑ 𝑎௡ሽ

𝑛

𝑓ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ,

𝐶 𝑛

𝑃ሼሺ𝑋ଵ,𝑋ଶ, … ,𝑋௡ሻ ∈ 𝐶ሽ ൌ    ඲඲⋯඲

ሺ௫ భ , …   , ௫ ೙ሻ ∈ ஼

𝑓ሺ𝑥ଵ, … , 𝑥௡ሻ𝑑𝑥ଵ𝑑𝑥ଶ⋯ 𝑑𝑥௡
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In particular, for any n sets of real numbers 

Example 1g The Multinomial Distribution

One of the most important joint distributions is the multinomial distribution, which

arises when a sequence of  independent and identical experiments is

performed. Suppose that each experiment can result in any one of  possible

outcomes, with respective probabilities  If we let 

denote the number of the  experiments that result in outcome number  then

whenever 

Equation (1.5)  is verified by noting that any sequence of outcomes for the 

experiments that leads to outcome  occurring  times for  will, by

the assumed independence of experiments, have probability  of

occurring. Because there are  such sequences of outcomes

(there are  different permutations of  things of which  are alike, 

are alike,  are alike), Equation (1.5)  is established. The joint distribution

whose joint probability mass function is specified by Equation (1.5)  is called

the multinomial distribution. Note that when  the multinomial reduces to the

binomial distribution.

Note also that any sum of a fixed set of the will have a binomial distribution.

That is, if  then  will be a binomial random variable with

parameters  and This follows because  represents the

number of the  experiments whose outcome is in  and each experiment will

independently have such an outcome with probability 

As an application of the multinomial distribution, suppose that a fair die is rolled 9

times. The probability that 1 appears three times, 2 and 3 twice each, 4 and 5

once each, and 6 not at all is

𝐴ଵ,𝐴ଶ, … ,𝐴௡,

𝑃ሼ𝑋ଵ ∈ 𝐴ଵ,𝑋ଶ ∈ 𝐴ଶ, … ,𝑋௡ ∈ 𝐴௡ሽ

     ൌ ஺೙׬ ஺భ׬⋯஺೙െభ׬ 𝑓ሺ𝑥ଵ, … , 𝑥௡ሻ 𝑑𝑥ଵ𝑑𝑥ଶ⋯𝑑𝑥௡

𝑛

𝑟

𝑝ଵ,𝑝ଶ, … ,𝑝௥, ෍
௜ ൌ ଵ

௥

𝑝௜ ൌ 1 . 𝑋௜

𝑛 𝑖,

𝑃ሼ𝑋ଵ ൌ 𝑛ଵ,𝑋ଶ ൌ 𝑛ଶ, … ,𝑋௥ ൌ 𝑛௥ሽ ൌ
𝑛!

𝑛ଵ !𝑛ଶ !⋯𝑛௥ !
𝑝ଵ
௡భ𝑝ଶ

௡మ⋯𝑝௥
௡ೝ

(1.5)

෍
௜ ൌ ଵ

௥

𝑛௜ ൌ 𝑛 .

𝑛

𝑖 𝑛௜ 𝑖 ൌ 1, 2, … , 𝑟

𝑝ଵ
೙భ𝑝ଶ

೙మ
… 𝑝௥

௡௥

𝑛!/ሺ𝑛ଵ !𝑛ଶ !… 𝑛௥ !ሻ

𝑛!/𝑛ଵ ! … 𝑛௥ ! 𝑛 𝑛ଵ 𝑛ଶ
… ,𝑛௥

𝑟 ൌ 2,

𝑋௜
'𝑠

𝑁 ⊂ ሼ1, 2, … , 𝑟ሽ, ෍௜∈ே𝑋௜

𝑛 𝑝 ൌ ෍௜∈ே 𝑝௜ . ෍௜∈ே 𝑋௜

𝑛 𝑁,

෍
௜∈ே

𝑝௜ .
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We can also use the multinomial distribution to analyze a variation of the

classical birthday problem which asks for the probability that no  people in a

group of size  have the same birthday when the birthdays of the  people are

independent and each birthday is equally likely to be any of the  days of the

year. Because this probability is  when  (why is this), we will suppose

that  To find the desired probability, note that there will be no set of 

people having the same birthday if each of the  days of the year is the

birthday of at most  persons. Now, this will be the case if for some  the

event  occurs, where  is the event that the  days of the year can be

partitioned into three groups of respective sizes  and  such

that every day in the first group is the birthday of exactly  of the  individuals,

every day in the second group is the birthday of exactly  of the  individuals,

and every day in the third group is the birthday of none of the  individuals. Now,

because each day of the year is equally likely to be the birthday of an individual,

it follows, for a given partition of the  days into three groups of respective

sizes  and  that the probability each day in the first group is

the birthday of exactly  of the  individuals, each day in the second group is the

birthday of exactly  of the  individuals, and each day in the third group is the

birthday of none of the  individuals is equal to the multinomial probability

As the number of partitions of the  days of the year into  groups of

respective sizes  is  it follows that

As the events  are mutually exclusive we have that

When  the preceding gives

9!
3!2!2!1!1!0!

ቆ
1
6
ቇ
ଷ

ቆ
1
6
ቇ
ଶ

ቆ
1
6
ቇ
ଶ

ቆ
1
6
ቇ
ଵ

ቆ
1
6
ቇ
ଵ

ቆ
1
6
ቇ
଴

ൌ
9!

3!2!2!
ቆ

1
6
ቇ
ଽ

3

𝑛 𝑛

365

0 𝑛 ൐ 730

𝑛 ൑ 730 . 3

365

2 𝑖 ൑ 𝑛/2

𝐴௜ 𝐴௜ 365

𝑖,𝑛 െ 2𝑖, 365 െ 𝑛 ൅ 𝑖

2 𝑛

1 𝑛

𝑛

365

𝑖, 𝑛 െ 2𝑖, 365 െ 𝑛 ൅ 𝑖,

2 𝑛

1 𝑛

𝑛

𝑛!

ሺ2!ሻ௜ሺ1!ሻ௡െଶ௜ሺ0!ሻଷ଺ହെ௡൅௜
ሺ

1
365

ሻ௡ .

365 3

𝑖,𝑛 െ 2𝑖, 365 െ 𝑛 ൅ 𝑖
365!

𝑖!ሺ𝑛 െ 2𝑖ሻ!ሺ365 െ 𝑛 ൅ 𝑖ሻ!
,

𝑃ሺ𝐴௜ሻ ൌ
365!

𝑖!ሺ𝑛 െ 2𝑖ሻ!ሺ365 െ 𝑛 ൅ 𝑖ሻ!
 
𝑛!

2௜ሺ
1

365
ሻ௡ , 𝑖 ൑ 𝑛/2

𝐴௜, 𝑖 ൑ 𝑛/2,

𝑃ሼno set of  three with same birthdayሽ ൌ ෍
௜ ൌ ଴

ሾ௡ /ଶ ሿ
365!

𝑖!ሺ𝑛 െ 2𝑖ሻ!ሺ365 െ 𝑛 ൅ 𝑖ሻ!
 
𝑛!

2௜ሺ
1

365
ሻ௡

𝑛 ൌ 88,
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The random variables  and  are said to be independent if, for any two sets of real

numbers  and 

In other words,  and  are independent if, for all  and  the events 

and  are independent.

It can be shown by using the three axioms of probability that Equation (2.1)  will

follow if and only if, for all 

Hence, in terms of the joint distribution function  of  and  and  are

independent if

When  and  are discrete random variables, the condition of independence (2.1) is

equivalent to

The equivalence follows because, if Equation (2.1)  is satisfied, then we obtain

Equation (2.2)  by letting  and  be, respectively, the one-point sets  and

 Furthermore, if Equation (2.2)  is valid, then for any sets 

𝑃ሼno set of  three with same birthdayሽ ൌ ෍
௜ ൌ ଴

ସସ
365!

𝑖!ሺ88 െ 2𝑖ሻ!ሺ277 ൅ 𝑖ሻ!
88!

2௜ ሺ
1

365
ሻ଼଼ ൎ . 504

𝑋 𝑌

𝐴 𝐵,

𝑃ሼ𝑋 ∈ 𝐴,𝑌 ∈ 𝐵ሽ ൌ 𝑃ሼ𝑋 ∈ 𝐴ሽ𝑃ሼ𝑌 ∈ 𝐵ሽ

(2.1)

𝑋 𝑌 𝐴 𝐵, 𝐸஺ ൌ ሼ𝑋 ∈ 𝐴ሽ
𝐹஻ ൌ ሼ𝑌 ∈ 𝐵ሽ

𝑎, 𝑏

𝑃ሼ𝑋 ൑ 𝑎,𝑌 ൑ 𝑏ሽ ൌ 𝑃ሼ𝑋 ൑ 𝑎ሽ𝑃ሼ𝑌 ൑ 𝑏ሽ

𝐹 𝑋 𝑌, 𝑋 𝑌

𝐹ሺ𝑎, 𝑏ሻ ൌ 𝐹௑ሺ𝑎ሻ𝐹௒ሺ𝑏ሻ  for all  𝑎, 𝑏

𝑋 𝑌

𝑝ሺ𝑥,𝑦ሻ ൌ 𝑝௑ሺ𝑥ሻ𝑝௒ሺ𝑦ሻ  for all  𝑥,𝑦

(2.2)

𝐴 𝐵 𝐴 ൌ ሼ𝑥ሽ
𝐵 ൌ ሼ𝑦ሽ . 𝐴,𝐵,
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and Equation (2.1)  is established.

In the jointly continuous case, the condition of independence is equivalent to

Thus, loosely speaking,  and  are independent if knowing the value of one does

not change the distribution of the other. Random variables that are not independent

are said to be dependent.

Example 2a

Suppose that  independent trials having a common probability of success 

are performed. If  is the number of successes in the first  trials, and  is the

number of successes in the final  trials, then  and  are independent, since

knowing the number of successes in the first  trials does not affect the

distribution of the number of successes in the final  trials (by the assumption of

independent trials). In fact, for integral  and 

In contrast,  and  will be dependent, where  is the total number of successes

in the  trials. (Why?)

Example 2b

Suppose that the number of people who enter a post office on a given day is a

Poisson random variable with parameter  Show that if each person who enters

the post office is a male with probability  and a female with probability 

then the number of males and females entering the post office are independent

Poisson random variables with respective parameters  and 

𝑃ሼ𝑋 ∈ 𝐴,𝑌 ∈ 𝐵ሽ ൌ ෍
௬ ∈ ஻

෍
௫ ∈ ஺

𝑝ሺ𝑥,𝑦ሻ

ൌ ෍
௬ ∈ ஻

෍
௫ ∈ ஺

𝑝௑ሺ𝑥ሻ𝑝௒ሺ𝑦ሻ

ൌ ෍
௬ ∈ ஻

𝑝௒ሺ𝑦ሻ ෍
௫ ∈ ஺

𝑝௑ሺ𝑥ሻ

ൌ 𝑃ሼ𝑌 ∈ 𝐵 ሽ𝑃ሼ𝑋 ∈ 𝐴ሽ

𝑓ሺ𝑥,𝑦ሻ ൌ 𝑓௑ሺ𝑥ሻ𝑓௒ሺ𝑦ሻ  for all  𝑥,𝑦

𝑋 𝑌

𝑛 ൅ 𝑚 𝑝

𝑋 𝑛 𝑌

𝑚 𝑋 𝑌

𝑛

𝑚

𝑥 𝑦,

𝑃ሼ𝑋 ൌ 𝑥,𝑌 ൌ 𝑦ሽ ൌ ቆ
𝑛

𝑥
ቇ 𝑝௫ሺ1 െ 𝑝ሻ௡െ௫ቆ

𝑚

𝑦
ቇ 𝑝௬ሺ1 െ 𝑝ሻ௠െ௬  

0 ൑ 𝑥 ൑ 𝑛,

0 ൑ 𝑦 ൑ 𝑚

ൌ 𝑃ሼ𝑋 ൌ 𝑥ሽ𝑃ሼ𝑌 ൌ 𝑦ሽ

𝑋 𝑍 𝑍

𝑛 ൅𝑚

𝜆 .

𝑝 1 െ 𝑝,

𝜆𝑝 𝜆ሺ1 െ 𝑝ሻ .
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Solution

Let  and  denote, respectively, the number of males and females that enter the

post office. We shall show the independence of  and  by establishing

Equation (2.2) . To obtain an expression for  we condition on

whether or not  This gives:

[Note that this equation is merely a special case of the formula

]

Since  is clearly 0, we obtain

Now, because  is the total number of people who enter the post office, it

follows, by assumption, that

Furthermore, given that  people do enter the post office, since each person

entering will be male with probability  it follows that the probability that exactly 

of them will be male (and thus  of them female) is just the binomial probability

That is,

Substituting Equations (2.4)  and (2.5 ) into Equation (2.3)  yields

𝑋 𝑌

𝑋 𝑌

𝑃ሼ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗ሽ,
𝑋 ൅ 𝑌 ൌ 𝑖 ൅ 𝑗 .

𝑃ሼ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗ሽ ൌ 𝑃ሼ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗 ||𝑋 ൅ 𝑌 ൌ 𝑖 ൅ 𝑗ሽ𝑃ሼ𝑋 ൅ 𝑌 ൌ 𝑖 ൅ 𝑗ሽ

 ൅ 𝑃ሼ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗 ||𝑋 ൅ 𝑌 ് 𝑖 ൅ 𝑗ሽ𝑃ሼ𝑋 ൅ 𝑌 ് 𝑖 ൅ 𝑗ሽ

𝑃ሺ𝐸ሻ ൌ 𝑃ሺ𝐸 ||𝐹ሻ𝑃ሺ𝐹ሻ ൅ 𝑃ሺ𝐸 ||𝐹
௖ሻ𝑃ሺ𝐹௖ሻ .

𝑃ሼ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗 ||𝑋 ൅ 𝑌 ് 𝑖 ൅ 𝑗ሽ

𝑃ሼ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗ሽ ൌ 𝑃ሼ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗 ||𝑋 ൅ 𝑌 ൌ 𝑖 ൅ 𝑗ሽ𝑃ሼ𝑋 ൅ 𝑌 ൌ 𝑖 ൅ 𝑗ሽ

(2.3)

𝑋 ൅ 𝑌

𝑃ሼ𝑋 ൅ 𝑌 ൌ 𝑖 ൅ 𝑗ሽ ൌ 𝑒െఒ
𝜆௜൅௝

ሺ𝑖 ൅ 𝑗ሻ!

(2.4)

𝑖 ൅ 𝑗

𝑝, 𝑖

𝑗

ቆ
𝑖 ൅ 𝑗

𝑖
ቇ𝑝௜ሺ1 െ 𝑝ሻ௝ .

𝑃ሼ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗 |𝑋 ൅ 𝑌 ൌ 𝑖 ൅ 𝑗ሽ ൌ ቆ
𝑖 ൅ 𝑗

𝑖
ቇ𝑝௜ሺ1 െ 𝑝ሻ௝

(2.5)
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Hence,

and similarly,

Equations (2.6) , (2.7) , and (2.8)  establish the desired result.

Example 2c

A man and a woman decide to meet at a certain location. If each of them

independently arrives at a time uniformly distributed between 12 noon and 1 ඘.ඕ.,

find the probability that the first to arrive has to wait longer than 10 minutes.

Solution

If we let  and  denote, respectively, the time past 12 that the man and the

woman arrive, then  and  are independent random variables, each of which is

uniformly distributed over (0, 60). The desired probability,

 which, by symmetry, equals  is

obtained as follows:

𝑃ሼ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗ሽ ൌ ቆ
𝑖 ൅ 𝑗

𝑖
ቇ𝑝௜ሺ1 െ 𝑝ሻ௝𝑒െఒ

𝜆௜൅௝

ሺ𝑖 ൅ 𝑗ሻ!

ൌ 𝑒െఒ
ሺ𝜆𝑝ሻ௜

𝑖!𝑗!
ሾ𝜆ሺ1 െ 𝑝ሻሿ௝

ൌ
𝑒െఒሺ𝜆𝑝ሻ௜

𝑖!
𝑒െఒሺ1 െ 𝑝ሻ

ሾ𝜆ሺ1 െ 𝑝ሻሿ௝

𝑗!

(2.6)

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ 𝑒െఒ௣
ሺ𝜆𝑝ሻ௜

𝑖!
෍
௝

𝑒െఒሺଵെ௣ሻ
ൣ𝜆ሺ1 െ 𝑝൯൧௝

𝑗!
ൌ 𝑒െఒ௣

ሺ𝜆𝑝ሻ௜

𝑖!

(2.7)

𝑃ሼ𝑌 ൌ 𝑗ሽ ൌ 𝑒െఒሺଵെ௣ሻ
ൣ𝜆ሺ1 െ 𝑝൯൧௝

𝑗!

(2.8)

𝑋 𝑌

𝑋 𝑌

𝑃ሼ𝑋 ൅ 10 ൏ 𝑌ሽ ൅ 𝑃ሼ𝑌 ൅ 10 ൏ 𝑋ሽ, 2𝑃ሼ𝑋 ൅ 10 ൏ 𝑌ሽ,
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Our next example presents the oldest problem dealing with geometrical probabilities.

It was first considered and solved by Buffon, a French naturalist of the eighteenth

century, and is usually referred to as Buffon’s needle problem.

Example 2d Buffon’s Needle Problem

A table is ruled with equidistant parallel lines a distance  apart. A needle of

length  where  is randomly thrown on the table. What is the probability

that the needle will intersect one of the lines (the other possibility being that the

needle will be completely contained in the strip between two lines)?

Solution

Let us determine the position of the needle by specifying (1) the distance  from

the middle point of the needle to the nearest parallel line and (2) the angle 

between the needle and the projected line of length  (See Figure 6.2 .) The

needle will intersect a line if the hypotenuse of the right triangle in Figure 6.2

is less than —that is, if

Figure 6.2

As  varies between 0 and  and  between 0 and  it is reasonable to

2𝑃ሼ𝑋 ൅ 10 ൏ 𝑌ሽ ൌ 2  ׬׬
௫ ൅ ଵ଴ ழ ௬

 𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥 𝑑𝑦

ൌ 2   ׬׬
௫ ൅ ଵ଴ ழ ௬

 𝑓௑ሺ𝑥ሻ𝑓௒ሺ𝑦ሻ 𝑑𝑥 𝑑𝑦

ൌ ଵ଴׬ 2
଺଴
଴׬
௬െଵ଴

ቆ
1

60
ቇ
ଶ

 𝑑𝑥 𝑑𝑦

ൌ
2

ሺ60ሻଶ
ଵ଴׬
଺଴
ሺ𝑦 െ 10ሻ 𝑑𝑦

ൌ
25
36

𝐷

𝐿, 𝐿 ൑ 𝐷,

𝑋

𝜃

𝑋 .

𝐿/2

𝑋
cos𝜃

൏
𝐿
2
 or 𝑋 ൏

𝐿
2

cos𝜃

𝑋 𝐷/2 𝜃 𝜋/2,
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assume that they are independent, uniformly distributed random variables over

these respective ranges. Hence,

Example 2e Characterization of the Normal Distribution

Let  and  denote the horizontal and vertical miss distances when a bullet is

fired at a target, and assume that

1.  and  are independent continuous random variables having

differentiable density functions.

2. The joint density  of  and  depends on ( ) only

through 

Loosely put, assumption 2 states that the probability of the bullet landing on any

point of the –  plane depends only on the distance of the point from the target

and not on its angle of orientation. An equivalent way of phrasing this assumption

is to say that the joint density function is rotation invariant.

It is a rather interesting fact that assumptions 1 and 2 imply that  and  are

normally distributed random variables. To prove this, note first that the

assumptions yield the relation

for some function  Differentiating Equation (2.9)  with respect to  yields

Dividing Equation (2.10)  by Equation (2.9)  gives

𝑃ቊ𝑋 ൏
𝐿
2

cos𝜃ቋ ൌ       ׬׬
௫ ழ ௅ /ଶ  cos  ௬

𝑓௑ሺ𝑥ሻ𝑓ఏሺ𝑦ሻ 𝑑𝑥 𝑑𝑦

ൌ
4
𝜋𝐷

଴׬
గ/ଶ

଴׬
௅/ଶ cos ௬

 𝑑𝑥 𝑑𝑦

ൌ
4
𝜋𝐷

଴׬
గ/ଶ𝐿

2
cos 𝑦 𝑑𝑦

ൌ
2𝐿
𝜋𝐷

∗

𝑋 𝑌

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ 𝑓௑ሺ𝑥ሻ𝑓௒ሺ𝑦ሻ 𝑋 𝑌 𝑥, 𝑦

𝑥ଶ ൅ 𝑦ଶ .

𝑥 𝑦

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ 𝑓௑ሺ𝑥ሻ𝑓௒ሺ𝑦ሻ ൌ 𝑔ሺ𝑥ଶ ൅ 𝑦ଶሻ

(2.9)

𝑔 . 𝑥

𝑓′௑ ሺ𝑥ሻ𝑓௒ሺ𝑦ሻ ൌ 2𝑥 𝑔′ሺ𝑥ଶ ൅ 𝑦ଶሻ

(2.10)

𝑓′௑ ሺ𝑥ሻ
𝑓௑ሺ𝑥ሻ

ൌ
2𝑥 𝑔′ሺ𝑥ଶ ൅ 𝑦ଶሻ
𝑔ሺ𝑥ଶ ൅ 𝑦ଶሻ
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or

Because the value of the left-hand side of Equation (2.11)  depends only on 

whereas the value of the right-hand side depends on  it follows that the

left-hand side must be the same for all  To see this, consider any  and let

 be such that  Then, from Equation (2.11) , we

obtain

Hence,

which implies, upon integration of both sides, that

Since  it follows that  is necessarily negative, and we may

write  Thus,

That is,  is a normal random variable with parameters  and  A similar

argument can be applied to  to show that

Furthermore, it follows from assumption 2 that  and that  and  are thus

independent, identically distributed normal random variables with parameters

 and 

A necessary and sufficient condition for the random variables  and  to be

independent is for their joint probability density function (or joint probability mass

function in the discrete case) ( ) to factor into two terms, one depending only on

𝑓′௑ ሺ𝑥ሻ
2𝑥 𝑓௑ሺ𝑥ሻ

ൌ
𝑔′ሺ𝑥ଶ ൅ 𝑦ଶሻ
𝑔ሺ𝑥ଶ ൅ 𝑦ଶሻ

(2.11)

𝑥,

𝑥ଶ ൅ 𝑦ଶ,

𝑥 . 𝑥ଵ, 𝑥ଶ
𝑦ଵ, 𝑦ଶ 𝑥ଶଵ ൅ 𝑦ଶଵ ൌ 𝑥ଶଶ ൅ 𝑦ଶଶ .

𝑓′௑ ሺ𝑥ଵሻ
2𝑥ଵ 𝑓௑ሺ𝑥ଵሻ

ൌ
𝑔′ሺ𝑥ଶଵ ൅ 𝑦ଶଵሻ
𝑔ሺ𝑥ଶଵ ൅ 𝑦ଶଵሻ

ൌ
𝑔′ሺ𝑥ଶଶ ൅ 𝑦ଶଶሻ
𝑔ሺ𝑥ଶଶ ൅ 𝑦ଶଶሻ

ൌ
𝑓′௑ ሺ𝑥ଶሻ

2𝑥ଶ 𝑓௑ሺ𝑥ଶሻ

𝑓′௑ ሺ𝑥ሻ
𝑥 𝑓௑ሺ𝑥ሻ

ൌ 𝑐 or 
𝑑
𝑑𝑥
ሺlog𝑓௑ሺ𝑥ሻሻ ൌ 𝑐𝑥

log𝑓௑ሺ𝑥ሻ ൌ 𝑎 ൅
𝑐𝑥ଶ

2
 or 𝑓௑ሺ𝑥ሻ ൌ 𝑘𝑒௖௫

మ/ଶ

െஶ׬
ஶ

𝑓௑ሺ𝑥ሻ 𝑑𝑥 ൌ 1, 𝑐

𝑐 ൌ െ 1/𝜎ଶ .

𝑓௑ሺ𝑥ሻ ൌ 𝑘𝑒െ௫
మ/ଶఙమ

𝑋 𝜇 ൌ 0 𝜎ଶ .

𝑓௒ሺ𝑦ሻ

𝑓௒ሺ𝑦ሻ ൌ
1

2𝜋√ 𝜎̅̅
𝑒െ௬

మ/ଶఙ̅̅̅మ̅

𝜎ଶ ൌ 𝜎̅̅ଶ 𝑋 𝑌

𝜇 ൌ 0 𝜎ଶ .

𝑋 𝑌

𝑓 𝑥, 𝑦
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 and the other depending only on 

Proposition 2.1

The continuous (discrete) random variables  and  are independent if and only

if their joint probability density (mass) function can be expressed as

Proof Let us give the proof in the continuous case. First, note that independence

implies that the joint density is the product of the marginal densities of  and 

so the preceding factorization will hold when the random variables are

independent. Now, suppose that

Then

where and  Also,

Since  it follows that

and the proof is complete.

Example 2f

If the joint density function of  and  is

and is equal to 0 outside this region, are the random variables independent?

What if the joint density function is

𝑥 𝑦 .

𝑋 𝑌

𝑓௑,௒ሺ𝑥,𝑦ሻ ൌ ℎሺ𝑥ሻ 𝑔ሺ𝑦ሻ   െ ∞ ൏ 𝑥 ൏ ∞ , െ ∞ ൏ 𝑦 ൏ ∞

𝑋 𝑌,

𝑓௑,௒ሺ𝑥,𝑦ሻ ൌ ℎቀ𝑥ሻ 𝑔ቀ𝑦ሻ

1 ൌ െஶ׬
ஶ

െஶ׬
ஶ

𝑓௑,௒ሺ𝑥,𝑦ሻ 𝑑𝑥 𝑑𝑦

ൌ െஶ׬
ஶ

ℎሺ𝑥ሻ 𝑑𝑥׬െஶ
ஶ

𝑔ሺ𝑦ሻ 𝑑𝑦

ൌ 𝐶ଵ𝐶ଶ

𝐶ଵ ൌ െஶ׬
ஶ

ℎሺ𝑥ሻ 𝑑𝑥 𝐶ଶ ൌ െஶ׬
ஶ

𝑔ሺ𝑦ሻ 𝑑𝑦 .

𝑓௑ሺ𝑥ሻ ൌ െஶ׬
ஶ

𝑓௑,௒ሺ𝑥,𝑦ሻ 𝑑𝑦 ൌ 𝐶ଶ ℎሺ𝑥ሻ

𝑓௒ሺ𝑦ሻ ൌ െஶ׬
ஶ

𝑓௑,௒ሺ𝑥,𝑦ሻ 𝑑𝑥 ൌ 𝐶ଵ 𝑔ሺ𝑦ሻ

𝐶ଵ𝐶ଶ ൌ 1,

𝑓௑,௒ሺ𝑥,𝑦ሻ ൌ 𝑓௑ሺ𝑥ሻ𝑓௒ሺ𝑦ሻ

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ 6𝑒െଶ௫𝑒െଷ௬  0 ൏ 𝑥 ൏ ∞ ,   0 ൏ 𝑦 ൏ ∞

𝑓ሺ𝑥,𝑦ሻ ൌ 24𝑥𝑦  0 ൏ 𝑥 ൏ 1,    0 ൏ 𝑦 ൏ 1,    0 ൏ 𝑥 ൅ 𝑦 ൏ 1
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and is equal to 0 otherwise?

Solution

In the first instance, the joint density function factors, and thus the random

variables, are independent (with one being exponential with rate 2 and the other

exponential with rate 3). In the second instance, because the region in which the

joint density is nonzero cannot be expressed in the form  the joint

density does not factor, so the random variables are not independent. This can

be seen clearly by letting

and writing

which clearly does not factor into a part depending only on  and another

depending only on 

The concept of independence may, of course, be defined for more than two random

variables. In general, the  random variables  are said to be independent

if, for all sets of real numbers 

As before, it can be shown that this condition is equivalent to

Finally, we say that an infinite collection of random variables is independent if every

finite subcollection of them is independent.

Example 2g How can a computer choose a random subset?

Most computers are able to generate the value of, or simulate, a uniform (0, 1)

random variable by means of a built-in subroutine that (to a high degree of

approximation) produces such “random numbers.” As a result, it is quite easy for

a computer to simulate an indicator (that is, a Bernoulli) random variable.

𝑥 ∈ 𝐴,𝑦 ∈ 𝐵,

𝐼ሺ𝑥,𝑦ሻ ൌ ቊ
1   if   0 ൏ 𝑥 ൏ 1,   0 ൏ 𝑦 ൏ 1,   0 ൏ 𝑥 ൅ 𝑦 ൏ 1

0  otherwise

𝑓ሺ𝑥,𝑦ሻ ൌ 24𝑥𝑦 𝐼ሺ𝑥,𝑦ሻ

𝑥

𝑦 .

𝑛 𝑋ଵ,𝑋ଶ, … ,𝑋௡
𝐴ଵ,𝐴ଶ, … ,𝐴௡,

𝑃ሼ𝑋ଵ ∈ 𝐴ଵ,𝑋ଶ ∈ 𝐴ଶ, … ,𝑋௡ ∈ 𝐴௡ሽ ൌ ෑ
௜ ൌ ଵ

௡

𝑃ሼ𝑋௜ ∈ 𝐴௜ሽ

𝑃ሼ𝑋ଵ ൑ 𝑎ଵ,𝑋ଶ ൑ 𝑎ଶ, … ,𝑋௡ ൑ 𝑎௡ሽ

               ൌ
௜ ൌ ଵ

௡

𝑃ሼ𝑋௜ ൑ 𝑎௜ሽ   for all  𝑎ଵ,𝑎ଶ, … ,𝑎௡

401 of 848



Suppose  is an indicator variable such that

The computer can simulate  by choosing a uniform (0, 1) random number  and

then letting

Suppose that we are interested in having the computer select  of the

numbers  in such a way that each of the  subsets of size  is equally

likely to be chosen. We now present a method that will enable the computer to

solve this task. To generate such a subset, we will first simulate, in sequence, 

indicator variables  of which exactly  will equal 1. Those  for which

 will then constitute the desired subset.

To generate the random variables  start by simulating  independent

uniform (0, 1) random variables  Now define

and then, once  are determined, recursively set

In words, at the ( )th stage, we set  equal to 1 (and thus put  into the

desired subset) with a probability equal to the remaining number of places in the

subset  divided by the remaining number of possibilities

(namely, ). Hence, the joint distribution of  is determined from

𝐼

𝑃ሼ𝐼 ൌ 1ሽ ൌ 𝑝 ൌ 1 െ 𝑃ሼ𝐼 ൌ 0ሽ

𝐼 𝑈

𝐼 ൌ
1 i𝑓  𝑈 ൏ 𝑝

0 i𝑓  𝑈 ൒ 𝑝

𝑘, 𝑘 ൑ 𝑛,

1, 2, … ,𝑛 ቆ
𝑛

𝑘
ቇ 𝑘

𝑛

𝐼ଵ, 𝐼ଶ, … , 𝐼௡, 𝑘 𝑖

𝐼௜ ൌ 1

𝐼ଵ, … , 𝐼௡, 𝑛

𝑈ଵ,𝑈ଶ, … ,𝑈௡ .

𝐼ଵ ൌ ቐ
1  if   𝑈ଵ ൏

𝑘
𝑛

0  otherwise

𝐼ଵ, … , 𝐼௜

𝐼௜൅ଵ ൌ ൞
1 if  𝑈௜൅ଵ ൏

𝑘 െ ሺ𝐼ଵ ൅ ⋯ ൅ 𝐼௜ሻ
𝑛 െ 𝑖

0 otherwise

𝑖 ൅ 1 𝐼௜൅ଵ 𝑖 ൅ 1

ቌnamely, 𝑘 െ ෍
௝ ൌ ଵ

௜

𝐼௝ቍ,

𝑛 െ 𝑖 𝐼ଵ, 𝐼ଶ, … , 𝐼௡

𝑃ሼ𝐼ଵ ൌ 1ሽ ൌ
𝑘
𝑛

𝑃ሼ𝐼௜൅ଵ ൌ 1 ||𝐼ଵ, … , 𝐼௜ሽ ൌ

𝑘 െ ෍
௝ ൌ ଵ

௜

𝐼௝

𝑛 െ 𝑖
 1 ൏ 𝑖 ൏ 𝑛
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The proof that the preceding formula results in all subsets of size  being equally

likely to be chosen is by induction on  It is immediate when  (that

is, when ), so assume it to be true whenever  Now,

suppose that  and consider any subset of size —say,

—and consider the following two cases.

Case 1: 

Now given that  the remaining elements of the subset are chosen as if a

subset of size  were to be chosen from the  elements 

Hence, by the induction hypothesis, the conditional probability that this will result

in a given subset of size  being selected is  Hence,

Case 2:

where the induction hypothesis was used to evaluate the preceding conditional

probability.

Thus, in all cases, the probability that a given subset of size  will be the subset

chosen is 

Remark The foregoing method for generating a random subset has a very low

memory requirement. A faster algorithm that requires somewhat more memory is

presented in Section 10.1 . (The latter algorithm uses the last  elements of a

random permutation of )

𝑘

𝑘 ൅ 𝑛 . 𝑘 ൅ 𝑛 ൌ 2

𝑘 ൌ 1,𝑛 ൌ 1 𝑘 ൅ 𝑛 ൑ 𝑙 .

𝑘 ൅ 𝑛 ൌ 𝑙 ൅ 1, 𝑘

𝑖ଵ ൑ 𝑖ଶ ൑ ⋯ ൑ 𝑖௞

𝑖ଵ ൌ 1

𝑃ሼ𝐼ଵ ൌ 𝐼௜మ ൌ ⋯ ൌ 𝐼௜ೖ ൌ 1, 𝐼௝ ൌ 0  otherwiseሽ

ൌ 𝑃ሼ𝐼ଵ ൌ 1ሽ𝑃൛𝐼௜మ ൌ ⋯ ൌ 𝐼௜ೖ ൌ 1, 𝐼௝ ൌ 0  otherwise|
|𝐼ଵ ൌ 1ൟ

𝐼ଵ ൌ 1,

𝑘 െ 1 𝑛 െ 1 2, 3, … ,𝑛 .

𝑘 െ 1 1/ቆ
𝑛 െ 1

𝑘 െ 1
ቇ .

𝑃ሼ𝐼ଵ ൌ 𝐼௜మ ൌ ⋯ ൌ 𝐼௜ೖ ൌ 1, 𝐼௝ ൌ 0  otherwiseൟ

ൌ
𝑘
𝑛

1

ቆ
𝑛 െ 1

𝑘 െ 1
ቇ
ൌ

1

ቆ
𝑛

𝑘
ቇ

𝑖ଵ ് 1

𝑃ሼ𝐼௜ଵ ൌ 𝐼௜మ ൌ ⋯ ൌ 𝐼௜ೖ ൌ 1, 𝐼௝ ൌ 0  otherwiseሽ

ൌ 𝑃൛𝐼௜భ ൌ ⋯ ൌ 𝐼௜ೖ ൌ 1, 𝐼௝ ൌ 0  otherwise|
|𝐼ଵ ൌ 0ൟ𝑃ሼ𝐼ଵ ൌ 0ሽ

ൌ
1

ቆ
𝑛 െ 1

𝑘
ቇ
ቆ1 െ

𝑘
𝑛
ቇ ൌ

1

ቆ
𝑛

𝑘
ቇ

𝑘

1/ቆ
𝑛

𝑘
ቇ .

𝑘

1, 2, … ,𝑛 .
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Example 2h

Let  be independent and uniformly distributed over (0, 1). Compute

Solution

Since

we have

Example 2i Probabilistic Interpretation of Half-Life

Let  denote the number of nuclei contained in a radioactive mass of material

at time  The concept of half-life is often defined in a deterministic fashion by

stating this it is an empirical fact that, for some value  called the half-life,

[Note that ] Since the preceding implies that, for any nonnegative

 and 

it follows that no matter how much time  has already elapsed, in an additional

time  the number of existing nuclei will decrease by the factor 

Because the deterministic relationship just given results from observations of

radioactive masses containing huge numbers of nuclei, it would seem that it

might be consistent with a probabilistic interpretation. The clue to deriving the

appropriate probability model for half-life resides in the empirical observation that

the proportion of decay in any time interval depends neither on the total number

𝑋, 𝑌, 𝑍
𝑃ሼ𝑋 ൒ 𝑌𝑍ሽ .

𝑓௑,௒,௓ሺ𝑥,𝑦, 𝑧ሻ ൌ 𝑓௑ሺ𝑥ሻ 𝑓௒ሺ𝑦ሻ 𝑓௓ሺ𝑧ሻ

ൌ 1, 0 ൑ 𝑥 ൑ 1,  0 ൑ 𝑦 ൑ 1,  0 ൑ 𝑧 ൑ 1

𝑃ሼ𝑋 ൒ 𝑌𝑍ሽ ൌ ׬׬׬
௫ ൒ ௬ ௭

𝑓௑,  ௒,  ௓ሺ𝑥,𝑦, 𝑧ሻ 𝑑𝑥 𝑑𝑦 𝑑𝑧

ൌ ଴׬
ଵ
଴׬
ଵ
௬௭׬
ଵ
 𝑑𝑥 𝑑𝑦 𝑑𝑧

ൌ ଴׬
ଵ
଴׬
ଵ
ሺ1 െ 𝑦𝑧ሻ 𝑑𝑦 𝑑𝑧

ൌ ଴׬
ଵ
൬1 െ

𝑧
2
൰ 𝑑𝑧

ൌ
3
4

𝑁ሺ𝑡ሻ

𝑡 .

ℎ,

𝑁ሺ𝑡ሻ ൌ 2െ௧/௛𝑁൫0ሻ 𝑡 ൐ 0

𝑁ሺℎሻ ൌ 𝑁ሺ0ሻ/2 .

𝑠 𝑡,

𝑁ሺ𝑡 ൅ 𝑠ሻ ൌ 2െሺ௦൅௧ሻ/௛𝑁൫0ሻ ൌ 2െ௧/௛𝑁൫𝑠ሻ

𝑠

𝑡, 2െ௧/௛ .
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of nuclei at the beginning of the interval nor on the location of this interval [since

 depends neither on  nor on ]. Thus, it appears that the

individual nuclei act independently and with a memoryless life distribution.

Consequently, since the unique life distribution that is memoryless is the

exponential distribution, and since exactly one-half of a given amount of mass

decays every  time units, we propose the following probabilistic model for

radioactive decay.

Probabilistic interpretation of the half-life h: The lifetimes of the individual

nuclei are independent random variables having a life distribution that is

exponential with median equal to  That is, if  represents the lifetime of a given

nucleus, then

(Because  and the preceding can be written as

it can be seen that  indeed has an exponential distribution with median )

Note that under the probabilistic interpretation of half-life just given, if one starts

with (0) nuclei at time 0, then  the number of nuclei that remain at time 

will have a binomial distribution with parameters  and 

Results of Chapter 8  will show that this interpretation of half-life is consistent

with the deterministic model when considering the proportion of a large number

of nuclei that decay over a given time frame. However, the difference between

the deterministic and probabilistic interpretation becomes apparent when one

considers the actual number of decayed nuclei. We will now indicate this with

regard to the question of whether protons decay.

There is some controversy over whether or not protons decay. Indeed, one

theory predicts that protons should decay with a half-life of about  years.

To check this prediction empirically, it has been suggested that one follow a large

number of protons for, say, one or two years and determine whether any of them

decay within that period. (Clearly, it would not be feasible to follow a mass of

protons for  years to see whether one-half of it decays.) Let us suppose that

we are able to keep track of  protons for  years. The number of

decays predicted by the deterministic model would then be given by

𝑁ሺ𝑡 ൅ 𝑠ሻ/𝑁ሺ𝑠ሻ 𝑁ሺ𝑠ሻ 𝑠

ℎ

ℎ . 𝐿

𝑃൛𝐿 ൏ 𝑡ൟ ൌ 1 െ 2െ௧/௛

𝑃ሼ𝐿 ൏ ℎሽ ൌ
1
2

𝑃ሼ𝐿 ൏ 𝑡ሽ ൌ 1 െ expቊ െ 𝑡
log 2
ℎ

ቋ

𝐿 ℎ .

𝑁 𝑁ሺ𝑡ሻ, 𝑡

𝑛 ൌ 𝑁ሺ0ሻ 𝑝 ൌ 2െ௧/௛ .

ℎ ൌ 10ଷ଴

10ଷ଴

𝑁ሺ0ሻ ൌ 10ଷ଴ 𝑐
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For instance, the deterministic model predicts that in 2 years there should be

1.3863 decays, and it would thus appear to be a serious blow to the hypothesis

that protons decay with a half-life of  years if no decays are observed over

those 2 years.

Let us now contrast the conclusions just drawn with those obtained from the

probabilistic model. Again, let us consider the hypothesis that the half-life of

protons is  years, and suppose that we follow  protons for  years.

Since there is a huge number of independent protons, each of which will have a

very small probability of decaying within this time period, it follows that the

number of protons that decay will have (to a very strong approximation) a

Poisson distribution with parameter equal to  Thus,

and, in general,

Thus, we see that even though the average number of decays over 2 years is (as

predicted by the deterministic model) 1.3863, there is 1 chance in 4 that there will

not be any decays, thereby indicating that such a result in no way invalidates the

original hypothesis of proton decay.

Remarks Independence is a symmetric relation. The random variables  and  are

independent if their joint density function (or mass function in the discrete case) is

the product of their individual density (or mass) functions. Therefore, to say that  is

independent of  is equivalent to saying that  is independent of  — or just that 

and  are independent. As a result, in considering whether  is independent of  in

situations where it is not at all intuitive that knowing the value of  will not change the

probabilities concerning  it can be beneficial to interchange the roles of  and 

𝑁ሺ0ሻ െ 𝑁ሺ𝑐ሻ ൌ ℎሺ1 െ 2െ௖/௛ሻ

ൌ
1 െ 2െ௖/௛

1/ℎ

ൎ lim
௫ → ଴

 
1 െ 2െ௖௫

𝑥
   since 

1
ℎ
ൌ 10െଷ଴ ൎ 0

ൌ lim
௫ → ଴

 ሺ𝑐2െ௖௫ log 2ሻ by L’Hôpital’s rule

ൌ 𝑐 log 2 ൎ .6931𝑐

10ଷ଴

ℎ ൌ 10ଷ଴ ℎ 𝑐

ℎሺ1 െ 2െ௖/௛ሻ ൎ 𝑐 log 2 .

𝑃ሼ0  decaysሽ ൌ 𝑒െ௖ log ଶ

ൌ 𝑒െ log ሺଶ೎ሻ ൌ
1
2௖

𝑃ሼ𝑛  decaysሽ ൌ
2െ௖ሾ𝑐 log 2ሿ௡

𝑛!
  𝑛 ൒ 0

𝑋 𝑌

𝑋

𝑌 𝑌 𝑋 𝑋

𝑌 𝑋 𝑌

𝑌

𝑋, 𝑋 𝑌
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and ask instead whether  is independent of  The next example illustrates this

point.

Example 2j

If the initial throw of the dice in the game of craps results in the sum of the dice

equaling 4, then the player will continue to throw the dice until the sum is either 4

or 7. If this sum is 4, then the player wins, and if it is 7, then the player loses. Let

 denote the number of throws needed until either 4 or 7 appears, and let 

denote the value (either 4 or 7) of the final throw. Is  independent of  That is,

does knowing which of 4 or 7 occurs first affect the distribution of the number of

throws needed until that number appears? Most people do not find the answer to

this question to be intuitively obvious. However, suppose that we turn it around

and ask whether  is independent of  That is, does knowing how many throws

it takes to obtain a sum of either 4 or 7 affect the probability that that sum is

equal to 4? For instance, suppose we know that it takes  throws of the dice to

obtain a sum of either 4 or 7. Does this affect the probability distribution of the

final sum? Clearly not, since all that is important is that its value is either 4 or 7,

and the fact that none of the first  throws were either 4 or 7 does not change

the probabilities for the th throw. Thus, we can conclude that  is independent

of  or equivalently, that  is independent of 

As another example, let  be a sequence of independent and identically

distributed continuous random variables, and suppose that we observe these

random variables in sequence. If  for each  then we say

that  is a record value. That is, each random variable that is larger than all

those preceding it is called a record value. Let  denote the event that  is a

record value. Is  independent of  That is, does knowing that the th

random variable is the largest of the first  change the probability that the 

random variable is the largest of the first  While it is true that  is

independent of  this may not be intuitively obvious. However, if we turn the

question around and ask whether  is independent of  then the result is

more easily understood. For knowing that the  value is larger than

 clearly gives us no information about the relative size of  among the

first  random variables. Indeed, by symmetry, it is clear that each of these 

random variables is equally likely to be the largest of this set, so

 Hence, we can conclude that  and  are

independent events.

Remark It follows from the identity

𝑌 𝑋 .

𝑁 𝑋

𝑁 𝑋?

𝑋 𝑁 .

𝑛

𝑛 െ 1

𝑛 𝑋

𝑁, 𝑁 𝑋 .

𝑋ଵ,𝑋ଶ, … 

𝑋௡ ൐ 𝑋௜ 𝑖 ൌ 1, … ,𝑛 െ 1,

𝑋௡
𝐴௡ 𝑋௡

𝐴௡൅ଵ 𝐴௡? 𝑛

𝑛 ሺ𝑛 ൅ 1ሻ

𝑛 ൅ 1? 𝐴௡൅ଵ
𝐴௡,

𝐴௡ 𝐴௡൅ଵ,

ሺ𝑛 ൅ 1ሻ

𝑋ଵ, … ,𝑋௡ 𝑋௡
𝑛 𝑛

𝑃ሺ𝐴௡ ||𝐴௡൅ଵሻ ൌ 𝑃ሺ𝐴௡ሻ ൌ 1/𝑛 . 𝐴௡ 𝐴௡൅ଵ

𝑃ሼ𝑋ଵ ൑ 𝑎ଵ, … ,𝑋௡ ൑ 𝑎௡ሽ

    ൌ 𝑃ሼ𝑋ଵ ൑ 𝑎ଵሽ𝑃ሼ𝑋ଶ ൑ 𝑎ଶ ||𝑋ଵ ൑ 𝑎ଵሽ⋯𝑃ሼ𝑋௡ ൑ 𝑎௡ ||𝑋ଵ ൑ 𝑎ଵ, … ,𝑋௡െଵ ൑ 𝑎௡െଵሽ
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that the independence of  can be established sequentially. That is, we

can show that these random variables are independent by showing that

It is often important to be able to calculate the distribution of  from the

distributions of  and  when  and  are independent. Suppose that  and  are

independent, continuous random variables having probability density functions 

and  The cumulative distribution function of  is obtained as follows:

The cumulative distribution function  is called the convolution of the distributions

 and  (the cumulative distribution functions of  and  respectively).

By differentiating Equation (3.1) , we find that the probability density function 

of  is given by

𝑋ଵ, … ,𝑋௡

𝑋ଶ  is independent of  𝑋ଵ 

𝑋ଷ  is independent of  𝑋ଵ,𝑋ଶ 

𝑋ସ  is independent of  𝑋ଵ,𝑋ଶ,𝑋ଷ
⋮

𝑋௡ is independent of  𝑋ଵ, … ,𝑋௡െଵ 

𝑋 ൅ 𝑌

𝑋 𝑌 𝑋 𝑌 𝑋 𝑌

𝑓௑
𝑓௒ . 𝑋 ൅ 𝑌

𝐹௑൅௒ሺ𝑎ሻ ൌ 𝑃ሼ𝑋 ൅ 𝑌 ൑ 𝑎ሽ

ൌ    ׬׬
௫ ൅ ௬ ൑ ௔

𝑓௑ሺ𝑥ሻ𝑓௒ሺ𝑦ሻ 𝑑𝑥 𝑑𝑦

ൌ െஶ׬
ஶ

െஶ׬
௔െ௬

𝑓௑ሺ𝑥ሻ𝑓௒ሺ𝑦ሻ 𝑑𝑥 𝑑𝑦

ൌ െஶ׬
ஶ

െஶ׬
௔െ௬

𝑓௑ሺ𝑥ሻ𝑑𝑥𝑓௒ሺ𝑦ሻ 𝑑𝑦

ൌ െஶ׬
ஶ

𝑓௑ሺ𝑎 െ 𝑦ሻ 𝑓௒ሺ𝑦ሻ 𝑑𝑦

(3.1)

𝐹௑൅௒
𝐹௑ 𝐹௒ 𝑋 𝑌,

𝑓௑൅௒
𝑋 ൅ 𝑌

𝑓௑൅௒ሺ𝑎ሻ ൌ
𝑑
𝑑𝑎
െஶ׬
ஶ

𝐹௑ሺ𝑎 െ 𝑦ሻ𝑓௒ሺ𝑦ሻ𝑑𝑦

ൌ െஶ׬
ஶ 𝑑

𝑑𝑎
𝐹௑ሺ𝑎 െ 𝑦ሻ𝑓௒ሺ𝑦ሻ 𝑑𝑦

ൌ െஶ׬
ஶ

𝑓௑ሺ𝑎 െ 𝑦ሻ𝑓௒ሺ𝑦ሻ 𝑑𝑦

(3.2)
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It is not difficult to determine the density function of the sum of two independent

uniform  random variables.

Example 3a Sum of two independent uniform random variables

If  and  are independent random variables, both uniformly distributed on (0, 1),

calculate the probability density of 

Solution

From Equation (3.2) , since

we obtain

For  this yields

For  we get

Hence,

Because of the shape of its density function (see Figure 6.3 ), the random

variable  is said to have a triangular distribution.

Figure 6.3 Triangular density function.

ሺ0, 1ሻ

𝑋 𝑌

𝑋 ൅ 𝑌 .

𝑓௑ሺ𝑎ሻ ൌ 𝑓௒ሺ𝑎ሻ ൌ ቊ
1 0 ൏ 𝑎 ൏ 1

0 otherwise

𝑓௑൅௒ሺ𝑎ሻ ൌ ඲

଴

ଵ

𝑓௑ሺ𝑎 െ 𝑦ሻ 𝑑𝑦

0 ൑ 𝑎 ൑ 1,

𝑓௑൅௒ሺ𝑎ሻ ൌ ඲

଴

௔

𝑑𝑦 ൌ 𝑎

1 ൏ 𝑎 ൏ 2,

𝑓௑൅௒ሺ𝑎ሻ ൌ ඲

௔െଵ

ଵ

𝑑𝑦 ൌ 2 െ 𝑎

𝑓௑൅௒ሺ𝑎ሻ ൌ ൞

𝑎  0 ൑ 𝑎 ൑ 1

2 െ 𝑎  1 ൏ 𝑎 ൏ 2

0  otherwise

𝑋 ൅ 𝑌
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Now, suppose that  are independent uniform  random variables,

and let

Whereas a general formula for  is messy, it has a particularly nice form when

 Indeed, we now use mathematical induction to prove that

Because the proceeding equation is true for  assume that

Now, writing

and using the fact that the  are all nonnegative, we see from Equation (3.1)

that, for 

𝑋ଵ,𝑋ଶ, … ,𝑋௡ ሺ0, 1ሻ

𝐹௡ሺ𝑥ሻ ൌ 𝑃ሼ𝑋ଵ ൅ …  ൅ 𝑋௡ ൑ 𝑥ሽ

𝐹௡ሺ𝑥ሻ

𝑥 ൑ 1 .

𝐹௡ሺ𝑥ሻ ൌ 𝑥௡/𝑛! , 0 ൑ 𝑥 ൑ 1

𝑛 ൌ 1,

𝐹௡െଵሺ𝑥ሻ ൌ 𝑥௡െଵ/ሺ𝑛 െ 1ሻ! , 0 ൑ 𝑥 ൑ 1

෍
௜ ൌ ଵ

௡

𝑋௜ ൌ ෍
௜ ൌ ଵ

௡ െ ଵ

𝑋௜ ൅ 𝑋௡

𝑋௜
0 ൑ 𝑥 ൑ 1,

𝐹௡ሺ𝑥ሻ ൌ ଴׬
ଵ
𝐹௡െଵሺ𝑥 െ 𝑦ሻ𝑓௑೙ሺ𝑦ሻ𝑑𝑦

ൌ
1

ሺ𝑛 െ 1ሻ!
଴׬
௫
ሺ𝑥 െ 𝑦ሻ௡െଵ 𝑑𝑦 by the induction hypothesis

ൌ
1

ሺ𝑛 െ 1ሻ!
଴׬
௫
𝑤௡െଵ𝑑𝑤 ሺby 𝑤 ൌ 𝑥 െ 𝑦ሻ

ൌ 𝑥௡/𝑛!
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which completes the proof.

For an interesting application of the preceding formula, let us use it to determine the

expected number of independent uniform  random variables that need to be

summed to exceed  That is, with  being independent uniform 

random variables, we want to determine  where

Noting that  is greater than  if and only if  we see that

Because

we see that, for 

Therefore,

That is, the mean number of independent uniform  random variables that must

be summed for the sum to exceed  is equal to 

Recall that a gamma random variable has a density of the form

An important property of this family of distributions is that for a fixed value of  it is

closed under convolutions.

ሺ0, 1ሻ

1 . 𝑋ଵ,𝑋ଶ, …  ሺ0, 1ሻ

𝐸ሾ𝑁ሿ,

𝑁 ൌ minሼ𝑛:𝑋ଵ ൅ …  ൅ 𝑋௡ ൐ 1ሽ

𝑁 𝑛 ൐ 0 𝑋ଵ ൅ … ൅ 𝑋௡ ൑ 1,

𝑃ሼ𝑁 ൐ 𝑛ሽ ൌ 𝐹௡ሺ1ሻ ൌ 1/𝑛! , 𝑛 ൐ 0

𝑃ሼ𝑁 ൐ 0ሽ ൌ 1 ൌ 1/0!

𝑛 ൐ 0,

𝑃ሼ𝑁 ൌ 𝑛ሽ ൌ 𝑃ሼ𝑁 ൐ 𝑛 െ 1ሽ െ 𝑃ሼ𝑁 ൐ 𝑛ሽ ൌ
1

ሺ𝑛 െ 1ሻ!
െ

1
𝑛!

ൌ
𝑛 െ 1
𝑛!

𝐸ሾ𝑁ሿ ൌ ෍
௡ ൌ ଵ

ஶ 𝑛ሺ𝑛 െ 1ሻ
𝑛!

ൌ ෍
௡ ൌ ଶ

ஶ 1
ሺ𝑛 െ 2ሻ!

ൌ 𝑒

ሺ0, 1ሻ

1 𝑒 .

𝑓ሺ𝑦ሻ ൌ
𝜆𝑒െఒ௬ሺ𝜆𝑦ሻ௧െଵ

Γሺ𝑡ሻ
 0 ൏ 𝑦 ൏ ∞

𝜆,
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Proposition 3.1

If  and  are independent gamma random variables with respective parameters

 and  then  is a gamma random variable with parameters

Proof Using Equation (3.2) , we obtain

where  is a constant that does not depend on  But, as the preceding is a

density function and thus must integrate to 1, the value of  is determined, and

we have

Hence, the result is proved.

It is now a simple matter to establish, by using Proposition 3.1  and induction,

that if  are independent gamma random variables with respective

parameters  then  is gamma with parameters 

We leave the proof of this statement as an exercise.

Example 3b

Let  be  independent exponential random variables, each having

parameter  Then, since an exponential random variable with parameter  is the

same as a gamma random variable with parameters  it follows from

Proposition 3.1  that  is a gamma random variable with

parameters 

If  are independent standard normal random variables, then  is

said to have the chi-squared (sometimes seen as ) distribution with  degrees of

freedom. Let us compute the density function of  When  and from

𝑋 𝑌

ሺ𝑠, 𝜆ሻ ሺ𝑡, 𝜆ሻ, 𝑋 ൅ 𝑌
ሺ𝑠 ൅ 𝑡, 𝜆ሻ .

𝑓௑൅௒ሺ𝑎ሻ ൌ
1

Γሺ𝑠ሻΓሺ𝑡ሻ
଴׬
௔
𝜆𝑒െఒሺ௔െ௬ሻሾ𝜆ሺ𝑎 െ 𝑦ሻሿ௦െଵ𝜆𝑒െఒ௬ሺ𝜆𝑦ሻ௧െଵ 𝑑𝑦

ൌ 𝐾𝑒െఒ௔׬଴
௔
ሺ𝑎 െ 𝑦ሻ௦െଵ𝑦௧െଵ𝑑𝑦

ൌ 𝐾𝑒െఒ௔𝑎௦൅௧െଵ׬଴
ଵ
ሺ1 െ 𝑥ሻ௦െଵ𝑥௧െଵ 𝑑𝑥 by letting  𝑥 ൌ

𝑦
𝑎

ൌ 𝐶𝑒െఒ௔𝑎௦൅௧െଵ

𝐶 𝑎 .

𝐶

𝑓௑൅௒ሺ𝑎ሻ ൌ
𝜆𝑒െఒ௔ሺ𝜆𝑎ሻ௦൅௧െଵ

Γሺ𝑠 ൅ 𝑡ሻ

𝑋௜, 𝑖 ൌ 1, … ,𝑛

ሺ𝑡௜, 𝜆ሻ, 𝑖 ൌ 1, … ,𝑛, ෍
௜ ൌ ଵ

௡

𝑋௜ ቌ ෍
௜ ൌ ଵ

௡

𝑡௜, 𝜆ቍ .

𝑋ଵ,𝑋ଶ, … ,𝑋௡ 𝑛

𝜆 . 𝜆

ሺ1, 𝜆ሻ,

𝑋ଵ ൅ 𝑋ଶ ൅ ⋯൅ 𝑋௡
ሺ𝑛, 𝜆ሻ .

𝑍ଵ,𝑍ଶ, … ,𝑍௡ ෍
௜ ൌ ଵ

௡

𝑍௜
ଶ

𝜒ଶ 𝑛

𝑌 . 𝑛 ൌ 1,𝑌 ൌ 𝑍ଶଵ,
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Example 7b  of Chapter 5 , we see that its probability density function is given

by

But we recognize the preceding as the gamma distribution with parameters 

[A by-product of this analysis is that ] But since each  is gamma

 it follows from Proposition 3.1  that the chi-squared distribution with 

degrees of freedom is just the gamma distribution with parameters  and

hence has a probability density function given by

When  is an even integer,  whereas when  is odd, 

can be obtained from iterating the relationship  and then using

the previously obtained result that  [For instance,

]

In practice, the chi-squared distribution often arises as the distribution of the square

of the error involved when one attempts to hit a target in -dimensional space when

the coordinate errors are taken to be independent standard normal random

variables. It is also important in statistical analysis.
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We can also use Equation (3.2)  to prove the following important result about

normal random variables.

Proposition 3.2

If  are independent random variables that are normally distributed

with respective parameters  then  is normally distributed

with parameters  and 

Proof of Proposition 3.2: To begin, let  and  be independent normal random

variables with  having mean 0 and variance  and  having mean 0 and

variance 1. We will determine the density function of  by utilizing Equation

(3.2) . Now, with

we have

where the preceding follows because  Now,

Hence,
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From Equation (3.2) , we obtain that

where  does not depend on  But this implies that  is normal with mean 0

and variance 

Now, suppose that  and  are independent normal random variables with 

having mean  and variance Then

But since  is normal with mean 0 and variance and

 is normal with mean 0 and variance 1, it follows from our previous

result that  is normal with mean 0 and variance

implying that  is normal with mean  and variance

Thus, Proposition 3.2  is established when  The general case now

follows by induction. That is, assume that Proposition 3.2  is true when there

are  random variables. Now consider the case of  and write

By the induction hypothesis,  is normal with mean  and variance

Therefore, by the result for  is normal with mean 
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and variance 

Example 3c

A basketball team will play a 44-game season. Twenty-six of these games are

against class A teams and 18 are against class B teams. Suppose that the team

will win each game against a class A team with probability .4 and will win each

game against a class B team with probability .7. Suppose also that the results of

the different games are independent. Approximate the probability that

a. the team wins 25 games or more;

b. the team wins more games against class A teams than it does against

class B teams.

Solution

a. Let  and  respectively denote the number of games the team wins

against class A and against class B teams. Note that  and  are

independent binomial random variables and

By the normal approximation to the binomial,  and  will have

approximately the same distribution as would independent normal random

variables with the preceding expected values and variances. Hence, by

Proposition 3.2 ,  will have approximately a normal distribution

with mean 23 and variance 10.02. Therefore, letting  denote a standard

normal random variable, we have

b. We note that  will have approximately a normal distribution with

mean 2.2 and variance 10.02. Hence,

෍
௜ െ ଵ

௡

𝜎௜
ଶ .

𝑋஺ 𝑋஻
𝑋஺ 𝑋஻

𝐸ሾ𝑋஺ሿ ൌ 26ሺ.4ሻ ൌ 10.4 Varሺ𝑋஺ሻ ൌ 26ሺ.4ሻሺ.6ሻ ൌ 6.24

𝐸ሾ𝑋஻ሿ ൌ 18ሺ.7ሻ ൌ 12.6 Varሺ𝑋஻ሻ ൌ 18ሺ.7ሻሺ.3ሻ ൌ 3.78

𝑋஺ 𝑋஻
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𝑍
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ൌ 𝑃ቊ
𝑋஺ ൅ 𝑋஻ െ 23

10.02√
൒

24.5 െ 23

10.02√
ቋ

ൎ 𝑃ቊ𝑍 ൒
1.5

10.02√
ቋ

ൎ 1 െ 𝑃ሼ𝑍 ൏ .4739ሽ

ൎ .3178

𝑋஺ െ 𝑋஻
െ
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Therefore, there is approximately a 31.78 percent chance that the team will win

at least 25 games and approximately a 19.68 percent chance that it will win more

games against class A teams than against class B teams.

The random variable  is said to be a lognormal random variable with parameters 

and  if log  is a normal random variable with mean  and variance  That is, 

is lognormal if it can be expressed as

where  is a normal random variable.

Example 3d

Starting at some fixed time, let  denote the price of a certain security at the

end of  additional weeks,  A popular model for the evolution of these

prices assumes that the price ratios  are independent and

identically distributed lognormal random variables. Assuming this model, with

parameters  what is the probability that

a. the price of the security increases over each of the next two weeks?

b. the price at the end of two weeks is higher than it is today?

Solution

Let  be a standard normal random variable. To solve part (a), we use the fact

that log  increases in  to conclude that  if and only if

 As a result, we have
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In other words, the probability that the price is up after one week is .5894. Since

the successive price ratios are independent, the probability that the price

increases over each of the next two weeks is 

To solve part (b), we reason as follows:

However,  being the sum of two independent normal

random variables with a common mean .0165 and a common standard deviation

.0730, is a normal random variable with mean .0330 and variance 

Consequently,

Rather than attempt to derive a general expression for the distribution of  in the

discrete case, we shall consider some examples.

Example 3e Sums of independent poisson random variables

If  and  are independent Poisson random variables with respective parameters

 and  compute the distribution of 

Solution

Because the event  may be written as the union of the disjoint events

 we have

ሺ . 5894ሻଶ ൌ . 3474 .
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Thus,  has a Poisson distribution with parameter 

Example 3f Sums of independent binomial random variables

Let  and  be independent binomial random variables with respective

parameters ( ) and ( ). Calculate the distribution of 

Solution

Recalling the interpretation of a binomial random variable, and without any

computation at all, we can immediately conclude that  is binomial with

parameters  This follows because  represents the number of

successes in  independent trials, each of which results in a success with

probability ; similarly,  represents the number of successes in  independent

trials, each of which results in a success with probability  Hence, given that 

and  are assumed independent, it follows that  represents the number of

successes in  independent trials when each trial has a probability  of

resulting in a success. Therefore,  is a binomial random variable with

parameters  To check this conclusion analytically, note that
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where  and where  when  Thus,

and the conclusion follows upon application of the combinatorial identity

Recall that for any two events  and  the conditional probability of  given  is

defined, provided that  by

Hence, if  and  are discrete random variables, it is natural to define the conditional

probability mass function of  given that  by

for all values of  such that  Similarly, the conditional probability

distribution function of  given that  is defined, for all  such that  by
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In other words, the definitions are exactly the same as in the unconditional case,

except that everything is now conditional on the event that  If  is independent

of  then the conditional mass function and the distribution function are the same as

the respective unconditional ones. This follows because if  is independent of 

then

Example 4a

Suppose that  the joint probability mass function of  and  is given by

Calculate the conditional probability mass function of  given that 

Solution

We first note that

Hence,

and

𝐹௑ห௒ሺ𝑥ቚ𝑦ሻ ൌ 𝑃ሼ𝑋 ൑ 𝑥 ||𝑌 ൌ 𝑦ሽ

ൌ ෍
௔ ൑ ௫

𝑝௑ห௒ሺ𝑎ቚ𝑦ሻ

𝑌 ൌ 𝑦 . 𝑋

𝑌,

𝑋 𝑌,

𝑝௑ห௒ሺ𝑥ቚ𝑦ሻ ൌ 𝑃ሼ𝑋 ൌ 𝑥 ||𝑌 ൌ 𝑦ሽ

ൌ
𝑃ሼ𝑋 ൌ 𝑥,𝑌 ൌ 𝑦ሽ

𝑃ሼ𝑌 ൌ 𝑦ሽ

ൌ
𝑃ሼ𝑋 ൌ 𝑥ሽ𝑃ሼ𝑌 ൌ 𝑦ሽ

𝑃ሼ𝑌 ൌ 𝑦ሽ

ൌ 𝑃ሼ𝑋 ൌ 𝑥ሽ

𝑝ሺ𝑥,𝑦ሻ, 𝑋 𝑌,

𝑝ሺ0, 0ሻ ൌ . 4 𝑝ሺ0, 1ሻ ൌ . 2 𝑝ሺ1, 0ሻ ൌ . 1 𝑝ሺ1, 1ሻ ൌ . 3

𝑋 𝑌 ൌ 1 .

𝑝௒ሺ1ሻ ൌ ෍
௫

𝑝ሺ𝑥, 1ሻ ൌ 𝑝ሺ0, 1ሻ ൅ 𝑝ሺ1, 1ሻ ൌ . 5

𝑝௑ห௒ሺ0 | 1ሻ ൌ
𝑝ሺ0, 1ሻ
𝑝௒ሺ1ሻ

ൌ
2
5

𝑝௑ห௒ሺ1 | 1ሻ ൌ
𝑝ሺ1, 1ሻ
𝑝௒ሺ1ሻ

ൌ
3
5
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Example 4b

If  and  are independent Poisson random variables with respective parameters

 and  calculate the conditional distribution of  given that 

Solution

We calculate the conditional probability mass function of  given that 

as follows:

where the last equality follows from the assumed independence of  and .

Recalling (Example 3e ) that  has a Poisson distribution with parameter

 we see that the preceding equals

In other words, the conditional distribution of  given that  is the

binomial distribution with parameters  and 

We can also talk about joint conditional distributions, as is indicated in the next two

examples.

Example 4c

Consider the multinomial distribution with joint probability mass function

Such a mass function results when  independent trials are performed, with each

𝑋 𝑌

𝜆ଵ 𝜆ଶ, 𝑋 𝑋 ൅ 𝑌 ൌ 𝑛 .

𝑋 𝑋 ൅ 𝑌 ൌ 𝑛

𝑃ሼ𝑋 ൌ 𝑘 ||𝑋 ൅ 𝑌 ൌ 𝑛ሽ ൌ
𝑃ሼ𝑋 ൌ 𝑘,𝑋 ൅ 𝑌 ൌ 𝑛ሽ

𝑃ሼ𝑋 ൅ 𝑌 ൌ 𝑛ሽ

ൌ
𝑃ሼ𝑋 ൌ 𝑘,𝑌 ൌ 𝑛 െ 𝑘ሽ

𝑃ሼ𝑋 ൅ 𝑌 ൌ 𝑛ሽ

ൌ
𝑃ሼ𝑋 ൌ 𝑘ሽ𝑃ሼ𝑌 ൌ 𝑛 െ 𝑘ሽ

𝑃ሼ𝑋 ൅ 𝑌 ൌ 𝑛ሽ

𝑋 𝑌

𝑋 ൅ 𝑌

𝜆ଵ ൅ 𝜆ଶ,

𝑃ሼ𝑋 ൌ 𝑘 ||𝑋 ൅ 𝑌 ൌ 𝑛 ൌ
௘െഊభఒభ

ೖ

௞!

௘െഊమఒమ
೙െೖ

ሺ௡െ௞ሻ!
൤
௘െሺഊభ ൅ഊమሻሺఒభ ൅ఒమሻ

೙

௡ !
൨
െଵ

ൌ
௡!

ሺ௡െ௞ሻ!

ఒభ
ೖఒమ

೙െೖ

ሺఒభ ൅ఒమሻ
೙

ൌ ቆ
𝑛

𝑘
ቇ൬

ఒభ
ఒభ൅ఒమ

൰
௞

൬
ఒమ

ఒభ ൅ఒమ
൰
௡െ௞

𝑋 𝑋 ൅ 𝑌 ൌ 𝑛

𝑛 𝜆ଵ/ሺ𝜆ଵ ൅ 𝜆ଶሻ .

𝑃ሼ𝑋௜ ൌ 𝑛௜, 𝑖 ൌ 1, … , 𝑘ሽ ൌ
𝑛!

𝑛ଵ !⋯𝑛௞ !
𝑝ଵ
௡భ⋯𝑝௞

௡ೖ, 𝑛௜ ൒ 0,   ෍
௜ ൌ ଵ

௞

𝑛௜ ൌ 𝑛

𝑛
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trial resulting in outcome  with probability The random variables

 represent, respectively, the number of trials that result in outcome

 Suppose we are given that  of the trials resulted in outcome  for

 where

Then, because each of the other  trials must have resulted in one of the

outcomes  it would seem that the conditional distribution of  is the

multinomial distribution on  trials with respective trial outcome probabilities

where  is the probability that a trial results in one of the outcomes

Solution

To verify this intuition, let  be such that  Then

where the probability in the denominator was obtained by regarding outcomes

 as a single outcome having probability  thus showing that the

probability is a multinomial probability on  trials with outcome probabilities

 Because  the preceding can be written as

and our intuition is upheld.

Example 4d

Consider  independent trials, with each trial being a success with probability 

𝑖 𝑝௜, ෍
௜ ൌ ଵ

௞

𝑝௜ ൌ 1.

𝑋௜, 𝑖 ൌ 1, … , 𝑘,

𝑖, 𝑖 ൌ 1, … , 𝑘 . 𝑛௝ 𝑗,

𝑗 ൌ 𝑟 ൅ 1, … , 𝑘,
Σ௝ൌ௥൅ଵ
௞  𝑛௝ ൌ 𝑚 ൑ 𝑛 .

𝑛 െ 𝑚

1, … , 𝑟, 𝑋ଵ, … ,𝑋௥
𝑛 െ𝑚

𝑃ሼoutcome 𝑖 | outcome is not any of 𝑟 ൅ 1, … ,kሽ ൌ
𝑝௜
𝐹௥

,  𝑖 ൌ 1, … , 𝑟

𝐹௥ ൌ Σ௜ൌଵ
௞  𝑝௜

1, … , 𝑟 .

𝑛ଵ, … ,𝑛௥, ෍
௜ൌଵ

௥
𝑛௜ ൌ 𝑛 െ 𝑚 .

𝑃ሼ𝑋ଵ ൌ 𝑛ଵ, … ,𝑋௥ ൌ 𝑛௥ ||𝑋௥൅ଵ ൌ 𝑛௥൅ଵ, … 𝑋௞ ൌ 𝑛௞ሽ

ൌ
𝑃ሼ𝑋ଵ ൌ 𝑛ଵ,  … ,  𝑋௞ ൌ 𝑛௞ሽ

𝑃ሼ𝑋௥൅ଵ ൌ 𝑛௥൅ଵ,  … ,  𝑋௞ ൌ 𝑛௞ሽ

ൌ

𝑛!
𝑛!⋯𝑛௞ !

𝑝ଵ
௡భ⋯𝑝௥

௡ೝ𝑝௥൅ଵ
௡ೝ൅భ ⋯𝑝௞

௡ೖ

𝑛!
ሺ𝑛 െ 𝑚ሻ!𝑛௥൅ଵ !⋯𝑛௞ !

𝐹௥
௡െ௠𝑝௥൅ଵ

௡ೝ൅భ⋯𝑝௞
௡ೖ

1, … , 𝑟 𝐹௥,

𝑛

𝐹௥, 𝑝௥൅ଵ, … ,𝑝௞ . ෍
௜ൌଵ

௥
𝑛௜ ൌ 𝑛 െ 𝑚,

𝑃ሼ𝑋ଵ ൌ 𝑛ଵ, … ,𝑋௥ ൌ 𝑛௥ ||𝑋௥൅ଵ ൌ 𝑛௥൅ଵ, … 𝑋௞ ൌ 𝑛௞ሽ

ൌ
ሺ𝑛 െ𝑚ሻ!
𝑛ଵ !⋯𝑛௥ !

ቆ
𝑝ଵ
𝐹௥
ቇ
௡భ

⋯ቆ
𝑝௥
𝐹௥
ቇ
௡ೝ

𝑛 𝑝 .
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Given a total of  successes, show that all possible orderings of the  successes

and  failures are equally likely.

Solution

We want to show that given a total of  successes, each of the possible

orderings of  successes and  failures is equally likely. Let  denote the

number of successes, and consider any ordering of  successes and 

failures, say,  Then

If  and  have a joint probability density function  then the conditional

probability density function of  given that  is defined, for all values of  such

that  by

To motivate this definition, multiply the left-hand side by  and the right-hand side

by  to obtain

𝑘 𝑘

𝑛 െ 𝑘

𝑘 ቆ
𝑛

𝑘
ቇ

𝑘 𝑛 െ 𝑘 𝑋

𝑘 𝑛 െ 𝑘

𝐨ൌሺ𝑠, … , 𝑠, 𝑓, … , 𝑓ሻ .

𝑃ሺ𝐨 ||𝑋 ൌ 𝑘ሻ ൌ
𝑃ሺ𝐨,𝑋 ൌ 𝑘ሻ
𝑃ሺ𝑋 ൌ 𝑘ሻ

ൌ
𝑃ሺ𝐨ሻ

𝑃ሺ𝑋 ൌ 𝑘ሻ

ൌ
𝑃௞ሺ1 െ 𝑝ሻ௡െ௞

ቆ
𝑛

𝑘
ቇ𝑝௞ሺ1 െ 𝑝ሻ௡െ௞

ൌ
1

ቆ
𝑛

𝑘
ቇ

𝑋 𝑌 𝑓ሺ𝑥,𝑦ሻ,

𝑋 𝑌 ൌ 𝑦 𝑦

𝑓௒ሺ𝑦ሻ ൐ 0,

𝑓௑ห௒ሺ𝑥 |𝑦ሻ ൌ
𝑓ሺ𝑥,𝑦ሻ
𝑓௒ሺ𝑦ሻ

𝑑𝑥

ሺ𝑑𝑥 𝑑𝑦ሻ/𝑑𝑦

𝑓௑ห௒ሺ𝑥 |𝑦ሻ 𝑑𝑥 ൌ
𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥 𝑑𝑦
𝑓௒ሺ𝑦ሻ 𝑑𝑦

ൎ
𝑃ሼ𝑥 ൑ 𝑋 ൑ 𝑥 ൅ 𝑑𝑥,𝑦 ൑ 𝑌 ൑ 𝑦 ൅ 𝑑𝑦ሽ

𝑃ሼ𝑦 ൑ 𝑌 ൑ 𝑦 ൅ 𝑑𝑦ሽ

ൌ 𝑃ሼ𝑥 ൑ 𝑋 ൑ 𝑥 ൅ 𝑑𝑥 |𝑦 ൑ 𝑌 ൑ 𝑦 ൅ 𝑑𝑦ሽ

424 of 848



In other words, for small values of  and  represents the conditional

probability that  is between  and  given that  is between  and 

The use of conditional densities allows us to define conditional probabilities of events

associated with one random variable when we are given the value of a second

random variable. That is, if  and  are jointly continuous, then, for any set 

In particular, by letting  we can define the conditional cumulative

distribution function of X given that Y = y by

The reader should note that by using the ideas presented in the preceding

discussion, we have been able to give workable expressions for conditional

probabilities, even though the event on which we are conditioning (namely, the event

) has probability 0.

If  and  are independent continuous random variables, the conditional density of 

given that  is just the unconditional density of  This is so because, in the

independent case,

Example 5a

The joint density of  and  is given by

Compute the conditional density of  given that  where 

Solution

For  we have

𝑑𝑥 𝑑𝑦, 𝑓௑|௒ሺ𝑥 |𝑦ሻ𝑑𝑥

𝑋 𝑥 𝑥 ൅ 𝑑𝑥 𝑌 𝑦 𝑦 ൅ 𝑑𝑦 .

𝑋 𝑌 𝐴,

𝑃ሼ𝑋 ∈ 𝐴 |𝑌 ൌ 𝑦ሽ ൌ ඲

஺

𝑓௑ห௒ሺ𝑥 |𝑦ሻ 𝑑𝑥

𝐴 ൌ ሺ െ∞,𝑎ሻ

𝐹௑ห௒ሺ𝑎 |𝑦ሻ ≡ 𝑃ሼ𝑋 ൑ 𝑎 |𝑌 ൌ 𝑦ሽ ൌ ඲
െஶ

௔

𝑓௑|௒ሺ𝑥 |𝑦ሻ 𝑑𝑥

ሼ𝑌 ൌ 𝑦ሽ

𝑋 𝑌 𝑋

𝑌 ൌ 𝑦 𝑋 .

𝑓௑ห௒ሺ𝑥 |𝑦ሻ ൌ
𝑓ሺ𝑥,𝑦ሻ
𝑓௒ሺ𝑦ሻ

ൌ
𝑓௑ሺ𝑥ሻ𝑓௒ሺ𝑦ሻ

𝑓௒ሺ𝑦ሻ
ൌ 𝑓௑ሺ𝑥ሻ

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ ቐ

12
5
𝑥ሺ2 െ 𝑥 െ 𝑦ሻ  0 ൏ 𝑥 ൏ 1, 0 ൏ 𝑦 ൏ 1

0  otherwise

𝑋 𝑌 ൌ 𝑦, 0 ൏ 𝑦 ൏ 1 .

0 ൏ 𝑥 ൏ 1, 0 ൏ 𝑦 ൏ 1,
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Example 5b

Suppose that the joint density of  and  is given by

Find 

Solution

We first obtain the conditional density of  given that 

Hence,

Example 5c The t-distribution

𝑓௑ห௒ሺ𝑥 |𝑦ሻ ൌ
𝑓ሺ𝑥,𝑦ሻ
𝑓௒ሺ𝑦ሻ

ൌ
𝑓ሺ𝑥,𝑦ሻ

െஶ׬
ஶ

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥

ൌ
𝑥ሺ2 െ 𝑥 െ 𝑦ሻ

଴׬
ଵ
𝑥ሺ2 െ 𝑥 െ 𝑦ሻ 𝑑𝑥

ൌ
𝑥ሺ2 െ 𝑥 െ 𝑦ሻ

2
3
െ 𝑦/2

ൌ
6𝑥ሺ2 െ 𝑥 െ 𝑦ሻ

4 െ 3𝑦

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ ൞
𝑒െ௫/௬𝑒െ௬

𝑦
 0 ൏ 𝑥 ൏ ∞, 0 ൏ 𝑦 ൏ ∞

0  otherwise

𝑃ሼ𝑋 ൐ 1 ||𝑌 ൌ 𝑦ሽ .

𝑋 𝑌 ൌ 𝑦 .

𝑓௑ห௒ሺ𝑥ቚ𝑦ሻ ൌ
𝑓ሺ𝑥,𝑦ሻ
𝑓௒ሺ𝑦ሻ

ൌ
𝑒െ௫/௬𝑒െ௬/𝑦

𝑒െ௬׬଴
ஶ
ሺ1/𝑦ሻ𝑒െ௫/௬ 𝑑𝑥

ൌ
1
𝑦
𝑒െ௫/௬

𝑃ሼ𝑋 ൐ 1 ||𝑌 ൌ 𝑦ሽ ൌ ଵ׬
ஶ1
𝑦
𝑒െ௫/௬ 𝑑𝑥

ൌ െ 𝑒െ௫/௬ห
ଵ

ஶ

ൌ 𝑒െଵ/௬

426 of 848



If  and  are independent, with  having a standard normal distribution and 

having a chi-squared distribution with  degrees of freedom, then the random

variable  defined by

is said to have a t-distribution with  degrees of freedom. As will be seen in

Section 7.8 , the t-distribution has important applications in statistical

inference. At present, we will content ourselves with computing its density

function. This will be accomplished by using the conditional density of  given 

to obtain the joint density function of  and  from which we will then obtain the

marginal density of  To begin, note that because of the independence of  and

 it follows that the conditional distribution of  given that  is the

distribution of  which is normal with mean  and variance  Hence,

the conditional density of  given that  is

Using the preceding, along with the following formula for the chi-squared density

given in Example 3b  of this chapter,

we obtain that the joint density of  is

Letting  and integrating the preceding over all  gives

𝑍 𝑌 𝑍 𝑌

𝑛

𝑇

𝑇 ൌ
𝑍

𝑌/𝑛ඥ
ൌ 𝑛√  

𝑍

𝑌√

𝑛

𝑇 𝑌

𝑇 𝑌,

𝑇 . 𝑍

𝑌, 𝑇 𝑌 ൌ 𝑦

𝑛/𝑦ඥ  𝑍, 0 𝑛/𝑦 .

𝑇 𝑌 ൌ 𝑦

𝑓்|௒ሺ𝑡 |𝑦ሻ ൌ
1

2𝜋𝑛/𝑦ඥ
 𝑒െ௧

మ௬/ଶ௡ , െ ∞ ൏ 𝑡 ൏ ∞

𝑓௒ሺ𝑦ሻ ൌ
𝑒െ௬/ଶ𝑦௡/ଶെଵ

2௡/ଶ Γሺ𝑛/2ሻ
 , 𝑦 ൐ 0

𝑇,𝑌

𝑓்,௒ሺ𝑡,𝑦ሻ ൌ
1

2𝜋𝑛√  2௡/ଶ Γሺ𝑛/2ሻ
 𝑒െ௧

మ௬/ଶ௡𝑒െ௬/ଶ𝑦ሺ௡െଵሻ/ଶ

ൌ
1

𝜋𝑛√  2ሺ௡൅ଵሻ/ଶ Γሺ𝑛/2ሻ
𝑒 െ

𝑡ଶ ൅ 𝑛
2𝑛

 𝑦  𝑦ሺ௡െଵሻ/ଶ , 𝑦 ൐ 0,   െ ∞ ൏ 𝑡 ൏ ∞

 𝑐 ൌ
𝑡ଶ ൅ 𝑛

2𝑛
, 𝑦,

427 of 848



Example 5d The bivariate normal distribution

One of the most important joint distributions is the bivariate normal distribution.

We say that the random variables  have a bivariate normal distribution if, for

constants  their joint density function is given,

for all  by

We now determine the conditional density of  given that  In doing so, we

will continually collect all factors that do not depend on  and represent them by

the constants  The final constant will then be found by using that

 We have

𝑓்ሺ𝑡ሻ ൌ ଴׬
ஶ
𝑓்,௒ሺ𝑡,𝑦ሻ 𝑑𝑦

ൌ
1

𝜋𝑛√  2ሺ௡൅ଵሻ/ଶ Γሺ𝑛/2ሻ
଴׬
ஶ
𝑒െ௖௬ 𝑦ሺ௡െଵሻ/ଶ 𝑑𝑦

ൌ
𝑐െሺ௡൅ଵሻ/ଶ

𝜋𝑛√   2ሺ௡൅ଵሻ/ଶ Γሺ𝑛/2ሻ
଴׬
ஶ
𝑒െ௫𝑥ሺ௡െଵሻ/ଶ 𝑑𝑥  ሺby letting  𝑥 ൌ 𝑐𝑦ሻ

ൌ
𝑛ሺ௡൅ଵሻ/ଶ Γቆ

𝑛 ൅ 1
2

ቇ

𝜋𝑛√  ሺ𝑡ଶ ൅ 𝑛ሻ
ሺ௡൅ଵሻ/ଶ

 Γ൬
𝑛
2
൰
 ቆ because  

1
𝑐
ൌ

2𝑛
𝑡ଶ ൅ 𝑛

ቇ

ൌ
Γቆ
𝑛 ൅ 1

2
ቇ

𝜋𝑛√   Γ൬
𝑛
2
൰
 ቆ1 ൅

𝑡ଶ

𝑛
ቇ
െሺ௡൅ଵሻ/ଶ

 , െ∞ ൏ 𝑡 ൏ ∞

𝑋,𝑌

𝜇௫, 𝜇௬,𝜎௫ ൐ 0, 𝜎௬ ൐ 0, െ1 ൏ 𝜌 ൏ 1,

െ ∞ ൏ 𝑥, 𝑦 ൏ ∞ ,

𝑓ሺ𝑥,𝑦ሻ ൌ
1

2𝜋𝜎௫𝜎௬ 1 െ 𝜌ଶඥ
 exp൝ െ

1
2ሺ1 െ 𝜌ଶሻ

൥ቆ
𝑥 െ 𝜇௫
𝜎௫

ቇ
ଶ

  ൅  ቆ
𝑦 െ 𝜇௬
𝜎௬

ቇ
ଶ

െ 2𝜌
ሺ𝑥 െ 𝜇௫ሻሺ𝑦 െ 𝜇௬ሻ

𝜎௫𝜎௬
൩ൡ

𝑋 𝑌 ൌ 𝑦 .

𝑥

𝐶௜ .

඲
െஶ

ஶ

𝑓௑ห௒ሺ𝑥 |𝑦ሻ 𝑑𝑥 ൌ 1 .

𝑓௑ห௒ሺ𝑥 |𝑦ሻ ൌ
𝑓ሺ𝑥,𝑦ሻ
𝑓௒ሺ𝑦ሻ

ൌ 𝐶ଵ𝑓ሺ𝑥,𝑦ሻ

ൌ 𝐶ଶexp൝െ
1

2ሺ1 െ 𝜌ଶሻ
൥ቆ
𝑥 െ 𝜇௫
𝜎௫

ቇ
ଶ

െ 2𝜌
𝑥ሺ𝑦 െ 𝜇௬ሻ

𝜎௫𝜎௬
൩ൡ

ൌ 𝐶ଷ expቊെ
1

2𝜎௫ଶሺ1 െ 𝜌ଶሻ
ቈ𝑥ଶ െ 2𝑥ቆ𝜇௫ ൅ 𝜌

𝜎௫
𝜎௬
ሺ𝑦 െ 𝜇௬ሻቇ቉ቋ

ൌ 𝐶ସ exp൝െ
1

2𝜎௫ଶሺ1 െ 𝜌ଶሻ
ቈ𝑥 െ ቆ𝜇௫ ൅ 𝜌

𝜎௫
𝜎௬
ሺ𝑦 െ 𝜇௬ሻቇ቉

ଶ

ൡ

428 of 848



Recognizing the preceding equation as a normal density, we can conclude that

given  the random variable  is normally distributed with mean

 and variance  Also, because the joint density of

 is exactly the same as that of  except that  are interchanged with

 it similarly follows that the conditional distribution of  given  is the

normal distribution with mean  and variance  It

follows from these results that the necessary and sufficient condition for the

bivariate normal random variables  and  to be independent is that  (a

result that also follows directly from their joint density, because it is only when

 that the joint density factors into two terms, one depending only on  and

the other only on ).

With  the marginal density of  can be obtained from

Now, with 

Hence, making the change of variable  yields that

where  does not depend on  But this shows that  is normal with mean 

and variance Similarly, we can show that Y is normal with mean  and

𝑌 ൌ 𝑦, 𝑋

𝜇௫ ൅ 𝜌
ఙ௫

ఙ௬
ሺ𝑦 െ 𝜇௬ሻ 𝜎ଶ௫ሺ1 െ 𝜌ଶሻ .

𝑌,𝑋 𝑋,𝑌, 𝜇௫,𝜎௫
𝜇௬ ,𝜎௬, 𝑌 𝑋 ൌ 𝑥

𝜇௬ ൅ 𝜌
ఙ௬

ఙ௫
ሺ𝑥 െ 𝜇௫ሻ 𝜎ଶ௬ሺ1 െ 𝜌ଶሻ .

𝑋 𝑌 𝜌 ൌ 0

𝜌 ൌ 0 𝑥

𝑦

𝐶 ൌ
1

2𝜋𝜎௫𝜎௬ 1 െ 𝜌ଶඥ
, 𝑋

𝑓௑ሺ𝑥ሻ ൌ െஶ׬
ஶ

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑦

ൌ 𝐶׬െஶ
ஶ

exp൝ െ
1

2ሺ1 െ 𝜌ଶሻ
൥ቆ
𝑥 െ 𝜇௫
𝜎௫

ቇ
ଶ

൅ ቆ
𝑦 െ 𝜇௬
𝜎௬

ቇ
ଶ

െ 2𝜌
ሺ𝑥 െ 𝜇௫ሻሺ𝑦 െ 𝜇௬ሻ

𝜎௫𝜎௬
൩ൡ 𝑑𝑦

𝑤 ൌ
𝑦 െ 𝜇௬
𝜎௬

,

ሺ
𝑥 െ 𝜇௫
𝜎௫

ሻ
ଶ

൅ ሺ
𝑦 െ 𝜇௬
𝜎௬

ሻ
ଶ

െ
2𝜌ሺ𝑥 െ 𝜇௫ሻሺ𝑦 െ 𝜇௬ሻ

𝜎௫𝜎௬

ൌ ሺ
𝑥 െ 𝜇௫
𝜎௫

ሻ
ଶ

൅ 𝑤ଶ െ
2𝜌ሺ𝑥 െ 𝜇௫ሻ𝑤

𝜎௫

ൌ ሺ𝑤 െ
𝜌ሺ𝑥 െ 𝜇௫ሻ

𝜎௫
ሻ
ଶ

൅ ሺ1 െ 𝜌ଶሻሺ
𝑥 െ 𝜇௫
𝜎௫

ሻ
ଶ

𝑤 ൌ
𝑦 െ 𝜇௬

௬

𝑓௑ሺ𝑥ሻ ൌ 𝐶𝜎௬𝑒
െሺ௫െఓೣሻ

మ/ଶఙೣ
మ
െஶ׬
ஶ

exp൝െ
1

2ሺ1 െ 𝜌ଶሻ
ሺ𝑤 െ

𝜌ሺ𝑥 െ 𝜇௫ሻ

𝜎௫
ሻ
ଶ

ൡ𝑑𝑤

ൌ 𝐶𝜎௬𝑒
െሺ௫െఓೣሻ

మ/ଶೣ
మ
െஶ׬
ஶ

expቊെ
𝑣ଶ

2ሺ1 െ 𝜌ଶሻ
ቋ𝑑𝑣 by letting 𝑣 ൌ 𝑤 െ

𝜌ሺ𝑥 െ 𝜇௫ሻ

𝜎௫

ൌ 𝐾𝑒െሺ௫െఓೣሻ
మ/ଶఙೣ

మ

𝐾 𝑥 . 𝑋 𝜇௫
𝜎௫ଶ . 𝜇௬
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variance 

We can also talk about conditional distributions when the random variables are

neither jointly continuous nor jointly discrete. For example, suppose that  is a

continuous random variable having probability density function  and  is a discrete

random variable, and consider the conditional distribution of  given that 

Then

and letting  approach 0 gives

thus showing that the conditional density of  given that  is given by

Example 5e

Consider  trials having a common probability of success. Suppose,

however, that this success probability is not fixed in advance but is chosen from a

uniform (0, 1) population. What is the conditional distribution of the success

probability given that the  trials result in  successes?

Solution

If we let  denote the probability that a given trial is a success, then  is a

uniform (0, 1) random variable. Also, given that  the  trials are

independent with common probability of success  so  the number of

successes, is a binomial random variable with parameters  Hence, the

conditional density of  given that  is

𝜎௬ଶ .

𝑋

𝑓 𝑁

𝑋 𝑁 ൌ 𝑛 .

𝑃ሼ𝑥 ൏ 𝑋 〈 𝑥 ൅ 𝑑𝑥|𝑁 ൌ 𝑛ሽ
𝑑𝑥

  ൌ
𝑃ሼ𝑁 ൌ 𝑛 ||𝑥 ൏ 𝑋 ൏ 𝑥 ൅ 𝑑𝑥ሽ

𝑃ሼ𝑁 ൌ 𝑛ሽ
𝑃ሼ𝑥 ൏ 𝑋 ൏ 𝑥 ൅ 𝑑𝑥ሽ

𝑑𝑥

𝑑𝑥

lim
ௗ ௫ → ଴

𝑃ሼ𝑥 ൏ 𝑋 ൏ 𝑥 ൅ 𝑑𝑥 ||𝑁 ൌ 𝑛ሽ
𝑑𝑥

ൌ
𝑃ሼ𝑁 ൌ 𝑛 ||𝑋 ൌ 𝑥ሽ

𝑃ሼ𝑁 ൌ 𝑛ሽ
𝑓ሺ𝑥ሻ

𝑋 𝑁 ൌ 𝑛

𝑓௑หேሺ𝑥 |𝑛ሻ ൌ
𝑃ሼ𝑁 ൌ 𝑛 ||𝑋 ൌ 𝑥ሽ

𝑃ሼ𝑁 ൌ 𝑛ሽ
𝑓ሺ𝑥ሻ

𝑛 ൅ 𝑚

𝑛 ൅𝑚 𝑛

𝑋 𝑋

𝑋 ൌ 𝑥, 𝑛 ൅ 𝑚

𝑥, 𝑁,

ሺ𝑛 ൅ 𝑚, 𝑥ሻ .

𝑋 𝑁 ൌ 𝑛

𝑓௑|ேሺ𝑥 |𝑛ሻ ൌ
𝑃൛𝑁 ൌ 𝑛ห𝑋 ൌ 𝑥ൟ𝑓௑ሺ𝑥ሻ

𝑃ሼ𝑁 ൌ 𝑛ሽ

ൌ
ቆ
𝑛 ൅ 𝑚

𝑛
ቇ𝑥௡ሺ1 െ 𝑥ሻ௠

𝑃ሼ𝑁 ൌ 𝑛ሽ
0 ൏ 𝑥 ൏ 1

ൌ 𝑐𝑥௡ሺ1 െ 𝑥ሻ௠
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where  does not depend on  Thus, the conditional density is that of a beta

random variable with parameters 

The preceding result is quite interesting, for it states that if the original or prior (to

the collection of data) distribution of a trial success probability is uniformly

distributed over (0, 1) [or, equivalently, is beta with parameters (1, 1)], then the

posterior (or conditional) distribution given a total of  successes in  trials is

beta with parameters  This is valuable, for it enhances our

intuition as to what it means to assume that a random variable has a beta

distribution.

We are often interested in the conditional distribution of a random variable  given

that  lies in some set  When  is discrete, the conditional probability mass

function is given by

Similarly, when  is continuous with density function  the conditional density

function of  given that  is

Example 5f

A Pareto random variable with positive parameters  has distribution function

and density function

An important feature of Pareto distributions is that for  the conditional

distribution of a Pareto random variable  with parameters  and  given that it

exceeds  is the Pareto distribution with parameters  and  This follows

because

thus verifying that the conditional distribution is Pareto with parameters  and 

𝑐 𝑥 .

𝑛 ൅ 1,𝑚൅ 1 .

𝑛 𝑛 ൅ 𝑚

ሺ1 ൅ 𝑛, 1 ൅𝑚ሻ .

𝑋

𝑋 𝐴 . 𝑋

𝑃ሺ𝑋 ൌ 𝑥 |𝑋 ∈ 𝐴ሻ ൌ
𝑃ሺ𝑋 ൌ 𝑥,𝑋 ∈ 𝐴ሻ

𝑃ሺ𝑋 ∈ 𝐴ሻ
ൌ ൞

𝑃ሺ𝑋 ൌ 𝑥ሻ
𝑃ሺ𝑋 ∈ 𝐴ሻ

,  if    𝑥 ∈ 𝐴

0,  if    𝑥 ∉ 𝐴

𝑋 𝑓,

𝑋 𝑋 ∈ 𝐴

𝑓௑ห௑∈஺ሺ𝑥ሻ ൌ
𝑓ሺ𝑥ሻ

𝑃ሺ𝑋 ∈ 𝐴ሻ
ൌ

𝑓ሺ𝑥ሻ

஺𝑓൫𝑦൯𝑑𝑦׬
 , 𝑥 ∈ 𝐴

𝑎, 𝜆

𝐹ሺ𝑥ሻ ൌ 1 െ 𝑎ఒ𝑥െఒ, 𝑥 ൐ 𝑎

𝑓ሺ𝑥ሻ ൌ 𝜆𝑎ఒ𝑥െఒെଵ, 𝑥 ൐ 𝑎

𝑥଴ ൐ 𝑎

𝑋 𝑎 λ ,

𝑥଴, 𝑥଴ 𝜆 .

𝑓௑ห௑வ௫బሺ𝑥ሻ ൌ
𝑓ሺ𝑥ሻ

𝑃ሼ𝑋 ൐ 𝑥଴ሽ
ൌ
𝜆𝑎ఒ𝑥ఒെଵ

𝑎ఒ𝑥଴
െఒ ൌ  𝜆𝑥଴

ఒ 𝑥െఒെଵ,  𝑥 ൐ 𝑥଴

𝑥଴ 𝜆 .
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Let  be  independent and identically distributed continuous random

variables having a common density  and distribution function  Define

The ordered values  are known as the order statistics

corresponding to the random variables  In other words,  are

the ordered values of 

The joint density function of the order statistics is obtained by noting that the order

statistics  will take on the values  if and only if, for some

permutation  of 

Since, for any permutation  of 

it follows that, for 

Dividing by  and letting  yields

*

𝑋ଵ,𝑋ଶ, … ,𝑋௡ 𝑛

𝑓 𝐹 .

𝑋ሺଵሻ ൌ  smallest of  𝑋ଵ,  𝑋ଶ,  … ,  𝑋௡

𝑋ሺଶሻ ൌ  second smallest of  𝑋ଵ,  𝑋ଶ,  … ,  𝑋௡

⋮

𝑋ሺ௝ሻ ൌ 𝑗th smallest of  𝑋ଵ,  𝑋ଶ,  … ,  𝑋௡

⋮

𝑋ሺ௡ሻ ൌ  largest of  𝑋ଵ,  𝑋ଶ,  … ,  𝑋௡

𝑋ሺଵሻ ൑ 𝑋ሺଶሻ ൑ ⋯ ൑ 𝑋ሺ௡ሻ
𝑋ଵ,𝑋ଶ, … ,𝑋௡ . 𝑋ሺଵሻ, … ,𝑋ሺ௡ሻ

𝑋ଵ, … ,𝑋௡ .

𝑋ሺଵሻ, … ,𝑋ሺ௡ሻ 𝑥ଵ ൑ 𝑥ଶ ൑ ⋯ ൑ 𝑥௡
ሺ𝑖ଵ, 𝑖ଶ, … , 𝑖௡ሻ ሺ1, 2, … ,𝑛ሻ,

𝑋ଵ ൌ 𝑥௜భ ,𝑋ଶ ൌ 𝑥௜మ , … ,𝑋௡ ൌ 𝑥௜೙

ሺ𝑖ଵ, … , 𝑖௡ሻ ሺ1, 2, … ,𝑛ሻ,

𝑃൜𝑥௜భ െ
𝜀
2
൏ 𝑋ଵ ൏ 𝑥௜భ ൅

𝜀
2

, … , 𝑥௜೙ െ
𝜀
2
൏ 𝑋௡ ൏ 𝑥௜೙ ൅

𝜀
2
ൠ

   ൎ 𝜀௡𝑓௑భ ,⋯,௑೙
ሺ𝑥௜భ , … , 𝑥௜೙ሻ

   ൌ 𝜀௡𝑓ሺ𝑥௜భሻ⋯𝑓ሺ𝑥௜೙ሻ

   ൌ 𝜀௡𝑓ሺ𝑥ଵሻ⋯𝑓ሺ𝑥௡ሻ

𝑥ଵ ൏ 𝑥ଶ ൏ ⋯ ൏ 𝑥௡,

𝑃൜𝑥ଵ െ
𝜀
2
൏ 𝑋ሺଵሻ ൏ 𝑥ଵ ൅

𝜀
2

, … , 𝑥௡ െ
𝜀
2
൏ 𝑋ሺ௡ሻ ൏ 𝑥௡ ൅

𝜀
2
ൠ

   ൎ 𝑛! 𝜀௡𝑓ሺ𝑥ଵሻ⋯𝑓ሺ𝑥௡ሻ

𝜀௡ 𝜀 → 0

𝑓௑ሺభሻ ,… ,௑ሺ೙ሻ
ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ ൌ 𝑛!𝑓ሺ𝑥ଵሻ⋯𝑓ሺ𝑥௡ሻ 𝑥ଵ ൏ 𝑥ଶ ൏ ⋯ ൏ 𝑥௡

(6.1)
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Equation (6.1)  is most simply explained by arguing that, in order for the vector

 to equal  it is necessary and sufficient for 

to equal one of the ! permutations of  Since the probability (density)

that  equals any given permutation of  is just 

Equation (6.1)  follows.

Example 6a

Along a road 1 mile long are 3 people “distributed at random.” Find the probability

that no 2 people are less than a distance of  miles apart when 

Solution

Let us assume that “distributed at random” means that the positions of the 3

people are independent and uniformly distributed over the road. If  denotes the

position of the th person, then the desired probability is

 Because

it follows that

where we have made the change of variables  Continuing the

string of equalities yields

Hence, the desired probability that no 2 people are within a distance  of each

other when 3 people are uniformly and independently distributed over an interval

of size 1 is  when  In fact, the same method can be used to

prove that when  people are distributed at random over the unit interval, the

desired probability is

〈 𝑋ሺଵሻ, … ,𝑋ሺ௡ሻ 〉 〈 𝑥ଵ, … , 𝑥௡ 〉 , 〈 𝑋ଵ, … ,𝑋௡ 〉

𝑛 〈 𝑥ଵ, … , 𝑥௡ 〉 .

〈 𝑋ଵ, … ,𝑋௡ 〉 〈 𝑥ଵ, … , 𝑥௡ 〉 𝑓ሺ𝑥ଵሻ⋯𝑓ሺ𝑥௡ሻ,

𝑑 𝑑 ൑
1
2

.

𝑋௜
𝑖

𝑃൛𝑋ሺ௜ሻ ൐ 𝑋ሺ௜െଵሻ ൅ 𝑑, 𝑖 ൌ 2, 3ൟ .

𝑓௑ሺభሻ ,௑ሺమሻ ,௑ሺయሻ
ሺ𝑥ଵ, 𝑥ଶ, 𝑥ଷሻ ൌ 3! 0 ൏ 𝑥ଵ ൏ 𝑥ଶ ൏ 𝑥ଷ ൏ 1

𝑃൛𝑋ሺ௜ሻ ൐ 𝑋ሺ௜െଵሻ ൅ 𝑑, 𝑖 ൌ 2, 3ൟ ൌ ௫೔׬׬׬   வ௫ೕെభ ൅ௗ  𝑓௑ሺభሻ ,௑ሺమሻ ,௑ሺయሻ
ሺ𝑥ଵ, 𝑥ଶ, 𝑥ଷሻ 𝑑𝑥ଵ 𝑑𝑥ଶ 𝑑𝑥ଷ

ൌ ଴׬!3
ଵെଶௗ

௫భ൅ௗ׬
ଵെௗ

௫మ൅ௗ׬
ଵ

 𝑑𝑥ଷ 𝑑𝑥ଶ 𝑑𝑥ଵ

ൌ ଴׬6
ଵെଶௗ

௫భ൅ௗ׬
ଵെௗ

ሺ1 െ 𝑑 െ 𝑥ଶሻ 𝑑𝑥ଶ 𝑑𝑥ଵ

ൌ ଴׬6
ଵെଶௗ

଴׬
ଵെଶௗെ௫భ𝑦ଶ 𝑑𝑦ଶ 𝑑𝑥ଵ

𝑦ଶ ൌ 1 െ 𝑑 െ 𝑥ଶ .

ൌ ଴׬3
ଵെଶௗ

ሺ1 െ 2𝑑 െ 𝑥ଵሻ
ଶ 𝑑𝑥ଵ

ൌ ଴׬3
ଵെଶௗ

𝑦ଵ
ଶ 𝑑𝑦ଵ

ൌ ሺ1 െ 2𝑑ሻଷ

𝑑

ሺ1 െ 2𝑑ሻଷ 𝑑 ൑
1
2

.

𝑛
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The proof is left as an exercise.

The density function of the th-order statistic  can be obtained either by

integrating the joint density function (6.1 ) or by direct reasoning as follows: In

order for  to equal  it is necessary for  of the  values  to be less

than  of them to be greater than  and 1 of them to equal  Now, the

probability density that any given set of  of the ‘s are less than  another

given set of  are all greater than  and the remaining value is equal to  equals

Hence, since there are

different partitions of the  random variables  into the preceding three

groups, it follows that the density function of  is given by

Example 6b

When a sample of  random variables (that is, when  independent

and identically distributed random variables) is observed, the  smallest is

called the sample median. If a sample of size 3 from a uniform distribution over

(0, 1) is observed, find the probability that the sample median is between  and

Solution

From Equation (6.2) , the density of  is given by

Hence,

⎡
⎣
1 െ ሺ𝑛 െ 1ቇ𝑑⎤

⎦
௡  when 𝑑 ൑

1
𝑛 െ 1

𝑗 𝑋ሺ௝ሻ

𝑋ሺ௝ሻ 𝑥, 𝑗 െ 1 𝑛 𝑋ଵ, … ,𝑋௡
𝑥,𝑛 െ 𝑗 𝑥, 𝑥 .

𝑗 െ 1 𝑋௜ 𝑥,

𝑛 െ 𝑗 𝑥, 𝑥

ൣ𝐹൫𝑥൯൧௝െଵൣ1 െ 𝐹൫𝑥൯൧௡െ௝𝑓൫𝑥ሻ

ቆ
𝑛

𝑗 െ 1,𝑛 െ 𝑗, 1
ቇ ൌ

𝑛!
ሺ𝑛 െ 𝑗ሻ!ሺ𝑗 െ 1ሻ!

𝑛 𝑋ଵ, … ,𝑋௡
𝑋ሺ௝ሻ

𝑓௑ሺೕሻ ሺ𝑥ሻ ൌ
𝑛!

ሺ𝑛 െ 𝑗ሻ!ሺ𝑗 െ 1ሻ!
ሾ𝐹ሺ𝑥ሻሿ௝െଵሾ1 െ 𝐹ሺ𝑥ሻሿ௡െ௝𝑓ሺ𝑥ሻ

(6.2)

2𝑛 ൅ 1 2𝑛 ൅ 1

ሺ𝑛 ൅ 1ሻ

1
4

3
4

.

𝑋ሺଶሻ

𝑓௑ሺమሻ ሺ𝑥ሻ ൌ
3!

1!1!
𝑥ሺ1 െ 𝑥ሻ  0 ൏ 𝑥 ൏ 1
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The cumulative distribution function of  can be found by integrating Equation

(6.2) . That is,

However,  could also have been derived directly by noting that the th order

statistic is less than or equal to  if and only if there are  or more of the ‘s that are

less than or equal to  Thus, because the number of ‘s that are less than or equal

to  is a binomial random variable with parameters  it follows that

If, in Equations (6.3)  and (6.4) , we take  to be the uniform (0, 1) distribution

[that is, ], then we obtain the interesting analytical identity

We can employ the same type of argument that we used in establishing Equation

(6.2)  to find the joint density of  and  the  and  smallest of the values

 For suppose that  and  Then the event that 

is equivalent to the event that the  data values can be divided into  groups of

respective sizes  that satisfy the condition that all 

members of the first group have values less than  the one member of the second

group has value  all  members of the third group have values between 

and  the one member of the fourth group has value  and all  members of

the last group have values greater than  Now, for any specified division of the 

𝑃ቊ
1
4
൏ 𝑋ሺଶሻ ൏

3
4
ቋ ൌ ଵ/ସ׬6

ଷ/ସ
𝑥ሺ1 െ 𝑥ሻ 𝑑𝑥

ൌ 6ቊ
𝑥ଶ

2
െ
𝑥ଷ

3
ቋቤ

௫ൌଵ/ସ

௫ൌଷ/ସ

ൌ
11
16

𝑋ሺ௝ሻ

𝐹௑ሺೕሻ ሺ𝑦ሻ ൌ
𝑛!

ሺ𝑛 െ 𝑗ሻ!ሺ𝑗 െ 1ሻ!
඲
െஶ

௬

ሾ𝐹ሺ𝑥ሻሿ௝െଵሾ1 െ 𝐹ሺ𝑥ሻሿ௡െ௝𝑓ሺ𝑥ሻ 𝑑𝑥

(6.3)

𝐹௑ሺೕሻ ሺ𝑦ሻ 𝑗

𝑦 𝑗 𝑋௜
𝑦 . 𝑋௜

𝑦 𝑛,𝑝 ൌ 𝐹ሺ𝑦ሻ,

𝐹௑ሺ௝ሻሺ𝑦ሻ ൌ 𝑃൛𝑋ሺ௝ሻ ൑ 𝑦ൟ ൌ 𝑃൛𝑗 or more of the 𝑋௝'s are  ൑ 𝑦ൟ

ൌ ෍
௞ ൌ ௝

௡

ቆ
𝑛

𝑘
ቇሾ𝐹ሺ𝑦ሻሿ௞ሾ1 െ 𝐹ሺ𝑦ሻሿ௡െ௞

(6.4)

𝐹

𝑓ሺ𝑥ሻ ൌ 1, 0 ൏ 𝑥 ൏ 1

෍
௞ ൌ ௝

௡

ቆ
𝑛

𝑘
ቇ𝑦௞ሺ1 െ 𝑦ሻ௡െ௞ ൌ

𝑛!
ሺ𝑛 െ 𝑗ሻ!ሺ𝑗 െ 1ሻ!

඲

଴

௬

𝑥௝െଵሺ1 െ 𝑥ሻ௡െ௝ 𝑑𝑥 0 ൑ 𝑦 ൑ 1

(6.5)

𝑋ሺ௜ሻ 𝑋ሺ௝ሻ, 𝑖௧௛ 𝑗௧௛

𝑋ଵ, … ,𝑋௡ . 𝑖 ൏ 𝑗 𝑥௜ ൏ 𝑥௝ . 𝑋ሺ௜ሻ ൌ 𝑥௜,𝑋ሺ௝ሻ ൌ 𝑥௝
𝑛 5

𝑖 െ 1, 1, 𝑗 െ 𝑖 െ 1, 1, 𝑛 െ 𝑗, 𝑖 െ 1

𝑥௜,

𝑥௜, 𝑗 െ 𝑖 െ 1 𝑥௜
𝑥௝, 𝑥௝, 𝑛 െ 𝑗

𝑥௝ . 𝑛
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values into  such groups, the preceding condition will hold with probability (density)

As there are  such divisions of the  values, and as the

condition cannot hold for more than one of these divisions, it follows, for

 that

Example 6c Distribution of the range of a random sample

Suppose that  independent and identically distributed random variables

 are observed. The random variable  defined by  is

called the range of the observed random variables. If the random variables 

have distribution function  and density function  then the distribution of  can

be obtained from Equation (6.6)  as follows: For 

Making the change of variable  yields

Thus,

Equation (6.7)  can be evaluated explicitly only in a few special cases. One

5

𝐹௜െଵሺ𝑥௜ሻ𝑓ሺ𝑥௜ሻ൫𝐹ሺ𝑥௝ሻ െ 𝐹ሺ𝑥௜ሻ൯
௝െ௜െଵ

 𝑓ሺ𝑥௝ሻ ൫1 െ 𝐹ሺ𝑥௝ሻ൯
௡െ௝

𝑛!
ሺ𝑖 െ 1ሻ!1!ሺ𝑗 െ 𝑖 െ 1ሻ!1!ሺ𝑛 െ 𝑗ሻ!

𝑛

𝑖 ൏ 𝑗,  𝑥௜ ൏ 𝑥௝,

𝑓௑ሺ೔ሻ ,௑ሺೕሻ
ሺ𝑥௜, 𝑥௝ሻ ൌ

𝑛!
ሺ𝑖 െ 1ሻ!ሺ𝑗 െ 𝑖 െ 1ሻ!ሺ𝑛 െ 𝑗ሻ!

𝐹௜െଵሺ𝑥௜ሻ𝑓ሺ𝑥௜ሻൣ𝐹ሺ𝑥௝ሻ െ 𝐹ሺ𝑥௜ሻ൧
௝െ௜െଵ

𝑓ሺ𝑥௝ሻൣ1 െ 𝐹ሺ𝑥௝ሻ൧
௡െ௝

(6.6)

𝑛

𝑋ଵ,𝑋ଶ, … ,𝑋௡ 𝑅 𝑅 ൌ 𝑋ሺ௡ሻ െ 𝑋ሺଵሻ
𝑋௜

𝐹 𝑓, 𝑅

𝑎 ൒ 0,

𝑃ሼ𝑅 ൑ 𝑎ሽ ൌ 𝑃൛𝑋ሺ௡ሻ െ 𝑋ሺଵሻ ൑ 𝑎ൟ

ൌ     ׬׬
௫ ೙ െ ௫ భ ൑ ௔

𝑓௑ሺభሻ ,௑ሺ೙ሻ
ሺ𝑥ଵ, 𝑥௡ሻ 𝑑𝑥ଵ 𝑑𝑥௡

ൌ െஶ׬
ஶ

െ௫భ׬
௫భ൅௔ 𝑛!

ሺ𝑛 െ 2ሻ!
ሾ𝐹ሺ𝑥௡ሻ െ 𝐹ሺ𝑥ଵሻሿ

௡െଶ𝑓ሺ𝑥ଵሻ𝑓ሺ𝑥௡ሻ 𝑑𝑥௡ 𝑑𝑥ଵ

𝑦 ൌ 𝐹ሺ𝑥௡ሻ െ 𝐹ሺ𝑥ଵሻ,𝑑𝑦 ൌ 𝑓ሺ𝑥௡ሻ 𝑑𝑥௡

௫భ׬
௫భ൅௔ሾ𝐹ሺ𝑥௡ሻ െ 𝐹ሺ𝑥ଵሻሿ

௡െଶ𝑓ሺ𝑥௡ሻ 𝑑𝑥௡ ൌ ଴׬
ிሺ௫భ൅௔ሻെிሺ௫భሻ𝑦௡െଶ𝑑𝑦

ൌ
1

𝑛 െ 1
ሾ𝐹ሺ𝑥ଵ ൅ 𝑎ሻ െ 𝐹ሺ𝑥ଵሻሿ

௡െଵ

𝑃ሼ𝑅 ൑ 𝑎ሽ ൌ 𝑛඲
െஶ

ஶ

ሾ𝐹ሺ𝑥ଵ ൅ 𝑎ሻ െ 𝐹ሺ𝑥ଵሻሿ
௡െଵ𝑓ሺ𝑥ଵሻ 𝑑𝑥ଵ

(6.7)
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such case is when the ’s are all uniformly distributed on (0, 1). In this case, we

obtain, from Equation (6.7) , that for 

Differentiation yields the density function of the range: given in this case by

That is, the range of  independent uniform (0, 1) random variables is a beta

random variable with parameters 

Let  and  be jointly continuous random variables with joint probability density

function  It is sometimes necessary to obtain the joint distribution of the

random variables  and  which arise as functions of  and  Specifically,

suppose that  and  for some functions  and 

Assume that the functions  and  satisfy the following conditions:

1. The equations  and  can be uniquely solved for

 and  in terms of  and  with solutions given by, say,

2. The functions  and  have continuous partial derivatives at all points

 and are such that the  determinant

at all points 

Under these two conditions, it can be shown that the random variables  and  are

jointly continuous with joint density function given by

𝑋௜
0 ൏ 𝑎 ൏ 1,

𝑃ሼ𝑅 ൏ 𝑎ሽ ൌ 𝑛׬଴
ଵሾ𝐹ሺ𝑥ଵ ൅ 𝑎ሻ െ 𝐹ሺ𝑥ଵሻሿ

௡െଵ𝑓ሺ𝑥ଵሻ 𝑑𝑥ଵ

ൌ 𝑛׬଴
ଵെ௔

𝑎௡െଵ 𝑑𝑥ଵ ൅ 𝑛׬ଵെ௔
ଵ

ሺ1 െ 𝑥ଵሻ
௡െଵ 𝑑𝑥ଵ

ൌ 𝑛ሺ1 െ 𝑎ሻ𝑎௡െଵ ൅ 𝑎௡

𝑓ோሺ𝑎ሻ ൌ ൝
𝑛ሺ𝑛 െ 1ሻ𝑎௡െଶሺ1 െ 𝑎ሻ  0 ൑ 𝑎 ൑ 1

0  otherwise

𝑛

𝑛 െ 1, 2 .

𝑋ଵ 𝑋ଶ
𝑓௑భ ,௑మ

.

𝑌ଵ 𝑌ଶ, 𝑋ଵ 𝑋ଶ .

𝑌ଵ ൌ 𝑔ଵሺ𝑋ଵ,𝑋ଶሻ 𝑌ଶ ൌ 𝑔ଶሺ𝑋ଵ,𝑋ଶሻ 𝑔ଵ 𝑔ଶ .

𝑔ଵ 𝑔ଶ

𝑦ଵ ൌ 𝑔ଵሺ𝑥ଵ, 𝑥ଶሻ 𝑦ଶ ൌ 𝑔ଶሺ𝑥ଵ, 𝑥ଶሻ

𝑥ଵ 𝑥ଶ 𝑦ଵ 𝑦ଶ,
𝑥ଵ ൌ ℎଵሺ𝑦ଵ, 𝑦ଶሻ, 𝑥ଶ ൌ ℎଶሺ𝑦ଵ,  𝑦ଶሻ .

𝑔ଵ 𝑔ଶ
ሺ𝑥ଵ, 𝑥ଶሻ 2 ൈ 2

𝐽ሺ𝑥ଵ, 𝑥ଶሻ ൌ
ተ

ተ

∂𝑔ଵ
∂𝑥ଵ

 
∂𝑔ଵ
∂𝑥ଶ

∂𝑔ଶ
∂𝑥ଵ

 
∂𝑔ଶ
∂𝑥ଶ

ተ

ተ

≡
∂𝑔ଵ
∂𝑥ଵ

∂𝑔ଶ
∂𝑥ଶ

െ
∂𝑔ଵ
∂𝑥ଶ

∂𝑔ଶ
∂𝑥ଵ

് 0

ሺ𝑥ଵ, 𝑥ଶሻ .

𝑌ଵ 𝑌ଶ
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where 

A proof of Equation (7.1)  would proceed along the following lines:

The joint density function can now be obtained by differentiating Equation (7.2)

with respect to  and  That the result of this differentiation will be equal to the

right-hand side of Equation (7.1)  is an exercise in advanced calculus whose proof

will not be presented in this book.

Example 7a

Let  and  be jointly continuous random variables with probability density

function  Let  Find the joint density function of

 and  in terms of 

Solution

Let  and  Then

Also, since the equations  and  have

 as their solution, it follows from Equation

(7.1)  that the desired density is

For instance, if  and  are independent uniform (0, 1) random variables, then

𝑓௒భ௒మሺ𝑦ଵ,𝑦ଶሻ ൌ 𝑓௑భ ,௑మ
ሺ𝑥ଵ, 𝑥ଶሻቚ 𝐽ሺ𝑥ଵ, 𝑥ଶሻቚ

െଵ

(7.1)

𝑥ଵ ൌ ℎଵሺ𝑦ଵ,  𝑦ଶሻ,  𝑥ଶ ൌ ℎଶሺ𝑦ଵ, 𝑦ଶሻ .

𝑃ሼ𝑌ଵ ൑ 𝑦ଵ,𝑌ଶ ൑ 𝑦ଶሽ ൌ ඲඲

ሺ௫ భ , ௫ మሻ :

௚ భሺ௫ భ , ௫ మሻ  ൑  ௬ భ

௚ మሺ௫ భ , ௫ మሻ  ൑  ௬ మ

𝑓௑భ ,௑మ 
ሺ𝑥ଵ, 𝑥ଶሻ 𝑑𝑥ଵ 𝑑𝑥ଶ

(7.2)

𝑦ଵ 𝑦ଶ .

𝑋ଵ 𝑋ଶ
𝑓௑భ ,௑మ

. 𝑌ଵ ൌ 𝑋ଵ ൅ 𝑋ଶ,𝑌ଶ ൌ 𝑋ଵ െ 𝑋ଶ .

𝑌ଵ 𝑌ଶ 𝑓௑భ ,௑మ
.

𝑔ଵሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑥ଵ ൅ 𝑥ଶ 𝑔ଶሺ𝑥ଵ, 𝑥ଶሻ ൌ 𝑥ଵ െ 𝑥ଶ .

𝐽ሺ𝑥ଵ, 𝑥ଶሻ ൌ ቤ
1 1

1 െ1
ቤ ൌ െ 2

𝑦ଵ ൌ 𝑥ଵ ൅ 𝑥ଶ 𝑦ଶ ൌ 𝑥ଵ െ 𝑥ଶ
𝑥ଵ ൌ ሺ𝑦ଵ ൅ 𝑦ଶሻ/2,  𝑥ଶ ൌ ሺ𝑦ଵ െ 𝑦ଶሻ/2

𝑓௒భ ,௒మ
ሺ𝑦ଵ,𝑦ଶሻ ൌ

1
2
𝑓௑భ ,  ௑మ

൬
𝑦ଵ ൅ 𝑦ଶ

2
,
𝑦ଵ െ 𝑦ଶ

2
൰

𝑋ଵ 𝑋ଶ
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or if  and  are independent exponential random variables with respective

parameters  and  then

Finally, if  and  are independent standard normal random variables, then

Thus, not only do we obtain (in agreement with Proposition 3.2 ) that both

 and  are normal with mean 0 and variance 2, but we also

conclude that these two random variables are independent. (In fact, it can be

shown that if  and  are independent random variables having a common

distribution function  then  will be independent of  if and only if

 is a normal distribution function.)

Example 7b

Let ( ) denote a random point in the plane, and assume that the rectangular

coordinates  and  are independent standard normal random variables. We are

interested in the joint distribution of  the polar coordinate representation of (

). (See Figure 6.4 .)

Figure 6.4

𝑓௒భ ,௒మ
ሺ𝑦ଵ,𝑦ଶሻ ൌ ቐ

1
2

 0 ൑ 𝑦ଵ ൅ 𝑦ଶ ൑ 2,  0 ൑ 𝑦ଵ െ 𝑦ଶ ൑ 2

0  otherwise

𝑋ଵ 𝑋ଶ
𝜆ଵ 𝜆ଶ,

𝑓௒భ ,௒మ
ሺ𝑦ଵ,𝑦ଶሻ

     ൌ ൞
𝜆ଵ𝜆ଶ

2
exp൜െ𝜆ଵ൬

𝑦ଵ ൅ 𝑦ଶ
2

൰ െ 𝜆ଶ൬
𝑦ଵ െ 𝑦ଶ

2
൰ൠ   𝑦ଵ ൅ 𝑦ଶ ൒ 0,  𝑦ଵ െ 𝑦ଶ ൒ 0

  otherwise

𝑋ଵ 𝑋ଶ

𝑓௒భ ,௒మ
ሺ𝑦ଵ,𝑦ଶሻ ൌ

1
4𝜋

𝑒െൣሺ௬భ ൅௬మሻ
మ/଼൅ሺ௬భ െ௬మሻ

మ/଼൧

ൌ
1

4𝜋
𝑒െሺ௬

మ
భ൅௬మమሻ/ସ

ൌ
1

4𝜋√
𝑒െ௬

మ
భ /ସ 1

4𝜋√
𝑒െ௬

మ
మ /ସ

𝑋ଵ ൅ 𝑋ଶ 𝑋ଵ െ 𝑋ଶ

𝑋ଵ 𝑋ଶ
𝐹, 𝑋ଵ ൅ 𝑋ଶ 𝑋ଵ െ 𝑋ଶ

𝐹

𝑋, 𝑌

𝑋 𝑌

𝑅, 𝛩,

𝑥, 𝑦

• ൌ  Random point . ሺ𝑋, 𝑌ሻ ൌ ሺ𝑅,  𝛩ሻ .

439 of 848



Suppose first that  and  are both positive. For  and  positive, letting

 and  we see that

Hence,

Because the conditional joint density function of  given that they are both

positive is

we see that the conditional joint density function of  and

 given that  and  are both positive, is

𝑋 𝑌 𝑥 𝑦

𝑟 ൌ 𝑔ଵሺ𝑥, 𝑦ሻ ൌ 𝑥ଶ ൅ 𝑦ଶඥ 𝜃 ൌ 𝑔ଶሺ𝑥,𝑦ሻ ൌ tanെଵ𝑦/𝑥,

∂𝑔ଵ
∂𝑥

ൌ
𝑥

𝑥ଶ ൅ 𝑦ଶඥ

∂𝑔ଵ
∂𝑦

ൌ
𝑦

𝑥ଶ ൅ 𝑦ଶඥ

∂𝑔ଶ
∂𝑥

ൌ
1

1 ൅ ሺ𝑦/𝑥ሻଶ
൬
െ𝑦
𝑥ଶ
൰ ൌ

െ𝑦
𝑥ଶ ൅ 𝑦ଶ

∂𝑔ଶ
∂𝑦

ൌ
1

𝑥ൣ1 ൅ ሺ𝑦/𝑥ሻଶ൧
ൌ

𝑥
𝑥ଶ ൅ 𝑦ଶ

𝐽ሺ𝑥,𝑦ሻ ൌ
𝑥ଶ

ሺ𝑥ଶ ൅ 𝑦ଶሻଷ/ଶ ൅
𝑦ଶ

ሺ𝑥ଶ ൅ 𝑦ଶሻଷ/ଶ ൌ
1

𝑥ଶ ൅ 𝑦ଶඥ
ൌ

1
𝑟

𝑋, 𝑌

𝑓ሺ𝑥,𝑦 |𝑋 ൐ 0,𝑌 ൐ 0ሻ ൌ
𝑓ሺ𝑥,𝑦ሻ

𝑃ሺ𝑋 ൐ 0,𝑌 ൐ 0ሻ
ൌ

2
𝜋
𝑒െሺ௫

మ൅௬మሻ/ଶ,  𝑥 ൐ 0,𝑦 ൐ 0

𝑅 ൌ 𝑋ଶ ൅ 𝑌ଶඥ

𝛩 ൌ tanെଵሺ𝑌/𝑋ሻ, 𝑋 𝑌
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Similarly, we can show that

As the joint density is an equally weighted average of these four conditional joint

densities, we obtain that the joint density of  is given by

Now, this joint density factors into the marginal densities for  and  so  and 

are independent random variables, with  being uniformly distributed over 

and  having the Rayleigh distribution with density

(For instance, when one is aiming at a target in the plane, if the horizontal and

vertical miss distances are independent standard normals, then the absolute

value of the error has the preceding Rayleigh distribution.)

This result is quite interesting, for it certainly is not evident a priori that a random

vector whose coordinates are independent standard normal random variables will

have an angle of orientation that not only is uniformly distributed, but also is

independent of the vector’s distance from the origin.

If we wanted the joint distribution of  and  then, since the transformation

 and  has the Jacobian

it follows that

𝑓ሺ𝑟,𝜃
|
||
|
𝑋 ൐ 0,𝑌 ൐ 0ሻ ൌ

2
𝜋
𝑟𝑒െ௥

మ/మ
, 0 ൏ 𝜃 ൏ 𝜋/2, 0 ൏ 𝑟 ൏ ∞

𝑓ሺ𝑟,𝜃
|
||
|
𝑋 ൏ 0,𝑌 ൐ 0ሻ ൌ

2
𝜋
𝑟𝑒െ௥

మ/మ
, 𝜋/2 ൏ 𝜃 ൏ 𝜋, 0 ൏ 𝑟 ൏ ∞

𝑓ሺ𝑟,𝜃
|
||
|
𝑋 ൏ 0,𝑌 ൏ 0ሻ ൌ

2
𝜋
𝑟𝑒െ௥

మ/మ
, 𝜋 ൏ 𝜃 ൏ 3𝜋/2, 0 ൏ 𝑟 ൏ ∞

𝑓ሺ𝑟,𝜃
|
||
|
𝑋 ൐ 0,𝑌 ൏ 0ሻ ൌ

2
𝜋
𝑟𝑒െ௥

మ/మ
, 3𝜋/2 ൏ 𝜃 ൏ 2𝜋, 0 ൏ 𝑟 ൏ ∞

𝑅,𝛩

𝑓ሺ𝑟,𝜃ሻ ൌ
1

2𝜋
𝑟𝑒െ௥

మ/ଶ  0 ൏ 𝜃 ൏ 2𝜋,  0 ൏ 𝑟 ൏ ∞

𝑅 𝛩, 𝑅 𝛩

𝛩 ሺ0, 2𝜋ሻ

𝑅

𝑓ሺ𝑟ሻ ൌ 𝑟𝑒െ௥
మ/ଶ  0 ൏ 𝑟 ൏ ∞

𝑅ଶ 𝛩,

𝑑 ൌ 𝑔ଵሺ𝑥,𝑦ሻ ൌ 𝑥ଶ ൅ 𝑦ଶ 𝜃 ൌ 𝑔ଶሺ𝑥,𝑦ሻ ൌ tanെଵ𝑦/𝑥

𝐽 ൌ ቮ
2𝑥

െ𝑦
𝑥ଶ ൅ 𝑦ଶ

2𝑦

𝑥
𝑥ଶ ൅ 𝑦ଶ

ቮ ൌ 2

𝑓ሺ𝑑,𝜃ሻ ൌ
1
2
𝑒െௗ/ଶ 1

2𝜋
  0 ൏ 𝑑 ൏ ∞ ,  0 ൏ 𝜃 ൏ 2𝜋
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Therefore,  and  are independent, with  having an exponential distribution

with parameter  But because  it follows by definition that  has

a chi-squared distribution with 2 degrees of freedom. Hence, we have a

verification of the result that the exponential distribution with parameter  is the

same as the chi-squared distribution with 2 degrees of freedom.

The preceding result can be used to simulate (or generate) normal random

variables by making a suitable transformation on uniform random variables. Let

 and  be independent random variables, each uniformly distributed over (0,

1). We will transform  into two independent standard normal random

variables  and  by first considering the polar coordinate representation 

of the random vector  From the preceding,  and  will be

independent, and, in addition,  will have an exponential

distribution with parameter  But  has such a distribution, since,

for 

Also, because  is a uniform  random variable, we can use it to

generate  That is, if we let

then  can be taken to be the square of the distance from the origin and  can

be taken to be the angle of orientation of  Now, since

it follows that

are independent standard normal random variables.

Example 7c

If  and  are independent gamma random variables with parameters  and

 respectively, compute the joint density of  and 

𝑅ଶ 𝛩 𝑅ଶ

1
2

. 𝑅ଶ ൌ 𝑋ଶ ൅ 𝑌ଶ, 𝑅ଶ

1
2

𝑈ଵ 𝑈ଶ
𝑈ଵ,𝑈ଶ

𝑋ଵ 𝑋ଶ ሺ𝑅,𝛩ሻ

ሺ𝑋ଵ,𝑋ଶሻ . 𝑅ଶ 𝛩

𝑅ଶ ൌ 𝑋ଶଵ ൅ 𝑋ଶଶ

𝜆 ൌ
1
2

. െ2 log 𝑈ଵ

𝑥 ൐ 0,

𝑃ሼ െ 2 log 𝑈ଵ ൏ 𝑥ሽ ൌ 𝑃൜log 𝑈ଵ ൐ െ
𝑥
2
ൠ

ൌ 𝑃൛𝑈ଵ ൐ 𝑒െ௫/ଶൟ

ൌ 1 െ 𝑒െ௫/ଶ

2𝜋 𝑈ଶ ሺ0, 2𝜋ሻ

𝛩 .

𝑅ଶ ൌ െ 2 log 𝑈ଵ
𝛩 ൌ 2𝜋𝑈ଶ

𝑅ଶ 𝜃

ሺ𝑋ଵ,𝑋ଶሻ .

𝑋ଵ ൌ 𝑅 cos 𝛩,𝑋ଶ ൌ 𝑅 sin 𝛩,

𝑋ଵ ൌ െ2log𝑈ଵඥ  cos ሺ2𝜋𝑈ଶሻ

𝑋ଶ ൌ െ2log𝑈ଵඥ  sin ሺ2𝜋𝑈ଶሻ

𝑋 𝑌 ሺ𝛼, 𝜆ሻ

ሺ𝛽, 𝜆ሻ, 𝑈 ൌ 𝑋 ൅ 𝑌 𝑉 ൌ 𝑋/ሺ𝑋 ൅ 𝑌ሻ .
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Solution

The joint density of  and  is given by

Now, if  then

so

Finally, as the equations  have as their solutions

 we see that

Hence,  and  are independent, with  having a gamma

distribution with parameters  and  having a beta distribution

with parameters  The preceding reasoning also shows that  the

normalizing factor in the beta density, is such that

This entire result is quite interesting. For suppose there are  jobs to be

performed, each (independently) taking an exponential amount of time with rate 

to be completed and suppose that we have two workers to perform these jobs.

Worker I will do jobs  and worker II will do the remaining  jobs. If we let

 and  denote the total working times of workers I and II, respectively, then

(either from the foregoing result or from Example 3b )  and  will be

𝑋 𝑌

𝑓௑,௒ሺ𝑥,𝑦ሻ ൌ
𝜆𝑒െఒ௫ሺ𝜆𝑥ሻఈെଵ

Γሺ𝛼ሻ
𝜆𝑒െఒ௬ሺ𝜆𝑦ሻఉെଵ

Γሺ𝛽ሻ

ൌ
𝜆ఈ൅ఉ

Γሺ𝛼ሻΓሺ𝛽ሻ
𝑒െఒሺ௫൅௬ሻ𝑥ఈെଵ𝑦ఉെଵ

𝑔ଵሺ𝑥,𝑦ሻ ൌ 𝑥 ൅ 𝑦,𝑔ଶሺ𝑥,𝑦ሻ ൌ 𝑥/ሺ𝑥 ൅ 𝑦ሻ,

∂𝑔ଵ
∂𝑥

ൌ
∂𝑔ଵ
∂𝑦

ൌ 1 
∂𝑔ଶ
∂𝑥

ൌ
𝑦

ሺ𝑥 ൅ 𝑦ሻଶ
 

∂𝑔ଶ
∂𝑦

ൌ െ
𝑥

ሺ𝑥 ൅ 𝑦ሻଶ

𝐽ሺ𝑥,𝑦ሻ ൌ ተ

1

𝑦

ሺ𝑥 ൅ 𝑦ሻଶ

1

െ𝑥

ሺ𝑥 ൅ 𝑦ሻଶ
ተ ൌ െ

1
𝑥 ൅ 𝑦

𝑢 ൌ 𝑥 ൅ 𝑦, 𝑣 ൌ 𝑥/ሺ𝑥 ൅ 𝑦ሻ

𝑥 ൌ 𝑢𝑣,𝑦 ൌ 𝑢ሺ1 െ 𝑣ሻ,

𝑓௎,௏ሺ𝑢, 𝑣ሻ ൌ 𝑓௑,௒ሾ𝑢𝑣,𝑢ሺ1 െ 𝑣ሻሿ𝑢

ൌ
𝜆𝑒െఒ௨ሺ𝜆𝑢ሻఈ൅ఉെଵ

Γሺ𝛼 ൅ 𝛽ሻ
𝑣ఈെଵሺ1 െ 𝑣ሻఉെଵΓሺ𝛼 ൅ 𝛽ሻ

Γሺ𝛼ሻΓሺ𝛽ሻ

𝑋 ൅ 𝑌 𝑋/ሺ𝑋 ൅ 𝑌ሻ 𝑋 ൅ 𝑌

ሺ𝛼 ൅ 𝛽, 𝜆ሻ 𝑋/ሺ𝑋 ൅ 𝑌ሻ

ሺ𝛼,𝛽ሻ . 𝐵ሺ𝛼,𝛽ሻ,

𝐵ሺ𝛼,𝛽ሻ ≡ ଴׬
ଵ
𝑣ఈെଵሺ1 െ 𝑣ሻఉെଵ𝑑𝑣

ൌ
Γሺ𝛼ሻΓሺ𝛽ሻ
Γሺ𝛼 ൅ 𝛽ሻ

𝑛 ൅𝑚

𝜆

1, 2, … ,𝑛, 𝑚

𝑋 𝑌

𝑋 𝑌
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independent gamma random variables having parameters  and 

respectively. It then follows that independently of the working time needed to

complete all  jobs (that is, of ), the proportion of this work that will be

performed by worker I has a beta distribution with parameters ( ).

When the joint density function of the  random variables  is given

and we want to compute the joint density function of  where

the approach is the same—namely, we assume that the functions  have

continuous partial derivatives and that the Jacobian determinant

at all points  Furthermore, we suppose that the equations

 have a unique

solution, say,  Under these

assumptions, the joint density function of the random variables  is given by

where 

Example 7d

Let  and  be independent standard normal random variables. If

 compute the joint density

function of 

Solution

Letting  the Jacobian of these

transformations is given by

ሺ𝑛, 𝜆ሻ ሺ𝑚, 𝜆ሻ,

𝑛 ൅ 𝑚 𝑋 ൅ 𝑌

𝑛, 𝑚

𝑛 𝑋ଵ,𝑋ଶ, … ,𝑋௡
𝑌ଵ,𝑌ଶ, … ,𝑌௡,

𝑌ଵ ൌ 𝑔ଵሺ𝑋ଵ, … ,𝑋௡ሻ 𝑌ଶ ൌ 𝑔ଶሺ𝑋ଵ, … ,𝑋௡ሻ, …  𝑌௡ ൌ 𝑔௡ሺ𝑋ଵ, … ,𝑋௡ሻ

𝑔௜

𝐽ሺ𝑥ଵ, … , 𝑥௡ሻ ൌ

ተ

ተተ

ተ

∂𝑔ଵ
∂𝑥ଵ

∂𝑔ଵ
∂𝑥ଶ

⋯
∂𝑔ଵ
∂𝑥௡

∂𝑔ଶ
∂𝑥ଵ

∂𝑔ଶ
∂𝑥ଶ

⋯
∂𝑔ଶ
∂𝑥௡

∂𝑔௡
∂𝑥ଵ

∂𝑔௡
∂𝑥ଶ

⋯
∂𝑔௡
∂𝑥௡

ተ

ተተ

ተ

് 0

ሺ𝑥ଵ, … , 𝑥௡ሻ .

𝑦ଵ ൌ 𝑔ଵሺ𝑥ଵ, … , 𝑥௡ሻ,𝑦ଶ ൌ 𝑔ଶሺ𝑥ଵ, … , 𝑥௡ሻ, … ,𝑦௡ ൌ 𝑔௡ሺ𝑥ଵ, … , 𝑥௡ሻ

𝑥ଵ ൌ ℎଵሺ𝑦ଵ, … ,𝑦௡ሻ, … , 𝑥௡ ൌ ℎ௡ሺ𝑦ଵ, … ,𝑦௡ሻ .

𝑌௜

𝑓௒భ ,… ,௒೙
ሺ𝑦ଵ, … ,𝑦௡ሻ ൌ 𝑓௑భ ,… ,௑೙

ሺ𝑥ଵ, … , 𝑥௡ሻቚ 𝐽ሺ𝑥ଵ, … , 𝑥௡ሻቚ
െଵ

(7.3)

𝑥௜ ൌ ℎ௜ሺ𝑦ଵ, … ,𝑦௡ሻ, 𝑖 ൌ 1, 2, … ,𝑛 .

𝑋ଵ,𝑋ଶ, 𝑋ଷ
𝑌ଵ ൌ 𝑋ଵ ൅ 𝑋ଶ ൅ 𝑋ଷ,𝑌ଶ ൌ 𝑋ଵ െ 𝑋ଶ,   and  𝑌ଷ ൌ 𝑋ଵ െ 𝑋ଷ,

𝑌ଵ,𝑌ଶ,𝑌ଷ .

𝑌ଵ ൌ 𝑋ଵ ൅ 𝑋ଶ ൅ 𝑋ଷ,𝑌ଶ ൌ 𝑋ଵ െ 𝑋ଶ,𝑌ଷ ൌ 𝑋ଵ െ 𝑋ଷ,
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As the preceding transformations yield that

we see from Equation (7.3)  that

Hence, as

we see that

where

Example 7e

Let  be independent and identically distributed exponential random

variables with rate  Let

a. Find the joint density function of 

b. Use the result of part (a) to find the density of 

c. Find the conditional density of  given that 

𝐽 ൌ ተ

1 1 1

1 െ1 0

1 0 െ1

ተ ൌ 3

𝑋ଵ ൌ
𝑌ଵ ൅ 𝑌ଶ ൅ 𝑌ଷ

3
 𝑋ଶ ൌ

𝑌ଵ െ 2𝑌ଶ ൅ 𝑌ଷ
3

 𝑋ଷ ൌ
𝑌ଵ ൅ 𝑌ଶ െ 2𝑌ଷ

3

𝑓௒భ ,  ௒మ ,  ௒య
ሺ𝑦ଵ,  𝑦ଶ,  𝑦ଷሻ

ൌ
1
3
𝑓௑భ ,  ௑మ ,  ௑య

ቆ
𝑦ଵ ൅ 𝑦ଶ ൅ 𝑦ଷ

3
,
𝑦ଵ െ 2𝑦ଶ ൅ 𝑦ଷ

3
,
𝑦ଵ ൅ 𝑦ଶ െ 2𝑦ଷ

3
ቇ

𝑓௑భ ,  ௑మ ,  ௑య
ሺ𝑥ଵ,  𝑥ଶ,  𝑥ଷሻ ൌ

1

ሺ2𝜋ሻଷ/ଶ 𝑒
െ෍

೔ൌభ

య
௫మ೔ /ଶ

𝑓௒భ ,  ௒మ ,  ௒య
ሺ𝑦ଵ,  𝑦ଶ,  𝑦ଷሻ ൌ

1

3ሺ2𝜋ሻଷ/ଶ 𝑒
െொሺ௬భ ,  ௬మ ,  ௬యሻ/ଶ

𝑄ሺ𝑦ଵ,𝑦ଶ,𝑦ଷሻ

ൌ ቆ
𝑦ଵ ൅ 𝑦ଶ ൅ 𝑦ଷ

3
ቇ
ଶ

൅ ቆ
𝑦ଵ െ 2𝑦ଶ ൅ 𝑦ଷ

3
ቇ
ଶ

൅ ቆ
𝑦ଵ ൅ 𝑦ଶ െ 2𝑦ଷ

3
ቇ
ଶ

ൌ
𝑦ଶଵ

3
൅

2
3
𝑦ଶଶ ൅

2
3
𝑦ଶଷ െ

2
3
𝑦ଶ𝑦ଷ

𝑋ଵ,𝑋ଶ, … ,𝑋௡
𝜆 .

𝑌௜ ൌ 𝑋ଵ ൅⋯ ൅ 𝑋௜ 𝑖 ൌ 1, … ,𝑛

𝑌ଵ, … ,𝑌௡ .

𝑌௡ .

𝑌ଵ, … ,𝑌௡െଵ 𝑌௡ ൌ 𝑡 .
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Solution

a. The Jacobian of the transformations 

 is

Since only the first term of the determinant will be nonzero, we have

 Now, the joint density function of  is given by

Hence, because the preceding transformations yield

it follows from Equation (7.3)  that the joint density function of 

is

b. To obtain the marginal density of  let us integrate out the other

variables one at a time. Doing this gives

Continuing, we obtain

The next integration yields

𝑌ଵ ൌ 𝑋ଵ, 𝑌ଶ ൌ 𝑋ଵ ൅ 𝑋ଶ, … ,

𝑌௡ ൌ 𝑋ଵ ൅⋯ ൅ 𝑋௡

𝐽 ൌ

ተ

ተ

ተ

1 0 0 0 ⋯ 0

1 1 0 0 ⋯ 0

1 1 1 0 ⋯ 0

⋯ ⋯

⋯ ⋯

1 1 1 1 ⋯ 1

ተ

ተ

ተ

𝐽 ൌ 1 . 𝑋ଵ, … ,𝑋௡

𝑓௑భ ,… ,௑೙
ሺ𝑥ଵ, … , 𝑥௡ሻ ൌ ෑ

௜ ൌ ଵ

௡

𝜆𝑒െఒ௫೔ 0 ൏ 𝑥௜ ൏ ∞ ,   𝑖 ൌ 1, … ,𝑛

𝑋ଵ ൌ 𝑌ଵ,𝑋ଶ ൌ 𝑌ଶ െ 𝑌ଵ, … ,𝑋௜ ൌ 𝑌௜ െ 𝑌௜െଵ, … ,𝑋௡ ൌ 𝑌௡ െ 𝑌௡െଵ

𝑌ଵ, … ,𝑌௡

𝑓௒భ ,… ,௒೙
ሺ𝑦ଵ, … ,𝑦௡ሻ ൌ 𝑓௑భ ,… ,௑೙

ሺ𝑦ଵ,𝑦ଶ െ 𝑦ଵ, … ,𝑦௡ െ 𝑦௡െଵሻ

ൌ 𝜆௡exp ቐെ𝜆 ቎𝑦ଵ ൅ ෍
௜ ൌ ଶ

௡

ሺ𝑦௜ െ 𝑦௜െଵሻ቏ቑ

ൌ 𝜆௡𝑒െఒ௬೙ 0 ൏ 𝑦ଵ, 0 ൏ 𝑦௜ െ 𝑦௜െଵ, 𝑖 ൌ 2, … ,𝑛

ൌ 𝜆௡𝑒െఒ௬೙ 0 ൏ 𝑦ଵ ൏ 𝑦ଶ ൏ ⋯ ൏ 𝑦௡

𝑌௡,

𝑓௒మ ,… ,௒೙
ሺ𝑦ଶ, … ,𝑦௡ሻ ൌ ଴׬

௬మ𝜆௡𝑒െఒ௬೙𝑑𝑦ଵ

ൌ 𝜆௡𝑦ଶ𝑒
െఒ௬೙ 0 ൏ 𝑦ଶ ൏ 𝑦ଷ ൏ ⋯ ൏ 𝑦௡

𝑓௒య ,… ,௒೙
ሺ𝑦ଷ, … ,𝑦௡ሻ ൌ ଴׬

௬య𝜆௡ 𝑦2𝑒െఒ௬೙𝑑𝑦ଶ

ൌ 𝜆௡
𝑦ଷ
ଶ

2
𝑒െఒ௬೙ 0 ൏ 𝑦ଷ ൏ 𝑦ସ ൏ ⋯ ൏ 𝑦௡

446 of 848



Continuing in this fashion gives

which, in agreement with the result obtained in Example 3b , shows

that  is a gamma random variable with parameters  and 

c. The conditional density of  given that  is, for

Because  is the density of a uniform random variable on

 it follows that conditional on  are distributed as the order

statistics of  independent uniform  random variables.

The random variables  are said to be exchangeable if, for every

permutation  of the integers 

for all  That is, the  random variables are exchangeable if their joint

distribution is the same no matter in which order the variables are observed.

Discrete random variables will be exchangeable if

for all permutations  and all values  This is equivalent to stating that

 is a symmetric function of the vector

 which means that its value does not change when the values of the

vector are permuted.

𝑓௒ర ,… ,௒೙
ሺ𝑦ସ, … ,𝑦௡ሻ ൌ 𝜆௡

𝑦ସ
ଷ

3!
𝑒െఒ௬೙ 0 ൏ 𝑦ସ ൏ ⋯ ൏ 𝑦௡

𝑓௒೙ሺ𝑦௡ሻ ൌ 𝜆௡
𝑦௡
௡െଵ

ሺ𝑛 െ 1ሻ!
𝑒െఒ௬೙ 0 ൏ 𝑦௡

𝑋ଵ ൅⋯ ൅ 𝑋௡ 𝑛 𝜆 .

𝑌ଵ, … ,𝑌௡െଵ 𝑌௡ ൌ 𝑡
0 ൏ 𝑦ଵ ൏ …  ൏ 𝑦௡െଵ ൏ 𝑡,

𝑓௒భ ,… ,௒೙െభ ห௒೙
ሺ𝑦ଵ, … ,𝑦௡െଵ |𝑡ሻ ൌ

𝑓௒భ ,… ,௒೙െభ ,௒೙
ሺ𝑦ଵ, … , 𝑦௡െଵ, 𝑡ሻ

𝑓௒೙ሺ𝑡ሻ

ൌ
𝜆௡𝑒െఒ௧

𝜆𝑒െఒ௧ሺ𝜆𝑡ሻ௡െଵ/ሺ𝑛 െ 1ሻ!

ൌ
ሺ𝑛 െ 1ሻ!
𝑡௡െଵ

𝑓ሺ𝑦ሻ ൌ 1/𝑡, 0 ൏ 𝑦 ൏ 𝑡,

ሺ0, 𝑡ሻ, 𝑌௡ ൌ 𝑡, 𝑌ଵ, … ,𝑌௡െଵ
𝑛 െ 1 ሺ0, 𝑡ሻ

*

𝑋ଵ,𝑋ଶ, … ,𝑋௡
𝑖ଵ, … , 𝑖௡ 1, … ,𝑛,

𝑃൛𝑋௜భ ൑ 𝑥ଵ,𝑋௜మ ൑ 𝑥ଶ, … ,𝑋௜೙ ൑ 𝑥௡ൟ ൌ 𝑃൛𝑋ଵ ൑ 𝑥ଵ,𝑋ଶ ൑ 𝑥ଶ, … ,𝑋௡ ൑ 𝑥௡ൟ

𝑥ଵ, … , 𝑥௡ . 𝑛

𝑃൛𝑋௜భ ൌ 𝑥ଵ,𝑋௜మ ൌ 𝑥ଶ, … ,𝑋௜೙ ൌ 𝑥௡ൟ ൌ 𝑃൛𝑋ଵ ൌ 𝑥ଵ,𝑋ଶ ൌ 𝑥ଶ, … ,𝑋௡ ൌ 𝑥௡ൟ

𝑖ଵ, … , 𝑖௡, 𝑥ଵ, … , 𝑥௡ .

𝑝ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ ൌ 𝑃ሼ𝑋ଵ ൌ 𝑥ଵ, … ,𝑋௡ ൌ 𝑥௡ሽ
ሺ𝑥ଵ, … , 𝑥௡ሻ,
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Example 8a

Suppose that balls are withdrawn one at a time and without replacement from an

urn that initially contains  balls, of which  are considered special, in such a

manner that each withdrawal is equally likely to be any of the balls that remains

in the urn at the time. Let  if the th ball withdrawn is special and let 

otherwise. We will show that the random variables  are exchangeable.

To do so, let  be a vector consisting of  ones and  zeros.

However, before considering the joint mass function evaluated at  let

us try to gain some insight by considering a fixed such vector for instance,

consider the vector  which is assumed to have  ones and

 zeros. Then

which follows because the probability that the first ball is special is  the

conditional probability that the next one is special is  the

conditional probability that the next one is not special is  and so

on. By the same argument, it follows that  can be expressed as the

product of  fractions. The successive denominator terms of these fractions will

go from  down to 1. The numerator term at the location where the vector

 is 1 for the th time is  and where it is 0 for the th time it is

 Hence, since the vector  consists of  ones and 

zeros, we obtain

Since this is a symmetric function of  it follows that the random

variables are exchangeable.

Remark Another way to obtain the preceding formula for the joint probability mass

function is to regard all the  balls as distinguishable from one another. Then, since

the outcome of the experiment is an ordering of these balls, it follows that there are 

! equally likely outcomes. Finally, because the number of outcomes having special

and nonspecial balls in specified places is equal to the number of ways of permuting

the special and the nonspecial balls among themselves, namely  we

obtain the preceding mass function.

It is easily seen that if  are exchangeable, then each  has the same

probability distribution. For instance, if  and  are exchangeable discrete random

𝑛 𝑘

𝑋௜ ൌ 1 𝑖 𝑋௜ ൌ 0

𝑋ଵ, … ,𝑋௡
ሺ𝑥ଵ, … , 𝑥௡ሻ 𝑘 𝑛 െ 𝑘

ሺ𝑥ଵ, … , 𝑥௡ሻ,

ሺ1, 1, 0, 1, 0, … , 0, 1ሻ, 𝑘

𝑛 െ 𝑘

𝑝ሺ1, 1, 0, 1, 0, … , 0, 1ሻ ൌ
𝑘
𝑛
𝑘 െ 1
𝑛 െ 1

𝑛 െ 𝑘
𝑛 െ 2

𝑘 െ 2
𝑛 െ 3

𝑛 െ 𝑘 െ 1
𝑛 െ 4

⋯
1
2

1
1

𝑘/𝑛,

ሺ𝑘 െ 1ሻ/ሺ𝑛 െ 1ሻ,

ሺ𝑛 െ 𝑘ሻ/ሺ𝑛 െ 2ሻ,

𝑝ሺ𝑥ଵ, … , 𝑥௡ሻ

𝑛

𝑛

ሺ𝑥ଵ, … , 𝑥௡ሻ 𝑖 𝑘 െ ሺ𝑖 െ 1ሻ, 𝑖

𝑛 െ 𝑘 െ ሺ𝑖 െ 1ሻ . ሺ𝑥ଵ, … , 𝑥௡ሻ 𝑘 𝑛 െ 𝑘

𝑝ሺ𝑥ଵ, … , 𝑥௡ሻ ൌ
𝑘!ሺ𝑛 െ 𝑘ሻ!

𝑛!
 𝑥௜ ൌ 0, 1, ෍

௜ ൌ ଵ

௡

𝑥௜ ൌ 𝑘

ሺ𝑥ଵ, … , 𝑥௡ሻ,

𝑛

𝑛

𝑘!ሺ𝑛 െ 𝑘ሻ!,

𝑋ଵ,𝑋ଶ, … ,𝑋௡ 𝑋௜
𝑋 𝑌
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variables, then

For example, it follows from Example 8a  that the th ball withdrawn will be special

with probability  which is intuitively clear, since each of the  balls is equally

likely to be the th one selected.

Example 8b

In Example 8a , let  denote the selection number of the first special ball

withdrawn, let  denote the additional number of balls that are then withdrawn

until the second special ball appears, and, in general, let  denote the additional

number of balls withdrawn after the  special ball is selected until the th is

selected, For instance, if  and

 then  Now,

otherwise; thus, from the joint mass function of the  we obtain

Hence, the random variables  are exchangeable. Note that it follows

from this result that the number of cards one must select from a well-shuffled

deck until an ace appears has the same distribution as the number of additional

cards one must select after the first ace appears until the next one does, and so

on.

Example 8c

The following is known as Polya’s urn model: Suppose that an urn initially

contains  red and  blue balls. At each stage, a ball is randomly chosen, its

color is noted, and it is then replaced along with another ball of the same color.

Let  if the th ball selected is red and let it equal 0 if the th ball is blue,

 To obtain a feeling for the joint probabilities of these  note the following

special cases:

𝑃ሼ𝑋 ൌ 𝑥ሽ ൌ ෍
௬

𝑃ሼ𝑋 ൌ 𝑥,𝑌 ൌ 𝑦ሽ ൌ ෍
௬

𝑃ሼ𝑋 ൌ 𝑦,𝑌 ൌ 𝑥ሽ ൌ 𝑃ሼ𝑌 ൌ 𝑥ሽ

𝑖

𝑘/𝑛, 𝑛

𝑖

𝑌ଵ
𝑌ଶ

𝑌௜
ሺ𝑖 െ 1ሻ 𝑖

𝑖 ൌ 1, … , 𝑘 . 𝑛 ൌ 4, 𝑘 ൌ 2

𝑋ଵ ൌ 1,𝑋ଶ ൌ 0,𝑋ଷ ൌ 0,𝑋ସ ൌ 1, 𝑌ଵ ൌ 1,𝑌ଶ ൌ 3 .

𝑌ଵ ൌ 𝑖ଵ,𝑌ଶ ൌ 𝑖ଶ, … ,𝑌௞ ൌ 𝑖௞ ⇔ 𝑋௜భ ൌ 𝑋௜భ൅௜మ ൌ ⋯ ൌ 𝑋௜భ൅⋯൅௜ೖ ൌ 1,𝑋௝ ൌ 0,

𝑋௜,

𝑃ሼ𝑌ଵ ൌ 𝑖ଵ,𝑌ଶ ൌ 𝑖ଶ, … ,𝑌௞ ൌ 𝑖௞ሽ ൌ
𝑘!ሺ𝑛 െ 𝑘ሻ!

𝑛!
 𝑖ଵ ൅⋯൅ 𝑖௞ ൑ 𝑛

𝑌ଵ, … ,𝑌௞

𝑛 𝑚

𝑋௜ ൌ 1 𝑖 𝑖

𝑖 ൒ 1 . 𝑋௜,

𝑃ሼ𝑋ଵ ൌ 1,𝑋ଶ ൌ 1,𝑋ଷ ൌ 0,𝑋ସ ൌ 1,𝑋ହ ൌ 0ሽ

ൌ
𝑛

𝑛 ൅𝑚
 

𝑛 ൅ 1
𝑛 ൅𝑚 ൅ 1

 
𝑚

𝑛 ൅𝑚 ൅ 2
 

𝑛 ൅ 2
𝑛 ൅𝑚 ൅ 3

 
𝑚 ൅ 1

𝑛 ൅𝑚 ൅ 4

ൌ
𝑛ሺ𝑛 ൅ 1ሻሺ𝑛 ൅ 2ሻ𝑚ሺ𝑚 ൅ 1ሻ

ሺ𝑛 ൅ 𝑚ሻሺ𝑛 ൅𝑚 ൅ 1ሻሺ𝑛 ൅ 𝑚 ൅ 2ሻሺ𝑛 ൅ 𝑚 ൅ 3ሻሺ𝑛 ൅ 𝑚൅ 4ሻ
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and

By the same reasoning, for any sequence  that contains  ones and

 zeros, we have

Therefore, for any value of  the random variables  are exchangeable.

An interesting corollary of the exchangeability in this model is that the probability

that the th ball selected is red is the same as the probability that the first ball

selected is red, namely,  (For an intuitive argument for this initially

nonintuitive result, imagine that all the  balls initially in the urn are of

different types. That is, one is a red ball of type  one is a red ball of type 

one is a red ball type of  one is a blue ball of type  and so on, down to the

blue ball of type  Suppose that when a ball is selected it is replaced along with

another of its type. Then, by symmetry, the th ball selected is equally likely to be

of any of the  distinct types. Because  of these  types are red, the

probability is )

Our final example deals with continuous random variables that are exchangeable.

Example 8d

Let  be independent uniform (0, 1) random variables, and denote

their order statistics by  That is,  is the th smallest of

 Also, let

Show that  are exchangeable.

Solution

𝑃ሼ𝑋ଵ ൌ 0,𝑋ଶ ൌ 1,𝑋ଷ ൌ 0,𝑋ସ ൌ 1,𝑋ହ ൌ 1ሽ

ൌ
𝑚

𝑛 ൅𝑚
 

𝑛
𝑛 ൅𝑚 ൅ 1

 
𝑚 ൅ 1

𝑛 ൅𝑚 ൅ 2
 

𝑛 ൅ 1
𝑛 ൅𝑚 ൅ 3

 
𝑛 ൅ 2

𝑛 ൅𝑚 ൅ 4

ൌ
𝑛ሺ𝑛 ൅ 1ሻሺ𝑛 ൅ 2ሻ𝑚ሺ𝑚 ൅ 1ሻ

ሺ𝑛 ൅ 𝑚ሻሺ𝑛 ൅𝑚 ൅ 1ሻሺ𝑛 ൅ 𝑚 ൅ 2ሻሺ𝑛 ൅ 𝑚 ൅ 3ሻሺ𝑛 ൅ 𝑚൅ 4ሻ

𝑥ଵ, … , 𝑥௞ 𝑟

𝑘 െ 𝑟

𝑃ሼ𝑋ଵ ൌ 𝑥ଵ, … ,𝑋௞ ൌ 𝑥௞ሽ

ൌ
𝑛ሺ𝑛 ൅ 1ሻ⋯ሺ𝑛 ൅ 𝑟 െ 1ሻ𝑚ሺ𝑚 ൅ 1ሻ⋯ሺ𝑚 ൅ 𝑘 െ 𝑟 െ 1ሻ

ሺ𝑛 ൅ 𝑚ሻ⋯ሺ𝑛 ൅ 𝑚 ൅ 𝑘 െ 1ሻ

𝑘, 𝑋ଵ, … ,𝑋௞

𝑖
𝑛

𝑛 ൅ 𝑚
.

𝑛 ൅𝑚

1, 2, … ,

𝑛, 1,

𝑚 .

𝑖

𝑛 ൅ 𝑚 𝑛 𝑛 ൅𝑚
𝑛

𝑛 ൅𝑚
.

𝑋ଵ,𝑋ଶ, … ,𝑋௡
𝑋ሺଵሻ, … ,𝑋ሺ௡ሻ . 𝑋ሺ௝ሻ 𝑗

𝑋ଵ,𝑋ଶ, … ,𝑋௡ .

𝑌ଵ ൌ 𝑋ሺଵሻ,

𝑌௜ ൌ 𝑋ሺ௜ሻ െ 𝑋ሺ௜െଵሻ, 𝑖 ൌ 2, … 𝑛

𝑌ଵ, … ,𝑌௡
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The transformations

yield

As it is easy to see that the Jacobian of the preceding transformations is equal to

1, so, from Equation (7.3) , we obtain

where  is the joint density function of the order statistics. Hence, from Equation

(6.1) , we obtain that

or, equivalently,

Because the preceding joint density is a symmetric function of  we see

that the random variables  are exchangeable.

The joint cumulative probability distribution function of the pair of random variables 

and  is defined by

All probabilities regarding the pair can be obtained from  To find the individual

probability distribution functions of  and  use

If  and  are both discrete random variables, then their joint probability mass

function is defined by

𝑦ଵ ൌ 𝑥ଵ,  𝑦௜ ൌ 𝑥௜ െ 𝑥௜െଵ,  𝑖 ൌ 2, … ,𝑛

𝑥௜ ൌ 𝑦ଵ ൅ ⋯൅ 𝑦௜ 𝑖 ൌ 1, … ,𝑛

𝑓௒భ ,… ,௒೙
ሺ𝑦ଵ,𝑦ଶ, … ,𝑦௡ሻ ൌ 𝑓ሺ𝑦ଵ,𝑦ଵ ൅ 𝑦ଶ, … , 𝑦ଵ ൅ ⋯ ൅ 𝑦௡ሻ

𝑓

𝑓௒భ ,… ,௒೙
ሺ𝑦ଵ,𝑦ଶ, … ,𝑦௡ሻ ൌ 𝑛! 0 ൏ 𝑦ଵ ൏ 𝑦ଵ ൅ 𝑦ଶ ൏ ⋯ ൏ 𝑦ଵ ൅ ⋯൅ 𝑦௡ ൏ 1

𝑓௒భ ,… ,௒೙
ሺ𝑦ଵ,𝑦ଶ, … ,𝑦௡ሻ ൌ 𝑛! 0 ൏ 𝑦௜ ൏ 1,  𝑖 ൌ 1, … ,𝑛, 𝑦ଵ ൅⋯ ൅ 𝑦௡ ൏ 1

𝑦ଵ, … ,𝑦௡,

𝑌ଵ, … ,𝑌௡

𝑋

𝑌

𝐹ሺ𝑥,𝑦ሻ ൌ 𝑃ሼ𝑋 ൑ 𝑥,𝑌 ൑ 𝑦ሽ  െ ∞ ൏ 𝑥,𝑦 ൏ ∞

𝐹 .

𝑋 𝑌,

𝐹௑ሺ𝑥ሻ ൌ lim
௬ → ஶ

𝐹ሺ𝑥,𝑦ሻ 𝐹௒ሺ𝑦ሻ ൌ lim
௫ → ஶ

𝐹ሺ𝑥,𝑦ሻ

𝑋 𝑌

𝑝ሺ𝑖, 𝑗ሻ ൌ 𝑃ሼ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗ሽ
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The individual mass functions are

The random variables  and  are said to be jointly continuous if there is a function 

( ), called the joint probability density function, such that for any two-dimensional

set 

It follows from the preceding formula that

If  and  are jointly continuous, then they are individually continuous with density

functions

The random variables  and  are independent if, for all sets  and 

If the joint distribution function (or the joint probability mass function in the discrete

case, or the joint density function in the continuous case) factors into a part

depending only on  and a part depending only on  then  and  are independent.

In general, the random variables  are independent if, for all sets of real

numbers 

If  and  are independent continuous random variables, then the distribution

function of their sum can be obtained from the identity

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ ෍
௝

𝑝ሺ𝑖, 𝑗ሻ  𝑃ሼ𝑌 ൌ 𝑗ሽ ൌ ෍
௜

𝑝ሺ𝑖, 𝑗ሻ

𝑋 𝑌 𝑓

𝑥, 𝑦

𝐶,

𝑃ሼሺ𝑋,𝑌ሻ ∈ 𝐶ሽ ൌ ඲඲

஼

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥 𝑑𝑦

𝑃ሼ𝑥 ൏ 𝑋 ൏ 𝑥 ൅ 𝑑𝑥,  𝑦 ൏ 𝑌 ൏ 𝑦 ൅ 𝑑𝑦ሽ ൎ 𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥 𝑑𝑦

𝑋 𝑌

𝑓௑ሺ𝑥ሻ ൌ ඲
െஶ

ஶ

𝑓ቆ𝑥,𝑦ቇ𝑑𝑦  𝑓௒ሺ𝑦ሻ ൌ ඲
െஶ

ஶ

𝑓ቆ𝑥,𝑦ሻ 𝑑𝑥

𝑋 𝑌 𝐴 𝐵,

𝑃ሼ𝑋 ∈ 𝐴,𝑌 ∈ 𝐵ሽ ൌ 𝑃ሼ𝑋 ∈ 𝐴ሽ𝑃ሼ𝑌 ∈ 𝐵ሽ

𝑥 𝑦, 𝑋 𝑌

𝑋ଵ, … ,𝑋௡
𝐴ଵ, … ,𝐴௡,

𝑃ሼ𝑋ଵ ∈ 𝐴ଵ, … ,𝑋௡ ∈ 𝐴௡ሽ ൌ 𝑃ሼ𝑋ଵ ∈ 𝐴ଵሽ⋯𝑃ሼ𝑋௡ ∈ 𝐴௡ሽ

𝑋 𝑌

𝐹௑൅௒ሺ𝑎ሻ ൌ ඲
െஶ

ஶ

𝐹௑ሺ𝑎 െ 𝑦ሻ𝑓௒ሺ𝑦ሻ𝑑𝑦
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If  are independent normal random variables with respective

parameters  and  then  is normal with parameters 

and 

If  are independent Poisson random variables with respective

parameters  then  is Poisson with parameter 

If  and  are discrete random variables, then the conditional probability mass

function of  given that  is defined by

where  is their joint probability mass function. Also, if  and  are jointly continuous

with joint density function  then the conditional probability density function of 

given that  is given by

The ordered values  of a set of independent and identically

distributed random variables are called the order statistics of that set. If the random

variables are continuous and have density function  then the joint density function

of the order statistics is

The random variables  are called exchangeable if the joint distribution of

 is the same for every permutation  of 

𝑋௜, 𝑖 ൌ 1, … ,𝑛,

𝜇௜ 𝜎ଶ
௜ , 𝑖 ൌ 1, … ,𝑛, ෍

௜ ൌ ଵ

௡

𝑋௜ ෍
௜ ൌ ଵ

௡

𝜇௜

෍
௜ ൌ ଵ

௡

𝜎ଶ௜ .

𝑋௜, 𝑖 ൌ 1, … ,𝑛,

𝜆௜, 𝑖 ൌ 1, … ,𝑛, ෍
௜ ൌ ଵ

௡

𝑋௜ ෍
௜ ൌ ଵ

௡

𝜆௜ .

𝑋 𝑌

𝑋 𝑌 ൌ 𝑦

𝑃ሼ𝑋 ൌ 𝑥 |𝑌 ൌ 𝑦ሽ ൌ
𝑝ሺ𝑥,𝑦ሻ
𝑝௒ሺ𝑦ሻ

𝑝 𝑋 𝑌

𝑓, 𝑋

𝑌 ൌ 𝑦

𝑓௑|௒ሺ𝑥 |𝑦ሻ ൌ
𝑓ሺ𝑥,𝑦ሻ
𝑓௒ሺ𝑦ሻ

𝑋ሺଵሻ ൑ 𝑋ሺଶሻ ൑ ⋯ ൑ 𝑋ሺ௡ሻ

𝑓,

𝑓ሺ𝑥ଵ, … , 𝑥௡ሻ ൌ 𝑛!𝑓ሺ𝑥ଵሻ ⋯ 𝑓ሺ𝑥௡ሻ  𝑥ଵ ൑ 𝑥ଶ ൑ ⋯ ൑ 𝑥௡

𝑋ଵ, … ,𝑋௡
𝑋௜భ , … ,𝑋௜೙ 𝑖ଵ, … , 𝑖௡ 1, … ,𝑛 .

6.1. Two fair dice are rolled. Find the joint probability mass function

of  and  when

a.  is the largest value obtained on any die and  is the sum of

the values;

b.  is the value on the first die and  is the larger of the two

𝑋 𝑌

𝑋 𝑌

𝑋 𝑌
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values;

c.  is the smallest and  is the largest value obtained on the

dice.

6.2. Suppose that 3 balls are chosen without replacement from an

urn consisting of 5 white and 8 red balls. Let  equal 1 if the th ball

selected is white, and let it equal 0 otherwise. Give the joint

probability mass function of

a. ;
b. 

6.3. In Problem 8 , suppose that the white balls are numbered,

and let  equal 1 if the th white ball is selected and 0 otherwise.

Find the joint probability mass function of

a. ;
b. 

6.4. Repeat Problem 6.2  when the ball selected is replaced in the

urn before the next selection.

6.5. Repeat Problem 6.3a  when the ball selected is replaced in

the urn before the next selection.

6.6. The severity of a certain cancer is designated by one of the

grades  with  being the least severe and  the most severe.

If  is the score of an initially diagnosed patient and  the score of

that patient after three months of treatment, hospital data indicates

that  is given by

a. Find the probability mass functions of  and of ;

b. Find  and 

c. Find  and 

6.7. Consider a sequence of independent Bernoulli trials, each of

which is a success with probability  Let  be the number of

failures preceding the first success, and let  be the number of

failures between the first two successes. Find the joint mass function

of  and 

6.8. The joint probability density function of  and  is given by

𝑋 𝑌

𝑋௜ 𝑖

𝑋ଵ,𝑋ଶ
𝑋ଵ,𝑋ଶ,𝑋ଷ .

𝑌௜ 𝑖

𝑌ଵ,𝑌ଶ
𝑌ଵ,𝑌ଶ,𝑌ଷ .

1, 2, 3, 4 1 4

𝑋 𝑌

𝑝ሺ𝑖, 𝑗ሻ ൌ 𝑃ሺ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗ሻ
𝑝ሺ1, 1ሻ ൌ .08, 𝑝ሺ1,  2ሻ ൌ .06, 𝑝ሺ1, 3ሻ ൌ .04, 𝑝ሺ1, 4ሻ ൌ .02

𝑝ሺ2, 1ሻ ൌ .06, 𝑝ሺ2, 2ሻ ൌ .12, 𝑝ሺ2, 3ሻ ൌ .08, 𝑝ሺ2, 4ሻ ൌ .04

𝑝ሺ3, 1ሻ ൌ .03, 𝑝ሺ3, 2ሻ ൌ .09, 𝑝ሺ3, 3ሻ ൌ .12, 𝑝ሺ3, 4ሻ ൌ .06

𝑝ሺ4, 1ሻ ൌ .01, 𝑝ሺ4, 2ሻ ൌ .03, 𝑝ሺ4, 3ሻ ൌ .07, 𝑝ሺ4, 4ሻ ൌ .09

𝑋 𝑌

𝐸ሾ𝑋ሿ 𝐸ሾ𝑌ሿ .

Var ሺ𝑋ሻ Var ሺ𝑌ሻ .

𝑝 . 𝑋ଵ
𝑋ଶ

𝑋ଵ 𝑋ଶ .

𝑋 𝑌
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a. Find 

b. Find the marginal densities of  and 

c. Find [ ].

6.9. The joint probability density function of  and  is given by

a. Verify that this is indeed a joint density function.

b. Compute the density function of 

c. Find 

d. Find 

e. Find [ ].

f. Find [ ].

6.10. The joint probability density function of  and  is given by

Find (a)  and (b) 

6.11. In Example 1d , verify that 

 is indeed a joint density. function. That is, check that

 and that 

6.12. The number of people who enter a drugstore in a given hour is

a Poisson random variable with parameter  Compute the

conditional probability that at most 3 men entered the drugstore,

given that 10 women entered in that hour. What assumptions have

you made?

6.13. A man and a woman agree to meet at a certain location about

12:30 ඘.ඕ. If the man arrives at a time uniformly distributed between

12:15 and 12:45, and if the woman independently arrives at a time

uniformly distributed between 12:00 and 1 ඘.ඕ., find the probability

that the first to arrive waits no longer than 5 minutes. What is the

probability that the man arrives first?

6.14. An ambulance travels back and forth at a constant speed along

a road of length  At a certain moment of time, an accident occurs

at a point uniformly distributed on the road. [That is, the distance of

the point from one of the fixed ends of the road is uniformly

distributed over (0, ).] Assuming that the ambulance’s location at the

moment of the accident is also uniformly distributed, and assuming

𝑓ሺ𝑥,𝑦ሻ ൌ 𝑐ሺ𝑦ଶ െ 𝑥ଶሻ𝑒െ௬ െ 𝑦 ൑ 𝑥 ൑ 𝑦,  0 ൏ 𝑦 ൏ ∞

𝑐 .

𝑋 𝑌 .

𝐸 𝑋

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ
6
7
൬𝑥ଶ ൅

𝑥𝑦
2
൰ 0 ൏ 𝑥 ൏ 1,  0 ൏ 𝑦 ൏ 2

𝑋 .

𝑃ሼ𝑋 ൐ 𝑌ሽ .

𝑃ቊ𝑌 ൐
1
2

|
||
|
𝑋 ൏

1
2
ቋ .

𝐸 𝑋

𝐸 𝑌

𝑋 𝑌
𝑓ሺ𝑥,𝑦ሻ ൌ 𝑒െሺ௫൅௬ሻ  0 ൑ 𝑥 ൏ ∞ , 0 ൑ 𝑦 ൏ ∞

𝑃ሼ𝑋 ൏ 𝑌ሽ 𝑃ሼ𝑋 ൏ 𝑎ሽ .

 𝑓ሺ𝑥,𝑦ሻ ൌ 2𝑒െ௫𝑒െଶ௬,  0 ൏ 𝑥 ൏ ∞ ,

0 ൏ 𝑦 ൏ ∞ ,

𝑓ሺ𝑥,𝑦ሻ ൒ 0, െஶ׬
ஶ

െஶ׬
ஶ

𝑓ሺ𝑥,𝑦ሻ𝑑𝑥 𝑑𝑦 ൌ 1 .

𝜆 ൌ 10 .

𝐿 .

𝐿
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independence of the variables, compute the distribution of the

distance of the ambulance from the accident.

6.15. The random vector ( ) is said to be uniformly distributed

over a region  in the plane if, for some constant  its joint density is

a. Show that 

Suppose that ( ) is uniformly distributed over the square

centered at (0, 0) and with sides of length 2.

b. Show that  and  are independent, with each being

distributed uniformly over 

c. What is the probability that ( ) lies in the circle of radius 1

centered at the origin? That is, find 

6.16. Suppose that  points are independently chosen at random on

the circumference of a circle, and we want the probability that they all

lie in some semicircle. That is, we want the probability that there is a

line passing through the center of the circle such that all the points

are on one side of that line, as shown in the following diagram:

Let  denote the  points. Let  denote the event that all the

points are contained in some semicircle, and let  be the event that

all the points lie in the semicircle beginning at the point  and going

clockwise for 

a. Express  in terms of the 

b. Are the  mutually exclusive?

c. Find 

𝑋, 𝑌

𝑅 𝑐,

𝑓ሺ𝑥,𝑦ሻ ൌ ൝
𝑐  ifሺ𝑥,  𝑦ሻ ∈ 𝑅

0  otherwise

1/𝑐 ൌ  area of region  𝑅 .

𝑋, 𝑌

𝑋 𝑌

ሺ െ 1, 1ሻ .

𝑋, 𝑌

𝑃൛𝑋ଶ ൅ 𝑌ଶ ൑ 1ൟ .

𝑛

𝑃ଵ, … ,𝑃௡ 𝑛 𝐴

𝐴௜
𝑃௜

180∘, 𝑖 ൌ 1, … ,𝑛 .

𝐴 𝐴௜ .

𝐴௜
𝑃ሺ𝐴ሻ .
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6.17. Three points  are selected at random on a line 

What is the probability that  lies between  and 

6.18. Let  and  be independent binomial random variables with

 having parameters  Find

a. 
b. 
c. 

6.19. Show that ,  is a joint density

function. Assuming that  is the joint density function of  find

a. the marginal density of ;

b. the marginal density of ;

c. 

d. 

6.20. The joint density of  and  is given by

Are  and  independent? If, instead, ( , ) were given by

would  and  be independent?

6.21. Let

and let it equal 0 otherwise.

a. Show that ( ) is a joint probability density function.

b. Find [ ].

c. Find [ ].

6.22. The joint density function of  and  is

a. Are  and  independent?

b. Find the density function of 

c. Find 

6.23. The random variables  and  have joint density function

𝑋ଵ,𝑋ଶ,𝑋ଷ 𝐿 .

𝑋ଶ 𝑋ଵ 𝑋ଷ?

𝑋ଵ 𝑋ଶ
𝑋௜ ሺ𝑛௜,𝑝௜ሻ, 𝑖 ൌ 1, 2 .

𝑃ሺ𝑋ଵ𝑋ଶ ൌ 0ሻ;
𝑃ሺ𝑋ଵ ൅ 𝑋ଶ ൌ 1ሻ;
𝑃ሺ𝑋ଵ ൅ 𝑋ଶ ൌ 2 ሻ.

𝑓ሺ𝑥,𝑦ሻ ൌ 1/𝑥 0 ൏ 𝑦 ൏ 𝑥 ൏ 1,

𝑓 𝑋,𝑌

𝑌

𝑋
𝐸ሾ𝑋ሿ;
𝐸ሾ𝑌 ሿ.

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ ቊ
𝑥𝑒െሺ௫൅௬ሻ  𝑥 ൐ 0,  𝑦 ൐ 0

0  otherwise

𝑋 𝑌 𝑓 𝑥 𝑦

𝑓ሺ𝑥,𝑦ሻ ൌ ቊ
2  0 ൏ 𝑥 ൏ 𝑦,  0 ൏ 𝑦 ൏ 1

0  otherwise

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ 24𝑥𝑦 0 ൑ 𝑥 ൑ 1,  0 ൑ 𝑦 ൑ 1,  0 ൑ 𝑥 ൅ 𝑦 ൑ 1

𝑓 𝑥 𝑦

𝐸 𝑋

𝐸 𝑌

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ ൝
𝑥 ൅ 𝑦  0 ൏ 𝑥 ൏ 1,  0 ൏ 𝑦 ൏ 1

0  otherwise

𝑋 𝑌

𝑋 .

𝑃ሼ𝑋 ൅ 𝑌 ൏ 1 ሽ.

𝑋 𝑌
𝑓ሺ𝑥,𝑦ሻ ൌ 12𝑥𝑦ሺ1 െ 𝑥ሻ 0 ൏ 𝑥 ൏ 1,  0 ൏ 𝑦 ൏ 1
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and equal to 0 otherwise.

a. Are  and  independent?

b. Find [ ].

c. Find [ ].

d. Find Var

e. Find Var

6.24. Consider independent trials, each of which results in outcome

 with probability  Let  denote the

number of trials needed to obtain an outcome that is not equal to 0,

and let  be that outcome.

a. Find 

b. Find 

c. Show that 

d. Is it intuitive to you that  is independent of 

e. Is it intuitive to you that  is independent of 

6.25. Suppose that  people arrive at a service station at times that

are independent random variables, each of which is uniformly

distributed over  Let  denote the number that arrive in the

first hour. Find an approximation for 

6.26. Suppose that  are independent random variables, each

being uniformly distributed over (0, 1).

a. What is the joint cumulative distribution function of 

b. What is the probability that all of the roots of the equation

 are real?

6.27. If  and  are independent exponential random variables

with respective parameters  and  find the distribution of

 Also compute 

6.28. The time that it takes to service a car is an exponential random

variable with rate 

a. If A. J. brings his car in at time  and M. J. brings her car in at

time  what is the probability that M. J.’s car is ready before

A. J.’s car? (Assume that service times are independent and

service begins upon arrival of the car.)

b. If both cars are brought in at time  with work starting on M.

J.’s car only when A. J.’s car has been completely serviced,

what is the probability that M. J.’s car is ready before time 

𝑋 𝑌

𝐸 𝑋

𝐸 𝑌

ሺ𝑋ሻ .

ሺ𝑌ሻ .

𝑖, 𝑖 ൌ 0, 1, … , 𝑘 𝑝௜, ෍
௜ ൌ ଴

௞

𝑝௜ ൌ 1 . 𝑁

𝑋

𝑃ሼ𝑁 ൌ 𝑛ሽ,𝑛 ൒ 1 .

𝑃ሼ𝑋 ൌ 𝑗ሽ, 𝑗 ൌ 1, … , 𝑘 .

𝑃ሼ𝑁 ൌ 𝑛,𝑋 ൌ 𝑗ሽ ൌ 𝑃ሼ𝑁 ൌ 𝑛ሽ𝑃ሼ𝑋 ൌ 𝑗ሽ .

𝑁 𝑋?

𝑋 𝑁?

10଺

ሺ0, 10଺ሻ . 𝑁

𝑃ሼ𝑁 ൌ 𝑖ሽ .

𝐴, 𝐵, 𝐶,

𝐴, 𝐵, 𝐶?

𝐴𝑥ଶ ൅ 𝐵𝑥 ൅ 𝐶 ൌ 0

𝑋ଵ 𝑋ଶ
𝜆ଵ 𝜆ଶ,

𝑍 ൌ 𝑋ଵ/𝑋ଶ . 𝑃ሼ𝑋ଵ ൏ 𝑋ଶሽ .

1 .

0

𝑡,

0,

2?
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6.29. The gross daily sales at a certain restaurant are a normal

random variable with mean $2200 and standard deviation $230.

What is the probability that

a. the total gross sales over the next 2 days exceeds $5000;

b. daily sales exceed $2000 in at least 2 of the next 3 days?

What independence assumptions have you made?

6.30. Jill’s bowling scores are approximately normally distributed with

mean 170 and standard deviation 20, while Jack’s scores are

approximately normally distributed with mean 160 and standard

deviation 15. If Jack and Jill each bowl one game, then assuming

that their scores are independent random variables, approximate the

probability that

a. Jack’s score is higher;

b. the total of their scores is above 350.

6.31. According to the U.S. National Center for Health Statistics, 25.2

percent of males and 23.6 percent of females never eat breakfast.

Suppose that random samples of 200 men and 200 women are

chosen. Approximate the probability that

a. at least 110 of these 400 people never eat breakfast;

b. the number of the women who never eat breakfast is at least

as large as the number of the men who never eat breakfast.

6.32. Monthly sales are independent normal random variables with

mean  and standard deviation 

a. Find the probability that exactly  of the next  months have

sales greater than 100.

b. Find the probability that the total of the sales in the next 

months is greater than 

6.33. Let  and  be independent normal random variables, each

having mean  and variance  Which probability is larger

a.  or ;

b.  or 

6.34. Suppose  and  are independent normal random variables

with mean  and variance  Find  such that

6.35. Teams  are all scheduled to play each of the other

teams  times. Whenever team  plays team  team  is the winner

100 5 .

3 6

4

420 .

𝑋ଵ 𝑋ଶ
10 𝜎ଶ .

𝑃ሺ𝑋ଵ ൐ 15ሻ   𝑃ሺ𝑋ଵ ൅ 𝑋ଶ ൐ 25ሻ

𝑃ሺ𝑋ଵ ൐ 15ሻ   𝑃ሺ𝑋ଵ ൅ 𝑋ଶ ൐ 30ሻ .

𝑋 𝑌

10 4 . 𝑥
𝑃ሺ𝑋 ൅ 𝑌 ൐ 𝑥ሻ ൌ 𝑃ሺ𝑋 ൐ 15ሻ .

1, 2, 3, 4

10 𝑖 𝑗, 𝑖
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with probability  where

a. Approximate the probability that team 1 wins at least 

games.

Suppose we want to approximate the probability that team 

wins at least as many games as does team  To do so, let 

be the number of games that team  wins against team  let

 be the total number of games that team  wins against

teams  and  and let  be the total number of games that

team  wins against teams  and 

b. Are  independent.

c. Express the event that team 2 wins at least as many games

as does team  in terms of the random variables 

d. Approximate the probability that team  wins at least as many

games as team 

Hint: Approximate the distribution of any binomial random variable

by a normal with the same mean and variance.

6.36. Let  be independent with the same continuous

distribution function  and let  be the median of that distribution.

That is, 

a. If  is the number of the values  that are less than

 what type of random variable is 

b. Let  be the values  arranged

in increasing order. That is,  is, for  the 

smallest of  Find 

6.37. The expected number of typographical errors on a page of a

certain magazine is .2. What is the probability that an article of 10

pages contains (a) 0 and (b) 2 or more typographical errors? Explain

your reasoning!

6.38. The monthly worldwide average number of airplane crashes of

commercial airlines is 2.2. What is the probability that there will be

a. more than 2 such accidents in the next month?

b. more than 4 such accidents in the next 2 months?

c. more than 5 such accidents in the next 3 months?

Explain your reasoning!

6.39. In Problem 6.4 , calculate the conditional probability mass

𝑃௜,௝,
𝑃ଵ,ଶ ൌ .6,  𝑃ଵ,ଷ ൌ .7,  𝑃ଵ,ସ ൌ .75

𝑃ଶ,ଵ ൌ .4,  𝑃ଶ,ଷ ൌ .6,  𝑃ଶ,ସ ൌ .70

20

2

1 . 𝑋

2 1,

𝑌 2

3 4, 𝑍

1 3 4 .

𝑋,𝑌,𝑍

1 𝑋,𝑌,𝑍 .

2

1 .

𝑋ଵ, … ,𝑋ଵ଴
𝐹, 𝑚

𝐹ሺ𝑚ሻ ൌ .5.

𝑁 𝑋ଵ, … ,𝑋ଵ଴
𝑚, 𝑁 .

𝑋ሺଵሻ ൏ 𝑋ሺଶሻ ൏ ⋯ ൏ 𝑋ሺଵ଴ሻ 𝑋ଵ, … ,𝑋ଵ଴
𝑋ሺ௜ሻ 𝑖 ൌ 1,  …  ,  10, 𝑖௧௛

𝑋ଵ, … ,𝑋ଵ଴ . 𝑃ሺ𝑋ሺଶሻ ൏ 𝑚 ൏ 𝑋ሺ଼ሻሻ .
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function of  given that

a. ;
b. 

6.40. In Problem 6.3 , calculate the conditional probability mass

function of  given that

a. ;
b. 

6.41. The discrete integer valued random variables  are

independent if for all 

Show that if  are independent then  and  are independent.

That is, show that the preceding implies that

6.42. Choose a number  at random from the set of numbers

 Now choose a number at random from the subset no

larger than  that is, from  Call this second number 

a. Find the joint mass function of  and 

b. Find the conditional mass function of X given that  Do it

for 

c. Are  and  independent? Why?

6.43. Two dice are rolled. Let  and  denote, respectively, the

largest and smallest values obtained. Compute the conditional mass

function of  given  for  Are  and  independent?

Why?

6.44. The joint probability mass function of X and  is given by

a. Compute the conditional mass function of  given

b. Are  and  independent?

c. Compute 

6.45. The joint density function of  and  is given by

𝑋ଵ
𝑋ଶ ൌ 1
𝑋ଶ ൌ 0 .

𝑌ଵ
𝑌ଶ ൌ 1
𝑌ଶ ൌ 0 .

𝑋,𝑌,𝑍

𝑖, 𝑗, 𝑘
𝑃ሺ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗,𝑍 ൌ 𝑘ሻ ൌ 𝑃ሺ𝑋 ൌ 𝑖ሻ𝑃ሺ𝑌 ൌ 𝑗ሻ𝑃ሺ𝑍 ൌ 𝑘ሻ

𝑋,𝑌,𝑍 𝑋 𝑌

𝑃ሺ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗ሻ ൌ 𝑃ሺ𝑋 ൌ 𝑖ሻ𝑃ሺ𝑌 ൌ 𝑗ሻ

𝑋

ሼ1,2,3,4,5ሽ .

𝑋, ሼ1, … ,𝑋ሽ . 𝑌 .

𝑋 𝑌 .

𝑌 ൌ 𝑖 .

𝑖 ൌ 1, 2, 3, 4, 5 .

𝑋 𝑌

𝑋 𝑌

𝑌 𝑋 ൌ 𝑖, 𝑖 ൌ 1, 2, … , 6 . 𝑋 𝑌

𝑌

𝑝ሺ1, 1ሻ ൌ
1
8
  𝑝ሺ1, 2ሻ ൌ

1
4

𝑝ሺ2, 1ሻ ൌ
1
8
  𝑝ሺ2, 2ሻ ൌ

1
2

𝑋
𝑌 ൌ 𝑖, 𝑖 ൌ 1, 2 .

𝑋 𝑌

𝑃ሼ𝑋𝑌 ൑ 3ሽ,𝑃ሼ𝑋 ൅ 𝑌 ൐ 2ሽ,𝑃ሼ𝑋/𝑌 ൐ 1ሽ .

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ 𝑥𝑒െ௫൫௬൅ଵሻ 𝑥 ൐ 0,  𝑦 ൐ 0
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a. Find the conditional density of  given  and that of 

given 

b. Find the density function of 

6.46. The joint density of  and  is

Find the conditional distribution of  given 

6.47. An insurance company supposes that each person has an

accident parameter and that the yearly number of accidents of

someone whose accident parameter is  is Poisson distributed with

mean  They also suppose that the parameter value of a newly

insured person can be assumed to be the value of a gamma random

variable with parameters  and  If a newly insured person has 

accidents in her first year, find the conditional density of her accident

parameter. Also, determine the expected number of accidents that

she will have in the following year.

6.48. If  are independent random variables that are

uniformly distributed over (0, 1), compute the probability that the

largest of the three is greater than the sum of the other two.

6.49. A complex machine is able to operate effectively as long as at

least 3 of its 5 motors are functioning. If each motor independently

functions for a random amount of time with density function

 compute the density function of the length of time

that the machine functions.

6.50. If 3 trucks break down at points randomly distributed on a road

of length  find the probability that no 2 of the trucks are within a

distance  of each other when 

6.51. Consider a sample of size 5 from a uniform distribution over (0,

1). Compute the probability that the median is in the interval 

6.52. If  are independent and identically distributed

exponential random variables with the parameter  compute
a. 

b. 

6.53. Let  be the order statistics of a set of 

independent uniform  random variables. Find the conditional

distribution of  given that 

6.54. Let  and  be independent standard normal random

variables. Show that  has a bivariate normal distribution when

𝑋, 𝑌 ൌ 𝑦, 𝑌,

𝑋 ൌ 𝑥 .

𝑍 ൌ 𝑋𝑌 .

𝑋 𝑌
𝑓ሺ𝑥, 𝑦ሻ ൌ 𝑐ሺ𝑥ଶ െ 𝑦ଶሻ𝑒െ௫ 0 ൑ 𝑥 ൏ ∞ ,   െ 𝑥 ൑ 𝑦 ൑ 𝑥

𝑌, 𝑋 ൌ 𝑥 .

𝜆

𝜆 .

𝑠 𝛼 . 𝑛

𝑋ଵ,𝑋ଶ,𝑋ଷ

𝑓ሺ𝑥ሻ ൌ 𝑥𝑒െ௫, 𝑥 ൐ 0,

𝐿,

𝑑 𝑑 ൑ 𝐿/2 .

ቆ
1
4

,
3
4
ቇ .

𝑋ଵ,𝑋ଶ,𝑋ଷ,𝑋ସ,𝑋ହ
𝜆,

𝑃ሼminሺ𝑋ଵ, … ,𝑋ହሻ ൑ 𝑎ሽ;
𝑃ሼmaxሺ𝑋ଵ, … ,𝑋ହሻ ൑ 𝑎ሽ .

 𝑋ሺଵ൯,𝑋ሺଶሻ ,…, 𝑋ሺ௡ሻ 𝑛

ሺ0, 1ሻ

𝑋ሺ௡ሻ  𝑋ሺଵሻ ൌ 𝑠ଵ,𝑋ሺଶሻ ൌ 𝑠ଶ, … ,𝑋ሺ௡െଵሻ ൌ 𝑠௡െଵ .

𝑍ଵ 𝑍ଶ
𝑋,𝑌

𝑋 ൌ 𝑍ଵ,  𝑌 ൌ 𝑍ଵ ൅ 𝑍ଶ .
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6.55. Derive the distribution of the range of a sample of size 2 from a

distribution having density function 

6.56. Let  and  denote the coordinates of a point uniformly chosen

in the circle of radius 1 centered at the origin. That is, their joint

density is

Find the joint density function of the polar coordinates

 and 

6.57. If  and  are independent random variables both uniformly

distributed over (0, 1), find the joint density function of

6.58. If  is uniform on  and  independent of  is

exponential with rate 1, show directly (without using the results of

Example 7b ) that  and  defined by

are independent standard normal random variables.

6.59.  and  have joint density function

a. Compute the joint density function of 

b. What are the marginal densities?

6.60. If  and  are independent and identically distributed uniform

random variables on (0, 1), compute the joint density of

a. ;

b. ;
c. 

6.61. Repeat Problem 6.60  when  and  are independent

exponential random variables, each with parameter 

6.62. If  and  are independent exponential random variables,

each having parameter  find the joint density function of

 and 

6.63. If  and  are independent random variables having

identical density functions  derive the joint

distribution of 

𝑓ሺ𝑥ሻ ൌ 2𝑥,  0 ൏ 𝑥 ൏ 1 .

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ
1
𝜋
 𝑥ଶ ൅ 𝑦ଶ ൑ 1

𝑅 ൌ ሺ𝑋ଶ ൅ 𝑌ଶሻଵ/ଶ Θ ൌ tanെଵ𝑌/𝑋 .

𝑋 𝑌

𝑅 ൌ 𝑋ଶ ൅ 𝑌ଶඥ ,𝛩ൌtanെଵ𝑌/𝑋 .

𝑈 ሺ0,  2𝜋ሻ 𝑍, 𝑈,

𝑋 𝑌
𝑋 ൌ 2𝑍√  cos  𝑈

𝑌 ൌ 2𝑍√  sin 𝑈

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ
1

𝑥ଶ𝑦ଶ
 𝑥 ൒ 1,  𝑦 ൒ 1

𝑈 ൌ 𝑋𝑌,𝑉 ൌ 𝑋/𝑌 .

𝑋 𝑌

𝑈 ൌ 𝑋 ൅ 𝑌,𝑉 ൌ 𝑋/𝑌

𝑈 ൌ 𝑋,𝑉 ൌ 𝑋/𝑌
𝑈 ൌ 𝑋 ൅ 𝑌,𝑉 ൌ 𝑋/ሺ𝑋 ൅ 𝑌ሻ .

𝑋 𝑌

𝜆 ൌ 1 .

𝑋ଵ 𝑋ଶ
𝜆,

𝑌ଵ ൌ 𝑋ଵ ൅ 𝑋ଶ 𝑌ଶ ൌ 𝑒௑భ .

𝑋, 𝑌, 𝑍

𝑓ሺ𝑥ሻ ൌ 𝑒െ௫, 0 ൏ 𝑥 ൏ ∞ ,

𝑈 ൌ 𝑋 ൅ 𝑌,  𝑉 ൌ 𝑋 ൅ 𝑍,𝑊 ൌ 𝑌൅ 𝑍 .
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6.64. In Example 8b, let  Show that

 are exchangeable. Note that  is the number of

balls one must observe to obtain a special ball if one considers the

balls in their reverse order of withdrawal.

6.65. Consider an urn containing  balls numbered  and

suppose that  of them are randomly withdrawn. Let  equal 1 if ball

number  is removed and let  be 0 otherwise. Show that 

are exchangeable.

𝑌௞൅ଵ ൌ 𝑛 ൅ 1 െ ෍
௜ ൌ ଵ

௞

𝑌௜ .

𝑌ଵ, … ,𝑌௞,𝑌௞൅ଵ 𝑌௞൅ଵ

𝑛 1, … ,𝑛,

𝑘 𝑋௜
𝑖 𝑋௜ 𝑋ଵ, … ,𝑋௡

6.1. Suppose  have a joint distribution function  Show

how to obtain the distribution functions  and

6.2. Suppose that  and  are integer valued random variables and

have a joint distribution function 

a. Give an expression, in terms of the joint distribution function,

for 

b. Give an expression, in terms of the joint distribution function,

for 

6.3. Suggest a procedure for using Buffon’s needle problem to

estimate  Surprisingly enough, this was once a common method of

evaluating 

6.4. Solve Buffon’s needle problem when 

ANSWER:  where 

6.5. If  and  are independent continuous positive random

variables, express the density function of (a)  and (b) 

in terms of the density functions of  and  Evaluate the density

functions in the special case where  and  are both exponential

random variables.

6.6. If  and  are jointly continuous with joint density function

 show that  is continuous with density function

6.7.

𝑋, 𝑌 𝐹ሺ𝑥, 𝑦ሻ .

𝐹௑ሺ𝑥ሻ ൌ 𝑃ሼ𝑋 ൑ 𝑥ሽ
𝐹௒ሺ𝑦ሻ ൌ 𝑃ሼ𝑌 ൑ 𝑦ሽ .

𝑋 𝑌

𝐹ሺ𝑖, 𝑗ሻ ൌ 𝑃ሺ𝑋 ൑ 𝑖,𝑌 ൑ 𝑗ሻ .

𝑃ሺ𝑋 ൌ 𝑖,𝑌 ൑ 𝑗ሻ .

𝑃ሺ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗ሻ .

𝜋 .

𝜋 .

𝐿 ൐ 𝐷 .
2𝐿
𝜋𝐷

ሺ1 െ sin 𝜃ሻ ൅ 2𝜃/𝜋, cos 𝜃 ൌ 𝐷/𝐿 .

𝑋 𝑌

𝑍 ൌ 𝑋/𝑌 𝑍 ൌ 𝑋𝑌

𝑋 𝑌 .

𝑋 𝑌

𝑋 𝑌

𝑓௑,௒ሺ𝑥,𝑦ሻ, 𝑋 ൅ 𝑌

𝑓௑൅௒ሺ𝑡ሻ ൌ ඲
െஶ

ஶ

𝑓௑,௒ሺ𝑥, 𝑡 െ 𝑥ሻ 𝑑𝑥
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a. If  has a gamma distribution with parameters  what is

the distribution of 

b. Show that

has a gamma distribution with parameters  when  is a

positive integer and  is a chi-squared random variable

with 2  degrees of freedom.

6.8. Let  and  be independent continuous random variables with

respective hazard rate functions  and  and set

a. Determine the distribution function of  in terms of those of 

and 

b. Show that  the hazard rate function of  is given by

6.9. Let  be independent exponential random variables

having a common parameter  Determine the distribution of

6.10. The lifetimes of batteries are independent exponential random

variables, each having parameter  A flashlight needs 2 batteries to

work. If one has a flashlight and a stockpile of  batteries, what is the

distribution of time that the flashlight can operate?

6.11. Let  be independent continuous random

variables having a common distribution function  and density

function  and set

a. Show that  does not depend on 

Hint: Write  as a five-dimensional integral and make the

change of variables 

b. Evaluate 

c. Give an intuitive explanation for your answer to (b).

6.12. Show that the jointly continuous (discrete) random variables

 are independent if and only if their joint probability density

(mass) function  can be written as

𝑋 ሺ𝑡, 𝜆ሻ,

𝑐𝑋, 𝑐 ൐ 0?

1
2𝜆

𝜒ଶ௡
ଶ

𝑛, 𝜆 𝑛

𝜒ଶଶ௡
𝑛

𝑋 𝑌

𝜆௑ሺ𝑡ሻ 𝜆௒ሺ𝑡ሻ,
𝑊 ൌ minሺ𝑋,𝑌ሻ .

𝑊 𝑋

𝑌 .

𝜆ௐሺ𝑡ሻ, 𝑊,
𝜆ௐሺ𝑡ሻ ൌ 𝜆௑ሺ𝑡ሻ ൅ 𝜆௒ሺ𝑡ሻ

𝑋ଵ, … ,𝑋௡
𝜆 .

minሺ𝑋ଵ, … ,𝑋௡ሻ .

𝜆 .

𝑛

𝑋ଵ,  𝑋ଶ,  𝑋ଷ,  𝑋ସ,  𝑋ହ
𝐹

𝑓,
𝐼 ൌ 𝑃ሼ𝑋ଵ ൏ 𝑋ଶ ൏ 𝑋ଷ ൏ 𝑋ସ ൏ 𝑋ହሽ

𝐼 𝐹 .

𝐼

𝑢௜ ൌ 𝐹ሺ𝑥௜ሻ, 𝑖 ൌ 1, … , 5 .

𝐼 .

𝑋ଵ, … ,𝑋௡
𝑓ሺ𝑥ଵ, … , 𝑥௡ሻ

𝑓ሺ𝑥ଵ, … , 𝑥௡ሻ ൌ ෑ
௜ ൌ ଵ

௡

𝑔௜ሺ𝑥௜ሻ
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for nonnegative functions 

6.13. In Example 5e , we computed the conditional density of a

success probability for a sequence of trials when the first  trials

resulted in  successes. Would the conditional density change if we

specified which  of these trials resulted in successes?

6.14. Suppose that  and  are independent geometric random

variables with the same parameter 

a. Without any computations, what do you think is the value of

Hint: Imagine that you continually flip a coin having probability

 of coming up heads. If the second head occurs on the th

flip, what is the probability mass function of the time of the first

head?

b. Verify your conjecture in part (a).

6.15. Consider a sequence of independent trials, with each trial being

a success with probability  Given that the th success occurs on

trial  show that all possible outcomes of the first  trials that

consist of  successes and  failures are equally likely.

6.16. If  and  are independent binomial random variables with

identical parameters  and  show analytically that the conditional

distribution of  given that  is the hypergeometric

distribution. Also, give a second argument that yields the same result

without any computations.

Hint: Suppose that 2  coins are flipped. Let  denote the number of

heads in the first  flips and  the number in the second  flips.

Argue that given a total of  heads, the number of heads in the first

 flips has the same distribution as the number of white balls

selected when a sample of size  is chosen from  white and 

black balls.

6.17. Suppose that  are independent Poisson random

variables with respective means  Let  and

 The random vector  is said to have a bivariate

Poisson distribution. Find its joint probability mass function. That is,

find 

6.18. Suppose  and  are both integer-valued random variables.

Let

and

𝑔௜ሺ𝑥൯, 𝑖 ൌ 1, … ,𝑛 .

𝑛 ൅𝑚

𝑛

𝑛

𝑋 𝑌

𝑝 .

𝑃ሼ𝑋 ൌ 𝑖 ||𝑋 ൅ 𝑌 ൌ 𝑛ሽ?

𝑝 𝑛

𝑝 . 𝑘

𝑛, 𝑛 െ 1

𝑘 െ 1 𝑛 െ 𝑘

𝑋 𝑌

𝑛 𝑝,

𝑋 𝑋 ൅ 𝑌 ൌ 𝑚

𝑛 𝑋

𝑛 𝑌 𝑛

𝑚

𝑛

𝑚 𝑛 𝑛

𝑋௜, 𝑖 ൌ 1, 2, 3

𝜆௜, 𝑖 ൌ 1, 2, 3 . 𝑋 ൌ 𝑋ଵ ൅ 𝑋ଶ
𝑌 ൌ 𝑋ଶ ൅ 𝑋ଷ . 𝑋,𝑌

𝑃ሼ𝑋 ൌ 𝑛,  𝑌 ൌ 𝑚ሽ .

𝑋 𝑌

𝑝ሺ𝑖 || 𝑗ሻ ൌ 𝑃ሺ𝑋 ൌ 𝑖 ||𝑌 ൌ 𝑗ሻ
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Show that

6.19. Let  be independent and identically distributed

continuous random variables. Compute
a. 

b. 

c. 

d. 

6.20. Let  denote a random variable uniformly distributed over (0,

1). Compute the conditional distribution of  given that
a. 
b. 

where 

6.21. Suppose that  the amount of moisture in the air on a given

day, is a gamma random variable with parameters  That is, its

density is  Suppose also that

given that  the number of accidents during that day—call it 

—has a Poisson distribution with mean  Show that the conditional

distribution of  given that  is the gamma distribution with

parameters 

6.22. Let  be a gamma random variable with parameters  and

suppose that conditional on  are independent

exponential random variables with rate  Show that the conditional

distribution of  given that  is gamma

with parameters 

6.23. A rectangular array of mn numbers arranged in  rows, each

consisting of  columns, is said to contain a saddlepoint if there is a

number that is both the minimum of its row and the maximum of its

column. For instance, in the array

the number 1 in the first row, first column is a saddlepoint. The

𝑞ሺ𝑗 || 𝑖ሻ ൌ 𝑃ሺ𝑌 ൌ 𝑗 ||𝑋 ൌ 𝑖ሻ

𝑃ሺ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗ሻ ൌ
𝑝ሺ𝑖 || 𝑗ሻ

∑௜
𝑝ሺ𝑖 || 𝑗ሻ
𝑞ሺ𝑗 || 𝑖ሻ

𝑋ଵ,𝑋ଶ,𝑋ଷ

𝑃ሼ𝑋ଵ ൐ 𝑋ଶ ||𝑋ଵ ൐ 𝑋ଷሽ;
𝑃ሼ𝑋ଵ ൐ 𝑋ଶ ||𝑋ଵ ൏ 𝑋ଷሽ;
𝑃ሼ𝑋ଵ ൐ 𝑋ଶ ||𝑋ଶ ൐ 𝑋ଷሽ;
𝑃ሼ𝑋ଵ ൐ 𝑋ଶ ||𝑋ଶ ൏ 𝑋ଷሽ .

𝑈

𝑈
𝑈 ൐ 𝑎;
𝑈 ൏ 𝑎;

0 ൏ 𝑎 ൏ 1 .

𝑊,

ሺ𝑡,𝛽ሻ .

𝑓ሺ𝑤ሻ ൌ 𝛽𝑒െఉ௪ሺ𝛽𝑤ሻ௧െଵ/Γሺ𝑡ሻ, 𝑤 ൐ 0 .

𝑊 ൌ 𝑤, 𝑁

𝑤 .

𝑊 𝑁 ൌ 𝑛

ሺ𝑡 ൅ 𝑛,𝛽 ൅ 1ሻ .

𝑊 ሺ𝑡,𝛽ሻ,

𝑊 ൌ 𝑤,𝑋ଵ,𝑋ଶ, … ,𝑋௡
𝑤 .

𝑊 𝑋ଵ ൌ 𝑥ଵ,𝑋ଶ ൌ 𝑥ଶ, … ,𝑋௡ ൌ 𝑥௡

ቌ𝑡 ൅ 𝑛,𝛽 ൅ ෍
௜ ൌ ଵ

௡

𝑥௜ቍ .

𝑛

𝑚

1 3 2

0 െ2 6

.5 12 3

467 of 848



existence of a saddlepoint is of significance in the theory of games.

Consider a rectangular array of numbers as described previously and

suppose that there are two individuals—  and —who are playing

the following game:  is to choose one of the numbers  and

 one of the numbers  These choices are announced

simultaneously, and if  chose  and  chose  then  wins from 

the amount specified by the number in the th row, th column of the

array. Now suppose that the array contains a saddlepoint—say the

number in the row  and column  call this number  Now if player

 chooses row  then that player can guarantee herself a win of at

least  (since  is the minimum number in the row ). On the

other hand, if player  chooses column  then he can guarantee

that he will lose no more than  (since  is the maximum number

in the column ). Hence, as  has a way of playing that guarantees

her a win of  and as  has a way of playing that guarantees he

will lose no more than  it seems reasonable to take these two

strategies as being optimal and declare that the value of the game to

player  is 

If the nm numbers in the rectangular array described are

independently chosen from an arbitrary continuous distribution, what

is the probability that the resulting array will contain a saddlepoint?

6.24. If  is exponential with rate  find 

where  is defined as the largest integer less than or equal to 

Can you conclude that  and  are independent?

6.25. Suppose that  is a cumulative distribution function. Show

that (a)  and (b)  are also cumulative distribution

functions when  is a positive integer.

Hint: Let  be independent random variables having the

common distribution function  Define random variables  and  in

terms of the  so that  and

6.26. Show that if  people are distributed at random along a road 

miles long, then the probability that no 2 people are less than a

distance  miles apart is when 

What if 

6.27. Suppose that  are independent exponential random

variables with rate λ. Find

a.  the conditional density of  given that

b. 

𝐴 𝐵

𝐴 1, 2, … ,𝑛

𝐵 1, 2, … ,𝑚 .

𝐴 𝑖 𝐵 𝑗, 𝐴 𝐵

𝑖 𝑗

𝑟 𝑘 𝑥௥௞ .

𝐴 𝑟,

𝑥௥௞ 𝑥௥௞ 𝑟

𝐵 𝑘,

𝑥௥௞ 𝑥௥௞
𝑘 𝐴

𝑥௥௞ 𝐵

𝑥௥௞,

𝐴 𝑥௥௞ .

𝑋 𝜆, 𝑃ሼሾ𝑋ሿ ൌ 𝑛,𝑋 െ ሾ𝑋ሿ ൑ 𝑥ሽ,
ሾ𝑥ሿ 𝑥 .

ሾ𝑋ሿ 𝑋 െ ሾ𝑋ሿ
𝐹ሺ𝑥ሻ

𝐹௡ሺ𝑥ሻ 1 െ ሾ1 െ 𝐹ሺ𝑥ሻሿ௡

𝑛

𝑋ଵ, … ,𝑋௡
𝐹 . 𝑌 𝑍

𝑋௜ 𝑃ሼ𝑌 ൑ 𝑥ሽ ൌ 𝐹௡ሺ𝑥ሻ
𝑃ሼ𝑍 ൑ 𝑥ሽ ൌ 1 െ ሾ1 െ 𝐹ሺ𝑥ሻሿ௡ .

𝑛 𝐿

𝐷 𝐷 ൑ 𝐿/ሺ𝑛 െ 1ሻ, ሾ1 െ ሺ𝑛 െ 1ሻ𝐷/𝐿ሿ௡ .

𝐷 ൐ 𝐿/ሺ𝑛 െ 1ሻ?

𝑋ଵ, … ,𝑋௡

𝑓௑భ ห௑భ ൅… ൅௑೙
ሺ𝑥ቚ𝑡ሻ, 𝑋ଵ

𝑋ଵ ൅ …  ൅ 𝑋௡ ൌ 𝑡;
𝑃ሺ𝑋ଵ ൏ 𝑥 ||𝑋ଵ ൅ …  ൅ 𝑋௡ ൌ 𝑡ሻ .
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6.28. Establish Equation (6.2)  by differentiating Equation

(6.4) .

6.29. Show that the median of a sample of size  from a

uniform distribution on (0, 1) has a beta distribution with parameters

6.30. Suppose that  are independent and identically

distributed continuous random variables. For

 find  That is, find the

probability that the function  is a unimodal

function with maximal value Hint: Write

6.31. Compute the density of the range of a sample of size  from a

continuous distribution having density function 

6.32. Let  be the ordered values of 

independent uniform (0, 1) random variables. Prove that for

where  and 

6.33. Let  be a set of independent and identically distributed

continuous random variables having distribution function  and let

 denote their ordered values. If  independent of the

 also has distribution  determine

a. 

b. 

c. 

6.34. Let  be independent and identically distributed random

variables having distribution function  and density  The quantity

 defined to be the average of the smallest and

largest values in  is called the midrange of the sequence.

Show that its distribution function is

6.35. Let  be independent uniform (0, 1) random variables.

Let  denote the range and  the

midrange of  Compute the joint density function of  and 

2𝑛 ൅ 1

ሺ𝑛 ൅ 1,  𝑛 ൅ 1ሻ .

𝑋ଵ, … ,𝑋௡

𝐴 ൌ ൛𝑋ଵ ൏ ⋯ ൏ 𝑋௝ ൐ 𝑋௝൅ଵ ൐ ⋯ ൐ 𝑋௡ൟ, 𝑃ሺ𝐴ሻ .

𝑋ሺ𝑖ሻ ൌ 𝑋௜,  𝑖 ൌ 1, … ,𝑛,  

𝑋ሺ𝑗ሻ .

𝐴 ൌ ൛maxሺ𝑋ଵ, … ,𝑋௝ሻ ൌ maxሺ𝑋ଵ, … ,𝑋௡ሻ,  

𝑋ଵ ൏ ⋯ ൏ 𝑋௝,   𝑋௝൅ଵ ൐ ⋯ ൐ 𝑋௡ൟ

𝑛

𝑓 .

𝑋ሺଵሻ ൑ 𝑋ሺଶሻ ൑ ⋯ ൑ 𝑋ሺ௡ሻ 𝑛

1 ൑ 𝑘 ൑ 𝑛 ൅ 1,
𝑃൛𝑋ሺ௞ሻ െ 𝑋ሺ௞െଵሻ ൐ 𝑡ൟ ൌ ሺ1 െ 𝑡ሻ௡

𝑋ሺ଴ሻ ≡ 0,𝑋ሺ௡൅ଵሻ ≡ 1, 0 ൏ 𝑡 ൏ 1 .

𝑋ଵ, … ,𝑋௡
𝐹,

𝑋ሺ௜ሻ, 𝑖 ൌ 1, … ,𝑛 𝑋,

𝑋௜, 𝑖 ൌ 1, … ,𝑛, 𝐹,

𝑃൛𝑋 ൐ 𝑋ሺ௡ሻൟ;

𝑃൛𝑋 ൐ 𝑋ሺଵሻൟ;

𝑃൛𝑋ሺ௜ሻ ൏ 𝑋 ൏ 𝑋ሺ௝ሻൟ, 1 ൑ 𝑖 ൏ 𝑗 ൑ 𝑛 .

𝑋ଵ, … ,𝑋௡
𝐹 𝑓 .

𝑀 ≡ ൣ𝑋ሺଵሻ ൅ 𝑋ሺ௡ሻ൧/2,

𝑋ଵ, … ,𝑋௡,

𝐹ெሺ𝑚ሻ ൌ 𝑛඲
െஶ

௠

ሾ𝐹ሺ2𝑚െ 𝑥ሻ െ 𝐹ሺ𝑥ሻሿ௡െଵ𝑓ሺ𝑥ሻ 𝑑𝑥

𝑋ଵ, … ,𝑋௡
𝑅 ൌ 𝑋ሺ௡ሻ െ 𝑋ሺଵሻ 𝑀 ൌ ൣ𝑋ሺ௡ሻ ൅ 𝑋ሺଵሻ൧/2

𝑋ଵ, … ,𝑋௡ . 𝑅 𝑀
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6.36. If  and  are independent standard normal random variables,

determine the joint density function of

Then use your result to show that  has a Cauchy distribution.

6.37. Suppose that  has a bivariate normal distribution with

parameters 

a. Show that  has a bivariate normal distribution

with parameters 

b. What is the joint distribution of 

6.38. Suppose that  has a beta distribution with parameters 

and that the conditional distribution of  given that  is binomial

with parameters  Show that the conditional density of 

given that  is the density of a beta random variable with

parameters  is said to be a beta binomial random

variable.

6.39. Consider an experiment with  possible outcomes, having

respective probabilities  and suppose we

want to assume a probability distribution on the probability vector

 Because  we cannot define a density on

 but what we can do is to define one on  and

then take  The Dirichlet distribution takes

 to be uniformly distributed over the set

 That is, the

Dirichlet density is

a. Determine Hint: Use results from Section 6.3.1 .

Let  be independent uniform  random variables.

b. Show that the Dirichlet density is the conditional density of

 given that 

c. Show that  has a Dirichlet

.
𝑋 𝑌

𝑈 ൌ 𝑋 𝑉 ൌ
𝑋
𝑌

𝑋/𝑌

ሺ𝑋,𝑌ሻ

𝜇௫, 𝜇௬,𝜎௫,𝜎௬,𝜌 .

ሺ
𝑋 െ 𝜇௫
𝜎𝑥

,
𝑌 െ 𝜇௬
𝜎𝑦

ሻ

0, 1, 0, 1,𝜌 .

ሺ𝑎𝑋 ൅ 𝑏, 𝑐𝑌 ൅ 𝑑ሻ .

𝑋 ሺ𝑎, 𝑏ሻ,

𝑁 𝑋 ൌ 𝑥

ሺ𝑛 ൅𝑚, 𝑥ሻ . 𝑋

𝑁 ൌ 𝑛

ሺ𝑛 ൅ 𝑎,𝑚൅ 𝑏ሻ . 𝑁

𝑛

𝑃ଵ, … ,𝑃௡, ෍
௜ൌଵ

௡
𝑃௜ ൌ 1,

ሺ𝑃ଵ, … ,𝑃௡ሻ . ෍
௜ൌଵ

௡
𝑃௜ ൌ 1,

𝑃ଵ, … ,𝑃௡, 𝑃ଵ, … ,𝑃௡െଵ

𝑃௡ ൌ 1 െ෍
௜ൌଵ

௡െଵ
𝑃௜ .

ሺ𝑃ଵ, … ,𝑃௡െଵሻ

𝑆 ൌ ሼሺ𝑝ଵ, … ,𝑝௡െଵሻ:෍
௜ൌଵ

௡െଵ
𝑝௜ ൏ 1, 𝑝௜ ൐ 0, 𝑖 ൌ 1, … ,𝑛 െ 1ሽ .

𝑓௉భ ,… ,௉೙െభ
ሺ𝑝ଵ, … ,𝑝௡െଵሻ ൌ 𝐶,

𝑝௜ ൐ 0, 𝑖 ൌ 1, … ,𝑛 െ 1,
௜ ൌ ଵ

௡ െ ଵ

𝑝௜ ൏ 1

𝐶 .

𝑈ଵ, … ,𝑈௡ ሺ0, 1ሻ

𝑈ଵ, … ,𝑈௡െଵ ෍
௜ൌଵ

௡െଵ
𝑈௜ ൏ 1 .

* 𝑈ሺଵሻ,𝑈ሺଶሻ െ 𝑈ሺଵሻ, … ,𝑈ሺ௡ሻ െ 𝑈ሺ௡െଵሻ
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distribution, where  are the order statistics of

6.40. Let  and  be, respectively,

the joint distribution function and the joint density function of

Show that

6.41. For given constants  let  and let

 and  be, respectively the joint

distribution function and the joint density function of 

a. Express  in terms of the joint distribution

function of 

b. Express  in terms of the joint density

function of 

c. Use Equation (7.3)  to verify your answer to part (b).

𝑈ሺଵሻ, … ,𝑈ሺ௡ሻ
𝑈ଵ, … ,𝑈௡ .

𝐹௑భ ,… ,௑೙ሺ𝑥ଵ, … , 𝑥௡ሻ 𝑓௑భ ,… ,௑೙
ሺ𝑥ଵ, … , 𝑥௡ሻ

𝑋ଵ, … ,𝑋௡ .

∂௡

∂𝑥ଵ⋯∂𝑥௡
𝐹௑భ ,… ,௑೙ሺ𝑥ଵ, … , 𝑥௡ሻ ൌ 𝑓௑భ ,… ,௑೙

ሺ𝑥ଵ, … , 𝑥௡ሻ .

𝑐௜ ൐ 0, 𝑌௜ ൌ 𝑐௜𝑋௜,  𝑖 ൌ 1, … ,𝑛,

𝐹௒భ ,… ,௒೙ሺ𝑥ଵ, … , 𝑥௡ሻ 𝑓௒భ ,… ,௒೙
ሺ𝑥ଵ, … , 𝑥௡ሻ

𝑌ଵ, … ,𝑌௡
𝐹௒భ ,… ,௒೙ሺ𝑥ଵ, … , 𝑥௡ሻ

𝑋ଵ, … ,𝑋௡
𝑓௒భ ,… ,௒೙

ሺ𝑥ଵ, … , 𝑥௡ሻ

𝑋ଵ, … ,𝑋௡ .

6.1. Each throw of an unfair die lands on each of the odd numbers 1, 3,

5 with probability  and on each of the even numbers with probability 2

a. Find 

b. Suppose that the die is tossed. Let  equal 1 if the result is an

even number, and let it be 0 otherwise. Also, let  equal 1 if the

result is a number greater than three and let it be 0 otherwise.

Find the joint probability mass function of  and  Suppose

now that 12 independent tosses of the die are made.

c. Find the probability that each of the six outcomes occurs exactly

twice.

d. Find the probability that 4 of the outcomes are either one or two,

4 are either three or four, and 4 are either five or six.

e. Find the probability that at least 8 of the tosses land on even

numbers.

6.2. The joint probability mass function of the random variables 

is

𝐶
𝐶 .

𝐶 .

𝑋

𝑌

𝑋 𝑌 .

𝑋, 𝑌, 𝑍

𝑝ሺ1, 2, 3ሻ ൌ 𝑝ሺ2, 1, 1ሻ ൌ 𝑝ሺ2, 2, 1ሻ ൌ 𝑝ሺ2, 3, 2ሻ ൌ
1
4
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Find (a)  and (b) 

6.3. The joint density of  and  is given by

a. Find 

b. Find the density function of 

c. Find the density function of 

d. Find [ ].

e. Find [ ].

6.4. Let  where all  are positive integers. Argue that if

 has a multinomial distribution, then so does  where,

with 

That is,  is the sum of the first  of the  is the sum of the next

 and so on.

6.5. Suppose that  and  are independent random variables that

are each equally likely to be either 1 or 2. Find the probability mass

function of (a)  (b)  and (c) 

6.6. Let  and  be continuous random variables with joint density

function

where  is a constant.

a. What is the value of 

b. Are  and  independent?

c. Find 

6.7. The joint density function of  and  is

a. Are  and  independent?

b. Find the density function of 

c. Find the density function of 

d. Find the joint distribution function.

e. Find [ ].

𝐸ሾ𝑋𝑌𝑍ሿ, 𝐸ሾ𝑋𝑌 ൅ 𝑋𝑍 ൅ 𝑌𝑍ሿ .

𝑋 𝑌
𝑓ሺ𝑥,𝑦ሻ ൌ 𝐶ሺ𝑦 െ 𝑥ሻ𝑒െ௬ െ 𝑦 ൏ 𝑥 ൏ 𝑦, 0 ൏ 𝑦 ൏ ∞

𝐶 .

𝑋 .

𝑌 .

𝐸 𝑋

𝐸 𝑌

𝑟 ൌ 𝑟ଵ ൅ …  ൅ 𝑟௞, 𝑟௜
𝑋ଵ, … ,𝑋௥ 𝑌ଵ, … ,𝑌௞

𝑟଴ ൌ 0,

𝑌௜ ൌ ෍
௝ ൌ ௥ ೔െభ ൅ ଵ

௥ ೔െభ ൅ ௥ ೔

𝑋௝ , 𝑖 ൑ 𝑘

𝑌ଵ 𝑟ଵ 𝑋′𝑠,  𝑌ଶ
𝑟ଶ,

𝑋, 𝑌, 𝑍

𝑋𝑌𝑍, 𝑋𝑌 ൅ 𝑋𝑍 ൅ 𝑌𝑍, 𝑋ଶ ൅ 𝑌𝑍 .

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ ቐ

𝑥
5
൅ 𝑐𝑦  0 ൏ 𝑥 ൏ 1,   1 ൏ 𝑦 ൏ 5

0  otherwise

𝑐

𝑐?

𝑋 𝑌

𝑃ሼ𝑋 ൅ 𝑌 ൐ 3ሽ .

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ ቊ
𝑥𝑦  0 ൏ 𝑥 ൏ 1,   0 ൏ 𝑦 ൏ 2

0  otherwise

𝑋 𝑌

𝑋 .

𝑌 .

𝐸 𝑌

472 of 848



f. Find 

6.8. Consider two components and three types of shocks. A type 1

shock causes component 1 to fail, a type 2 shock causes component 2

to fail, and a type 3 shock causes both components 1 and 2 to fail. The

times until shocks 1, 2, and 3 occur are independent exponential

random variables with respective rates  and  Let  denote

the time at which component  fails,  The random variables

 are said to have a joint bivariate exponential distribution. Find

6.9. Consider a directory of classified advertisements that consists of 

pages, where  is very large. Suppose that the number of

advertisements per page varies and that your only method of finding

out how many advertisements there are on a specified page is to count

them. In addition, suppose that there are too many pages for it to be

feasible to make a complete count of the total number of

advertisements and that your objective is to choose a directory

advertisement in such a way that each of them has an equal chance of

being selected.

a. If you randomly choose a page and then randomly choose an

advertisement from that page, would that satisfy your objective?

Why or why not?

Let  denote the number of advertisements on page

 and suppose that whereas these quantities are

unknown, we can assume that they are all less than or equal to

some specified value  Consider the following algorithm for

choosing an advertisement.

Call each pass of the algorithm through step 1 an iteration. For

instance, if the first randomly chosen page is rejected and the

second accepted, then we would have needed 2 iterations of the

algorithm to obtain an advertisement.

b. What is the probability that a single iteration of the algorithm

results in the acceptance of an advertisement on page 

𝑃ሼ𝑋 ൅ 𝑌 ൏ 1ሽ .

𝜆ଵ, 𝜆ଶ, 𝜆ଷ . 𝑋௜
𝑖 𝑖 ൌ 1, 2 .

𝑋ଵ,𝑋ଶ
𝑃ሼ𝑋ଵ ൐ 𝑠,𝑋ଶ ൐ 𝑡ሽ .

𝑚

𝑚

𝑛ሺ𝑖ሻ

𝑖, 𝑖 ൌ 1, … ,𝑚,

𝑛 .

Choose a page at random. Suppose it is page 

Determine  by counting the number of

advertisements on page 

“Accept” page  with probability /  If page  is

accepted, go to step 3. Otherwise, return to step 1.

Randomly choose one of the advertisements on

page 

Step 1. 𝑋 .

𝑛ሺ𝑋ሻ

𝑋 .

Step 2. 𝑋 𝑛ሺ𝑋ሻ 𝑛 . 𝑋

Step 3.

𝑋 .

𝑖?
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c. What is the probability that a single iteration of the algorithm

results in the acceptance of an advertisement?

d. What is the probability that the algorithm goes through 

iterations, accepting the th advertisement on page  on the final

iteration?

e. What is the probability that the th advertisement on page  is

the advertisement obtained from the algorithm?

f. What is the expected number of iterations taken by the

algorithm?

6.10. The “random” parts of the algorithm in Self-Test Problem 6.9

can be written in terms of the generated values of a sequence of

independent uniform (0, 1) random variables, known as random

numbers. With [ ] defined as the largest integer less than or equal to 

the first step can be written as follows:

a. Explain why the above is equivalent to step 1 of Problem 6.8 .

Hint: What is the probability mass function of 

b. Write the remaining steps of the algorithm in a similar style.

6.11. Let  be a sequence of independent uniform (0, 1) random

variables. For a fixed constant  define the random variable  by

Is  independent of  That is, does knowing the value of the first

random variable that is greater than  affect the probability distribution

of when this random variable occurs? Give an intuitive explanation for

your answer.

6.12. The accompanying dartboard is a square whose sides are of

length 6:

𝑘

𝑗 𝑖

𝑗 𝑖

𝑥 𝑥,

Generate a uniform (0, 1) random variable  Let

 and determine the value of 

Step 1. 𝑈 .

𝑋 ൌ ሾ𝑚𝑈ሿ ൅ 1, 𝑛ሺ𝑋ሻ .

𝑋?

𝑋ଵ,𝑋ଶ, … 

𝑐, 𝑁
𝑁 ൌ minሼ𝑛:𝑋௡ ൐ 𝑐ሽ

𝑁 𝑋ே?

𝑐
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The three circles are all centered at the center of the board and are of

radii 1, 2, and 3, respectively. Darts landing within the circle of radius 1

score 30 points, those landing outside this circle, but within the circle of

radius 2, are worth 20 points, and those landing outside the circle of

radius 2, but within the circle of radius 3, are worth 10 points. Darts that

do not land within the circle of radius 3 do not score any points.

Assuming that each dart that you throw will, independently of what

occurred on your previous throws, land on a point uniformly distributed

in the square, find the probabilities of the accompanying events:

a. You score 20 on a throw of the dart.

b. You score at least 20 on a throw of the dart.

c. You score 0 on a throw of the dart.

d. The expected value of your score on a throw of the dart.

e. Both of your first two throws score at least 10.

f. Your total score after two throws is 30.

6.13. A model proposed for NBA basketball supposes that when two

teams with roughly the same record play each other, the number of

points scored in a quarter by the home team minus the number scored

by the visiting team is approximately a normal random variable with

mean 1.5 and variance 6. In addition, the model supposes that the

point differentials for the four quarters are independent. Assume that

this model is correct.

a. What is the probability that the home team wins?

b. What is the conditional probability that the home team wins,

given that it is behind by 5 points at halftime?

c. What is the conditional probability that the home team wins,

given that it is ahead by 5 points at the end of the first quarter?
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6.14. Let  be a geometric random variable with parameter 

Suppose that the conditional distribution of  given that  is the

gamma distribution with parameters  and  Find the conditional

probability mass function of  given that 

6.15. Let  and  be independent uniform (0, 1) random variables.

a. Find the joint density of 

b. Use the result obtained in part (a) to compute the density

function of 

6.16. You and three other people are to place bids for an object, with

the high bid winning. If you win, you plan to sell the object immediately

for $10,000. How much should you bid to maximize your expected

profit if you believe that the bids of the others can be regarded as being

independent and uniformly distributed between $7,000 and $10,000

thousand dollars?

6.17. Find the probability that  is a permutation of 

when  are independent and

a. each is equally likely to be any of the values 

b. each has the probability mass function

6.18. Let  and  be independent random vectors, with

each vector being a random ordering of  ones and  zeros. That

is, their joint probability mass functions are

Let

denote the number of coordinates at which the two vectors have

different values. Also, let  denote the number of values of  for which

a. Relate  to 

b. What is the distribution of 

c. Find [ ].

d. Find Var

𝑁 𝑝 .

𝑋 𝑁 ൌ 𝑛

𝑛 𝜆 .

𝑁 𝑋 ൌ 𝑥 .

𝑋 𝑌

𝑈 ൌ 𝑋,𝑉 ൌ 𝑋 ൅ 𝑌 .

𝑉 .

𝑋ଵ,𝑋ଶ, … ,𝑋௡ 1, 2, … ,𝑛,

𝑋ଵ,𝑋ଶ, … ,𝑋௡
1, … , 𝑛;

𝑃ሼ𝑋௜ ൌ 𝑗ሽ ൌ 𝑝௝, 𝑗 ൌ 1, … , 𝑛 .

𝑋ଵ, … ,𝑋௡ 𝑌ଵ, … ,𝑌௡
𝑘 𝑛 െ 𝑘

𝑃ሼ𝑋ଵ ൌ 𝑖ଵ, … ,𝑋௡ ൌ 𝑖௡ሽ ൌ 𝑃ሼ𝑌ଵ ൌ 𝑖ଵ, … ,𝑌௡ ൌ 𝑖௡ሽ

ൌ
1

ቆ
𝑛

𝑘
ቇ
 ,  𝑖௝ ൌ 0, 1,   ෍

௝ ൌ ଵ

௡

𝑖௝ ൌ 𝑘

𝑁 ൌ ෍
௜ ൌ ଵ

௡

|𝑋௜ െ 𝑌௜|

𝑀 𝑖
𝑋௜ ൌ 1,𝑌௜ ൌ 0 .

𝑁 𝑀 .

𝑀?

𝐸 𝑁

ሺ𝑁ሻ .
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*6.19. Let  be independent standard normal random

variables, and let

a. What is the conditional distribution of  given that  Find

it for 

b. Show that, for  the conditional distribution of  given

that  is normal with mean  and variance 

6.20. Let  be a sequence of independent and identically

distributed continuous random variables. Find
a. 

b. 

6.21. Prove the identity

Hint: Derive an expression for  by taking the probability

of the complementary event.

6.22. In Example 1c , find  when 

6.23. A Pareto random variable  with parameters  has

distribution function  For  verify

that the conditional distribution of  given that  is that of a Pareto

random variable with parameters  by evaluating

6.24. Verify the identity 

6.25. In a contest originating with  players, each player independently

advances to the next round, with player  advancing with probability 

If no players advance to the next round, then the contest ends and all

the players in the just concluded round are declared co-winners. If only

one player advances, then that player is declared the winner and the

contest ends. If two or more players advance, then those players play

another round. Let  denote the number of rounds that  plays.

a. Find Hint: Note that  will occur if  advances

at least  times and at least one of the other players advances at

least  times.

b. Find P(i is either the sole winner or one of the co-winners).

Hint: It might help to imagine that a player always continues to

𝑍ଵ,𝑍ଶ, … ,𝑍௡

𝑆௝ ൌ ෍
௜ ൌ ଵ

௝

𝑍௜

𝑆௡ 𝑆௞ ൌ 𝑦 .

𝑘 ൌ 1, … ,𝑛 െ 1 .

1 ൑ 𝑘 ൑ 𝑛, 𝑆௞
𝑆௡ ൌ 𝑥 𝑥𝑘/𝑛 𝑘ሺ𝑛 െ 𝑘ሻ/𝑛 .

𝑋ଵ,𝑋ଶ, … 

𝑃ሼ𝑋଺ ൐ 𝑋ଵ ||𝑋ଵ ൌ maxሺ𝑋ଵ, … ,𝑋ହሻሽ
𝑃ሼ𝑋଺ ൐ 𝑋ଶ ||𝑋ଵ ൌ maxሺ𝑋ଵ, … ,𝑋ହሻሽ

𝑃ሼ𝑋 ൑ 𝑠,𝑌 ൑ 𝑡ሽ ൌ 𝑃ሼ𝑋 ൑ 𝑠ሽ ൅ 𝑃ሼ𝑌 ൑ 𝑡ሽ ൅ 𝑃ሼ𝑋 ൐ 𝑠,𝑌 ൐ 𝑡ሽ െ 1

𝑃ሼ𝑋 ൐ 𝑠,𝑌 ൐ 𝑡ሽ

𝑃ሺ𝑋௥ ൌ 𝑖,𝑌௦ ൌ 𝑗ሻ 𝑗 ൏ 𝑖 .

𝑋 𝑎 ൐ 0, ൐ 0

𝐹ሺ𝑥ሻ ൌ 1 െ 𝑎ఒ𝑥െఒ, 𝑥 ൐ 𝑎 . 𝑥 ൐ 𝑎 . 𝑥଴ ൐ 𝑎,

𝑋 𝑋 ൐ 𝑥଴
ሺ𝑥଴, λ ሻ

𝑃ሺ𝑋 ൐ 𝑥 ||𝑋 ൐ 𝑥଴ሻ .

𝑓௑ሺ𝑥ሻ ൌ ඲
െஶ

ஶ

𝑓௑ห௒ሺ𝑥 |𝑦ሻ𝑓௒ሺ𝑦ሻ𝑑𝑦 .

𝑛

𝑖 𝑝௜ .

𝑋௜ 𝑖

𝑃ሺ𝑋௜ ൒ 𝑘ሻ . ሼ𝑋௜ ൒ 𝑘ሽ 𝑖

𝑘

𝑘 െ 1
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7.1 Introduction

7.2 Expectation of Sums of Random Variables

7.3 Moments of the Number of Events that Occur

7.4 Covariance, Variance of Sums, and Correlations

7.5 Conditional Expectation

7.6 Conditional Expectation and Prediction

7.7 Moment Generating Functions

7.8 Additional Properties of Normal Random Variables

7.9 General Definition of Expectation

play rounds until he or she fails to advance. (That is, if there is a

sole winner then imagine that that player continues on until a

failure occurs.)

c. Find P(i is the sole winner)

6.26. Let  be independent nonnegative integer valued random

variables, and let  With  we

want to determine  Let  if  is even and let it

equal  if  is odd.

In parts (a) and (b) fill in the missing word at the end of the sentence.

a.  is even if and only if the number of  that are odd is

b.  is even if and only if  is

c. Find 

d. Find Hint: Use parts (b) and (c).

𝑋ଵ, … ,𝑋௡

𝛼௜ ൌ 𝑃ሺ𝑋௜ is even ሻ, 𝑖 ൌ 1, … ,𝑛 . 𝑆 ൌ ෍
௜ൌଵ

௡
𝑋௜

𝑝 ൌ 𝑃ሺ𝑆  is even ሻ . 𝑌௜ ൌ 1 𝑋௜
െ1 𝑋௜

𝑆 𝑋ଵ, … ,𝑋௡

𝑆 ෑ
௜ൌଵ

௡
𝑌௜

𝐸⎡
⎣
ෑ

௜ൌଵ

௡
𝑌௜⎤
⎦

.

𝑃ሺ𝑆 is even ሻ .
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In this chapter, we develop and exploit additional properties of expected values. To

begin, recall that the expected value of the random variable  is defined by

when  is a discrete random variable with probability mass function p(x), and by

when  is a continuous random variable with probability density function f(x).

Since E[X] is a weighted average of the possible values of , it follows that if  must

lie between  and , then so must its expected value. That is, if

then

To verify the preceding statement, suppose that  is a discrete random variable for

which . Since this implies that  for all  outside of the

interval [ , ], it follows that

In the same manner, it can be shown that , so the result follows for discrete

random variables. As the proof in the continuous case is similar, the result follows.

𝑋

𝐸ሾ𝑋ሿ ൌ ෍
௫

𝑥 𝑝ሺ𝑥ሻ

𝑋

𝐸ሾ𝑋ሿ ൌ ඲
െஶ

ஶ

𝑥 𝑓ሺ𝑋ሻ 𝑑𝑥

𝑋

𝑋 𝑋

𝑎 𝑏

𝑃ሼ𝑎 ൑ 𝑋 ൑ 𝑏ሽ ൌ 1

𝑎 ൑ 𝐸ሾ𝑋ሿ ൑ 𝑏

𝑋

𝑃ሼ𝑎 ൑ 𝑋 ൑ 𝑏ሽ ൌ 1 𝑝ሺ𝑥ሻ ൌ 0 𝑥

𝑎 𝑏

𝐸ሾ𝑋ሿ ൌ ෍
௫ : ௣ ሺ௑ ሻ வ ଴

𝑥 𝑝ሺ𝑋ሻ

൒ ෍
௫ : ௣ ሺ௑ ሻ வ ଴

𝑎 𝑝ሺ𝑋ሻ

ൌ 𝑎 ෍
௫ : ௣ ሺ௑ ሻ வ ଴

𝑝ሺ𝑋ሻ

ൌ 𝑎

𝐸ሾ𝑋ሿ ൑ 𝑏
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For a two-dimensional analog of Propositions 4.1  of Chapter 4  and 2 .1 of

Chapter 5 , which give the computational formulas for the expected value of a

function of a random variable, suppose that  and  are random variables and  is a

function of two variables. Then we have the following result.

Proposition 2.1

If  and  have a joint probability mass function p(x,y), then

If  and  have a joint probability density function f(x,y), then

Let us give a proof of Proposition 2.1  when the random variables  and  are

jointly continuous with joint density function  and when  is a

nonnegative random variable. Because , we have, by Lemma 2.1 of

Chapter 5 , that

Writing

shows that

Interchanging the order of integration gives

𝑋 𝑌 𝑔

𝑋 𝑌

𝐸ሾ𝑔ሺ𝑋,𝑌ሻሿ ൌ ෍
௬

෍
௫

𝑔ሺ𝑥,𝑦ሻ 𝑝ሺ𝑥,𝑦ሻ

𝑋 𝑌

𝐸ሾ𝑔ሺ𝑋,𝑌ሻሿ ൌ ඲
െஶ

ஶ

඲
െஶ

ஶ

𝑔ሺ𝑥,𝑦ሻ 𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥 𝑑𝑦

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ 𝑔ሺ𝑋,𝑌ሻ
𝑔ሺ𝑋,𝑌ሻ ൒ 0

𝐸ሾ𝑔ሺ𝑋,𝑌ሻሿ ൌ ඲

଴

ஶ

𝑃ሼ𝑔ሺ𝑋,𝑌ሻ ൐ 𝑡ሽ 𝑑𝑡

𝑃ሼ𝑔ሺ𝑋,𝑌ሻ ൐ 𝑡ሽ ൌ ඲඲

ሺ௫,௬ሻ:௚ሺ௫,௬ሻவ௧

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑦 𝑑𝑥

𝐸ሾ𝑔ሺ𝑋,𝑌ሻሿ ൌ ඲

଴

ஶ

඲඲

ሺ௫,௬ሻ :௚ሺ௫,௬ሻவ௧

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑦 𝑑𝑥 𝑑𝑡
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Thus, the result is proven when  is a nonnegative random variable. The

general case then follows as in the one-dimensional case. (See Theoretical

Exercises 2 and 3 of Chapter 5 .)

Example 2a

An accident occurs at a point  that is uniformly distributed on a road of length .

At the time of the accident, an ambulance is at a location  that is also uniformly

distributed on the road. Assuming that  and  are independent, find the

expected distance between the ambulance and the point of the accident.

Solution

We need to compute . Since the joint density function of  and  is

it follows from Proposition 2.1  that

Now,

Therefore,

𝐸ሾ𝑔ሺ𝑋,𝑌ሻሿ ൌ ඲

௫

඲

௬

඲

௧ൌ଴

௚ሺ௫,௬ሻ

𝑓ሺ𝑥,𝑦ሻ 𝑑𝑡 𝑑𝑦 𝑑𝑥

ൌ ඲

௫

඲

௬

𝑔ሺ𝑥,𝑦ሻ 𝑓ሺ𝑥,𝑦ሻ 𝑑𝑦 𝑑𝑥

𝑔ሺ𝑋,𝑌ሻ

𝑋 𝐿

𝑌

𝑋 𝑌

𝐸ሾ ||𝑋 െ 𝑌 || ሿ 𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ
1

𝐿ଶ
, 0 ൏ 𝑥 ൏ 𝐿, 0 ൏ 𝑦 ൏ 𝐿

𝐸ሾ |𝑋 െ 𝑌 | ሿ ൌ
1

𝐿ଶ
඲

଴

௅

඲

଴

௅

|𝑥 െ 𝑦 | 𝑑𝑦 𝑑𝑥

඲

଴

௅

|𝑥 െ 𝑦 |𝑑𝑦 ൌ ඲

଴

௫

ሺ𝑥 െ 𝑦ሻ𝑑𝑦 ൅඲

௫

௅

ሺ𝑦 െ 𝑥ሻ𝑑𝑦

ൌ
𝑥ଶ

2
൅
𝐿ଶ

2
െ
𝑥ଶ

2
െ 𝑥ሺ𝐿 െ 𝑥ሻ

ൌ
𝐿ଶ

2
൅ 𝑥ଶ െ 𝑥𝐿
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For an important application of Proposition 2.1 , suppose that  and  are

both finite and let . Then, in the continuous case,

The same result holds in general; thus, whenever  and ] are finite,

Example 2b

Suppose that for random variables  and ,

That is, for any outcome of the probability experiment, the value of the random

variable  is greater than or equal to the value of the random variable . Since

 is equivalent to the inequality , it follows that , or,

equivalently,

Using Equation (2.1) , we may show by a simple induction proof that if  is

finite for all , then

𝐸ሾ ||𝑋 െ 𝑌 || ሿ ൌ
1

𝐿ଶ
඲

଴

௅

ቆ
𝐿ଶ

2
൅ 𝑥ଶ െ 𝑥𝐿ቇ𝑑𝑥

ൌ
𝐿
3

𝐸ሾ𝑋ሿ 𝐸ሾ𝑌ሿ

𝑔ሺ𝑋,𝑌ሻ ൌ 𝑋 ൅ 𝑌

𝐸ሾ𝑋 ൅ 𝑌ሿ ൌ ඲
െஶ

ஶ

඲
െஶ

ஶ

ሺ𝑥 ൅ 𝑦ሻ 𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥 𝑑𝑦

ൌ ඲
െஶ

ஶ

඲
െஶ

ஶ

𝑥 𝑓ሺ𝑥,𝑦ሻ 𝑑𝑦 𝑑𝑥 ൅඲
െஶ

ஶ

඲
െஶ

ஶ

𝑦 𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥 𝑑𝑦

ൌ ඲
െஶ

ஶ

𝑥 𝑓௑ሺ𝑥ሻ 𝑑𝑥 ൅඲
െஶ

ஶ

𝑦 𝑓௒ሺ𝑦ሻ 𝑑𝑦

ൌ 𝐸ሾ𝑋ሿ ൅ 𝐸ሾ𝑌ሿ

𝐸ሾ𝑋ሿ 𝐸ሾ𝑌

𝐸ሾ𝑋 ൅ 𝑌ሿ ൌ 𝐸ሾ𝑋ሿ ൅ 𝐸ሾ𝑌ሿ

(2.1)

𝑋 𝑌

𝑋 ൒ 𝑌

𝑋 𝑌

𝑋 ൒ 𝑌 𝑋 െ 𝑌 ൒ 0 𝐸ሾ𝑋 െ 𝑌ሿ ൒ 0

𝐸ሾ𝑋ሿ ൒ 𝐸ሾ𝑌ሿ

𝐸ሾ𝑋௜ሿ
𝑖 ൌ 1, …,𝑛

𝐸ሾ𝑋ଵ ൅ ⋯ ൅ 𝑋௡ሿ ൌ 𝐸ሾ𝑋ଵሿ ൅ ⋯ ൅ 𝐸ሾ𝑋௡ሿ

(2.2)
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Equation (2.2)  is an extremely useful formula whose utility will now be illustrated

by a series of examples.

Example 2c The sample mean

Let  be independent and identically distributed random variables having

distribution function  and expected value . Such a sequence of random

variables is said to constitute a sample from the distribution . The quantity

is called the sample mean. Compute .

Solution

That is, the expected value of the sample mean is , the mean of the distribution.

When the distribution mean  is unknown, the sample mean is often used in

statistics to estimate it.

Example 2d Boole’s inequality

Let  denote events, and define the indicator variables , by

Let

𝑋ଵ, …,𝑋௡
𝐹 𝜇

𝐹

𝑋̅̅̅ ̅ൌ ෍
௜ ൌ ଵ

௡
𝑋௜
𝑛

𝐸ሾ𝑋̅̅̅ሿ̅

𝐸ሾ𝑋̅̅̅ሿ̅ ൌ 𝐸቎ ෍
௜ ൌ ଵ

௡
𝑋௜
𝑛
቏

ൌ
1
𝑛
𝐸቎ ෍

௜ ൌ ଵ

௡

𝑋௜቏

ൌ
1
𝑛
෍

௜ ൌ ଵ

௡

𝐸ሾ𝑋௜ሿ

ൌ 𝜇  since  𝐸ሾ𝑋௜ሿ ≡ 𝜇

𝜇

𝜇

𝐴ଵ, …,𝐴௡ 𝑋௜, 𝑖 ൌ 1, …,𝑛

𝑋௜ ൌ ቊ
1   if 𝐴௜  occurs

0  otherwise

𝑋 ൌ ෍
௜ ൌ ଵ

௡

𝑋௜
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so  denotes the number of the events  that occur. Finally, let

so  is equal to 1 if at least one of the  occurs and is 0 otherwise. Now, it is

immediate that

so

But since

and

we obtain Boole’s inequality, namely,

The next three examples show how Equation (2.2)  can be used to calculate the

expected value of binomial, negative binomial, and hypergeometric random

variables. These derivations should be compared with those presented in Chapter

4 .

Example 2e Expectation of a binomial random variable

Let  be a binomial random variable with parameters  and . Recalling that

such a random variable represents the number of successes in  independent

trials when each trial has probability  of being a success, we have that

where

𝑋 𝐴௜

𝑌 ൌ ቊ
1  if   𝑋 ൒ 1

0    otherwise

𝑌 𝐴௜

𝑋 ൒ 𝑌

𝐸ሾ𝑋ሿ ൒ 𝐸ሾ𝑌ሿ

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

௡

𝐸ሾ𝑋௜ሿ ൌ ෍
௜ ൌ ଵ

௡

𝑃ሺ𝐴௜ሻ

𝐸ሾ𝑌ሿ ൌ 𝑃ሼat least one of  the  𝐴௜  occurሽ ൌ 𝑃 ൭
௜ ଵ

௡
𝐴௜൱

𝑃 ൭
௜ ଵ

௡
𝐴௜൱ ൑ ෍

௜ ൌ ଵ

௡

𝑃ሺ𝐴௜ሻ

𝑋 𝑛 𝑝

𝑛

𝑝

𝑋 ൌ 𝑋ଵ ൅ 𝑋ଶ ൅⋯ ൅ 𝑋௡
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Hence,  is a Bernoulli random variable having expectation

 Thus,

Example 2f Mean of a negative binomial random variable

If independent trials having a constant probability p of being successes are

performed, determine the expected number of trials required to amass a total of 

successes.

Solution

If  denotes the number of trials needed to amass a total of  successes, then 

is a negative binomial random variable that can be represented by

where  is the number of trials required to obtain the first success,  the

number of additional trials until the second success is obtained,  the number of

additional trials until the third success is obtained, and so on. That is, 

represents the number of additional trials required after the ( ) success until a

total of  successes is amassed. A little thought reveals that each of the random

variables  is a geometric random variable with parameter . Hence, from the

results of Example 8b  of Chapter 4 , ; thus,

Example 2g Mean of a hypergeometric random variable

If  balls are randomly selected from an urn containing  balls of which  are

white, find the expected number of white balls selected.

Solution

Let  denote the number of white balls selected, and represent  as

where

𝑋௜ ൌ ቊ
1   if  the  𝑖th trial is a success

0   if  the  𝑖th trial is a failure

𝑋௜
𝐸ሾ𝑋௜ሿ ൌ 1ሺ𝑝ሻ ൅ 0ሺ1 െ 𝑝ሻ.

𝐸ሾ𝑋ሿ ൌ 𝐸ሾ𝑋ଵሿ ൅ 𝐸ሾ𝑋ଶሿ ൅ ⋯ ൅ 𝐸ሾ𝑋௡ሿ ൌ 𝑛𝑝

𝑟

𝑋 𝑟 𝑋

𝑋 ൌ 𝑋ଵ ൅ 𝑋ଶ ൅⋯ ൅ 𝑋௥

𝑋ଵ 𝑋ଶ
𝑋ଷ

𝑋௜
𝑖 െ 1

𝑖

𝑋௜ 𝑝

𝐸ሾ𝑋௜ሿ ൌ 1/𝑝, 𝑖 ൌ 1, 2, …, 𝑟

𝐸ሾ𝑋ሿ ൌ 𝐸ሾ𝑋ଵሿ ൅ ⋯ ൅ 𝐸ሾ𝑋௥ሿ ൌ
𝑟
𝑝

𝑛 𝑁 𝑚

𝑋 𝑋

𝑋 ൌ 𝑋ଵ ൅⋯ ൅ 𝑋௠
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Now

Hence,

We could also have obtained the preceding result by using the alternative

representation

where

Since the  th ball selected is equally likely to be any of the  balls, it follows that

so

Example 2h Expected number of matches

Suppose that  people throw their hats into the center of a room. The hats are

mixed up, and each person randomly selects one. Find the expected number of

people who select their own hat.

𝑋௜ ൌ ቊ
1 if  the  𝑖th white ball is selected

0 otherwise

𝐸ሾ𝑋௜ሿ ൌ 𝑃ሼ𝑋௜ ൌ 1ሽ

ൌ 𝑃ሼ𝑖th white ball is selectedሽ

ൌ
ቆ

1

1
ቇ ቆ

𝑁 െ 1

𝑛 െ 1
ቇ

𝑁

𝑛

ൌ
𝑛
𝑁

𝐸ሾ𝑋ሿ ൌ 𝐸ሾ𝑋ଵሿ ൅ ⋯ ൅ 𝐸ሾ𝑋௠ሿ ൌ
𝑚𝑛
𝑁

𝑋 ൌ 𝑌ଵ ൅ ⋯൅ 𝑌௡

𝑌௜ ൌ ቊ
1 if  the  𝑖th ball selected is white

0 otherwise

𝑖 𝑁

𝐸ሾ𝑌௜ሿ ൌ
𝑚
𝑁

𝐸ሾ𝑋ሿ ൌ 𝐸ሾ𝑌ଵሿ ൅ ⋯ ൅ 𝐸ሾ𝑌௡ሿ ൌ
𝑛𝑚
𝑁

𝑁
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Solution

Letting  denote the number of matches, we can compute  most easily by

writing

where

Since, for each , the  th person is equally likely to select any of the  hats,

Thus,

Hence, on the average, exactly one person selects his own hat.

Example 2i Coupon-collecting problems

Suppose that there are  types of coupons, and each time one obtains a coupon,

it is equally likely to be any one of the  types. Find the expected number of

coupons one needs to amass before obtaining a complete set of at least one of

each type.

Solution

Let  denote the number of coupons collected before a complete set is attained.

We compute  by using the same technique we used in computing the mean

of a negative binomial random variable (Example 2f ). That is, we define

 to be the number of additional coupons that need be obtained

after  distinct types have been collected in order to obtain another distinct type,

and we note that

When  distinct types of coupons have already been collected, a new coupon

obtained will be of a distinct type with probability . Therefore,

𝑋 𝐸ሾ𝑋ሿ

𝑋 ൌ 𝑋ଵ ൅ 𝑋ଶ ൅⋯ ൅ 𝑋ே

𝑋௜ ൌ ቊ
1 if  the  𝑖th person selects his own hat

0 otherwise

𝑖 𝑖 𝑁

𝐸ሾ𝑋௜ሿ ൌ 𝑃ሼ𝑋௜ ൌ 1ሽ ൌ
1
𝑁

𝐸ሾ𝑋ሿ ൌ 𝐸ሾ𝑋ଵሿ ൅ ⋯ ൅ 𝐸ሾ𝑋ேሿ ൌ ቆ
1
𝑁
ቇ𝑁 ൌ 1

𝑁

𝑁

𝑋

𝐸ሾ𝑋ሿ

𝑋௜, 𝑖 ൌ 0, 1, …,𝑁 െ 1

𝑖

𝑋 ൌ 𝑋଴ ൅ 𝑋ଵ ൅⋯ ൅ 𝑋ேെଵ

𝑖

ሺ𝑁 െ 𝑖ሻ/𝑁

487 of 848



or, in other words,  is a geometric random variable with parameter .

Hence,

implying that

Example 2j

Ten hunters are waiting for ducks to fly by. When a flock of ducks flies overhead,

the hunters fire at the same time, but each chooses his target at random,

independently of the others. If each hunter independently hits his target with

probability , compute the expected number of ducks that escape unhurt when a

flock of size 10 flies overhead.

Solution

Let  equal 1 if the th duck escapes unhurt and 0 otherwise, for .

The expected number of ducks to escape can be expressed as

To compute , we note that each of the hunters will,

independently, hit the th duck with probability  so

Hence,

Example 2k Expected number of runs

𝑃ሼ𝑋௜ ൌ 𝑘ሽ ൌ
𝑁 െ 𝑖
𝑁

൬
𝑖
𝑁
൰
௞െଵ

 𝑘 ൒ 1

𝑋௜ ሺ𝑁 െ 𝑖ሻ/𝑁

𝐸ሾ𝑋௜ሿ ൌ
𝑁

𝑁 െ 𝑖

𝐸ሾ𝑋ሿ ൌ 1 ൅
𝑁

𝑁െ 1
൅

𝑁
𝑁 െ 2

൅⋯൅
𝑁
1

ൌ 𝑁⎡
⎣
1 ൅⋯൅

1
𝑁 െ 1

൅
1
𝑁
⎤
⎦

𝑝

𝑋௜ 𝑖 𝑖 ൌ 1, 2, …, 10

𝐸ሾ𝑋ଵ ൅ ⋯ ൅ 𝑋ଵ଴ሿ ൌ 𝐸ሾ𝑋ଵሿ ൅ ⋯ ൅ 𝐸ሾ𝑋ଵ଴ሿ

𝐸ሾ𝑋௜ሿ ൌ 𝑃ሼ𝑋௜ ൌ 1ሽ
𝑖 𝑝/10,

𝑃ሼ𝑋௜ ൌ 1ሽ ൌ ൬1 െ
𝑝

10
൰
ଵ଴

𝐸ሾ𝑋ሿ ൌ 10൬1 െ
𝑝

10
൰
ଵ଴
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Suppose that a sequence of 1’s and 0’s is randomly permuted so that each

of the  possible arrangements is equally likely. Any consecutive

string of 1’s is said to constitute a run of 1’s for instance, if , and the

ordering is 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, then there are 3 runs of 1’s and we are

interested in computing the mean number of such runs. To compute this quantity,

let

Therefore, (1), the number of runs of 1, can be expressed as

and it follows that

Now,

and for ,

Hence,

Similarly,  the expected number of runs of 0’s, is

and the expected number of runs of either type is

𝑛 𝑚

ሺ𝑛 ൅ 𝑚ሻ!/ሺ𝑛!𝑚!ሻ
𝑛 ൌ 6,𝑚 ൌ 4

𝐼௜ ൌ ቊ
1 if  a run of  1's starts at the  𝑖th position

0 otherwise

𝑅

𝑅ሺ1ሻ ൌ ෍
௜ ൌ ଵ

௡ ൅ ௠

𝐼௜

𝐸ሾ𝑅ሺ1ሻሿ ൌ ෍
௜ ൌ ଵ

௡ ൅ ௠

𝐸ሾ𝐼௜ሿ

𝐸ሾ𝐼ଵሿ ൌ 𝑃ሼ“1” in position 1ሽ

ൌ
𝑛

𝑛 ൅𝑚

1 ൏ 𝑖 ൑ 𝑛 ൅𝑚

𝐸ሾ𝐼௜ሿ ൌ 𝑃ሼ“0” in position  𝑖 െ 1, “1” in position  𝑖ሽ

ൌ
𝑚

𝑛 ൅𝑚
𝑛

𝑛 ൅𝑚െ 1

𝐸ሾ𝑅ሺ1ሻሿ ൌ
𝑛

𝑛 ൅𝑚
൅ ሺ𝑛 ൅ 𝑚 െ 1ሻ

𝑛𝑚
ሺ𝑛 ൅ 𝑚ሻሺ𝑛 ൅𝑚 െ 1ሻ

𝐸ሾ𝑅ሺ0ሻሿ,

𝐸ሾ𝑅ሺ0ሻሿ ൌ
𝑚

𝑛 ൅𝑚
൅

𝑛𝑚
𝑛 ൅𝑚
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Example 2l A random walk in the plane

Consider a particle initially located at a given point in the plane, and suppose that

it undergoes a sequence of steps of fixed length, but in a completely random

direction. Specifically, suppose that the new position after each step is one unit of

distance from the previous position and at an angle of orientation from the

previous position that is uniformly distributed over (0, 2 ). (See Figure 7.1 .)

Compute the expected square of the distance from the origin after  steps.

Figure 7.1

Solution

Letting ( ) denote the change in position at the th step, , in

rectangular coordinates, we have

where , are, by assumption, independent uniform (0, 2 ) random

𝐸ሾ𝑅ሺ1ሻ ൅ 𝑅ሺ0ሻሿ ൌ 1 ൅
2𝑛𝑚
𝑛 ൅𝑚

𝜋

𝑛

𝑋௜,𝑌௜ 𝑖 𝑖 ൌ 1, …,𝑛

𝑋௜ ൌ cos 𝜃௜
𝑌௜ ൌ sin 𝜃௜

𝜃௜, 𝑖 ൌ 1, …,𝑛 𝜋
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variables. Because the position after  steps has rectangular coordinates

, it follows that , the square of the distance from the origin,

is given by

where . Taking expectations and using the independence of

 and  when  and the fact that

we arrive at

Example 2m Analyzing the quick-sort algorithm

Suppose that we are presented with a set of  distinct values  and

that we desire to put them in increasing order, or as it is commonly stated, to sort

them. An efficient procedure for accomplishing this task is the quick-sort

algorithm, which is defined as follows: When , the algorithm compares the

two values and then puts them in the appropriate order. When , one of the

elements is randomly chosen say it is  and then all of the other values are

compared with . Those smaller than  are put in a bracket to the left of  and

those larger than  are put in a bracket to the right of . The algorithm then

repeats itself on these brackets and continues until all values have been sorted.

For instance, suppose that we desire to sort the following 10 distinct values:

𝑛

ቌ ෍
௜ ൌ ଵ

௡

𝑋௜, ෍
௜ ൌ ଵ

௡

𝑌௜ቍ 𝐷ଶ

𝐷ଶ ൌ ቌ ෍
௜ ൌ ଵ

௡

𝑋௜ቍ

ଶ

൅ ቌ ෍
௜ ൌ ଵ

௡

𝑌௜ቍ

ଶ

ൌ ෍
௜ ൌ ଵ

௡

ሺ𝑋ଶ௜ ൅ 𝑌ଶ௜ሻ ൅෍෍
௜ ஷ ௝

ሺ𝑋௜𝑋௝ ൅ 𝑌௜𝑌௝ሻ

ൌ 𝑛 ൅෍෍
௜ ஷ ௝

ሺcos 𝜃௜ cos 𝜃௝ ൅ sin 𝜃௜ sin 𝜃௝ሻ

cosଶ 𝜃௜ ൅ sinଶ 𝜃௜ ൌ 1

𝜃௜ 𝜃௝ 𝑖 ് 𝑗

2𝜋 𝐸ሾcos 𝜃௜ሿ ൌ ඲

଴

ଶగ

cos 𝑢 𝑑𝑢 ൌ sin 2𝜋 െ sin 0 ൌ 0

2𝜋 𝐸ሾsin 𝜃௜ሿ ൌ ඲

଴

ଶగ

sin 𝑢 𝑑𝑢 ൌ cos 0 െ cos 2𝜋 ൌ 0

𝐸ൣ𝐷ଶ൧ ൌ 𝑛

𝑛 𝑥ଵ, 𝑥ଶ, …, 𝑥௡

𝑛 ൌ 2

𝑛 ൐ 2

𝑥௜
𝑥௜ 𝑥௜ 𝑥௜
𝑥௜ 𝑥௜

5, 9, 3, 10, 11, 14, 8, 4, 17, 6
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We start by choosing one of them at random (that is, each value has probability

 of being chosen). Suppose, for instance, that the value 10 is chosen. We then

compare each of the others to this value, putting in a bracket to the left of 10 all

those values smaller than 10 and to the right all those larger. This gives

We now focus on a bracketed set that contains more than a single value say–the

one on the left of the preceding–and randomly choose one of its values–say that

6 is chosen. Comparing each of the values in the bracket with 6 and putting the

smaller ones in a new bracket to the left of 6 and the larger ones in a bracket to

the right of 6 gives

If we now consider the leftmost bracket, and randomly choose the value 4 for

comparison, then the next iteration yields

This continues until there is no bracketed set that contains more than a single

value.

If we let  denote the number of comparisons that it takes the quick-sort

algorithm to sort  distinct numbers, then  is a measure of the effectiveness

of this algorithm. To compute , we will first express  as a sum of other

random variables as follows. To begin, give the following names to the values

that are to be sorted: Let 1 stand for the smallest, let 2 stand for the next

smallest, and so on. Then, for , let  equal 1 if  and  are ever

directly compared, and let it equal 0 otherwise. With this definition, it follows that

implying that

1
10

ሼ5,9,3,8,4,6ሽ,10,ሼ11,14,17ሽ

ሼ5,3,4ሽ,6,ሼ9,8ሽ,10,ሼ11,14,17ሽ

ሼ3ሽ,4,ሼ5ሽ,6,ሼ9,8ሽ,10,ሼ11,14,17ሽ

𝑋

𝑛 𝐸ሾ𝑋ሿ

𝐸ሾ𝑋ሿ 𝑋

1 ൑ 𝑖 ൏ 𝑗 ൑ 𝑛 𝐼ሺ𝑖, 𝑗ሻ 𝑖 𝑗

𝑋 ൌ ෍
௜ ൌ ଵ

௡ െ ଵ

෍
௝ ൌ ௜ ൅ ଵ

௡

𝐼ሺ𝑖, 𝑗ሻ

492 of 848



To determine the probability that  and  are ever compared, note that the values

 will initially be in the same bracket (since all values are initially

in the same bracket) and will remain in the same bracket if the number chosen

for the first comparison is not between  and . For instance, if the comparison

number is larger than , then all the values  will go in a bracket to

the left of the comparison number, and if it is smaller than , then they will all go

in a bracket to the right. Thus all the values  will remain in the

same bracket until the first time that one of them is chosen as a comparison

value. At that point all the other values between  and  will be compared with this

comparison value. Now, if this comparison value is neither  nor , then upon

comparison with it,  will go into a left bracket and  into a right bracket, and thus 

and  will be in different brackets and so will never be compared. On the other

hand, if the comparison value of the set  is either  or , then

there will be a direct comparison between  and . Now, given that the

comparison value is one of the values between  and , it follows that it is equally

likely to be any of these  values, and thus the probability that it is either 

or  is  Therefore, we can conclude that

and

To obtain a rough approximation of the magnitude of  when  is large, we

can approximate the sums by integrals. Now

𝐸ሾ𝑋ሿ ൌ 𝐸቎ ෍
௜ ൌ ଵ

௡ െ ଵ

෍
௝ ൌ ௜ ൅ ଵ

௡

𝐼ሺ𝑖, 𝑗ሻ቏

ൌ ෍
௜ ൌ ଵ

௡ െ ଵ

෍
௝ ൌ ௜ ൅ ଵ

௡

𝐸ሾ𝐼ሺ𝑖, 𝑗ሻሿ

ൌ ෍
௜ ൌ ଵ

௡ െ ଵ

෍
௝ ൌ ௜ ൅ ଵ

௡

𝑃ሼ𝑖  and  𝑗  are ever comparedሽ

𝑖 𝑗

𝑖, 𝑖 ൅ 1, …, 𝑗 െ 1, 𝑗

𝑖 𝑗

𝑗 𝑖, 𝑖 ൅ 1, …, 𝑗 െ 1, 𝑗

𝑖

𝑖, 𝑖 ൅ 1, …, 𝑗 െ 1, 𝑗

𝑖 𝑗

𝑖 𝑗

𝑖 𝑗 𝑖

𝑗

𝑖, 𝑖 ൅ 1, …, 𝑗 െ 1, 𝑗 𝑖 𝑗

𝑖 𝑗

𝑖 𝑗

𝑗 െ 𝑖 ൅ 1 𝑖

𝑗 2/ሺ𝑗 െ 𝑖 ൅ 1ሻ.

𝑃ሼ𝑖  and  𝑗  are ever comparedሽ ൌ
2

𝑗 െ 𝑖 ൅ 1

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

௡ െ ଵ

෍
௝ ൌ ௜ ൅ ଵ

௡
2

𝑗 െ 𝑖 ൅ 1

𝐸ሾ𝑋ሿ 𝑛
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Thus

Thus we see that when  is large, the quick-sort algorithm requires, on average,

approximately  comparisons to sort  distinct values.

Example 2n The probability of a union of events

Let  denote events, and define the indicator variables , by

Now, note that

Hence,

෍
௝ ൌ ௜ ൅ ଵ

௡
2

𝑗 െ 𝑖 ൅ 1
ൎ ඲

௜ ൅ ଵ

௡

2
𝑥 െ 𝑖 ൅ 1

𝑑𝑥

ൌ 2 logሺ𝑥 െ 𝑖 ൅ 1ሻ ||
௡
௜൅ଵ

ൌ 2 logሺ𝑛 െ 𝑖 ൅ 1ሻ െ 2 logሺ2ሻ

ൎ 2 logሺ𝑛 െ 𝑖 ൅ 1ሻ

𝐸ሾ𝑋ሿ ൎ ෍
௜ ൌ ଵ

௡ െ ଵ

2 logሺ𝑛 െ 𝑖 ൅ 1ሻ

ൎ 2඲

ଵ

௡െଵ

logሺ𝑛 െ 𝑥 ൅ 1ሻ 𝑑𝑥

ൌ 2඲

ଶ

௡

logሺ𝑦ሻ𝑑𝑦

ൌ 2ሺ𝑦 logሺ𝑦ሻ െ 𝑦ሻ||ଶ
௡

ൎ 2𝑛 logሺ𝑛ሻ

𝑛

2𝑛 logሺ𝑛ሻ 𝑛

𝐴ଵ, …𝐴௡ 𝑋௜, 𝑖 ൌ 1, …,𝑛

𝑋௜ ൌ ቊ
1 if   𝐴௜  occurs

0 otherwise

1 െ ෑ
௜ ൌ ଵ

௡

ሺ1 െ 𝑋௜ሻ ൌ ቊ
1 if   ∪ 𝐴௜  occurs

0 otherwise

𝐸 ቎1 െ ෑ
௜ ൌ ଵ

௡

ሺ1 െ 𝑋௜ሻ቏ ൌ 𝑃൬ ∪
௜ ൌ ଵ

௡
𝐴௜൰
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Expanding the left side of the preceding formula yields

However,

so

Thus, Equation (2.3)  is just a statement of the well-known inclusion-exclusion

formula for the union of events:

When one is dealing with an infinite collection of random variables , each

having a finite expectation, it is not necessarily true that

To determine when (2.4 ) is valid, we note that  Thus,

𝑃൬ ∪
௜ ൌ ଵ

௡
𝐴௜൰ ൌ 𝐸 ቎ ෍

௜ ൌ ଵ

௡

𝑋௜ െ෍෍
௜ ழ ௝

 𝑋௜𝑋௝ ൅෍෍෍
௜ ழ ௝ ழ ௞

𝑋௜𝑋௝𝑋௞

െ⋯ ൅ ሺ െ 1ሻ௡൅ଵ𝑋ଵ⋯𝑋௡൧

(2.3)

𝑋௜భ𝑋௜మ⋯𝑋௜ೖ ൌ ൝
1 if   𝐴௜భ𝐴௜మ⋯𝐴௜ೖ  occurs

0 otherwise

𝐸ൣ𝑋௜భ⋯𝑋௜ೖ ൧ ൌ 𝑃ሺ𝐴௜భ⋯𝐴௜ೖ൯

𝑃ሺ ∪ 𝐴௜ሻ ൌ ∑௜ 𝑃ሺ𝐴௜ሻ െ ∑∑
௜ ழ ௝

𝑃ሺ𝐴௜𝐴௝ሻ ൅ ∑∑∑
௜ ழ ௝ ழ ௞

𝑃ሺ𝐴௜𝐴௝𝐴௞ሻ 

                         െ ⋯ ൅ ሺെ1ሻ௡൅ଵ𝑃ሺ𝐴ଵ⋯𝐴௡ሻ

𝑋௜, 𝑖 ൒ 1

𝐸቎ ෍
௜ ൌ ଵ

ஶ

𝑋௜቏ ൌ ෍
௜ ൌ ଵ

ஶ

𝐸ሾ𝑋௜ሿ

(2.4)

෍
௜ ൌ ଵ

ஶ

𝑋௜ ൌ lim
௡ → ஶ

෍
௜ ൌ ଵ

௡

𝑋௜.

495 of 848



Hence, Equation (2.4)  is valid whenever we are justified in interchanging the

expectation and limit operations in Equation (2.5) . Although, in general, this

interchange is not justified, it can be shown to be valid in two important special

cases:

1. The  are all nonnegative random variables. (That is,  for all )

2. 

Example 2o

Consider any nonnegative, integer-valued random variable . If, for each ,

we define

then

Hence, since the  are all nonnegative, we obtain

𝐸 ቎ ෍
௜ ൌ ଵ

ஶ

𝑋௜቏ ൌ 𝐸 ቎ lim
௡ → ஶ

෍
௜ ൌ ଵ

௡

𝑋௜቏

ൌ
?

lim
௡ → ஶ

𝐸 ቎ ෍
௜ ൌ ଵ

௡

𝑋௜቏

ൌ lim
௡ → ஶ

෍
௜ ൌ ଵ

௡

𝐸ሾ𝑋௜ሿ

ൌ ෍
௜ ൌ ଵ

ஶ

𝐸ሾ𝑋௜ሿ

(2.5)

𝑋௜ 𝑃ሼ𝑋௜ ൒ 0ሽ ൌ 1 𝑖.

෍
௜ ൌ ଵ

ஶ

𝐸ሾ |𝑋௜ | ሿ ൏ ∞ .

𝑋 𝑖 ൒ 1

𝑋௜ ൌ ቊ
1   if   𝑋 ൒ 𝑖

0   if   𝑋 ൏ 𝑖

෍
௜ ൌ ଵ

ஶ

𝑋௜ ൌ ෍
௜ ൌ ଵ

௑

𝑋௜ ൅ ෍
௜ ൌ ௑ ൅ ଵ

ஶ

𝑋௜

ൌ ෍
௜ ൌ ଵ

௑

1 ൅ ෍
௜ ൌ ௑ ൅ ଵ

ஶ

0

ൌ 𝑋

𝑋௜
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a useful identity.

Example 2p

Suppose that  elements—call them 1, 2, , —must be stored in a computer in

the form of an ordered list. Each unit of time, a request will be made for one of

these elements  being requested, independently of the past, with probability

, ,  Assuming that these probabilities are known, what

ordering minimizes the average position in the line of the element requested?

Solution

Suppose that the elements are numbered so that . To

show that 1, 2, ,  is the optimal ordering, let  denote the position of the

requested element. Now, under any ordering say, ,

Summing over  and using Equation (2.6)  yields

thus showing that ordering the elements in decreasing order of the probability

that they are requested minimizes the expected position of the element

requested.

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

ஶ

𝐸ሺ𝑋௜ሻ

ൌ ෍
௜ ൌ ଵ

ஶ

𝑃ሼ𝑋 ൒ 𝑖ሽ

(2.6)

𝑛 … 𝑛

—𝑖

𝑃ሺ𝑖ሻ 𝑖 ൒ 1 ෍
௜

𝑃ሺ𝑖ሻ ൌ 1.

𝑃ሺ1ሻ ൒ 𝑃ሺ2ሻ ൒ ⋯ ൒ 𝑃ሺ𝑛ሻ
… 𝑛 𝑋

𝑂 ൌ 𝑖ଵ, 𝑖ଶ, …, 𝑖௡

𝑃ைሼ𝑋 ൒ 𝑘ሽ ൌ ෍
௝ ൌ ௞

௡

𝑃ሺ𝑖௝ሻ

൒ ෍
௝ ൌ ௞

௡

𝑃ሺ𝑗ሻ

ൌ 𝑃ଵ,ଶ, . . . , ௡ ሼ𝑋 ൒ 𝑘ሽ

𝑘

𝐸௢ሾ𝑋ሿ ൒ 𝐸ଵ,ଶ, . . . , ௡ሾ𝑋ሿ
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The probabilistic method is a technique for analyzing the properties of the elements

of a set by introducing probabilities on the set and then studying an element chosen

according to those probabilities. The technique was previously seen in Example 4l of

Chapter 3 , where it was used to show that a set contained an element that

satisfied a certain property. In this subsection, we show how it can sometimes be

used to bound complicated functions.

Let  be a function on the elements of a finite set , and suppose that we are

interested in

A useful lower bound for  can often be obtained by letting  be a random element

of  for which the expected value of  is computable and then noting that

 implies that

with strict inequality if  is not a constant random variable. That is,  is a

lower bound on the maximum value.

Example 2q The maximum number of hamiltonian paths in a tournament

A round-robin tournament of  contestants is a tournament in which each of

the  pairs of contestants play each other exactly once. Suppose that the

players are numbered . The permutation  is said to be a

Hamiltonian path if  beats  beats , and  beats . A problem of

some interest is to determine the largest possible number of Hamiltonian paths.

As an illustration, suppose that there are 3 players. On the one hand, one of

them wins twice, then there is a single Hamiltonian path. (For instance, if 1 wins

twice and 2 beats 3, then the only Hamiltonian path is 1, 2, 3.) On the other hand,

if each of the players wins once, then there are 3 Hamiltonian paths. (For

instance, if 1 beats 2, 2 beats 3, and 3 beats 1, then 1, 2, 3; 2, 3, 1; and 3, 1, 2,

are all Hamiltonians.) Hence, when , there is a maximum of 3 Hamiltonian

paths.

We now show that there is an outcome of the tournament that results in more

than  Hamiltonian paths. To begin, let the outcome of the tournament

specify the result of each of the  games played, and let  denote the set of all

𝑓 𝐴

𝑚 ൌ max 
௦ ∈ ஺

𝑓൬𝑠൰

𝑚 𝑆

𝐴 𝑓ሺ𝑆ሻ
𝑚 ൒ 𝑓ሺ𝑆ሻ

𝑚 ൒ 𝐸ሾ𝑓ሺ𝑆ሻሿ

𝑓ሺ𝑆ሻ 𝐸ሾ𝑓ሺ𝑆ሻሿ

𝑛 ൐ 2

ቆ
𝑛

2
ቇ

1, 2, 3, …,𝑛 𝑖ଵ, 𝑖ଶ, …𝑖௡
𝑖ଵ 𝑖ଶ, 𝑖ଶ 𝑖ଷ, … 𝑖௡െଵ 𝑖௡

𝑛 ൌ 3

𝑛!/2௡െଵ

ቆ
𝑛

2
ቇ 𝐴
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 possible tournament outcomes. Then, with  defined as the number of

Hamiltonian paths that result when the outcome is , we are asked to show

that

To show this, consider the randomly chosen outcome  that is obtained when the

results of the  games are independent, with each contestant being equally

likely to win each encounter. To determine , the expected number of

Hamiltonian paths that result from the outcome , number the

permutations, and, for  let

Since

it follows that

Because, by the assumed independence of the outcomes of the games, the

probability that any specified permutation is a Hamiltonian is , it follows

that

Therefore,

Since  is not a constant random variable, the preceding equation implies that

there is an outcome of the tournament having more than  Hamiltonian

paths.

Example 2r

2
ቆ
௡
ଶ
ቇ

𝑓ሺ𝑠ሻ
𝑠 ∈ 𝐴

max 
௦
𝑓ቆ𝑠ቇ ൒

𝑛!

2௡െଵ

𝑆

ቆ
𝑛

2
ቇ

𝐸ሾ𝑓ሺ𝑆ሻሿ
𝑆

𝑛!
𝑖 ൌ 1, …,𝑛!,

𝑋௜ ൌ ቊ
1 if  permutation  𝑖  is  a Hamiltonian

0 otherwise

𝑓ሺ𝑆ሻ ൌ ෍
௜

𝑋௜

𝐸ሾ𝑓ሺ𝑆ሻሿ ൌ ෍
௜

𝐸ሾ𝑋௜ሿ

ሺ1/2ሻ௡െଵ

𝐸ሾ𝑋௜ሿ ൌ 𝑃ሼ𝑋௜ ൌ 1ሽ ൌ ሺ1/2ሻ௡െଵ

𝐸ሾ𝑓ሺ𝑆ሻሿ ൌ 𝑛!ሺ1/2ሻ௡െଵ

𝑓ሺ𝑆ሻ
𝑛!/2௡െଵ
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A grove of 52 trees is arranged in a circular fashion. If 15 chipmunks live in these

trees, show that there is a group of 7 consecutive trees that together house at

least 3 chipmunks.

Solution

Let the neighborhood of a tree consist of that tree along with the next six trees

visited by moving in the clockwise direction. We want to show that for any choice

of living accommodations of the 15 chipmunks, there is a tree that has at least 3

chipmunks living in its neighborhood. To show this, choose a tree at random and

let  denote the number of chipmunks that live in its neighborhood. To determine

 arbitrarily number the 15 chipmunks and for , let

Because

we obtain that

However, because  will equal 1 if the randomly chosen tree is any of the 7

trees consisting of the tree in which chipmunk  lives along with its 6 neighboring

trees when moving in the counterclockwise direction,

Consequently,

showing that there exists a tree with more than 2 chipmunks living in its

neighborhood.

𝑋

𝐸ሾ𝑋ሿ, 𝑖 ൌ 1, …, 15

𝑋௜ ൌ ቊ
1,  if  chipmunk  𝑖  lives in the neighborhood of  the randomly chosen tree

0, otherwise

𝑋 ൌ ෍
௜ ൌ ଵ

ଵହ

𝑋௜

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

ଵହ

𝐸ሾ𝑋௜ሿ

𝑋௜
𝑖

𝐸ሾ𝑋௜ሿ ൌ 𝑃ሼ𝑋௜ ൌ 1ሽ ൌ
7

52

𝐸ሾ𝑋ሿ ൌ
105
52

൐ 2

*
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We start with an identity relating the maximum of a set of numbers to the minimums

of the subsets of these numbers.

Proposition 2.2

For arbitrary numbers ,

Proof We will give a probabilistic proof of the proposition. To begin, assume that

all the  are in the interval [0, 1]. Let  be a uniform (0, 1) random variable, and

define the events , by . That is,  is the event that the

uniform random variable is less than . Because at least one of these events 

will occur if  is less than at least one of the values , we have that

Therefore,

Also,

In addition, because all of the events  will occur if  is less than all the

values , we see that the intersection of these events is

implying that

Thus, the proposition follows from the inclusion–exclusion formula for the

probability of the union of events:

𝑥௜, 𝑖 ൌ 1, …,𝑛

max
௜
 𝑥௜ ൌ ෍

௜

𝑥௜ െ ෍
௜ ழ ௝

minሺ𝑥௜, 𝑥௝ሻ ൅ ෍
௜ ழ ௝ ழ ௞

minሺ𝑥௜, 𝑥௝, 𝑥௞ሻ

 ൅ … ൅ ሺ െ 1ሻ௡൅ଵminሺ𝑥ଵ, …, 𝑥௡ሻ

𝑥௜ 𝑈

𝐴௜, 𝑖 ൌ 1, …,𝑛 𝐴௜ ൌ ሼ𝑈 ൏ 𝑥௜ሽ 𝐴௜
𝑥௜ 𝐴௜

𝑈 𝑥௜

∪௜ 𝐴௜ ൌ ൜𝑈 ൏ max
௜
 𝑥௜ൠ

𝑃ሺ ∪௜ 𝐴௜ሻ ൌ 𝑃൜𝑈 ൏ max
௜
 𝑥௜ൠ ൌ max

௜
 𝑥௜

𝑃ሺ𝐴௜ሻ ൌ 𝑃ሼ𝑈 ൏ 𝑥௜ሽ ൌ 𝑥௜

𝐴௜భ , …,𝐴௜ೝ 𝑈

𝑥௜భ , …, 𝑥௜ೝ

𝐴௜భ…𝐴௜ೝ ൌ ቊ𝑈 ൏ min
௝ ൌ ଵ , … ௥

𝑥௜ೕቋ

𝑃ሺ𝐴௜భ…𝐴௜ೝሻ ൌ 𝑃ቊ𝑈 ൏ min
௝ ൌ ଵ , … ௥

𝑥௜ೕቋ ൌ min
௝ ൌ ଵ , … ௥

𝑥௜ೕ
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When the  are nonnegative, but not restricted to the unit interval, let  be such

that all the  are less than . Then the identity holds for the values , and

the desired result follows by multiplying through by . When the  can be

negative, let  be such that  for all . Therefore, by the preceding,

Letting

we can rewrite the foregoing identity as

But

The preceding two equations show that

and the proposition is proven.

It follows from Proposition 2.2  that for any random variables ,

Taking expectations of both sides of this equality yields the following relationship

between the expected value of the maximum and those of the partial minimums:

𝑃ሺ ∪௜ 𝐴௜ሻ ൌ ෍
௜

𝑃ሺ𝐴௜ሻ െ ෍
௜ ழ ௝

𝑃ሺ𝐴௜𝐴௝ሻ ൅ ෍
௜ ழ ௝ ழ ௞

𝑃ሺ𝐴௜𝐴௝𝐴௞ሻ

൅… ൅ ሺ െ 1ሻ௡൅ଵ𝑃ሺ𝐴ଵ…𝐴௡ሻ

𝑥௜ 𝑐

𝑥௜ 𝑐 𝑦௜ ൌ 𝑥௜/𝑐

𝑐 𝑥௜
𝑏 𝑥௜ ൅ 𝑏 ൐ 0 𝑖

max
௜
ሺ𝑥௜ ൅ 𝑏ሻ ൌ ෍

௜

ሺ𝑥௜ ൅ 𝑏ሻ െ ෍
௜ ழ ௝

minሺ𝑥௜ ൅ 𝑏, 𝑥௝ ൅ 𝑏ሻ

൅⋯ ൅ ሺ െ 1ሻ௡൅ଵminሺ𝑥ଵ ൅ 𝑏, …, 𝑥௡ ൅ 𝑏ሻ

𝑀 ൌ ෍
௜

𝑥௜ െ ෍
௜ ழ ௝

minሺ𝑥௜, 𝑥௝ሻ ൅ ⋯ ൅ ሺ െ 1ሻ௡൅ଵminሺ𝑥ଵ, …, 𝑥௡ሻ

max
௜
 𝑥௜ ൅ 𝑏 ൌ 𝑀൅ 𝑏ቆ𝑛 െ ቆ

𝑛

2
ቇ ൅⋯൅ ሺ െ 1ሻ௡൅ଵቆ

𝑛

𝑛
ቇቇ

0 ൌ ሺ1 െ 1ሻ௡ ൌ 1 െ 𝑛 ൅ ቆ
𝑛

2
ቇ ൅⋯ ൅ ሺ െ 1ሻ௡ቆ

𝑛

𝑛
ቇ

max
௜
  𝑥௜ ൌ 𝑀

𝑋ଵ, …,𝑋௡

max
௜
𝑋௜ ൌ ෍

௜

𝑋௜ െ ෍
௜ ழ ௝

minሺ𝑋௜,𝑋௝ሻ ൅ ⋯ ൅ ሺ െ 1ሻ௡൅ଵ minሺ𝑋ଵ, …,𝑋௡ሻ
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Example 2s Coupon collecting with unequal probabilities

Suppose there are  types of coupons and that each time one collects a coupon,

it is, independently of previous coupons collected, a type  coupon with

probability ,  Find the expected number of coupons one needs to

collect to obtain a complete set of at least one of each type.

Solution

If we let  denote the number of coupons one needs to collect to obtain a type ,

then we can express  as

Because each new coupon obtained is a type  with probability ,  is a

geometric random variable with parameter . Also, because the minimum of 

and  is the number of coupons needed to obtain either a type  or a type , it

follows that for , min ( ) is a geometric random variable with parameter

. Similarly, min ( ), the number needed to obtain any of types , ,

or , is a geometric random variable with parameter , and so on.

Therefore, the identity (2.7 ) yields

Noting that

and using the identity

𝐸ሾmax
௜
𝑋௜ሿ ൌ ෍

௜

𝐸ሾ𝑋௜ሿ െ ෍
௜ ழ ௝

𝐸ሾminሺ𝑋௜,𝑋௝ሻሿ

  ൅⋯൅ ሺ െ 1ሻ௡൅ଵ𝐸ሾminሺ𝑋ଵ, …,𝑋௡ሻሿ

(2.7)

𝑛

𝑖

𝑝௜ ෍
௜ ൌ ଵ

௡

𝑝௜ ൌ 1.

𝑋௜ 𝑖

𝑋

𝑋 ൌ max
௜ ൌ ଵ , … , ௡

𝑋௜

𝑖 𝑝௜ 𝑋௜
𝑝௜ 𝑋௜

𝑋௝ 𝑖 𝑗

𝑖 ് 𝑗 𝑋௜,𝑋௝
𝑝௜ ൅ 𝑝௝ 𝑋௜,𝑋௝,𝑋௞ 𝑖 𝑗

𝑘 𝑝௜ ൅ 𝑝௝ ൅ 𝑝௞

𝐸ሾ𝑋ሿ ൌ ෍
௜

1
𝑝௜
െ ෍

௜ ழ ௝

1
𝑝௜ ൅ 𝑝௝

൅ ෍
௜ ழ ௝ ழ ௞

1
𝑝௜ ൅ 𝑝௝ ൅ 𝑝௞

൅⋯൅ ሺ െ 1ሻ௡൅ଵ
1

𝑝ଵ ൅ ⋯ ൅ 𝑝௡

඲

଴

ஶ

𝑒െ௣௫ 𝑑𝑥 ൌ
1
𝑝
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shows, upon integrating the identity, that

which is a more useful computational form.

Many of the examples solved in the previous section were of the following form: For

given events  find , where  is the number of these events that occur.

The solution then involved defining an indicator variable  for event  such that

Because

we obtained the result

Now suppose we are interested in the number of pairs of events that occur. Because

 will equal  if both  and  occur and will equal  otherwise, it follows that the

number of pairs is equal to  But because  is the number of events that

occur, it also follows that the number of pairs of events that occur is .

Consequently,

1 െ ෑ
௜ ൌ ଵ

௡

ሺ1 െ 𝑒െ௣೔௫ሻ ൌ ෍
௜

𝑒െ௣೔௫ െ ෍
௜ ழ ௝

𝑒െሺ௣೔ ൅௣ೕሻ௫ ൅ ⋯ ൅ ሺ െ 1ሻ௡൅ଵ𝑒െሺ௣భ൅ ⋅ ⋅ ⋅ ൅௣೙൯௫

𝐸ሾ𝑋ሿ ൌ ඲

଴

ஶ

ቌ1 െ ෑ
௜ ൌ ଵ

௡

ሺ1 െ 𝑒െ௣೔௫ሻቍ 𝑑𝑥

𝐴ଵ, …,𝐴௡, 𝐸ሾ𝑋ሿ 𝑋

𝐼௜ 𝐴௜

𝐼௜ ൌ ቊ
1,  if 𝐴௜ occurs

0,  otherwise

𝑋 ൌ ෍
௜ ൌ ଵ

௡

𝐼௜

𝐸ሾ𝑋ሿ ൌ 𝐸቎ ෍
௜ ൌ ଵ

௡

𝐼௜቏ ൌ ෍
௜ ൌ ଵ

௡

𝐸ሾ𝐼௜ሿ ൌ ෍
௜ ൌ ଵ

௡

𝑃ሺ𝐴௜ሻ

(3.1)

𝐼௜𝐼௝ 1 𝐴௜ 𝐴௝ 0

෍
௜ழ௝

𝐼௜𝐼௝ . 𝑋

ቆ
𝑋

2
ቇ
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where there are  terms in the summation. Taking expectations yields

or

giving that

which yields E[X ], and thus 

Moreover, by considering the number of distinct subsets of  events that all occur, we

see that

Taking expectations gives the identity

Example 3a Moments of binomial random variables

Consider n independent trials, with each trial being a success with probability p .

Let A  be the event that trial i is a success. When 

Consequently, Equation (3.2 ) yields

ቆ
𝑋

2
ቇ ൌ ෍

௜ ழ ௝

𝐼௜𝐼௝

ቆ
𝑛

2
ቇ

𝐸ቈቆ
𝑋

2
ቇ቉ ൌ ෍

௜ ழ ௝

 𝐸ൣ𝐼௜𝐼௝൧ ൌ ෍
௜ ழ ௝

𝑃ሺ𝐴௜𝐴௝ሻ

(3.2)

𝐸቎
𝑋ሺ𝑋 െ 1ሻ

2
቏ ൌ ෍

௜ ழ ௝

𝑃ሺ𝐴௜𝐴௝ሻ

𝐸ሾ𝑋ଶሿ െ 𝐸ሾ𝑋ሿ ൌ 2 ෍
௜ ழ ௝

𝑃ሺ𝐴௜𝐴௝ሻ

(3.3)

2 Var ሺ𝑋൯ ൌ 𝐸ൣ𝑋ଶ൧ െ ሺ𝐸ሾ𝑋ሿ൯
ଶ
.

𝑘

ቆ
𝑋

𝑘
ቇ ൌ ෍

௜భ ழ ௜మ ழ … ழ ௜ೖ

𝐼௜భ 𝐼௜మ⋯𝐼௜ೖ

𝐸቎ቆ
𝑋

𝑘
ቇ቏ ൌ ෍

௜భ ழ ௜మ ழ … ழ ௜ೖ

𝐸ሾ𝐼௜భ 𝐼௜మ⋯𝐼௜ೖ ሿ ൌ ෍
௜భ ழ ௜మ ழ … ழ ௜ೖ

𝑃ሺ𝐴௜భ𝐴௜మ⋯𝐴௜ೖሻ

(3.4)

i 𝑖ൌ𝑗,  𝑃൫𝐴௜𝐴௝൯ ൌ 𝑝ଶ.
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or

or

Now, , so, from the preceding equation

which is in agreement with the result obtained in Section 4.6.1 .

In general, because , we obtain from Equation (3.4)  that

or, equivalently,

The successive values , , can be recursively obtained from this

identity. For instance, with , it yields

or

or

Example 3b Moments of hypergeometric random variables

𝐸቎ቆ
𝑋

2
ቇ቏ ൌ ෍

௜ ழ ௝

𝑝ଶ ൌ ቆ
𝑛

2
ቇ𝑝ଶ

𝐸ሾ𝑋ሺ𝑋 െ 1ሻሿ ൌ 𝑛ሺ𝑛 െ 1ሻ𝑝ଶ

𝐸ൣ𝑋ଶ൧ െ 𝐸ሾ𝑋ሿ ൌ 𝑛൫𝑛 െ 1൯𝑝ଶ

𝐸ሾ𝑋ሿ ൌ ෍
௜ൌଵ

௡
𝑃ሺ𝐴௜ሻ ൌ 𝑛𝑝

Var ሺ𝑋൯ ൌ 𝐸ൣ𝑋ଶ൧ െ ሺ𝐸ሾ𝑋ሿ൯
ଶ
ൌ 𝑛൫𝑛 െ 1ሻ𝑝ଶ ൅ 𝑛𝑝 െ ሺ𝑛𝑝൯

ଶ
ൌ 𝑛𝑝൫1 െ 𝑝ሻ

𝑃ሺ𝐴௜భ𝐴௜మ⋯𝐴௜ೖ൯ ൌ 𝑝௞

𝐸቎ቆ
𝑋

𝑘
ቇ቏ ൌ ෍

௜భ ழ ௜మ ழ … ழ ௜ೖ

𝑝௞ ൌ ቆ
𝑛

𝑘
ቇ𝑝௞

𝐸ൣ𝑋൫𝑋 െ 1൯⋯ሺ𝑋 െ 𝑘 ൅ 1൯൧ ൌ 𝑛൫𝑛 െ 1൯⋯ሺ𝑛 െ 𝑘 ൅ 1൯𝑝௞

𝐸ൣ𝑋௞൧ 𝑘 ൒ 3

𝑘 ൌ 3

𝐸ሾ𝑋ሺ𝑋 െ 1ሻሺ𝑋 െ 2ሻሿ ൌ 𝑛ሺ𝑛 െ 1ሻሺ𝑛 െ 2ሻ𝑝ଷ

𝐸ൣ𝑋ଷ െ 3𝑋ଶ ൅ 2𝑋൧ ൌ 𝑛൫𝑛 െ 1൯൫𝑛 െ 2൯𝑝ଷ

𝐸ൣ𝑋ଷ൧ ൌ 3𝐸ൣ𝑋ଶ൧ െ 2𝐸ሾ𝑋ሿ ൅ 𝑛ሺ𝑛 െ 1ሻሺ𝑛 െ 2ሻ𝑝ଷ

ൌ 3𝑛ሺ𝑛 െ 1ሻ𝑝ଶ ൅ 𝑛𝑝 ൅ 𝑛ሺ𝑛 െ 1ሻሺ𝑛 െ 2ሻ𝑝ଷ
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Suppose  balls are randomly selected from an urn containing  balls, of which

 are white. Let  be the event that the th ball selected is white. Then  the

number of white balls selected, is equal to the number of the events  that

occur. Because the th ball selected is equally likely to be any of the  balls, of

which  are white,  Consequently, Equation (3.1)  gives that

. Also, since

we obtain, from Equation (3.2) , that

or

showing that

This formula yields the variance of the hypergeometric, namely,

which agrees with the result obtained in Example 8j  of Chapter 4 .

Higher moments of  are obtained by using Equation (3.4) . Because

Equation (3.4)  yields

𝑛 𝑁

𝑚 𝐴௜ 𝑖 𝑋,

𝐴ଵ, …,𝐴௡
𝑖 𝑁

𝑚 𝑃ሺ𝐴௜ሻ ൌ 𝑚/𝑁 .

𝐸ሾ𝑋ሿ ൌ ෍
௜ൌଵ

௡
𝑃ሺ𝐴௜ሻ ൌ 𝑛𝑚/𝑁

𝑃ሺ𝐴௜𝐴௝ሻ ൌ 𝑃ሺ𝐴௜ሻ𝑃ሺ𝐴௝ |𝐴௜ሻ ൌ
𝑚
𝑁
𝑚െ 1
𝑁 െ 1

𝐸቎ቆ
𝑋

2
ቇ቏ ൌ ෍

௜ ழ ௝

𝑚ሺ𝑚 െ 1ሻ
𝑁ሺ𝑁 െ 1ሻ

ൌ ቆ
𝑛

2
ቇ
𝑚ሺ𝑚 െ 1ሻ
𝑁ሺ𝑁 െ 1ሻ

𝐸ሾ𝑋ሺ𝑋 െ 1ሻሿ ൌ 𝑛ሺ𝑛 െ 1ሻ
𝑚ሺ𝑚 െ 1ሻ
𝑁ሺ𝑁 െ 1ሻ

𝐸ሾ𝑋ଶሿ ൌ 𝑛ቆ𝑛 െ 1ቇ
𝑚ሺ𝑚 െ 1ሻ
𝑁ሺ𝑁 െ 1ሻ

൅ 𝐸ሾ𝑋ሿ

Var ሺ𝑋ሻ ൌ 𝐸ൣ𝑋ଶ൧ െ ሺ𝐸ሾ𝑋ሿሻଶ

ൌ 𝑛ሺ𝑛 െ 1ሻ
𝑚ሺ𝑚 െ 1ሻ
𝑁ሺ𝑁 െ 1ሻ

൅
𝑛𝑚
𝑁

െ
𝑛ଶ𝑚ଶ

𝑁ଶ

ൌ
𝑚𝑛
𝑁

ቈ
ሺ𝑛 െ 1ሻሺ𝑚 െ 1ሻ

𝑁 െ 1
൅ 1 െ

𝑚𝑛
𝑁
቉

𝑋

𝑃ሺ𝐴௜భ𝐴௜మ⋯𝐴௜ೖቇ ൌ
𝑚ሺ𝑚 െ 1ሻ⋯ሺ𝑚 െ 𝑘 ൅ 1ሻ
𝑁ሺ𝑁 െ 1ሻ⋯ሺ𝑁 െ 𝑘 ൅ 1ሻ
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or

Example 3c Moments in the match problem

For , let  be the event that person  selects his or her own hat in the

match problem. Then

which follows because, conditional on person  selecting her own hat, the hat

selected by person  is equally likely to be any of the other  hats, of which

one is his own. Consequently, with  equal to the number of people who select

their own hat, it follows from Equation (3.2)  that

thus showing that

Therefore,  Because  we obtain that

Hence, both the mean and variance of the number of matches is . For higher

moments, we use Equation (3.4) , along with the fact that

 to obtain

or

𝐸ቈቆ
𝑋

𝑘
ቇ቉ ൌ ቆ

𝑛

𝑘
ቇ
𝑚ሺ𝑚 െ 1ሻ⋯ሺ𝑚 െ 𝑘 ൅ 1ሻ
𝑁ሺ𝑁 െ 1ሻ⋯ሺ𝑁 െ 𝑘 ൅ 1ሻ

𝐸ሾ𝑋ሺ𝑋 െ 1ሻ⋯ሺ𝑋 െ 𝑘 ൅ 1ሻሿ

                     ൌ 𝑛ሺ𝑛 െ 1ሻ⋯ሺ𝑛 െ 𝑘 ൅ 1ሻ
𝑚ሺ𝑚 െ 1ሻ⋯ሺ𝑚 െ 𝑘 ൅ 1ሻ
𝑁ሺ𝑁 െ 1ሻ⋯ሺ𝑁 െ 𝑘 ൅ 1ሻ

𝑖 ൌ 1, …,𝑁 𝐴௜ 𝑖

𝑃ሺ𝐴௜𝐴௝ሻ ൌ 𝑃ሺ𝐴௜ሻ𝑃ሺ𝐴௝ |𝐴௜ሻ ൌ
1
𝑁

1
𝑁 െ 1

𝑖

𝑗 𝑁 െ 1

𝑋

𝐸቎ቆ
𝑋

2
ቇ቏ ൌ ෍

௜ ழ ௝

1
𝑁ሺ𝑁 െ 1ሻ

ൌ ቆ
𝑁

2
ቇ

1
𝑁ሺ𝑁 െ 1ሻ

𝐸ሾ𝑋ሺ𝑋 െ 1ሻሿ ൌ 1

𝐸ൣ𝑋ଶ൧ ൌ 1 ൅ 𝐸ሾ𝑋ሿ. 𝐸ሾ𝑋ሿ ൌ ෍
௜ൌଵ

ே
𝑃ሺ𝐴௜ሻ ൌ 1,

Var ሺ𝑋൯ ൌ 𝐸ൣ𝑋ଶ൧ െ ሺ𝐸ሾ𝑋ሿሻଶ ൌ 1 .

1

𝑃ሺ𝐴௜భ𝐴௜మ⋯𝐴௜ೖሻ ൌ
1

𝑁ሺ𝑁 െ 1ሻ⋯ሺ𝑁 െ 𝑘 ൅ 1ሻ
,

𝐸ቈቆ
𝑋

 𝑘
ቇ቉ ൌ ቆ

𝑁

 𝑘
ቇ

1
𝑁ሺ𝑁 െ 1ሻ⋯ሺ𝑁 െ 𝑘 ൅ 1ሻ
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Example 3d Another coupon-collecting problem

Suppose that there are  distinct types of coupons and that, independently of

past types collected, each new one obtained is type  with probability ,

. Find the expected value and variance of the number of different

types of coupons that appear among the first  collected.

Solution

We will find it more convenient to work with the number of uncollected types. So,

let  equal the number of types of coupons collected, and let denote

the number of uncollected types. With  defined as the event that there are no

type  coupons in the collection,  is equal to the number of the events 

that occur. Because the types of the successive coupons collected are

independent, and, with probability  each new coupon is not type , we have

Hence, , from which it follows that

Similarly, because each of the  coupons collected is neither a type  nor a type 

coupon, with probability , we have

Thus,

or

Hence, we obtain

𝐸ሾ𝑋ሺ𝑋 െ 1ሻ⋯ሺ𝑋 െ 𝑘 ൅ 1ሻሿ ൌ 1

𝑁

𝑗 𝑝௝

෍
௝ൌଵ

ே
𝑝௝ ൌ 1

𝑛

𝑌 𝑋 ൌ 𝑁 െ 𝑌

𝐴௜
𝑖 𝑋 𝐴ଵ, …,𝐴ே

1 െ 𝑝௜ 𝑖

𝑃ሺ𝐴௜ሻ ൌ ሺ1 െ 𝑝௜ሻ
௡

𝐸ሾ𝑋ሿ ൌ ෍
௜ൌଵ

ே
ሺ1 െ 𝑝௜ሻ

௡

𝐸ሾ𝑌ሿ ൌ 𝑁 െ 𝐸ሾ𝑋ሿ ൌ 𝑁 െ ෍
௜ ൌ ଵ

ே

ሺ1 െ 𝑝௜ሻ
௡

𝑛 𝑖 𝑗

1 െ 𝑝௜ െ 𝑝௝

𝑃ሺ𝐴௜𝐴௝ሻ ൌ ሺ1 െ 𝑝௜ െ 𝑝௝ሻ
௡, 𝑖 ് 𝑗

𝐸ሾ𝑋ሺ𝑋 െ 1ሻሿ ൌ 2 ෍
௜ ழ ௝

𝑃ሺ𝐴௜𝐴௝ሻ ൌ 2 ෍
௜ ழ ௝

ሺ1 െ 𝑝௜ െ 𝑝௝ሻ
௡

𝐸ሾ𝑋ଶሿ ൌ 2 ෍
௜ ழ ௝

ሺ1 െ 𝑝௜ െ 𝑝௝ሻ
௡ ൅ 𝐸ሾ𝑋ሿ
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In the special case where , , the preceding formulas give

and

Example 3e The negative hypergeometric random variables

Suppose an urn contains  balls, of which  are special and  are ordinary.

These items are removed one at a time, with each new removal being equally

likely to be any of the balls that remain in the urn. The random variable , equal

to the number of balls that need be withdrawn until a total of  special balls have

been removed, is said to have a negative hypergeometric distribution. The

negative hypergeometric distribution bears the same relationship to the

hypergeometric distribution as the negative binomial does to the binomial. That

is, in both cases, rather than considering a random variable equal to the number

of successes in a fixed number of trials (as are the binomial and hypergeometric

variables), they refer to the number of trials needed to obtain a fixed number of

successes.

To obtain the probability mass function of a negative hypergeometric random

variable , note that  will equal  if both

1. the first  withdrawals consist of  special and  ordinary balls

and

2. the th ball withdrawn is special.

Consequently,

Var ሺ𝑌ሻ ൌ Var ሺ𝑋ሻ

ൌ 𝐸ൣ𝑋ଶ൧ െ ሺ𝐸ሾ𝑋ሿሻଶ

ൌ 2 ෍
௜ ழ ௝

ሺ1 െ 𝑝௜ െ 𝑝௝ሻ
௡ ൅ ෍

௜ ൌ ଵ

ே

ሺ1 െ 𝑝௜ሻ
௡ െ ቌ ෍

௜ ൌ ଵ

ே

ሺ1 െ 𝑝௜ሻ
௡ቍ

ଶ

𝑝௜ ൌ 1/𝑁 𝑖 ൌ 1, …,𝑁

𝐸ሾ𝑌ሿ ൌ 𝑁൥1 െ ቆ1 െ
1
𝑁
ቇ
௡

൩

Var ሺ𝑌ሻ ൌ 𝑁ሺ𝑁 െ 1ሻቆ1 െ
2
𝑁
ቇ
௡

൅ 𝑁ቆ1 െ
1
𝑁
ቇ
௡

െ 𝑁ଶቆ1 െ
1
𝑁
ቇ
ଶ௡

𝑛 ൅𝑚 𝑛 𝑚

𝑌

𝑟

𝑌 𝑌 𝑘

𝑘 െ 1 𝑟 െ 1 𝑘 െ 𝑟

𝑘
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We will not, however, utilize the preceding probability mass function to obtain the

mean and variance of . Rather, let us number the  ordinary balls as ,

and then, for each  let  be the event that  is withdrawn before 

special balls have been removed. Then, if  is the number of the events 

that occur, it follows that  is the number of ordinary balls that are withdrawn

before a total of  special balls have been removed. Consequently,

showing that

To determine  consider the  balls consisting of  along with the 

special balls. Of these  balls,  is equally likely to be the first one

withdrawn, or the second one withdrawn,  or the final one withdrawn. Hence,

the probability that it is among the first  of these to be selected (and so is

removed before a total or  special balls have been withdrawn) is .

Consequently,

and

Thus, for instance, the expected number of cards of a well-shuffled deck that

would need to be turned over until a spade appears is  and the

expected number of cards that would need to be turned over until an ace

appears is .

To determine , we use the identity

𝑃ሼ𝑌 ൌ 𝑘ሽ ൌ
ቆ
   𝑛

𝑟 െ 1
ቇቆ
   𝑚

𝑘 െ 𝑟
ቇ

ቆ
𝑛 ൅ 𝑚

𝑘 െ 1
ቇ

𝑛 െ 𝑟 ൅ 1
𝑛 ൅𝑚 െ 𝑘 ൅ 1

𝑌 𝑚 𝑜ଵ, …, 𝑜௠
𝑖 ൌ 1, …,𝑛, 𝐴௜ 𝑜௜ 𝑟

𝑋 𝐴ଵ, …,𝐴௠
𝑋

𝑟

𝑌 ൌ 𝑟 ൅ 𝑋

𝐸ሾ𝑌ሿ ൌ 𝑟 ൅ 𝐸ሾ𝑋ሿ ൌ 𝑟 ൅ ෍
௜ ൌ ଵ

௠

𝑃ሺ𝐴௜ሻ

𝑃ሺ𝐴௜ሻ, 𝑛 ൅ 1 𝑜௜ 𝑛

𝑛 ൅ 1 𝑜௜
…,

𝑟

𝑟
𝑟

𝑛 ൅ 1

𝑃ሺ𝐴௜ሻ ൌ
𝑟

𝑛 ൅ 1

𝐸ሾ𝑌ሿ ൌ 𝑟 ൅ 𝑚
𝑟

𝑛 ൅ 1
ൌ
𝑟ሺ𝑛 ൅𝑚 ൅ 1ሻ

𝑛 ൅ 1

1 ൅
39
14

ൌ 3 . 786,

1 ൅
48
5
ൌ 10 . 6

Varሺ𝑌ሻ ൌ Varሺ𝑋ሻ
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Now,  is the probability that both  and  are removed before there have

been a total of  special balls removed. So consider the  balls consisting of

, and the  special balls. Because all withdrawal orderings of these balls are

equally likely, the probability that  and  are both among the first  of them

to be removed (and so are both removed before  special balls have been

withdrawn) is

Consequently,

so

Because , this yields

A little algebra now shows that

Example 3f Singletons in the coupon collector’s problem

Suppose that there are  distinct types of coupons and that, independently of

past types collected, each new one obtained is equally likely to be any of the 

types. Suppose also that one continues to collect coupons until a complete set of

at least one of each type has been obtained. Find the expected value and

variance of the number of types for which exactly one coupon of that type is

collected.

𝐸ሾ𝑋ሺ𝑋 െ 1ሻሿ ൌ 2 ෍
௜ ழ ௝

𝑃ሺ𝐴௜𝐴௝ሻ

𝑃ሺ𝐴௜𝐴௝൯ 𝑜௜ 𝑜௝
𝑟 𝑛 ൅ 2

𝑜௜, 𝑜௝ 𝑛

𝑜௜ 𝑜௝ 𝑟 ൅ 1

𝑟

𝑃൫𝐴௜𝐴௝൯ ൌ
ቆ

2

2
ቇቆ
   𝑛

𝑟 െ 1
ቇ

ቆ
𝑛 ൅ 2

𝑟 ൅ 1
ቇ

ൌ
𝑟ሺ𝑟 ൅ 1ሻ

ሺ𝑛 ൅ 1ሻሺ𝑛 ൅ 2ሻ

𝐸ሾ𝑋ሺ𝑋 െ 1ሻሿ ൌ 2ቆ
𝑚

2
ቇ

𝑟ሺ𝑟 ൅ 1ሻ
ሺ𝑛 ൅ 1ሻሺ𝑛 ൅ 2ሻ

𝐸ሾ𝑋ଶሿ ൌ 𝑚ሺ𝑚 െ 1ሻ
𝑟ሺ𝑟 ൅ 1ሻ

ሺ𝑛 ൅ 1ሻሺ𝑛 ൅ 2ሻ
൅ 𝐸ሾ𝑋ሿ

𝐸ሾ𝑋ሿ ൌ 𝑚
𝑟

𝑛 ൅ 1

VarሺYሻ ൌ VarሺXሻ ൌ 𝑚ሺ𝑚 െ 1ሻ
𝑟ሺ𝑟 ൅ 1ሻ

ሺ𝑛 ൅ 1ሻሺ𝑛 ൅ 2ሻ
൅ 𝑚

𝑟
𝑛 ൅ 1

െ ሺ𝑚
𝑟

𝑛 ൅ 1
ሻ
ଶ

VarሺYሻ ൌ
𝑚𝑟ሺ𝑛 ൅ 1 െ 𝑟ሻሺ𝑛 ൅ 𝑚൅ 1ሻ

ሺ𝑛 ൅ 1ሻଶሺ𝑛 ൅ 2ሻ

𝑛

𝑛
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Solution

Let  equal the number of types for which exactly one of that type is collected.

Also, let  denote the th type of coupon to be collected, and let  be the event

that there is only a single type  coupon in the complete set. Because  is equal

to the number of the events  that occur, we have

Now, at the moment when the first type  coupon is collected, there remain 

types that need to be collected to have a complete set. Because, starting at this

moment, each of these  types (the n – i not yet collected and type T ) is

equally likely to be the last of these types to be collected, it follows that the type

T  will be the last of these types (and so will be a singleton) with probability

 Consequently,  yielding

To determine the variance of the number of singletons, let , for , be the

event that the first type  coupon to be collected is still the only one of its type to

have been collected at the moment that the first type  coupon has been

collected. Then

Now,  is the probability that when a type  has just been collected, of the

 types consisting of type  and the  as yet uncollected types, a type

 is not among the first  of these types to be collected. Because type  is

equally likely to be the first, or second, or  of these types to be

collected, we have

Now, conditional on the event , both  and  will occur if, at the time the first

type  coupon is collected, of the  types consisting of types , and

the  as yet uncollected types,  and  are both collected after the other

. But this implies that

𝑋

𝑇௜ 𝑖 𝐴௜
𝑇௜ 𝑋

𝐴ଵ, …,𝐴௡

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

௡

𝑃ሺ𝐴௜ሻ

𝑇௜ 𝑛 െ 𝑖

𝑛 െ 𝑖 ൅ 1 i

i

1
𝑛 െ 𝑖 ൅ 1

. 𝑃ሺ𝐴௜ሻ ൌ
1

𝑛 െ 𝑖 ൅ 1
,

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

௡
1

𝑛 െ 𝑖 ൅ 1
ൌ ෍

௜ ൌ ଵ

௡
1
𝑖

𝑆௜, ௝ 𝑖 ൏ 𝑗

𝑇௜
𝑇௝

𝑃ሺ𝐴௜𝐴௝൯ ൌ 𝑃ሺ𝐴௜𝐴௝ |𝑆௜,௝൯𝑃ሺ𝑆௜,௝൯

𝑃ሺ𝑆௜,௝൯ 𝑇௜
𝑛 െ 𝑖 ൅ 1 𝑇௜ 𝑛 െ 𝑖

𝑇௜ 𝑗 െ 𝑖 𝑇௜
…,𝑛 െ 𝑖 ൅ 1

𝑃ሺ𝑆௜,௝ሻ ൌ 1 െ
𝑗 െ 𝑖

𝑛 െ 𝑖 ൅ 1
ൌ
𝑛 ൅ 1 െ 𝑗
𝑛 ൅ 1 െ 𝑖

𝑆௜,௝ 𝐴௜ 𝐴௝
𝑇௝ 𝑛 െ 𝑗 ൅ 2 𝑇௜,𝑇௝
𝑛 െ 𝑗 𝑇௜ 𝑇௝

𝑛 െ 𝑗
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Therefore,

yielding

Consequently, using the previous result for , we obtain

The following proposition shows that the expectation of a product of independent

random variables is equal to the product of their expectations.

Proposition 4.1

If  and  are independent, then, for any functions  and ,

Proof Suppose that  and  are jointly continuous with joint density . Then

𝑃ሺ𝐴௜𝐴௝ |𝑆௜,௝ሻ ൌ 2
1

𝑛 െ 𝑗 ൅ 2
1

𝑛 െ 𝑗 ൅ 1

𝑃ሺ𝐴௜𝐴௝ሻ ൌ
2

ሺ𝑛 ൅ 1 െ 𝑖ሻሺ𝑛 ൅ 2 െ 𝑗ሻ
, 𝑖 ൏ 𝑗

𝐸ሾ𝑋ሺ𝑋 െ 1ሻሿ ൌ 4 ෍
௜ ழ ௝

1
ሺ𝑛 ൅ 1 െ 𝑖ሻሺ𝑛 ൅ 2 െ 𝑗ሻ

𝐸ሾ𝑋ሿ

Var ሺ𝑋ሻ ൌ 4 ෍
௜ ழ ௝

1
ሺ𝑛 ൅ 1 െ 𝑖ሻሺ𝑛 ൅ 2 െ 𝑗ሻ

൅ ෍
௜ ൌ ଵ

௡
1
𝑖
െ ቌ ෍

௜ ൌ ଵ

௡
1
𝑖
ቍ

ଶ

𝑋 𝑌 ℎ 𝑔

𝐸ሾ𝑔ሺ𝑋ሻℎሺ𝑌ሻሿ ൌ 𝐸ሾ𝑔ሺ𝑋ሻሿ𝐸ሾℎሺ𝑌ሻሿ

𝑋 𝑌 𝑓ሺ𝑥, 𝑦ሻ
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The proof in the discrete case is similar.

Just as the expected value and the variance of a single random variable give us

information about that random variable, so does the covariance between two random

variables give us information about the relationship between the random variables.

Definition
The covariance between  and , denoted by Cov ( ), is defined by

Upon expanding the right side of the preceding definition, we see that

Note that if  and  are independent, then, by Proposition 4.1 , Cov .

However, the converse is not true. A simple example of two dependent random

variables  and  having zero covariance is obtained by letting  be a random

variable such that

and defining

Now, , so . Also, . Thus,

𝐸ሾ𝑔ሺ𝑥ሻℎሺ𝑌ሻሿ ൌ ඲
െஶ

ஶ

඲
െஶ

ஶ

𝑔ሺ𝑥ሻ ℎሺ𝑦ሻ 𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥 𝑑𝑦

ൌ ඲
െஶ

ஶ

඲
െஶ

ஶ

𝑔ሺ𝑥ሻ ℎሺ𝑦ሻ 𝑓௑ሺ𝑥ሻ 𝑓௒ሺ𝑦ሻ 𝑑𝑥 𝑑𝑦

ൌ ඲
െஶ

ஶ

ℎሺ𝑦ሻ 𝑓௒ሺ𝑦ሻ𝑑𝑦඲
െஶ

ஶ

𝑔ሺ𝑥ሻ 𝑓௑ሺ𝑥ሻ 𝑑𝑥

ൌ 𝐸ሾℎሺ𝑌ሻሿ𝐸ሾ𝑔ሺ𝑋ሻሿ

𝑋 𝑌 𝑋,𝑌

Covሺ𝑋,𝑌ሻ ൌ 𝐸ሾሺ𝑋 െ 𝐸ሾ𝑋ሿሻሺ𝑌 െ 𝐸ሾ𝑌ሿሻሿ

Cov ሺ𝑋,𝑌ሻ ൌ 𝐸ሾ𝑋𝑌 െ 𝐸ሾ𝑋ሿ𝑌 െ 𝑋𝐸ሾ𝑌ሿ ൅ 𝐸ሾ𝑌ሿ𝐸ሾ𝑋ሿሿ

ൌ 𝐸ሾ𝑋𝑌ሿ െ 𝐸ሾ𝑋ሿ𝐸ሾ𝑌ሿ െ 𝐸ሾ𝑋ሿ𝐸ሾ𝑌ሿ ൅ 𝐸ሾ𝑋ሿ𝐸ሾ𝑌ሿ

ൌ 𝐸ሾ𝑋𝑌ሿ െ 𝐸ሾ𝑋ሿ𝐸ሾ𝑌ሿ

𝑋 𝑌 ሺ𝑋,𝑌ሻ ൌ 0

𝑋 𝑌 𝑋

𝑃ሼ𝑋 ൌ 0ሽ ൌ 𝑃ሼ𝑋 ൌ 1ሽ ൌ 𝑃ሼ𝑋 ൌ െ 1ሽ ൌ
1
3

𝑌 ൌ ቊ
0   if   𝑋 ് 0

1   if   𝑋 ൌ 0

𝑋𝑌 ൌ 0 𝐸ሾ𝑋𝑌ሿ ൌ 0 𝐸ሾ𝑋ሿ ൌ 0

Cov ሺ𝑋,𝑌ሻ ൌ 𝐸ሾ𝑋𝑌ሿ െ 𝐸ሾ𝑋ሿ𝐸ሾ𝑌ሿ ൌ 0
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However,  and  are clearly not independent.

The following proposition lists some of the properties of covariance.

Proposition 4.2

i. 
ii. 
iii. 

iv. 

Proof of Proposition 4.2 Parts (i) and (ii) follow immediately from the definition

of covariance, and part (iii) is left as an exercise for the reader. To prove part (iv),

which states that the covariance operation is additive (as is the operation of

taking expectations), let  and . Then

and

where the last equality follows because the expected value of a sum of random

variables is equal to the sum of the expected values.

It follows from parts (ii) and (iv) of Proposition 4.2 , upon taking

, that

𝑋 𝑌

Cov ሺ𝑋,𝑌ሻ ൌ Cov ሺ𝑌,𝑋ሻ
Cov ሺ𝑋,𝑋ሻ ൌ Covሺ𝑋ሻ
Cov ሺ𝑎𝑋,𝑌ሻ ൌ 𝑎  Cov ሺ𝑋,𝑌ሻ

Cov  ቌ ෍
௜ ൌ ଵ

௡

𝑋௜,   ෍
௝ ൌ ଵ

௠

𝑌௝ቍ ൌ ෍
௜ ൌ ଵ

௡

෍
௝ ൌ ଵ

௠

 Cov ሺ𝑋௜,𝑌௝ሻ

𝜇௜ ൌ 𝐸ൣ𝑋௜൧ 𝑣௝ ൌ 𝐸ൣ𝑌௝൧

𝐸቎ ෍
௜ ൌ ଵ

௡

𝑋௜቏ ൌ ෍
௜ ൌ ଵ

௡

𝜇௜, 𝐸቎ ෍
௝ ൌ ଵ

௠

𝑌௝቏ ൌ ෍
௝ ൌ ଵ

௠

𝑣௝

Cov ቌ ෍
௜ ൌ ଵ

௡

 𝑋௜,   ෍
௝ ൌ ଵ

௠

 𝑌௝ቍ ൌ 𝐸 ቎ቌ ෍
௜ ൌ ଵ

௡

 𝑋௜ െ ෍
௜ ൌ ଵ

௡

 𝜇௜ቍቌ ෍
௝ ൌ ଵ

௠

 𝑌௝ െ ෍
௝ ൌ ଵ

௠

 𝑣௝ቍ቏

ൌ 𝐸 ቎ ෍
௜ ൌ ଵ

௡

 ൫𝑋௜ െ 𝜇௜൯ െ ෍
௝ ൌ ଵ

௠

 ሺ𝑌௝ െ 𝑣௝ሻ቏

ൌ 𝐸 ቎ ෍
௜ ൌ ଵ

௡

෍
௝ ൌ ଵ

௠

൫𝑋௜ െ 𝜇௜൯൫𝑌௝ െ 𝑣௝൯቏

ൌ ෍
௜ ൌ ଵ

௡

෍
௝ ൌ ଵ

௠

𝐸 ൣሺ𝑋௜ െ 𝜇௜൯ሺ𝑌௝ െ 𝑣௝ሻ൧

𝑌௝ ൌ 𝑋௝, 𝑗 ൌ 1, …,𝑛
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Since each pair of indices , appears twice in the double summation, the

preceding formula is equivalent to

If  are pairwise independent, in that  and  are independent for ,

then Equation (4.1)  reduces to

The following examples illustrate the use of Equation (4.1) .

Example 4a

Let  be independent and identically distributed random variables having

expected value  and variance , and as in Example 2c , let 

be the sample mean. The quantities  are called deviations, as

they equal the differences between the individual data and the sample mean.

The random variable

Var ቌ ෍
௜ ൌ ଵ

௡

𝑋௜ቍ ൌ Cov ቌ ෍
௜ ൌ ଵ

௡

𝑋௜,   ෍
௝ ൌ ଵ

௡

𝑋௝ቍ

ൌ ෍
௜ ൌ ଵ

௡

෍
௝ ൌ ଵ

௡

 Cov ሺ𝑋௜,𝑋௝ሻ

ൌ ෍
௜ ൌ ଵ

௡

ቌCov ሺ𝑋௜,𝑋௜ሻ ൅ ෍
௝ : ௝ ஷ ௜

Cov ሺ𝑋௜,𝑋௝ሻቍ

ൌ ෍
௜ ൌ ଵ

௡

Var ሺ𝑋௜ሻ ൅෍෍
௜ ஷ ௝

 Cov ሺ𝑋௜,𝑋௝ሻ

𝑖, 𝑗, 𝑖 ് 𝑗

Var ቌ ෍
௜ ൌ ଵ

௡

𝑋௜ቍ ൌ ෍
௜ ൌ ଵ

௡

Var ሺ𝑋௜ሻ ൅ 2෍෍
௜ ழ ௝

Covሺ𝑋௜,𝑋௝ሻ

(4.1)

𝑋ଵ, …,𝑋௡ 𝑋௜ 𝑋௝ 𝑖 ് 𝑗

Var ቌ ෍
௜ ൌ ଵ

௡

𝑋௜ቍ ൌ ෍
௜ ൌ ଵ

௡

Var ሺ𝑋௜ሻ

𝑋ଵ, …,𝑋௡

𝜇 𝜎ଶ 𝑋̅̅̅ ̅ൌ ෍
௜ ൌ ଵ

௡

𝑋௜/𝑛

𝑋௜ െ 𝑋̅̅̅ ̅, 𝑖 ൌ 1, …,𝑛,

𝑆ଶ ൌ ෍
௜ ൌ ଵ

௡
ሺ𝑋௜ െ 𝑋̅̅̅ሻ̅ଶ

𝑛 െ 1
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is called the sample variance. Find (a) Var( ) and (b) .

Solution

a. 

b. We start with the following algebraic identity:

Taking expectations of the preceding yields

where the final equality made use of part (a) of this example and the one

preceding it made use of the result of Example 2c , namely, that .

Dividing through by  shows that the expected value of the sample variance

is the distribution variance .

Our next example presents another method for obtaining the variance of a binomial

random variable.

𝑋̅̅̅ ̅ 𝐸ൣ𝑆ଶ൧

Var ሺ𝑋̅̅̅ሻ̅ ൌ ቆ
1
𝑛
ቇ
ଶ

 Var ቌ ෍
௜ ൌ ଵ

௡

𝑋௜ቍ

ൌ ቆ
1
𝑛
ቇ
ଶ

෍
௜ ൌ ଵ

௡

 Varሺ𝑋௜ሻ    by independence

ൌ
𝜎ଶ

𝑛

ሺ𝑛 െ 1ሻ𝑆ଶ ൌ ෍
௜ ൌ ଵ

௡

ሺ𝑋௜ െ 𝜇 ൅ 𝜇 െ 𝑋̅̅̅ሻ̅
ଶ

ൌ ෍
௜ ൌ ଵ

௡

ሺ𝑋௜ െ 𝜇ሻଶ ൅ ෍
௜ ൌ ଵ

௡

ሺ𝑋̅̅̅ െ̅ 𝜇ሻ
ଶ
െ 2ሺ𝑋̅̅̅ െ̅ 𝜇ሻ ෍

௜ ൌ ଵ

௡

ሺ𝑋௜ െ 𝜇ሻ

ൌ ෍
௜ ൌ ଵ

௡

ሺ𝑋௜ െ 𝜇ሻଶ ൅ 𝑛ሺ𝑋̅̅̅ െ̅ 𝜇ሻ
ଶ
െ 2ሺ𝑋̅̅̅ െ̅ 𝜇ሻ𝑛ሺ𝑋̅̅̅ െ̅ 𝜇ሻ

ൌ ෍
௜ ൌ ଵ

௡

ሺ𝑋௜ െ 𝜇ሻଶ െ 𝑛ሺ𝑋̅̅̅ െ̅ 𝜇ሻ
ଶ

ሺ𝑛 െ 1ሻ𝐸ሾ𝑆ଶሿ ൌ ෍
௜ ൌ ଵ

௡

𝐸ሾሺ𝑋௜ െ 𝜇ሻଶሿ െ 𝑛𝐸ሾሺ𝑋̅̅̅ െ̅ 𝜇ሻଶሿ

ൌ 𝑛𝜎ଶ െ 𝑛 Var ሺ𝑋̅̅̅ሻ̅

ൌ ሺ𝑛 െ 1ሻ𝜎ଶ

𝐸ሾ𝑋̅̅̅ሿ̅ ൌ 𝜇

𝑛 െ 1

𝜎ଶ
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Example 4b Variance of a binomial random variable

Compute the variance of a binomial random variable  with parameters  and .

Solution

Since such a random variable represents the number of successes in 

independent trials when each trial has the common probability  of being a

success, we may write

where the  are independent Bernoulli random variables such that

Hence, from Equation (4.1) , we obtain

But

Thus,

Example 4c Sampling from a finite population

Consider a set of  people, each of whom has an opinion about a certain subject

that is measured by a real number  that represents the person’s “strength of

feeling” about the subject. Let  represent the strength of feeling of person

.

Suppose that the quantities , are unknown and, to gather

information, a group of  of the  people is “randomly chosen” in the sense that

all of the  subsets of size  are equally likely to be chosen. These  people

are then questioned and their feelings determined. If  denotes the sum of the 

sampled values, determine its mean and variance.

𝑋 𝑛 𝑝

𝑛

𝑝

𝑋 ൌ 𝑋ଵ ൅ ⋯൅ 𝑋௡

𝑋௜

𝑋௜ ൌ ቊ
1 if  the  𝑖th trial is a success

0 otherwise

Var ሺ𝑋ሻ ൌ Var ሺ𝑋ଵሻ ൅ ⋯ ൅ Var ሺ𝑋௡ሻ

Var ሺ𝑋௜ሻ ൌ 𝐸ൣ𝑋ଶ௜൧ െ ൫𝐸ൣ𝑋௜൧൯
ଶ

ൌ 𝐸ൣ𝑋௜൧ െ ൫𝐸ൣ𝑋௜൧൯
ଶ
  since  𝑋ଶ௜ ൌ 𝑋௜

ൌ 𝑝 െ 𝑝ଶ

Var ሺ𝑋ሻ ൌ 𝑛𝑝ሺ1 െ 𝑝ሻ

𝑁

𝑣

𝑣௜
𝑖, 𝑖 ൌ 1, …𝑁

𝑣௜, 𝑖 ൌ 1, …,𝑁

𝑛 𝑁

ቆ
𝑁

2
ቇ 𝑛 𝑛

𝑆 𝑛
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An important application of the preceding problem is to a forthcoming election in

which each person in the population is either for or against a certain candidate or

proposition. If we take  to equal 1 if person  is in favor and 0 if he or she is

against, then  represents the proportion of the population that is in

favor. To estimate , a random sample of  people is chosen, and these people

are polled. The proportion of those polled who are in favor – that is, S/n – is often

used as an estimate of .

Solution

For each person , define an indicator variable  to indicate whether or

not that person is included in the sample. That is,

Now,  can be expressed by

so

Because

it follows that

𝑣௜ 𝑖

𝑣̅̅ ൌ ෍
௜ ൌ ଵ

ே

𝑣௜/𝑁

𝑣̅̅ 𝑛

𝑣̅̅

𝑖, 𝑖 ൌ 1, …,𝑁 𝐼௜

𝐼௜ ൌ ቊ
1  if  person  𝑖is in the random sample

0 otherwise

𝑆

𝑆 ൌ ෍
௜ ൌ ଵ

ே

𝑣௜𝐼௜

𝐸ሾ𝑆ሿ ൌ ෍
௜ ൌ ଵ

ே

𝑣௜𝐸ሾ𝐼௜ሿ

Var ሺ𝑆ሻ ൌ ෍
௜ ൌ ଵ

ே

Var ሺ𝑣௜𝐼௜ሻ ൅ 2 ∑∑
௜ ழ ௝

 Cov ሺ𝑣௜𝐼௜, 𝑣௝𝐼௝ሻ

ൌ ෍
௜ ൌ ଵ

ே

𝑣ଶ௜ Var ሺ𝐼௜ሻ ൅ 2 ∑∑
௜ ழ ௝

𝑣௜𝑣௝ Cov ሺ𝐼௜, 𝐼௝ሻ

𝐸ሾ𝐼௜ሿ ൌ
𝑛
𝑁

𝐸ൣ𝐼௜𝐼௝൧ ൌ
𝑛
𝑁
𝑛 െ 1
𝑁െ 1
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Hence,

The expression for Var  can be simplified somewhat by using the identity

 After some simplification, we obtain

Consider now the special case in which Np of the ’s are equal to 1 and the

remainder equal to 0. Then, in this case,  is a hypergeometric random variable

and has mean and variance given, respectively, by

and

The quantity S/n, equal to the proportion of those sampled that have values

equal to 1, is such that

Var ሺ𝐼௜ሻ ൌ
𝑛
𝑁
൬1 െ

𝑛
𝑁
൰

Cov ሺ𝐼௜, 𝐼௝൯ ൌ
𝑛ሺ𝑛 െ 1ሻ
𝑁ሺ𝑁 െ 1ሻ

െ ൬
𝑛
𝑁
൰
ଶ

ൌ
െ𝑛ሺ𝑁 െ 𝑛ሻ
𝑁ଶሺ𝑁 െ 1൯

𝐸ሾ𝑆ሿ ൌ 𝑛 ෍
௜ ൌ ଵ

ே
𝑣௜
𝑁
ൌ 𝑛𝑣̅̅

Var ሺ𝑆ሻ ൌ
𝑛
𝑁
ቆ
𝑁 െ 𝑛
𝑁

ቇ ෍
௜ ൌ ଵ

ே

𝑣ଶ௜ െ
2𝑛ሺ𝑁 െ 𝑛ሻ
𝑁ଶሺ𝑁 െ 1ሻ

  ෍෍
௜ ழ ௝

 𝑣௜𝑣௝

ሺ𝑆ሻ

ሺ𝑣ଵ ൅ ⋯ ൅ 𝑣ேሻ
ଶ ൌ ෍

௜ ൌ ଵ

ே

𝑣௜
ଶ ൅ 2 ∑∑

௜ ழ ௝
 𝑣௜𝑣௝.

Var ሺ𝑆ሻ ൌ
𝑛ሺ𝑁 െ 𝑛ሻ
𝑁 െ 1

 

⎛

⎝

⎜
⎜⎜
⎜

෍
௜ ൌ ଵ

ே

𝑣௜
ଶ

𝑁
െ 𝑣̅̅ଶ

⎞

⎠

⎟
⎟⎟
⎟

𝑣

𝑆

𝐸ሾ𝑆ሿ ൌ 𝑛𝑣̅̅ ൌ 𝑛𝑝   since  𝑣̅̅ ൌ
𝑁𝑝
𝑁

ൌ 𝑝

Var ሺ𝑆ሻ ൌ
𝑛ሺ𝑁 െ 𝑛ሻ
𝑁 െ 1

ቆ
𝑁𝑝
𝑁

െ 𝑝ଶቇ

ൌ
𝑛ሺ𝑁 െ 𝑛ሻ
𝑁 െ 1

𝑝ሺ1 െ 𝑝ሻ
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The correlation of two random variables  and , denoted by , is defined,

as long as Var Var  is positive, by

It can be shown that

To prove Equation (4.2) , suppose that and  have variances given by  and

, respectively. Then, on the one hand,

implying that

On the other hand,

implying that

which completes the proof of Equation (4.2) .

𝐸⎡
⎣

𝑆
𝑛
⎤
⎦
ൌ 𝑝

Var ቆ
𝑆
𝑛
ቇ ൌ

𝑁 െ 𝑛
𝑛ሺ𝑁 െ 1ሻ

𝑝ሺ1 െ 𝑝ሻ

𝑋 𝑌 𝜌ሺ𝑋,𝑌ሻ
ሺ𝑋ሻ ሺ𝑌ሻ

𝜌ሺ𝑋,𝑌ሻ ൌ
Cov ሺ𝑋,𝑌ሻ

Var ሺ𝑋ሻ Var ሺ𝑌ሻඥ

െ1 ൑ 𝜌ሺ𝑋,𝑌ሻ ൑ 1

(4.2)

𝑌 𝜎ଶ௫
𝜎ଶ௬

0 ൑ Var ቆ
𝑋
𝜎௫

൅
𝑌
𝜎௬
ቇ

ൌ
Var ሺ𝑋ሻ
𝜎ଶ௫

൅
Var ሺ𝑌ሻ
𝜎ଶ௬

൅
2 Cov ሺ𝑋,𝑌ሻ

𝜎௫𝜎௬

ൌ 2ሾ1 ൅ 𝜌ሺ𝑋,𝑌ሻሿ

െ1 ൑ 𝜌ሺ𝑋,𝑌ሻ

0 ൑ Var ቆ
𝑋
𝜎௫

െ
𝑌
𝜎௬
ቇ

ൌ
Var ሺ𝑋ሻ
𝜎ଶ௫

൅
Var ሺ𝑌ሻ

ሺ െ 𝜎௬ሻ
ଶ െ

2 Cov ሺ𝑋,𝑌ሻ
𝜎௫𝜎௬

ൌ 2ሾ1 ൅ 𝜌ሺ𝑋,𝑌ሻሿ

𝜌ሺ𝑋,𝑌ሻ ൑ 1
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In fact, since  implies that  is constant with probability 1 (this intuitive

relationship will be rigorously proven in Chapter 8 ), it follows from the proof of

Equation (4.2)  that  implies that , where 

and  implies that , where . We leave it

as an exercise for the reader to show that the reverse is also true: that if

, then  is either  or , depending on the sign of .

The correlation coefficient is a measure of the degree of linearity between  and . A

value of  near  or  indicates a high degree of linearity between  and ,

whereas a value near 0 indicates that such linearity is absent. A positive value of

 indicates that  tends to increase when  does, whereas a negative value

indicates that  tends to decrease when  increases. If , then  and  are

said to be uncorrelated.

Example 4d

Let  and  be indicator variables for the events  and . That is,

Then

so

Thus, we obtain the quite intuitive result that the indicator variables for  and 

are either positively correlated, uncorrelated, or negatively correlated, depending

on whether  is, respectively, greater than, equal to, or less than .

Our next example shows that the sample mean and a deviation from the sample

mean are uncorrelated.

Example 4e

Let  be independent and identically distributed random variables having

Var ሺ𝑍ሻ ൌ 0 𝑍

𝜌ሺ𝑋,𝑌ሻ ൌ 1 𝑌 ൌ 𝑎 ൅ 𝑏𝑋 𝑏 ൌ 𝜎௬/𝜎௫ ൐ 0

𝜌ሺ𝑋,𝑌ሻ ൌ െ 1 𝑌 ൌ 𝑎 ൅ 𝑏𝑋 𝑏 ൌ െ 𝜎௬/𝜎௫ ൏ 0

𝑌 ൌ 𝑎 ൅ 𝑏𝑋 𝜌ሺ𝑋,𝑌ሻ ൅1 െ1 𝑏

𝑋 𝑌

𝜌ሺ𝑋,𝑌ሻ ൅1 െ1 𝑋 𝑌

𝜌ሺ𝑋,𝑌ሻ 𝑌 𝑋

𝑌 𝑋 𝜌ሺ𝑋,𝑌ሻ ൌ 0 𝑋 𝑌

𝐼஺ 𝐼஻ 𝐴 𝐵

𝐼஺ ൌ ቊ
1   if   𝐴  occurs

0  otherwise

𝐼஻ ൌ ቊ
1   if   𝐵  occurs

0  otherwise

𝐸ሾ𝐼஺ሿ ൌ 𝑃ሺ𝐴ሻ
𝐸ሾ𝐼஻ሿ ൌ 𝑃ሺ𝐵ሻ

𝐸ሾ𝐼஺𝐼஻ሿ ൌ 𝑃ሺ𝐴𝐵ሻ

Cov ሺ𝐼஺, 𝐼஻ሻ ൌ 𝑃ሺ𝐴𝐵ሻ െ 𝑃ሺ𝐴ሻ𝑃ሺ𝐵ሻ

ൌ 𝑃ሺ𝐵ሻሾ𝑃ሺ𝐴 ||𝐵ሻ െ 𝑃ሺ𝐴ሻሿ

𝐴 𝐵

𝑃ሺ𝐴 ||𝐵ሻ 𝑃ሺ𝐴ሻ

𝑋ଵ, …,𝑋௡
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variance . Show that

Solution

We have

where the next-to-last equality uses the result of Example 4a  and the final

equality follows because

Although  and the deviation  are uncorrelated, they are not, in general,

independent. However, in the special case where the  are normal random

variables, it turns out that not only is  independent of a single deviation, but it is

independent of the entire sequence of deviations  This result

will be established in Section 7.8 , where we will also show that, in this case,

the sample mean  and the sample variance  are independent, with

 having a chi-squared distribution with  degrees of freedom.

(See Example 4a  for the definition of .)

Example 4f

Consider  independent trials, each of which results in any of  possible

outcomes with probabilities . If we let , denote

the number of the  trials that result in outcome , then  have the

multinomial distribution

𝜎ଶ

Cov ሺ𝑋௜ െ 𝑋̅̅̅ ̅, 𝑋̅̅̅ሻ̅ ൌ 0

Cov ሺ𝑋௜ െ 𝑋̅̅̅ ̅, 𝑋̅̅̅ሻ̅ ൌ Cov ሺ𝑋௜, 𝑋̅̅̅ሻ̅ െ  Cov ሺ𝑋̅̅̅ ̅, 𝑋̅̅̅ሻ̅

ൌ Cov ቌ𝑋௜,
1
𝑛

෍
௝ ൌ ଵ

௡

𝑋௝ቍ െ  Var ሺ𝑋̅̅̅ሻ̅

ൌ
1
𝑛

෍
௝ ൌ ଵ

௡

Cov ሺ𝑋௜,𝑋௝ሻ െ
𝜎ଶ

𝑛

ൌ
𝜎ଶ

𝑛
െ
𝜎ଶ

𝑛
ൌ 0

Cov ሺ𝑋௜,𝑋௝ሻ ൌ ൝
0 if   𝑗 ് 𝑖  by independence

𝜎ଶ if   𝑗 ൌ 𝑖 since Var ሺ𝑋௜ሻ ൌ 𝜎ଶ

𝑋̅̅̅ ̅ 𝑋௜ െ 𝑋̅̅̅ ̅

𝑋௜
𝑋̅̅̅ ̅

𝑋௝ െ 𝑋̅̅̅ ̅, 𝑗 ൌ 1, …,𝑛.

𝑋̅̅̅ ̅ 𝑆ଶ

ሺ𝑛 െ 1൯𝑆ଶ/𝜎ଶ 𝑛 െ 1

𝑆ଶ

𝑚 𝑟

𝑝ଵ, …,𝑝௥, ෍
௜ൌଵ

௥
𝑝௜ ൌ 1 𝑁௜, 𝑖 ൌ 1, …, 𝑟

𝑚 𝑖 𝑁ଵ,𝑁ଶ, …,𝑁௥

𝑃ሼ𝑁ଵ ൌ 𝑛ଵ, …,𝑁௥ ൌ 𝑛௥ሽ ൌ
𝑚!

𝑛ଵ !…𝑛௥ !
𝑝௡భଵ⋯𝑝௡ೝ௥,  ෍

௜ ൌ ଵ

௥

𝑛௜ ൌ 𝑚
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For , it seems likely that when  is large,  would tend to be small; hence,

it is intuitive that they should be negatively correlated. Let us compute their

covariance by using Proposition 4.2 (iv) and the representation

where

From Proposition 4.2 (iv), we have

Now, on the one hand, when ,

since the outcome of trial  is independent of the outcome of trial . On the other

hand,

where the equation uses the fact that  since trial  cannot result

in both outcome  and outcome . Hence, we obtain

which is in accord with our intuition that  and  are negatively correlated.

𝑖 ് 𝑗 𝑁௜ 𝑁௝

𝑁௜ ൌ ෍
௞ ൌ ଵ

௠

𝐼௜ሺ𝑘ሻ   and   𝑁௝ ൌ ෍
௞ ൌ ଵ

௠

𝐼௝ሺ𝑘ሻ

𝐼௜ሺ𝑘ሻ ൌ ቊ
1 if  trial  𝑘  results in outcome  𝑖

0 otherwise

𝐼௝ሺ𝑘ሻ ൌ ቊ
1 if  trial  𝑘  results in outcome  𝑗

0 otherwise

Cov ሺ𝑁௜,𝑁௝ሻ ൌ ෍
ℓ ൌ ଵ

௠

෍
௞ ൌ ଵ

௠

Cov ሺ𝐼௜ሺ𝑘ሻ, 𝐼௝ሺ ℓ ሻሻ

𝑘 ് ℓ

Cov ൫𝐼௜൫𝑘൯, 𝐼௝൫ ℓ ൯൯ ൌ 0

𝑘 ℓ

Cov ൫𝐼௜ሺ ℓ ൯, 𝐼௝൫ ℓ ൯൯ ൌ 𝐸ൣ𝐼௜൫ ℓ ൯𝐼௝൫ ℓ ൯൧ െ 𝐸ൣ𝐼௜൫ ℓ ൯൧𝐸ൣ𝐼௝൫ ℓ ൯൧

ൌ 0 െ 𝑝௜𝑝௝ ൌ െ 𝑝௜𝑝௝

𝐼௜൫ ℓ ൯𝐼௝൫ ℓ ൯ ൌ 0, ℓ

𝑖 𝑗

Cov ሺ𝑁௜,𝑁௝ሻ ൌ െ𝑚𝑝௜𝑝௝

𝑁௜ 𝑁௝
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Recall that if  and  are jointly discrete random variables, then the conditional

probability mass function of  given that  is defined for all  such that

 by

It is therefore natural to define, in this case, the conditional expectation of  given

that  for all values of  such that  by

Example 5a

If  and  are independent binomial random variables with identical parameters 

and  calculate the conditional expected value of  given that .

Solution

Let us first calculate the conditional probability mass function of  given that

. For 

where we have used the fact (see Example 3f  of Chapter 6 ) that  is

a binomial random variable with parameters 2  and . Hence, the conditional

distribution of given that  is the hypergeometric distribution, and

𝑋 𝑌

𝑋, 𝑌 ൌ 𝑦, 𝑦

𝑃ሼ𝑌 ൌ 𝑦ሽ ൐ 0,

𝑝௑ห௒ሺ𝑥 |𝑦ሻ ൌ 𝑃ሼ𝑋 ൌ 𝑥 |𝑌 ൌ 𝑦ሽ ൌ
𝑝ሺ𝑥,𝑦ሻ
𝑝௒ሺ𝑦൯

𝑋

𝑌 ൌ 𝑦, 𝑦 𝑝௒ሺ𝑦൯ ൐ 0,

𝐸ሾ𝑋 |𝑌 ൌ 𝑦ሿ ൌ ෍
௫
 𝑥𝑃ሼ𝑋 ൌ 𝑥 |𝑌 ൌ 𝑦ሽ

ൌ ෍
௫
 𝑥𝑝𝑋 |𝑌ሺ𝑥 |𝑦ሻ

𝑋 𝑌 𝑛

𝑝, 𝑋 𝑋 ൅ 𝑌 ൌ 𝑚

𝑋

𝑋 ൅ 𝑌 ൌ 𝑚 𝑘 ൑ minሺ𝑛,𝑚ሻ,

𝑃ሼ𝑋 ൌ 𝑘 ||𝑋 ൅ 𝑌 ൌ 𝑚ሽ ൌ
𝑃ሼ𝑋 ൌ 𝑘,𝑋 ൅ 𝑌 ൌ 𝑚ሽ

𝑃ሼ𝑋 ൅ 𝑌 ൌ 𝑚ሽ

ൌ
𝑃ሼ𝑋 ൌ 𝑘,𝑌 ൌ 𝑚െ 𝑘ሽ

𝑃ሼ𝑋 ൅ 𝑌 ൌ 𝑚ሽ

ൌ
𝑃ሼ𝑋 ൌ 𝑘ሽ𝑃ሼ𝑌 ൌ 𝑚 െ 𝑘ሽ

𝑃ሼ𝑋 ൅ 𝑌 ൌ 𝑚ሽ

ൌ
ቆ
𝑛

𝑘
ቇ 𝑝௞ሺ1 െ 𝑝ሻ௡െ௞ ቆ

     𝑛

𝑚 െ 𝑘
ቇ 𝑝௠െ௞ሺ1 െ 𝑝ሻ௡െ௠൅௞

ቆ
2𝑛

𝑚
ቇ 𝑝௠ሺ1 െ 𝑝ሻଶ௡െ௠

ൌ
ቆ
𝑛

𝑘
ቇ  ቆ

     𝑛

𝑚 െ 𝑘
ቇ

ቆ
2𝑛

𝑚
ቇ

𝑋 ൅ 𝑌

𝑛 𝑝

𝑋, 𝑋 ൅ 𝑌 ൌ 𝑚,
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from Example 2g , we obtain

Similarly, let us recall that if  and  are jointly continuous with a joint probability

density function  then the conditional probability density of  given that 

is defined for all values of  such that  by

It is natural, in this case, to define the conditional expectation of  given that 

by

provided that .

Example 5b

Suppose that the joint density of  and  is given by

Compute .

Solution

We start by computing the conditional density

𝐸ሾ𝑋 |𝑋 ൅ 𝑌 ൌ 𝑚ሿ ൌ
𝑚
2

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ, 𝑋, 𝑌 ൌ 𝑦,

𝑦 𝑓௒ሺ𝑦൯ ൐ 0

𝑓௑ห௒ሺ𝑥 |𝑦ሻ ൌ
𝑓ሺ𝑥,𝑦ሻ
𝑓𝑌ሺ𝑦ሻ

𝑋, 𝑌 ൌ 𝑦,

𝐸ሾ𝑋 |𝑌 ൌ 𝑦ሿ ൌ ඲
െஶ

ஶ

𝑥𝑓௑|௒ሺ𝑥 |𝑦ሻ 𝑑𝑥

𝑓௒ሺ𝑦൯ ൐ 0

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ
𝑒െ௫/௬𝑒െ௬

𝑦
 0 ൏ 𝑥 ൏ ∞ , 0 ൏ 𝑦 ൏ ∞

𝐸ሾ𝑋 ||𝑌 ൌ 𝑦ሿ
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Hence, the conditional distribution of  given that  is just the exponential

distribution with mean . Thus,

Remark Just as conditional probabilities satisfy all of the properties of ordinary

probabilities, so do conditional expectations satisfy the properties of ordinary

expectations. For instance, such formulas as

and

remain valid. As a matter of fact, conditional expectation given that  can be

thought of as being an ordinary expectation on a reduced sample space consisting

only of outcomes for which .

𝑓௑|௒ሺ𝑥 |𝑦ሻ ൌ
𝑓ሺ𝑥,𝑦ሻ

𝑓௒ሺ𝑦൯

ൌ
𝑓ሺ𝑥,𝑦ሻ

඲
െஶ

ஶ

𝑓ቆ𝑥,𝑦ቇ 𝑑𝑥

ൌ
ሺ1/𝑦൯𝑒െ௫/௬𝑒െ௬

඲

଴

ஶ

ሺ1/𝑦ቇ𝑒െ௫/௬𝑒െ௬ 𝑑𝑥

ൌ
ሺ1/𝑦൯𝑒െ௫/௬

඲

଴

ஶ

ሺ1/𝑦ቇ𝑒െ௫/௬ 𝑑𝑥

ൌ
1
𝑦
𝑒െ௫/௬

𝑋, 𝑌 ൌ 𝑦,

𝑦

𝐸ሾ𝑋 |𝑌 ൌ 𝑦ሿ ൌ ඲

଴

ஶ
𝑥
𝑦
𝑒െ௫/௬ 𝑑𝑥 ൌ 𝑦

𝐸ሾ𝑔ሺ𝑋ሻ |𝑌 ൌ 𝑦ሿ ൌ

⎧

⎨

⎩

⎪
⎪

⎪
⎪

෍
௫

𝑔ሺ𝑋ሻ 𝑝௑|௒ሺ𝑥 |𝑦ሻ in the discrete case

඲
െஶ

ஶ

𝑔ሺ𝑋ሻ 𝑓௑ห௒ሺ𝑥 |𝑦ሻ 𝑑𝑥 in the continuous case

𝐸቎ ෍
௜ ൌ ଵ

௡

𝑋௜ |𝑌 ൌ 𝑦቏ ൌ ෍
௜ ൌ ଵ

௡

𝐸ሾ𝑋௜ |𝑌 ൌ 𝑦ሿ

𝑌 ൌ 𝑦

𝑌 ൌ 𝑦
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Let us denote by  that function of the random variable  whose value at 

is . Note that  is itself a random variable. An extremely important

property of conditional expectations is given by the following proposition.

Proposition 5.1 The conditional expectation formula

If  is a discrete random variable, then Equation (5.1)  states that

whereas if  is continuous with density  then Equation (5.1)  states

We now give a proof of Equation (5.1)  in the case where  and  are both

discrete random variables.

Proof of Equation (5.1)  When X and Y Are Discrete: We must show that

Now, the right-hand side of Equation (5.2)  can be written as

𝐸ሾ𝑋 ||𝑌ሿ 𝑌 𝑌 ൌ 𝑦

𝐸ሾ𝑋 ||𝑌 ൌ 𝑦ሿ 𝐸ሾ𝑋 ||𝑌ሿ

 𝐸ሾ𝑋ሿ ൌ 𝐸ሾ𝐸ሾ𝑋 ||𝑌ሿሿ

(5.1)

𝑌

𝐸ሾ𝑋ሿ ൌ ෍
௬

𝐸ሾ𝑋 |𝑌 ൌ 𝑦ሿ𝑃ሼ𝑌 ൌ 𝑦ሽ

(5.1a)

𝑌 𝑓௒ሺ𝑦൯,

𝐸ሾ𝑋ሿ ൌ ඲
െஶ

ஶ

𝐸ሾ𝑋 |𝑌 ൌ 𝑦ሿ 𝑓௒ሺ𝑦ሻ 𝑑𝑦

(5.1b)

𝑋 𝑌

𝐸ሾ𝑋ሿ ൌ ෍
௬

𝐸ሾ𝑋 |𝑌 ൌ 𝑦ሿ𝑃ሼ𝑌 ൌ 𝑦ሽ

(5.2)
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and the result is proved.

One way to understand Equation (5.2)  is to interpret it as follows: To calculate

 we may take a weighted average of the conditional expected value of  given

that  each of the terms  being weighted by the probability of the

event on which it is conditioned. (Of what does this remind you?) This is an

extremely useful result that often enables us to compute expectations easily by first

conditioning on some appropriate random variable. The following examples illustrate

its use.

Example 5c

A miner is trapped in a mine containing 3 doors. The first door leads to a tunnel

that will take him to safety after 3 hours of travel. The second door leads to a

tunnel that will return him to the mine after 5 hours of travel. The third door leads

to a tunnel that will return him to the mine after 7 hours. If we assume that the

miner is at all times equally likely to choose any one of the doors, what is the

expected length of time until he reaches safety?

Solution

Let  denote the amount of time (in hours) until the miner reaches safety, and let

 denote the door he initially chooses. Now,

However,

෍
௬

𝐸ሾ𝑋 ||𝑌 ൌ 𝑦ሿ𝑃ሼ𝑌 ൌ 𝑦ሽ ൌ  ෍
௬

෍
௫

 𝑥𝑃ሼ𝑋 ൌ 𝑥 ||𝑌 ൌ 𝑦ሽ𝑃ሼ𝑌 ൌ 𝑦ሽ

ൌ ෍
௬

෍
௫

 𝑥
𝑃ሼ𝑋 ൌ 𝑥,𝑌 ൌ 𝑦ሽ

𝑃ሼ𝑌 ൌ 𝑦ሽ
𝑃ሼ𝑌 ൌ 𝑦ሽ 

ൌ ෍
௬

෍
௫

 𝑥𝑃ሼ𝑋 ൌ 𝑥,𝑌 ൌ 𝑦ሽ 

ൌ ෍
௫

𝑥෍
௬

𝑃ሼ𝑋 ൌ 𝑥,𝑌 ൌ 𝑦ሽ

ൌ ෍
௫

𝑥𝑃ሼ𝑋 ൌ 𝑥ሽ

ൌ 𝐸ሾ𝑋ሿ

𝐸ሾ𝑋ሿ, 𝑋

𝑌 ൌ 𝑦, 𝐸ሾ𝑋 ||𝑌 ൌ 𝑦ሿ

𝑋

𝑌

𝐸ሾ𝑋ሿ ൌ 𝐸ሾ𝑋||𝑌 ൌ 1ሿ𝑃ሼ𝑌 ൌ 1ሽ ൅ 𝐸ሾ𝑋||𝑌 ൌ 2ሿ𝑃ሼ𝑌 ൌ 2ሽ

൅𝐸ሾ𝑋 ||𝑌 ൌ 3ሿ𝑃ሼ𝑌 ൌ 3ሽ

ൌ
1
3
ሺ𝐸ሾ𝑋||𝑌 ൌ 1ሿ൅𝐸ሾ𝑋|𝑌 ൌ 2ሿ൅𝐸ሾ𝑋 |𝑌 ൌ 3ሿሻ
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To understand why Equation (5.3)  is correct, consider, for instance,

 and reason as follows: If the miner chooses the second door, he

spends 5 hours in the tunnel and then returns to his cell. But once he returns to

his cell, the problem is as before; thus, his expected additional time until safety is

just [ ]. Hence, . The argument behind the other

equalities in Equation (5.3)  is similar. Hence,

or

Example 5d Expectation of a sum of a random number of random variables

Suppose that the number of people entering a department store on a given day is

a random variable with mean 50. Suppose further that the amounts of money

spent by these customers are independent random variables having a common

mean of $8. Finally, suppose also that the amount of money spent by a customer

is also independent of the total number of customers who enter the store. What is

the expected amount of money spent in the store on a given day?

Solution

If we let  denote the number of customers who enter the store and  the

amount spent by the th such customer, then the total amount of money spent

can be expressed as  Now,

But

𝐸ሾ𝑋 ||𝑌 ൌ 1ሿ ൌ 3

𝐸ሾ𝑋 ||𝑌 ൌ 2ሿ ൌ 5 ൅ 𝐸ሾ𝑋ሿ

𝐸ሾ𝑋 ||𝑌 ൌ 3ሿ ൌ 7 ൅ 𝐸ሾ𝑋ሿ

(5.3)

𝐸ሾ𝑋 ||𝑌 ൌ 2ሿ

𝐸 𝑋 𝐸ሾ𝑋 ||𝑌 ൌ 2ሿ ൌ 5 ൅ 𝐸ሾ𝑋ሿ

𝐸ሾ𝑋ሿ ൌ
1
3
ሺ3 ൅ 5 ൅ 𝐸ሾ𝑋ሿ ൅ 7 ൅ 𝐸ሾ𝑋ሿሻ

𝐸ሾ𝑋ሿ ൌ 15

𝑁 𝑋௜
𝑖

෍
௜ ൌ ଵ

ே

𝑋௜.

𝐸቎෍
ଵ

ே

𝑋௜቏ ൌ 𝐸቎𝐸቎෍
ଵ

ே

𝑋௜ |𝑁቏቏
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which implies that

Thus,

Hence, in our example, the expected amount of money spent in the store is

 or $400.

Example 5e

The game of craps is begun by rolling an ordinary pair of dice. If the sum of the

dice is 2, 3, or 12, the player loses. If it is 7 or 11, the player wins. If it is any other

number  the player continues to roll the dice until the sum is either 7 or . If it is

7, the player loses; if it is  the player wins. Let  denote the number of rolls of

the dice in a game of craps. Find -5pt

a. ;

b. 

c. 

Solution

If we let  denote the probability that the sum of the dice is  then

To compute  we condition on  the initial sum, giving

𝐸቎෍
ଵ

ே

𝑋௜ |𝑁 ൌ 𝑛቏ ൌ 𝐸቎෍
ଵ

௡

𝑋௜ |𝑁 ൌ 𝑛቏

ൌ 𝐸቎෍
ଵ

௡

𝑋௜቏  by the independence of  the  𝑋௜  and  𝑁

ൌ 𝑛𝐸ሾ𝑋ሿ  where  𝐸ሾ𝑋ሿ ൌ 𝐸ሾ𝑋௜ሿ

𝐸቎෍
ଵ

ே

𝑋௜ |𝑁቏ ൌ 𝑁𝐸ሾ𝑋ሿ

𝐸቎ ෍
௜ ൌ ଵ

ே

𝑋௜቏ ൌ 𝐸ሾ𝑁𝐸ሾ𝑋ሿሿ ൌ 𝐸ሾ𝑁ሿ𝐸ሾ𝑋ሿ

50 ൈ $8,

𝑖, 𝑖

𝑖, 𝑅

𝐸ሾ𝑅ሿ
𝐸ሾ𝑅 || player winsሿ;
𝐸ሾ𝑅 || player losesሿ .

𝑃௜ 𝑖,

𝑃௜ ൌ 𝑃ଵସെ௜ ൌ
𝑖 െ 1

36
, 𝑖 ൌ 2, …, 7

𝐸ሾ𝑅ሿ, 𝑆,
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However,

The preceding equation follows because if the sum is a value  that does not end

the game, then the dice will continue to be rolled until the sum is either  or 7, and

the number of rolls until this occurs is a geometric random variable with

parameter . Therefore,

To determine  let us start by determining  the probability that the

player wins. Conditioning on  yields

where the preceding uses the fact that the probability of obtaining a sum of 

before one of 7 is . Now, let us determine the conditional probability

mass function of  given that the player wins. Letting  we

have

and, for 

𝐸ሾ𝑅ሿ ൌ ෍
௜ ൌ ଶ

ଵଶ

𝐸ሾ𝑅 |𝑆 ൌ 𝑖ሿ𝑃௜

𝐸ሾ𝑅 |𝑆 ൌ 𝑖ሿ ൌ ൞

1, if   𝑖 ൌ 2, 3, 7, 11, 12

1 ൅
1

𝑃௜ ൅ 𝑃଻
, otherwise

𝑖

𝑖

𝑃௜ ൅ 𝑃଻

𝐸ሾ𝑅ሿ ൌ 1 ൅ ෍
௜ ൌ ସ

଺
𝑃௜

𝑃௜ ൅ 𝑃଻
൅ ෍

௜ ൌ ଼

ଵ଴
𝑃௜

𝑃௜ ൅ 𝑃଻

ൌ 1 ൅ 2ሺ3/9 ൅ 4/10 ൅ 5/11ሻ ൌ 3.376

𝐸ሾ𝑅 || win ሿ, 𝑝,

𝑆

𝑝 ൌ ෍
௜ ൌ ଶ

ଵଶ

𝑃ሼwin ||𝑆 ൌ 𝑖ሽ𝑃௜

ൌ 𝑃଻ ൅ 𝑃ଵଵ ൅ ෍
௜ ൌ ସ

଺
𝑃௜

𝑃௜ ൅ 𝑃଻
𝑃௜ ൅ ෍

௜ ൌ ଼

ଵ଴
𝑃௜

𝑃௜ ൅ 𝑃଻
𝑃௜

ൌ 0.493

𝑖

𝑃௜/ሺ𝑃௜ ൅ 𝑃଻ሻ

𝑆, 𝑄௜ ൌ 𝑃൛𝑆 ൌ 𝑖ห winൟ,

𝑄ଶ ൌ 𝑄ଷ ൌ 𝑄ଵଶ ൌ 0, 𝑄଻ ൌ 𝑃଻/𝑝, 𝑄ଵଵ ൌ 𝑃ଵଵ/𝑝

𝑖 ൌ 4, 5, 6, 8, 9, 10,
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Now, conditioning on the initial sum gives

However, as was noted in Example 2j  of Chapter 6 , given that the initial

sum is  the number of additional rolls needed and the outcome (whether a win

or a loss) are independent. (This is easily seen by first noting that conditional on

an initial sum of  the outcome is independent of the number of additional dice

rolls needed and then using the symmetry property of independence, which

states that if event  is independent of event  then event  is independent of

event .) Therefore,

Although we could determine  exactly as we did

 it is easier to use

implying that

Example 5f

As defined in Example 5d  of Chapter 6 , the bivariate normal joint density

function of the random variables  and  is

𝑄௜ ൌ
𝑃ሼ𝑆 ൌ 𝑖, winሽ

𝑃ሼwinሽ

ൌ
𝑃௜𝑃ሼwin ||𝑆 ൌ 𝑖ሽ

𝑝

ൌ
𝑃ଶ௜

𝑝ሺ𝑃௜ ൅ 𝑃଻ሻ

𝐸ሾ𝑅 | win ሿ ൌ ෍
௜

𝐸ሾ𝑅 | win , 𝑆 ൌ 𝑖ሿ𝑄௜

𝑖,

𝑖,

𝐴 𝐵, 𝐵

𝐴

𝐸ሾ𝑅 |winሿ ൌ ෍
௜

𝐸ሾ𝑅 |𝑆 ൌ 𝑖ሿ𝑄௜

ൌ 1 ൅ ෍
௜ ൌ ସ

଺
𝑄௜

𝑃௜ ൅ 𝑃଻
൅ ෍

௜ ൌ ଼

ଵ଴

 
𝑄௜

𝑃௜ ൅ 𝑃଻

ൌ 2.938

𝐸ሾ𝑅 || player losesሿ
𝐸ሾ𝑅 || player winsሿ,

𝐸ሾ𝑅ሿ ൌ 𝐸ሾ𝑅 || win ሿ𝑝 ൅ 𝐸ሾ𝑅 || lose ሿሺ1 െ 𝑝ሻ

𝐸ሾ𝑅 | lose ሿ ൌ
𝐸ሾ𝑅ሿ െ 𝐸ሾ𝑅 || win ሿ𝑝

1 െ 𝑝
ൌ 3 . 801

𝑋 𝑌
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We will now show that  is the correlation between  and . As shown in

Example 5c ,  and 

Consequently,

To determine  we condition on . That is, we use the identity

Recalling from Example 5d  that the conditional distribution of  given that

 is normal with mean  we see that

Consequently,

implying that

𝑓ሺ𝑥,𝑦ሻ ൌ  
1

2𝜋𝜎௫𝜎௬ 1 െ 𝜌ଶඥ
  exp ൝െ

1
2ሺ1 െ 𝜌ଶሻ

൥ቆ
𝑥 െ 𝜇௫
𝜎௫

ቇ
ଶ

൅ ቆ
𝑦 െ 𝜇௬
𝜎௬

ቇ
ଶ

                      െ2𝜌
ሺ𝑥 െ 𝜇௫ሻቀ𝑦 െ 𝜇௬ቁ

𝜎௫𝜎௬
቏ቑ

𝜌 𝑋 𝑌

𝜇௫ ൌ 𝐸ൣ𝑋൧,𝜎௫ଶ ൌ  Var ሺ𝑋ሻ, 𝜇௬ ൌ 𝐸ሾ𝑌ሿ,𝜎௬ଶ ൌ  Var ሺ𝑌ሻ.

Corr ሺ𝑋,𝑌ሻ ൌ
Cov ሺ𝑋,𝑌ሻ
𝜎௫𝜎௬

ൌ
𝐸ሾ𝑋𝑌ሿ െ 𝜇௫𝜇௬

𝜎௫𝜎௬

𝐸ሾ𝑋𝑌ሿ, 𝑌

𝐸ሾ𝑋𝑌ሿ ൌ 𝐸ሾ𝐸ሾ𝑋𝑌 ||𝑌ሿሿ

𝑋

𝑌 ൌ 𝑦 𝜇௫ ൅ 𝜌
𝜎௫
𝜎௬
ሺ𝑦 െ 𝜇௬ሻ,

𝐸ሾ𝑋𝑌 ||𝑌 ൌ 𝑦ሿ ൌ 𝐸ሾ𝑋𝑦 ||𝑌 ൌ 𝑦ሿ

ൌ 𝑦𝐸ሾ𝑋 ||𝑌 ൌ 𝑦ሿ

ൌ 𝑦ቈ𝜇௫ ൅ 𝜌
𝜎௫
𝜎௬
ሺ𝑦 െ 𝜇௬ሻ቉

ൌ 𝑦𝜇௫ ൅ 𝜌
𝜎௫
𝜎௬
ሺ𝑦ଶ െ 𝜇௬𝑦ሻ

𝐸ሾ𝑋𝑌 |𝑌ሿ ൌ 𝑌𝜇௫ ൅ 𝜌
𝜎௫
𝜎௬
ሺ𝑌ଶ െ 𝜇௬𝑌ሻ
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Therefore,

Sometimes  is easy to compute, and we use the conditioning identity to compute

a conditional expected value. This approach is illustrated by our next example.

Example 5g

Consider  independent trials, each of which results in one of the outcomes

 with respective probabilities . Let  denote the

number of trials that result in outcome . For  find

Solution

To solve (a), let

Then

or, equivalently,

Now, the unconditional distribution of  is binomial with parameters . Also,

given that  each of the  trials that does not result in outcome  will,

𝐸ሾ𝑋𝑌ሿ ൌ 𝐸ቈ𝑌𝜇௫ ൅ 𝜌
𝜎௫
𝜎௬
ሺ𝑌ଶ െ 𝜇௬𝑌ሻ቉

ൌ 𝜇௫𝐸ሾ𝑌ሿ ൅ 𝜌
𝜎௫
𝜎௬

𝐸ሾ𝑌ଶ െ 𝜇௬𝑌ሿ

ൌ 𝜇௫𝜇௬ ൅ 𝜌
𝜎௫
𝜎௬

൫𝐸ൣ𝑌ଶ൧ െ 𝜇ଶ௬൯

ൌ 𝜇௫𝜇௬ ൅ 𝜌
𝜎௫
𝜎௬

Var ሺ𝑌ሻ

ൌ 𝜇௫𝜇௬ ൅ 𝜌𝜎௫𝜎௬

Corr ሺ𝑋,𝑌ሻ ൌ
𝜌𝜎௫𝜎௬
𝜎௫𝜎௬

ൌ 𝜌

𝐸ሾ𝑋ሿ

𝑛

1, …, 𝑘, 𝑝ଵ, …,𝑝௞,෍
௜ൌଵ

௞
𝑝௜ ൌ 1 𝑁௜

𝑖,𝑖 ൌ 1, …, 𝑘 𝑖 ് 𝑗,

ሺ a ሻ 𝐸ൣ𝑁௝ ห𝑁௜ ൐ 0൧   and   ሺ b ሻ 𝐸ൣ𝑁௝ ห𝑁௜ ൐ 1൧

𝐼 ൌ ൝
0,  if Ni ൌ 0

1,  if Ni൐0

𝐸ൣ𝑁௝൧ ൌ 𝐸ൣ𝑁௝ ห𝐼 ൌ 0൧𝑃൛𝐼 ൌ 0ൟ ൅ 𝐸ൣ𝑁௝ ห𝐼 ൌ 1൧𝑃൛𝐼 ൌ 1ൟ

𝐸ൣ𝑁௝൧ ൌ 𝐸ൣ𝑁௝ ห𝑁௜ ൌ 0൧𝑃൛𝑁௜ ൌ 0ൟ ൅ 𝐸ൣ𝑁௝ ห𝑁௜ ൐ 0൧𝑃൛𝑁௜ ൐ 0ൟ

𝑁௝ 𝑛, 𝑝௝
𝑁௜ ൌ 𝑟, 𝑛 െ 𝑟 𝑖
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independently, result in outcome  with probability .

Consequently, the conditional distribution of  given that  is binomial with

parameters . (For a more detailed argument for this conclusion, see

Example 4c  of Chapter 6 .) Because  the preceding

equation yields

giving the result

We can solve part (b) in a similar manner. Let

Then

or, equivalently,

This equation yields

giving the result

𝑗 𝑃ሺ𝑗 | not  𝑖ሻ ൌ
𝑝௝

1 െ 𝑝௜
𝑁௝, 𝑁௜ ൌ 𝑟,

𝑛 െ 𝑟,
𝑝௝

1 െ 𝑝௜
𝑃൛𝑁௜ ൌ 0ൟ ൌ ሺ1 െ 𝑝௜൯

௡
,

𝑛𝑝௝ ൌ 𝑛
𝑝௝

1 െ 𝑝௜
ሺ1 െ 𝑝௜ሻ

௡ ൅ 𝐸ሾ𝑁௝ |𝑁௜ ൐ 0ሿሺ1 െ ሺ1 െ 𝑝௜ሻ
௡ሻ

𝐸ሾ𝑁௝ |𝑁௜ ൐ 0ሿ ൌ 𝑛𝑝௝ 
1 െ ሺ1 െ 𝑝௜ሻ

௡െଵ

1 െ ሺ1 െ 𝑝௜ሻ
௡

𝐽 ൌ ൞

0,  if N௜ ൌ 0

1,  if N௜ ൌ 1

2,  if N௜൐1

𝐸ൣ𝑁௝൧ ൌ 𝐸ൣ𝑁௝ ห 𝐽 ൌ 0൧𝑃൛𝐽 ൌ 0ൟ ൅ 𝐸ൣ𝑁௝ ห 𝐽 ൌ 1൧𝑃൛𝐽 ൌ 1ൟ

  ൅ 𝐸ൣ𝑁௝ ห 𝐽 ൌ 2൧𝑃൛𝐽 ൌ 2ൟ

𝐸ൣ𝑁௝൧ ൌ 𝐸ൣ𝑁௝ ห𝑁௜ ൌ 0൧𝑃൛𝑁௜ ൌ 0ൟ ൅ 𝐸ൣ𝑁௝ ห𝑁௜ ൌ 1൧𝑃൛𝑁௜ ൌ 1ൟ

  ൅ 𝐸ൣ𝑁௝ ห𝑁௜ ൐ 1൧𝑃൛𝑁௜ ൐ 1ൟ

𝑛𝑝௝ ൌ 𝑛
𝑝௝

1 െ 𝑝௜
ሺ1 െ 𝑝௜ሻ

௡ ൅ ሺ𝑛 െ 1ሻ
𝑝௝

1 െ 𝑝௜
𝑛𝑝௜ሺ1 െ 𝑝௜ሻ

௡െଵ

  ൅ 𝐸ൣ𝑁௝ ห𝑁௜ ൐ 1൧൫1 െ ሺ1 െ 𝑝௜൯
௡
െ 𝑛𝑝௜ሺ1 െ 𝑝௜൯

௡െଵ
൯

𝐸ሾ𝑁௝ |𝑁௜ ൐ 1ሿ ൌ
𝑛𝑝௝ቂ1 െ ሺ1 െ 𝑝௜ሻ

௡െଵ െ ሺ𝑛 െ 1ሻ𝑝௜ሺ1 െ 𝑝௜ሻ
௡െଶቃ

1 െ ሺ1 െ 𝑝௜ሻ
௡ െ 𝑛𝑝௜ሺ1 െ 𝑝௜ሻ

௡െଵ
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It is also possible to obtain the variance of a random variable by conditioning. We

illustrate this approach by the following example.

Example 5h Variance of the geometric distribution

Independent trials, each resulting in a success with probability  are

successively performed. Let  be the time of the first success. Find Var .

Solution

Let  if the first trial results in a success and  otherwise. Now,

To calculate  we condition on  as follows:

However,

These two equations follow because, on the one hand, if the first trial results in a

success, then, clearly, ; thus, . On the other hand, if the first trial

results in a failure, then the total number of trials necessary for the first success

will have the same distribution as 1 (the first trial that results in failure) plus the

necessary number of additional trials. Since the latter quantity has the same

distribution as  we obtain Hence,

However, as was shown in Example 8b  of Chapter 4 , ;

therefore,

or

𝑝,

𝑁 ሺ𝑁ሻ

𝑌 ൌ 1 𝑌 ൌ 0

Var ሺ𝑁൯ ൌ 𝐸ൣ𝑁ଶ൧ െ ሺ𝐸ൣ𝑁൧൯
ଶ

𝐸ൣ𝑁ଶ൧, 𝑌

𝐸ൣ𝑁ଶ൧ ൌ 𝐸ൣ𝐸ൣ𝑁ଶห𝑌൧൧

𝐸ൣ𝑁ଶห𝑌 ൌ 1ሿ ൌ 1

𝐸ൣ𝑁ଶห𝑌 ൌ 0ሿ ൌ 𝐸ሾሺ1 ൅𝑁ሻଶሿ

𝑁 ൌ 1 𝑁ଶ ൌ 1

𝑁, 𝐸ൣ𝑁ଶห𝑌 ൌ 0൧ ൌ 𝐸ൣ൫1 ൅𝑁൯
ଶ
൧

𝐸ൣ𝑁ଶ൧ ൌ 𝐸ൣ𝑁ଶห𝑌 ൌ 1൧𝑃൛𝑌 ൌ 1ൟ ൅ 𝐸ൣ𝑁ଶห𝑌 ൌ 0൧𝑃൛𝑌 ൌ 0ൟ

ൌ 𝑝 ൅ ሺ1 െ 𝑝ሻ𝐸ሾሺ1 ൅𝑁ሻଶሿ

ൌ 1 ൅ ሺ1 െ 𝑝൯𝐸ൣ2𝑁 ൅ 𝑁ଶ൧

𝐸ሾ𝑁ሿ ൌ 1/𝑝

𝐸ሾ𝑁ଶሿ ൌ 1 ൅
2ሺ1 െ 𝑝ሻ

𝑝
൅ ሺ1 െ 𝑝ሻ𝐸ሾ𝑁ଶሿ

538 of 848



Consequently,

Example 5i

Consider a gambling situation in which there are  players, with player  initially

having  units,  At each stage, two of the players are chosen

to play a game, with the winner of the game receiving 1 unit from the loser. Any

player whose fortune drops to 0 is eliminated, and this continues until a single

player has all  units, with that player designated as the victor.

Assuming that the results of successive games are independent and that each

game is equally likely to be won by either of its two players, find the average

number of stages until one of the players has all  units.

Solution

To find the expected number of stages played, suppose first that there are only 2

players, with players 1 and 2 initially having  and  units, respectively. Let 

denote the number of stages that will be played, and let Then, for

...

where  is the additional number of stages needed beyond the first stage.

Taking expectations gives

Conditioning on the result of the first stage then yields

Now, if player 1 wins at the first stage, then the situation from that point on is

exactly the same as in a problem that supposes that player 1 starts with 

and player 2 with  units. Consequently,

𝐸ሾ𝑁ଶሿ ൌ
2 െ 𝑝
𝑝ଶ

Var ሺ𝑁ሻ ൌ 𝐸ൣ𝑁ଶ൧ െ ሺ𝐸ൣ𝑁൧ሻଶ

ൌ
2 െ 𝑝
𝑝ଶ

െ ቆ
1
𝑝
ቇ
ଶ

ൌ
1 െ 𝑝
𝑝ଶ

𝑟 𝑖

𝑛௜ 𝑛௜ ൐ 0,  𝑖 ൌ 1,  … ,  𝑟.

n ≡ ෍
௜ൌଵ

௥
𝑛௜

𝑛

𝑗 𝑛 െ 𝑗 𝑋௝
𝑚௝ ൌ 𝐸ൣ𝑋௝൧ .

𝑗 ൌ 1, ,𝑛 െ 1,

𝑋௝ ൌ 1 ൅ 𝐴௝

𝐴௝

𝑚௝ ൌ 1 ൅ 𝐸ൣ𝐴௝൧

𝑚௝ ൌ 1 ൅ 𝐸ൣ𝐴௝ ห1  wins ϐirst stage ൧1/2 ൅ 𝐸ൣ𝐴௝ ห2  wins ϐirst stage ൧1/2

𝑗 ൅ 1

𝑛 െ ሺ 𝑗 ൅ 1ሻ
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and, analogously,

Thus,

or, equivalently,

Using that  the preceding equation yields

suggesting that

To prove the preceding equality, we use mathematical induction. Since we’ve

already shown the equation to be true for  we take as the induction

hypothesis that it is true whenever . Now we must prove that it is true for

. Using Equation (5.4)  yields

which completes the induction proof of (5.5) . Letting  in (5.5) , and

using that  now yields that

𝐸ൣ𝐴௝ ห1  wins ϐirst stage ൧ ൌ 𝑚௝൅ଵ

𝐸ൣ𝐴௝ ห2  wins ϐirst stage ൧ ൌ 𝑚௝െଵ

𝑚௝ ൌ 1 ൅
1
2
𝑚௝൅ଵ ൅

1
2
𝑚௝െଵ

𝑚௝൅ଵ ൌ 2𝑚௝ െ𝑚௝െଵ െ 2, 𝑗 ൌ 1, …,𝑛 െ 1

(5.4)

𝑚଴ ൌ 0,

𝑚ଶ ൌ 2𝑚ଵ െ 2

𝑚ଷ ൌ 2𝑚ଶ െ𝑚ଵ െ 2 ൌ 3𝑚ଵ െ 6 ൌ 3ሺ𝑚ଵ െ 2ሻ

𝑚ସ ൌ 2𝑚ଷ െ𝑚ଶ െ 2 ൌ 4𝑚ଵ െ 12 ൌ 4ሺ𝑚ଵ െ 3ሻ

𝑚௜ ൌ 𝑖ሺ𝑚ଵ െ 𝑖 ൅ 1ሻ,  𝑖 ൌ 1, …,𝑛

(5.5)

𝑖 ൌ 1, 2,

𝑖 ൑ 𝑗 ൏ 𝑛

𝑗 ൅ 1

𝑚௝൅ଵ ൌ 2𝑚௝ െ𝑚௝െଵ െ 2

ൌ 2𝑗ሺ𝑚ଵ െ 𝑗 ൅ 1ሻ െ ሺ𝑗 െ 1ሻሺ𝑚ଵ െ 𝑗 ൅ 2ሻ െ 2 ሺ by the induction hypothesis ሻ

ൌ ൫𝑗 ൅ 1൯𝑚ଵ െ 2𝑗ଶ ൅ 2𝑗 ൅ 𝑗ଶ െ 3𝑗 ൅ 2 െ 2

ൌ ൫𝑗 ൅ 1൯𝑚ଵ െ 𝑗ଶ െ 𝑗

ൌ ሺ𝑗 ൅ 1ሻሺ𝑚ଵ െ 𝑗ሻ

𝑖 ൌ 𝑛

𝑚௡ ൌ 0,

𝑚ଵ ൌ 𝑛 െ 1
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which, again using (5.5) , gives the result

Thus, the mean number of games played when there are only 2 players with

initial amounts  and  is the product of their initial amounts. Because both

players play all stages, this is also the mean number of stages involving player 1.

Now let us return to the problem involving  players with initial amounts 

...  Let  denote the number of stages needed to obtain a victor, and

let  denote the number of stages involving player . Now, from the point of view

of player  starting with  he will continue to play stages, independently being

equally likely to win or lose each one, until his fortune is either  or 0. Thus, the

number of stages he plays is exactly the same as when he has a single opponent

with an initial fortune of . Consequently, by the preceding result, it follows

that

so

But because each stage involves two players,

Taking expectations now yields

It is interesting to note that while our argument shows that the mean number of

stages does not depend on the manner in which the teams are selected at each

stage, the same is not true for the distribution of the number of stages. To see

this, suppose  and If players 1 and 2 are chosen in

the first stage, then it will take at least three stages to determine a winner,

whereas if player 3 is in the first stage, then it is possible for there to be only two

𝑚௜ ൌ 𝑖ሺ𝑛 െ 𝑖ሻ

𝑖 𝑛 െ 𝑖

𝑟 𝑛௜, 𝑖 ൌ 1,

෍
௜ൌଵ

௥
 𝑛௜ ൌ 𝑛. 𝑋

𝑋௜ 𝑖

𝑖, 𝑛௜,

𝑛

𝑛 െ 𝑛௜

𝐸ሾ𝑋௜ሿ ൌ 𝑛௜ሺ𝑛 െ 𝑛௜ሻ

𝐸቎ ෍
௜ ൌ ଵ

௥

𝑋௜቏ ൌ ෍
௜ ൌ ଵ

௥

𝑛௜ሺ𝑛 െ 𝑛௜ሻ ൌ 𝑛ଶ െ ෍
௜ ൌ ଵ

௥

𝑛ଶ௜

𝑋 ൌ
1
2
෍

௜ ൌ ଵ

௥

𝑋௜

𝐸ሾ𝑋ሿ ൌ
1
2
ቌ𝑛ଶ െ ෍

௜ ൌ ଵ

௥

𝑛ଶ௜ቍ

𝑟 ൌ 3, 𝑛ଵ ൌ 𝑛ଶ ൌ 1, 𝑛ଷ ൌ 2 .
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stages.

In our next example, we use conditioning to verify a result previously noted in

Section 6.3.1 : that the expected number of uniform  random variables that

need to be added for their sum to exceed 1 is equal to .

Example 5j

Let  be a sequence of independent uniform (0, 1) random variables. Find

 when

Solution

We will find E[N] by obtaining a more general result. For  let

and set

That is,  is the number of uniform (0, 1) random variables we must add until

their sum exceeds  and  is its expected value. We will now derive an

equation for  by conditioning on . This gives, from Equation (5.1b) ,

Now,

The preceding formula is obviously true when . It is also true when 

since, if the first uniform value is  then, at that point, the remaining number of

ሺ0, 1ሻ
𝑒

𝑈ଵ,𝑈ଶ, …

𝐸ሾ𝑁ሿ

𝑁 ൌ min ቐ𝑛:   ෍
௜ ൌ ଵ

௡

𝑈௜ ൐ 1ቑ

𝑥 ∈ ሾ0, 1ሿ,

𝑁ሺ𝑥ሻ ൌ min ቐ𝑛:   ෍
௜ ൌ ଵ

௡

𝑈௜ ൐ 𝑥ቑ

𝑚ሺ𝑥ሻ ൌ 𝐸ሾ𝑁ሺ𝑋ሻሿ

𝑁ሺ𝑥ሻ
𝑥, 𝑚ሺ𝑥ሻ

𝑚ሺ𝑥ሻ 𝑈ଵ

𝑚ሺ𝑥ሻ ൌ ඲

଴

ଵ

𝐸ሾ𝑁ሺ𝑋ሻ |𝑈ଵ ൌ 𝑦ሿ 𝑑𝑦

(5.6)

𝐸ሾ𝑁ሺ𝑋ሻ |𝑈ଵ ൌ 𝑦ሿ ൌ ൝
1 if   𝑦 ൐ 𝑥

1 ൅𝑚ሺ𝑥 െ 𝑦ሻ if   𝑦 ൑ 𝑥

(5.7)

𝑦 ൐ 𝑥 𝑦 ൑ 𝑥,

𝑦,
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uniform random variables needed is the same as if we were just starting and

were going to add uniform random variables until their sum exceeded .

Substituting Equation (5.7)  into Equation (5.6)  gives

Differentiating the preceding equation yields

or, equivalently,

Integrating this equation gives

or

Since  it follows that  so we obtain

Therefore, (1), the expected number of uniform (0, 1) random variables that

need to be added until their sum exceeds 1, is equal to .

Not only can we obtain expectations by first conditioning on an appropriate random

variable, but we can also use this approach to compute probabilities. To see this, let

 denote an arbitrary event, and define the indicator random variable  by

𝑥 െ 𝑦

𝑚ሺ𝑥ሻ ൌ 1 ൅඲

଴

௫

𝑚ሺ𝑥 െ 𝑦ሻ 𝑑𝑦

ൌ 1 ൅඲

଴

௫

𝑚ሺ𝑢ሻ𝑑𝑢  
by letting

𝑢 ൌ 𝑥 െ 𝑦

𝑚′ሺ𝑥ሻ ൌ 𝑚ሺ𝑋ሻ

𝑚′ሺ𝑥ሻ
𝑚ሺ𝑥ሻ

ൌ 1

logሾ𝑚ሺ𝑋ሻሿ ൌ 𝑥 ൅ 𝑐

𝑚ሺ𝑥ሻ ൌ 𝑘𝑒௫

𝑚ሺ0ሻ ൌ 1, 𝑘 ൌ 1,

𝑚ሺ𝑥ሻ ൌ 𝑒௫

𝑚

𝑒

𝐴 𝑋

𝑋 ൌ ቊ
1 if   𝐴  occurs

0 if   𝐴  does not occur
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It follows from the definition of  that

Therefore, from Equations (5.1a ) and (5.1b) , we obtain

Note that if  is a discrete random variable taking on one of the values  then

by defining the events  by Equation (5.8)  reduces to

the familiar equation

where  are mutually exclusive events whose union is the sample space.

Example 5k The best-prize problem

Suppose that we are to be presented with  distinct prizes, in sequence. After

being presented with a prize, we must immediately decide whether to accept it or

to reject it and consider the next prize. The only information we are given when

deciding whether to accept a prize is the relative rank of that prize compared to

ones already seen. That is, for instance, when the fifth prize is presented, we

learn how it compares with the four prizes we’ve already seen. Suppose that

once a prize is rejected, it is lost, and that our objective is to maximize the

probability of obtaining the best prize. Assuming that all ! orderings of the prizes

are equally likely, how well can we do?

Solution

Rather surprisingly, we can do quite well. To see this, fix a value  and

consider the strategy that rejects the first  prizes and then accepts the first one

that is better than all of those first . Let  denote the probability that the

best prize is selected when this strategy is employed. To compute this probability,

condition on  the position of the best prize. This gives

𝑋

𝐸ሾ𝑋ሿ ൌ 𝑃ሺ𝐴ሻ

𝐸ሾ𝑋 ||𝑌 ൌ 𝑦ሿ ൌ 𝑃ሺ𝐴 ||𝑌 ൌ 𝑦ሻ  for any random variable  𝑌

𝑃ሺ𝐴ሻ ൌ ෍
௬

𝑃ሺ𝐴 |𝑌 ൌ 𝑦ሻ𝑃ሺ𝑌 ൌ 𝑦ሻ  if   𝑌  is discrete

ൌ ඲
െஶ

ஶ

𝑃ሺ𝐴ห𝑌 ൌ 𝑦ሻ𝑓௒ሺ𝑦ሻ𝑑𝑦  if   𝑌  is continuous

(5.8)

𝑌 𝑦ଵ, …,𝑦௡,

𝐵௜, 𝑖 ൌ 1, …,𝑛, 𝐵௜ ൌ ൛𝑌 ൌ 𝑦௜ൟ,

𝑃ሺ𝐴ሻ ൌ ෍
௜ ൌ ଵ

௡

𝑃ሺ𝐴 ||𝐵௜ሻ𝑃ሺ𝐵௜ሻ

𝐵ଵ, …,𝐵௡

𝑛

𝑛

𝑘,0 ൑ 𝑘 ൏ 𝑛,

𝑘

𝑘 𝑃௞ሺ 𝑏𝑒𝑠𝑡 ሻ

𝑋,
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Now, on the one hand, if the overall best prize is among the first  then no prize

is ever selected under the strategy considered. That is,

On the other hand, if the best prize is in position  where  then the best

prize will be selected if the best of the first  prizes is among the first (for

then none of the prizes in positions  would be selected). But,

conditional on the best prize being in position  it is easy to verify that all possible

orderings of the other prizes remain equally likely, which implies that each of the

first  prizes is equally likely to be the best of that batch. Hence, we have

From the preceding, we obtain

Now, if we consider the function

then

𝑃௞ሺ best ሻ ൌ ෍
௜ ൌ ଵ

௡

𝑃௞ሺ best |𝑋 ൌ 𝑖ሻ𝑃ሺ𝑋 ൌ 𝑖ሻ

ൌ
1
𝑛
෍

௜ ൌ ଵ

௡

𝑃௞ሺ best |𝑋 ൌ 𝑖ሻ

𝑘,

𝑃௞ሺ best ||𝑋 ൌ 𝑖ሻ ൌ 0  if   𝑖 ൑ 𝑘

𝑖, 𝑖 ൐ 𝑘,

𝑖 െ 1 𝑘

𝑘 ൅ 1, 𝑘 ൅ 2, …, 𝑖 െ 1

𝑖,

𝑖 െ 1

𝑃௞ሺ best ||𝑋 ൌ 𝑖ሻ ൌ 𝑃ሼbest of  ϐirst  𝑖 െ 1  is among the ϐirst  𝑘 ||𝑋 ൌ 𝑖ሽ

ൌ
𝑘

𝑖 െ 1
  if    𝑖 ൐ 𝑘

𝑃௞ሺbest ሻ ൌ
𝑘
𝑛

෍
௜ ൌ ௞ ൅ ଵ

௡
1

𝑖 െ 1

ൎ
𝑘
𝑛
඲

௞൅ଵ

௡
1

𝑥 െ 1
𝑑𝑥

ൌ
𝑘
𝑛

log ቆ
𝑛 െ 1
𝑘

ቇ

ൎ
𝑘
𝑛

log ൬
𝑛
𝑘
൰

𝑔ሺ𝑥ሻ ൌ
𝑥
𝑛

log ൬
𝑛
𝑥
൰
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so

Thus, since  we see that the best strategy of the type

considered is to let the first n/e prizes go by and then accept the first one to

appear that is better than all of those. In addition, since  the

probability that this strategy selects the best prize is approximately 

.

Remark Most people are quite surprised by the size of the probability of

obtaining the best prize, thinking that this probability would be close to 0 when 

is large. However, even without going through the calculations, a little thought

reveals that the probability of obtaining the best prize can be made reasonably

large. Consider the strategy of letting half of the prizes go by and then selecting

the first one to appear that is better than all of those. The probability that a prize

is actually selected is the probability that the overall best is among the second

half, and this is . In addition, given that a prize is selected, at the time of

selection that prize would have been the best of more than /2 prizes to have

appeared and would thus have probability of at least  of being the overall best.

Hence, the strategy of letting the first half of all prizes go by and then accepting

the first one that is better than all of those prizes has a probability greater than 

of obtaining the best prize.

Example 5l

Let  be a uniform random variable on (0, 1), and suppose that the conditional

distribution of  given that  is binomial with parameters  and . Find the

probability mass function of .

Solution

Conditioning on the value of  gives

𝑔′ሺ𝑥ሻ ൌ
1
𝑛

log ൬
𝑛
𝑥
൰ െ

1
𝑛

𝑔′ሺ𝑥൰ ൌ 0 ⇒ log ൬
𝑛
𝑥
൰ ൌ 1 ⇒ 𝑥 ൌ

𝑛
𝑒

𝑃௞ሺ 𝑏𝑒𝑠𝑡 ሻ ൎ 𝑔ሺ𝑘ሻ,

𝑔ሺ𝑛/𝑒ሻ ൌ 1/𝑒,

1/𝑒 ൎ . 36788

𝑛

1
2

𝑛
1
2

1
4

𝑈

𝑋, 𝑈 ൌ 𝑝, 𝑛 𝑝

𝑋

𝑈
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Now, it can be shown (a probabilistic proof is given in Section 6.6)  that

Hence, we obtain

That is, we obtain the surprising result that if a coin whose probability of coming

up heads is uniformly distributed over (0, 1) is flipped  times, then the number of

heads occurring is equally likely to be any of the values .

Because the preceding conditional distribution has such a nice form, it is worth

trying to find another argument to enhance our intuition as to why such a result is

true. To do so, let  be  independent uniform (0, 1) random

variables, and let  denote the number of the random variables  that are

smaller than .Since all the random variables  have the same

distribution, it follows that  is equally likely to be the smallest, or second

smallest, or largest of them; so  is equally likely to be any of the values .

However, given that  the number of the  that are less than  is a binomial

random variable with parameters  and  thus establishing our previous result.

Example 5m

A random sample of  balls is chosen from an urn that contains  red and  blue

balls. If  is equally likely to be any of the values  find the probability that

all the balls in the sample are red.

Solution

Conditioning on  yields

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ ඲

଴

ଵ

𝑃ሼ𝑋 ൌ 𝑖 |𝑈 ൌ 𝑝ሽ𝑓௎ሺ𝑝ሻ 𝑑𝑝

ൌ ඲

଴

ଵ

𝑃ሼ𝑋 ൌ 𝑖 |𝑈 ൌ 𝑝ሽ 𝑑𝑝

ൌ
𝑛!

𝑖!ሺ𝑛 െ 𝑖ሻ!
඲

଴

ଵ

𝑝௜ሺ1 െ 𝑝ሻ௡െ௜ 𝑑𝑝

඲

଴

ଵ

𝑝௜ሺ1 െ 𝑝ሻ௡െ௜𝑑𝑝 ൌ
𝑖!ሺ𝑛 െ 𝑖ሻ!
ሺ𝑛 ൅ 1ሻ!

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ
1

𝑛 ൅ 1
 𝑖 ൌ 0, …,𝑛

𝑛

0, …,𝑛

𝑈,𝑈ଵ, …,𝑈௡ 𝑛 ൅ 1

𝑋 𝑈ଵ, …,𝑈௡
𝑈 𝑈,𝑈ଵ, …,𝑈௡

𝑈

𝑋 0, 1, …,𝑛

𝑈 ൌ 𝑝, 𝑈௜ 𝑈

𝑛 𝑝,

𝑋 𝑛 𝑚

𝑋 1, …,𝑛,

𝑋
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Now, given that the sample is of size  each of the  subsets of size  is

equally likely to be the chosen set of balls. As  of these subsets have all red

balls, it follows that  and thus that

However, though not obvious, it turns out that the preceding can be simplified,

and indeed yields the surprising result that

To prove the preceding formula, we will not make use of our earlier result, but

rather we will use induction on . When  the urn contains  red and  blue

balls and so a random sample of size  will be red with probability . So,

assume the result is true whenever the urn contains  red and  blue balls

and a random sample whose size is equally likely to be any of  is to be

chosen. Now consider the case of  red and  blue balls. Start by conditioning

not on the value of  but only on whether or not . This yields

Now, if  then in order for all balls in the sample to be red, the first one

chosen must be red, which occurs with probability  and then all of the

 remaining balls in the sample must be red. But given that the first ball

chosen is red, the remaining  balls will be randomly selected from an urn

containing  red and  blue balls. As  given that  is equally likely

to be any of the values  it follows by the induction hypothesis that

𝑃ሺ all balls are red ሻ ൌ ෍
௜ ൌ ଵ

௡

𝑃ሺ all balls are red |𝑋 ൌ 𝑖ሻ𝑃ሺ𝑋 ൌ 𝑖ሻ

𝑖, ቆ
𝑛 ൅ 𝑚

𝑖
ቇ 𝑖

ቆ
𝑛

𝑖
ቇ

𝑃ሼall balls are red|𝑋 ൌ 𝑖ሽ ൌ
ቆ
௡
௜
ቇ

ቆ
௡൅௠
௜

ቇ

𝑃ሺall balls are redሻ ൌ
1
𝑛

෍
௜ ൌ ଵ

௡ ቆ
𝑛

𝑖
ቇ

ቆ
𝑛 ൅ 𝑚

𝑖
ቇ

𝑃ሺ all balls are red ሻ ൌ
1

𝑚൅ 1
,  for all  𝑛,𝑚

𝑛 𝑛 ൌ 1, 1 𝑚

1
1

𝑚൅ 1
𝑛 െ 1 𝑚

1, …,𝑛 െ 1

𝑛 𝑚

𝑋 𝑋 ൌ 1

𝑃ሺ all balls are red ሻ ൌ 𝑃ሺ all red ||𝑋 ൌ 1ሻ𝑃ሺ𝑋 ൌ 1ሻ ൅ 𝑃ሺ all red ||𝑋 ൐ 1ሻ𝑃ሺ𝑋 ൐ 1ሻ

ൌ
𝑛

𝑛 ൅𝑚
1
𝑛
൅ 𝑃ሺ all red |𝑋 ൐ 1ቇ

𝑛 െ 1
𝑛

𝑋 ൐ 1
𝑛

𝑛 ൅𝑚
,

𝑋 െ 1

𝑋 െ 1

𝑛 െ 1 𝑚 𝑋 െ 1, 𝑋 ൐ 1,

1, …,𝑛 െ 1,
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Thus,

Example 5n

Suppose that  and  are independent continuous random variables having

densities  and  respectively. Compute .

Solution

Conditioning on the value of  yields

where

Example 5o

Suppose that  and  are independent continuous random variables. Find the

distribution function and the density function of .

Solution

𝑃ሺ all balls are red |𝑋 ൐ 1ሻ ൌ
𝑛

𝑛 ൅ 𝑚
1

𝑚൅ 1

𝑃ሺ all balls are red ሻ ൌ
1

𝑛 ൅𝑚
൅

𝑛
𝑛 ൅𝑚

1
𝑚൅ 1

𝑛 െ 1
𝑛

ൌ
1

𝑛 ൅𝑚
ሺ1 ൅

𝑛 െ 1
𝑚൅ 1

ሻ

ൌ
1

𝑚൅ 1

𝑋 𝑌

𝑓௑ 𝑓௒, 𝑃ሼ𝑋 ൏ 𝑌ሽ

𝑌

𝑃ሼ𝑋 ൏ 𝑌ሽ ൌ ඲
െஶ

ஶ

𝑃ሼ𝑋 ൏ 𝑌 |𝑌 ൌ 𝑦ሽ 𝑓௒ ሺ𝑦ሻ 𝑑𝑦

ൌ ඲
െஶ

ஶ

𝑃ሼ𝑋 ൏ 𝑦 |𝑌 ൌ 𝑦ሽ 𝑓௒ ሺ𝑦ሻ 𝑑𝑦

ൌ ඲
െஶ

ஶ

𝑃ሼ𝑋 ൏ 𝑦ሽ 𝑓௒ ሺ𝑦ሽ 𝑑𝑦  by independence

ൌ ඲
െஶ

ஶ

𝐹௑ሺ𝑦ሻ 𝑓௒ ሺ𝑦ሻ 𝑑𝑦

𝐹௑ሺ𝑦ሻ ൌ ඲
െஶ

௬

𝑓௑ሺ𝑥ሻ 𝑑𝑥

𝑋 𝑌

𝑋 ൅ 𝑌
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By conditioning on the value of  we obtain

Differentiation yields the density function of :

Just as we have defined the conditional expectation of  given the value of  we can

also define the conditional variance of  given that :

That is,  is equal to the (conditional) expected square of the difference

between  and its (conditional) mean when the value of  is given. In other words,

 is exactly analogous to the usual definition of variance, but now all

expectations are conditional on the fact that  is known.

There is a very useful relationship between Var  the unconditional variance of 

and  the conditional variance of  given  that can often be applied to

compute Var . To obtain this relationship, note first that by the same reasoning

that yields  we have

𝑌,

𝑃ሼ𝑋 ൅ 𝑌 ൏ 𝑎ሽ ൌ ඲
െஶ

ஶ

𝑃ሼ𝑋 ൅ 𝑌 ൏ 𝑎 |𝑌 ൌ 𝑦ሽ 𝑓௒ሺ𝑦ሻ 𝑑𝑦

ൌ ඲
െஶ

ஶ

𝑃ሼ𝑋 ൅ 𝑦 ൏ 𝑎 |𝑌 ൌ 𝑦ሽ 𝑓௒ሺ𝑦ሻ 𝑑𝑦

ൌ ඲
െஶ

ஶ

𝑃ሼ𝑋 ൏ 𝑎 െ 𝑦ሽ 𝑓௒ሺ𝑦ሻ 𝑑𝑦

ൌ ඲
െஶ

ஶ

𝐹௑ሺ𝑎 െ 𝑦ሻ 𝑓௒ሺ𝑦ሻ 𝑑𝑦

𝑋 ൅ 𝑌

𝑓௑൅௒ሺ𝑎൯ ൌ
𝑑
𝑑𝑎
඲
െஶ

ஶ

𝐹௑ሺ𝑎 െ 𝑦ሻ 𝑓௒ ሺ𝑦ሻ𝑑𝑦

ൌ ඲
െஶ

ஶ
𝑑
𝑑𝑎

𝐹௑ሺ𝑎 െ 𝑦ሻ 𝑓௒ ሺ𝑦ሻ𝑑𝑦

ൌ ඲
െஶ

ஶ

𝑓௑ሺ𝑎 െ 𝑦ሻ 𝑓௒ ሺ𝑦ሻ𝑑𝑦

𝑋 𝑌,

𝑋 𝑌 ൌ 𝑦

Var ሺ𝑋 ||𝑌ሻ ≡ 𝐸ሾሺ𝑋 െ 𝐸ሾ𝑋 ||𝑌ሿሻ
ଶ ||𝑌ሿ

Var ሺ𝑋 ||𝑌ሻ
𝑋 𝑌

Var ሺ𝑋 ||𝑌ሻ
𝑌

ሺ𝑋ሻ, 𝑋,

Var ሺ𝑋 ||𝑌ሻ, 𝑋 𝑌,

ሺ𝑋ሻ
Var ሺ𝑋ሻ ൌ 𝐸ൣ𝑋ଶ൧ െ ሺ𝐸ൣ𝑋൧ stretchyൌ'false'ሻଶ ,
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so

Also, since  we have

Hence, by adding Equations (5.9)  and (5.10) , we arrive at the following

proposition.

Proposition 5.2 The Conditional Variance Formula

Example 5p

Suppose that by any time  the number of people who have arrived at a train

depot is a Poisson random variable with mean . If the initial train arrives at the

depot at a time (independent of when the passengers arrive) that is uniformly

distributed over (0, ), what are the mean and variance of the number of

passengers who enter the train?

Solution

For each  let  denote the number of arrivals by  and let  denote the

time at which the train arrives. The random variable of interest is then .

Conditioning on  gives

Hence,

so taking expectations gives

Var ሺ𝑋ห𝑌ሻ ൌ 𝐸ൣ𝑋ଶห𝑌൧ െ ሺ𝐸ൣ𝑋ห𝑌൧൯
ଶ

𝐸ሾ Var ሺ𝑋 ||𝑌ሻሿ ൌ 𝐸ൣ𝐸ൣ𝑋ଶห𝑌൧൧ െ 𝐸ൣ൫𝐸ൣ𝑋ห𝑌൧൯
ଶ
൧

ൌ 𝐸ൣ𝑋ଶ൧ െ 𝐸ൣ൫𝐸ൣ𝑋ห𝑌൧൯
ଶ
൧

(5.9)

𝐸ሾ𝐸ሾ𝑋 ||𝑌ሿሿ ൌ 𝐸ሾ𝑋ሿ,

Var ሺ𝐸ሾ𝑋 ||𝑌ሿሻ ൌ 𝐸ሾሺ𝐸ሾ𝑋 ||𝑌ሿሻ
ଶሿ െ ሺ𝐸ሾ𝑋ሿሻଶ

(5.10)

Var ሺ𝑋ሻ ൌ 𝐸ሾ Var ሺ𝑋 ||𝑌ሻሿ ൅ Var ሺ𝐸ሾ𝑋 ||𝑌ሿሻ

𝑡

𝜆𝑡

𝑇

𝑡 ൒ 0, 𝑁ሺ𝑡ሻ 𝑡, 𝑌

𝑁ሺ𝑌ሻ
𝑌

𝐸ሾ𝑁ሺ𝑌ሻ ||𝑌 ൌ 𝑡ሿ ൌ 𝐸ሾ𝑁ሺ𝑡ሻ ||𝑌 ൌ 𝑡ሿ

ൌ 𝐸ሾ𝑁ሺ𝑡ሻሿ  by the independence of Y and Nሺ𝑡ሻ

ൌ 𝜆𝑡                  since 𝑁ሺ𝑡ሻ is Poisson with mean 𝜆𝑡

𝐸ሾ𝑁ሺ𝑌ሻ ||𝑌ሿ ൌ 𝜆𝑌
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To obtain Var( ), we use the conditional variance formula:

Thus,

Hence, from the conditional variance formula,

where we have used the fact that .

Example 5q Variance of a sum of a random number of random variables

Let  be a sequence of independent and identically distributed random

variables, and let  be a nonnegative integer-valued random variable that is

independent of the sequence . To compute  we condition

on :

The preceding result follows because, given  is just the sum of a fixed

number of independent random variables, so its expectation and variance are

just the sums of the individual means and variances, respectively. Hence, from

the conditional variance formula,

𝐸ሾ𝑁ሺ𝑌ሻ቉ ൌ 𝜆𝐸ሾ𝑌ሿ ൌ
𝜆𝑇
2

𝑁ሺ𝑌ሻ

Varሺ𝑁ሺ𝑌ሻ ||𝑌 ൌ 𝑡ሻ ൌ Varሺ𝑁ሺ𝑡ሻ ||𝑌 ൌ 𝑡ሻ

ൌ Varሾ𝑁ሺ𝑡ሻሿ  by independence

ൌ 𝜆𝑡

Var ሺ𝑁ሺ𝑌ሻ ||𝑌ሻ ൌ 𝜆𝑌

𝐸ሾ𝑁ሺ𝑌ሻ ||𝑌ሿ ൌ 𝜆𝑌

Var ሺ𝑁ሺ𝑌ሻሻ ൌ 𝐸ሾ𝜆𝑌ሿ ൅ Var ሺ𝜆𝑌ሻ

ൌ 𝜆
𝑇
2
൅ 𝜆ଶ

𝑇ଶ

12

Var ൫𝑌൯ ൌ 𝑇ଶ/12

𝑋ଵ,𝑋ଶ, …

𝑁

𝑋௜, 𝑖 ൒ 1 Var ቌ ෍
௜ ൌ ଵ

ே

𝑋௜ቍ,

𝑁

𝐸቎ ෍
௜ ൌ ଵ

ே

𝑋௜ |𝑁቏ ൌ 𝑁𝐸ሾ𝑋ሿ

Var ቌ ෍
௜ ൌ ଵ

ே

𝑋௜ |𝑁ቍ ൌ 𝑁 Var ሺ𝑋ሻ

𝑁, ෍
௜ൌଵ

ே
𝑋௜
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Sometimes a situation arises in which the value of a random variable  is observed

and then, on the basis of the observed value, an attempt is made to predict the value

of a second random variable . Let  denote the predictor; that is, if  is observed

to equal  then  is our prediction for the value of . Clearly, we would like to

choose  so that  tends to be close to . One possible criterion for closeness is

to choose  so as to minimize . We now show that, under this

criterion, the best possible predictor of  is .

Proposition 6.1

Proof

However, given  being a function of  can be treated as a

constant. Thus,

Hence, from Equations (6.1)  and (6.2 ), we obtain

Var ቌ ෍
௜ ൌ ଵ

ே

𝑋௜ሻ ൌ 𝐸ሾ𝑁ሿ Var ሺ𝑋ቍ ൅ ሺ𝐸ሾ𝑋ሿሻଶ Var ሺ𝑁ሻ

𝑋

𝑌 𝑔ሺ𝑋ሻ 𝑋

𝑥, 𝑔ሺ𝑥ሻ 𝑌

𝑔 𝑔ሺ𝑋ሻ 𝑌

𝑔 𝐸ሾሺ𝑌 െ 𝑔ሺ𝑋ሻሻଶሿ
𝑌 𝑔ሺ𝑋ሻ ൌ 𝐸ሾ𝑌 ||𝑋ሿ

𝐸ሾሺ𝑌 െ 𝑔ሺ𝑋ሻሻଶሿ ൒ 𝐸ሾሺ𝑌 െ 𝐸ሾ𝑌 ||𝑋ሿሻ
ଶሿ

𝐸ሾሺ𝑌 െ 𝑔ሺ𝑋ሻሻଶห𝑋ሿ ൌ 𝐸ሾሺ𝑌 െ 𝐸ሾ𝑌||𝑋ሿ൅𝐸ሾ𝑌||𝑋ሿ െ 𝑔ሺ𝑋ሻሻଶ |
|𝑋ሿ

ൌ 𝐸ሾሺ𝑌 െ 𝐸ሾ𝑌 ||𝑋ሿሻ
ଶ |

|𝑋ሿ

൅𝐸ሾሺ𝐸ሾ𝑌 ||𝑋ሿ െ 𝑔ሺ𝑋ሻሻଶ |
|𝑋ሿ

൅2𝐸ሾሺ𝑌 െ 𝐸ሾ𝑌 ||𝑋ሿሻሺ𝐸ሾ𝑌 ||𝑋ሿ െ 𝑔ሺ𝑋ሻሻ ||𝑋ሿ

(6.1)

𝑋,𝐸ሾ𝑌 ||𝑋ሿ െ 𝑔ሺ𝑋ሻ, 𝑋,

𝐸ሾሺ𝑌 െ 𝐸ሾ𝑌 |𝑋ሿሻሺ𝐸ሾ𝑌 |𝑋ሿ െ 𝑔ሺ𝑋ሻሻ |𝑋ሿ

  ൌ ሺ𝐸ሾ𝑌 ||𝑋ሿ െ 𝑔ሺ𝑋ሻሻ𝐸ሾ𝑌 െ 𝐸ሾ𝑌 ||𝑋ሿ ||𝑋ሿ

  ൌ ሺ𝐸ሾ𝑌 ||𝑋ሿ െ 𝑔ሺ𝑋ሻሻሺ𝐸ሾ𝑌||𝑋ሿെ𝐸ሾ𝑌||𝑋ሿሻ

  ൌ 0

(6.2)

𝐸ሾሺ𝑌 െ 𝑔ሺ𝑋ሻሻଶ ||𝑋ሿ ൒ 𝐸ሾሺ𝑌 െ 𝐸ሾ𝑌 ||𝑋ሿሻ
ଶ ||𝑋ሿ
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and the desired result follows by taking expectations of both sides of the

preceding expression.

Remark A second, more intuitive, although less rigorous, argument verifying

Proposition 6.1  is as follows: It is straightforward to verify that  is

minimized at . (See Theoretical Exercise 1.) Thus, if we want to predict

the value of  when there are no data available to use, the best possible

prediction, in the sense of minimizing the mean square error, is to predict that 

will equal its mean. However, if the value of the random variable  is observed to

be  then the prediction problem remains exactly as in the previous (no-data)

case, with the exception that all probabilities and expectations are now

conditional on the event that . Hence, the best prediction in this situation is

to predict that  will equal its conditional expected value given that  thus

establishing Proposition 6.1 .

Example 6a

Suppose that the son of a man of height (in inches) attains a height that is

normally distributed with mean  and variance 4. What is the best prediction

of the height at full growth of the son of a man who is 6 feet tall?

Solution

Formally, this model can be written as

where  is a normal random variable, independent of  having mean 0 and

variance 4. The  and  of course, represent the heights of the man and his son,

respectively. The best prediction  is thus equal to

Example 6b

Suppose that if a signal value  is sent from location  then the signal value

received at location  is normally distributed with parameters (  1). If  the value

of the signal sent at  is normally distributed with parameters ( ), what is the

best estimate of the signal sent if  the value received at  is equal to ?

Solution

𝐸ሾሺ𝑌 െ 𝑐ሻଶሿ
𝑐 ൌ 𝐸ሾ𝑌ሿ
𝑌

𝑌

𝑋

𝑥,

𝑋 ൌ 𝑥

𝑌 𝑋 ൌ 𝑥,

𝑥

𝑥 ൅ 1

𝑌 ൌ 𝑋 ൅ 1 ൅ 𝑒

𝑒 𝑋,

𝑋 𝑌,

𝐸ሾ𝑌 ||𝑋 ൌ 72ሿ

𝐸ሾ𝑌 ||𝑋 ൌ 72ሿ ൌ 𝐸ሾ𝑋 ൅ 1 ൅ 𝑒 ||𝑋 ൌ 72ሿ

ൌ 73 ൅ 𝐸ሾ𝑒 ||𝑋 ൌ 72ሿ

ൌ 73 ൅ 𝐸ሺ𝑒ሻ  by independence

ൌ 73

𝑠 𝐴,

𝐵 𝑠, 𝑆,

𝐴, 𝜇,𝜎ଶ

𝑅, 𝐵, 𝑟
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Let us start by computing the conditional density of  given . We have

where  does not depend on . Now,

where  and  do not depend on . Hence,

where  does not depend on . Thus, we may conclude that the conditional

distribution of  the signal sent, given that  is received, is normal with mean and

variance now given by

Consequently, from Proposition 6.1 , given that the value received is  the

best estimate, in the sense of minimizing the mean square error, for the signal

sent is

Writing the conditional mean as we did previously is informative, for it shows that

it equals a weighted average of  the a priori expected value of the signal, and 

𝑆 𝑅

𝑓ௌหோሺ𝑠 |𝑟ሻ ൌ
𝑓ௌ, ோሺ𝑠, 𝑟ሻ

𝑓ோሺ𝑟ሻ

ൌ
𝑓ௌሺ𝑠ሻ𝑓ோหௌሺ𝑟 |𝑠ሻ

𝑓ோሺ𝑟ሻ

ൌ 𝐾𝑒െሺ௦െఓሻ
మ/ଶఙమ𝑒െሺ௥െ௦ሻ

మ/ଶ

𝐾 𝑠

ሺ𝑠 െ 𝜇ሻଶ

2𝜎ଶ
൅
ሺ𝑟 െ 𝑠ሻଶ

2
ൌ 𝑠ଶቆ

1
2𝜎ଶ

൅
1
2
ቇ െ ൬

𝜇
𝜎ଶ

൅ 𝑟൰𝑠 ൅ 𝐶ଵ

ൌ
1 ൅ 𝜎ଶ

2𝜎ଶ
ቈ𝑠ଶ െ 2ቆ

𝜇 ൅ 𝑟𝜎ଶ

1 ൅ 𝜎ଶ
ቇ𝑠቉ ൅ 𝐶ଵ

ൌ
1 ൅ 𝜎ଶ

2𝜎ଶ
ቆ𝑠 െ

ሺ𝜇 ൅ 𝑟𝜎ଶሻ
1 ൅ 𝜎ଶ

ቇ
ଶ

൅ 𝐶ଶ

𝐶ଵ 𝐶ଶ 𝑠

𝑓ௌ|ோሺ𝑠 |𝑟ሻ ൌ 𝐶  exp

⎧

⎨

⎩

⎪

⎪

െቈ𝑠 െ
ሺ𝜇 ൅ 𝑟𝜎ଶሻ

1 ൅ 𝜎ଶ
቉ଶ

2ቆ
𝜎ଶ

1 ൅ 𝜎ଶ
ቇ

⎫

⎬

⎭

⎪

⎪

𝐶 𝑠

𝑆, 𝑟

𝐸ሾ𝑆 ||𝑅 ൌ 𝑟ሿ ൌ
𝜇 ൅ 𝑟𝜎ଶ

1 ൅ 𝜎ଶ

Var ሺ𝑆 ||𝑅 ൌ 𝑟ሻ ൌ
𝜎ଶ

1 ൅ 𝜎ଶ

𝑟,

𝐸ሾ𝑆 |𝑅 ൌ 𝑟ሿ ൌ
1

1 ൅ 𝜎ଶ
𝜇 ൅

𝜎ଶ

1 ൅ 𝜎ଶ
𝑟

𝜇, 𝑟,
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the value received. The relative weights given to  and  are in the same

proportion to each other as 1 (the conditional variance of the received signal

when  is sent) is to (the variance of the signal to be sent).

Example 6c

In digital signal processing, raw continuous analog data  must be quantized, or

discretized, in order to obtain a digital representation. In order to quantize the raw

data  an increasing set of numbers  such that

 and  is fixed, and the raw data are then

quantized according to the interval  in which  lies. Let us denote by 

the discretized value when  and let  denote the observed

discretized value—that is,

The distribution of  is given by

Suppose now that we want to choose the values  so as to

minimize  the expected mean square difference between the raw

data and their quantized version.

a. Find the optimal values .

For the optimal quantizer  show that

b.  so the mean square error quantizer preserves the input

mean;

c. 

Solution

(a) For any quantizer  upon conditioning on the value of  we obtain

Now, if we let

then

𝜇 𝑟

𝑠 𝜎ଶ

𝑋

𝑋, 𝑎௜, 𝑖 ൌ 0, േ 1, േ 2, …,

lim
௜ → ൅ ஶ

𝑎௜ ൌ ∞ lim
௜ → െ ஶ

𝑎௜ ൌ െ ∞

ሺ𝑎௜,𝑎௜൅ଵሿ 𝑋 𝑦௜
𝑋 ∈ ሺ𝑎௜,𝑎௜൅ଵሿ, 𝑌

𝑌 ൌ 𝑦௜  𝑖𝑓  𝑎௜ ൏ 𝑋 ൑ 𝑎௜൅ଵ

𝑌

𝑃ሼ𝑌 ൌ 𝑦௜ሽ ൌ 𝐹௑ሺ𝑎௜൅ଵሻ െ 𝐹௑ሺ𝑎௜ሻ

𝑦௜, 𝑖 ൌ 0, േ 1, േ 2, …

𝐸ሾሺ𝑋 െ 𝑌ሻଶሿ,

𝑦௜, 𝑖 ൌ 0, േ 1, …

𝑌,

𝐸ሾ𝑌ሿ ൌ 𝐸ሾ𝑋ሿ,

Var ሺ𝑌ሻ ൌ Var ሺ𝑋ሻ െ 𝐸ሾሺ𝑋 െ 𝑌ሻଶሿ.

𝑌, 𝑌,

𝐸ሾሺ𝑋 െ 𝑌ሻଶሾ ൌ ෍
௜

𝐸ሾሺ𝑋 െ 𝑦௜ሻ
ଶ |𝑎௜ ൏ 𝑋 ൑ 𝑎௜൅ଵሿ𝑃ሼ𝑎௜ ൏ 𝑋 ൑ 𝑎௜൅ଵሽ

𝐼 ൌ 𝑖  𝑖𝑓  𝑎௜ ൏ 𝑋 ൑ 𝑎௜൅ଵ
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and by Proposition 6.1 , this quantity is minimized when

Now, since the optimal quantizer is given by  it follows that

(b) 

(c) 

It sometimes happens that the joint probability distribution of  and  is not

completely known; or if it is known, it is such that the calculation of  is

mathematically intractable. If, however, the means and variances of  and  and the

correlation of  and  are known, then we can at least determine the best linear

predictor of  with respect to .

To obtain the best linear predictor of  with respect to  we need to choose  and 

so as to minimize  Now,

Taking partial derivatives, we obtain

Setting Equations (6.3)  to 0 and solving for  and  yields the solutions

𝐸ൣ൫𝑋 െ 𝑦௜൯
ଶ
ห𝑎௜ ൏ 𝑋 ൑ 𝑎௜൅ଵ൧ ൌ 𝐸ൣ൫𝑋 െ 𝑦௜൯

ଶ
ห 𝐼 ൌ 𝑖൧

𝑦௜ ൌ 𝐸ሾ𝑋 ||𝐼 ൌ 𝑖ሿ

ൌ 𝐸ሾ𝑋 ||𝑎௜ ൏ 𝑋 ൑ 𝑎௜൅ଵሿ

ൌ ඲

௔೔

௔೔൅భ
𝑥𝑓௑ሺ𝑥൯ 𝑑𝑥

𝐹௑ሺ𝑎௜൅ଵሻ െ 𝐹௑ሺ𝑎௜ሻ

𝑌 ൌ 𝐸ሾ𝑋 ||𝐼ሿ,

𝐸ሾ𝑌ሿ ൌ 𝐸ሾ𝑋ሿ

Var ሺ𝑋ሻ ൌ 𝐸ሾVar ሺ𝑋 ||𝐼ሻሿ  ൅  Var ሺ𝐸ሾ𝑋 ||𝐼ሿሻ

ൌ 𝐸ሾ𝐸ሾሺ𝑋 െ 𝑌ሻଶห𝐼൧൧  ൅  Var ሺ𝑌ሻ

ൌ 𝐸ൣሺ𝑋 െ 𝑌ሻଶ൧  ൅  Var ሺ𝑌ሻ

𝑋 𝑌

𝐸ሾ𝑌 ||𝑋 ൌ 𝑥ሿ
𝑋 𝑌

𝑋 𝑌

𝑌 𝑋

𝑌 𝑋, 𝑎 𝑏

𝐸ሾሺ𝑌 െ ሺ𝑎 ൅ 𝑏𝑋ሻሻଶሿ .

𝐸ቂሺ𝑌 െ ሺ𝑎 ൅ 𝑏𝑋ሻሻଶቃ ൌ 𝐸ൣ𝑌ଶ െ 2𝑎𝑌 െ 2𝑏𝑋𝑌 ൅ 𝑎ଶ ൅ 2𝑎𝑏𝑋 ൅ 𝑏ଶ𝑋ଶ൧

ൌ 𝐸ൣ𝑌ଶ൧ െ 2𝑎𝐸ሾ𝑌ሿ െ 2𝑏𝐸ሾ𝑋𝑌ሿ ൅ 𝑎ଶ

൅2𝑎𝑏𝐸ሾ𝑋ሿ ൅ 𝑏ଶ𝐸ൣ𝑋ଶ൧

∂
∂𝑎

𝐸ቂሺ𝑌 െ 𝑎 െ 𝑏𝑋ሻଶቃ ൌ െ2𝐸ሾ𝑌ሿ ൅ 2𝑎 ൅ 2𝑏𝐸ሾ𝑋ሿ

∂
∂𝑏

𝐸ቂሺ𝑌 െ 𝑎 െ 𝑏𝑋ሻଶቃ ൌ െ2𝐸ሾ𝑋𝑌ሿ ൅ 2𝑎𝐸ሾ𝑋ሿ ൅ 2𝑏𝐸ൣ𝑋ଶ൧

(6.3)

𝑎 𝑏
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where  and . It is easy to verify that

the values of  and  from Equation (6.4)  minimize  thus, the

best (in the sense of mean square error) linear predictor  with respect to  is

where  and .

The mean square error of this predictor is given by

We note from Equation (6.5)  that if  is near  or  then the mean square

error of the best linear predictor is near zero.

Example 6d

An example in which the conditional expectation of  given  is linear in  and

hence in which the best linear predictor of  with respect to  is the best overall

predictor, is when  and  have a bivariate normal distribution. For, as shown in

Example 5d  of Chapter 6 , in that case,

𝑏 ൌ
𝐸ሾ𝑋𝑌ሿ െ 𝐸ሾ𝑋ሿ𝐸ሾ𝑌ሿ

𝐸ൣ𝑋ଶ൧ െ ሺ𝐸ሾ𝑋ሿሻଶ
ൌ

Cov ሺ𝑋,𝑌ሻ
𝜎௫ଶ

ൌ 𝜌
𝜎௬
𝜎௫

𝑎 ൌ 𝐸ሾ𝑌ሿ െ 𝑏𝐸ሾ𝑋ሿ ൌ 𝐸ሾ𝑌ሿ െ
𝜌𝜎௬𝐸ሾ𝑋ሿ

𝜎௫

(6.4)

𝜌 ൌ  Correlation ሺ𝑋,𝑌ሻ,  𝜎௬ଶ ൌ  Var ሺ𝑌ሻ, 𝜎௫ଶ ൌ  Var ሺ𝑋ሻ

𝑎 𝑏 𝐸ሾሺ𝑌 െ 𝑎 െ 𝑏𝑋ሻଶሿ;
𝑌 𝑋

𝜇௬ ൅
𝜌𝜎௬
𝜎௫

ሺ𝑋 െ 𝜇௫ሻ

𝜇௬ ൌ 𝐸ቂ𝑌ቃ 𝜇௫ ൌ 𝐸ൣ𝑋൧

𝐸൥ቆ𝑌 െ 𝜇௬ െ 𝜌
𝜎௬
𝜎௫

൫𝑋 െ 𝜇௫൯ቇ
ଶ

൩

   ൌ 𝐸൤ቀ𝑌 െ 𝜇௬ቁ
ଶ
൨ ൅ 𝜌ଶ

𝜎௬ଶ

𝜎௫ଶ
𝐸ቂ൫𝑋 െ 𝜇௫൯

ଶ
ቃ െ 2𝜌

𝜎௬
𝜎௫

𝐸ቂቀ𝑌 െ 𝜇௬ቁ൫𝑋 െ 𝜇௫൯ቃ

   ൌ 𝜎௬ଶ ൅ 𝜌ଶ𝜎௬ଶ െ 2𝜌ଶ𝜎௬ଶ

   ൌ 𝜎௬ଶሺ1 െ 𝜌ଶሻ

(6.5)

𝜌 ൅1 െ1,

𝑌 𝑋 𝑋,

𝑌 𝑋

𝑋 𝑌

𝐸ሾ𝑌 |𝑋 ൌ 𝑥ሿ ൌ 𝜇௬ ൅ 𝜌
𝜎௬
𝜎௫
ሺ𝑥 െ 𝜇௫ሻ

558 of 848



The moment generating function  of the random variable  is defined for all real

values of  by

We call  the moment generating function because all of the moments of  can

be obtained by successively differentiating  and then evaluating the result at

. For example,

where we have assumed that the interchange of the differentiation and expectation

operators is legitimate. That is, we have assumed that

in the discrete case and

in the continuous case. This assumption can almost always be justified and, indeed,

is valid for all of the distributions considered in this book. Hence, from Equation

(7.1) , evaluated at  we obtain

Similarly,

𝑀ሺ𝑡ሻ 𝑋

𝑡

𝑀ሺ𝑡ሻ ൌ 𝐸ሾ𝑒௧௑ሿ

ൌ

⎧

⎨

⎩

⎪
⎪

⎪
⎪

෍
௫

𝑒௧௫𝑝ሺ𝑥ሻ if 𝑋 is discrete with mass function 𝑝ሺ𝑥ሻ

඲
െஶ

ஶ

𝑒௧௫𝑓ሺ𝑥ሻ𝑑𝑥 if 𝑋 is continuous with density 𝑓ሺ𝑥ሻ

𝑀ሺ𝑡ሻ 𝑋

𝑀ሺ𝑡ሻ
𝑡 ൌ 0

𝑀′ሺ𝑡ሻ ൌ
𝑑
𝑑𝑡
𝐸ቈ𝑒௧௑቉

ൌ 𝐸ቈ
𝑑
𝑑𝑡
ሺ𝑒௧௑ሻ቉

ൌ 𝐸ሾ𝑋𝑒௧௑ሿ

(7.1)

𝑑
𝑑𝑡
൥෍
௫

𝑒௧௫𝑝ሺ𝑋ሻ൩ ൌ ෍
௫

𝑑
𝑑𝑡
ሾ𝑒௧௫𝑝ሺ𝑋ሻሿ

𝑑
𝑑𝑡
ቈ඲𝑒௧௫𝑓ሺ𝑋ሻ 𝑑𝑥቉ ൌ ඲

𝑑
𝑑𝑡
ቈ𝑒௧௫𝑓ሺ𝑋ሻ቉ 𝑑𝑥

𝑡 ൌ 0,

𝑀′ሺ0ሻ ൌ 𝐸ሾ𝑋ሿ
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Thus,

In general, the  th derivative of  is given by

implying that

We now compute  for some common distributions.

Example 7a Binomial distribution with parameters n and p

If  is a binomial random variable with parameters  and  then

where the last equality follows from the binomial theorem. Differentiation yields

Thus,

𝑀 ″ ሺ𝑡ሻ ൌ
𝑑
𝑑𝑡
𝑀ᇱሺ𝑡ሻ

ൌ
𝑑
𝑑𝑡
𝐸ሾ𝑋𝑒௧௑ሿ

ൌ 𝐸ቈ
𝑑
𝑑𝑡
ሺ𝑋𝑒௧௑ሻ቉

ൌ 𝐸ሾ𝑋ଶ𝑒௧௑ሿ

𝑀 ″ ሺ0൯ ൌ 𝐸ൣ𝑋ଶ൧

𝑛 𝑀ሺ𝑡ሻ

𝑀௡ሺ𝑡ሻ ൌ 𝐸ሾ𝑋௡𝑒௧௑ሿ 𝑛 ൒ 1

𝑀௡ሺ0ሻ ൌ 𝐸ሾ𝑋௡ሿ 𝑛 ൒ 1

𝑀ሺ𝑡ሻ

𝑋 𝑛 𝑝,

𝑀ሺ𝑡ሻ ൌ 𝐸ሾ𝑒௧௑ሿ

ൌ ෍
௞ ൌ ଴

௡

𝑒௧௞ቆ
𝑛

𝑘
ቇ 𝑝௞ሺ1 െ 𝑝ሻ௡െ௞

ൌ ෍
௞ ൌ ଴

௡

ቆ
𝑛

𝑘
ቇ ሺ𝑝𝑒௧ሻ௞ሺ1 െ 𝑝ሻ௡െ௞

ൌ ሺ𝑝𝑒௧ ൅ 1 െ 𝑝ሻ௡

𝑀′ሺ𝑡ሻ ൌ 𝑛ሺ𝑝𝑒௧ ൅ 1 െ 𝑝ሻ௡െଵ𝑝𝑒௧

𝐸ሾ𝑋ሿ ൌ 𝑀′ሺ0ሻ ൌ 𝑛𝑝
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Differentiating a second time yields

so

The variance of  is given by

verifying the result obtained previously.

Example 7b Poisson distribution with mean λ

If  is a Poisson random variable with parameter  then

Differentiation yields

Thus,

𝑀ᇳሺ𝑡ሻ ൌ 𝑛ሺ𝑛 െ 1ሻሺ𝑝𝑒௧ ൅ 1 െ 𝑝ሻ௡െଶሺ𝑝𝑒௧ሻଶ ൅ 𝑛ሺ𝑝𝑒௧ ൅ 1 െ 𝑝ሻ௡െଵ𝑝𝑒௧

𝐸ൣ𝑋ଶ൧ ൌ 𝑀ᇳሺ0ሻ ൌ 𝑛ሺ𝑛 െ 1ሻ𝑝ଶ ൅ 𝑛𝑝

𝑋

Var ሺ𝑋ሻ ൌ 𝐸ൣ𝑋ଶ൧ െ ൫𝐸ൣ𝑋൧൯
ଶ

ൌ 𝑛ሺ𝑛 െ 1ሻ𝑝ଶ ൅ 𝑛𝑝 െ 𝑛ଶ𝑝ଶ

ൌ 𝑛𝑝ሺ1 െ 𝑝ሻ

𝑋 𝜆,

𝑀ሺ𝑡ሻ ൌ 𝐸ሾ𝑒௧௑ሿ

ൌ ෍
௡ ൌ ଴

ஶ 𝑒௧௡𝑒െఒ𝜆௡

𝑛!

ൌ 𝑒െఒ ෍
௡ ൌ ଴

ஶ ሺ𝜆𝑒௧ሻ௡

𝑛!

ൌ 𝑒െఒ𝑒ఒ௘
೟

ൌ expሼ𝜆ሺ𝑒௧ െ 1ሻሽ

𝑀′ሺ𝑡ሻ ൌ 𝜆𝑒௧ expሼ𝜆ሺ𝑒௧ െ 1ሻሽ

𝑀ᇳሺ𝑡ሻ ൌ ሺ𝜆𝑒௧ሻଶ expሼ𝜆ሺ𝑒௧ െ 1ሻሽ ൅ 𝜆𝑒௧ expሼ𝜆ሺ𝑒௧ െ 1ሻሽ

𝐸ሾ𝑋ሿ ൌ 𝑀ᇱሺ0ሻ ൌ 𝜆

𝐸ൣ𝑋ଶ൧ ൌ 𝑀ᇳሺ0ሻ ൌ 𝜆ଶ ൅ 𝜆

Var ሺ𝑋ሻ ൌ 𝐸ൣ𝑋ଶ൧ െ ሺ𝐸ሾ𝑋ሿሻଶ

ൌ 𝜆

561 of 848



Hence, both the mean and the variance of the Poisson random variable equal 

Example 7c Exponential distribution with parameter λ

We note from this derivation that for the exponential distribution,  is defined

only for values of  less than  Differentiation of  yields

Hence,

The variance of  is given by

Example 7d Normal distribution

We first compute the moment generating function of a standard normal random

variable with parameters 0 and 1. Letting  be such a random variable, we have

𝜆.

𝑀ሺ𝑡ሻ ൌ 𝐸ሾ𝑒௧௑ሿ

ൌ ඲

଴

ஶ

𝑒௧௫𝜆𝑒െఒ௫ 𝑑𝑥

ൌ 𝜆඲

଴

ஶ

𝑒െ൫ఒെ௧൯௫ 𝑑𝑥

ൌ
𝜆

𝜆 െ 𝑡
 for 𝑡 ൏ 𝜆

𝑀ሺ𝑡ሻ
𝑡 𝜆. 𝑀ሺ𝑡ሻ

𝑀ᇱሺ𝑡ሻ ൌ
𝜆

ሺ𝜆 െ 𝑡ሻଶ
, 𝑀ᇳሺ𝑡ሻ ൌ

2𝜆

ሺ𝜆 െ 𝑡ሻଷ

𝐸ሾ𝑋ሿ ൌ 𝑀ᇱሺ0ሻ ൌ
1
𝜆

, 𝐸ൣ𝑋ଶ൧ ൌ 𝑀ᇳሺ0ሻ ൌ
2

𝜆ଶ

𝑋

Var ሺ𝑋ሻ ൌ 𝐸ൣ𝑋ଶ൧ െ ሺ𝐸ሾ𝑋ሿሻଶ

ൌ
1

𝜆ଶ

𝑍
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Hence, the moment generating function of the standard normal random variable

 is given by  To obtain the moment generating function of an

arbitrary normal random variable, we recall (see Section 5.4 ) that 

will have a normal distribution with parameters  and  whenever  is a

standard normal random variable. Hence, the moment generating function of

such a random variable is given by

By differentiating, we obtain

Thus,

𝑀௓ሺ𝑡ሻ ൌ 𝐸ሾ𝑒௧௓ሿ

ൌ
1

2𝜋√
඲
െஶ

ஶ

𝑒௧௫𝑒െ௫
మ/ଶ 𝑑𝑥

ൌ
1

2𝜋√
඲
െஶ

ஶ

expቊ െ
ሺ𝑥ଶ െ 2𝑡𝑥ሻ

2
ቋ 𝑑𝑥

ൌ
1

2𝜋√
඲
െஶ

ஶ

exp൝ െ
ሺ𝑥 െ 𝑡ሻଶ

2
൅
𝑡ଶ

2
ൡ 𝑑𝑥

ൌ 𝑒௧
మ/ଶ 1

2𝜋√
඲
െஶ

ஶ

𝑒െ൫௫െ௧൯
మ

/ଶ 𝑑𝑥

ൌ 𝑒௧
మ/ଶ

𝑍 𝑀௓ቀ𝑡ቁ ൌ 𝑒௧
మ/ଶ.

𝑋 ൌ 𝜇 ൅ 𝜎𝑍

𝜇 𝜎ଶ 𝑍

𝑀௑ሺ𝑡ሻ ൌ 𝐸ሾ𝑒௧௑ሿ

ൌ 𝐸ቂ𝑒௧൫ఓ൅ఙ௓൯ቃ

ൌ 𝐸ሾ𝑒௧ఓ𝑒௧ఙ௓ሿ

ൌ 𝑒௧ఓ𝐸ሾ𝑒௧ఙ௓ሿ

ൌ 𝑒௧ఓ𝑀௓ሺ𝑡𝜎ሻ

ൌ 𝑒௧ఓ𝑒൫௧ఙ൯
మ

/ଶ

ൌ expቊ
𝜎ଶ𝑡ଶ

2
൅ 𝜇𝑡ቋ

𝑀ᇱ
௑ሺ𝑡ሻ ൌ ሺ𝜇 ൅ 𝑡𝜎ଶሻ expቊ

𝜎ଶ𝑡ଶ

2
൅ 𝜇𝑡ቋ

𝑀ᇳ
௑ሺ𝑡ሻ ൌ ሺ𝜇 ൅ 𝑡𝜎ଶሻଶ expቊ

𝜎ଶ𝑡ଶ

2
൅ 𝜇𝑡ቋ ൅ 𝜎ଶ expቊ

𝜎ଶ𝑡ଶ

2
൅ 𝜇𝑡ቋ
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implying that

Tables 7.1  and 7.2  (on page 364) give the moment generating functions for

some common discrete and continuous distributions.

Table 7.1 Discrete probability distribution.

Table 7.2 Continuous probability distribution.

𝐸ሾ𝑋ሿ ൌ 𝑀ᇱሺ0ሻ ൌ 𝜇

𝐸ൣ𝑋ଶ൧ ൌ 𝑀ᇳሺ0ሻ ൌ 𝜇ଶ ൅ 𝜎ଶ

Varሺ𝑋ሻ ൌ 𝐸ൣ𝑋ଶ൧ െ 𝐸൫ൣ𝑋൧൯
ଶ

ൌ 𝜎ଶ

Probability mass

function, 

Moment

generating

function, 

Mean Variance

Binomial

with

parameters

Poisson

with

parameter

Geometric

with

parameter

Negative

binomial

with

parameters

𝑝ሺ𝑥ሻ

𝑀ሺ𝑡ሻ

𝐧, 𝐩;
𝟎 ൑ 𝐩 ൑ 𝟏

ቆ
𝑛

𝑥
ቇ𝑝௫ሺ1 െ 𝑝ሻ௡െ௫

ሺ𝑝𝑒௧ ൅ 1 െ 𝑝ሻ௡ 𝑛𝑝 𝑛𝑝ሺ1 െ 𝑝ሻ
𝑥 ൌ 0, 1, …,𝑛

𝐥 ൐ 𝟎

𝑒െఒ
𝜆௫

𝑥!

𝑥 ൌ 0, 1, 2, …

expሼ𝜆ሺ𝑒௧ െ 1ሻሽ 𝜆 𝜆

𝟎 ൑ 𝐩 ൑ 𝟏

𝑝ሺ1 െ 𝑝ሻ௫െଵ

𝑥 ൌ 1, 2, …

𝑝𝑒௧

1 െ ሺ1 െ 𝑝ሻ𝑒௧
1
𝑝

1 െ 𝑝
𝑝ଶ

𝐫, 𝐩;

ቆ
𝑛 െ 1

𝑟 െ 1
ቇ𝑝௥ሺ1 െ 𝑝ሻ௡െ௥

𝑛 ൌ 𝑟, 𝑟 ൅ 1, …

ቈ
𝑝𝑒௧

1 െ ሺ1 െ 𝑝ሻ𝑒௧
቉
௥ 𝑟

𝑝
𝑟ሺ1 െ 𝑝ሻ

𝑝ଶ

Probability density function, Moment Mean𝑓ሺ𝑥ሻ
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An important property of moment generating functions is that the moment generating

function of the sum of independent random variables equals the product of the

individual moment generating functions. To prove this, suppose that  and  are

independent and have moment generating functions  and  respectively.

Then  the moment generating function of  is given by

where the next-to-last equality follows from Proposition 4.1 , since  and  are

independent.

Another important result is that the moment generating function uniquely determines

the distribution. That is, if  exists and is finite in some region about  then

the distribution of  is uniquely determined. For instance, if

then it follows from Table 7.1  that  is a binomial random variable with

generating

function, 

Uniform

over 

Exponential

with

parameter

Gamma

with

parameters

Normal

with

𝑀ሺ𝑡ሻ

ሺ𝐚,  𝐛ሻ 𝑓ሺ𝑥ሻ ൌ ቐ

1
𝑏 െ 𝑎

𝑎 ൏ 𝑥 ൏ 𝑏

0 otherwise

𝑒௧௕ െ 𝑒௧௔

𝑡ሺ𝑏 െ 𝑎ሻ
𝑎 ൅ 𝑏

2

𝐥 ൐ 0

𝑓ሺ𝑥ሻ ൌ ቊ
𝜆𝑒െఒ௫ 𝑥 ൒ 0

0 𝑥 ൏ 0

𝜆
𝜆 െ 𝑡

1
𝜆

ሺ𝐬, 𝐥ሻ, 𝐥 ൐ 0

𝑓ሺ𝑥ሻ ൌ ൞
𝜆𝑒െఒ௫ሺ𝜆𝑥ሻ௦െଵ

𝛤ሺ𝑠ሻ
𝑥 ൒ 0

0 𝑥 ൏ 0

ቆ
𝜆

𝜆 െ 𝑡
ቇ
௦ 𝑠

𝜆

𝑓ቆ𝑥ቇ ൌ
1

2𝜋√ 𝜎
𝑒െ൫௫െఓ൯

మ
/ଶఙమ  െ ∞ ൏ 𝑥 ൏ ∞ expቊ𝜇𝑡 ൅

𝜎ଶ𝑡ଶ

2
ቋ

𝜇

𝑋 𝑌

𝑀௑ሺ𝑡ሻ 𝑀௒ሺ𝑡ሻ,
𝑀௑൅௒ሺ𝑡ሻ, 𝑋 ൅ 𝑌,

𝑀௑൅௒ሺ𝑡ሻ ൌ 𝐸ቂ𝑒௧൫௑൅௒൯ቃ

ൌ 𝐸ሾ𝑒௧௑𝑒௧௒ሿ

ൌ 𝐸ሾ𝑒௧௑ሿ𝐸ሾ𝑒௧௒ሿ

ൌ 𝑀௑ሺ𝑡ሻ𝑀௒ሺ𝑡ሻ

𝑋 𝑌

𝑀௑ሺ𝑡ሻ 𝑡 ൌ 0,

𝑋

𝑀௑ሺ𝑡ሻ ൌ ቆ
1
2
ቇ
ଵ଴

ሺ𝑒௧ ൅ 1ሻଵ଴,

𝑋
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parameters 10 and 

Example 7e

Suppose that the moment generating function of a random variable  is given by

 What is 

Solution

We see from Table 7.1  that  is the moment generating

function of a Poisson random variable with mean 3. Hence, by the one-to-one

correspondence between moment generating functions and distribution

functions, it follows that  must be a Poisson random variable with mean 3. Thus,

Example 7f Sums of independent binomial random variables

If  and  are independent binomial random variables with parameters  and

 respectively, what is the distribution of 

Solution

The moment generating function of  is given by

However,  is the moment generating function of a binomial

random variable having parameters  and  Thus, this must be the

distribution of 

Example 7g Sums of independent poisson random variables

Calculate the distribution of  when  and  are independent Poisson

random variables with means respectively  and 

Solution

Hence,  is Poisson distributed with mean  verifying the result given

in Example 3e  of Chapter 6 .

1
2

.

𝑋

𝑀ቀ𝑡ቁ ൌ 𝑒ଷ൫௘
೟െଵ൯. 𝑃ሼ𝑋 ൌ 0ሽ?

𝑀ቀ𝑡ቁ ൌ 𝑒ଷ൫௘
೟െଵ൯

𝑋
𝑃ሼ𝑋 ൌ 0ሽ ൌ 𝑒െଷ.

𝑋 𝑌 ሺ𝑛, 𝑝ሻ
ሺ𝑚, 𝑝ሻ, 𝑋 ൅ 𝑌?

𝑋 ൅ 𝑌

𝑀௑൅௒ሺ𝑡ሻ ൌ 𝑀௑ሺ𝑡ሻ𝑀௒ሺ𝑡ሻ ൌ ሺ𝑝𝑒௧ ൅ 1 െ 𝑝ሻ௡ሺ𝑝𝑒௧ ൅ 1 െ 𝑝ሻ௠

ൌ ሺ𝑝𝑒௧ ൅ 1 െ 𝑝ሻ௠൅௡

ሺ𝑝𝑒௧ ൅ 1 െ 𝑝ሻ௠൅௡

𝑚 ൅ 𝑛 𝑝.

𝑋 ൅ 𝑌.

𝑋 ൅ 𝑌 𝑋 𝑌

𝜆ଵ 𝜆ଶ.

𝑀௑൅௒ሺ𝑡ሻ ൌ 𝑀௑ሺ𝑡ሻ𝑀௒ሺ𝑡ሻ

ൌ expሼ𝜆ଵሺ𝑒௧ െ 1ሻሽ expሼ𝜆ଶሺ𝑒௧ െ 1ሻሽ

ൌ expሼሺ𝜆ଵ ൅ 𝜆ଶሻሺ𝑒௧ െ 1ሻሽ

𝑋 ൅ 𝑌 𝜆ଵ ൅ 𝜆ଶ,
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Example 7h Sums of independent normal random variables

Show that if  and  are independent normal random variables with respective

parameters  and  then  is normal with mean  and

variance 

Solution

which is the moment generating function of a normal random variable with mean

 and variance  The desired result then follows because the

moment generating function uniquely determines the distribution.

Example 7i

Compute the moment generating function of a chi-squared random variable with

 degrees of freedom.

Solution

We can represent such a random variable as

where  are independent standard normal random variables. Let  be

its moment generating function. Then, by the preceding,

where  is a standard normal random variable. Now,

𝑋 𝑌

൫𝜇ଵ,𝜎ଵ
ଶ൯ ൫𝜇ଶ,𝜎ଶ

ଶ൯, 𝑋 ൅ 𝑌 𝜇ଵ ൅ 𝜇ଶ
𝜎ଵ
ଶ ൅ 𝜎ଶ

ଶ.

𝑀௑൅௒ሺ𝑡ሻ ൌ 𝑀௑ሺ𝑡ሻ𝑀௒ሺ𝑡ሻ

ൌ expቊ
𝜎ଵ
ଶ𝑡ଶ

2
൅ 𝜇ଵ𝑡ቋexpቊ

𝜎ଶ
ଶ𝑡ଶ

2
൅ 𝜇ଶ𝑡ቋ

ൌ expቊ
൫𝜎ଵ

ଶ ൅ 𝜎ଶ
ଶ൯𝑡ଶ

2
൅ ൫𝜇ଵ ൅ 𝜇ଶ൯𝑡ቋ

𝜇ଵ ൅ 𝜇ଶ 𝜎ଵ
ଶ ൅ 𝜎ଶ

ଶ.

𝑛

𝑍ଵ
ଶ ൅ ⋯ ൅ 𝑍௡

ଶ

𝑍ଵ, …,𝑍௡ 𝑀ሺ𝑡ሻ

𝑀ቀ𝑡ቁ ൌ ቀ𝐸ቂ𝑒௧௓
మ
ቃቁ

௡

𝑍

𝐸ቂ𝑒௧௓
మ
ቃ ൌ

1

2𝜋√
඲
െஶ

ஶ

𝑒௧௫
మ
𝑒െ௫

మ/ଶ 𝑑𝑥

ൌ
1

2𝜋√
඲
െஶ

ஶ

𝑒െ௫
మ/ଶఙమ 𝑑𝑥 where 𝜎ଶ ൌ ቆ1 െ 2𝑡ቇ

െଵ

ൌ 𝜎

ൌ ሺ1 െ 2𝑡ሻെଵ/ଶ
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where the next-to-last equality uses the fact that the normal density with mean 0

and variance  integrates to 1. Therefore,

Example 7j Moment generating function of the sum of a random number of

random variables

Let  be a sequence of independent and identically distributed random

variables, and let  be a nonnegative, integer-valued random variable that is

independent of the sequence  We want to compute the moment

generating function of

(In Example 5d ,  was interpreted as the amount of money spent in a store

on a given day when both the amount spent by a customer and the number of

customers are random variables.)

To compute the moment generating function of  we first condition on  as

follows:

where

Hence,

Thus,

𝜎ଶ

𝑀ሺ𝑡ሻ ൌ ሺ1 െ 2𝑡ሻെ௡/ଶ

𝑋ଵ,𝑋ଶ, …

𝑁

𝑋, 𝑖 ൒ 1.

𝑌 ൌ ෍
௜ ൌ ଵ

ே

𝑋௜

𝑌

𝑌, 𝑁

𝐸቎exp ቐ𝑡෍
ଵ

ே

𝑋௜ቑቮ𝑁 ൌ 𝑛቏ ൌ 𝐸 ቎exp ቐ𝑡෍
ଵ

ே

𝑋௜ቑቮ𝑁 ൌ 𝑛቏

ൌ 𝐸 ቎exp ቐ𝑡෍
ଵ

ே

𝑋௜ቑ቏

ൌ ሾ𝑀௑ሺ𝑡ሻሿ
௡

𝑀௑ሺ𝑡ሻ ൌ 𝐸ሾ𝑒௧௑೔ሿ

𝐸ሾ𝑒௧௒|𝑁ሿ ൌ ሺ𝑀௑ሺ𝑡ሻሻ
ே

𝑀௒ሺ𝑡ሻ ൌ 𝐸ቂሺ𝑀௑ሺ𝑡ሻሻ
ேቃ
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The moments of  can now be obtained upon differentiation, as follows:

So

verifying the result of Example 5d . (In this last set of equalities, we have used

the fact that 

Also,

so

Hence, from Equations (7.2)  and (7.3 ), we have

Example 7k

Let  denote a uniform random variable on (0, 1), and suppose that conditional

on  the random variable  has a binomial distribution with parameters 

and  In Example 5k , we showed that  is equally likely to take on any of the

𝑌

𝑀௒
ᇱ ሺ𝑡ሻ ൌ 𝐸ሾ𝑁ሺ𝑀௑ሺ𝑡ሻሻ

ேെଵ𝑀௑
ᇱ ሺ𝑡ሻሿ

𝐸ሾ𝑌ሿ ൌ 𝑀ᇱ
௒ሺ0ሻ

ൌ 𝐸ቂ𝑁ሺ𝑀௑ሺ0ሻሻ
ேെଵ𝑀ᇱ

௑ሺ0ሻቃ

ൌ 𝐸ሾ𝑁𝐸ሾ𝑋ሿሿ

ൌ 𝐸ሾ𝑁ሿ𝐸ሾ𝑋ሿ

(7.2)

𝑀௑ሺ0ሻ ൌ 𝐸ሾ𝑒଴௑ሿ ൌ 1.ሻ

𝑀ᇳ
௒ሺ𝑡ሻ ൌ 𝐸ቂ𝑁ሺ𝑁 െ 1ሻሺ𝑀௑ሺ𝑡ሻሻ

ேെଶሺ𝑀ᇱ
௑ሻ

ଶ
൅ 𝑁ሺ𝑀௑ሺ𝑡ሻሻ

ேെଵ𝑀ᇳ
௑ሺ𝑡ሻቃ

𝐸ൣ𝑌ଶ൧ ൌ 𝑀ᇳ
௒ሺ0ሻ

ൌ 𝐸ሾ𝑁ሺ𝑁 െ 1ሻሺ𝐸ሾ𝑋ሿሻଶ ൅ 𝑁𝐸ൣ𝑋ଶ൧

ൌ ሺ𝐸ሾ𝑋ሿሻଶ൫𝐸ൣ𝑁ଶ൧ െ 𝐸ሾ𝑁ሿ൯ ൅ 𝐸ሾ𝑁ሿ𝐸ൣ𝑋ଶ൧

ൌ 𝐸ሾ𝑁ሿቀ𝐸ൣ𝑋ଶ൧ െ ሺ𝐸ሾ𝑋ሿሻଶቁ ൅ ሺ𝐸ሾ𝑋ሿሻଶ𝐸ൣ𝑁ଶ൧

ൌ 𝐸ሾ𝑁ሿVarሺ𝑋ሻ ൅ ሺ𝐸ሾ𝑋ሿሻଶ𝐸ൣ𝑁ଶ൧

(7.3)

Varሺ𝑌ሻ ൌ 𝐸ሾ𝑁ሿVarሺ𝑋ሻ ൅ ሺ𝐸ሾ𝑋ሿሻଶቀ𝐸ൣ𝑁ଶ൧ െ ሺ𝐸ሾ𝑁ሿሻଶቁ

ൌ 𝐸ሾ𝑁ሿVarሺ𝑋ሻ ൅ ሺ𝐸ሾ𝑋ሿሻଶVarሺ𝑁ሻ

𝑌

𝑌 ൌ 𝑝, 𝑋 𝑛

𝑝. 𝑋
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values  Establish this result by using moment generating functions.

Solution

To compute the moment generating function of  start by conditioning on the

value of  Using the formula for the binomial moment generating function gives

Now,  is uniform on (0, 1), so, upon taking expectations, we obtain

Because the preceding is the moment generating function of a random variable

that is equally likely to be any of the values  the desired result follows

from the fact that the moment generating function of a random variable uniquely

determines its distribution.

It is also possible to define the joint moment generating function of two or more

random variables. This is done as follows: For any  random variables  the

joint moment generating function,  is defined, for all real values of

 by

The individual moment generating functions can be obtained from  by

letting all but one of the ‘s be 0. That is,

where the  is in the th place.

0, 1, …,𝑛.

𝑋,

𝑌.

𝐸ሾ𝑒௧௑ ||𝑌 ൌ 𝑝ሿ ൌ ሺ𝑝𝑒௧ ൅ 1 െ 𝑝ሻ௡

𝑌

𝐸ሾ𝑒௧௑ሿ ൌ ඲

଴

ଵ

ሺ𝑝𝑒௧ ൅ 1 െ 𝑝ሻ௡ 𝑑𝑝

ൌ
1

𝑒௧ െ 1
඲

ଵ

௘೟

𝑦௡𝑑𝑦 ሺby the substitution 𝑦 ൌ 𝑝𝑒௧ ൅ 1 െ 𝑝ሻ

ൌ
1

𝑛 ൅ 1
𝑒௧൫௡൅ଵ൯ െ 1
𝑒௧ െ 1

ൌ
1

𝑛 ൅ 1
ሺ1 ൅ 𝑒௧ ൅ 𝑒ଶ௧ ൅ ⋯ ൅ 𝑒௡௧ሻ

0, 1, …,𝑛,

𝑛 𝑋ଵ, …,𝑋௡,

𝑀ሺ𝑡ଵ, …, 𝑡௡ሻ,
𝑡ଵ, …, 𝑡௡,

𝑀൫𝑡ଵ, …, 𝑡௡൯ ൌ 𝐸ൣ𝑒௧భ௑భ൅ ⋅ ⋅ ⋅ ൅௧೙௑೙൧

𝑀ሺ𝑡ଵ, …, 𝑡௡ሻ
𝑡௝

𝑀௑೔൫𝑡൯ ൌ 𝐸ൣ𝑒௧௑೔൧ ൌ 𝑀൫0, …, 0, 𝑡, 0, …, 0൯

𝑡 𝑖
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It can be proven (although the proof is too advanced for this text) that the joint

moment generating function  uniquely determines the joint distribution of

 This result can then be used to prove that the  random variables 

are independent if and only if

For the proof in one direction, if the  random variables are independent, then

For the proof in the other direction, if Equation (7.4 ) is satisfied, then the joint

moment generating function  is the same as the joint moment generating

function of  independent random variables, the th of which has the same

distribution as  As the joint moment generating function uniquely determines the

joint distribution, this must be the joint distribution; hence, the random variables are

independent.

Example 7l

Let  and  be independent normal random variables, each with mean  and

variance  In Example 7a  of Chapter 6 , we showed that  and 

are independent. Let us now establish that  and  are independent by

computing their joint moment generating function:

But we recognize the preceding as the joint moment generating function of the

sum of a normal random variable with mean  and variance  and an

independent normal random variable with mean 0 and variance  Because the

joint moment generating function uniquely determines the joint distribution, it

follows that  and  are independent normal random variables.

𝑀ሺ𝑡ଵ, …, 𝑡௡ሻ
𝑋ଵ, …,𝑋௡. 𝑛 𝑋ଵ, …,𝑋௡

𝑀ሺ𝑡ଵ, …, 𝑡௡ሻ ൌ 𝑀௑భሺ𝑡ଵሻ⋯𝑀௑೙ሺ𝑡௡ሻ

(7.4)

𝑛

𝑀ሺ𝑡ଵ, …, 𝑡௡ሻ ൌ 𝐸ቂ𝑒൫௧భ௑భ൅ ⋅ ⋅ ⋅ ൅௧೙௑೙൯ቃ

ൌ 𝐸ሾ𝑒௧భ௑భ⋯𝑒௧೙௑೙ሿ

ൌ 𝐸ሾ𝑒௧భ௑భሿ⋯𝐸ሾ𝑒௧೙௑೙ሿ by independence

ൌ 𝑀௑భ൫𝑡ଵ൯⋯𝑀௑೙൫𝑡௡൯

𝑀ሺ𝑡ଵ, …, 𝑡௡ሻ
𝑛 𝑖

𝑋௜.

𝑋 𝑌 𝜇

𝜎ଶ. 𝑋 ൅ 𝑌 𝑋 െ 𝑌

𝑋 ൅ 𝑌 𝑋 െ 𝑌

𝐸ቂ𝑒௧൫௑൅௒൯൅௦൫௑െ௒൯ቃ ൌ 𝐸ቂ𝑒൫௧൅௦൯௑൅൫௧െ௦൯௒ቃ

ൌ 𝐸ቂ𝑒൫௧൅௦൯௑ቃ𝐸ቂ𝑒൫௧െ௦൯௒ቃ

ൌ 𝑒ఓ൫௧൅௦൯൅ఙ
మ൫௧൅௦൯

మ
/ଶ𝑒ఓ൫௧െ௦൯൅ఙ

మ൫௧െ௦൯
మ

/ଶ

ൌ 𝑒ଶఓ௧൅ఙ
మ௧మ𝑒ఙ

మ௦మ

2𝜇 2𝜎ଶ

2𝜎ଶ.

𝑋 ൅ 𝑌 𝑋 െ 𝑌
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In the next example, we use the joint moment generating function to verify a result

that was established in Example 2b  of Chapter 6 .

Example 7m

Suppose that the number of events that occur is a Poisson random variable with

mean  and that each event is independently counted with probability  Show

that the number of counted events and the number of uncounted events are

independent Poisson random variables with respective means  and 

Solution

Let  denote the total number of events, and let  denote the number of them

that are counted. To compute the joint moment generating function of  the

number of events that are counted, and  the number that are uncounted,

start by conditioning on  to obtain

which follows because, conditional on  is a binomial random variable

with parameters  and  Hence,

Taking expectations of both sides of this equation yields

Now, since  is Poisson with mean  it follows that  Therefore,

for any positive value  we see (by letting  that  Thus,

As the preceding is the joint moment generating function of independent Poisson

random variables with respective means  and  the result is proven.

𝜆 𝑝.

𝜆𝑝 𝜆ሺ1 െ 𝑝ሻ.

𝑋 𝑋௖
𝑋௖,

𝑋 െ 𝑋௖,

𝑋

𝐸ቂ𝑒௦௑೎൅௧൫௑െ௑೎൯|𝑋 ൌ 𝑛ቃ ൌ 𝑒௧௡𝐸ቂ𝑒൫௦െ௧൯௑೎|𝑋 ൌ 𝑛ቃ

ൌ 𝑒௧௡ሺ𝑝𝑒௦െ௧ ൅ 1 െ 𝑝ሻ௡

ൌ ሺ𝑝𝑒௦ ൅ ሺ1 െ 𝑝ሻ𝑒௧ሻ௡

𝑋 ൌ 𝑛,𝑋௖
𝑛 𝑝.

𝐸ቂ𝑒௦௑೎൅௧൫௑െ௑೎൯|𝑋ቃ ൌ ሺ𝑝𝑒௦ ൅ ሺ1 െ 𝑝ሻ𝑒௧ሻ௑

𝐸ቂ𝑒௦௑೎൅௧൫௑െ௑೎൯ቃ ൌ 𝐸ቂቀ𝑝𝑒௦ ൅ ቀ1 െ 𝑝ቁ𝑒௧ቁ
௑
ቃ

𝑋 𝜆, 𝐸ቂ𝑒௧௑ቃ ൌ 𝑒ఒ൫௘
೟െଵ൯.

𝑎 𝑎 ൌ 𝑒௧ሻ 𝐸ቂ𝑎௑ቃ ൌ 𝑒ఒ൫௔െଵ൯.

𝐸ቂ𝑒௦௑೎൅௧൫௑െ௑೎൯ቃ ൌ 𝑒ఒ൫௣௘
ೞ൅൫ଵെ௣൯௘೟െଵ൯

ൌ 𝑒ఒ௣൫௘
ೞെభ൯𝑒ఒ൫ଵെ௣൯൫௘

೟െଵ൯

𝜆𝑝 𝜆ሺ1 െ 𝑝ሻ,
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Let  be a set of  independent standard normal random variables. If, for

some constants  and 

then the random variables  are said to have a multivariate normal

distribution.

From the fact that the sum of independent normal random variables is itself a normal

random variable, it follows that each  is a normal random variable with mean and

variance given, respectively, by

Let us now consider

the joint moment generating function of  The first thing to note is that since

 is itself a linear combination of the independent normal random variables

 it is also normally distributed. Its mean and variance are

𝑍ଵ, …,𝑍௡ 𝑛

𝑎௜௝, 1 ൑ 𝑖 ൑ 𝑚, 1 ൑ 𝑗 ൑ 𝑛, 𝜇௜, 1 ൑ 𝑖 ൑ 𝑚,

𝑋ଵ ൌ 𝑎ଵଵ𝑍ଵ ൅ ⋯ ൅ 𝑎ଵ௡𝑍௡ ൅ 𝜇ଵ
𝑋ଶ ൌ 𝑎ଶଵ𝑍ଵ ൅ ⋯ ൅ 𝑎ଶ௡𝑍௡ ൅ 𝜇ଶ

⋮

𝑋௜ ൌ 𝑎௜ଵ𝑍ଵ ൅ ⋯ ൅ 𝑎௜௡𝑍௡ ൅ 𝜇௜
⋮

𝑋௠ ൌ 𝑎௠ଵ𝑍ଵ ൅ ⋯ ൅ 𝑎௠௡𝑍௡ ൅ 𝜇௠

𝑋ଵ, …,𝑋௠

𝑋௜

𝐸ሾ𝑋௜ሿ ൌ 𝜇௜

Varሺ𝑋௜ሻ ൌ ෍
௝ ൌ ଵ

௡

𝑎௜௝
ଶ

𝑀ሺ𝑡ଵ, …, 𝑡௠ሻ ൌ 𝐸ሾexp ሼ𝑡ଵ𝑋ଵ ൅ ⋯ ൅ 𝑡௠𝑋௠ሽሿ

𝑋ଵ, …,𝑋௠.

෍
௜ ൌ ଵ

௠

𝑡௜𝑋௜

𝑍ଵ, …,𝑍௡,

𝐸቎ ෍
௜ ൌ ଵ

௠

𝑡௜𝑋௜቏ ൌ ෍
௜ ൌ ଵ

௠

𝑡௜𝜇௜
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and

Now, if  is a normal random variable with mean  and variance  then

Thus,

which shows that the joint distribution of  is completely determined from a

knowledge of the values of  and 

It can be shown that when  the multivariate normal distribution reduces to the

bivariate normal.

Example 8a

Find  for bivariate normal random variables  and  having parameters

Solution

Because  is normal with mean

and variance

we obtain

Varቌ ෍
௜ ൌ ଵ

௠

𝑡௜𝑋௜ቍ ൌ Covቌ ෍
௜ ൌ ଵ

௠

𝑡௜𝑋௜, ෍
௝ ൌ ଵ

௠

𝑡௝𝑋௝ቍ

ൌ ෍
௜ ൌ ଵ

௠

෍
௝ ൌ ଵ

௠

𝑡௜𝑡௝Cov൫𝑋௜,𝑋௝൯

𝑌 𝜇 𝜎ଶ,

𝐸ሾ𝑒௒ሿ ൌ 𝑀௒ሺ𝑡ሻ|௧ൌଵ ൌ 𝑒ఓ൅ఙ
మ/ଶ

𝑀ሺ𝑡ଵ, …, 𝑡௠ሻ ൌ expቐ ෍
௜ ൌ ଵ

௠

𝑡௜𝜇௜ ൅
1
2

෍
௜ ൌ ଵ

௠

෍
௜ ൌ ଵ

௠

𝑡௜𝑡௝Cov൫𝑋௜,𝑋௝൯ቑ

𝑋ଵ, …,𝑋௠
𝐸ሾ𝑋௜ሿ Cov൫𝑋௜,𝑋௝൯, 𝑖, 𝑗 ൌ 1, …,𝑚.

𝑚 ൌ 2,

𝑃ሺ𝑋 ൏ 𝑌ሻ 𝑋 𝑌

𝜇௫ ൌ 𝐸ሾ𝑋ሿ, 𝜇௬ ൌ 𝐸ሾ𝑌ሿ,𝜎௫ଶ ൌ Varሺ𝑋ሻ,𝜎௬ଶ ൌ Varሺ𝑌ሻ,𝜌 ൌ Corrሺ𝑋,𝑌ሻ

𝑋 െ 𝑌

𝐸ቂ𝑋 െ 𝑌ቃ ൌ 𝜇௫ െ 𝜇௬

Varሺ𝑋 െ 𝑌ሻ ൌ Varሺ𝑋ሻ ൅ Varሺെ𝑌ሻ ൅ 2Covሺ𝑋, െ 𝑌ሻ

ൌ 𝜎௫ଶ ൅ 𝜎௬ଶ െ 2𝜌𝜎௫𝜎௬
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Example 8b

Suppose that the conditional distribution of  given that  is normal with

mean  and variance  Moreover, suppose that  itself is a normal random

variable with mean  and variance  Find the conditional distribution of  given

that 

Solution

Rather than using and then simplifying Bayes’s formula, we will solve this

problem by first showing that  has a bivariate normal distribution. To do so,

note that the joint density function of  can be written as

where  is a normal density with mean  and variance However, if we

let  be a standard normal random variable that is independent of  then the

conditional distribution of  given that  is also normal with mean  and

variance Consequently, the joint density of  is the same as that of 

Because the former joint density is clearly bivariate normal (since  and 

are both linear combinations of the independent normal random variables  and

, it follows that  has a bivariate normal distribution. Now,

and

𝑃ሼ𝑋 ൏ 𝑌ሽ ൌ 𝑃ሼ𝑋 െ 𝑌 ൏ 0ሽ

ൌ 𝑃
⎧

⎨
⎩

⎪

⎪

𝑋 െ 𝑌 െ ቀ𝜇௫ െ 𝜇௬ቁ

𝜎௫ଶ ൅ 𝜎௬ଶ െ 2𝜌𝜎௫𝜎௬ට
൏

െቀ𝜇௫ െ 𝜇௬ቁ

𝜎௫ଶ ൅ 𝜎௬ଶ െ 2𝜌𝜎௫𝜎௬ට

⎫

⎬
⎭

⎪

⎪

ൌ Φ⎛

⎝
⎜⎜

𝜇௬ െ 𝜇௫
𝜎௫ଶ ൅ 𝜎௬ଶ െ 2𝜌𝜎௫𝜎௬ට

⎞

⎠
⎟⎟

𝑋, Θ ൌ 𝜃,

𝜃 1. Θ

𝜇 𝜎ଶ. Θ

𝑋 ൌ 𝑥.

𝑋,Θ

𝑋,Θ

𝑓௑,Θሺ𝑥,𝜃ሻ ൌ 𝑓௑หΘሺ𝑥|𝜃ሻ𝑓Θሺ𝜃ሻ

𝑓௑หΘሺ𝑥|𝜃ሻ 𝜃 1 .

𝑍 Θ,

𝑍 ൅ Θ, Θ ൌ 𝜃, 𝜃

1 . 𝑍 ൅ Θ,Θ 𝑋,Θ .

𝑍 ൅ Θ Θ

𝑍

Θሻ 𝑋,Θ

𝐸ሾ𝑋ሿ ൌ 𝐸ሾ𝑍 ൅ Θሿ ൌ 𝜇

Varሺ𝑋ሻ ൌ Varሺ𝑍 ൅ Θሻ ൌ 1 ൅ 𝜎ଶ
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Because  has a bivariate normal distribution, the conditional distribution of 

given that  is normal with mean

and variance

Let  be independent normal random variables, each with mean  and

variance  Let  denote their sample mean. Since the sum of

independent normal random variables is also a normal random variable, it follows

that  is a normal random variable with (from Examples 2c  and 4a ) expected

value  and variance 

Now, recall from Example 4e  that

Also, note that since  are all linear combinations of the

independent standard normals  it follows that

 has a joint distribution that is multivariate normal. If we let  be a

normal random variable, with mean  and variance  that is independent of the

𝜌 ൌ Corrሺ𝑋,Θሻ

ൌ Corrሺ𝑍 ൅ Θ,Θሻ

ൌ
Covሺ𝑍 ൅ Θ,Θሻ

Varሺ𝑍 ൅ ΘሻVarሺΘሻඥ

ൌ
𝜎

1 ൅ 𝜎ଶ√

𝑋,Θ Θ,

𝑋 ൌ 𝑥,

𝐸ሾΘ|𝑋 ൌ 𝑥ሿ ൌ 𝐸ሾΘሿ ൅ 𝜌
VarሺΘሻ
Varሺ𝑋ሻඨ ሺ𝑥 െ 𝐸ሾ𝑋ሿሻ

ൌ 𝜇 ൅
𝜎ଶ

1 ൅ 𝜎ଶ
ሺ𝑥 െ 𝜇ሻ

VarሺΘ|𝑋 ൌ 𝑥ሻ ൌ VarሺΘሻሺ1 െ 𝜌ଶሻ

ൌ
𝜎ଶ

1 ൅ 𝜎ଶ

𝑋ଵ, …,𝑋௡ 𝜇

𝜎ଶ. 𝑋̅̅̅ ̅ൌ ෍
௜ ൌ ଵ

௡

𝑋௜/𝑛

𝑋̅̅̅ ̅

𝜇 𝜎ଶ/𝑛.

Covሺ𝑋̅̅̅ ̅,𝑋௜ െ 𝑋̅̅̅ሻ̅ ൌ 0, 𝑖 ൌ 1, …,𝑛

(8.1)

𝑋̅̅̅ ̅,𝑋ଵ െ 𝑋̅̅̅ ̅,𝑋ଶ െ 𝑋̅̅̅ ̅, …,𝑋௡ െ 𝑋̅̅̅ ̅

ሺ𝑋௜ െ 𝜇ሻ/𝜎, 𝑖 ൌ 1, …,𝑛,

𝑋̅̅̅ ̅,𝑋௜ െ 𝑋̅̅̅ ̅, 𝑖 ൌ 1, …,𝑛 𝑌

𝜇 𝜎ଶ/𝑛,
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 then  also has a multivariate normal distribution and,

indeed, because of Equation (8.1) , has the same expected values and

covariances as the random variables  But since a multivariate

normal distribution is determined completely by its expected values and covariances,

it follows that  and  have the same joint

distribution, thus showing that  is independent of the sequence of deviations

Since  is independent of the sequence of deviations  it is also

independent of the sample variance

Since we already know that  is normal with mean  and variance  it remains

only to determine the distribution of  To accomplish this, recall, from Example

4a , the algebraic identity

Upon dividing the preceding equation by  we obtain

Now,

is the sum of the squares of  independent standard normal random variables and so

is a chi-squared random variable with  degrees of freedom. Hence, from Example

7i , its moment generating function is  Also, because

𝑋௜, 𝑖 ൌ 1, …,𝑛, 𝑌,𝑋௜ െ 𝑋̅̅̅ ̅, 𝑖 ൌ 1, …,𝑛

𝑋̅̅̅ ̅,𝑋௜ െ 𝑋̅̅̅ ̅, 𝑖 ൌ 1, …,𝑛.

𝑌,𝑋௜ െ 𝑋̅̅̅ ̅, 𝑖 ൌ 1, …,𝑛 𝑋̅̅̅ ̅,𝑋௜ െ 𝑋̅̅̅ ̅, 𝑖 ൌ 1, …,𝑛

𝑋̅̅̅ ̅

𝑋௜ െ 𝑋̅̅̅ ̅, 𝑖 ൌ 1, …,𝑛.

𝑋̅̅̅ ̅ 𝑋௜ െ 𝑋̅̅̅ ̅, 𝑖 ൌ 1, …,𝑛,

𝑆ଶ ≡ ෍
௜ ൌ ଵ

௡

ሺ𝑋௜ െ 𝑋̅̅̅ሻ̅ଶ/ሺ𝑛 െ 1ሻ.

𝑋̅̅̅ ̅ 𝜇 𝜎ଶ/𝑛,

𝑆ଶ.

ሺ𝑛 െ 1ሻ𝑆ଶ ൌ ෍
௜ ൌ ଵ

௡

ሺ𝑋௜ െ 𝑋̅̅̅ሻ̅ଶ

ൌ ෍
௜ ൌ ଵ

௡

ሺ𝑋௜ െ 𝜇ሻଶ െ 𝑛ሺ𝑋̅̅̅ െ̅ 𝜇ሻଶ

𝜎ଶ,

ሺ𝑛 െ 1ሻ𝑆ଶ

𝜎ଶ
൅ ቆ

𝑋̅̅̅ െ̅ 𝜇

𝜎/ 𝑛√
ቇ
ଶ

ൌ ෍
௜ ൌ ଵ

௡

ቆ
𝑋௜ െ 𝜇
𝜎

ቇ
ଶ

(8.2)

෍
௜ ൌ ଵ

௡

ቆ
𝑋௜ െ 𝜇
𝜎

ቇ
ଶ

𝑛

𝑛

ሺ1 െ 2𝑡ሻെ௡/ଶ.

ቆ
𝑋̅̅̅ െ̅ 𝜇

𝜎/ 𝑛√
ቇ
ଶ
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is the square of a standard normal variable, it is a chi-squared random variable with

1 degree of freedom, and so has moment generating function  Now, we

have seen previously that the two random variables on the left side of Equation

(8.2) are independent. Hence, as the moment generating function of the sum of

independent random variables is equal to the product of their individual moment

generating functions, we have

or

But as  is the moment generating function of a chi-squared random

variable with  degrees of freedom, we can conclude, since the moment

generating function uniquely determines the distribution of the random variable, that

that is the distribution of 

Summing up, we have shown the following.

Proposition 8.1

If  are independent and identically distributed normal random variables

with mean  and variance  then the sample mean  and the sample variance

 are independent.  is a normal random variable with mean  and variance

 is a chi-squared random variable with  degrees of

freedom.

Up to this point, we have defined expectations only for discrete and continuous

random variables. However, there also exist random variables that are neither

discrete nor continuous, and they, too, may possess an expectation. As an example

of such a random variable, let  be a Bernoulli random variable with parameter

 and let  be a uniformly distributed random variable over the interval [0, 1].

Furthermore, suppose that  and  are independent, and define the new random

variable  by

ሺ1 െ 2𝑡ሻെଵ/ଶ.

𝐸ቂ𝑒௧൫௡െଵ൯ௌ
మ/ఙమቃቀ1 െ 2𝑡ቁ

െଵ/ଶ
ൌ ቀ1 െ 2𝑡ቁ

െ௡/ଶ

𝐸ቂ𝑒௧൫௡െଵ൯ௌ
మ/ఙమቃ ൌ ቀ1 െ 2𝑡ቁ

െ൫௡െଵ൯/ଶ

ሺ1 െ 2𝑡ሻെ൫௡െଵ൯/ଶ

𝑛 െ 1

൫𝑛 െ 1൯𝑆ଶ/𝜎ଶ.

𝑋ଵ, …,𝑋௡
𝜇 𝜎ଶ, 𝑋̅̅̅ ̅

𝑆ଶ 𝑋̅̅̅ ̅ 𝜇

𝜎ଶ/𝑛; ൫𝑛 െ 1൯𝑆ଶ/𝜎ଶ 𝑛 െ 1

𝑋

𝑝 ൌ
1
2

, 𝑌

𝑋 𝑌

𝑊

𝑊 ൌ ቊ
𝑋 if 𝑋 ൌ 1

𝑌 if 𝑋 ് 1
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Clearly,  is neither a discrete (since its set of possible values, [0, 1], is

uncountable) nor a continuous (since  random variable.

In order to define the expectation of an arbitrary random variable, we require the

notion of a Stieltjes integral. Before defining this integral, let us recall that for any

function  is defined by

where the limit is taken over all  as  and where

For any distribution function  we define the Stieltjes integral of the nonnegative

function  over the interval  by

where, as before, the limit is taken over all  as  and

where  Further, we define the Stieltjes integral over the

whole real line by

Finally, if  is not a nonnegative function, we define  and  by

Because  and  and  are both nonnegative functions, it is

natural to define

𝑊

𝑃ሼ𝑊 ൌ 1ሽ ൌ
1
2
ሻ

𝑔, ௔׬
௕
𝑔ሺ𝑋ሻ 𝑑𝑥

඲

௔

௕

𝑔ሺ𝑋ሻ 𝑑𝑥 ൌ lim ෍
௜ ൌ ଵ

௡

𝑔ሺ𝑥௜ሻሺ𝑥௜ െ 𝑥௜െଵሻ

𝑎 ൌ 𝑥଴ ൏ 𝑥ଵ ൏ 𝑥ଶ⋯ ൏ 𝑥௡ ൌ 𝑏 𝑛 → ∞
max

௜ ൌ ଵ , … , ௡
ሺ𝑥௜ െ 𝑥௜െଵሻ → 0.

𝐹,

𝑔 ሾ𝑎,  𝑏ሿ

඲

௔

௕

𝑔ሺ𝑋ሻ 𝑑𝐹ሺ𝑋ሻ ൌ lim ෍
௜ ൌ ଵ

௡

𝑔ሺ𝑥௜ሻሾ𝐹ሺ𝑥௜ሻ െ 𝐹ሺ𝑥௜െଵሻሿ

𝑎 ൌ 𝑥଴ ൏ 𝑥ଵ ൏ ⋯ ൏ 𝑥௡ ൌ 𝑏 𝑛 → ∞

max
௜ ൌ ଵ , … , ௡

ቆ𝑥௜ െ 𝑥௜െଵቇ → 0.

඲
െஶ

ஶ

𝑔ሺ𝑥ሻ 𝑑𝐹ሺ𝑥ሻ ൌ lim
௔ → െ ஶ

௕ → ൅ ஶ

඲

௔

௕

𝑔ሺ𝑥ሻ 𝑑𝐹ሺ𝑥ሻ

𝑔 𝑔൅ 𝑔െ

𝑔൅ሺ𝑥ሻ ൌ ൝
𝑔ሺ𝑥ሻ if 𝑔ሺ𝑥ሻ ൒ 0

        0 if 𝑔ሺ𝑥ሻ ൏ 0

𝑔െሺ𝑥ሻ ൌ ൝
        0 if 𝑔ሺ𝑥ሻ ൒ 0

െ𝑔ሺ𝑋ሻ if 𝑔ሺ𝑥ሻ ൏ 0

𝑔൫𝑥൯ ൌ 𝑔൅൫𝑥൯ െ 𝑔െ൫𝑥൯ 𝑔൅ 𝑔െ
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and we say that  exists as long as  and

 are not both equal to 

If  is an arbitrary random variable having cumulative distribution  we define the

expected value of  by

It can be shown that if  is a discrete random variable with mass function  then

whereas if  is a continuous random variable with density function  then

The reader should note that Equation (9.1)  yields an intuitive definition of 

consider the approximating sum

of  Because  is just the probability that  will be in the interval

 the approximating sum multiplies the approximate value of  when it is in

the interval  by the probability that it will be in that interval and then sums

over all the intervals. Clearly, as these intervals get smaller and smaller in length, we

obtain the “expected value” of 

Stieltjes integrals are mainly of theoretical interest because they yield a compact way

of defining and dealing with the properties of expectation. For instance, the use of

Stieltjes integrals avoids the necessity of having to give separate statements and

proofs of theorems for the continuous and the discrete cases. However, their

඲
െஶ

ஶ

𝑔ሺ𝑥ሻ 𝑑𝐹ሺ𝑥ሻ ൌ ඲
െஶ

ஶ

𝑔൅ሺ𝑥ሻ 𝑑𝐹ሺ𝑥ሻ െ඲
െஶ

ஶ

𝑔െሺ𝑥ሻ 𝑑𝐹ሺ𝑥ሻ

െஶ׬
ஶ

𝑔ሺ𝑋ሻ 𝑑𝐹ሺ𝑋ሻ െஶ׬
ஶ

𝑔൅ሺ𝑥ሻ 𝑑𝐹ሺ𝑥ሻ

െஶ׬
ஶ

𝑔െቀ𝑥ቁ 𝑑𝐹ቀ𝑥ቁ ൅ ∞ .

𝑋 𝐹,

𝑋

𝐸ሾ𝑋ሿ ൌ ඲
െஶ

ஶ

𝑥 𝑑𝐹ሺ𝑥ሻ

(9.1)

𝑋 𝑝ሺ𝑥ሻ,

඲
െஶ

ஶ

𝑥𝑑𝐹ሺ𝑥ሻ ൌ ෍

௫ : ௣ ሺ௫ ሻ வ ଴

𝑥𝑝ሺ𝑥ሻ

𝑋 𝑓ሺ𝑥ሻ,

඲
െஶ

ஶ

𝑥𝑑𝐹ሺ𝑥ሻ ൌ ඲
െஶ

ஶ

𝑥𝑓ሺ𝑥ሻ 𝑑𝑥

𝐸ሾ𝑋ሿ;

෍
௜ ൌ ଵ

௡

𝑥௜ሾ𝐹ሺ𝑥௜ሻ െ 𝐹ሺ𝑥௜െଵሻሿ

𝐸ሾ𝑋ሿ . 𝐹ሺ𝑥௜ሻ െ 𝐹ሺ𝑥௜െଵሻ 𝑋

ሺ𝑥௜െଵ, 𝑥௜ሿ, 𝑋

ሺ𝑥௜െଵ, 𝑥௜ሿ

𝑋.
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properties are very much the same as those of ordinary integrals, and all of the

proofs presented in this chapter can easily be translated into proofs in the general

case.

If  and  have a joint probability mass function , then

whereas if they have a joint density function , then

A consequence of the preceding equations is that

which generalizes to

The covariance between random variables  and  is given by

A useful identity is

When  and  the preceding formula gives

𝑋 𝑌 𝑝ሺ𝑥, 𝑦ሻ

𝐸ሾ𝑔ሺ𝑋,𝑌ሻሿ ൌ ෍
௬

෍
௫

𝑔ሺ𝑥,𝑦ሻ𝑝ሺ𝑥,𝑦ሻ

𝑓ሺ𝑥, 𝑦ሻ

𝐸ሾ𝑔ሺ𝑋,𝑌ሻሿ ൌ ඲
െஶ

ஶ

඲
െஶ

ஶ

𝑔ሺ𝑥,𝑦ሻ𝑓ሺ𝑥,𝑦ሻ 𝑑𝑥 𝑑𝑦

𝐸ሾ𝑋 ൅ 𝑌ሿ ൌ 𝐸ሾ𝑋ሿ ൅ 𝐸ሾ𝑌ሿ

𝐸቎ ෍
௜ ൌ ଵ

௡

𝑋௜቏ ൌ ෍
௜ ൌ ଵ

௡

𝐸ሾ𝑋௜ሿ

𝑋 𝑌

Covሺ𝑋,𝑌ሻ ൌ 𝐸ሾሺ𝑋 െ 𝐸ሾ𝑋ሿሻሺ𝑌 െ 𝐸ሾ𝑌ሿሻሿ

ൌ 𝐸ሾ𝑋𝑌ሿ െ 𝐸ሾ𝑋ሿ𝐸ሾ𝑌ሿ

Cov ቌ ෍
௜ ൌ ଵ

௡

𝑋௜, ෍
௝ ൌ ଵ

௠

𝑌௝ቍ ൌ ෍
௜ ൌ ଵ

௡

෍
௝ ൌ ଵ

௠

Covሺ𝑋௜,𝑌௝ሻ

𝑛 ൌ 𝑚 𝑌௜ ൌ 𝑋௜, 𝑖 ൌ 1, …,𝑛,

Var ቌ ෍
௜ ൌ ଵ

௡

𝑋௜ቍ ൌ ෍
௜ ൌ ଵ

௡

Varሺ𝑋௜ሻ ൅ 2෍෍
௜ ழ ௝

Covሺ𝑋௜,𝑌௝ሻ
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The correlation between  and  denoted by  is defined by

If  and  are jointly discrete random variables, then the conditional expected value

of  given that  is defined by

If  and  are jointly continuous random variables, then

where

is the conditional probability density of  given that  Conditional expectations,

which are similar to ordinary expectations except that all probabilities are now

computed conditional on the event that  satisfy all the properties of ordinary

expectations.

Let  denote that function of  whose value at  is  A very

useful identity is

In the case of discrete random variables, this equation reduces to the identity

and, in the continuous case, to

The preceding equations can often be applied to obtain  by first “conditioning” on

𝑋 𝑌, 𝜌ሺ𝑋,𝑌ሻ,

𝜌ሺ𝑋,𝑌ሻ ൌ
Cov ሺ𝑋,𝑌ሻ

Varሺ𝑋ሻ Varሺ𝑌ሻඥ

𝑋 𝑌

𝑋, 𝑌 ൌ 𝑦,

𝐸ሾ𝑋 |𝑌 ൌ 𝑦ሿ ൌ ෍
௫

𝑥𝑃ሼ𝑋 ൌ 𝑥 |𝑌 ൌ 𝑦ሿ

𝑋 𝑌

𝐸ሾ𝑋 |𝑌 ൌ 𝑦ሿ ൌ ඲
െஶ

ஶ

𝑥𝑓௑ห௒ሺ𝑥 |𝑦ሻ

𝑓௑ห௒ሺ𝑥 |𝑦ሻ ൌ
𝑓ሺ𝑥,𝑦ሻ
𝑓௒൫𝑦൯

𝑋 𝑌 ൌ 𝑦.

𝑌 ൌ 𝑦,

𝐸ሾ𝑋 ||𝑌ሿ 𝑌 𝑌 ൌ 𝑦 𝐸ሾ𝑋 ||𝑌 ൌ 𝑦ሿ.

𝐸ሾ𝑋ሿ ൌ 𝐸ሾ𝐸ሾ𝑋 ||𝑌ሿሿ

𝐸ሾ𝑋ሿ ൌ ෍
௬

𝐸ሾ𝑋 |𝑌 ൌ 𝑦ሿ𝑃ሼ𝑌 ൌ 𝑦ሽ

𝐸ሾ𝑋ሿ ൌ ඲
െஶ

ஶ

𝐸ሾ𝑋 |𝑌 ൌ 𝑦ሿ𝑓௒ሺ𝑦ሻ𝑑𝑦

𝐸ሾ𝑋ሿ
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the value of some other random variable  In addition, since, for any event 

 where  is 1 if  occurs and is 0 otherwise, we can use the same

equations to compute probabilities.

The conditional variance of  given that  is defined by

Let  be that function of  whose value at  is  The

following is known as the conditional variance formula:

Suppose that the random variable  is to be observed and, on the basis of its value,

one must then predict the value of the random variable  In such a situation, it turns

out that among all predictors,  has the smallest expectation of the square of

the difference between it and 

The moment generating function of the random variable  is defined by

The moments of  can be obtained by successively differentiating  and then

evaluating the resulting quantity at  Specifically, we have

Two useful results concerning moment generating functions are, first, that the

moment generating function uniquely determines the distribution function of the

random variable and, second, that the moment generating function of the sum of

independent random variables is equal to the product of their moment generating

functions. These results lead to simple proofs that the sum of independent normal

(Poisson, gamma) random variables remains a normal (Poisson, gamma) random

variable.

If  are all linear combinations of a finite set of independent standard normal

random variables, then they are said to have a multivariate normal distribution. Their

joint distribution is specified by the values of 

If  are independent and identically distributed normal random variables, then

their sample mean

𝑌. 𝐴,

𝑃ሺ𝐴ሻ ൌ 𝐸ሾ𝐼஺ሿ, 𝐼஺ 𝐴

𝑋, 𝑌 ൌ 𝑦,

Varሺ𝑋 ||𝑌 ൌ 𝑦ሻ ൌ 𝐸ሾሺ𝑋 െ 𝐸ሾ𝑋 ||𝑌 ൌ 𝑦ሿሻଶ ||𝑌 ൌ 𝑦ሿ

Varሺ𝑋 ||𝑌ሻ 𝑌 𝑌 ൌ 𝑦 Varሺ𝑋 ||𝑌 ൌ 𝑦ሻ.

Varሺ𝑋ሻ ൌ 𝐸ሾ Varሺ𝑋 ||𝑌ሻሿ ൅ Varሺ𝐸ሾ𝑋 ||𝑌ሿሻ

𝑋

𝑌.

𝐸ሾ𝑌 ||𝑋ሿ
𝑌.

𝑋

𝑀ሺ𝑡ሻ ൌ 𝐸ሾ𝑒௧௑ሿ

𝑋 𝑀ሺ𝑡ሻ
𝑡 ൌ 0.

𝐸ሾ𝑋௡ሿ ൌ
𝑑௡

𝑑𝑡௡
𝑀ሺ𝑡ሻቤ ௧ൌ଴ 𝑛 ൌ 1, 2, …

𝑋ଵ, …,𝑋௠

𝐸ൣ𝑋௜൧, Cov൫𝑋௜,𝑋௝൯, 𝑖, 𝑗 ൌ 1, …,𝑚.

𝑋ଵ, …,𝑋௡
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and their sample variance

are independent. The sample mean  is a normal random variable with mean  and

variance  the random variable  is a chi-squared random variable

with  degrees of freedom.

𝑋̅̅̅ ̅ൌ ෍
௜ ൌ ଵ

௡
𝑋௜
𝑛

𝑆ଶ ൌ ෍
௜ ൌ ଵ

௡
ሺ𝑋௜ െ 𝑋̅̅̅ሻ̅ଶ

𝑛 െ 1

𝑋̅̅̅ ̅ 𝜇

𝜎ଶ/𝑛; ൫𝑛 െ 1൯𝑆ଶ/𝜎ଶ

𝑛 െ 1

7.1 A player throws a fair die and simultaneously flips a fair coin. If

the coin lands heads, then she wins twice, and if tails, then she wins

one-half of the value that appears on the die. Determine her

expected winnings.

7.2 The game of Clue involves 6 suspects, 6 weapons, and 9 rooms.

One of each is randomly chosen and the object of the game is to

guess the chosen three.

a. How many solutions are possible?

In one version of the game, the selection is made and then

each of the players is randomly given three of the remaining

cards. Let  and  be, respectively, the numbers of

suspects, weapons, and rooms in the set of three cards given

to a specified player. Also, let  denote the number of

solutions that are possible after that player observes his or her

three cards.

b. Express  in terms of  and 

c. Find 

7.3 Gambles are independent, and each one results in the player

being equally likely to win or lose 1 unit. Let  denote the net

winnings of a gambler whose strategy is to stop gambling

immediately after his first win. Find
a. 

b. 

c. 

𝑆, 𝑊, 𝑅

𝑋

𝑋 𝑆, 𝑊, 𝑅.

𝐸ሾ𝑋ሿ .

𝑊

𝑃ሼ𝑊 ൐ 0ሽ
𝑃ሼ𝑊 ൏ 0ሽ
𝐸ሾ𝑊ሿ
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7.4. If  and  have joint density function

find

a. 

b. 

c. 

7.5 The county hospital is located at the center of a square whose

sides are 3 miles wide. If an accident occurs within this square, then

the hospital sends out an ambulance. The road network is

rectangular, so the travel distance from the hospital, whose

coordinates are (0, 0), to the point  is  If an accident

occurs at a point that is uniformly distributed in the square, find the

expected travel distance of the ambulance.

7.6 A fair die is rolled 10 times. Calculate the expected sum of the 10

rolls.

7.7 Suppose that  and  each randomly and independently choose

3 of 10 objects. Find the expected number of objects

a. chosen by both  and 

b. not chosen by either  or 

c. chosen by exactly one of  and 

7.8.  people arrive separately to a professional dinner. Upon arrival,

each person looks to see if he or she has any friends among those

present. That person then sits either at the table of a friend or at an

unoccupied table if none of those present is a friend. Assuming that

each of the  pairs of people is, independently, a pair of friends

with probability  find the expected number of occupied tables.

Hint: Let  equal 1 or 0, depending on whether the th arrival sits at

a previously unoccupied table.

7.9. A total of  balls, numbered 1 through  are put into  urns, also

numbered 1 through  in such a way that ball  is equally likely to go

into any of the urns  Find

a. the expected number of urns that are empty;

b. the probability that none of the urns is empty.

7.10 Consider 3 trials, each having the same probability of success.

Let  denote the total number of successes in these trials. If

𝑋 𝑌

𝑓௑,௒ሺ𝑥,𝑦ሻ ൌ ൝
1/𝑦, if  0 ൏ 𝑦 ൏ 1,  0 ൏ 𝑥 ൏ 𝑦

0, otherwise

𝐸ሾ𝑋𝑌ሿ
𝐸ሾ𝑋ሿ
𝐸ሾ𝑌ሿ

ሺ𝑥,  𝑦ሻ |𝑥 | ൅ |𝑦 | .

𝐴 𝐵

𝐴 𝐵;

𝐴 𝐵;

𝐴 𝐵.

𝑁

ቆ
𝑁

2
ቇ

𝑝,

𝑋௜ 𝑖

𝑛 𝑛, 𝑛

𝑛 𝑖

1, 2, …, 𝑖.

𝑋
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 what is

a. the largest possible value of 

b. the smallest possible value of 

In both cases, construct a probability scenario that results in

 having the stated value.

Hint: For part (b), you might start by letting  be a uniform random

variable on (0, 1) and then defining the trials in terms of the value of

7.11 Consider  independent flips of a coin having probability  of

landing on heads. Say that a changeover occurs whenever an

outcome differs from the one preceding it. For instance, if  and

the outcome is  then there are 3 changeovers. Find the

expected number of changeovers.

Hint: Express the number of changeovers as the sum of 

Bernoulli random variables.

7.12. A group of  men and  women is lined up at random.

a. Find the expected number of men who have a woman next to

them.

b. Repeat part (a), but now assuming that the group is randomly

seated at a round table.

7.13. A set of 1000 cards numbered 1 through 1000 is randomly

distributed among 1000 people with each receiving one card.

Compute the expected number of cards that are given to people

whose age matches the number on the card.

7.14. An urn has  black balls. At each stage, a black ball is

removed and a new ball that is black with probability  and white with

probability  is put in its place. Find the expected number of

stages needed until there are no more black balls in the urn.

NOTE: The preceding has possible applications to understanding the

AIDS disease. Part of the body’s immune system consists of a

certain class of cells known as T-cells. There are 2 types of T-cells,

called CD4 and CD8. Now, while the total number of T-cells in AIDS

sufferers is (at least in the early stages of the disease) the same as

that in healthy individuals, it has recently been discovered that the

mix of CD4 and CD8 T-cells is different. Roughly 60 percent of the

T-cells of a healthy person are of the CD4 type, whereas the

percentage of the T-cells that are of CD4 type appears to decrease

continually in AIDS sufferers. A recent model proposes that the HIV

virus (the virus that causes AIDS) attacks CD4 cells and that the

body’s mechanism for replacing killed T-cells does not differentiate

𝐸ሾ𝑋ሿ ൌ 1 . 8,

𝑃ሼ𝑋 ൌ 3ሽ?
𝑃ሼ𝑋 ൌ 3ሽ?

𝑃ሼ𝑋 ൌ 3ሽ
𝑈

𝑈.
𝑛 𝑝

𝑛 ൌ 5

𝐻𝐻𝑇𝐻𝑇,

𝑛 െ 1

𝑛 𝑛

𝑚

𝑝

1 െ 𝑝
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between whether the killed T-cell was CD4 or CD8. Instead, it just

produces a new T-cell that is CD4 with probability .6 and CD8 with

probability .4. However, although this would seem to be a very

efficient way of replacing killed T-cells when each one killed is

equally likely to be any of the body’s T-cells (and thus has probability

.6 of being CD4), it has dangerous consequences when facing a

virus that targets only the CD4 T-cells.

7.15. In Example 2h , say that  and  form a matched pair if

 chooses the hat belonging to  and  chooses the hat belonging to 

Find the expected number of matched pairs.

7.16. Let  be a standard normal random variable, and, for a fixed 

set

Show that 

7.17. A deck of  cards numbered 1 through  is thoroughly shuffled

so that all possible ! orderings can be assumed to be equally likely.

Suppose you are to make  guesses sequentially, where the th one

is a guess of the card in position  Let  denote the number of

correct guesses.

a. If you are not given any information about your earlier

guesses, show that for any strategy, 

b. Suppose that after each guess you are shown the card that

was in the position in question. What do you think is the best

strategy? Show that under this strategy,

c. Suppose that you are told after each guess whether you are

right or wrong. In this case, it can be shown that the strategy

that maximizes  is one that keeps on guessing the same

card until you are told you are correct and then changes to a

new card. For this strategy, show that

Hint: For all parts, express  as the sum of indicator (that is,

𝑖 𝑗, 𝑖 ് 𝑗,

𝑖 𝑗 𝑗 𝑖.

𝑍 𝑥,

𝑋 ൌ ቊ
𝑍 if  𝑍 ൐ 𝑥

0 otherwise

𝐸ሾ𝑋ሿ ൌ
1

2𝜋√
𝑒െ௫

మ/ଶ.

𝑛 𝑛

𝑛

𝑛 𝑖

𝑖. 𝑁

𝐸ሾ𝑁ሿ ൌ 1.

𝐸ሾ𝑁ሿ ൌ
1
𝑛
൅

1
𝑛 െ 1

൅⋯൅ 1

ൎ ඲

ଵ

௡
1
𝑥
𝑑𝑥 ൌ log 𝑛

𝐸ሾ𝑁ሿ

𝐸ሾ𝑁ሿ ൌ 1 ൅
1
2!
൅

1
3!
൅⋯൅

1
𝑛!

ൎ 𝑒 െ 1

𝑁
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Bernoulli) random variables.

7.18. Cards from an ordinary deck of 52 playing cards are turned

face up one at a time. If the 1st card is an ace, or the 2nd a deuce, or

the 3rd a three, or  or the 13th a king, or the 14 an ace, and so on,

we say that a match occurs. Note that we do not require that the (

 card be any particular ace for a match to occur but only that

it be an ace. Compute the expected number of matches that occur.

7.19. A certain region is inhabited by  distinct types of a certain

species of insect. Each insect caught will, independently of the types

of the previous catches, be of type  with probability

a. Compute the mean number of insects that are caught before

the first type 1 catch.

b. Compute the mean number of types of insects that are caught

before the first type 1 catch.

7.20 In an urn containing  balls, the th ball has weight

 The balls are removed without replacement, one at a

time, according to the following rule: At each selection, the probability

that a given ball in the urn is chosen is equal to its weight divided by

the sum of the weights remaining in the urn. For instance, if at some

time  is the set of balls remaining in the urn, then the next

selection will be  with probability 

Compute the expected number of balls that are withdrawn before ball

number 1 is removed.

7.21. For a group of 100 people, compute

a. the expected number of days of the year that are birthdays of

exactly 3 people;

b. the expected number of distinct birthdays.

7.22. How many times would you expect to roll a fair die before all 6

sides appeared at least once?

7.23. Urn 1 contains 5 white and 6 black balls, while urn 2 contains 8

white and 10 black balls. Two balls are randomly selected from urn 1

and are put into urn 2. If 3 balls are then randomly selected from urn

2, compute the expected number of white balls in the trio.

Hint: Let  if the th white ball initially in urn 1 is one of the three

…,

13𝑛 ൅ 1ሻ

𝑟

𝑖

𝑃௜, 𝑖 ൌ 1, …, 𝑟 ෍
ଵ

௥

𝑃௜ ൌ 1

𝑛 𝑖

𝑊ሺ𝑖ሻ, 𝑖 ൌ 1, …,𝑛.

𝑖ଵ, …, 𝑖௥

𝑖௝ 𝑊ሺ𝑖௝ሻ ෍
௞ ൌ ଵ

௥

𝑊ሺ𝑖௞ሻ, 𝑗 ൌ 1, …, 𝑟.

𝑋௜ ൌ 1 𝑖
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selected, and let  otherwise. Similarly, let  if the th white

ball from urn 2 is one of the three selected, and let  otherwise.

The number of white balls in the trio can now be written as

7.24. A bottle initially contains  large pills and  small pills. Each

day, a patient randomly chooses one of the pills. If a small pill is

chosen, then that pill is eaten. If a large pill is chosen, then the pill is

broken in two; one part is returned to the bottle (and is now

considered a small pill) and the other part is then eaten.

a. Let  denote the number of small pills in the bottle after the

last large pill has been chosen and its smaller half returned.

Find 

Hint: Define  indicator variables, one for each of the

small pills initially present and one for each of the  small pills

created when a large one is split in two. Now use the

argument of Example 2m .

b. Let  denote the day on which the last large pill is chosen.

Find 

Hint: What is the relationship between  and 

7.25. Let  be a sequence of independent and identically

distributed continuous random variables. Let  be such that

That is,  is the point at which the sequence stops decreasing. Show

that 

Hint: First find 

7.26. If  are independent and identically distributed

random variables having uniform distributions over (0, 1), find
a. 

b. 

* 7.27. If 101 items are distributed among 10 boxes, then at least one

of the boxes must contain more than 10 items. Use the probabilistic

method to prove this result.

* 7.28. The -of- -out-of-  circular reliability system, 

consists of  components that are arranged in a circular fashion.

Each component is either functional or failed, and the system

functions if there is no block of  consecutive components of which at

least  are failed. Show that there is no way to arrange 47

𝑋௜ ൌ 0 𝑌௜ ൌ 1 𝑖

𝑌௜ ൌ 0

෍
ଵ

ହ

𝑋௜ ൅෍
ଵ

଼

𝑌௜.

𝑚 𝑛

𝑋

𝐸ሾ𝑋ሿ .

𝑛 ൅ 𝑚

𝑚

𝑌

𝐸ሾ𝑌ሿ .

𝑋 𝑌?

𝑋ଵ,𝑋ଶ, …

𝑁 ൒ 2
𝑋ଵ ൒ 𝑋ଶ ൒ ⋯ ൒ 𝑋ேെଵ ൏ 𝑋ே

𝑁

𝐸ሾ𝑁ሿ ൌ 𝑒.

𝑃ሼ𝑁 ൒ 𝑛ሽ.
𝑋ଵ,𝑋ଶ, …,𝑋௡

𝐸ሾmaxሺ𝑋ଵ, …,𝑋௡ሻሿ;
𝐸ሾminሺ𝑋ଵ, …,𝑋௡ሻሿ.

𝑘 𝑟 𝑛 𝑘 ൑ 𝑟 ൑ 𝑛,

𝑛

𝑟

𝑘
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components, 8 of which are failed, to make a functional 3-of-12-out-

of-47 circular system.

* 7.29. There are 4 different types of coupons, the first 2 of which

comprise one group and the second 2 another group. Each new

coupon obtained is type  with probability  where

 Find the expected number of coupons

that one must obtain to have at least one of

a. all 4 types;

b. all the types of the first group;

c. all the types of the second group;

d. all the types of either group.

* 7.30. If  and  are independent and identically distributed with

mean  and variance  find

7.31. In Problem 7.6 , calculate the variance of the sum of the

rolls.

7.32. In Problem 7.9 , compute the variance of the number of

empty urns.

7.33. If  and  find

a. 

b. 

7.34 If 10 married couples are randomly seated at a round table,

compute (a) the expected number and (b) the variance of the number

of wives who are seated next to their husbands.

7.35 Cards from an ordinary deck are turned face up one at a time.

Compute the expected number of cards that need to be turned face

up in order to obtain

a. 2 aces;

b. 5 spades;

c. all 13 hearts.

7.36. Let  be the number of 1’s and  the number of 2’s that occur

in  rolls of a fair die. Compute 

7.37. A die is rolled twice. Let  equal the sum of the outcomes, and

let  equal the first outcome minus the second. Compute 

7.38. Suppose  and  have the following joint probability mass

function.

𝑖 𝑝௜,

𝑝ଵ ൌ 𝑝ଶ ൌ 1/8,𝑝ଷ ൌ 𝑝ସ ൌ 3/8.

𝑋 𝑌

𝜇 𝜎ଶ,

𝐸ሾሺ𝑋 െ 𝑌ሻଶሿ

𝐸ሾ𝑋ሿ ൌ 1 Varሺ𝑋ሻ ൌ 5,

𝐸ሾሺ2 ൅ 𝑋ሻଶሿ;
Varሺ4 ൅ 3𝑋ሻ.

𝑋 𝑌

𝑛 Covሺ𝑋, 𝑌ሻ .

𝑋

𝑌 Covሺ𝑋, 𝑌ሻ .

𝑋 𝑌
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a. Find  and 

b. Find  and 

c. Find 

d. Find the correlation between  and 

7.39 Suppose that  balls are randomly removed from an urn

containing  red and  blue balls. Let  if the  ball removed is

red, and let it be  otherwise, 

a. Do you think that  is negative, zero, or positive.

b. Validate your answer to part (a).

Suppose the red balls are numbered, and let  equal  if red

ball number  is removed, and let it be  if that ball is not

removed.

c. Do you think that  is negative, zero, or positive.

d. Validate your answer to part (c).

7.40. The random variables  and  have a joint density function

given by

Compute 

7.41. Let  be independent with common mean  and common

variance  and set  For  find

7.42. The joint density function of  and  is given by

Find  and show that 

7.43. A pond contains 100 fish, of which 30 are carp. If 20 fish are

caught, what are the mean and variance of the number of carp

among the 20? What assumptions are you making?

7.44. A group of 20 people consisting of 10 men and 10 women is

randomly arranged into 10 pairs of 2 each. Compute the expectation

and variance of the number of pairs that consist of a man and a

woman. Now suppose the 20 people consist of 10 married couples.

𝑝ሺ1, 1ሻ ൌ . 10, 𝑝ሺ1, 2ሻ ൌ . 12,𝑝ሺ1, 3ሻ ൌ . 16

𝑝ሺ2, 1ሻ ൌ . 08, 𝑝ሺ2, 2ሻ ൌ . 12,𝑝ሺ2, 3ሻ ൌ . 10

𝑝ሺ3, 1ሻ ൌ . 06, 𝑝ሺ3, 2ሻ ൌ . 06,𝑝ሺ3, 3ሻ ൌ . 20

𝐸ሾ𝑋ሿ 𝐸ሾ𝑌ሿ.
Varሺ𝑋ሻ Varሺ𝑌ሻ.
Covሺ𝑋,𝑌ሻ.

𝑋 𝑌.

2

𝑛 𝑚 𝑋௜ ൌ 1 𝑖௧௛

0 𝑖 ൌ 1, 2 .

Covሺ𝑋ଵ,𝑋ଶሻ

𝑌௜ 1

𝑖 0

Covሺ𝑌ଵ,𝑌ଶሻ

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ ൝
2𝑒െଶ௫/𝑥 0 ൑ 𝑥 ൏ ∞, 0 ൑ 𝑦 ൑ 𝑥

0 otherwise

Covሺ𝑋, 𝑌ሻ .

𝑋ଵ, … 𝜇

𝜎ଶ, 𝑌௡ ൌ 𝑋௡ ൅ 𝑋௡൅ଵ ൅ 𝑋௡൅ଶ. 𝑗 ൒ 0,

Cov൫𝑌௡,𝑌௡൅௝൯.

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ
1
𝑦
𝑒െ൫௬൅௫/௬൯, 𝑥 ൐ 0,𝑦 ൐ 0

𝐸ሾ𝑋ሿ,  𝐸ሾ𝑌ሿ, Covሺ𝑋,𝑌ሻ ൌ 1.
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Compute the mean and variance of the number of married couples

that are paired together.

7.45. Let  be independent random variables having an

unknown continuous distribution function  and let  be

independent random variables having an unknown continuous

distribution function  Now order those  variables, and let

The random variable  is the sum of the ranks of the 

sample and is the basis of a standard statistical procedure (called

theWilcoxon sum-of-ranks test) for testing whether  and  are

identical distributions. This test accepts the hypothesis that 

when  is neither too large nor too small. Assuming that the

hypothesis of equality is in fact correct, compute the mean and

variance of 

Hint: Use the results of Example 3e .

7.46. Between two distinct methods for manufacturing certain goods,

the quality of goods produced by method  is a continuous random

variable having distribution  Suppose that  goods are

produced by method 1 and  by method 2. Rank the  goods

according to quality, and let

For the vector  which consists of  1’s and  2’s, let 

denote the number of runs of 1. For instance, if  and

 then  If (that is, if the two methods

produce identically distributed goods), what are the mean and

variance of 

7.47. If  and  are (pairwise) uncorrelated random

variables, each having mean 0 and variance 1, compute the

correlations of

A.  and 

B.  and 

7.48. Consider the following dice game, as played at a certain

𝑋ଵ,𝑋ଶ, …,𝑋௡
𝐹, 𝑌ଵ,𝑌ଶ, …,𝑌௠

𝐺. 𝑛 ൅𝑚

𝐼௜ ൌ ൞

1 if  the 𝑖th smallest of the 𝑛 ൅ 𝑚

variables is from the 𝑋 sample

0 otherwise

𝑅 ൌ ෍
௜ ൌ ଵ

௡ ൅ ௠

𝑖𝐼௜ 𝑋

𝐹 𝐺

𝐹 ൌ 𝐺

𝑅

𝑅.

𝑖

𝐹௜, 𝑖 ൌ 1, 2. 𝑛

𝑚 𝑛 ൅𝑚

𝑋௝ ൌ ൞

1 if  the 𝑖th best was produced from

method 1

2 otherwise

𝑋ଵ,𝑋ଶ, …,𝑋௡൅௠, 𝑛 𝑚 𝑅

𝑛 ൌ 5,𝑚 ൌ 2,

𝑋 ൌ 1, 2, 1, 1, 1, 1, 2, 𝑅 ൌ 2. 𝐹ଵ ൌ 𝐹ଶ

𝑅?

𝑋ଵ,𝑋ଶ,𝑋ଷ, 𝑋ସ

𝑋ଵ ൅ 𝑋ଶ 𝑋ଶ ൅ 𝑋ଷ;

𝑋ଵ ൅ 𝑋ଶ 𝑋ଷ ൅ 𝑋ସ.
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gambling casino: Players 1 and 2 roll a pair of dice in turn. The bank

then rolls the dice to determine the outcome according to the

following rule: Player  wins if his roll is strictly greater than

the bank’s. For  let

and show that  and  are positively correlated. Explain why this

result was to be expected.

7.49 Consider a graph having  vertices labeled  and

suppose that, between each of the  pairs of distinct vertices, an

edge is independently present with probability  The degree of

vertex  designated as  is the number of edges that have vertex 

as one of their vertices.

a. What is the distribution of 

b. Find  the correlation between  and 

7.50. A fair die is successively rolled. Let  and  denote,

respectively, the number of rolls necessary to obtain a 6 and a 5.

Find
a. 

b. 

c. 

7.51. There are two misshapen coins in a box; their probabilities for

landing on heads when they are flipped are, respectively,  and 

One of the coins is to be randomly chosen and flipped  times.

Given that two of the first three flips landed on heads, what is the

conditional expected number of heads in the  flips?

7.52. The joint density of  and  is given by

Compute 

7.53. The joint density of  and  is given by

Compute 

7.54. A population is made up of  disjoint subgroups. Let  denote

the proportion of the population that is in subgroup  If the

𝑖, 𝑖 ൌ 1, 2,

𝑖 ൌ 1, 2,

𝐼௜ ൌ ቊ
1 if 𝑖 wins

0 otherwise

𝐼ଵ 𝐼ଶ

𝑛 1, 2, …,𝑛,

ቆ
𝑛

2
ቇ

𝑝.

𝑖, 𝐷௜, 𝑖

𝐷௜?

𝜌൫𝐷௜,𝐷௝൯, 𝐷௜ 𝐷௝.

𝑋 𝑌

𝐸ሾ𝑋ሿ;
𝐸ሾ𝑋 ||𝑌 ൌ 1ሿ;
𝐸ሾ𝑋 ||𝑌 ൌ 5ሿ.

.4 .7.

10

10

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ
𝑒െ௫/௬𝑒െ௬

𝑦
,  0 ൏ 𝑥 ൏ ∞ ,  0 ൏ 𝑦 ൏ ∞

𝐸ൣ𝑋ଶห𝑌 ൌ 𝑦൧.

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ
𝑒െ௬

𝑦
,  0 ൏ 𝑥 ൏ 𝑦,  0 ൏ 𝑦 ൏ ∞

𝐸ൣ𝑋ଷห𝑌 ൌ 𝑦൧.

𝑟 𝑝௜
𝑖, 𝑖 ൌ 1, …, 𝑟.
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average weight of the members of subgroup  is  what is

the average weight of the members of the population?

7.55. A prisoner is trapped in a cell containing 3 doors. The first door

leads to a tunnel that returns him to his cell after 2 days’ travel. The

second leads to a tunnel that returns him to his cell after 4 days’

travel. The third door leads to freedom after 1 day of travel. If it is

assumed that the prisoner will always select doors 1, 2, and 3 with

respective probabilities .5, .3, and .2, what is the expected number of

days until the prisoner reaches freedom?

7.56. Consider the following dice game: A pair of dice is rolled. If the

sum is 7, then the game ends and you win 0. If the sum is not 7, then

you have the option of either stopping the game and receiving an

amount equal to that sum or starting over again. For each value of

 find your expected return if you employ the strategy of

stopping the first time that a value at least as large as  appears.

What value of  leads to the largest expected return?

Hint: Let  denote the return when you use the critical value  To

compute  condition on the initial sum.

7.57. Ten hunters are waiting for ducks to fly by. When a flock of

ducks flies overhead, the hunters fire at the same time, but each

chooses his target at random, independently of the others. If each

hunter independently hits his target with probability .6, compute the

expected number of ducks that are hit. Assume that the number of

ducks in a flock is a Poisson random variable with mean 6.

7.58. The number of people who enter an elevator on the ground

floor is a Poisson random variable with mean 10. If there are  floors

above the ground floor, and if each person is equally likely to get off

at any one of the  floors, independently of where the others get off,

compute the expected number of stops that the elevator will make

before discharging all of its passengers.

7.59. Suppose that the expected number of accidents per week at an

industrial plant is 5. Suppose also that the numbers of workers

injured in each accident are independent random variables with a

common mean of 2.5. If the number of workers injured in each

accident is independent of the number of accidents that occur,

compute the expected number of workers injured in a week.

7.60. A coin having probability  of coming up heads is continually

flipped until both heads and tails have appeared. Find

a. the expected number of flips;

b. the probability that the last flip lands on heads.

𝑖 𝑤௜, 𝑖 ൌ 1, …, 𝑟,

𝑖, 𝑖 ൌ 2, …, 12,

𝑖

𝑖

𝑋௜ 𝑖.

𝐸ሾ𝑋௜ሿ,

𝑁

𝑁

𝑝
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7.61. A coin that comes up heads with probability  is continually

flipped. Let  be the number of flips until there have been both at

least  heads and at least  tails. Derive an expression for  by

conditioning on the number of heads in the first  flips.

7.62. There are  participants in a game. Each person

independently is a winner with probability  The winners share a

total prize of 1 unit. (For instance, if 4 people win, then each of them

receives  whereas if there are no winners, then none of the

participants receives anything.) Let  denote a specified one of the

players, and let  denote the amount that is received by 

a. Compute the expected total prize shared by the players.

b. Argue that 

c. Compute  by conditioning on whether  is a winner, and

conclude that

when  is a binomial random variable with parameters  and 

7.63. Each of  players pays 1 unit to a kitty in order to play the

following game: A fair coin is to be flipped successively  times,

where  is an odd number, and the successive outcomes are noted.

Before the  flips, each player writes down a prediction of the

outcomes. For instance, if  then a player might write down

 which means that he or she predicts that the first flip will

land on heads, the second on heads, and the third on tails. After the

coins are flipped, the players count their total number of correct

predictions. Thus, if the actual outcomes are all heads, then the

player who wrote  would have 2 correct predictions. The

total kitty of  is then evenly split up among those players having

the largest number of correct predictions.

Since each of the coin flips is equally likely to land on either heads or

tails,  of the players have decided to make their predictions in a

totally random fashion. Specifically, they will each flip one of their

own fair coins  times and then use the result as their prediction.

However, the final 2 of the players have formed a syndicate and will

use the following strategy: One of them will make predictions in the

same random fashion as the other  players, but the other one will

then predict exactly the opposite of the first. That is, when the

randomizing member of the syndicate predicts an  the other

𝑝

𝑁

𝑛 𝑚 𝐸ሾ𝑁ሿ
𝑛 ൅ 𝑚

𝑛 ൅ 1

𝑝.

1
4

,

𝐴

𝑋 𝐴.

𝐸ሾ𝑋ሿ ൌ
1 െ ሺ1 െ 𝑝ሻ௡൅ଵ

𝑛 ൅ 1
.

𝐸ሾ𝑋ሿ 𝐴

𝐸ሾሺ1 ൅ 𝐵ሻെଵሿ ൌ
1 െ ሺ1 െ 𝑝ሻ௡൅ଵ

ሺ𝑛 ൅ 1ሻ𝑝

𝐵 𝑛 𝑝.

𝑚൅ 2

𝑛

𝑛

𝑛

𝑛 ൌ 3,

ሺ𝐻,𝐻,𝑇ሻ,

ሺ𝐻,𝐻,𝑇ሻ,
𝑚൅ 2

𝑚

𝑛

𝑚

𝐻,
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member predicts a  For instance, if the randomizing member of the

syndicate predicts  then the other one predicts 

a. Argue that exactly one of the syndicate members will have

more than  correct predictions. (Remember,  is odd.)

b. Let  denote the number of the  nonsyndicate players who

have more than  correct predictions. What is the

distribution of 

c. With  as defined in part (b), argue that

d. Use part (c) of Problem 7.62  to conclude that

and explicitly compute this number when  and 3. Because it

can be shown that

it follows that the syndicate’s strategy always gives it a positive

expected profit.

7.64. The number of goals that J scores in soccer games that her

team wins is Poisson distributed with mean  while the number she

scores in games that her team loses is Poisson distributed with mean

 Assume that, independent of earlier results, J’s team wins each

new game it plays with probability 

a. Find the expected number of goals that J scores in her team’s

next game.

b. Find the probability that  scores  goals in her next  games.

Hint: Would it be useful to know how many of those games were

won by J’s team.

Suppose J’s team has just entered a tournament in which it will

continue to play games until it loses. Let  denote the total number of

goals scored by J in the tournament. Also, let  be the number of

games her team plays in the tournament.

a. Find 

𝑇.

ሺ𝐻,𝐻,𝑇ሻ, ሺ𝑇,𝑇,𝐻ሻ.

𝑛/2 𝑛

𝑋 𝑚

𝑛/2

𝑋?

𝑋
𝐸ሾpay off  to the syndicateሿ ൌ ሺ𝑚 ൅ 2ሻ

ൈ 𝐸⎡
⎣

1
𝑋 ൅ 1

⎤
⎦

𝐸ሾpayoff to the syndicateሿ ൌ
2ሺ𝑚 ൅ 2ሻ
𝑚 ൅ 1

ൈ ൥1 െ ቆ
1
2
ቇ
௠൅ଵ

൩

𝑚 ൌ 1, 2,

2ሺ𝑚 ൅ 2ሻ
𝑚 ൅ 1

൥1 െ ቆ
1
2
ቇ
௠൅ଵ

൩ ൐ 2

2,

1.

𝑝.

𝐽 6 4

𝑋

𝑁

𝐸ሾ𝑋ሿ.
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b. Find 

c. Find 

7.65. If the level of infection of a tree is  then each treatment will

independently be successful with probability  Consider a tree

whose infection level is assumed to be the value of a uniform 

random variable.

a. Find the probability that a single treatment will result in a cure.

b. Find the probability that the first two treatments are

unsuccessful.

c. Find the probability it will take  treatments for the tree to be

cured.

7.66. Let  be independent random variables with the common

distribution function  and suppose they are independent of  a

geometric random variable with parameter  Let 

a. Find  by conditioning on 

b. Find 

c. Find 

d. Use (b) and (c) to rederive the probability you found in (a).

7.67. Let  be a sequence of independent uniform (0, 1)

random variables. In Example 5i , we showed that for

 where

This problem gives another approach to establishing that result.

a. Show by induction on  that for  and all 

Hint: First condition on  and then use the induction hypothesis.

Use part (a) to conclude that

7.68. An urn contains 30 balls, of which 10 are red and 8 are blue.

From this urn, 12 balls are randomly withdrawn. Let  denote the

number of red and  the number of blue balls that are withdrawn.

Find 

𝑃ሺ𝑋 ൌ 0ሻ.
𝑃ሺ𝑁 ൌ 3 ||𝑋 ൌ 5ሻ.

𝑥,

1 െ 𝑥.

ሺ0, 1ሻ

𝑛

𝑋ଵ, …

𝐹, 𝑁,

𝑝. 𝑀 ൌ maxሺ𝑋ଵ, …,𝑋ேሻ.
𝑃ሼ𝑀 ൑ 𝑥ሽ 𝑁.

𝑃ሼ𝑀 ൑ 𝑥 ||𝑁 ൌ 1ሽ.
𝑃ሼ𝑀 ൑ 𝑥 ||𝑁 ൐ 1ሽ.

𝑈ଵ,𝑈ଶ, …

0 ൑ 𝑥 ൑ 1,𝐸ሾ𝑁ሺ𝑥ሻሿ ൌ 𝑒௫,

𝑁ሺ𝑥ሻ ൌ minቐ𝑛: ෍
௜ ൌ ଵ

௡

𝑈௜ ൐ 𝑥ቑ

𝑛 0 ൏ 𝑥 ൑ 1 𝑛 ൒ 0,

𝑃ሼ𝑁ሺ𝑥ሻ ൒ 𝑛 ൅ 1ሽ ൌ
𝑥௡

𝑛!

𝑈ଵ

𝐸ሾ𝑁ሺ𝑥ሻሿ ൌ 𝑒௫

𝑋

𝑌

Covሺ𝑋,𝑌ሻ
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a. by defining appropriate indicator (that is, Bernoulli) random

variables

b. by conditioning (on either  or  to determine 

7.69. Type  light bulbs function for a random amount of time having

mean  and standard deviation  A light bulb randomly

chosen from a bin of bulbs is a type 1 bulb with probability  and a

type 2 bulb with probability  Let  denote the lifetime of this

bulb. Find
a. 

b. 

7.70. The number of winter storms in a good year is a Poisson

random variable with mean 3, whereas the number in a bad year is a

Poisson random variable with mean 5. If next year will be a good

year with probability .4 or a bad year with probability .6, find the

expected value and variance of the number of storms that will occur.

7.71. In Example 5c , compute the variance of the length of time

until the miner reaches safety.

7.72. Consider a gambler who, at each gamble, either wins or loses

her bet with respective probabilities  and  A popular gambling

system known as the Kelley strategy is to always bet the fraction

 of your current fortune when  Compute the expected

fortune after  gambles of a gambler who starts with  units and

employs the Kelley strategy.

7.73. The number of accidents that a person has in a given year is a

Poisson random variable with mean  However, suppose that the

value of  changes from person to person, being equal to 2 for 60

percent of the population and 3 for the other 40 percent. If a person

is chosen at random, what is the probability that he will have (a) 0

accidents and (b) exactly 3 accidents in a certain year? What is the

conditional probability that he will have 3 accidents in a given year,

given that he had no accidents the preceding year?

7.74. Repeat Problem 7.73  when the proportion of the population

having a value of  less than  is equal to 

7.75 Consider an urn containing a large number of coins, and

suppose that each of the coins has some probability  of turning up

𝑋௜,𝑌௝ such that 𝑋 ൌ ෍
௜ ൌ ଵ

ଵ଴

𝑋௜,𝑌 ൌ ෍
௝ ൌ ଵ

଼

𝑌௝

𝑋 𝑌ሻ 𝐸ሾ𝑋𝑌ሿ.

𝑖

𝜇௜ 𝜎௜, 𝑖 ൌ 1, 2.

𝑝

1 െ 𝑝. 𝑋

𝐸ሾ𝑋ሿ;
Varሺ𝑋ሻ.

𝑝 1 െ 𝑝.

2𝑝 െ 1 𝑝 ൐
1
2

.

𝑛 𝑥

𝜆.

𝜆

𝜆 𝑥 1 െ 𝑒െ௫.

𝑝
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heads when it is flipped. However, this value of  varies from coin to

coin. Suppose that the composition of the urn is such that if a coin is

selected at random from it, then the -value of the coin can be

regarded as being the value of a random variable that is uniformly

distributed over [0, 1]. If a coin is selected at random from the urn

and flipped twice, compute the probability that

a. the first flip results in a head;

b. both flips result in heads.

7.76. In Problem 7.75 , suppose that the coin is tossed  times.

Let  denote the number of heads that occur. Show that

Hint: Make use of the fact that

when  and  are positive integers.

7.77. Suppose that in Problem 7.75 , we continue to flip the coin

until a head appears. Let  denote the number of flips needed. Find
a. 

b. 

c. 

7.78. In Example 6b , let  denote the signal sent and  the signal

received.

a. Compute 

b. Compute 

c. Is  normally distributed?

d. Compute 

7.79. In Example 6c , suppose that  is uniformly distributed over

(0, 1). If the discretized regions are determined by 

and  calculate the optimal quantizer  and compute

7.80 The moment generating function of  is given by

 and that of  by  If  and

 are independent, what are
a. 

𝑝

𝑝

𝑛

𝑋

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ
1

𝑛 ൅ 1
 𝑖 ൌ 0, 1, …,𝑛

඲

଴

ଵ

𝑥௔െଵሺ1 െ 𝑥ሻ௕െଵ 𝑑𝑥 ൌ
ሺ𝑎 െ 1ሻ!ሺ𝑏 െ 1ሻ!
ሺ𝑎 ൅ 𝑏 െ 1ሻ!

𝑎 𝑏

𝑁
𝑃ሼ𝑁 ൒ 𝑖ሽ, 𝑖 ൒ 1;
𝑃ሼ𝑁 ൌ 𝑖ሽ;
𝐸ሾ𝑁ሿ.

𝑆 𝑅

𝐸ሾ𝑅ሿ.
Varሺ𝑅ሻ.

𝑅

Covሺ𝑅, 𝑆ሻ.

𝑋

𝑎଴ ൌ 0,𝑎ଵ ൌ
1
2

,

𝑎ଶ ൌ 1, 𝑌

𝐸ሾሺ𝑋 െ 𝑌ሻଶሿ.
𝑋

𝑀௑ሺ𝑡ሻ ൌ expሼ2𝑒௧ െ 2ሽ 𝑌 𝑀௒ሺ𝑡ሻ ൌ ቆ
3
4
𝑒௧ ൅

1
4
ቇ
ଵ଴

. 𝑋

𝑌
𝑃ሼ𝑋 ൅ 𝑌 ൌ 2ሽ?
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b. 

c. 

7.81 . Let  be the value of the first die and  the sum of the values

when two dice are rolled. Compute the joint moment generating

function of  and 

7.82 . The joint density of  and  is given by

a. Compute the joint moment generating function of  and 

b. Compute the individual moment generating functions.

7.83. Two envelopes, each containing a check, are placed in front of

you. You are to choose one of the envelopes, open it, and see the

amount of the check. At this point, either you can accept that amount

or you can exchange it for the check in the unopened envelope.

What should you do? Is it possible to devise a strategy that does

better than just accepting the first envelope?

Let  and  denote the (unknown) amounts of the checks,

and note that the strategy that randomly selects an envelope and

always accepts its check has an expected return of 

Consider the following strategy: Let  be any strictly increasing

(that is, continuous) distribution function. Choose an envelope

randomly and open it. If the discovered check has the value  then

accept it with probability  and exchange it with probability

a. Show that if you employ the latter strategy, then your expected

return is greater than 

b. Hint: Condition on whether the first envelope has the value 

or 

c. Now consider the strategy that fixes a value  and then

accepts the first check if its value is greater than  and

exchanges it otherwise.

a. Show that for any  the expected return under the 

-strategy is always at least  and that it is

strictly larger than  if  lies between  and 

b. Let  be a continuous random variable on the whole

line, and consider the following strategy: Generate the

value of  and if  then employ the -strategy of

part (b). Show that the expected return under this

𝑃ሼ𝑋𝑌 ൌ 0ሽ?
𝐸ሾ𝑋𝑌ሿ?

𝑋 𝑌

𝑋 𝑌.

𝑋 𝑌

𝑓ሺ𝑥,𝑦ሻ ൌ
1

2𝜋√
𝑒െ௬𝑒െሺ௫െ௬ሻ

మ/ଶ    0 ൏ 𝑦 ൏ ∞,

െ∞ ൏ 𝑥 ൏ ∞

𝑋 𝑌.

𝐴 𝐵,𝐴 ൏ 𝐵,

ሺ𝐴 ൅ 𝐵ሻ/2.

𝐹ሺ ⋅ ሻ

𝑥,

𝐹ሺ𝑥ሻ
1 െ 𝐹ሺ𝑥ሻ.

ሺ𝐴 ൅ 𝐵ሻ/2

𝐴

𝐵.

𝑥

𝑥

𝑥, 𝑥

ሺ𝐴 ൅ 𝐵ሻ/2

ሺ𝐴 ൅ 𝐵ሻ/2 𝑥 𝐴 𝐵.

𝑋

𝑋, 𝑋 ൌ 𝑥, 𝑥
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strategy is greater than 

7.84. Successive weekly sales, in units of  have a bivariate

normal distribution with common mean  common standard

deviation  and correlation 

a. Find the probability that the total of the next  weeks’ sales

exceeds 

b. If the correlation were  rather than  do you think that this

would increase or decrease the answer to (a)? Explain your

reasoning.

c. Repeat (a) when the correlation is 

ሺ𝐴 ൅ 𝐵ሻ/2.

$1, 000,

40,

6, .6.

2

90.

.2 .6,

.2.

7.1. Show that  is minimized at 

7.2. Suppose that  is a continuous random variable with density function 

Show that  is minimized when  is equal to the median of 

Hint: Write

Now break up the integral into the regions where  and where  and

differentiate.

7.3 Prove Proposition 2.1  when

a. and  have a joint probability mass function;

b.  and  have a joint probability density function and  for all

7.4 Let  be a random variable having finite expectation  and variance 

and let  be a twice differentiable function. Show that

Hint: Expand  in a Taylor series about  Use the first three terms and

ignore the remainder.

7.5 If  and  is a differentiable function such that  show that

Hint: Define random variables  so that

𝐸ሾሺ𝑋 െ 𝑎ሻଶሿ 𝑎 ൌ 𝐸ሾ𝑋ሿ.
𝑋 𝑓.

𝐸ሾ ||𝑋 െ 𝑎 || ሿ 𝑎 𝐹.

𝐸ሾ|𝑋 െ 𝑎|ሿ ൌ ඲|𝑥 െ 𝑎|𝑓ሺ𝑥ሻ 𝑑𝑥

𝑥 ൏ 𝑎 𝑥 ൐ 𝑎,

𝑋 𝑌

𝑋 𝑌 𝑔ሺ𝑥,𝑦ሻ ൒ 0
𝑥,𝑦.

𝑋 𝜇 𝜎ଶ,

𝑔ሺ ⋅ ሻ

𝐸ሾ𝑔ሺ𝑋ሻሿ ൎ 𝑔ሺ𝜇ሻ ൅
𝑔ᇳሺ𝜇ሻ

2
𝜎ଶ

𝑔ሺ ⋅ ሻ 𝜇.

𝑋 ൒ 0 𝑔 𝑔ሺ0ሻ ൌ 0,

𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ ඲

଴

ஶ

𝑃ሺ𝑋 ൐ 𝑡ሻ𝑔ᇱሺ𝑡ሻ 𝑑𝑡

𝐼ሺ𝑡ሻ, 𝑡 ൒ 0
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7.6. Let  be arbitrary events, and define

 Show that

Hint: Let  denote the number of the  that occur. Show that both sides of

the preceding equation are equal to 

7.7. In the text, we noted that

when the  are all nonnegative random variables. Since an integral is a limit

of sums, one might expect that

whenever  are all nonnegative random variables; this result is

indeed true. Use it to give another proof of the result that for a nonnegative

random variable 

Hint: Define, for each nonnegative  the random variable  by

Now relate  to 

7.8. We say that  is stochastically larger than  written  if, for all 

Show that if  then  when

a.  and  are nonnegative random variables;

b.  and  are arbitrary random variables.

Hint: Write  as

𝑔ሺ𝑋ሻ ൌ ඲

଴

௑

𝑔ᇱሺ𝑡ሻ 𝑑𝑡 ൌ ඲

଴

ஶ

𝐼ሺ𝑡ሻ𝑔ᇱ ሺ𝑡ሻ 𝑑𝑡

𝐴ଵ,𝐴ଶ, …,𝐴௡
𝐶௞ ൌ ሼat least 𝑘 𝑜𝑓 the 𝐴௜ occurሽ.

෍
௞ ൌ ଵ

௡

𝑃ሺ𝐶௞ሻ ൌ ෍
௞ ൌ ଵ

௡

𝑃ሺ𝐴௞ሻ

𝑋 𝐴௜
𝐸ሾ𝑋ሿ.

𝐸቎ ෍
௜ ൌ ଵ

ஶ

𝑋௜቏ ൌ ෍
௜ ൌ ଵ

ஶ

𝐸ሾ𝑋௜ሿ

𝑋௜

𝐸ቈ඲

଴

ஶ

𝑋ሺ𝑡ሻ𝑑𝑡቉ ൌ ඲

଴

ஶ

𝐸ሾ𝑋ሺ𝑡ሻሿ 𝑑𝑡

𝑋ሺ𝑡ሻ, 0 ൑ 𝑡 ൏ ∞ ,

𝑋,

𝐸ሾ𝑋ሻ ൌ ඲

଴

ஶ

𝑃ሼ𝑋 ൐ 𝑡ሽ 𝑑𝑡

𝑡, 𝑋ሺ𝑡ሻ

𝑋ሺ𝑡ሻ ൌ ቊ
1 if  𝑡 ൏ 𝑋

0 if  𝑡 ൒ 𝑋

଴׬
ஶ
𝑋ሺ𝑡ሻ𝑑𝑡 𝑋.

𝑋 𝑌, 𝑋 ൒௦௧ 𝑌, 𝑡,
𝑃ሼ𝑋 ൐ 𝑡ሽ ൒ 𝑃ሼ𝑌 ൐ 𝑡ሽ

𝑋 ൒௦௧ 𝑌, 𝐸ሾ𝑋ሿ ൒ 𝐸ሾ𝑌ሿ
𝑋 𝑌

𝑋 𝑌

𝑋
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where

Similarly, represent  as  Then make use of part (a).

7.9. Show that  is stochastically larger than  if and only if

for all increasing functions 

Hint: Show that  then  by showing that

 and then using Theoretical Exercise 7.8 . To show that if

 for all increasing functions  then 

define an appropriate increasing function 

7.10. A coin having probability  of landing on heads is flipped  times.

Compute the expected number of runs of heads of size 1, of size 2, and of

size 

7.11. Let  be independent and identically distributed positive

random variables. For  find

7.12. Consider  independent trials, each resulting in any one of  possible

outcomes with probabilities  Let  denote the number of outcomes

that never occur in any of the trials. Find  and show that among all

probability vectors  is minimized when 

7.13. Let  be a sequence of independent random variables having the

probability mass function

The random variable  is said to have the Cantor distribution.

Find  and 

7.14. Let  be independent and identically distributed continuous

random variables. We say that a record value occurs at time  if 

for all  Show that

a. 

𝑋 ൌ 𝑋൅ െ 𝑋െ

𝑋൅ ൌ ቊ
𝑋 if  𝑋 ൒ 0

0 if  𝑋 ൏ 0
, 𝑋െ ൌ ቊ

0 if  𝑋 ൒ 0

െ𝑋 if  𝑋 ൐ 0

𝑌 𝑌൅ െ 𝑌െ.

𝑋 𝑌
𝐸ሾ𝑓ሺ𝑋ሻሿ ൒ 𝐸ሾ𝑓ሺ𝑌ሻሿ

𝑓.

𝑋 ൒௦௧ 𝑌, 𝐸ሾ𝑓ሺ𝑋ሻሿ ൒ 𝐸ሾ𝑓ሺ𝑌ሻሿ
𝑓ሺ𝑋ሻ ൒௦௧ 𝑓ሺ𝑌ሻ
𝐸ሾ𝑓ሺ𝑋ሻሿ ൒ 𝐸ሾ𝑓ሺ𝑌ሻሿ 𝑓, 𝑃ሼ𝑋 ൐ 𝑡ሽ ൒ 𝑃ሼ𝑌 ൐ 𝑡ሽ,

𝑓.

𝑝 𝑛

𝑘, 1 ൑ 𝑘 ൑ 𝑛.

𝑋ଵ,𝑋ଶ, …,𝑋௡
𝑘 ൑ 𝑛,

𝐸

⎡

⎣

⎢
⎢
⎢⎢
⎢
⎢

෍
௜ ൌ ଵ

௞

𝑋௜

෍
௜ ൌ ଵ

௡

𝑋௜

⎤

⎦

⎥
⎥
⎥⎥
⎥
⎥

𝑛 𝑟

𝑃ଵ,𝑃ଶ, …,𝑃௥. 𝑋

𝐸ሾ𝑋ሿ
𝑃ଵ, …,𝑃௥,𝐸ሾ𝑋ሿ 𝑃௜ ൌ 1/𝑟, 𝑖 ൌ 1, …, 𝑟.

𝑋ଵ,𝑋ଶ, …

𝑃ሼ𝑋௡ ൌ 0ሽ ൌ 𝑃ሼ𝑋௡ ൌ 2ሽ ൌ 1/2 , 𝑛 ൒ 1

𝑋 ൌ ∑௡ൌଵ
ஶ 𝑋௡/3௡

𝐸ሾ𝑋ሿ Varሺ𝑋ሻ .

𝑋ଵ, …,𝑋௡
𝑗, 𝑗 ൑ 𝑛, 𝑋௝ ൒ 𝑋௜

1 ൑ 𝑖 ൑ 𝑗.

𝐸ሾnumber of  record valuesሿ ൌ ෍
௝ ൌ ଵ

௡

1/ 𝑗;
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b. 

7.15 For Example 2i , show that the variance of the number of coupons

needed to amass a full set is equal to

When  is large, this can be shown to be approximately equal (in the sense

that their ratio approaches 1 as  to 

7.16 Consider  independent trials, the th of which results in a success with

probability 

a. Compute the expected number of successes in the  trials—call it 

b. For a fixed value of  what choice of  maximizes the variance

of the number of successes?

c. What choice minimizes the variance?

* 7.17. Suppose that each of the elements of  is to be colored

either red or blue. Show that if  are subsets of  there is a way of

doing the coloring so that at most  of these subsets have all

their elements the same color (where  denotes the number of elements in

the set .

7.18. Suppose that  and  are independent random variables having a

common mean  Suppose also that  and  The value

of  is unknown, and it is proposed that  be estimated by a weighted average

of  and  That is,  will be used as an estimate of  for

some appropriate value of  Which value of  yields the estimate having the

lowest possible variance? Explain why it is desirable to use this value of 

7.19. In Example 4f , we showed that the covariance of the multinomial

random variables  and  is equal to  by expressing  and  as

the sum of indicator variables. We could also have obtained that result by

using the formula

a. What is the distribution of 

b. Use the preceding identity to show that 

7.20. Show that  and  are identically distributed and not necessarily

Varሺnumber of  record valuesሻ ൌ ෍
௝ ൌ ଵ

௡

ሺ𝑗 െ 1ሻ/ 𝑗ଶ.

෍
௜ ൌ ଵ

ே െ ଵ
𝑖𝑁

ሺ𝑁 െ 𝑖ሻଶ

𝑁

𝑁 → ∞ ሻ 𝑁ଶ𝜋ଶ/6.

𝑛 𝑖

𝑃௜
𝑛 𝜇.

𝜇, 𝑃ଵ, …,𝑃௡

𝑆 ൌ ሼ1, 2, …,𝑛ሽ
𝐴ଵ, …,𝐴௥ 𝑆,

෍
௜ ൌ ଵ

௥

ሺ1/2ሻห஺೔ ห െଵ

|𝐴|
𝐴ሻ

𝑋ଵ 𝑋ଶ
𝜇. Varሺ𝑋ଵሻ ൌ 𝜎ଵ

ଶ Varሺ𝑋ଶሻ ൌ 𝜎ଶ
ଶ

𝜇 𝜇

𝑋ଵ 𝑋ଶ. 𝜆𝑋ଵ ൅ ሺ1 െ 𝜆ሻ𝑋ଶ 𝜇

𝜆. 𝜆

𝜆.

𝑁௜ 𝑁௝ െ𝑚𝑃௜𝑃௝ 𝑁௜ 𝑁௝

Var൫𝑁௜ ൅ 𝑁௝൯ ൌ  Varሺ𝑁௜ሻ ൅  Var൫𝑁௝൯ ൅ 2 Cov൫𝑁௜,𝑁௝൯

𝑁௜ ൅ 𝑁௝?

Cov൫𝑁௜,𝑁௝൯ ൌ െ𝑚𝑃௜𝑃௝.

𝑋 𝑌
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independent, then

7.21. The Conditional Covariance Formula. The conditional covariance of 

and  given  is defined by

a. Show that

b. Prove the conditional covariance formula

c. Set  in part (b) and obtain the conditional variance formula.

7.22. Let  denote the order statistics from a set of  uniform (0,

1) random variables, and note that the density function of  is given by

a. Compute 

b. Which value of  minimizes, and which value maximizes, 

7.23. Show that  then

7.24. Show that  is a standard normal random variable and if  is defined by

 then

7.25. Prove the Cauchy–Schwarz inequality, namely,

Hint: Unless  for some constant, in which case the inequality holds

with equality, it follows that for all 

Covሺ𝑋 ൅ 𝑌,𝑋 െ 𝑌ሻ ൌ 0

𝑋

𝑌, 𝑍,
Covሺ𝑋,𝑌 ||𝑍ሻ ≡ 𝐸ሾሺ𝑋 െ 𝐸ሾ𝑋 ||𝑍ሿሻሺ𝑌 െ 𝐸ሾ𝑌 ||𝑍ሿሻ ||𝑍ሿ

Covሺ𝑋,  𝑌||𝑍ሻ ൌ 𝐸ሾ𝑋𝑌|𝑍ሿ െ 𝐸ሾ𝑋|𝑍ሿ𝐸ሾ𝑌|𝑍ሿ

Covሺ𝑋,𝑌ሻ ൌ 𝐸ሾCovሺ𝑋,𝑌 ||𝑍ሻሿ

൅Covሺ𝐸ሾ𝑋||𝑍ሿ,𝐸ሾ𝑌||𝑍ሿሻ

𝑋 ൌ 𝑌

𝑋൫௜൯, 𝑖 ൌ 1, …,𝑛, 𝑛

𝑋൫௜൯

𝑓ሺ𝑥ሻ ൌ
𝑛!

ሺ𝑖 െ 1ሻ!ሺ𝑛 െ 𝑖ሻ!
𝑥௜െଵሺ1 െ 𝑥ሻ௡െ௜ 0 ൏ 𝑥 ൏ 1

Varቀ𝑋൫௜൯ቁ, 𝑖 ൌ 1, …,𝑛.

𝑖 Varቀ𝑋൫௜൯ቁ?

𝑌 ൌ 𝑎 ൅ 𝑏𝑋,

𝜌ሺ𝑋,𝑌ሻ ൌ ቊ
൅1 if 𝑏 ൐ 0

െ1 if 𝑏 ൏ 0

𝑍 𝑌

𝑌 ൌ 𝑎 ൅ 𝑏𝑍 ൅ 𝑐𝑍ଶ,

𝜌ሺ𝑌,𝑍ሻ ൌ
𝑏

𝑏ଶ ൅ 2𝑐ଶඥ

൫𝐸ൣ𝑋𝑌൧൯
ଶ
൑ 𝐸ൣ𝑋ଶ൧𝐸ൣ𝑌ଶ൧

𝑌 ൌ െ 𝑡𝑋

𝑡,

0 ൏ 𝐸ൣ൫𝑡𝑋 ൅ 𝑌൯
ଶ
൧ ൌ 𝐸ൣ𝑋ଶ൧𝑡ଶ ൅ 2𝐸ൣ𝑋𝑌൧𝑡 ൅ 𝐸ൣ𝑌ଶ൧

605 of 848



Hence, the roots of the quadratic equation

must be imaginary, which implies that the discriminant of this quadratic

equation must be negative.

7.26. Show that if  and  are independent, then

a. in the discrete case;

b. in the continuous case.

7.27. Prove that 

7.28. Prove that if  for all  then  and  are uncorrelated;

give a counterexample to show that the converse is not true.

Hint: Prove and use the fact that 

7.29. Show that 

7.30. Let  be independent and identically distributed random

variables. Find

7.31. Consider Example 4f , which is concerned with the multinomial

distribution. Use conditional expectation to compute  and then use

this to verify the formula for  given in Example 4f .

7.32. An urn initially contains  black and  white balls. At each stage, we add

 black balls and then withdraw, at random,  balls from the  balls in

the urn. Show that

7.33. For an event  let  equal 1 if  occurs and let it equal 0 if  does not

occur. For a random variable  show that

7.34. A coin that lands on heads with probability  is continually flipped.

Compute the expected number of flips that are made until a string of  heads

in a row is obtained.

Hint: Condition on the time of the first occurrence of tails to obtain the

equation

𝐸ൣ𝑋ଶ൧𝑡ଶ ൅ 2𝐸ൣ𝑋𝑌൧𝑡 ൅ 𝐸ൣ𝑌ଶ൧ ൌ 0

𝑋 𝑌
𝐸ሾ𝑋 ||𝑌 ൌ 𝑦ሿ ൌ 𝐸ሾ𝑋ሿ for all 𝑦

𝐸ሾ𝑔ሺ𝑋ሻ𝑌 ||𝑋ሿ ൌ 𝑔ሺ𝑋ሻ𝐸ሾ𝑌 ||𝑋ሿ.
𝐸ሾ𝑌 ||𝑋 ൌ 𝑥ሿ ൌ 𝐸ሾ𝑌ሿ 𝑥, 𝑋 𝑌

𝐸ሾ𝑋𝑌ሿ ൌ 𝐸ሾ𝑋𝐸ሾ𝑌 ||𝑋ሿሿ.
Covሺ𝑋,𝐸ሾ𝑌 ||𝑋ሿሻ ൌ Covሺ𝑋,𝑌ሻ.

𝑋ଵ, …,𝑋௡

𝐸ሾ𝑋ଵ ||𝑋ଵ ൅ ⋯൅ 𝑋௡ ൌ 𝑥ሿ

𝐸ൣ𝑁௜𝑁௝൧,

Cov൫𝑁௜,𝑁௝൯

𝑏 𝑤

𝑟 𝑟 𝑏 ൅ 𝑤 ൅ 𝑟

𝐸ሾnumber of  white balls after stage 𝑡ሿ

  ൌ ቆ
𝑏 ൅ 𝑤

𝑏 ൅ 𝑤 ൅ 𝑟
ቇ
௧

𝑤

𝐴, 𝐼஺ 𝐴 𝐴

𝑋,

𝐸ሾ𝑋 |𝐴ሿ ൌ
𝐸ሾ𝑋𝐼஺ሿ
𝑃ሺ𝐴ሻ

𝑝

𝑟
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Simplify and solve for 

7.35. For another approach to Theoretical Exercise 7.34 , let  denote

the number of flips required to obtain a run of  consecutive heads.

a. Determine 

b. Determine  in terms of 

c. What is 

d. What is 

7.36. The probability generating function of the discrete nonnegative integer

valued random variable  having probability mass function  is defined

by

Let  be a geometric random variable with parameter  where

 Suppose that  is independent of  and show that

7.37. One ball at a time is randomly selected from an urn containing  white

and  black balls until all of the remaining balls are of the same color. Let 

denote the expected number of balls left in the urn when the experiment ends.

Compute a recursive formula for  and solve when  and 

7.38. An urn contains  white and  black balls. After a ball is drawn, it is

returned to the urn if it is white; but if it is black, it is replaced by a white ball

from another urn. Let  denote the expected number of white balls in the urn

after the foregoing operation has been repeated  times.

a. Derive the recursive equation

b. Use part (a) to prove that

𝐸ሾ𝑋ሿ ൌ ሺ1 െ 𝑝ሻ ෍
௜ ൌ ଵ

௥

𝑝௜െଵሺ𝑖 ൅ 𝐸ሾ𝑋ሿሻ

൅ሺ1 െ 𝑝ሻ ෍
௜ ൌ ௥ ൅ ଵ

ஶ

𝑝௜െଵ𝑟

𝐸ሾ𝑋ሿ.
𝑇௥

𝑟

𝐸ሾ𝑇௥ ||𝑇௥െଵሿ.
𝐸ሾ𝑇௥ሿ 𝐸ሾ𝑇௥െଵሿ.

𝐸ሾ𝑇ଵሿ?
𝐸ሾ𝑇௥ሿ?

𝑋 𝑝௝, 𝑗 ൒ 0,

𝜙ሺ𝑠ሻ ൌ 𝐸ሾ𝑠௑ሿ ൌ ෍
௝ ൌ ଴

ஶ

𝑝௝𝑠
௝

𝑌 𝑝 ൌ 1 െ 𝑠,

0 ൏ 𝑠 ൏ 1. 𝑌 𝑋,
𝜙ሺ𝑠ሻ ൌ 𝑃ሼ𝑋 ൏ 𝑌ሽ

𝑎

𝑏 𝑀௔,௕

𝑀௔,௕ 𝑎 ൌ 3 𝑏 ൌ 5.

𝑎 𝑏

𝑀௡

𝑛

𝑀௡൅ଵ ൌ ቆ1 െ
1

𝑎 ൅ 𝑏
ቇ𝑀௡ ൅ 1

𝑀௡ ൌ 𝑎 ൅ 𝑏 െ 𝑏ቆ1 െ
1

𝑎 ൅ 𝑏
ቇ
௡
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c. What is the probability that the  ball drawn is white?

7.39. The best linear predictor of  with respect to  and  is equal to

 where  and  are chosen to minimize

Determine  and 

7.40. The best quadratic predictor of  with respect to  is 

where  and  are chosen to minimize  Determine

 and 

7.41. Use the conditional variance formula to determine the variance of a

geometric random variable  having parameter 

7.42. Let  be a normal random variable with parameters  and 

and let  independent of  be such that  Now define

 by

In words,  is equally likely to equal either  or 

a. Are  and  independent?

b. Are  and  independent?

c. Show that  is normal with mean 0 and variance 1.

d. Show that 

7.43. It follows from Proposition 6.1  and the fact that the best linear

predictor of  with respect to  is  that if

then

(Why?) Verify this directly.

7.44. Show that for random variables  and 

where

7.45. Consider a population consisting of individuals able to produce offspring

ሺ𝑛 ൅ 1ሻ

𝑌 𝑋ଵ 𝑋ଶ
𝑎 ൅ 𝑏𝑋ଵ ൅ 𝑐𝑋ଶ, 𝑎, 𝑏, 𝑐

𝐸ሾሺ𝑌 െ ሺ𝑎 ൅ 𝑏𝑋ଵ ൅ 𝑐𝑋ଶሻሻ
ଶሿ

𝑎, 𝑏, 𝑐.

𝑌 𝑋 𝑎 ൅ 𝑏𝑋 ൅ 𝑐𝑋ଶ,

𝑎, 𝑏, 𝑐 𝐸ൣ൫𝑌 െ ൫𝑎 ൅ 𝑏𝑋 ൅ 𝑐𝑋ଶ൯൯
ଶ
൧.

𝑎, 𝑏, 𝑐.

𝑋 𝑝.

𝑋 𝜇 ൌ 0 𝜎ଶ ൌ 1,

𝐼, 𝑋, 𝑃ሼ𝐼 ൌ 1ሽ ൌ
1
2
ൌ 𝑃ሼ𝐼 ൌ 0ሽ.

𝑌

𝑌 ൌ ቊ
𝑋 if 𝐼 ൌ 1

െ𝑋 if 𝐼 ൌ 0

𝑌 𝑋 െ𝑋.

𝑋 𝑌

𝐼 𝑌

𝑌

Covሺ𝑋,𝑌ሻ ൌ 0.

𝑌 𝑋 𝜇௬ ൅ 𝜌
𝜎௬
𝜎௫
ሺ𝑋 െ 𝜇௫ሻ

𝐸ሾ𝑌 ||𝑋ሿ ൌ 𝑎 ൅ 𝑏𝑋

𝑎 ൌ 𝜇௬ െ 𝜌
𝜎௬
𝜎௫

𝜇௫ 𝑏 ൌ 𝜌
𝜎௬
𝜎௫

𝑋 𝑍,

𝐸ൣ൫𝑋 െ 𝑌൯
ଶ
൧ ൌ 𝐸ൣ𝑋ଶ൧ െ 𝐸ൣ𝑌ଶ൧

𝑌 ൌ 𝐸ሾ𝑋 ||𝑍ሿ
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of the same kind. Suppose that by the end of its lifetime, each individual will

have produced  new offspring with probability  independently of the

number produced by any other individual. The number of individuals initially

present, denoted by  is called the size of the zeroth generation. All

offspring of the zeroth generation constitute the first generation, and their

number is denoted by  In general, let  denote the size of the th

generation. Let  and  denote, respectively,

the mean and the variance of the number of offspring produced by a single

individual. Suppose that  that is, initially there is a single individual in

the population.

a. Show that

b. Use part (a) to conclude that

c. Show that

d. Use part (c) to conclude that

e. The model just described is known as a branching process, and an

important question for a population that evolves along such lines is the

probability that the population will eventually die out. Let  denote this

probability when the population starts with a single individual. That is,

f. Argue that  satisfies

Hint: Condition on the number of offspring of the initial member of the

population.

7.46. Verify the formula for the moment generating function of a uniform

random variable that is given in Table 7.2 . Also, differentiate to verify the

formulas for the mean and variance.

𝑗 𝑃௝, 𝑗 ൒ 0,

𝑋଴,

𝑋ଵ. 𝑋௡ 𝑛

𝜇 ൌ ෍
௝ ൌ ଴

ஶ

𝑗𝑃௝ 𝜎ଶ ൌ ෍
௝ ൌ ଴

ஶ

ሺ𝑗 െ 𝜇ሻଶ𝑃௝

𝑋଴ ൌ 1

𝐸ሾ𝑋௡ሿ ൌ 𝜇𝐸ሾ𝑋௡െଵሿ

𝐸ሾ𝑋௡ሿ ൌ 𝜇௡

Varሺ𝑋௡ሻ ൌ 𝜎ଶ𝜇௡െଵ ൅ 𝜇ଶ Varሺ𝑋௡െଵሻ

Varሺ𝑋௡ሻ ൌ ൞
𝜎ଶ𝜇௡െଵቆ

𝜇௡ െ 1
𝜇 െ 1

ቇ if 𝜇 ് 1

𝑛𝜎ଶ if 𝜇 ൌ 1

𝜋

𝜋 ൌ 𝑃ሼpopulation eventually dies out||𝑋଴ ൌ 1ሻ

𝜋

𝜋 ൌ ෍
௝ ൌ ଴

ஶ

𝑃௝𝜋௝
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7.47. For a standard normal random variable  let  Show that

Hint: Start by expanding the moment generating function of  into a Taylor

series about 0 to obtain

7.48. Let  be a normal random variable with mean  and variance  Use

the results of Theoretical Exercise 7.47  to show that

In the preceding equation,  is the largest integer less than or equal to

 Check your answer by letting  and 

7.49. If  where  and  are constants, express the moment

generating function of  in terms of the moment generating function of 

7.50. The positive random variable  is said to be a lognormal random

variable with parameters  and  if  is a normal random variable with

mean  and variance  Use the normal moment generating function to find

the mean and variance of a lognormal random variable.

7.51. Let  have moment generating function  and define 

Show that

7.52. Use Table 7.2  to determine the distribution of  when 

are independent and identically distributed exponential random variables,

each having mean 

7.53. Show how to compute  from the joint moment generating

function of  and 

7.54. Suppose that  have a multivariate normal distribution. Show that

 are independent random variables if and only if

𝑍, 𝜇௡ ൌ 𝐸ൣ𝑍௡൧.

𝜇௡ ൌ ൞

0 when 𝑛 is odd

ሺ2𝑗ሻ!

2௝𝑗!
when 𝑛 ൌ 2𝑗

𝑍

𝐸ሾ𝑒௧௓ሿ ൌ 𝑒௧
మ/ଶ

ൌ ෍
௝ ൌ ଴

ஶ ሺ𝑡ଶ/2ሻ௝

𝑗!

𝑋 𝜇 𝜎ଶ.

𝐸ሾ𝑋௡ሿ ൌ ෍
௝ ൌ ଵ

ሾ௡ /ଶ ሿ ቆ
𝑛

2𝑗
ቇ𝜇௡െଶ௝𝜎ଶ௝ሺ2𝑗ሻ!

2௝𝑗!

ሾ𝑛/2ሿ

𝑛/2. 𝑛 ൌ 1 𝑛 ൌ 2.

𝑌 ൌ 𝑎𝑋 ൅ 𝑏, 𝑎 𝑏

𝑌 𝑋.

𝑋

𝜇 𝜎ଶ logሺ𝑋ሻ
𝜇 𝜎ଶ.

𝑋 𝑀ሺ𝑡ሻ, 𝛹ሺ𝑡ሻ ൌ log𝑀ሺ𝑡ሻ.

𝛹ᇳሺ𝑡ሻ ||௧ൌ଴ ൌ  Varሺ𝑋ሻ

෍
௜ ൌ ଵ

௡

𝑋௜ 𝑋ଵ, …,𝑋௡

1/𝜆.

Covሺ𝑋,𝑌ሻ

𝑋 𝑌.

𝑋ଵ, …,𝑋௡
𝑋ଵ, …,𝑋௡

Cov൫𝑋௜,𝑋௝൯ ൌ 0 when 𝑖 ് j
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7.55. If  is a standard normal random variable, what is 

7.56. Suppose that  is a normal random variable with mean  and variance

 and suppose also that the conditional distribution of  given that  is

normal with mean  and variance 

a. Argue that the joint distribution of  is the same as that of 

when  is a standard normal random variable that is independent of 

b. Use the result of part (a) to argue that  has a bivariate normal

distribution.

c. Find  and 

d. Find 

e. What is the conditional distribution of  given that 

𝑍 Covሺ𝑍,𝑍ଶሻ?

𝑌 𝜇

𝜎ଶ, 𝑋, 𝑌 ൌ 𝑦,

𝑦 1.

𝑋,𝑌 𝑌 ൅ 𝑍,𝑌

𝑍 𝑌.

𝑋,𝑌

𝐸ሾ𝑋ሿ, Varሺ𝑋ሻ, Corr ሺ𝑋,𝑌ሻ.
𝐸ሾ𝑌 ||𝑋 ൌ 𝑥ሿ.

𝑌 𝑋 ൌ 𝑥?

7.1. Consider a list of  names, where the same name may appear more than

once on the list. Let  denote the number of times that the

name in position  appears on the list, and let  denote the number of distinct

names on the list.

a. Express  in terms of the variables  Let  be a

uniform (0, 1) random variable, and let 

b. What is the probability mass function of 

c. Argue that 

7.2 An urn has  white and  black balls that are removed one at a time in a

randomly chosen order. Find the expected number of instances in which a

white ball is immediately followed by a black one.

7.3 Twenty individuals consisting of 10 married couples are to be seated at 5

different tables, with 4 people at each table.

a. If the seating is done “at random,” what is the expected number of

married couples that are seated at the same table?

b. If 2 men and 2 women are randomly chosen to be seated at each table,

what is the expected number of married couples that are seated at the

same table?

7.4 If a die is to be rolled until all sides have appeared at least once, find the

expected number of times that outcome 1 appears.

7.5. A deck of 2  cards consists of  red and  black cards. The cards are

shuffled and then turned over one at a time. Suppose that each time a red

card is turned over, we win 1 unit if more red cards than black cards have

been turned over by that time. (For instance, if  and the result is 

𝑚

𝑛ሺ𝑖ሻ, 𝑖 ൌ 1, …,𝑚,

𝑖 𝑑

𝑑 𝑚,𝑛ሺ𝑖ሻ, 𝑖 ൌ 1, …,𝑚. 𝑈

𝑋 ൌ ሾ𝑚𝑈ሿ ൅ 1.

𝑋?

𝐸ሾ𝑚/𝑛ሺ𝑋ሻሿ ൌ 𝑑.

𝑛 𝑚

𝑛 𝑛 𝑛

𝑛 ൌ 2 𝑟 𝑏 𝑟 𝑏,
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then we would win a total of 2 units.) Find the expected amount that we win.

7.6. Let  be events, and let  denote the number of them that

occur. Also, let  if all of these events occur, and let it be 0 otherwise.

Prove Bonferroni’s inequality, namely,

Hint: Argue first that 

7.7. Let  be the smallest value obtained when  numbers are randomly

chosen from the set  Find  by interpreting  as a negative

hypergeometric random variable.

7.8. An arriving plane carries  families. A total of  of these families have

checked in a total of  pieces of luggage,  Suppose that when the

plane lands, the  pieces of luggage come out of the plane in a

random order. As soon as a family collects all of its luggage, it immediately

departs the airport. If the Sanchez family checked in  pieces of luggage, find

the expected number of families that depart after they do.

* 7.9. Nineteen items on the rim of a circle of radius 1 are to be chosen. Show

that for any choice of these points, there will be an arc of (arc) length 1 that

contains at least 4 of them.

7.10. Let  be a Poisson random variable with mean  Show that if  is not

too small, then

Hint: Use the result of Theoretical Exercise 7.4  to approximate 

7.11. Suppose in Self-Test Problem 7.3  that the 20 people are to be

seated at seven tables, three of which have 4 seats and four of which have 2

seats. If the people are randomly seated, find the expected value of the

number of married couples that are seated at the same table.

7.12. Individuals 1 through  are to be recruited into a firm in the

following manner: Individual 1 starts the firm and recruits individual 2.

Individuals 1 and 2 will then compete to recruit individual 3. Once individual 3

is recruited, individuals 1, 2, and 3 will compete to recruit individual 4, and so

on. Suppose that when individuals  compete to recruit individual 

each of them is equally likely to be the successful recruiter.

a. Find the expected number of the individuals  who did not recruit

anyone else.

b. Derive an expression for the variance of the number of individuals who

did not recruit anyone else, and evaluate it for 

𝐴ଵ,𝐴ଶ, …,𝐴௡ 𝑁

𝐼 ൌ 1

𝑃ሺ𝐴ଵ⋯𝐴௡ሻ ൒ ෍
௜ ൌ ଵ

௡

𝑃ሺ𝐴௜ሻ െ ሺ𝑛 െ 1ሻ

𝑁 ൑ 𝑛 െ 1 ൅ 𝐼.

𝑋 𝑘

1, …,𝑛. 𝐸ሾ𝑋ሿ 𝑋

𝑟 𝑛௝
𝑗 ෍

௝

𝑛௝ ൌ 𝑟.

𝑁 ൌ ෍
௝

𝑗𝑛௝

𝑗

𝑋 𝜆. 𝜆

Var൫ 𝑋√ ൯ ൎ . 25

𝐸ൣ 𝑋√ ൧.

𝑛,𝑛 ൐ 1,

1, 2, …, 𝑖 𝑖 ൅ 1,

1, …,𝑛

𝑛 ൌ 5.
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7.13 The nine players on a basketball team consist of 2 centers, 3 forwards,

and 4 backcourt players. If the players are paired up at random into three

groups of size 3 each, find (a) the expected value and (b) the variance of the

number of triplets consisting of one of each type of player.

7.14 A deck of 52 cards is shuffled and a bridge hand of 13 cards is dealt out.

Let  and  denote, respectively, the number of aces and the number of

spades in the hand.

a. Show that  and  are uncorrelated.

b. Are they independent?

7.15 Each coin in a bin has a value attached to it. Each time that a coin with

value  is flipped, it lands on heads with probability  When a coin is

randomly chosen from the bin, its value is uniformly distributed on (0, 1).

Suppose that after the coin is chosen but before it is flipped, you must predict

whether it will land on heads or on tails. You will win 1 if you are correct and

will lose 1 otherwise.

a. What is your expected gain if you are not told the value of the coin?

b. Suppose now that you are allowed to inspect the coin before it is

flipped, with the result of your inspection being that you learn the value

of the coin. As a function of  the value of the coin, what prediction

should you make?

c. Under the conditions of part (b), what is your expected gain?

7.16. In Self-Test Problem 7.1 , we showed how to use the value of a

uniform (0, 1) random variable (commonly called a random number) to obtain

the value of a random variable whose mean is equal to the expected number

of distinct names on a list. However, its use required that one choose a

random position and then determine the number of times that the name in that

position appears on the list. Another approach, which can be more efficient

when there is a large amount of replication of names, is as follows: As before,

start by choosing the random variable  as in Problem 7.1 . Now identify

the name in position  and then go through the list, starting at the beginning,

until that name appears. Let  equal 0 if you encounter that name before

getting to position  and let  equal 1 if your first encounter with the name is

at position  Show that 

Hint: Compute  by using conditional expectation.

7.17. A total of  items are to be sequentially distributed among  cells, with

each item independently being put in cell  with probability  Find

the expected number of collisions that occur, where a collision occurs

whenever an item is put into a nonempty cell.

7.18. Let  be the length of the initial run in a random ordering of  ones and

𝑋 𝑌

𝑋 𝑌

𝑝 𝑝.

𝑝,

𝑋

𝑋,

𝐼

𝑋, 𝐼

𝑋. 𝐸ሾ𝑚𝐼ሿ ൌ 𝑑.

𝐸ሾ𝐼ሿ
𝑚 𝑛

𝑗 𝑝௝, 𝑗 ൌ 1, …,𝑛.

𝑋 𝑛
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 zeros. That is, if the first  values are the same (either all ones or all zeros),

then  Find 

7.19. There are  items in a box labeled  and  in a box labeled  A coin

that comes up heads with probability  and tails with probability  is

flipped. Each time it comes up heads, an item is removed from the  box, and

each time it comes up tails, an item is removed from the  box. (If a box is

empty and its outcome occurs, then no items are removed.) Find the expected

number of coin flips needed for both boxes to become empty.

Hint: Condition on the number of heads in the first  flips.

7.20. Let  be a nonnegative random variable having distribution function 

Show that if  then

Hint: Start with the identity

where

* 7.21. Let  not all equal to  be such that  Show that

there is a permutation  such that 

Hint: Use the probabilistic method. (It is interesting that there need not be a

permutation whose sum of products of successive pairs is positive. For

instance, if  and  there is no such permutation.)

7.22. Suppose that  are independent Poisson random variables

with respective means  Let  and  The

random vector  is said to have a bivariate Poisson distribution.

a. Find  and 

b. Find 

c. Find the joint probability mass function 

7.23. Let  be a sequence of independent and identically

distributed random vectors. That is,  is independent of, and has the

same distribution as,  and so on. Although  and  can be dependent,

𝑚 𝑘

𝑋 ൒ 𝑘. 𝐸ሾ𝑋ሿ.
𝑛 𝐻 𝑚 𝑇.

𝑝 1 െ 𝑝

𝐻

𝑇

𝑛 ൅𝑚

𝑋 𝐹.

𝐹̅̅̅ሺ̅𝑥ሻ ൌ 1 െ 𝐹ሺ𝑥ሻ,

𝐸ሾ𝑋௡ሿ ൌ ඲

଴

ஶ

𝑥௡െଵ𝐹̅̅̅ሺ̅𝑥ሻ 𝑑𝑥

𝑋௡ ൌ 𝑛඲

଴

௑

𝑥௡െଵ 𝑑𝑥

ൌ 𝑛඲

଴

ஶ

𝑥௡െଵ𝐼௑ሺ𝑥ሻ 𝑑𝑥

𝐼௫ሺ𝑥ሻ ൌ ቊ
1, if 𝑥 ൏ 𝑋

0, otherwise

𝑎ଵ, …,𝑎௡, 0, ∑௜ൌଵ
௡ 𝑎௜ ൌ 0.

𝑖ଵ, …, 𝑖௡ ∑௝ൌଵ
௡ 𝑎௜ೕ𝑎௜ೕ൅భ ൏ 0.

𝑛 ൌ 3, 𝑎ଵ ൌ 𝑎ଶ ൌ െ 1, 𝑎ଷ ൌ 2,

𝑋௜, 𝑖 ൌ 1, 2, 3,

𝜆௜, 𝑖 ൌ 1, 2, 3. 𝑋 ൌ 𝑋ଵ ൅ 𝑋ଶ 𝑌 ൌ 𝑋ଶ ൅ 𝑋ଷ.

𝑋,𝑌

𝐸ሾ𝑋ሿ 𝐸ሾ𝑌ሿ.
Covሺ𝑋,𝑌ሻ.

𝑃ሼ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗ሽ.

ሺ𝑋௜,𝑌௜ሻ, 𝑖 ൌ 1, …,

𝑋ଵ,𝑌ଵ
𝑋ଶ,𝑌ଶ, 𝑋௜ 𝑌௜
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 and  are independent when  Let

Find 

7.24. Three cards are randomly chosen without replacement from an ordinary

deck of  cards. Let  denote the number of aces chosen.

a. Find 

b. Find 

7.25. Let  be the standard normal distribution function, and let  be a normal

random variable with mean  and variance  We want to find  To do

so, let  be a standard normal random variable that is independent of  and

let

a. Show that 

b. Show that 

c. Show that 

Hint: What is the distribution of 

The preceding comes up in statistics. Suppose you are about to observe the

value of a random variable  that is normally distributed with an unknown

mean  and variance  and suppose that you want to test the hypothesis that

the mean  is greater than or equal to  Clearly you would want to reject this

hypothesis if  is sufficiently small. If it results that  then the -value of

the hypothesis that the mean is greater than or equal to  is defined to be the

probability that  would be as small as  if  were equal to  (its smallest

possible value if the hypothesis were true). (A small -value is taken as an

indication that the hypothesis is probably false.) Because  has a standard

normal distribution when  the -value that results when  is 

Therefore, the preceding shows that the expected -value that results when

the true mean is  is 

7.26. A coin that comes up heads with probability  is flipped until either a

total of  heads or of  tails is amassed. Find the expected number of flips.

Hint: Imagine that one continues to flip even after the goal is attained. Let 

denote the number of flips needed to obtain  heads, and let  denote the

number of flips needed to obtain  tails. Note that

𝑋௜ 𝑌௝ 𝑖 ് 𝑗.
𝜇௫ ൌ 𝐸ሾ𝑋௜ሿ,  𝜇௬ ൌ 𝐸ሾ𝑌௜ሿ,  𝜎௫ଶ ൌ  Varሺ𝑋௜ሻ,

𝜎௬ଶ ൌ  Varሺ𝑌௜ሻ,  𝜌 ൌ Corr ሺ𝑋௜,𝑌௜ሻ

Corr ሺ∑௜ ൌ ଵ
௡ 𝑋௜, ∑௝ ൌ ଵ

௡ 𝑌௝ሻ.

52 𝑋

𝐸ሾ𝑋|the ace of spades is chosenሿ.
𝐸ሾ𝑋|at least one ace is chosenሿ.

𝛷 𝑋

𝜇 1. 𝐸ሾ𝛷ሺ𝑋ሻሿ.
𝑍 𝑋,

𝐼 ൌ ቊ
1, if  Z൏X

0, if  Z൒X

𝐸ሾ𝐼 ||𝑋 ൌ 𝑥ሿ ൌ 𝛷ሺ𝑥ሻ.
𝐸ሾ𝛷ሺ𝑋ሻሿ ൌ 𝑃ሼ𝑍 ൏ 𝑋ሽ.

𝐸ሾ𝛷ሺ𝑋ሻሿ ൌ 𝛷൬
𝜇

2√
൰.

𝑋 െ 𝑍?

𝑋

𝜇 1,

𝜇 0.

𝑋 𝑋 ൌ 𝑥, 𝑝

0

𝑋 𝑥 𝜇 0

𝑝

𝑋

𝜇 ൌ 0, 𝑝 𝑋 ൌ 𝑥 𝛷ሺ𝑥ሻ .

𝑝

𝜇 𝛷൬
𝜇

2√
൰.

𝑝

𝑛 𝑚

𝑋

𝑛 𝑌

𝑚
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Compute  by conditioning on the

number of heads in the first  flips.

7.27. A deck of  cards numbered 1 through  initially in any arbitrary order, is

shuffled in the following manner: At each stage, we randomly choose one of

the cards and move it to the front of the deck, leaving the relative positions of

the other cards unchanged. This procedure is continued until all but one of the

cards has been chosen. At this point, it follows by symmetry that all 

possible orderings are equally likely. Find the expected number of stages that

are required.

7.28. Suppose that a sequence of independent trials in which each trial is a

success with probability  is performed until either a success occurs or a total

of  trials has been reached. Find the mean number of trials that are

performed.

Hint: The computations are simplified if you use the identity that for a

nonnegative integer valued random variable 

7.29. Suppose that  and  are both Bernoulli random variables. Show that 

and  are independent if and only if 

7.30. In the generalized match problem, there are  individuals of whom 

wear hat size  There are also  hats, of which  are of size

If each individual randomly chooses a hat (without

replacement), find the expected number who choose a hat that is their size.

7.31. For random variables  and  show that

That is, show that the standard deviation of a sum is always less than or equal

to the sum of the standard deviations.

7.32. Let  be a random permutation of  (That is,

 is equally likely to be any of the  permutations of

 For a given  let  be the the  smallest of the values

 Show that 

Hint: Note that if we let  equal  if  and let it equal  otherwise,

that

7.33. Suppose that  is uniformly distributed over  and that the

 maxሺ𝑋,𝑌ሻ ൅ minሺ𝑋,𝑌ሻ ൌ 𝑋 ൅ 𝑌.  𝐸ሾmaxሺ𝑋,𝑌ሻሿ
𝑛 ൅ 𝑚 െ 1

𝑛 𝑛,

𝑛!

𝑝

𝑛

𝑋,

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

ஶ

𝑃ሼ𝑋 ൒ 𝑖ሽ

𝑋 𝑌 𝑋

𝑌 Covሺ𝑋,𝑌ሻ ൌ 0 .

𝑛 𝑛௜
𝑖, ∑௜ ൌ ଵ

௥ 𝑛௜ ൌ 𝑛 . 𝑛 ℎ௜

𝑖, ∑௜ൌଵ
௥ ℎ௜ ൌ 𝑛 .

𝑋 𝑌,

Varሺ𝑋 ൅ 𝑌ሻට ൑ Varሺ𝑋ሻට ൅ Varሺ𝑌ሻට

𝑅ଵ, …,𝑅௡൅௠ 1, …,𝑛 ൅𝑚.

𝑅ଵ, …,𝑅௡൅௠ ሺ𝑛 ൅𝑚ሻ!

1, …,𝑛 ൅𝑚.ሻ 𝑖 ൑ 𝑛, 𝑋 𝑖௧௛

𝑅ଵ, …,𝑅௡. 𝐸ሾ𝑋ሿ ൌ 𝑖 ൅ 𝑚
𝑖

𝑛 ൅ 1
.

𝐼௡൅௞ 1 𝑅௡൅௞ ൏ 𝑋 0

𝑋 ൌ 𝑖 ൅ ෍
௞ ൌ ଵ

௠

𝐼௡൅௞

𝑌 ሺ0, 1ሻ,
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8.1 Introduction

8.2 Chebyshev’s Inequality and the Weak Law of Large Numbers

8.3 The Central Limit Theorem

8.4 The Strong Law of Large Numbers

8.5 Other Inequalities and a Poisson Limit Result

8.6 Bounding the Error Probability When Approximating a Sum of Independent

Bernoulli Random Variables by a Poisson Random Variable

8.7 The Lorenz Curve

The most important theoretical results in probability theory are limit theorems. Of

these, the most important are those classified either under the heading laws of large

numbers or under the heading central limit theorems. Usually, theorems are

considered to be laws of large numbers if they are concerned with stating conditions

under which the average of a sequence of random variables converges (in some

sense) to the expected average. By contrast, central limit theorems are concerned

with determining conditions under which the sum of a large number of random

variables has a probability distribution that is approximately normal.

conditional distribution of  given that  is uniform over 

a. Find 

b. Find 

c. Find 

d. Find 

e. Find the probability density function of 

𝑋, 𝑌 ൌ 𝑦, ሺ0,𝑦ሻ.
𝐸ሾ𝑋ሿ.
Covሺ𝑋,𝑌ሻ.
Varሺ𝑋ሻ.
𝑃ሼ𝑋 ൑ 𝑥ሽ.

𝑋.
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We start this section by proving a result known as Markov’s inequality.

Proposition 2.1 Markov’s inequality

If  is a random variable that takes only nonnegative values, then for any value

Proof For  let

and note that, since 

Taking expectations of the preceding inequality yields

which, because  proves the result.

As a corollary, we obtain Proposition 2.2.

Proposition 2.2 Chebyshev’s inequality

If  is a random variable with finite mean  and variance  then for any value

Proof Since  is a nonnegative random variable, we can apply Markov’s

inequality (with ) to obtain

𝑋
𝑎 ൐ 0,

𝑃ሼ𝑋 ൒ 𝑎ሽ ൑
𝐸ሾ𝑋ሿ
𝑎

𝑎 ൐ 0,

𝐼 ൌ ቊ
1 if  𝑋 ൒ 𝑎

0 otherwise

𝑋 ൒ 0,

𝐼 ൑
𝑋
𝑎

𝐸ሾ𝐼ሿ ൑
𝐸ሾ𝑋ሿ
𝑎

𝐸ሾ𝐼ሿ ൌ 𝑃ሼ𝑋 ൒ 𝑎ሽ,

𝑋 𝜇 𝜎ଶ,
𝑘 ൐ 0,

𝑃ሼ|𝑋 െ 𝜇| ൒ 𝑘ሽ ൑
𝜎ଶ

𝑘ଶ

ሺ𝑋 െ 𝜇ሻଶ

𝑎 ൌ 𝑘ଶ

𝑃ቄሺ𝑋 െ 𝜇ሻଶ ൒ 𝑘ଶቅ ൑
𝐸ሾሺ𝑋 െ 𝜇ሻଶሿ

𝑘ଶ

(2.1)
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But since  if and only if Equation (2.1)  is equivalent

to

and the proof is complete.

The importance of Markov’s and Chebyshev’s inequalities is that they enable us to

derive bounds on probabilities when only the mean or both the mean and the

variance of the probability distribution are known. Of course, if the actual distribution

were known, then the desired probabilities could be computed exactly and we would

not need to resort to bounds.

Example 2a

Suppose that it is known that the number of items produced in a factory during a

week is a random variable with mean 50.

a. What can be said about the probability that this week’s production will

exceed 75?

b. If the variance of a week’s production is known to equal 25, then what can

be said about the probability that this week’s production will be between

40 and 60?

Solution

Let  be the number of items that will be produced in a week.

a. By Markov’s inequality,

b. By Chebyshev’s inequality,

Hence,

so the probability that this week’s production will be between 40 and 60 is at least

.75.

ሺ𝑋 െ 𝜇ሻଶ ൒ 𝑘ଶ |𝑋 െ 𝜇 | ൒ 𝑘,

𝑃ሼ|𝑋 െ 𝜇| ൒ 𝑘ሽ ൑
𝐸ሾሺ𝑋 െ 𝜇ሻଶሿ

𝑘ଶ
ൌ
𝜎ଶ

𝑘ଶ

𝑋

𝑃ሼ𝑋 ൐ 75ሽ ൑
𝐸ሾ𝑋ሿ
75

ൌ
50
75

ൌ
2
3

𝑃ሼ|𝑋 െ 50| ൒ 10ሽ ൑
𝜎ଶ

10ଶ ൌ
1
4

𝑃ሼ|𝑋 െ 50| ൏ 10ሽ ൒ 1 െ
1
4
ൌ

3
4
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As Chebyshev’s inequality is valid for all distributions of the random variable  we

cannot expect the bound on the probability to be very close to the actual probability

in most cases. For instance, consider Example 2b .

Example 2b

If  is uniformly distributed over the interval (0, 10), then, since  and

 it follows from Chebyshev’s inequality that

whereas the exact result is

Thus, although Chebyshev’s inequality is correct, the upper bound that it

provides is not particularly close to the actual probability.

Similarly, if  is a normal random variable with mean  and variance 

Chebyshev’s inequality states that

whereas the actual probability is given by

Chebyshev’s inequality is often used as a theoretical tool in proving results. This use

is illustrated first by Proposition 2.3  and then, most importantly, by the weak law

of large numbers.

Proposition 2.3

If  then

In other words, the only random variables having variances equal to 0 are those

that are constant with probability 1.

Proof By Chebyshev’s inequality, we have, for any 

𝑋,

𝑋 𝐸ሾ𝑋ሿ ൌ 5

Var ሺ𝑋ሻ ൌ
25
3

,

𝑃ሼ|𝑋 െ 5| ൐ 4ሽ ൑
25

3ሺ16ሻ
ൎ .52

𝑃ሼ ||𝑋 െ 5 || ൐ 4ሽ ൌ .20

𝑋 𝜇 𝜎ଶ,

𝑃ሼ|𝑋 െ 𝜇| ൐ 2𝜎ሽ ൑
1
4

𝑃ሼ|𝑋 െ 𝜇| ൐ 2𝜎ሽ ൌ 𝑃ቊ
|
||
|

𝑋 െ 𝜇
𝜎

|
||
|
൐ 2ቋ ൌ 2ሾ1 െΦሺ2ሻሿ ൎ .0456

Varሺ𝑋ሻ ൌ 0,

𝑃ሼ𝑋 ൌ 𝐸ሾ𝑋ሿሽ ൌ 1

𝑛 ൒ 1,
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Letting  and using the continuity property of probability yields

and the result is established.

Theorem 2.1 The weak law of large numbers

Let  be a sequence of independent and identically distributed random

variables, each having finite mean  Then, for any 

Proof We shall prove the theorem only under the additional assumption that the

random variables have a finite variance  Now, since

it follows from Chebyshev’s inequality that

and the result is proven.

The weak law of large numbers was originally proven by James Bernoulli for the

special case where the  are 0, 1 (that is, Bernoulli) random variables. His

statement and proof of this theorem were presented in his book Ars Conjectandi,

which was published in 1713, eight years after his death, by his nephew Nicholas

Bernoulli. Note that because Chebyshev’s inequality was not known in Bernoulli’s

time, Bernoulli had to resort to a quite ingenious proof to establish the result. The

general form of the weak law of large numbers presented in Theorem 2.1  was

proved by the Russian mathematician Khintchine.

𝑃ቊ|𝑋 െ 𝜇| ൐
1
𝑛
ቋ ൌ 0

𝑛 → ∞

0 ൌ lim 
௡ → ஶ

 𝑃ቊ|𝑋 െ 𝜇| ൐
1
𝑛
ቋ ൌ 𝑃ቊ lim

௡ → ஶ
ቊ|𝑋 െ 𝜇| ൐

1
𝑛
ቋቋ

ൌ 𝑃ሼ𝑋 ് 𝜇ሽ

𝑋ଵ,𝑋ଶ, . . .

𝐸ሾ𝑋௜ሿ ൌ 𝜇. 𝜀 ൐ 0,

𝑃ቄቚ
௑భ൅⋯൅௑೙

௡
െ 𝜇ቚ ൒ 𝜀ቅ → 0  as  𝑛 → ∞

𝜎ଶ.

𝐸⎡
⎣

𝑋ଵ ൅  ⋯  ൅ 𝑋௡
𝑛

⎤
⎦
ൌ 𝜇 and     Var ቆ

𝑋ଵ ൅  ⋯  ൅ 𝑋௡
𝑛

ቇ ൌ
𝜎ଶ

𝑛

𝑃ቊ
|
||
|

𝑋ଵ ൅⋯ ൅ 𝑋௡
𝑛

െ 𝜇
|
||
|
൒ 𝜀ቋ ൑

𝜎ଶ

𝑛𝜀ଶ

𝑋௜
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The central limit theorem is one of the most remarkable results in probability theory.

Loosely put, it states that the sum of a large number of independent random

variables has a distribution that is approximately normal. Hence, it not only provides

a simple method for computing approximate probabilities for sums of independent

random variables, but also helps explain the remarkable fact that the empirical

frequencies of so many natural populations exhibit bell-shaped (that is, normal)

curves.

In its simplest form, the central limit theorem is as follows.

Theorem 3.1 The central limit theorem

Let  be a sequence of independent and identically distributed random

variables, each having mean  and variance  Then the distribution of

tends to the standard normal as  That is, for 

The key to the proof of the central limit theorem is the following lemma, which we

state without proof.

Lemma 3.1

Let  be a sequence of random variables having distribution functions

 and moment generating functions  and let  be a random variable

having distribution function  and moment generating function  If

 for all  then  for all  at which  is

continuous.

If we let  be a standard normal random variable, then, since  it

follows from Lemma 3.1  that if  as  then 

as 

We are now ready to prove the central limit theorem.

Proof of the Central Limit Theorem: Let us assume at first that  and

 We shall prove the theorem under the assumption that the moment

generating function of the  exists and is finite. Now, the moment

generating function of  is given by

𝑋ଵ,𝑋ଶ, . . .

𝜇 𝜎ଶ.

𝑋ଵ ൅⋯ ൅ 𝑋௡ െ 𝑛𝜇

𝜎 𝑛√

𝑛 → ∞. െ∞ ൏ 𝑎 ൏ ∞,

𝑃ቊ
𝑋ଵ ൅ ⋯൅ 𝑋௡ െ 𝑛𝜇

𝜎 𝑛√
൑ 𝑎ቋ →

1

2𝜋√
඲
െஶ

௔

𝑒െ௫
మ/ଶ𝑑𝑥 as 𝑛 → ∞

𝑍ଵ,𝑍ଶ, . . .

𝐹௓೙ 𝑀௓೙ , 𝑛 ൒ 1, 𝑍

𝐹௓ 𝑀௓ .

𝑀௓೙ሺ𝑡ሻ → 𝑀௓ሺ𝑡ሻ 𝑡, 𝐹௓೙ሺ𝑡ሻ → 𝐹௓ሺ𝑡ሻ 𝑡 𝐹௓ሺ𝑡ሻ

𝑍 𝑀௓ሺ𝑡ሻ ൌ 𝑒௧
మ/ଶ,

𝑀௓೙ሺ𝑡ሻ → 𝑒௧
మ/ଶ 𝑛 → ∞, 𝐹௓೙ሺ𝑡ሻ → Φ ሺ𝑡ሻ

𝑛 → ∞.

𝜇 ൌ 0

𝜎ଶ ൌ 1.

𝑋௜, 𝑀ሺ𝑡ሻ,

𝑋௜/ 𝑛√
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Thus, the moment generating function of  is given by  Let

and note that

Now, to prove the theorem, we must show that  as  or,

equivalently, that  as  To show this, note that

Thus, the central limit theorem is proven when  and  The result now

follows in the general case by considering the standardized random variables

 and applying the preceding result, since 

Remark Although Theorem 3.1  states only that, for each 

𝐸ቈexpቊ
𝑡𝑋௜
𝑛√
ቋ቉ ൌ 𝑀൬

𝑡

𝑛√
൰

෍
௜ ൌ ଵ

௡

𝑋௜/ 𝑛√ ൤𝑀൬
𝑡

𝑛√
൰൨

௡

.

𝐿ሺ𝑡ሻ ൌ log𝑀ሺ𝑡ሻ

𝐿ሺ0ሻ ൌ 0

𝐿ᇱሺ0ሻ ൌ
𝑀ᇱሺ0ሻ
𝑀ሺ0ሻ

ൌ 𝜇

ൌ 0

𝐿ᇳሺ0ሻ ൌ
𝑀ሺ0ሻ𝑀ᇳሺ0ሻ െ ሾ𝑀ᇱሺ0ሻሿ

ଶ

ሾ𝑀ሺ0ሻሿଶ

ൌ 𝐸ሾ𝑋ଶሿ

ൌ 1

ሾ𝑀ሺ𝑡/ 𝑛√ ሻሿ
௡
→ 𝑒௧

మ/ଶ 𝑛 → ∞,

𝑛𝐿ሺ𝑡/ 𝑛√ ሻ → 𝑡ଶ/2 𝑛 → ∞.

lim
௡ → ஶ

𝐿൫𝑡/ 𝑛√ ൯
𝑛െଵ

ൌ lim
௡ → ஶ

െ𝐿ᇱ൫𝑡/ 𝑛√ ൯𝑛െଷ/ଶ೟

െ2𝑛െଶ
  by L’Hôpital’s rule

ൌ lim
௡ → ஶ

ቈ
𝐿ᇱ൫𝑡/ 𝑛√ ൯𝑡

2𝑛െଵ/ଶ ቉

ൌ lim
௡ → ஶ

ቈ
െ𝐿ᇳ൫𝑡/ 𝑛√ ൯𝑛െଷ/ଶ𝑡ଶ

െ2𝑛െଷ/ଶ ቉  again by L’Hôpital’s rule

ൌ lim
௡ → ஶ

ቈ𝐿ᇳ൬
𝑡

𝑛√
൰
𝑡ଶ

2
቉

ൌ
𝑡ଶ

2

𝜇 ൌ 0 𝜎ଶ ൌ 1.

𝑋௜* ൌ ሺ𝑋௜ െ 𝜇ሻ/𝜎 𝐸ሾ𝑋௜*ሿ ൌ 0,  Varሺ𝑋௜*ሻ ൌ 1.

𝑎,
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it can, in fact, be shown that the convergence is uniform in  [We say that

 uniformly in  if, for each  there exists an  such that

 for all  whenever ]

The first version of the central limit theorem was proven by DeMoivre around 1733

for the special case where the  are Bernoulli random variables with  The

theorem was subsequently extended by Laplace to the case of arbitrary  (Since a

binomial random variable may be regarded as the sum of  independent and

identically distributed Bernoulli random variables, this justifies the normal

approximation to the binomial that was presented in Section 5.4.1. ) Laplace also

discovered the more general form of the central limit theorem given in Theorem

3.1 . His proof, however, was not completely rigorous and, in fact, cannot easily be

made rigorous. A truly rigorous proof of the central limit theorem was first presented

by the Russian mathematician Liapounoff in the period 1901–1902.

Figure 8.1  illustrates the central limit theorem by plotting the probability mass

functions of  independent random variables having a specified mass function when

(a)  (b)  (c)  and (d) 

Figure 8.1(a)

𝑃ቊ
𝑋ଵ ൅ ⋯൅ 𝑋௡ െ 𝑛𝜇

𝜎 𝑛√
൑ 𝑎ቋ → Φሺ𝑎ሻ

𝑎.

𝑓௡ሺ𝑎ሻ → 𝑓ሺ𝑎ሻ 𝑎 𝜀 ൐ 0, 𝑁

ห𝑓௡ሺ𝑎ሻ െ 𝑓ሺ𝑎ሻห ൏ 𝜀 𝑎 𝑛 ൒ 𝑁.

𝑋௜ 𝑝 ൌ 1
2

.

𝑝.

𝑛

𝑛

𝑛 ൌ 5, 𝑛 ൌ 10, 𝑛 ൌ 25, 𝑛 ൌ 100.
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Figure 8.1(b)
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Figure 8.1(c)
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Figure 8.1(d)
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Example 3a

An astronomer is interested in measuring the distance, in light-years, from his

observatory to a distant star. Although the astronomer has a measuring

technique, he knows that because of changing atmospheric conditions and

normal error, each time a measurement is made, it will not yield the exact

distance, but merely an estimate. As a result, the astronomer plans to make a

series of measurements and then use the average value of these measurements

as his estimated value of the actual distance. If the astronomer believes that the

values of the measurements are independent and identically distributed random

variables having a common mean  (the actual distance) and a common

variance of 4 (light-years), how many measurements need he make to be

reasonably sure that his estimated distance is accurate to within  light–year?

Solution

Suppose that the astronomer decides to make  observations. If 

are the  measurements, then, from the central limit theorem, it follows that

𝑑

േ.5

𝑛 𝑋ଵ, 𝑋ଶ, . . . ,𝑋௡
𝑛
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has approximately a standard normal distribution. Hence,

Therefore, if the astronomer wants, for instance, to be 95 percent certain that his

estimated value is accurate to within .5 light-year, he should make 

measurements, where  is such that

Thus, from Table 5.1  of Chapter 5 ,

As  is not integral valued, he should make 62 observations.

Note, however, that the preceding analysis has been done under the assumption

that the normal approximation will be a good approximation when 

Although this will usually be the case, in general the question of how large 

need be before the approximation is “good” depends on the distribution of the 

If the astronomer is concerned about this point and wants to take no chances, he

can still solve his problem by using Chebyshev’s inequality. Since

Chebyshev’s inequality yields

𝑍௡ ൌ

෍
௜ ൌ ଵ

௡

𝑋௜ െ 𝑛𝑑

2 𝑛√

𝑃

⎧

⎨

⎩

⎪
⎪

⎪
⎪

െ.5 ൑

෍
௜ ൌ ଵ

௡

𝑋௜

𝑛
െ 𝑑 ൑ .5

⎫

⎬

⎭

⎪
⎪

⎪
⎪

ൌ 𝑃ቊെ.5
𝑛√

2
൑ 𝑍௡ ൑ .5

𝑛√
2
ቋ

ൎ Φቆ
𝑛√

4
ቇ െ ϕ ቆെ

𝑛√
4
ቇ ൌ 2Φቆ

𝑛√
4
ቇ െ 1

𝑛 *
𝑛 *

2Φቆ
𝑛 *√

4
ቇ െ 1 ൌ .95 or Φቆ

𝑛 *√

4
ቇ ൌ .975

𝑛 *√

4
ൌ 1.96 or 𝑛 * ൌ ሺ7.84ሻଶ ൎ 61.47

𝑛 *

𝑛 ൌ 62.

𝑛

𝑋௜.

𝐸቎ ෍
௜ ൌ ଵ

௡
𝑋௜
𝑛
቏ ൌ 𝑑  Varቌ ෍

௜ ൌ ଵ

௡
𝑋௜
𝑛
ቍ ൌ

4
𝑛
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Hence, if he makes  observations, he can be 95 percent certain

that his estimate will be accurate to within .5 light-year.

Example 3b

The number of students who enroll in a psychology course is a Poisson random

variable with mean 100. The professor in charge of the course has decided that if

the number enrolling is 120 or more, he will teach the course in two separate

sections, whereas if fewer than 120 students enroll, he will teach all of the

students together in a single section. What is the probability that the professor

will have to teach two sections?

Solution

The exact solution

does not readily yield a numerical answer. However, by recalling that a Poisson

random variable with mean 100 is the sum of 100 independent Poisson random

variables, each with mean 1, we can make use of the central limit theorem to

obtain an approximate solution. If  denotes the number of students who enroll in

the course, we have

where we have used the fact that the variance of a Poisson random variable is

equal to its mean.

Example 3c

If 10 fair dice are rolled, find the approximate probability that the sum obtained is

between 30 and 40, inclusive.

Solution

𝑃ቐቮ ෍
௜ ൌ ଵ

௡
𝑋௜
𝑛
െ 𝑑ቮ ൐ .5ቑ ൑

4

𝑛ሺ.5ሻଶ
ൌ

16
𝑛

𝑛 ൌ 16/.05 ൌ 320

𝑒െଵ଴଴ ෍
௜ ൌ ଵଶ଴

ஶ ሺ100ሻ௜

𝑖!

𝑋

𝑃ሼ𝑋 ൒ 120ሽ ൌ 𝑃ሼ𝑋 ൒ 119.5ሽ  ሺthe continuity correctionሻ

ൌ 𝑃ቊ
𝑋 െ 100

100√
൒

119.5 െ 100

100√
ቋ

ൎ 1 െΦሺ1.95ሻ

ൎ .0256
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Let  denote the value of the th die,  Since

the central limit theorem yields

Example 3d

Let  be independent random variables, each uniformly distributed

over (0, 1). Calculate an approximation to 

Solution

Since  and  we have, by the central limit theorem,

Hence,  will be greater than 6 only 14 percent of the time.

Example 3e

An instructor has 50 exams that will be graded in sequence. The times required

to grade the 50 exams are independent, with a common distribution that has

mean 20 minutes and standard deviation 4 minutes. Approximate the probability

that the instructor will grade at least 25 of the exams in the first 450 minutes of

𝑋௜ 𝑖 𝑖 ൌ 1,2, . . . ,10.

𝐸ሺ𝑋௜ሻ ൌ
7
2

, Varሺ𝑋௜ሻ ൌ 𝐸ሾ𝑋௜
ଶሿ െ ሺ𝐸ሾ𝑋௜ሿሻ

ଶ ൌ
35
12

,

𝑃ሼ29.5 ൑ 𝑋 ൑ 40.5ሽ ൌ 𝑃

⎧

⎨

⎩

⎪
⎪

⎪
⎪

29.5 െ 35

350
12ඨ

൑
𝑋 െ 35

350
12ඨ

൑
40.5 െ 35

350
12ඨ

⎫

⎬

⎭

⎪
⎪

⎪
⎪

ൎ 2Φሺ1.0184ሻ െ 1

ൎ .692

𝑋௜,𝑖 ൌ 1, . . . ,10,

𝑃ቐ ෍
௜ ൌ ଵ

ଵ଴

𝑋௜ ൐ 6ቑ.

𝐸ሾ𝑋௜ሿ ൌ
1
2

Varሺ𝑋௜ሻ ൌ
1

12
,

𝑃ቐ෍
ଵ

ଵ଴

𝑋௜ ൐ 6ቑ ൌ 𝑃

⎧

⎨

⎩

⎪
⎪

⎪
⎪

෍
ଵ

ଵ଴

𝑋௜ െ 5

10ቆ
1

12
ቇඨ

൐
6 െ 5

10ቆ
1

12
ቇඨ

⎫

⎬

⎭

⎪
⎪

⎪
⎪

ൎ 1 െΦ൫ 1.2√ ൯

ൎ .1367

෍
௜ ൌ ଵ

ଵ଴

𝑋௜
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work.

Solution

If we let  be the time that it takes to grade exam  then

is the time it takes to grade the first 25 exams. Because the instructor will grade

at least 25 exams in the first 450 minutes of work if the time it takes to grade the

first 25 exams is less than or equal to 450, we see that the desired probability is

 To approximate this probability, we use the central limit theorem.

Now,

and

Consequently, with  being a standard normal random variable, we have

Central limit theorems also exist when the  are independent, but not

necessarily identically distributed random variables. One version, by no means

the most general, is as follows.

Theorem 3.2 Central limit theorem for independent random variables

Let  be a sequence of independent random variables having respective

means and variances  If (a) the  are uniformly

bounded—that is, if for some  for all  and (b) 

𝑋௜ 𝑖,

𝑋 ൌ ෍
௜ ൌ ଵ

ଶହ

𝑋௜

 𝑃ሼ𝑋 ൑ 450ሽ.

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

ଶହ

𝐸ሾ𝑋௜ሿ ൌ 25ሺ20ሻ ൌ 500

Varሺ𝑋ሻ ൌ ෍
௜ ൌ ଵ

ଶହ

 Varሺ𝑋௜ሻ ൌ 25ሺ16ሻ ൌ 400

𝑍

𝑃ሼ𝑋 ൑ 450ሽ ൌ 𝑃ቊ
𝑋 െ 500

400√
൑

450 െ 500

400√
ቋ

ൎ 𝑃ሼ𝑍 ൑ െ 2.5ሽ

ൌ 𝑃ሼ𝑍 ൒ 2.5ሽ

ൌ 1 െΦሺ2.5ሻ ൎ .006

𝑋௜

𝑋ଵ,𝑋ଶ, . . .

𝜇௜ ൌ 𝐸ሾ𝑋௜ሿ,𝜎௜
ଶ ൌ Varሺ𝑋௜ሻ. 𝑋௜

𝑀,   𝑃ሼ|𝑋௜| ൏ 𝑀ሽ ൌ 1 𝑖, ෍
௜ ൌ ଵ

ஶ

𝜎௜
ଶ ൌ ∞
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—then

Historical note: Pierre-Simon, Marquis de Laplace (1749–1827)

The central limit theorem was originally stated and proven by the French

mathematician Pierre-Simon, Marquis de Laplace, who came to the theorem

from his observations that errors of measurement (which can usually be

regarded as being the sum of a large number of tiny forces) tend to be normally

distributed. Laplace, who was also a famous astronomer (and indeed was

called “the Newton of France”), was one of the great early contributors to both

probability and statistics. Laplace was also a popularizer of the uses of

probability in everyday life. He strongly believed in its importance, as is

indicated by the following quotations taken from his published book Analytical

Theory of Probability: “We see that the theory of probability is at bottom only

common sense reduced to calculation; it makes us appreciate with exactitude

what reasonable minds feel by a sort of instinct, often without being able to

account for it.  It is remarkable that this science, which originated in the

consideration of games of chance, should become the most important object of

human knowledge.  The most important questions of life are, for the most

part, really only problems of probability.”

The application of the central limit theorem to show that measurement errors

are approximately normally distributed is regarded as an important contribution

to science. Indeed, in the seventeenth and eighteenth centuries, the central

limit theorem was often called the law of frequency of errors. Listen to the

words of Francis Galton (taken from his book Natural Inheritance, published in

1889): “I know of scarcely anything so apt to impress the imagination as the

wonderful form of cosmic order expressed by the ‘Law of Frequency of Error.’

The Law would have been personified by the Greeks and deified, if they had

known of it. It reigns with serenity and in complete self-effacement amidst the

wildest confusion. The huger the mob and the greater the apparent anarchy, the

more perfect is its sway. It is the supreme law of unreason.”

𝑃

⎧

⎨

⎩

⎪
⎪
⎪

⎪
⎪
⎪

෍
௜ ൌ ଵ

௡

ሺ𝑋௜ െ 𝜇௜ሻ

෍
௜ ൌ ଵ

௡

𝜎௜
ଶ

ඩ

൑ 𝑎

⎫

⎬

⎭

⎪
⎪
⎪

⎪
⎪
⎪

→ Φሺ𝑎ሻ as 𝑛 → ∞

. . .

. . .
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The strong law of large numbers is probably the best-known result in probability

theory. It states that the average of a sequence of independent random variables

having a common distribution will, with probability 1, converge to the mean of that

distribution.

Theorem 4.1 The strong law of large numbers

Let  be a sequence of independent and identically distributed random

variables, each having a finite mean  Then, with probability 1,

That is, the strong law of large numbers states that

As an application of the strong law of large numbers, suppose that a sequence of

independent trials of some experiment is performed. Let  be a fixed event of the

experiment, and denote by  the probability that  occurs on any particular

trial. Letting

we have, by the strong law of large numbers, that with probability 1,

Since  represents the number of times that the event  occurs in the

first  trials, we may interpret Equation (4.1)  as stating that with probability 1,

the limiting proportion of time that the event  occurs is just 

Although the theorem can be proven without this assumption, our proof of the

strong law of large numbers will assume that the random variables  have a

finite fourth moment. That is, we will suppose that 

Proof of the Strong Law of Large Numbers: To begin, assume that  the

𝑋ଵ,𝑋ଶ, . . .

𝜇 ൌ 𝐸ሾ𝑋௜ሿ.

𝑋ଵ ൅ 𝑋ଶ ൅⋯ ൅ 𝑋௡
𝑛

→ 𝜇 as 𝑛 → ∞

†

†

𝑝ቄ lim
௡ → ஶ

ሺ𝑋ଵ ൅ ... ൅ 𝑋௡ሻ/𝑛 ൌ 𝜇ቅ ൌ 1

𝐸

𝑃ሺ𝐸ሻ 𝐸

𝑋௜ ൌ ቊ
1 if  𝐸 occurs on the 𝑖th trial

0 if  𝐸 does not occur on the 𝑖th trial

𝑋ଵ ൅⋯ ൅ 𝑋௡
𝑛

→ 𝐸ሾ𝑋ሿ ൌ 𝑃ሺ𝐸ሻ

(4.1)

𝑋ଵ ൅⋯ ൅ 𝑋௡ 𝐸

𝑛

𝐸 𝑃ሺ𝐸ሻ.

𝑋௜
𝐸ሾ𝑋௜

ସሿ ൌ 𝐾 ൏ ∞.

𝜇,
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mean of the  is equal to 0. Let  and consider

Expanding the right side of the preceding equation results in terms of the form

where  and  are all different. Because all the  have mean 0, it follows by

independence that

Now, for a given pair  and  there will be  terms in the expansion that will

equal  Hence, upon expanding the preceding product and taking

expectations term by term, it follows that

where we have once again made use of the independence assumption. Now,

since

we have

Therefore, from the preceding, we obtain

which implies that

𝑋௜, 𝑆௡ ൌ ෍
௜ ൌ ଵ

௡

𝑋௜

𝐸ሾ𝑆௡
ସሿ ൌ 𝐸ሾሺ𝑋ଵ ൅ ⋯ ൅ 𝑋௡ሻሺ𝑋ଵ ൅ ⋯ ൅ 𝑋௡ሻ

ൈ ሺ𝑋ଵ ൅ ⋯൅ 𝑋௡ሻሺ𝑋ଵ ൅ ⋯ ൅ 𝑋௡ሻሿ

𝑋௜
ସ, 𝑋௜

ଷ𝑋௝, 𝑋௜
ଶ𝑋௝

ଶ, 𝑋௜
ଶ𝑋௝𝑋௞, and 𝑋௜𝑋௝𝑋௞𝑋௟

𝑖, 𝑗, 𝑘, 𝑙 𝑋௜

𝐸ሾ𝑋௜
ଷ𝑋௝ሿ ൌ 𝐸ሾ𝑋௜

ଷሿ𝐸ሾ𝑋௝ሿ ൌ 0

𝐸ሾ𝑋௜
ଶ𝑋௝𝑋௞ሿ ൌ 𝐸ሾ𝑋௜

ଶሿ𝐸ሾ𝑋௝ሿ𝐸ሾ𝑋௞ሿ ൌ 0

𝐸ሾ𝑋௜𝑋௝𝑋௞𝑋௟ሿ ൌ 0

𝑖 𝑗, ቆ
4

2
ቇ ൌ 6

𝑋௜
ଶ𝑋௝

ଶ.

𝐸ሾ𝑆௡
ସሿ ൌ 𝑛𝐸ሾ𝑋௜

ସሿ ൅ 6ቆ
𝑛

2
ቇ𝐸ሾ𝑋௜

ଶ𝑋௝
ଶሿ

ൌ 𝑛𝐾 ൅ 3𝑛ሺ𝑛 െ 1ሻ𝐸ሾ𝑋௜
ଶሿ𝐸ሾ𝑋௝

ଶሿ

0 ൑ Varሺ𝑋௜
ଶሻ ൌ 𝐸ሾ𝑋௜

ସሿ െ ሺ𝐸ሾ𝑋௜
ଶሿሻ

ଶ

ሺ𝐸ሾ𝑋௜
ଶሿሻ

ଶ
൑ 𝐸ሾ𝑋௜

ସሿ ൌ 𝐾

𝐸ሾ𝑆௡
ସሿ ൑ 𝑛𝐾 ൅ 3𝑛ሺ𝑛 െ 1ሻ𝐾
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Therefore,

But the preceding implies that with probability 1,  (For if there is

a positive probability that the sum is infinite, then its expected value is infinite.)

But the convergence of a series implies that its th term goes to 0; so we can

conclude that with probability 1,

But if  goes to 0, then so must  hence, we have proven

that with probability 1,

When  the mean of the  is not equal to 0, we can apply the preceding

argument to the random variables  to obtain that with probability 1,

or, equivalently,

which proves the result.

Figure 8.2  illustrates the strong law by giving the results of a simulation of 

independent random variables having a specified probability mass function. The

averages of the  variables are given when (a)  (b)  and (c)

Figure 8.2(a)

𝐸ቈ
𝑆௡
ସ

𝑛ସ
቉ ൑

𝐾
𝑛ଷ

൅
3𝐾
𝑛ଶ

𝐸
⎡

⎣
⎢⎢
෍

௡ ൌ ଵ

ஶ 𝑆௡
ସ

𝑛ସ
⎤

⎦
⎥⎥
ൌ ෍

௡ ൌ ଵ

ஶ

𝐸ቈ
𝑆௡
ସ

𝑛ସ
቉ ൏ ∞

෍
௡ ൌ ଵ

ஶ

𝑆௡
ସ/𝑛ସ ൏ ∞.

𝑛

lim
௡ → ஶ

𝑆௡
ସ

𝑛ସ
ൌ 0

𝑆௡
ସ/𝑛ସ ൌ ሺ𝑆௡/𝑛ሻସ 𝑆௡/𝑛;

𝑆௡
𝑛
→ 0 as 𝑛 → ∞

𝜇, 𝑋௜,

𝑋௜ െ 𝜇

lim
௡ → ஶ

෍
௜ ൌ ଵ

௡
ሺ𝑋௜ െ 𝜇ሻ

𝑛
ൌ 0

lim
௡ → ஶ

෍
௜ ൌ ଵ

௡
𝑋௜
𝑛
ൌ 𝜇

𝑛

𝑛 𝑛 ൌ 100, 𝑛 ൌ 1000,
𝑛 ൌ 10,000.

636 of 848



Figure 8.2(b)
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Figure 8.2(c)
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Many students are initially confused about the difference between the weak and the

strong laws of large numbers. The weak law of large numbers states that for any

specified large value  is likely to be near  However, it does

not say that  is bound to stay near  for all values of  larger than

 Thus, it leaves open the possibility that large values of 

can occur infinitely often (though at infrequent intervals). The strong law shows that

this cannot occur. In particular, it implies that, with probability 1, for any positive value

will be greater than  only a finite number of times.

The strong law of large numbers was originally proven, in the special case of

Bernoulli random variables, by the French mathematician Borel. The general form of

𝑛 * , ሺ𝑋ଵ ൅ ⋯ ൅ 𝑋௡*ሻ/𝑛 * 𝜇.

ሺ𝑋ଵ ൅ ⋯ ൅ 𝑋௡ሻ/𝑛 𝜇 𝑛

𝑛 * . ||ሺ𝑋ଵ ൅ ⋯ ൅ 𝑋௡ሻ/𝑛 െ 𝜇||

𝜀,

ቮ෍
ଵ

௡
𝑋௜
𝑛
െ 𝜇ቮ

𝜀
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the strong law presented in Theorem 4.1  was proven by the Russian

mathematician A. N. Kolmogorov.

We are sometimes confronted with situations in which we are interested in obtaining

an upper bound for a probability of the form  where  is some positive

value and when only the mean  and variance  of the distribution

of  are known. Of course, since  implies that  it follows

from Chebyshev’s inequality that

However, as the following proposition shows, it turns out that we can do better.

Proposition 5.1 One-sided Chebyshev inequality

If  is a random variable with mean 0 and finite variance  then, for any 

Proof Let  and note that

Hence,

where the inequality is obtained by noting that since 

implies that  Upon applying Markov’s inequality, the

preceding yields that

Letting  [which is easily seen to be the value of  that minimizes

] gives the desired result.

𝑃ሼ𝑋 െ 𝜇 ൒ 𝑎ሽ, 𝑎

𝜇 ൌ 𝐸ሾ𝑋ሿ 𝜎ଶ ൌ Varሺ𝑋ሻ

𝑋 𝑋 െ 𝜇 ൒ 𝑎 ൐ 0 |𝑋 െ 𝜇 | ൒ 𝑎,

𝑃ሼ𝑋 െ 𝜇 ൒ 𝑎ሽ ൑ 𝑃ሼ|𝑋 െ 𝜇| ൒ 𝑎ሽ ൑
𝜎ଶ

𝑎ଶ
when 𝑎 ൐ 0

𝑋 𝜎ଶ, 𝑎 ൐ 0,

𝑃ሼ𝑋 ൒ 𝑎ሽ ൑
𝜎ଶ

𝜎ଶ ൅ 𝑎ଶ

𝑏 ൐ 0

𝑋 ൒ 𝑎 is equivalent to 𝑋 ൅ 𝑏 ൒ 𝑎 ൅ 𝑏

𝑃ሼ𝑋 ൒ 𝑎ሽ ൌ 𝑃ሼ𝑋 ൅ 𝑏 ൒ 𝑎 ൅ 𝑏ሽ

൑ 𝑃൛ሺ𝑋 ൅ 𝑏ሻଶ ൒ ሺ𝑎 ൅ 𝑏ሻଶൟ

𝑎 ൅ 𝑏 ൐ 0, 𝑋 ൅ 𝑏 ൒ 𝑎 ൅ 𝑏

ሺ𝑋 ൅ 𝑏ሻଶ ൒ ሺ𝑎 ൅ 𝑏ሻଶ.

𝑃ሼ𝑋 ൒ 𝑎ሽ ൑
𝐸ሾሺ𝑋 ൅ 𝑏ሻଶሿ

ሺ𝑎 ൅ 𝑏ሻଶ
ൌ

𝜎ଶ ൅ 𝑏ଶ

ሺ𝑎 ൅ 𝑏ሻଶ

𝑏 ൌ 𝜎ଶ/𝑎 𝑏

ሺ𝜎ଶ ൅ 𝑏ଶሻ/ሺ𝑎 ൅ 𝑏ሻଶ
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Example 5a

If the number of items produced in a factory during a week is a random variable

with mean 100 and variance 400, compute an upper bound on the probability that

this week’s production will be at least 120.

Solution

It follows from the one-sided Chebyshev inequality that

Hence, the probability that this week’s production will be 120 or more is at most

If we attempted to obtain a bound by applying Markov’s inequality, then we would

have obtained

which is a far weaker bound than the preceding one.

Suppose now that  has mean  and variance  Since both  and  have

mean 0 and variance  it follows from the one-sided Chebyshev inequality that, for

and

Thus, we have the following corollary.

Corollary 5.1

If  and  then, for 

𝑃ሼ𝑋 ൒ 120ሽ ൌ 𝑃ሼ𝑋 െ 100 ൒ 20ሽ ൑
400

400 ൅ ሺ20ሻଶ
ൌ

1
2

1
2

.

𝑃ሼ𝑋 ൒ 120ሽ ൑
𝐸ሺ𝑋ሻ
120

ൌ
5
6

𝑋 𝜇 𝜎ଶ. 𝑋 െ 𝜇 𝜇 െ 𝑋

𝜎ଶ,
𝑎 ൐ 0,

𝑃ሼ𝑋 െ 𝜇 ൒ 𝑎ሽ ൑
𝜎ଶ

𝜎ଶ ൅ 𝑎ଶ

𝑃ሼ𝜇 െ 𝑋 ൒ 𝑎ሽ ൑
𝜎ଶ

𝜎ଶ ൅ 𝑎ଶ

𝐸ሾ𝑋ሿ ൌ 𝜇 Varሺ𝑋ሻ ൌ 𝜎ଶ, 𝑎 ൐ 0,

𝑃ሼ𝑋 ൒ 𝜇 ൅ 𝑎ሽ ൑
𝜎ଶ

𝜎ଶ ൅ 𝑎ଶ

𝑃ሼ𝑋 ൑ 𝜇 െ 𝑎ሽ ൑
𝜎ଶ

𝜎ଶ ൅ 𝑎ଶ
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Example 5b

A set of 200 people consisting of 100 men and 100 women is randomly divided

into 100 pairs of 2 each. Give an upper bound to the probability that at most 30 of

these pairs will consist of a man and a woman.

Solution

Number the men arbitrarily from 1 to 100, and for  let

Then  the number of man–woman pairs, can be expressed as

Because man  is equally likely to be paired with any of the other 199 people, of

which 100 are women, we have

Similarly, for 

where  since, given that man  is paired with a

woman, man  is equally likely to be paired with any of the remaining 197 people,

of which 99 are women. Hence, we obtain

𝑖 ൌ 1,2, . . . 100,

𝑋௜ ൌ ቊ
1 if  man 𝑖 is paired with a woman

0 otherwise

𝑋,

𝑋 ൌ ෍
௜ ൌ ଵ

ଵ଴଴

𝑋௜

𝑖

𝐸ሾ𝑋௜ሿ ൌ 𝑃ሼ𝑋௜ ൌ 1ሽ ൌ
100
199

𝑖 ് 𝑗,

𝐸ሾ𝑋௜𝑋௝ሿ ൌ 𝑃൛𝑋௜ ൌ 1,𝑋௝ ൌ 1ൟ

ൌ 𝑃ሼ𝑋௜ ൌ 1ሽ𝑃൛𝑋௝ ൌ 1ห𝑋௜ ൌ 1ൟ ൌ
100
199

99
197

𝑃൛𝑋௝ ൌ 1 ห𝑋௜ ൌ 1ൟ ൌ 99/197, 𝑖

𝑗
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The Chebyshev inequality then yields

Thus, there are fewer than 6 chances in 100 that fewer than 30 men will be

paired with women. However, we can improve on this bound by using the one-

sided Chebyshev inequality, which yields

When the moment generating function of the random variable  is known, we can

obtain even more effective bounds on  Let

be the moment generating function of the random variable  Then, for 

Similarly, for 

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

ଵ଴଴

𝐸ሾ𝑋௜ሿ

ൌ ሺ100ሻ
100
199

ൎ 50.25

Varሺ𝑋ሻ ൌ ෍
௜ ൌ ଵ

ଵ଴଴

Varሺ𝑋௜ሻ ൅ 2 ෍
௜ ழ ௝

෍covሺ𝑋௜,𝑋௝ሻ

ൌ 100
100
199

99
199

൅ 2ቆ
100

2
ቇ൥

100
199

99
197

െ ቆ
100
199

ቇ
ଶ

൩

ൎ 25.126

𝑃ሼ𝑋 ൑ 30ሽ ൑ 𝑃ሼ|𝑋 െ 50.25| ൒ 20.25ሽ ൑
25.126

ሺ20.25ሻଶ
ൎ .061

𝑃ሼ𝑋 ൑ 30ሽ ൌ 𝑃ሼ𝑋 ൑ 50.25 െ 20.25ሽ

൑
25.126

25.126 ൅ ሺ20.25ሻଶ

ൎ .058

𝑋

𝑃ሼ𝑋 ൒ 𝑎ሽ.

𝑀ሺ𝑡ሻ ൌ 𝐸ሾ𝑒௧௑ሿ

𝑋. 𝑡 ൐ 0,

𝑃ሼ𝑋 ൒ 𝑎ሽ ൌ 𝑃ሼ𝑒௧௑ ൒ 𝑒௧௔ሽ

൑ 𝐸ሾ𝑒௧௑ሿ𝑒െ௧௔ by Markov's inequality

𝑡 ൏ 0,

𝑃ሼ𝑋 ൑ 𝑎ሽ ൌ 𝑃ሼ𝑒௧௑ ൒ 𝑒௧௔ሽ

൑ 𝐸ሾ𝑒௧௑ሿ𝑒െ௧௔
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Thus, we have the following inequalities, known as Chernoff bounds.

Proposition 5.2 Chernoff bounds

Since the Chernoff bounds hold for all  in either the positive or negative

quadrant, we obtain the best bound on  by using the  that minimizes

Example 5c Chernoff bounds for the standard normal random variable

If  is a standard normal random variable, then its moment generating function is

 so the Chernoff bound on  is given by

Now the value of  that minimizes  is the value that minimizes

 which is  Thus, for  we have

Similarly, we can show that, for 

Example 5d Chernoff bounds for the Poisson random variable

If  is a Poisson random variable with parameter  then its moment generating

function is  Hence, the Chernoff bound on  is

Minimizing the right side of the preceding inequality is equivalent to minimizing

 and calculus shows that the minimal value occurs when 

Provided that  this minimizing value of  will be positive. Therefore,

assuming that  and letting  in the Chernoff bound yields

or, equivalently,

𝑃ሼ𝑋 ൒ 𝑎ሽ ൑ 𝑒െ௧௔𝑀ሺ𝑡ሻ for all 𝑡 ൐ 0

𝑃ሼ𝑋 ൑ 𝑎ሽ ൑ 𝑒െ௧௔𝑀ሺ𝑡ሻ for all 𝑡 ൏ 0

𝑡

𝑃ሼ𝑋 ൒ 𝑎ሽ 𝑡
𝑒െ௧௔𝑀ሺ𝑡ሻ.

𝑍

𝑀ሺ𝑡ሻ ൌ 𝑒௧
మ/ଶ, 𝑃ሼ𝑍 ൒ 𝑎ሽ

𝑃ሼ𝑍 ൒ 𝑎ሽ ൑ 𝑒െ௧௔𝑒௧
మ/ଶ for all 𝑡 ൐ 0

𝑡,𝑡 ൐ 0, 𝑒௧
మ/ଶെ௧௔

𝑡ଶ/2 െ 𝑡𝑎, 𝑡 ൌ 𝑎. 𝑎 ൐ 0,

𝑃ቄ𝑍 ൒ 𝑎ቅ ൑ 𝑒െ௔
మ/ଶ

𝑎 ൏ 0,

𝑃ቄ𝑍 ൑ 𝑎ቅ ൑ 𝑒െ௔
మ/ଶ

𝑋 𝜆,

𝑀ሺ𝑡ሻ ൌ 𝑒ఒሺ௘
೟െଵሻ. 𝑃ሼ𝑋 ൒ 𝑖ሽ

𝑃ቄ𝑋 ൒ 𝑖ቅ ൑ 𝑒ఒሺ௘
೟െଵሻ𝑒െ௜௧ 𝑡 ൐ 0

𝜆ሺ𝑒௧ െ 1ሻ െ 𝑖𝑡, 𝑒௧ ൌ 𝑖/𝜆.

𝑖/𝜆 ൐ 1, 𝑡

𝑖 ൐ 𝜆 𝑒௧ ൌ 𝑖/𝜆

𝑃ሼ𝑋 ൒ 𝑖ሽ ൑ 𝑒ఒሺ௜/ఒെଵሻቆ
𝜆
𝑖
ቇ
௜
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Example 5e

Consider a gambler who is equally likely to either win or lose 1 unit on every play,

independently of his past results. That is, if  is the gambler’s winnings on the 

th play, then the  are independent and

Let  denote the gambler’s winnings after  plays. We will use the

Chernoff bound on  To start, note that the moment generating function

of  is

Now, using the McLaurin expansions of  and  we see that

Therefore,

Since the moment generating function of the sum of independent random

variables is the product of their moment generating functions, we have

𝑃ሼ𝑋 ൒ 𝑖ሽ ൑
𝑒െఒሺ𝑒𝜆ሻ௜

𝑖௜

𝑋௜ 𝑖

𝑋௜

𝑃ቄ𝑋௜ ൌ 1ቅ ൌ 𝑃ቄ𝑋௜ ൌ െ 1ቅ ൌ 1
2

𝑆௡ ൌ ෍
௜ ൌ ଵ

௡

𝑋௜ 𝑛

𝑃ሼ𝑆௡ ൒ 𝑎ሽ.
𝑋௜

𝐸ሾ𝑒௧௑ሿ ൌ
𝑒௧ ൅ 𝑒െ௧

2

𝑒௧ 𝑒െ௧,

𝑒௧ ൅ 𝑒െ௧ ൌ 1 ൅ 𝑡 ൅
𝑡ଶ

2!
൅
𝑡ଷ

3!
൅⋯൅ ቆ1 െ 𝑡 ൅

𝑡ଶ

2!
െ
𝑡ଷ

3!
൅⋯ቇ

ൌ 2ቊ1 ൅
𝑡ଶ

2!
൅
𝑡ସ

4!
൅⋯ቋ

ൌ 2 ෍
௡ ൌ ଴

ஶ 𝑡ଶ௡

ሺ2𝑛ሻ!

൑ 2 ෍
௡ ൌ ଴

ஶ ሺ𝑡ଶ/2ሻ
௡

𝑛!
 since ሺ2𝑛ሻ! ൒ 𝑛!2௡

ൌ 2𝑒௧
మ/ଶ

𝐸ሾ𝑒௧௑ሿ ൒ 𝑒௧
మ/ଶ

𝐸ሾ𝑒௧ௌ೙ሿ ൌ ሺ𝐸ሾ𝑒௧௑ሿሻ
௡

൑ 𝑒௡௧
మ/ଶ
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Using the preceding result along with the Chernoff bound gives

The value of  that minimizes the right side of the preceding is the value that

minimizes  and this value is  Supposing that  (so that the

minimizing  is positive) and letting  in the preceding inequality yields

This latter inequality yields, for example,

whereas the exact probability is

The next inequality is one having to do with expectations rather than probabilities.

Before stating it, we need the following definition.

Definition

A twice-differentiable real-valued function  is said to be convex if 

for all  similarly, it is said to be concave if 

Some examples of convex functions are  and  for

 If  is convex, then  is concave, and vice versa.

Proposition 5.3 Jensen’s inequality

If  is a convex function, then

provided that the expectations exist and are finite.

Proof Expanding  in a Taylor’s series expansion about  yields

𝑃ቄ𝑆௡ ൒ 𝑎ቅ ൑ 𝑒െ௧௔𝑒௡௧
మ/ଶ 𝑡 ൐ 0

𝑡

𝑛𝑡ଶ/2 െ 𝑡𝑎, 𝑡 ൌ 𝑎/𝑛. 𝑎 ൐ 0

𝑡 𝑡 ൌ 𝑎/𝑛

𝑃ቄ𝑆௡ ൒ 𝑎ቅ ൑ 𝑒െ௔
మ/ଶ௡ 𝑎 ൐ 0

𝑃൛𝑆ଵ଴ ൒ 6ൟ ൑ 𝑒െଷ଺/ଶ଴ ൎ .1653

𝑃ሼ𝑆ଵ଴ ൒ 6ሽ ൌ 𝑃ሼgambler wins at least 8 of  the ϐirst 10 gamesሽ

ൌ
ቆ

10

8
ቇ ൅ ቆ

10

9
ቇ ൅ ቆ

10

10
ቇ

2ଵ଴ ൌ
56

1024
ൎ .0547

𝑓ሺ𝑥ሻ 𝑓ᇳሺ𝑥ሻ ൒ 0

𝑥; 𝑓ᇳሺ𝑥ሻ ൑ 0.

𝑓ሺ𝑥ሻ ൌ 𝑥ଶ, 𝑓ሺ𝑥ሻ ൌ 𝑒௔௫, 𝑓ሺ𝑥ሻ ൌ െ 𝑥ଵ/௡

𝑥 ൒ 0. 𝑓ሺ𝑥ሻ 𝑔ሺ𝑥ሻ ൌ െ 𝑓ሺ𝑥ሻ

𝑓ሺ𝑥ሻ

𝐸ሾ𝑓ሺ𝑋ሻሿ ൒ 𝑓ሺ𝐸ሾ𝑋ሿሻ

𝑓ሺ𝑥ሻ 𝜇 ൌ 𝐸ሾ𝑋ሿ

𝑓ሺ𝑥ሻ ൌ 𝑓ሺ𝜇ሻ ൅ 𝑓ᇱሺ𝜇ሻሺ𝑥 െ 𝜇ሻ ൅
𝑓ᇳሺ𝜉ሻሺ𝑥 െ 𝜇ሻଶ

2
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where  is some value between  and  Since  we obtain

Hence,

Taking expectations yields

and the inequality is established.

Example 5f

An investor is faced with the following choices: Either she can invest all of her

money in a risky proposition that would lead to a random return  that has mean

 or she can put the money into a risk-free venture that will lead to a return of 

with probability 1. Suppose that her decision will be made on the basis of

maximizing the expected value of  where  is her return and  is her utility

function. By Jensen’s inequality, it follows that if  is a concave function, then

 so the risk-free alternative is preferable, whereas if  is convex,

then  so the risky investment alternative would be preferred.

The following proposition, which implies that the covariance of two increasing

functions of a random variable is nonnegative, is quite useful.

Proposition 5.4

If  and  are increasing functions then

Proof To prove the preceding inequality suppose that  and  are independent

with the same distribution and that  and  are both increasing functions. Then,

because  and  are increasing,  and  will both be

positive when and will both be negative when  Consequently, their

product is positive. That is,

Taking expectations gives

𝜉 𝑥 𝜇. 𝑓ᇳሺ𝜉ሻ ൒ 0,

𝑓ሺ𝑥ሻ ൒ 𝑓ሺ𝜇ሻ ൅ 𝑓ᇱሺ𝜇ሻሺ𝑥 െ 𝜇ሻ

𝑓ሺ𝑋ሻ ൒ 𝑓ሺ𝜇ሻ ൅ 𝑓ᇱሺ𝜇ሻሺ𝑋 െ 𝜇ሻ

𝐸ሾ𝑓ሺ𝑋ሻሿ ൒ 𝑓ሺ𝜇ሻ ൅ 𝑓ᇱሺ𝜇ሻ𝐸ሾ𝑋 െ 𝜇ሿ ൌ 𝑓ሺ𝜇ሻ

𝑋

𝑚, 𝑚

𝑢ሺ𝑅ሻ, 𝑅 𝑢

𝑢

𝐸ሾ𝑢ሺ𝑋ሻሿ ൑ 𝑢ሺ𝑚ሻ, 𝑢

𝐸ሾ𝑢ሺ𝑋ሻሿ ൒ 𝑢ሺ𝑚ሻ,

𝑓 𝑔

𝐸ሾ𝑓ሺ𝑋ሻ𝑔ሺ𝑋ሻሿ ൒ 𝐸ሾ𝑓ሺ𝑋ሻሿ𝐸ሾ𝑔ሺ𝑋ሻሿ

𝑋 𝑌

𝑓 𝑔

𝑓 𝑔 𝑓ሺ𝑋ሻ െ 𝑓ሺ𝑌ሻ 𝑔ሺ𝑋ሻ െ 𝑔ሺ𝑌ሻ

𝑋 ൐ 𝑌 𝑋 ൏ 𝑌.

ሺ𝑓ሺ𝑋ሻ െ 𝑓ሺ𝑌ሻሻሺ𝑔ሺ𝑋ሻ െ 𝑔ሺ𝑌ሻሻ ൒ 0

𝐸ሾሺ𝑓ሺ𝑋ሻ െ 𝑓ሺ𝑌ሻሻሺ𝑔ሺ𝑋ሻ െ 𝑔ሺ𝑌ሻሻሿ ൒ 0
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Multiplying through and taking expectations term by term yields

Now,

Similarly,  and

 Hence, from Equation (5.1)  we obtain that

which proves the result.

Example 5g

Suppose there are  days in a year, and that each person is independently born

on day  with probability  Let  be the event that

persons  and  are born on the same day. In Example 5c  of Chapter 4 ,

we showed that the information that persons  and  have the same birthday

makes it more likely that persons  and  have the same birthday. After proving

this result, we argued that it was intuitive because if “popular days” are the ones

whose probabilities are relatively large, then knowing that  and  share the

same birthday makes it more likely (than when we have no information) that the

birthday of person  is a popular day and that makes it more likely that person 

will have the same birthday as does  To give credence to this intuition, suppose

that the days are renumbered so that  is an increasing function of  That is,

renumber the days so that day  is the day with lowest birthday probability, day 

is the day with second lowest birthday probability, and so on. Letting  be the

birthday of person  then because the higher numbered days are the most

popular our intuitive explanation would lead us to believe that the expected value

of  should increase upon the information that  and  have the same birthday.

That is, it should be that  To verify this, let  be the birthday of

person  and note that

𝐸ሾ𝑓ሺ𝑋ሻ𝑔ሺ𝑋ሻሿ െ 𝐸ሾ𝑓ሺ𝑋ሻ𝑔ሺ𝑌ሻሿ െ 𝐸ሾ𝑓ሺ𝑌ሻ𝑔ሺ𝑋ሻሿ ൅ 𝐸ሾ𝑓ሺ𝑌ሻ𝑔ሺ𝑌ሻሿ ൒ 0

(5.1)

𝐸ሾ𝑓ሺ𝑋ሻ𝑔ሺ𝑌ሻሿ ൌ 𝐸ሾ𝑓ሺ𝑋ሻሿ𝐸ሾ𝑔ሺ𝑌ሻሿ by independence of  𝑋 and 𝑌

ൌ 𝐸ሾ𝑓ሺ𝑋ሻሿ𝐸ሾ𝑔ሺ𝑋ሻሿ because 𝑋 and 𝑌 have the same distribution

𝐸ሾ𝑓ሺ𝑌ሻ𝑔ሺ𝑋ሻሿ ൌ 𝐸ሾ𝑓ሺ𝑌ሻሿ𝐸ሾ𝑔ሺ𝑋ሻሿ ൌ 𝐸ሾ𝑓ሺ𝑋ሻሿ𝐸ሾ𝑔ሺ𝑋ሻሿ,

𝐸ሾ𝑓ሺ𝑌ሻ𝑔ሺ𝑌ሻሿ ൌ 𝐸ሾ𝑓ሺ𝑋ሻ𝑔ሺ𝑋ሻሿ.

2𝐸ሾ𝑓ሺ𝑋ሻ𝑔ሺ𝑋ሻሿ െ 2𝐸ሾ𝑓ሺ𝑋ሻሿ𝐸ሾ𝑔ሺ𝑋ሻሿ ൒ 0

𝑚

𝑟 𝑝௥,𝑟 ൌ 1, . . . ,𝑚, ෍
௥ൌଵ

௠
𝑝௥ ൌ 1. 𝐴௜,௝

𝑖 𝑗

1 2

1 3

1 2

1 3

1.

𝑝௥ 𝑟.

1 2

𝑋

1,

𝑋 1 2

𝐸ሾ𝑋ห𝐴ଵ,ଶሿ ൒ 𝐸ሾ𝑋ሿ. 𝑌

2,
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Hence,

Because  we need show that

But

and thus we must show that

which follows from Proposition 5.4  because both  and 

are increasing functions of 

When  is an increasing and  is a decreasing function, then it is a simple

consequence of Proposition 5.4  that

We leave the verification of the preceding as an exercise.

Our final example of this section deals with a Poisson limit result.

Example 5h A Poisson Limit Result

Consider a sequence of independent trials, with each trial being a success with

probability  If we let  be the number of trials until there have been a total of 

successes, then  is a negative binomial random variable with

𝑃൫𝑋 ൌ 𝑟|𝐴ଵ,ଶ൯ ൌ
𝑃൫𝑋 ൌ 𝑟,𝐴ଵ,ଶ൯

𝑃൫𝐴ଵ,ଶ൯

ൌ
𝑃ሺ𝑋 ൌ 𝑟,𝑌 ൌ 𝑟ሻ
∑௥ 𝑃ሺ𝑋 ൌ 𝑟,𝑌 ൌ 𝑟ሻ

ൌ
𝑝௥
ଶ

∑௥ 𝑝௥
ଶ

𝐸ൣ𝑋|𝐴ଵ,ଶ൧ ൌ ∑
௥
𝑟𝑃൫𝑋 ൌ 𝑟|𝐴ଵ,ଶ൯ ൌ

∑௥ 𝑟𝑝௥
ଶ

∑௥ 𝑝௥
ଶ

𝐸ሾ𝑋ሿ ൌ ∑௥ 𝑟𝑃ሺ𝑋 ൌ 𝑟ሻ ൌ ∑௥ 𝑟𝑝௥,

∑
௥
𝑟𝑝௥

ଶ ൒ ൬∑
௥
𝑟𝑝௥൰൬∑

௥
𝑝௥
ଶ൰

𝐸ሾ𝑋𝑝௑ሿ ൌ ෍
௥

𝑟𝑝௥𝑃ሺ𝑋 ൌ 𝑟ሻ ൌ ෍
௥

𝑟𝑝௥
ଶ, 𝐸ሾ𝑝௑ሿ ൌ ෍

௥

𝑝௥
ଶ, 𝐸ሾ𝑋ሿ ൌ ෍𝑟𝑝௥

𝐸ሾ𝑋𝑝௑ሿ ൒ 𝐸ሾ𝑝௑ሿ𝐸ሾ𝑋ሿ

𝑓ሺ𝑋ሻ ൌ 𝑋 𝑔ሺ𝑋ሻ ൌ 𝑝௑
𝑋.

𝑓ሺ𝑥ሻ 𝑔ሺ𝑥ሻ

𝐸ሾ𝑓ሺ𝑋ሻ𝑔ሺ𝑋ሻሿ ൑ 𝐸ሾ𝑓ሺ𝑋ሻሿ𝐸ሾ𝑔ሺ𝑋ሻሿ

𝑝. 𝑌 𝑟

𝑌
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Thus, when  we have that

Now, when  is large,  Thus, as  becomes larger, the mean of 

grows proportionately with  while the variance converges to  Hence, we might

expect that when  is large  will be close to its mean value of  Now, if we

let  be the number of failures that result in those  trials - that is,  is the

number of failures before there have been a total of  successes - then when  is

large, because  is approximately  it would seem that  would

approximately have the distribution of the number of failures in  independent

trials when each trial is a failure with probability  But by the

Poisson limit of the binomial, such a random variable should approximately be

Poisson with mean  That is, as  we might expect that the

distribution of  converges to that of a Poisson random variable with mean  We

now show that this is indeed true.

Because  if the  success occurs on trial  we see that

When 

Also,

𝐸ሾ𝑌ሿ ൌ
𝑟
𝑝

, Varሺ𝑌ሻ ൌ
𝑟ሺ1 െ 𝑝ሻ

𝑝ଶ

𝑝 ൌ
𝑟

𝑟 ൅ 𝜆
,

𝐸ሾ𝑌ሿ ൌ 𝑟 ൅ 𝜆, Varሺ𝑌ሻ ൌ
ఒሺ௥൅ఒሻ

௥

𝑟 Varሺ𝑌ሻ ൎ 𝜆. 𝑟 𝑌

𝑟, 𝜆.

𝑟 𝑌 𝑟 ൅ 𝜆 .

𝑋 𝑌 𝑋

𝑟 𝑟

𝑌 𝑟 ൅ 𝜆, 𝑋

𝑟 ൅ 𝜆

1 െ 𝑝 ൌ
𝜆

𝜆 ൅ 𝑟
.

ሺ𝑟 ൅ 𝜆ሻ
𝜆

𝜆 ൅ 𝑟
ൌ 𝜆. 𝑟 → ∞,

𝑋 λ.

𝑋 ൌ 𝑘 𝑟௧௛ 𝑟 ൅ 𝑘,

𝑃ሺ𝑋 ൌ 𝑘ሻ ൌ 𝑃ሺ𝑌 ൌ 𝑟 ൅ 𝑘ሻ

ൌ ቆ
𝑟 ൅ 𝑘 െ 1

𝑟 െ 1
ቇ𝑝௥ሺ1 െ 𝑝ሻ௞

𝑝 ൌ
𝑟

𝑟 ൅ 𝜆
,

ቆ
𝑟 ൅ 𝑘 െ 1

𝑟 െ 1
ቇሺ1 െ 𝑝ሻ௞ ൌ ቆ

𝑟 ൅ 𝑘 െ 1

𝑘
ቇሺ

𝜆
𝑟 ൅ 𝜆

ሻ
௞

ൌ
ሺ𝑟 ൅ 𝑘 െ 1ሻሺ𝑟 ൅ 𝑘 െ 2ሻ⋯𝑟

𝑘!
 

𝜆௞

ሺ𝑟 ൅ 𝜆ሻ௞

ൌ
𝜆௞

𝑘!
𝑟 ൅ 𝑘 െ 1
𝑟 ൅ 𝜆

 
𝑟 ൅ 𝑘 െ 2
𝑟 ൅ 𝜆

⋯
𝑟

𝑟 ൅ 𝜆

→
𝜆௞

𝑘!
  as  𝑟 → ∞
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Thus, we see that

In this section, we establish bounds on how closely a sum of independent Bernoulli

random variables is approximated by a Poisson random variable with the same

mean. Suppose that we want to approximate the sum of independent Bernoulli

random variables with respective means  Starting with a sequence

 of independent Poisson random variables, with  having mean  we will

construct a sequence of independent Bernoulli random variables  with

parameters  such that

Letting  and  we will use the preceding inequality to conclude

that

Finally, we will show that the preceding inequality implies that for any set of real

numbers 

Since  is the sum of independent Bernoulli random variables and  is a Poisson

1
𝑝௥

ൌ ሺ
𝑟 ൅ 𝜆
𝑟

ሻ
௥

ൌ ሺ1 ൅
𝜆
𝑟
ሻ
௥

→ 𝑒ఒ  as  𝑟 → ∞

𝑃ሺ𝑋 ൌ 𝑘ሻ → 𝑒െఒ
𝜆௞

𝑘!
  as  𝑟 → ∞

𝑝ଵ,𝑝ଶ, . . . ,𝑝௡.

𝑌ଵ, . . . ,𝑌௡ 𝑌௜ 𝑝௜,

𝑋ଵ, . . . ,𝑋௡
𝑝ଵ, . . . ,𝑝௡

𝑃ሼ𝑋௜ ് 𝑌௜ሽ ൑ 𝑝௜
ଶ  for each 𝑖

𝑋 ൌ ෍
௜ ൌ ଵ

௡

𝑋௜ 𝑌 ൌ ෍
௜ ൌ ଵ

௡

𝑌௜,

𝑃ሼ𝑋 ് 𝑌ሽ ൑ ෍
௜ ൌ ଵ

௡

 𝑝௜
ଶ

𝐴,

||𝑃ሼ𝑋 ∈ 𝐴ሽ െ 𝑃ሼ𝑌 ∈ 𝐴ሽ|| ൑ ෍
௜ ൌ ଵ

௡

 𝑝௜
ଶ

𝑋 𝑌
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random variable, the latter inequality will yield the desired bound.

To show how the task is accomplished, let  be independent Poisson

random variables with respective means  Now let  be independent

random variables that are also independent of the ’s and are such that

This definition implicitly makes use of the inequality

in assuming that 

Next, define the random variables  by

Note that

Now, if  is equal to 0, then so must  equal 0 (by the definition of ). Therefore,

Now let  and  and note that  is the sum of independent

Bernoulli random variables and  is Poisson with the expected value

 Note also that the inequality  implies that  for

some  so

𝑌௜,𝑖 ൌ 1, . . . ,𝑛

𝑝௜. 𝑈ଵ, . . . ,𝑈௡
𝑌௜

𝑈௜ ൌ ቐ
0 with probability ሺ1 െ 𝑝௜ሻ𝑒

௣೔

1 with probability 1 െ ሺ1 െ 𝑝௜ሻ𝑒
௣೔

𝑒െ௣ ൒ 1 െ 𝑝

ሺ1 െ 𝑝௜ሻ𝑒
௣೔ ൑ 1.

𝑋௜,𝑖 ൌ 1, . . . ,𝑛,

𝑋௜ ൌ ቊ
0 if  𝑌௜ ൌ 𝑈௜ ൌ 0

1 otherwise

𝑃ሼ𝑋௜ ൌ 0ሽ ൌ 𝑃ሼ𝑌௜ ൌ 0ሽ𝑃ሼ𝑈௜ ൌ 0ሽ ൌ 𝑒െ௣೔ሺ1 െ 𝑝௜ሻ𝑒
௣೔ ൌ 1 െ 𝑝௜

𝑃ሼ𝑋௜ ൌ 1ሽ ൌ 1 െ 𝑃ሼ𝑋௜ ൌ 0ሽ ൌ 𝑝௜

𝑋௜ 𝑌௜ 𝑋௜

𝑃ሼ𝑋௜ ് 𝑌௜ሽ ൌ 𝑃ሼ𝑋௜ ൌ 1,𝑌௜ ് 1ሽ

ൌ 𝑃ሼ𝑌௜ ൌ 0,𝑋௜ ൌ 1ሽ ൅ 𝑃ሼ𝑌௜ ൐ 1ሽ

ൌ 𝑃ሼ𝑌௜ ൌ 0,𝑈௜ ൌ 1ሽ ൅ 𝑃ሼ𝑌௜ ൐ 1ሽ

ൌ 𝑒െ௣೔ሾ1 െ ሺ1 െ 𝑝௜ሻ𝑒
௣೔ሿ ൅ 1 െ 𝑒െ௣೔ െ 𝑝௜𝑒

െ௣೔

ൌ 𝑝௜ െ 𝑝௜𝑒
െ௣೔

൑ 𝑝௜
ଶ  ሺsince 1 െ 𝑒െ௣ ൑ 𝑝ሻ

𝑋 ൌ ෍
௜ ൌ ଵ

௡

𝑋௜ 𝑌 ൌ ෍
௜ ൌ ଵ

௡

𝑌௜, 𝑋

𝑌

𝐸ሾ𝑌ሿ ൌ 𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

௡

𝑝௜. 𝑋 ് 𝑌 𝑋௜ ് 𝑌௜

𝑖,
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For any event  let  the indicator variable for the event  be defined by

Note that for any set of real numbers 

The preceding inequality follows from the fact that since an indicator variable is either

0 or 1, the left-hand side equals 1 only when  and  But this

would imply that  and  which means that  so the right side would

also equal 1. Upon taking expectations of the preceding inequality, we obtain

By reversing  and  we obtain, in the same manner,

Thus, we can conclude that

Therefore, we have proven that with 

Remark When all the  are equal to  is a binomial random variable. Hence, the

preceding inequality shows that, for any set of nonnegative integers 

𝑃ሼ𝑋 ് 𝑌ሽ ൑ 𝑃ሼ𝑋௜ ് 𝑌௜ for some 𝑖ሽ

൑ ෍
௜ ൌ ଵ

௡

𝑃ሼ𝑋௜ ് 𝑌௜ሽ  ሺBoole's inequalityሻ

൑ ෍
௜ ൌ ଵ

௡

𝑝௜
ଶ

𝐵, 𝐼஻, 𝐵,

𝐼஻ ൌ ቊ
1 if  𝐵 occurs

0 otherwise

𝐴,

𝐼൛௑∈஺ൟ െ 𝐼൛௒∈஺ൟ ൑ 𝐼൛௑ஷ௒ൟ

𝐼൛௑∈஺ൟ ൌ 1 𝐼൛௒∈஺ൟ ൌ 0.

𝑋 ∈ 𝐴 𝑌∈𝐴, 𝑋 ് 𝑌,

𝑃ሼ𝑋 ∈ 𝐴ሽ െ 𝑃ሼ𝑌 ∈ 𝐴ሽ ൑ 𝑃ሼ𝑋 ് 𝑌ሽ

𝑋 𝑌,

𝑃ሼ𝑌 ∈ 𝐴ሽ െ 𝑃ሼ𝑋 ∈ 𝐴ሽ ൑ 𝑃ሼ𝑋 ് 𝑌ሽ

||𝑃ሼ𝑋 ∈ 𝐴ሽ െ 𝑃ሼ𝑌 ∈ 𝐴ሽ || ൑ 𝑃ሼ𝑋 ് 𝑌ሽ

𝜆 ൌ Σ
௜ ൌ ଵ

௡
𝑝௜,

ቮ𝑃ቐ ෍
௜ ൌ ଵ

௡

𝑋௜ ∈ 𝐴ቑ െ ෍
௜ ∈ ஺

𝑒െఒ𝜆௜

𝑖!
ቮ ൑ ෍

௜ ൌ ଵ

௡

𝑝௜
ଶ

𝑝௜ 𝑝, 𝑋

𝐴,
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The Lorenz curve  is a plot of the fraction of the total income of a

population that is earned by the  percent of the population having the lowest

incomes. For instance,  is the fraction of total income earned by the lower half of

income earners. Suppose that the earnings of the members of a population can be

represented by the quantities  where the  are independent and identically

distributed positive continuous random variables with distribution function  Now, let

 be a random variable with distribution  and define  to be that value such that

The quantity  is called the  percentile of the distribution  With  defined by

it follows that  is the fraction of the first  members of the

population that have incomes less than  Upon letting  and applying the

strong law of large numbers to the independent and identically distributed random

variables  the preceding yields that, with probability 

That is, with probability  is the fraction of the population whose income is less

than  The fraction of the total income earned by those earning less than  can be

obtained by noting that the fraction of the total income of the first  members of the

population that is from those earning less that  is  Letting

 yields that

ቮ ෍
௜ ∈ ஺

ቆ
𝑛

𝑖
ቇ𝑝௜ሺ1 െ 𝑝ሻ௡െ௜ െ ෍

௜ ∈ ஺

𝑒െ௡௣ሺ𝑛𝑝ሻ௜

𝑖!
ቮ ൑ 𝑛𝑝ଶ

𝐿ሺ𝑝ሻ, 0 ൏ 𝑝 ൏ 1

100𝑝

𝐿ሺ.5ሻ

𝑋ଵ,𝑋ଶ, . . . 𝑋௜
𝐹.

𝑋 𝐹, 𝜉௣

𝑃ቄ𝑋 ൑ 𝜉௣ቅ ൌ 𝐹ሺ𝜉௣ሻ ൌ 𝑝

𝜉௣ 100𝑝 𝐹. 𝐼ሺ𝑥ሻ

𝐼ሺ𝑥ሻ ൌ ൝
1,   if   𝑥 ൏ 𝜉௣
0,   if   𝑥 ൒ 𝜉௣

𝐼ሺ𝑋ଵሻ ൅ . . . ൅ 𝐼ሺ𝑋௡ሻ
𝑛

𝑛

𝜉௣. 𝑛 → ∞,

𝐼ሺ𝑋௞ሻ, 𝑘 ൒ 1, 1,

lim
௡ → ஶ

𝐼ሺ𝑋ଵሻ ൅ . . . ൅ 𝐼ሺ𝑋௡ሻ
𝑛

ൌ 𝐸ሾ𝐼ሺ𝑋ሻሿ ൌ 𝐹ሺ𝜉௣ሻ ൌ 𝑝

1, 𝑝

𝜉௣ . 𝜉௣
𝑛

𝜉௣
𝑋ଵ𝐼ሺ𝑋ଵሻ ൅ . . . ൅ 𝑋௡𝐼ሺ𝑋௡ሻ

𝑋ଵ ൅ . . . ൅ 𝑋௡
.

𝑛 → ∞,

𝐿ሺ𝑝ሻ ൌ lim
௡ → ஶ

𝑋ଵ𝐼ሺ𝑋ଵሻ ൅ . . . ൅ 𝑋௡𝐼ሺ𝑋௡ሻ
𝑛

𝑋ଵ ൅ . . . ൅ 𝑋௡
𝑛

ൌ
𝐸ሾ𝑋𝐼ሺ𝑋ሻሿ
𝐸ሾ𝑋ሿ

,
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where the final equality was obtained by applying the strong law of large numbers to

both the numerator and denominator of the preceding fraction. Letting  and

noting that

shows that

Example 7a

If  is the distribution function of a uniform random variable on  where

 then

Because  we see that  Because the mean

of a uniform  random variable is  we obtain from Equation

(7.1)  that

When  the preceding gives that  Also, letting  converge to 

gives that

which can be interpreted as saying that  when all members of the

population earn the same amount.

𝜇 ൌ 𝐸ሾ𝑋ሿ,

𝐸ሾ𝑋 𝐼ሺ𝑋ሻሿ ൌ ඲

଴

ஶ

𝑥𝐼ሺ𝑥ሻ𝑓ሺ𝑥ሻ𝑑𝑥 ൌ ඲

଴

క೛

𝑥 𝑓ሺ𝑥ሻ𝑑𝑥

𝐿ሺ𝑝ሻ ൌ
𝐸ሾ𝑋𝐼ሺ𝑋ሻሿ
𝐸ሾ𝑋ሿ

ൌ
1

𝐸ሾ𝑋ሿ
඲

଴

క೛

𝑥𝑓ሺ𝑥ሻ𝑑𝑥

(7.1)

𝐹 ሺ𝑎,𝑏ሻ,

0 ൑ 𝑎 ൏ 𝑏,

𝐹ሺ𝑥ሻ ൌ ඲

௔

௫
1

𝑏 െ 𝑎
𝑑𝑥 ൌ

𝑥 െ 𝑎
𝑏 െ 𝑎

, 𝑎 ൏ 𝑥 ൏ 𝑏

𝑝 ൌ 𝐹ሺ𝜉௣ሻ ൌ
𝜉௣ െ 𝑎

𝑏 െ 𝑎
, 𝜉௣ ൌ 𝑎 ൅ ሺ𝑏 െ 𝑎ሻ𝑝.

ሺ𝑎, 𝑏ሻ ሺ𝑎 ൅ 𝑏ሻ/2,

𝐿ሺ𝑝ሻ ൌ
2

𝑎 ൅ 𝑏
඲

௔

௔൅ሺ௕െ௔ሻ௣
𝑥

𝑏 െ 𝑎
𝑑𝑥

ൌ
ሺ𝑎 ൅ ሺ𝑏 െ 𝑎ሻ𝑝ሻଶ െ 𝑎ଶ

ሺ𝑎 ൅ 𝑏ሻሺ𝑏 െ 𝑎ሻ

ൌ
2𝑝𝑎 ൅ ሺ𝑏 െ 𝑎ሻ𝑝ଶ

𝑎 ൅ 𝑏

𝑎 ൌ 0, 𝐿ሺ𝑝ሻ ൌ 𝑝ଶ. 𝑎 𝑏

lim
௔ → ௕

𝐿ሺ𝑝ሻ ൌ 𝑝

𝐿ሺ𝑝ሻ ൌ 𝑝
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A useful formula for  can be obtained by letting

and then noting that

Conditioning on  gives that

which shows that

Example 7b

If  is the distribution function of an exponential random variable with mean 

then  and so  Because the lack of

memory property of the exponential implies that

 we obtain from Equation (7.2)  that the

fraction of all income that is earned by those earning at least  is

giving that

Example 7c

If  is the distribution function of a Pareto random variable with parameters 

 then  Consequently,  giving that

𝐿ሺ𝑝ሻ

𝐽ሺ𝑥ሻ ൌ 1 െ 𝐼ሺ𝑋ሻ ൌ ൝
0,   if   𝑥 ൏ 𝜉௣
1,   if   𝑥 ൒ 𝜉௣

1 െ 𝐿ሺ𝑝ሻ ൌ
𝐸ሾ𝑋ሿ െ 𝐸ሾ𝑋𝐼ሺ𝑋ሻሿ

𝐸ሾ𝑋ሿ
ൌ
𝐸ሾ𝑋𝐽ሺ𝑋ሻሿ
𝐸ሾ𝑋ሿ

𝐽ሺ𝑋ሻ

𝐸ሾ𝑋𝐽ሺ𝑋ሻሿ ൌ 𝐸ሾ𝑋𝐽ሺ𝑋ሻ||𝐽ሺ𝑋ሻ ൌ 1ሿ𝑃ሺ𝐽ሺ𝑋ሻ ൌ 1ሻ ൅ 𝐸ሾ𝑋𝐽ሺ𝑋ሻ||𝐽ሺ𝑋ሻ ൌ 0ሿ𝑃ሺ𝐽ሺ𝑋ሻ ൌ 0ሻ

ൌ 𝐸ሾ𝑋ቚ𝑋 ൒ 𝜉௣ሿሺ1 െ 𝑝ሻ

1 െ 𝐿ሺ𝑝ሻ ൌ
𝐸ቂ𝑋|𝑋 ൒ 𝜉௣ቃሺ1 െ 𝑝ሻ

𝐸ሾ𝑋ሿ

(7.2)

𝐹 1,

𝑝 ൌ 𝐹ሺ𝜉௣ሻ ൌ 1 െ 𝑒െక೛, 𝜉௣ ൌ െ logሺ1 െ 𝑝ሻ.

𝐸ቂ𝑋|𝑋 ൐ 𝜉௣ቃ ൌ 𝜉௣ ൅ 𝐸ሾ𝑋ሿ ൌ 𝜉௣ ൅ 1,

𝜉௣

1 െ 𝐿ሺ𝑝ሻ ൌ ሺ𝜉௣ ൅ 1ሻሺ1 െ 𝑝ሻ

ൌ ሺ1 െ logሺ1 െ 𝑝ሻሻሺ1 െ 𝑝ሻ

ൌ 1 െ 𝑝 െ ሺ1 െ 𝑝ሻlogሺ1 െ 𝑝ሻ

𝐿ሺ𝑝ሻ ൌ 𝑝 ൅ ሺ1 െ 𝑝ሻlogሺ1 െ 𝑝ሻ

𝐹 𝜆 ൐ 0,

𝑎 ൐ 0, 𝐹ሺ𝑥ሻ ൌ 1 െ
𝑎λ

𝑥λ
, 𝑥 ൒ 𝑎. 𝑝 ൌ 𝐹ሺ𝜉௣ሻ ൌ 1 െ

𝑎λ

𝜉௣
λ ,
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When  it was shown in Section 5.6.5  that  In addition, it

was shown in Example 5f  of Chapter 6  that if  is Pareto with parameters

 then the conditional distribution of  given that it exceeds  is Pareto

with parameters  Consequently, when  and thus

Equation (7.2)  yields that

or

We now prove some properties of the function 

Proposition 7.1

 is an increasing, convex function of  such that 

Proof That  increases in  follows from its definition. To prove convexity we

must show that  increases in  for  or equivalently, that

the proportion of the total income earned by those with incomes between  and

 increases in  But this follows because, for all  the same proportion of the

population – namely,  percent - earns between  and  and 

increases in  (For instance,  percent of the population have incomes in the

 to  percentile and  percent of the population have incomes in the  to 

percentile, and as the incomes earned by the  percent of the population in the

 to  percentile are all less than those earned by the  percent of the

population in the  to  percentile, it follows that the proportion of the

population income of those in the  to  percentile is less than the proportion

of those in the  to  percentile.) To establish that  we see from

Equation (7.1)  that we need to show that  But this follows

because  equal to  if  and to  if  is a decreasing and 

is an increasing function of  which from Proposition 5.4  implies that

Because  with  when all members of the population have the same

income, the area of the “hump”, equal to the region between the straight line and the

𝜉௣
λ ൌ

𝑎ఒ

1 െ 𝑝
 or 𝜉௣ ൌ 𝑎ሺ1 െ 𝑝ሻെଵ/λ

𝜆 ൐ 1, 𝐸ሾ𝑋ሿ ൌ
𝜆𝑎
𝜆 െ 1

.

𝑋

λ, 𝑎 𝑋 𝑥଴, 𝑥଴ ൐ 𝑎,

𝜆, 𝑥଴. 𝜆 ൐ 1, 𝐸ቂ𝑋|𝑋 ൐ 𝜉௣ቃ ൌ
𝜆𝜉௣
𝜆 െ 1

,

1 െ 𝐿ሺ𝑝ሻ ൌ
𝐸ቂ𝑋|𝑋 ൐ 𝜉௣ቃሺ1 െ 𝑝ሻ

𝐸ሾ𝑋ሿ
ൌ
𝜉௣ሺ1 െ 𝑝ሻ

𝑎
ൌ ሺ1 െ 𝑝ሻଵെଵ/ఒ

𝐿ሺ𝑝ሻ ൌ 1 െ ሺ1 െ 𝑝ሻ
ఒെଵ
ఒ

𝐿ሺ𝑝ሻ.

𝐿ሺ𝑝ሻ 𝑝,  𝐿ሺ𝑝ሻ ൑ 𝑝.

𝐿ሺ𝑝ሻ 𝑝

𝐿ሺ𝑝 ൅ 𝑎ሻ െ 𝐿ሺ𝑝ሻ 𝑝 𝑝 ൑ 1 െ 𝑎;

𝜉௣
𝜉௣൅௔ 𝑝. 𝑝,

100𝑎 𝜉௣ 𝜉௣൅௔, 𝜉௣
𝑝. 10

40 50 10 45 55

5

40 45 5

50 55

40 50

45 55 𝐿ሺ𝑝ሻ ൑ 𝑝,

𝐸ሾ𝑋𝐼ሺ𝑋ሻሿ ൑ 𝐸ሾ𝑋ሿ𝑝.

𝐼ሺ𝑥ሻ, 1 𝑥 ൏ 𝜉௣ 0 𝑥 ൒ 𝜉௣, ℎሺ𝑥ሻ ൌ 𝑥

𝑥,
𝐸ሾ𝑋𝐼ሺ𝑋ሻሿ ൑ 𝐸ሾ𝑋ሿ𝐸ሾ𝐼ሺ𝑋ሻሿ ൌ 𝐸ሾ𝑋ሿ𝑝.

𝐿ሺ𝑝ሻ ൑ 𝑝 𝐿ሺ𝑝ሻ ൌ 𝑝
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Lorenz curve (the shaded region in Figure 8.3 ), is an indication of the inequality

of incomes.

Figure 8.3 The Hump of the Lorenz Curve

A measure of the inequality of the incomes is given by the Gini index, which is the

ratio of the area of the hump divided by the area under the straight line 

Because the area of a triangle is one half its base times its height, it follows that the

Gini index, call it  is given by

Example 7d

Find the Gini index when  the distribution of earnings for an individual in the

population, is uniform on (0, 1), and when  is exponential with rate 

Solution

When  is the uniform  distribution, then as shown in Example 7a ,

 giving that  When  is exponential, then from

Example 7b

𝐿ሺ𝑝ሻ ൌ 𝑝.

𝐺,

𝐺 ൌ
1/2 െ ଴׬

ଵ
 𝐿ሺ𝑝ሻ𝑑𝑝

1/2
ൌ 1 െ 2඲

଴

ଵ

𝐿ሺ𝑝ሻ𝑑𝑝

𝐹,

𝐹 𝜆.

𝐹 ሺ0,𝑏ሻ

𝐿ሺ𝑝ሻ ൌ 𝑝ଶ, 𝐺 ൌ 1 െ 2/3 ൌ 1/3. 𝐹
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Integrating by parts with  shows that

where L’hopital’s rule was used to obtain that  Hence,

 giving that  Because larger values of  indicate more

inequality, we see that the inequality is larger when the distribution is exponential

than when it is uniform.

Two useful probability bounds are provided by the Markov and Chebyshev

inequalities. The Markov inequality is concerned with nonnegative random variables

and says that for  of that type,

for every positive value  The Chebyshev inequality, which is a simple consequence

of the Markov inequality, states that if  has mean  and variance  then, for every

positive 

The two most important theoretical results in probability are the central limit theorem

and the strong law of large numbers. Both are concerned with a sequence of

independent and identically distributed random variables. The central limit theorem

says that if the random variables have a finite mean  and a finite variance  then

the distribution of the sum of the first  of them is, for large  approximately that of a

normal random variable with mean  and variance  That is, if  is the

sequence, then the central limit theorem states that for every real number 

඲

଴

ଵ

𝐿ሺ𝑝ሻ𝑑𝑝 ൌ ඲

଴

ଵ

ሺ𝑝 ൅ ሺ1 െ 𝑝ሻlogሺ1 െ 𝑝ሻሻ𝑑𝑝

ൌ
1
2
൅඲

଴

ଵ

𝑥 logሺ𝑥ሻ𝑑𝑥

𝑢 ൌ log 𝑥, 𝑑𝑣 ൌ 𝑥𝑑𝑥

඲

଴

ଵ

𝑥 logሺ𝑥ሻ𝑑𝑥 ൌ െ඲

଴

ଵ
𝑥
2
𝑑𝑥 ൌ െ 1/4

lim௫→଴ 𝑥ଶ logሺ𝑥ሻ ൌ 0.

඲

଴

ଵ

𝐿ሺ𝑝ሻ 𝑑𝑝 ൌ 1/4, 𝐺 ൌ 1/2. 𝐺

𝑋

𝑃ሼ𝑋 ൒ 𝑎ሽ ൑
𝐸ሾ𝑋ሿ
𝑎

𝑎.

𝑋 𝜇 𝜎ଶ,

𝑘,

𝑃ሼ|𝑋 െ 𝜇| ൒ 𝑘𝜎ሽ ൑
1

𝑘ଶ

𝜇 𝜎ଶ,

𝑛 𝑛,

𝑛𝜇 𝑛𝜎ଶ. 𝑋௜, 𝑖 ൒ 1,

𝑎,
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The strong law of large numbers requires only that the random variables in the

sequence have a finite mean  It states that with probability 1, the average of the

first  of them will converge to  as  goes to infinity. This implies that if  is any

specified event of an experiment for which independent replications are performed,

then the limiting proportion of experiments whose outcomes are in  will, with

probability 1, equal  Therefore, if we accept the interpretation that “with

probability 1ʹ’ means “with certainty,” we obtain the theoretical justification for the

long-run relative frequency interpretation of probabilities.

lim
௡ → ஶ

𝑃ቊ
𝑋ଵ ൅⋯ ൅ 𝑋௡ െ 𝑛𝜇

𝜎 𝑛√
൑ 𝑎ቋ ൌ

1

2𝜋√
඲
െஶ

௔

𝑒െ௫
మ/ଶ𝑑𝑥

𝜇.

𝑛 𝜇 𝑛 𝐴

𝐴

𝑃ሺ𝐴ሻ.

8.1. Suppose that  is a random variable with mean and variance

both equal to 20. What can be said about 

8.2. From past experience, a professor knows that the test score of a

student taking her final examination is a random variable with mean

75.

a. Give an upper bound for the probability that a student’s test

score will exceed 85.

b. Suppose, in addition, that the professor knows that the

variance of a student’s test score is equal to 25. What can be

said about the probability that a student will score between 65

and 85?

c. How many students would have to take the examination to

ensure with probability at least .9 that the class average would

be within 5 of 75? Do not use the central limit theorem.

8.3. Use the central limit theorem to solve part (c) of Problem 8.2.

8.4. Let  be independent Poisson random variables with

mean 1.

a. Use the Markov inequality to obtain a bound on

b. Use the central limit theorem to approximate

𝑋

𝑃ሼ0 ൏ 𝑋 ൏ 40ሽ?

𝑋ଵ, . . . ,𝑋ଶ଴

𝑃ቐ෍
ଵ

ଶ଴

𝑋௜ ൐ 15ቑ
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8.5. Fifty numbers are rounded off to the nearest integer and then

summed. If the individual round-off errors are uniformly distributed

over  approximate the probability that the resultant sum

differs from the exact sum by more than 3.

8.6. A die is continually rolled until the total sum of all rolls exceeds

300. Approximate the probability that at least 80 rolls are necessary.

8.7. A person has 100 light bulbs whose lifetimes are independent

exponentials with mean 5 hours. If the bulbs are used one at a time,

with a failed bulb being replaced immediately by a new one,

approximate the probability that there is still a working bulb after 525

hours.

8.8. In Problem 8.7 , suppose that it takes a random time,

uniformly distributed over (0, .5), to replace a failed bulb.

Approximate the probability that all bulbs have failed by time 550.

8.9. If  is a gamma random variable with parameters (  1),

approximately how large must  be so that

8.10. Civil engineers believe that  the amount of weight (in units of

1000 pounds) that a certain span of a bridge can withstand without

structural damage resulting, is normally distributed with mean 400

and standard deviation 40. Suppose that the weight (again, in units

of 1000 pounds) of a car is a random variable with mean 3 and

standard deviation .3. Approximately how many cars would have to

be on the bridge span for the probability of structural damage to

exceed .1?

8.11. Many people believe that the daily change of price of a

company’s stock on the stock market is a random variable with mean

0 and variance  That is, if  represents the price of the stock on

the th day, then

where  are independent and identically distributed random

variables with mean 0 and variance  Suppose that the stock’s

price today is 100. If  what can you say about the probability

that the stock’s price will exceed 105 after 10 days?

8.12. We have 100 components that we will put in use in a sequential

𝑃ቐ෍
ଵ

ଶ଴

𝑋௜ ൐ 15ቑ.

ሺ െ .5,.5ሻ,

𝑋 𝑛,

𝑛

𝑃ቊ
|
||
|

𝑋
𝑛
െ 1

|
||
|
൐ .01ቋ ൏ .01?

𝑊,

𝜎ଶ. 𝑌௡
𝑛

𝑌௡ ൌ 𝑌௡െଵ ൅ 𝑋௡ 𝑛 ൒ 1

𝑋ଵ,𝑋ଶ, . . .

𝜎ଶ.

𝜎ଶ ൌ 1,
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fashion. That is, component 1 is initially put in use, and upon failure,

it is replaced by component 2, which is itself replaced upon failure by

component 3, and so on. If the lifetime of component  is

exponentially distributed with mean  estimate

the probability that the total life of all components will exceed 1200.

Now repeat when the life distribution of component  is uniformly

distributed over 

8.13. Student scores on exams given by a certain instructor have

mean 74 and standard deviation 14. This instructor is about to give

two exams, one to a class of size 25 and the other to a class of size

64.

a. Approximate the probability that the average test score in the

class of size 25 exceeds 80.

b. Repeat part (a) for the class of size 64.

c. Approximate the probability that the average test score in the

larger class exceeds that of the other class by more than 2.2

points.

d. Approximate the probability that the average test score in the

smaller class exceeds that of the other class by more than 2.2

points.

8.14. A certain component is critical to the operation of an electrical

system and must be replaced immediately upon failure. If the mean

lifetime of this type of component is 100 hours and its standard

deviation is 30 hours, how many of these components must be in

stock so that the probability that the system is in continual operation

for the next 2000 hours is at least .95?

8.15. An insurance company has 10,000 automobile policyholders.

The expected yearly claim per policyholder is $240, with a standard

deviation of $800. Approximate the probability that the total yearly

claim exceeds $2.7 million.

8.16. A.J. has 20 jobs that she must do in sequence, with the times

required to do each of these jobs being independent random

variables with mean 50 minutes and standard deviation 10 minutes.

M.J. has 20 jobs that he must do in sequence, with the times

required to do each of these jobs being independent random

variables with mean 52 minutes and standard deviation 15 minutes.

a. Find the probability that A.J. finishes in less than 900 minutes.

b. Find the probability that M.J. finishes in less than 900 minutes.

c. Find the probability that A.J. finishes before M.J.

𝑖

10 ൅ 𝑖/10,𝑖 ൌ 1, . . . ,100,

𝑖

ሺ0,20 ൅ 𝑖/5ሻ,𝑖 ൌ 1, . . . ,100.
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8.17. Redo Example 5b  under the assumption that the number of

man–woman pairs is (approximately) normally distributed. Does this

seem like a reasonable supposition?

8.18. Repeat part (a) of Problem 8.2  when it is known that the

variance of a student’s test score is equal to 25.

8.19. A lake contains 4 distinct types of fish. Suppose that each fish

caught is equally likely to be any one of these types. Let  denote the

number of fish that need be caught to obtain at least one of each

type.

a. Give an interval ( ) such that 

b. Using the one-sided Chebyshev inequality, how many fish

need we plan on catching so as to be at least 90 percent

certain of obtaining at least one of each type?

8.20. If  is a nonnegative random variable with mean 25, what can

be said about
a. 
b. 

c. [log ]?
d. 

8.21. Let  be a nonnegative random variable. Prove that

8.22. Would the results of Example 5f  change if the investor were

allowed to divide her money and invest the fraction  in

the risky proposition and invest the remainder in the risk-free

venture? Her return for such a split investment would be

8.23. Let  be a Poisson random variable with mean 20.

a. Use the Markov inequality to obtain an upper bound on

b. Use the one-sided Chebyshev inequality to obtain an upper

bound on 

c. Use the Chernoff bound to obtain an upper bound on 

d. Approximate  by making use of the central limit theorem.

e. Determine  by running an appropriate program.

8.24. If  is a Poisson random variable with mean 100, then

 is approximately

a. .02,

𝑌

𝑎, 𝑏 𝑃ሼ𝑎 ൑ 𝑌 ൑ 𝑏ሽ ൒ .90.

𝑋

𝐸ሾ𝑋ଷሿ?
𝐸ሾ 𝑋√ ሿ?

𝐸 𝑋
𝐸ሾ𝑒െ௑ሿ?

𝑋

𝐸ሾ𝑋ሿ ൑ ሺ𝐸ሾ𝑋ଶሿሻ
ଵ/ଶ

൑ ሺ𝐸ሾ𝑋ଷሿሻ
ଵ/ଷ

൑ ⋯

𝛼,0 ൏ 𝛼 ൏ 1,

𝑅 ൌ 𝛼𝑋 ൅ ሺ1 െ 𝛼ሻ𝑚.

𝑋

𝑝 ൌ 𝑃ሼ𝑋 ൒ 26ሽ

𝑝.

𝑝.

𝑝

𝑝

𝑋

𝑃ሼ𝑋 ൐ 120ሽ
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b. .5 or

c. .3?

8.25. Suppose that the distribution of earnings of members of a

population is Pareto with parameters  where

a. Show that the top  percent of earners earn  percent of the

total earnings.

b. Show that the top  percent of the top  percent of earners

earn  percent of the earnings of the top  percent of

earners. (That is, show that the top  percent of all earners

earn  percent of the total earnings of the top  percent of

all earners.)

8.26. If  is an increasing and  is a decreasing function, show

that 

8.27. If  is the Lorenz curve associated with the random variable

 show that 

8.28. Suppose that  is the Lorenz curve associated with the

random variable  and that 

a. Find the Lorenz curve associated with the random variable 

b. Show that  the Lorenz curve associated with the random

variable  is

c. Verify that the answer to part (b) is in accordance with the

formulas given in Example 7a  in the case that  is uniform

over the interval  and 

λ, 𝑎 ൐ 0,

𝜆 ൌ
logሺ5ሻ
logሺ4ሻ

ൎ 1.161.

20 80

20 20

80 20

4

80 20

𝑓ሺ𝑥ሻ 𝑔ሺ𝑥ሻ

𝐸ሾ𝑓ሺ𝑋ሻ𝑔ሺ𝑋ሻሿ ൑ 𝐸ሾ𝑓ሺ𝑋ሻሿ𝐸ሾ𝑔ሺ𝑋ሻሿ.

𝐿ሺ𝑝ሻ

𝑋, 𝐿ሺ𝑝ሻ ൌ
𝐸ቂ𝑋|𝑋 ൏ 𝜉௣ቃ𝑝

𝐸ሾ𝑋ሿ
.

𝐿ሺ𝑝ሻ

𝑋 𝑐 ൐ 0.

𝑐𝑋.

𝐿௖ሺ𝑝ሻ,

𝑋 ൅ 𝑐,

𝐿௖ሺ𝑝ሻ ൌ
𝐿ሺ𝑝ሻ𝐸ሾ𝑋ሿ ൅ 𝑝𝑐
𝐸ሾ𝑋ሿ ൅ 𝑐

𝑋

ሺ0, 𝑏 െ 𝑎ሻ 𝑐 ൌ 𝑎.

8.1. If  has variance  then  the positive square root of the variance, is

called the standard deviation. If  has mean  and standard deviation  show

that

𝑋 𝜎ଶ, 𝜎,

𝑋 𝜇 𝜎,

𝑃ሼ|𝑋 െ 𝜇| ൒ 𝑘𝜎ሽ ൑
1

𝑘ଶ
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8.2. If  has mean  and standard deviation  the ratio  is called the

measurement signal-to-noise ratio of  The idea is that  can be expressed

as  with  representing the signal and  the noise. If we

define  as the relative deviation of  from its signal (or mean)

 show that for 

8.3. Compute the measurement signal-to-noise ratio–that is,  where

 and –of the following random variables:

a. Poisson with mean 

b. binomial with parameters  and 

c. geometric with mean 1/

d. uniform over 

e. exponential with mean 

f. normal with parameters 

8.4. Let  be a sequence of random variables and  a constant such

that for each  as  Show that for any bounded

continuous function 

8.5. Let  be a continuous function defined for  Consider the

functions

(called Bernstein polynomials) and prove that

Hint: Let  be independent Bernoulli random variables with mean 

Show that

and then use Theoretical Exercise 8.4 .

Since it can be shown that the convergence of  to  is uniform in 

the preceding reasoning provides a probabilistic proof of the famous

Weierstrass theorem of analysis, which states that any continuous function on

a closed interval can be approximated arbitrarily closely by a polynomial.

8.6.

𝑋 𝜇 𝜎, 𝑟 ≡ |𝜇|/𝜎

𝑋. 𝑋

𝑋 ൌ 𝜇 ൅ ሺ𝑋 െ 𝜇ሻ, 𝜇 𝑋 െ 𝜇
||ሺ𝑋 െ 𝜇ሻ/𝜇 || ≡ 𝐷 𝑋

𝜇, 𝛼 ൐ 0,

𝑃ሼ𝐷 ൑ 𝛼ሽ ൒ 1 െ
1

𝑟ଶ𝛼ଶ

|𝜇 | /𝜎,

𝜇 ൌ 𝐸ሾ𝑋ሿ 𝜎ଶ ൌ Varሺ𝑋ሻ

𝜆;

𝑛 𝑝;

𝑝;

ሺ𝑎, 𝑏ሻ;

1/𝜆;

𝜇, 𝜎ଶ.

𝑍௡, 𝑛 ൒ 1, 𝑐

𝜀 ൐ 0, 𝑃ሼ ||𝑍௡ െ 𝑐 || ൐ 𝜀ሽ → 0 𝑛 → ∞.

𝑔,
𝐸ሾ𝑔ሺ𝑍௡ሻሿ → 𝑔ሺ𝑐ሻ 𝑎𝑠 𝑛 → ∞

𝑓ሺ𝑥ሻ 0 ൑ 𝑥 ൑ 1.

𝐵௡ሺ𝑥ሻ ൌ ෍
௞ ൌ ଴

௡

𝑓ቆ
𝑘
𝑛
ቇቆ
𝑛

𝑘
ቇ𝑥௞ሺ1 െ 𝑥ሻ௡െ௞

lim
௡ → ஶ

𝐵௡ሺ𝑥ሻ ൌ 𝑓ሺ𝑥ሻ

𝑋ଵ,𝑋ଶ, . . . 𝑥.

𝐵௡ሺ𝑥ሻ ൌ 𝐸ቈ𝑓ቆ
𝑋ଵ ൅⋯ ൅ 𝑋௡

𝑛
ቇ቉

𝐵௡ሺ𝑥ሻ 𝑓ሺ𝑥ሻ 𝑥,
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a. Let  be a discrete random variable whose possible values are 

If  is nonincreasing in  prove that

b. Let  be a nonnegative continuous random variable having a

nonincreasing density function. Show that

8.7. Suppose that a fair die is rolled 100 times. Let  be the value obtained

on the th roll. Compute an approximation for

8.8. Explain why a gamma random variable with parameters  has an

approximately normal distribution when  is large.

8.9. Suppose a fair coin is tossed 1000 times. If the first 100 tosses all result

in heads, what proportion of heads would you expect on the final 900 tosses?

Comment on the statement “The strong law of large numbers swamps but

does not compensate.”

8.10. If  is a Poisson random variable with mean  show that for 

8.11.Let  be a binomial random variable with parameters  and  Show that,

for 

a.  occurs when  is such that  where

b. 

8.12.The Chernoff bound on a standard normal random variable  gives

 Show, by considering the density of  that the right

side of the inequality can be reduced by the factor 2. That is, show that

8.13 Show that if  and  is such that  then 

8.14 Let  be a sequence of independent and identically distributed

random variables with distribution  having a finite mean and variance.

𝑋 1,2, . . . .

𝑃ሼ𝑋 ൌ 𝑘ሽ 𝑘 ൌ 1,2, . . . ,

𝑃ሼ𝑋 ൌ 𝑘ሽ ൑ 2
𝐸ሾ𝑋ሿ

𝑘ଶ

𝑋

𝑓ሺ𝑥ሻ ൑
2𝐸ሾ𝑋ሿ
𝑥ଶ

 for all 𝑥 ൐ 0

𝑋௜
𝑖

𝑃ቐෑ
ଵ

ଵ଴଴

𝑋௜ ൑ 𝑎ଵ଴଴ቑ 1 ൏ 𝑎 ൏ 6

ሺ𝑡,𝜆ሻ

𝑡

𝑋 𝜆, 𝑖 ൏ 𝜆,

𝑃ሼ𝑋 ൑ 𝑖ሽ ൑
𝑒െఒሺ𝑒𝜆ሻ௜

𝑖௜

𝑋 𝑛 𝑝.

𝑖 ൐ 𝑛𝑝,

minimum  𝑒െ௧௜𝐸ሾ𝑒௧௑ሿ 𝑡 𝑒௧ ൌ
𝑖𝑞

ሺ𝑛 െ 𝑖ሻ𝑝
,

𝑞 ൌ 1 െ 𝑝.

𝑃ሼ𝑋 ൒ 𝑖ሽ ൑
𝑛௡

𝑖௜ሺ𝑛 െ 𝑖ሻ௡െ௜
𝑝௜ሺ1 െ 𝑝ሻ௡െ௜.

𝑍

𝑃ቄ𝑍 ൐ 𝑎ቅ ൑ 𝑒െ௔
మ/ଶ, 𝑎 ൐ 0. 𝑍,

𝑃ሼ𝑍 ൐ 𝑎ሽ ൑
1
2
𝑒െ௔

మ/ଶ 𝑎 ൐ 0

𝐸ሾ𝑋ሿ ൏ 0 𝜃 ് 0 𝐸ሾ𝑒ఏ௑ሿ ൌ 1, 𝜃 ൐ 0.

𝑋ଵ,𝑋ଶ, . . .

𝐹,
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Whereas the central limit theorem states that the distribution of 

approaches a normal distribution as  goes to infinity, it gives us no

information about how large  need be before the normal becomes a good

approximation. Whereas in most applications, the approximation yields good

results whenever  and oftentimes for much smaller values of  how

large a value of  is needed depends on the distribution of  Give an

example of a distribution  such that the distribution of  is not close to

a normal distribution.

Hint: Think Poisson.

8.15. If  and  are density functions that are positive over the same region,

then the Kullback-Leiber divergence from density  to density  is defined by

where the notation  is used to indicate that  has density function 

a. Show that 

b. Use Jensen’s inequality and the identity  to

show that 

8.16. Let  be the Lorenz curve associated with the distribution function 

with density function  and mean 

a. Show that

Hint: Starting with  make the change of variable

b. Use part (a) to show that  is convex.

c. Show that

d. Verify the preceding formula by using it to compute the Gini index of a

uniform  and an exponential random variable, comparing your

answers with those given in Example 7d .

෍
௜ൌଵ

௡
𝑋௜

𝑛

𝑛

𝑛 ൒ 20, 𝑛,

𝑛 𝑋௜.

𝐹 ෍
௜ൌଵ

ଵ଴଴
𝑋௜

𝑓 𝑔

𝑓 𝑔

𝐾𝐿ሺ𝑓,𝑔ሻ ൌ 𝐸௙ሾlogቆ
𝑓ሺ𝑋ሻ
𝑔ሺ𝑋ሻ

ቇሿ ൌ ඲logቆ
𝑓ሺ𝑥ሻ
𝑔ሺ𝑥ሻ

ቇ𝑓ሺ𝑥ሻ𝑑𝑥

𝐸௙ሾℎሺ𝑋ሻሿ 𝑋 𝑓.

𝐾𝐿ሺ𝑓,𝑓ሻ ൌ 0

logሺ
𝑓ሺ𝑥ሻ
𝑔ሺ𝑥ሻ

ሻ ൌ െ logሺ
𝑔ሺ𝑥ሻ
𝑓ሺ𝑥ሻ

ሻ,

𝐾𝐿ሺ𝑓,𝑔ሻ ൒ 0

𝐿ሺ𝑝ሻ 𝐹,

𝑓 𝜇.

𝐿ሺ𝑝ሻ ൌ
1
𝜇
඲

଴

௣

𝐹െଵሺ𝑦ሻ𝑑𝑦

𝐿ሺ𝑝ሻ ൌ
1
𝜇
඲

଴

క೛

𝑥𝑓ሺ𝑥ሻ𝑑𝑥,

𝑦 ൌ 𝐹ሺ𝑥ሻ.

𝐿ሺ𝑝ሻ

඲

଴

ଵ

𝐿ሺ𝑝ሻ𝑑𝑝 ൌ
1
𝜇
඲

଴

ஶ

ሺ1 െ 𝐹ሺ𝑥ሻሻ𝑥𝑓ሺ𝑥ሻ𝑑𝑥

ሺ0,1ሻ
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8.1. The number of automobiles sold weekly at a certain dealership

is a random variable with expected value 16. Give an upper bound to

the probability that

a. next week’s sales exceed 18;

b. next week’s sales exceed 25.

8.2. Suppose in Problem 8.14  that the variance of the number of

automobiles sold weekly is 9.

a. Give a lower bound to the probability that next week’s sales

are between 10 and 22, inclusively.

b. Give an upper bound to the probability that next week’s sales

exceed 18.

8.3. If

give an upper bound to
a. 

b. 

c. 

8.4. Suppose that the number of units produced daily at factory  is a

random variable with mean 20 and standard deviation 3 and the

number produced at factory  is a random variable with mean 18 and

standard deviation 6. Assuming independence, derive an upper

bound for the probability that more units are produced today at

factory  than at factory 

8.5. The amount of time that a certain type of component functions

before failing is a random variable with probability density function

Once the component fails, it is immediately replaced by another one

of the same type. If we let  denote the lifetime of the th component

to be put in use, then  represents the time of the th

failure. The long-term rate at which failures occur, call it  is defined

by

𝐸ሾ𝑋ሿ ൌ 75 𝐸ሾ𝑌ሿ ൌ 75 Varሺ𝑋ሻ ൌ 10

Varሺ𝑌ሻ ൌ 12 Covሺ𝑋,𝑌ሻ ൌ െ 3

𝑃ሼ ||𝑋 െ 𝑌 || ൐ 15ሽ;
𝑃ሼ𝑋 ൐ 𝑌 ൅ 15ሽ;
𝑃ሼ𝑌 ൐ 𝑋 ൅ 15ሽ.

𝐴

𝐵

𝐵 𝐴.

𝑓ሺ𝑥ሻ ൌ 2𝑥 0 ൏ 𝑥 ൏ 1

𝑋௜ 𝑖

𝑆௡ ൌ ෍
௜ ൌ ଵ

௡

𝑋௜ 𝑛

𝑟,
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Assuming that the random variables  are independent,

determine 

8.6. In Self-Test Problem 8.5 , how many components would one

need to have on hand to be approximately 90 percent certain that the

stock would last at least 35 days?

8.7. The servicing of a machine requires two separate steps, with the

time needed for the first step being an exponential random variable

with mean .2 hour and the time for the second step being an

independent exponential random variable with mean .3 hour. If a

repair person has 20 machines to service, approximate the

probability that all the work can be completed in 8 hours.

8.8. On each bet, a gambler loses 1 with probability .7, loses 2 with

probability .2, or wins 10 with probability .1. Approximate the

probability that the gambler will be losing after his first 100 bets.

8.9. Determine  so that the probability that the repair person in Self-

Test Problem 8.7  finishes the 20 jobs within time  is

approximately equal to .95.

8.10. A tobacco company claims that the amount of nicotine in one of

its cigarettes is a random variable with mean 2.2 mg and standard

deviation .3 mg. However, the average nicotine content of 100

randomly chosen cigarettes was 3.1 mg. Approximate the probability

that the average would have been as high as or higher than 3.1 if the

company’s claims were true.

8.11. Each of the batteries in a collection of 40 batteries is equally

likely to be either a type A or a type B battery. Type A batteries last

for an amount of time that has mean 50 and standard deviation 15;

type B batteries last for an amount of time that has mean 30 and

standard deviation 6.

a. Approximate the probability that the total life of all 40 batteries

exceeds 1700.

b. Suppose it is known that 20 of the batteries are type A and 20

are type B. Now approximate the probability that the total life

of all 40 batteries exceeds 1700.

8.12. A clinic is equally likely to have 2, 3, or 4 doctors volunteer for

service on a given day. No matter how many volunteer doctors there

are on a given day, the numbers of patients seen by these doctors

are independent Poisson random variables with mean 30. Let 

denote the number of patients seen in the clinic on a given day.

𝑟 ൌ lim
௡ → ஶ

𝑛
𝑆௡

𝑋௜, 𝑖 ൒ 1,

𝑟.

𝑡

𝑡

𝑋
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9.1 The Poisson Process

9.2 Markov Chains

9.3 Surprise, Uncertainty, and Entropy

a. Find [ ].

b. Find Var

c. Use a table of the standard normal probability distribution to

approximate 

8.13. The strong law of large numbers states that with probability 

the successive arithmetic averages of a sequence of independent

and identically distributed random variables converge to their

common mean  What do the successive geometric averages

converge to? That is, what is

8.14. Each new book donated to a library must be processed.

Suppose that the time it takes to process a book has mean 10

minutes and standard deviation 3 minutes. If a librarian has 40 books

to process,

a. approximate the probability that it will take more than 420

minutes to process all these books;

b. approximate the probability that at least 25 books will be

processed in the first 240 minutes.

What assumptions have you made?

8.15. Prove Chebyshev’s sum inequality, which says that if

 and  then

𝐸 𝑋

ሺ𝑋ሻ.

𝑃ሼ𝑋 ൐ 65ሽ.

1,

𝜇.

lim
௡ → ஶ

ቌ ෑ
௜ ൌ ଵ

௡

𝑋௜ቍ

ଵ/௡

𝑎ଵ ൒ 𝑎ଶ ൒ ⋯ ൒ 𝑎௡ 𝑏ଵ ൒ 𝑏ଶ ൒ ⋯ ൒ 𝑏௡,

𝑛෍
௜ൌଵ

௡
𝑎௜𝑏௜ ൒ ൬෍

௜ൌଵ

௡
𝑎௜൰൬෍

௜ൌଵ

௡
𝑏௜൰.
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9.4 Coding Theory and Entropy

Before we define a Poisson process, let us recall that a function  is said to be  if

That is, is if, for small values of is small even in relation to  Suppose

now that “events” are occurring at random points at time, and let denote the

number of events that occur in the time interval  The collection of random

variables is said to be a Poisson process having rate  if

i. 

ii. The numbers of events that occur in disjoint time intervals are independent.

iii. The distribution of the number of events that occur in a given interval depends

only on the length of that interval and not on its location.

iv. 

v. 

Thus, condition (i) states that the process begins at time 0. Condition (ii), the

independent increment assumption, states, for instance, that the number of events

that occur by time  [that is, ] is independent of the number of events that occur

between  and  [that is, ]. Condition (iii), the stationary increment

assumption, states that the probability distribution of  is the same for

all values of 

In Chapter 4 , we presented an argument, based on the Poisson distribution being

a limiting version of the binomial distribution, that the foregoing conditions imply that

 has a Poisson distribution with mean  We will now obtain this result by a

different method.

Lemma 1.1

For a Poisson process with rate 

Proof Let  We derive a differential equation for  in the

following manner:

𝑓 𝑜ሺℎሻ

lim
௛ → ଴

𝑓ሺℎሻ
ℎ

ൌ 0.

𝑓 𝑜ሺℎሻ ℎ, 𝑓ሺℎሻ ℎ.

𝑁ሺ𝑡ሻ

ሾ0, 𝑡 ሿ.

ሼ𝑁ሺ𝑡ሻ, 𝑡 ൒ 0ሽ λ, λ ൐ 0,

𝑁ሺ0ሻ ൌ 0.

𝑃ሼ𝑁ሺℎሻ ൌ 1ሽ ൌ λℎ ൅ 𝑜ሺℎሻ.
𝑃ሼ𝑁ሺℎሻ ൒ 2ሽ ൌ 𝑜ሺℎሻ.

𝑡 𝑁ሺ𝑡ሻ

𝑡 𝑡 ൅ 𝑠 𝑁ሺ𝑡 ൅ 𝑠ሻ െ 𝑁ሺ𝑡ሻ

𝑁ሺ𝑡 ൅ 𝑠ሻ െ 𝑁ሺ𝑡ሻ

𝑡.

𝑁ሺ𝑡ሻ λ𝑡.

𝜆,

𝑃൛𝑁ሺ𝑡ሻ ൌ 0ൟ ൌ 𝑒െఒ௧

𝑃଴ሺ𝑡ሻ ൌ 𝑃ሼ𝑁ሺ𝑡ሻ ൌ 0ሽ . 𝑃଴ሺ𝑡ሻ
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where the final two equations follow from condition (ii) plus the fact that

conditions (iv) and (v) imply that  Hence,

Now, letting  we obtain

or, equivalently,

which implies, by integration, that

or

Since  we arrive at

For a Poisson process, let  denote the time the first event occurs. Further, for

 let  denote the time elapsed between the  and the th event. The

sequence  is called the sequence of interarrival times. For instance, if

 and  then the first event of the Poisson process would have occurred

at time 5 and the second at time 15.

We shall now determine the distribution of the  To do so, we first note that the

event  takes place if and only if no events of the Poisson process occur in

the interval  thus,

𝑃଴ሺ𝑡 ൅ ℎሻ ൌ 𝑃ሼ𝑁ሺ𝑡 ൅ ℎሻ ൌ 0ሽ

ൌ 𝑃ሼ𝑁ሺ𝑡ሻ ൌ 0,𝑁ሺ𝑡 ൅ ℎሻ െ 𝑁ሺ𝑡ሻ ൌ 0ሽ

ൌ 𝑃ሼ𝑁ሺ𝑡ሻ ൌ 0ሽ𝑃ሼ𝑁ሺ𝑡 ൅ ℎሻ െ 𝑁ሺ𝑡ሻ ൌ 0ሽ

ൌ 𝑃଴ሺ𝑡ሻሾ1 െ λℎ ൅ 𝑜ሺℎሻሿ

𝑃ሼ𝑁ሺℎሻ ൌ 0ሽ ൌ 1 െ λℎ ൅ 𝑜ሺℎሻ .

𝑃଴ሺ𝑡 ൅ ℎሻ െ 𝑃଴ሺ𝑡ሻ
ℎ

ൌ െ 𝜆𝑃଴ሺ𝑡ሻ ൅
𝑜ሺℎሻ
ℎ

ℎ → 0,

𝑃ᇱ଴ሺ𝑡ሻ ൌ െ λ𝑃଴ሺ𝑡ሻ

𝑃ᇱ଴ሺ𝑡ሻ
𝑃଴ሺ𝑡ሻ

ൌ െ λ

log𝑃଴ሺ𝑡ሻ ൌ െ 𝜆𝑡 ൅ 𝑐

𝑃଴ሺ𝑡ሻ ൌ 𝐾𝑒െλ௧

𝑃଴ሺ0ሻ ൌ 𝑃ሼ𝑁ሺ0ሻ ൌ 0ሽ ൌ 1,

𝑃଴ሺ𝑡ሻ ൌ 𝑒െλ௧

𝑇ଵ
𝑛 ൐ 1, 𝑇௡ ሺ𝑛 െ 1ሻ 𝑛

ሼ𝑇௡, 𝑛 ൌ 1, 2, ...ሽ
𝑇ଵ ൌ 5 𝑇ଶ ൌ 10,

𝑇௡ .

ሼ𝑇ଵ ൐ 𝑡ሽ
ሾ0, 𝑡ሿ;

𝑃൛𝑇ଵ ൐ 𝑡ൟ ൌ 𝑃൛𝑁ሺ𝑡ሻ ൌ 0ൟ ൌ 𝑒െλ௧
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Hence,  has an exponential distribution with mean  Now,

However,

where the last two equations followed from the assumptions about independent and

stationary increments. From the preceding, we conclude that  is also an

exponential random variable with mean  and, furthermore, that  is independent

of  Repeating the same argument yields Proposition 1.1 .

Proposition 1.1

 are independent exponential random variables, each with mean 

Another quantity of interest is  the arrival time of the th event, also called the

waiting time until the th event. It is easily seen that

hence, from Proposition 1.1  and the results of Section 5.6.1 , it follows

that  has a gamma distribution with parameters  and  That is, the probability

density of  is given by

We are now ready to prove that  is a Poisson random variable with mean 

Theorem 1.1

For a Poisson process with rate 

Proof Note that the th event of the Poisson process will occur before or at time

 if and only if the number of events that occur by  is at least  That is,

𝑇ଵ 1/λ .

𝑃ሼ𝑇ଶ ൐ 𝑡ሽ ൌ 𝐸ሾ𝑃ሼ𝑇ଶ ൐ 𝑡 ||𝑇ଵሽሿ

𝑃ሼ𝑇ଶ ൐ 𝑡 ||𝑇ଵ ൌ 𝑠ሽ ൌ 𝑃ሼ0 events in ሺ𝑠, 𝑠 ൅ 𝑡ሿ ||𝑇ଵ ൌ 𝑠ሽ

ൌ 𝑃ሼ0 events in ሺ𝑠, 𝑠 ൅ 𝑡ሿሽ

ൌ 𝑒െλ௧

𝑇ଶ
1/λ 𝑇ଶ

𝑇ଵ .

𝑇ଵ, 𝑇ଶ, ... 1/λ .

𝑆௡, 𝑛

𝑛

𝑆௡ ൌ ෍
௜ ൌ ଵ

௡

𝑇௜ 𝑛 ൒ 1

𝑆௡ 𝑛 λ.

𝑆௡

𝑓ௌ೙ሺ𝑥ሻ ൌ λ𝑒െλ௫
ሺλ𝑥ሻ௡െଵ

ሺ𝑛 െ 1ሻ!
 𝑥 ൒ 0

𝑁ሺ𝑡ሻ λ𝑡 .

λ,

𝑃ሼ𝑁ሺ𝑡ሻ ൌ 𝑛ሽ ൌ
𝑒െλ௧ሺλ𝑡ሻ௡

𝑛!

𝑛

𝑡 𝑡 𝑛.
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so

But the integration-by-parts formula  with  and

 yields

which completes the proof.

Consider a sequence of random variables  and suppose that the set of

possible values of these random variables is  It will be helpful to interpret

 as being the state of some system at time  and, in accordance with this

interpretation, we say that the system is in state  at time  if  The sequence

of random variables is said to form a Markov chain if, each time the system is in state

 there is some fixed probability—call it —that the system will next be in state 

That is, for all 

The values  are called the transition probabilities of the

Markov chain, and they satisfy

(Why?) It is convenient to arrange the transition probabilities  in a square array as

𝑁ሺ𝑡ሻ ൒ 𝑛 ⇔ 𝑆௡ ൑ 𝑡

𝑃ሼ𝑁ሺ𝑡ሻ ൌ 𝑛ሽ ൌ 𝑃ሼ𝑁ሺ𝑡ሻ ൒ 𝑛ሽ െ 𝑃ሼ𝑁ሺ𝑡ሻ ൒ 𝑛 ൅ 1ሽ

ൌ 𝑃ሼ𝑆௡ ൑ 𝑡ሽ െ 𝑃ሼ𝑆௡൅ଵ ൑ 𝑡ሽ

ൌ

଴

௧

λ𝑒െλ௫
ሺλ௫ሻ೙െభ

ሺ௡െଵሻ!
𝑑𝑥 െ

଴

௧

λ𝑒െλ௫
ሺλ௫ሻ೙

௡ !
𝑑𝑥

඲𝑢 𝑑𝑣 ൌ 𝑢𝑣 െ඲𝑣 𝑑𝑢 𝑢 ൌ 𝑒െλ௫

𝑑𝑣 ൌ λሾሺλ𝑥ሻ௡െଵ/ሺ𝑛 െ 1ሻ!ሿ 𝑑𝑥

඲

଴

௧

λ𝑒െλ௫
ሺλ𝑥ሻ௡െଵ

ሺ𝑛 െ 1ሻ!
𝑑𝑥 ൌ 𝑒െλ௧

ሺλ𝑡ሻ௡

𝑛!
൅඲

଴

௧

λ𝑒െλ௫
ሺλ𝑥ሻ௡

𝑛!
𝑑𝑥

𝑋଴, 𝑋ଵ, ... ,

ሼ0, 1, ... , 𝑀ሽ .

𝑋௡ 𝑛,

𝑖 𝑛 𝑋௡ ൌ 𝑖 .

𝑖, 𝑃௜௝ 𝑗.

𝑖଴, ... , 𝑖௡െଵ, 𝑖, 𝑗,

𝑃൛𝑋௡൅ଵ ൌ 𝑗ห𝑋௡ ൌ 𝑖, 𝑋௡െଵ ൌ 𝑖௡െଵ, ... , 𝑋ଵ ൌ 𝑖ଵ, 𝑋଴ ൌ 𝑖଴ൟ ൌ 𝑃௜௝

𝑃௜௝, 0 ൑ 𝑖 ൑ 𝑀, 0 ൑ 𝑗 ൑ 𝑁,

𝑃௜௝ ൒ 0 ෍
௝ ൌ ଴

ெ

𝑃௜௝ ൌ 1 𝑖 ൌ 0, 1, ... , 𝑀

𝑃௜௝
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follows:

Such an array is called a matrix.

Knowledge of the transition probability matrix and of the distribution of  enables us,

in theory, to compute all probabilities of interest. For instance, the joint probability

mass function of  is given by

and continual repetition of this argument demonstrates that the preceding is equal to

Example 2a

Suppose that whether it rains tomorrow depends on previous weather conditions

only through whether it is raining today. Suppose further that if it is raining today,

then it will rain tomorrow with probability  and if it is not raining today, then it will

rain tomorrow with probability 

If we say that the system is in state 0 when it rains and state 1 when it does not,

then the preceding system is a two-state Markov chain having transition

probability matrix

That is, 

Example 2b

Consider a gambler who either wins 1 unit with probability  or loses 1 unit with

probability  at each play of the game. If we suppose that the gambler will

quit playing when his fortune hits either 0 or  then the gambler’s sequence of

fortunes is a Markov chain having transition probabilities

ቱ

ቱ

𝑃଴଴ 𝑃଴ଵ ⋯ 𝑃଴ெ
𝑃ଵ଴ 𝑃ଵଵ ⋯ 𝑃ଵெ
⋮

𝑃ெ଴ 𝑃ெଵ ⋯ 𝑃ெெ

ቱ

ቱ

𝑋଴

𝑋଴, ... , 𝑋௡

𝑃ሼ𝑋௡ ൌ 𝑖௡, 𝑋௡െଵ ൌ 𝑖௡െଵ, ..., 𝑋ଵ ൌ 𝑖ଵ, 𝑋଴ ൌ 𝑖଴ሽ

ൌ 𝑃ሼ𝑋௡ ൌ 𝑖௡ ||𝑋௡െଵ ൌ 𝑖௡െଵ, ..., 𝑋଴ ൌ 𝑖଴ሽ𝑃ሼ𝑋௡െଵ ൌ 𝑖௡െଵ, ..., 𝑋଴ ൌ 𝑖଴ሽ

ൌ 𝑃௜೙െభ , ௜೙𝑃ሼ𝑋௡െଵ ൌ 𝑖௡െଵ, ..., 𝑋଴ ൌ 𝑖଴ሽ

𝑃௜೙െభ , ௜೙𝑃௜೙െమ , ௜೙െభ⋯𝑃௜భ , ௜మ𝑃௜బ , ௜భ𝑃൛𝑋଴ ൌ 𝑖଴ൟ

𝛼,

𝛽.

ብ
𝛼 1 െ 𝛼

𝛽 1 െ 𝛽
ብ

𝑃଴଴ ൌ 𝛼 ൌ 1 െ 𝑃଴ଵ, 𝑃ଵ଴ ൌ 𝛽 ൌ 1 െ 𝑃ଵଵ .

𝑝

1 െ 𝑝

𝑀,
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Example 2c

The husband-and-wife physicists Paul and Tatyana Ehrenfest considered a

conceptual model for the movement of molecules in which  molecules are

distributed among 2 urns. At each time point, one of the molecules is chosen at

random and is removed from its urn and placed in the other one. If we let 

denote the number of molecules in the first urn immediately after the th

exchange, then  is a Markov chain with transition probabilities

Thus, for a Markov chain,  represents the probability that a system in state  will

enter state  at the next transition. We can also define the two-stage transition

probability  that a system presently in state  will be in state  after two additional

transitions. That is,

The can be computed from the  as follows:

In general, we define the -stage transition probabilities, denoted as  by

Proposition 2.1 , known as the Chapman–Kolmogorov equations, shows how the

𝑃௜, ௜൅ଵ ൌ 𝑝 ൌ 1 െ 𝑃௜, ௜െଵ 𝑖 ൌ 1, ..., 𝑀െ 1

𝑃଴଴ ൌ 𝑃ெெ ൌ 1

𝑀

𝑋௡
𝑛

ሼ𝑋଴, 𝑋ଵ, ...ሽ

𝑃௜, ௜൅ଵ ൌ
𝑀 െ 𝑖
𝑀

 0 ൑ 𝑖 ൑ 𝑀

𝑃௜, ௜െଵ ൌ
𝑖
𝑀
 0 ൑ 𝑖 ൑ 𝑀

𝑃௜௝ ൌ 0 if   𝑗 ൌ 𝑖 or  | 𝑗 െ 𝑖 | ൐ 1

𝑃௜௝ 𝑖

𝑗

𝑃௜௝
ሺଶሻ 𝑖 𝑗

𝑃௜௝
ሺଶሻ ൌ 𝑃ቄ𝑋௠൅ଶ ൌ 𝑗 |

|𝑋௠ ൌ 𝑖ቅ

𝑃௜௝
ሺଶሻ 𝑃௜௝

𝑃௜௝
ሺଶሻ ൌ 𝑃ሼ𝑋ଶ ൌ 𝑗 ||𝑋଴ ൌ 𝑖ሽ

ൌ ෍
௞ ൌ ଴

ெ

𝑃ሼ𝑋ଶ ൌ 𝑗,𝑋ଵ ൌ 𝑘 ||𝑋଴ ൌ 𝑖ሽ

ൌ ෍
௞ ൌ ଴

ெ

𝑃ሼ𝑋ଶ ൌ 𝑗 ||𝑋ଵ ൌ 𝑘, 𝑋଴ ൌ 𝑖ሽ𝑃ሼ𝑋ଵ ൌ 𝑘 ||𝑋଴ ൌ 𝑖ሽ

ൌ ෍
௞ ൌ ଴

ெ

𝑃௞௝𝑃௜௞

𝑛 𝑃௜௝
ሺ௡ሻ,

𝑃௜௝
ሺ௡ሻ ൌ 𝑃ሼ𝑋௡൅௠ ൌ 𝑗 |

|𝑋௠ ൌ 𝑖ሽ
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 can be computed.

Proposition 2.1 The Chapman–Kolmogorov Equations

Proof

Example 2d A random walk

An example of a Markov chain having a countably infinite state space is the

random walk, which tracks a particle as it moves along a one-dimensional axis.

Suppose that at each point in time, the particle will move either one step to the

right or one step to the left with respective probabilities  and  That is,

suppose the particle’s path follows a Markov chain with transition probabilities

If the particle is at state  then the probability that it will be at state  after 

transitions is the probability that  of these steps are to the right and

 are to the left. Since each step will be to the

right, independently of the other steps, with probability  it follows that the

preceding is just the binomial probability

where  is taken to equal 0 when  is not a nonnegative integer less than or

equal to  The preceding formula can be rewritten as

𝑃௜௝
ሺ௡ሻ

𝑃௜௝
ሺ௡ሻ ൌ ෍

௞ ൌ ଴

ெ

𝑃௜௞
ሺ௥ሻ𝑃௞௝

ሺ௡െ௥ሻ for all 0 ൏ 𝑟 ൏ 𝑛

𝑃௜௝
ሺ௡ሻ ൌ 𝑃ሼ𝑋௡ ൌ 𝑗 ||𝑋଴ ൌ 𝑖ሽ

ൌ ෍
௞

𝑃ሼ𝑋௡ ൌ 𝑗, 𝑋௥ ൌ 𝑘 ||𝑋଴ ൌ 𝑖ሽ

ൌ ෍
௞

𝑃ሼ𝑋௡ ൌ 𝑗 ||𝑋௥ ൌ 𝑘, 𝑋଴ ൌ 𝑖ሽ𝑃ሼ𝑋௥ ൌ 𝑘 ||𝑋଴ ൌ 𝑖ሽ

ൌ ෍
௞

𝑃௞௝
ሺ௡െ௥ሻ𝑃௜௞

ሺ௥ሻ

𝑝 1 െ 𝑝 .

𝑃௜, ௜൅ଵ ൌ 𝑝 ൌ 1 െ 𝑃௜, ௜െଵ 𝑖 ൌ 0, േ 1, ...

𝑖, 𝑗 𝑛

ሺ𝑛 െ 𝑖 ൅ 𝑗ሻ/2

𝑛 െ ሾሺ𝑛 െ 𝑖 ൅ 𝑗ሻ/2ሿ ൌ ሺ𝑛 ൅ 𝑖 െ 𝑗ሻ/2

𝑝,

𝑃௜௝
௡ ൌ ൭

𝑛

ሺ𝑛 െ 𝑖 ൅ 𝑗ሻ/2
൱𝑝ሺ௡െ௜൅௝ሻ/ଶሺ1 െ 𝑝ሻሺ௡൅௜െ௝ሻ/ଶ

ቆ
𝑛

𝑥
ቇ 𝑥

𝑛.
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Although the  denote conditional probabilities, we can use them to derive

expressions for unconditional probabilities by conditioning on the initial state. For

instance,

For a large number of Markov chains, it turns out that  converges, as  to a

value  that depends only on  That is, for large values of  the probability of being

in state  after  transitions is approximately equal to  no matter what the initial

state was. It can be shown that a sufficient condition for a Markov chain to possess

this property is that for some 

Markov chains that satisfy Equation (2.1)  are said to be ergodic. Since

Proposition 2.1  yields

it follows, by letting  that for ergodic chains,

Furthermore, since  we also obtain, by letting 

𝑃௜, ௜൅ଶ௞
ଶ௡ ൌ ቆ

2𝑛

𝑛 ൅ 𝑘
ቇ𝑝௡൅௞ሺ1 െ 𝑝ሻ௡െ௞ 𝑘 ൌ 0, േ 1, ... , േ 𝑛

𝑃௜, ௜൅ଶ௞൅ଵ
ଶ௡൅ଵ ൌ ቆ

2𝑛 ൅ 1

𝑛 ൅ 𝑘 ൅ 1
ቇ𝑝௡൅௞൅ଵሺ1 െ 𝑝ሻ௡െ௞

𝑘 ൌ 0, േ 1, ... , േ 𝑛, െ ሺ𝑛 ൅ 1ሻ   

𝑃௜௝
ሺ௡ሻ

𝑃ሼ𝑋௡ ൌ 𝑗ሽ ൌ ෍
௜

𝑃ሼ𝑋௡ ൌ 𝑗 ||𝑋଴ ൌ 𝑖ሽ𝑃ሼ𝑋଴ ൌ 𝑖ሽ

ൌ ෍
௜

𝑃௜௝
ሺ௡ሻ𝑃ሼ𝑋଴ ൌ 𝑖ሽ

𝑃௜௝
ሺ௡ሻ 𝑛 → ∞,

𝜋௝ 𝑗. 𝑛,

𝑗 𝑛 𝜋௝,

𝑛 ൐ 0,

𝑃௜௝
ሺ௡ሻ ൐ 0 for all 𝑖, 𝑗 ൌ 0, 1, ... , 𝑀

(2.1)

𝑃௜௝
ሺ௡൅ଵሻ ൌ ෍

௞ ൌ ଴

ெ

𝑃௜௞
ሺ௡ሻ𝑃௞௝

𝑛 → ∞,

𝜋௝ ൌ ෍
௞ ൌ ଴

ெ

𝜋௞𝑃௞௝

(2.2)

1 ൌ ෍
௝ ൌ ଴

ெ

𝑃௜௝
ሺ௡ሻ, 𝑛 → ∞,
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In fact, it can be shown that the  are the unique nonnegative solutions

of Equations (2.2)  and (2.3 ). All this is summed up in Theorem 2.1 , which

we state without proof.

Theorem 2.1

For an ergodic Markov chain,

exists, and the  are the unique nonnegative solutions of

Example 2e

Consider Example 2a , in which we assume that if it rains today, then it will

rain tomorrow with probability  and if it does not rain today, then it will rain

tomorrow with probability  From Theorem 2.1 , it follows that the limiting

probabilities  and  of rain and of no rain, respectively, are given by

which yields

For instance, if  and  then the limiting probability of rain on the th

day is 

The quantity  is also equal to the long-run proportion of time that the Markov chain

෍
௝ ൌ ଴

ெ

𝜋௝ ൌ 1

(2.3)

𝜋௝, 0 ൑ 𝑗 ൑ 𝑀,

𝜋௝ ൌ lim
௡ → ஶ

𝑃௜௝
ሺ௡ሻ

𝜋௝, 0 ൑ 𝑗 ൑ 𝑀,

𝜋௝ ൌ ෍
௞ ൌ ଴

ெ

𝜋௞𝑃௞௝

෍
௝ ൌ ଴

ெ

𝜋௝ ൌ 1

𝛼,

𝛽.

𝜋଴ 𝜋ଵ

𝜋଴ ൌ 𝛼𝜋଴ ൅ 𝛽𝜋ଵ

𝜋ଵ ൌ ሺ1 െ 𝛼ሻ𝜋଴ ൅ ሺ1 െ 𝛽ሻ𝜋ଵ

𝜋଴ ൅ 𝜋ଵ ൌ 1

𝜋଴ ൌ
𝛽

1 ൅ 𝛽 െ 𝛼
 𝜋ଵ ൌ

1 െ 𝛼
1 ൅ 𝛽 െ 𝛼

𝛼 ൌ .6 𝛽 ൌ .3, 𝑛

𝜋଴ ൌ
3
7

.

𝜋௝
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is in state  To see intuitively why this might be so, let  denote the

long-run proportion of time the chain is in state  (It can be proven using the strong

law of large numbers that for an ergodic chain, such long-run proportions exist and

are constants.) Now, since the proportion of time the chain is in state  is  and

since, when in state  the chain goes to state  with probability  it follows that the

proportion of time the Markov chain is entering state  from state  is equal to 

Summing over all  shows that  the proportion of time the Markov chain is

entering state  satisfies

Since clearly it is also true that

it thus follows, since by Theorem 2.1  the  are the unique solution of

the preceding, that  The long-run proportion interpretation of 

is generally valid even when the chain is not ergodic.

Example 2f

Suppose in Example 2c  that we are interested in the proportion of time that

there are  molecules in urn 1,  By Theorem 2.1 , these quantities

will be the unique solution of

However, as it is easily checked that

satisfy the preceding equations, it follows that these are the long-run proportions

𝑗, 𝑗 ൌ 0, ... , 𝑀 . 𝑃௝
𝑗.

𝑘 𝑃௞,

𝑘, 𝑗 𝑃௞௝,

𝑗 𝑘 𝑃௞𝑃௞௝ .

𝑘 𝑃௝,

𝑗,

𝑃௝ ൌ ෍
௞

𝑃௞𝑃௞௝

෍
௝

𝑃௝ ൌ 1

𝜋௝, 𝑗 ൌ 0, ... , 𝑀

𝑃௝ ൌ 𝜋௝, 𝑗 ൌ 0, ... , 𝑀 . 𝜋௝

𝑗 𝑗 ൌ 0, ... , 𝑀 .

𝜋଴ ൌ 𝜋ଵ ൈ
1
𝑀

𝜋௝ ൌ 𝜋௝െଵ ൈ
𝑀 െ 𝑗 ൅ 1

𝑀
൅ 𝜋௝൅ଵ ൈ

𝑗 ൅ 1
𝑀

 𝑗 ൌ 1, ... , 𝑀

𝜋ெ ൌ 𝜋ெെଵ ൈ
1
𝑀

෍
௝ ൌ ଴

ெ

𝜋௝ ൌ 1

𝜋௝ ൌ ቆ
𝑀

𝑗
ቇቆ

1
2
ቇ
ெ

 𝑗 ൌ 0, ... , 𝑀
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of time that the Markov chain is in each of the states. (See Problem 9.11  for

an explanation of how one might have guessed at the foregoing solution.)

Consider an event E that can occur when an experiment is performed. How

surprised would we be to hear that  does, in fact, occur? It seems reasonable to

suppose that the amount of surprise engendered by the information that  has

occurred should depend on the probability of  For instance, if the experiment

consists of rolling a pair of dice, then we would not be too surprised to hear that 

has occurred when  represents the event that the sum of the dice is even (and thus

has probability ), whereas we would certainly be more surprised to hear that  has

occurred when  is the event that the sum of the dice is 12 (and thus has probability

).

In this section, we attempt to quantify the concept of surprise. To begin, let us agree

to suppose that the surprise one feels upon learning that an event  has occurred

depends only on the probability of  and let us denote by  the surprise evoked

by the occurrence of an event having probability  We determine the functional form

of  by first agreeing on a set of reasonable conditions that  should satisfy

and then proving that these axioms require that  have a specified form. We

assume throughout that  is defined for all  but is not defined for events

having 

Our first condition is just a statement of the intuitive fact that there is no surprise in

hearing that an event that is sure to occur has indeed occurred.

Axiom 1

Our second condition states that the more unlikely an event is to occur, the greater is

the surprise evoked by its occurrence.

Axiom 2

 is a strictly decreasing function of  that is, if  then 

The third condition is a mathematical statement of the fact that we would intuitively

expect a small change in  to correspond to a small change in 

Axiom 3

𝐸

𝐸

𝐸.

𝐸

𝐸
1
2

𝐸

𝐸
1

36

𝐸

𝐸, 𝑆ሺ𝑝ሻ

𝑝.

𝑆ሺ𝑝ሻ 𝑆ሺ𝑝ሻ

𝑆ሺ𝑝ሻ

𝑆ሺ𝑝ሻ 0 ൏ 𝑝 ൑ 1

𝑝 ൌ 0 .

𝑆ሺ1ሻ ൌ 0

𝑆ሺ𝑝ሻ 𝑝; 𝑝 ൏ 𝑞, 𝑆ሺ𝑝ሻ ൐ 𝑆ሺ𝑞ሻ .

𝑝 𝑆ሺ𝑝ሻ .
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 is a continuous function of 

To motivate the final condition, consider two independent events  and  having

respective probabilities  and  Since  the surprise

evoked by the information that both  and  have occurred is (pq). Now, suppose

that we are told first that  has occurred and then, afterward, that  has also

occurred. Since  is the surprise evoked by the occurrence of  it follows that

 represents the additional surprise evoked when we are informed that 

has also occurred. However, because  is independent of  the knowledge that 

occurred does not change the probability of  hence, the additional surprise should

just be  This reasoning suggests the final condition.

Axiom 4

We are now ready for Theorem 3.1 , which yields the structure of 

Theorem 3.1

If  satisfies Axioms 1  through 4 , then

where  is an arbitrary positive integer.

Proof It follows from Axiom 4  that

and by induction that

Also, since, for any integral  it follows that

Thus, from Equations (3.1)  and (3.2) , we obtain

𝑆ሺ𝑝ሻ 𝑝.

𝐸 𝐹

𝑃ሺ𝐸ሻ ൌ 𝑝 𝑃ሺ𝐹ሻ ൌ 𝑞 . 𝑃ሺ𝐸𝐹ሻ ൌ 𝑝𝑞,

𝐸 𝐹 𝑆

𝐸 𝐹

𝑆ሺ𝑝ሻ 𝐸,

𝑆ሺ𝑝𝑞ሻ െ 𝑆ሺ𝑝ሻ 𝐹

𝐹 𝐸, 𝐸

𝐹;

𝑆ሺ𝑞ሻ .

𝑆ሺ𝑝𝑞ሻ ൌ 𝑆ሺ𝑝ሻ ൅ 𝑆ሺ𝑞ሻ  0 ൏ 𝑝 ൑ 1, 0 ൏ 𝑞 ൑ 1

𝑆ሺ𝑝ሻ .

𝑆ሺ ⋅ ሻ

𝑆ሺ𝑝ሻ ൌ െ 𝐶 logଶ 𝑝

𝐶

𝑆ሺ𝑝ଶሻ ൌ 𝑆ሺ𝑝ሻ ൅ 𝑆ሺ𝑝ሻ ൌ 2𝑆ሺ𝑝ሻ

𝑆ሺ𝑝௠ሻ ൌ 𝑚𝑆ሺ𝑝ሻ

(3.1)

𝑛, 𝑆ሺ𝑝ሻ ൌ 𝑆ሺ𝑝ଵ/௡⋯𝑝ଵ/௡ሻ ൌ 𝑛 𝑆ሺ𝑝ଵ/௡ሻ,

𝑆ሺ𝑝ଵ/௡ሻ ൌ
1
𝑛
𝑆ሺ𝑝ሻ

(3.2)
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which is equivalent to

whenever  is a positive rational number. But by the continuity of (Axiom 3 ),

it follows that Equation (3.3)  is valid for all nonnegative  (Reason this out.)

Now, for any  let  Then  and from Equation

(3.3) ,

where  by Axioms 2  and 1 .

It is usual to let  equal 1, in which case the surprise is said to be expressed in units

of bits (short for binary digits).

Next, consider a random variable  that must take on one of the values  with

respective probabilities  Since  represents the surprise evoked if 

takes on the value  it follows that the expected amount of surprise we shall

receive upon learning the value of  is given by

For the remainder of this chapter, we write log  for  Also, we

use ln  for 

The quantity  is known in information theory as the entropy of the random

variable  (In case one of the  we take 0 log 0 to equal 0.) It can be shown

(and we leave it as an exercise) that  is maximized when all of the  are equal.

(Is this intuitive?)

𝑆ሺ𝑝௠/௡ሻ ൌ 𝑚𝑆ሺ𝑝ଵ/௡ሻ

ൌ
𝑚
𝑛
𝑆ሺ𝑝ሻ

𝑆ሺ𝑝௫ሻ ൌ 𝑥𝑆ሺ𝑝ሻ

(3.3)

𝑥 𝑆

𝑥.

𝑝, 0 ൏ 𝑝 ൑ 1, 𝑥 ൌ െ logଶ 𝑝 . 𝑝 ൌ ቀ1
2
ቁ
௫
,

𝑆ሺ𝑝ሻ ൌ 𝑆൬ቀ1
2
ቁ
௫
൰ ൌ 𝑥𝑆ቀ1

2
ቁ ൌ െ 𝐶 logଶ 𝑝

𝐶 ൌ 𝑆ቀ1
2
ቁ ൐ 𝑆ሺ1ሻ ൌ 0

𝐶

𝑋 𝑥ଵ, ... , 𝑥௡
𝑝ଵ, ... , 𝑝௡ . െlog𝑝௜ 𝑋

𝑥௜, †

𝑋

𝐻ሺ𝑋ሻ ൌ െ ෍
௜ ൌ ଵ

௡

𝑝௜ log𝑝௜

† 𝑥 logଶ 𝑥 .

𝑥 log௘ 𝑥 .

𝐻ሺ𝑋ሻ

𝑋. 𝑝௜ ൌ 0,

𝐻ሺ𝑋ሻ 𝑝௜
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Since  represents the average amount of surprise one receives upon learning

the value of  it can also be interpreted as representing the amount of uncertainty

that exists as to the value of  In fact, in information theory,  is interpreted as

the average amount of information received when the value of  is observed. Thus,

the average surprise evoked by  the uncertainty of  or the average amount of

information yielded by  all represent the same concept viewed from three slightly

different points of view.

Now consider two random variables  and  that take on the respective values

 and  with joint mass function

It follows that the uncertainty as to the value of the random vector (X, Y), denoted by

 is given by

Suppose now that  is observed to equal  In this situation, the amount of

uncertainty remaining in  is given by

where

Hence, the average amount of uncertainty that will remain in  after  is observed is

given by

where

Proposition 3.1  relates  to  and  It states that the uncertainty

as to the value of  and  is equal to the uncertainty of  plus the average

uncertainty remaining in  when  is to be observed.

𝐻ሺ𝑋ሻ

𝑋,

𝑋. 𝐻ሺ𝑋ሻ

𝑋

𝑋, 𝑋,

𝑋

𝑋 𝑌

𝑥ଵ, ... , 𝑥௡ 𝑦ଵ, ... , 𝑦௠

𝑝ሺ𝑥௜, 𝑦௝ሻ ൌ 𝑃ቄ𝑋 ൌ 𝑥௜, 𝑌 ൌ 𝑦௝ቅ

𝐻ሺ𝑋, 𝑌ሻ,

𝐻ሺ𝑋, 𝑌ሻ ൌ െ෍
௜

෍
௝

𝑝ሺ𝑥௜, 𝑦௝ሻ log 𝑝ሺ𝑥௜, 𝑦௝ሻ

𝑌 𝑦௝ .

𝑋

𝐻௒ൌ௬ೕ
ሺ𝑋ሻ ൌ െ෍

௜

𝑝ሺ𝑥௜ |𝑦௝ሻ log𝑝ሺ𝑥௜ |𝑦௝ሻ

𝑝ሺ𝑥௜ |𝑦௝ሻ ൌ 𝑃ሼ𝑋 ൌ 𝑥௜ |𝑌 ൌ 𝑦௝ሽ

𝑋 𝑌

𝐻௒ሺ𝑋ሻ ൌ ෍
௝

𝐻௒ൌ௬ೕ
ሺ𝑋ሻ𝑝௒ሺ𝑦௝ሻ

𝑝௒ሺ𝑦௝ሻ ൌ 𝑃ቄ𝑌 ൌ 𝑦௝ቅ

𝐻ሺ𝑋, 𝑌ሻ 𝐻ሺ𝑌ሻ 𝐻௒ሺ𝑋ሻ .

𝑋 𝑌 𝑌

𝑋 𝑌
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Proposition 3.1

Proof Using the identity yields

It is a fundamental result in information theory that the amount of uncertainty in a

random variable  will, on the average, decrease when a second random variable 

is observed. Before proving this statement, we need the following lemma, whose

proof is left as an exercise.

Lemma 3.1

with equality only at 

Theorem 3.2

with equality if and only if  and  are independent.

Proof

𝐻ሺ𝑋, 𝑌ሻ ൌ 𝐻ሺ𝑌ሻ ൅ 𝐻௒ሺ𝑋ሻ

𝑝ሺ𝑥௜, 𝑦௝ሻ ൌ 𝑝௒ሺ𝑦௝ሻ𝑝ሺ𝑥௜ |𝑦௝ሻ

𝐻ሺ𝑋, 𝑌ሻ ൌ െ෍
௜

෍
௝

𝑝ሺ𝑥௜, 𝑦௝ሻ log 𝑝ሺ𝑥௜, 𝑦௝ሻ

ൌ െ෍
௜

෍
௝

𝑝௒ሺ𝑦௝ሻ𝑝ሺ𝑥௜|𝑦௝ሻ ሾlog𝑝௒ሺ𝑦௝ሻ ൅ log𝑝ሺ𝑥௜|𝑦௝ሻሿ

ൌ െ෍
௝

𝑝௒ሺ𝑦௝ሻ log 𝑝௒ሺ𝑦௝ሻ෍
௜

𝑝ሺ𝑥௜ |𝑦௝ሻ

      െ ෍
௝

𝑝௒ሺ𝑦௝ሻ෍
௜

𝑝ሺ𝑥௜ |𝑦௝ሻ log 𝑝ሺ𝑥୧ |𝑦୨ሻ

ൌ  𝐻ሺ𝑌ሻ ൅ 𝐻௒ሺ𝑋ሻ

𝑋 𝑌

ln 𝑥 ൑ 𝑥 െ 1 𝑥 ൐ 0

𝑥 ൌ 1 .

𝐻௒ሺ𝑋ሻ ൑ 𝐻ሺ𝑋ሻ

𝑋 𝑌
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Suppose that the value of a discrete random vector  is to be observed at location 

and then transmitted to location  via a communication network that consists of two

signals, 0 and 1. In order to do this, it is first necessary to encode each possible

value of  in terms of a sequence of 0’s and 1’s. To avoid any ambiguity, it is usually

required that no encoded sequence can be obtained from a shorter encoded

sequence by adding more terms to the shorter.

For instance, if  can take on four possible values  and  then one

possible coding would be

That is, if  then the message 00 is sent to location  whereas if  then

01 is sent to  and so on. A second possible coding is

𝐻௒ሺ𝑋ሻ െ 𝐻ሺ𝑋ሻ ൌ ෍
௜

෍
௝

𝑝ሺ𝑥௜ |𝑦௝ሻ logሾ𝑝ሺ𝑥௜ |𝑦௝ሻሿ𝑝ሺ𝑦௜ሻ ൅෍
௜

෍
௝

𝑝ሺ𝑥௜,  𝑦௝ሻ log 𝑝ሺ𝑥௜ሻ

ൌ ෍
௜

෍
௝

𝑝ሺ𝑥௜ |𝑦௝ሻ logቈ
𝑝ሺ𝑥௜ሻ

𝑝ሺ𝑥௜ |𝑦௜ሻ
቉

൑ log 𝑒෍
௜

෍
௝

𝑝ሺ𝑥௜,𝑦௝ሻ൤
௣ሺ௫೔ሻ

௣ሺ௫೔ |௬೔ሻ
െ 1൨  by Lemma 3.1

ൌ log 𝑒 ቎෍
௜

෍
௝

𝑝ሺ𝑥௜ሻ𝑝ሺ𝑦௝ሻ െ෍
௜

෍
௝

𝑝ሺ𝑥௜,𝑦௝ሻ቏

ൌ log 𝑒ሾ1 െ 1ሿ

ൌ 0

𝑋 𝐴

𝐵

𝑋

𝑋 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ,

𝑥ଵ ↔ 00

𝑥ଶ ↔ 01

𝑥ଷ ↔ 10

𝑥ସ ↔ 11

(4.1)

𝑋 ൌ 𝑥ଵ, 𝐵, 𝑋 ൌ 𝑥ଶ,

𝐵,

𝑥ଵ ↔ 0

𝑥ଶ ↔ 10

𝑥ଷ ↔ 110

𝑥ସ ↔ 111

(4.2)
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However, a coding such as

is not allowed because the coded sequences for  and  are both extensions of the

one for 

One of the objectives in devising a code is to minimize the expected number of bits

(that is, binary digits) that need to be sent from location  to location  For example,

if

then the code given by Equation (4.2)  would expect to send

 bits, whereas the code given by Equation (4.1)

would expect to send 2 bits. Hence, for the preceding set of probabilities, the

encoding in Equation (4.2)  is more efficient than that in Equation (4.1) .

The preceding discussion raises the following question: For a given random vector 

what is the maximum efficiency achievable by an encoding scheme? The answer is

that for any coding, the average number of bits that will be sent is at least as large as

the entropy of  To prove this result, known in information theory as the noiseless

coding theorem, we shall need Lemma 4.1 .

Lemma 4.1

Let  take on the possible values  Then, in order to be able to encode

the values of  in binary sequences (none of which is an extension of another) of

respective lengths  it is necessary and sufficient that

𝑥ଵ ↔ 0

𝑥ଶ ↔ 1

𝑥ଷ ↔ 00

𝑥ସ ↔ 01

𝑥ଷ 𝑥ସ
𝑥ଵ .

𝐴 𝐵.

𝑃ሼ𝑋 ൌ 𝑥ଵሽ ൌ
1
2

𝑃ሼ𝑋 ൌ 𝑥ଶሽ ൌ
1
4

𝑃ሼ𝑋 ൌ 𝑥ଷሽ ൌ
1
8

𝑃ሼ𝑋 ൌ 𝑥ସሽ ൌ
1
8

1
2
ሺ1ሻ ൅ 1

4
ሺ2ሻ ൅ 1

8
ሺ3ሻ ൅ 1

8
ሺ3ሻ ൌ 1.75

𝑋,

𝑋.

𝑋 𝑥ଵ, ... , 𝑥ே .

𝑋

𝑛ଵ, ... , 𝑛ே,

෍
௜ ൌ ଵ

ே

ቀ1
2
ቁ
௡೔
൑ 1
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Proof For a fixed set of  positive integers  let  denote the number of

the  that are equal to  For there to be a coding that assigns  bits to

the value  it is clearly necessary that  Furthermore,

because no binary sequence is allowed to be an extension of any other, we must

have  (This follows because  is the number of binary

sequences of length 2, whereas  is the number of sequences that are

extensions of the  binary sequence of length 1.) In general, the same

reasoning shows that we must have

for  In fact, a little thought should convince the reader that these

conditions are not only necessary, but also sufficient for a code to exist that

assigns  bits to 

Rewriting inequality (4.3) as

and dividing by  yields the necessary and sufficient conditions, namely,

However, because  is increasing in  it follows that Equation

(4.4)  will be true if and only if

The result is now established, since, by the definition of  as the number of 

that equal j, it follows that

We are now ready to prove Theorem 4.1 .

𝑁 𝑛ଵ, ... , 𝑛ே, 𝑤௝

𝑛௜ 𝑗, 𝑗 ൌ 1, ... . 𝑛௜
𝑥௜, 𝑖 ൌ 1, ... , 𝑁, 𝑤ଵ ൑ 2 .

𝑤ଶ ൑ 2ଶ െ 2𝑤ଵ . 2ଶ

2𝑤ଵ

𝑤ଵ

𝑤௡ ൑ 2௡ െ 𝑤ଵ2௡െଵ െ 𝑤ଶ2௡െଶ െ ⋯ െ 𝑤௡െଵ2

(4.3)

𝑛 ൌ 1, ... .

𝑛௜ 𝑥௜, 𝑖 ൌ 1, ... , 𝑁 .

𝑤௡ ൅ 𝑤௡െଵ2 ൅ 𝑤௡െଶ2ଶ ൅ ⋯ ൅ 𝑤ଵ2௡െଵ ൑ 2௡ 𝑛 ൌ 1, ...

2௡

෍
௝ ൌ ଵ

௡

𝑤௝ቀ
1
2
ቁ
௝
൑ 1  for all 𝑛

(4.4)

෍
௝ ൌ ଵ

௡

𝑤௝ቀ
1
2
ቁ
௝

𝑛,

෍
௝ ൌ ଵ

ஶ

𝑤௝ቀ
1
2
ቁ
௝
൑ 1

𝑤௝ 𝑛௜

෍
௝ ൌ ଵ

ஶ

𝑤௝ቀ
1
2
ቁ
௝
ൌ ෍

௜ ൌ ଵ

ே

ቀ1
2
ቁ
௡೔
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Theorem 4.1 The noiseless coding theorem

Let  take on the values  with respective probabilities 

Then, for any coding of  that assigns  bits to 

Proof Let  Then

Hence,

Example 4a

Consider a random variable  with probability mass function

Since

𝑋 𝑥ଵ, ... , 𝑥ே 𝑝ሺ𝑥ଵሻ, ... , 𝑝ሺ𝑥ேሻ .

𝑋 𝑛௜ 𝑥௜,

෍
௜ ൌ ଵ

ே

𝑛௜𝑝ሺ𝑥௜ሻ ൒ 𝐻ሺ𝑋ሻ ൌ െ ෍
௜ ൌ ଵ

ே

𝑝ሺ𝑥௜ሻ log  𝑝ሺ𝑥௜ሻ

𝑃௜ ൌ 𝑝ሺ𝑥௜ሻ, 𝑞௜ ൌ 2െ௡೔ ෍
௝ ൌ ଵ

ே

2െ௡ೕ, 𝑖 ൌ 1, ... , 𝑁 .

െ ෍
௜ ൌ ଵ

ே

𝑃௜ logቆ
𝑃௜
𝑞௜
ቇ ൌ െ log 𝑒  ෍

௜ ൌ ଵ

ே

𝑃௜ lnቆ
𝑃௜
𝑞௜
ቇ

ൌ log 𝑒  ෍
௜ ൌ ଵ

ே

𝑃௜ lnቆ
𝑞௜
𝑃௜
ቇ

൑ log 𝑒 ෍
௜ ൌ ଵ

ே

𝑃௜ቆ
𝑞௜
𝑃௜
െ 1ቇ by Lemma 3.1

ൌ 0 since  ෍
௜ ൌ ଵ

ே

𝑃௜ ൌ ෍
௜ ൌ ଵ

ே

𝑞௜ ൌ 1

െ ෍
௜ ൌ ଵ

ே

𝑃௜ log 𝑃௜ ൑ െ   ෍
௜ ൌ ଵ

ே

𝑃௜ log 𝑞௜

ൌ   ෍
௜ ൌ ଵ

ே

𝑛௜𝑃௜ ൅  logቌ ෍
௝ ൌ ଵ

ே

2െ௡ೕቍ

൑ ෍
௜ ൌ ଵ

ே

𝑛௜𝑃௜ by Lemma 4.1

𝑋

𝑝ሺ𝑥ଵሻ ൌ
1
2
 𝑝ሺ𝑥ଶሻ ൌ

1
4
 𝑝ሺ𝑥ଷሻ ൌ 𝑝ሺ𝑥ସሻ ൌ

1
8
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it follows from Theorem 4.1  that there is no more efficient coding scheme

than

For most random vectors, there does not exist a coding for which the average

number of bits sent attains the lower bound  However, it is always possible to

devise a code such that the average number of bits is within 1 of  To prove

this, define  to be the integer satisfying

Now,

so, by Lemma 4.1 , we can associate sequences of bits having lengths  with the

 The average length of such a sequence,

satisfies

or

𝐻ሺ𝑋ሻ ൌ െ ⎡
⎣

1
2

log
1
2
൅

1
4

log
1
4
൅

1
4

log
1
8
⎤
⎦

ൌ
1
2
൅

2
4
൅

3
4

ൌ 1.75

𝑥ଵ ↔ 0

𝑥ଶ ↔ 10

𝑥ଷ ↔ 110

𝑥ସ ↔ 111

𝐻ሺ𝑋ሻ .

𝐻ሺ𝑋ሻ .

𝑛௜

െlog𝑝ሺ𝑥௜ሻ ൑ 𝑛௜ ൏ െ log𝑝ሺ𝑥௜ሻ ൅ 1

෍
௜ ൌ ଵ

ே

2െ௡೔ ൑ ෍
௜ ൌ ଵ

ே

2୪୭୥௣ሺ௫೔ሻ ൌ ෍
௜ ൌ ଵ

ே

𝑝ሺ𝑥௜ሻ ൌ 1

𝑛௜
𝑥௜, 𝑖 ൌ 1, ... , 𝑁 .

𝐿 ൌ ෍
௜ ൌ ଵ

ே

𝑛௜ 𝑝ሺ𝑥௜ሻ

െ ෍
௜ ൌ ଵ

ே

𝑝ሺ𝑥௜ሻ log 𝑝ሺ𝑥௜ሻ ൑ 𝐿 ൏ െ ෍
௜ ൌ ଵ

ே

𝑝ሺ𝑥௜ሻ log𝑝ሺ𝑥௜ሻ ൅ 1

𝐻ሺ𝑋ሻ ൑ 𝐿 ൏ 𝐻ሺ𝑋ሻ ൅ 1
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Example 4b

Suppose that 10 independent tosses of a coin having probability  of coming up

heads are made at location  and the result is to be transmitted to location 

The outcome of this experiment is a random vector  where  is

1 or 0 according to whether or not the outcome of the  th toss is heads. By the

results of this section, it follows that  the average number of bits transmitted by

any code, satisfies

with

for at least one code. Now, since the  are independent, it follows from

Proposition 3.1  and Theorem 3.2  that

If  then  and it follows that we can do no better than just

encoding  by its actual value. For example, if the first 5 tosses come up heads

and the last 5 tails, then the message 1111100000 is transmitted to location 

However, if  we can often do better by using a different coding scheme. For

instance, if  then

Thus, there is an encoding for which the average length of the encoded message

is no greater than 9.11.

One simple coding that is more efficient in this case than the identity code is to

break up  into 5 pairs of 2 random variables each and then, for

 code each of the pairs as follows:

𝑝

𝐴 𝐵.

𝑋 ൌ ሺ𝑋ଵ, ... , 𝑋ଵ଴ሻ, 𝑋௜
𝑖

𝐿,

𝐻ሺ𝑋ሻ ൑ 𝐿

𝐿 ൏ 𝐻ሺ𝑋ሻ ൅ 1

𝑋௜

𝐻ሺ𝑋ሻ ൌ 𝐻ሺ𝑋ଵ, ... , 𝑋ଵ଴ሻ ൌ ෍
௜ ൌ ଵ

ଵ଴

𝐻ሺ𝑋௜ሻ

ൌ െ 10ሾ𝑝 log 𝑝 ൅ ሺ1 െ 𝑝ሻ logሺ1 െ 𝑝ሻሿ

𝑝 ൌ 1
2

, 𝐻ሺ𝑋ሻ ൌ 10,

𝑋

𝐵.

𝑝 ് 1
2

,

𝑝 ൌ 1
4

,

𝐻ሺ𝑋ሻ ൌ െ 10ቀ1
4

log 1
4
൅ 3

4
log 3

4
ቁ ൌ 8.11

ሺ𝑋ଵ, ... , 𝑋ଵ଴ሻ

𝑖 ൌ 1, 3, 5, 7, 9,

𝑋௜ ൌ 0,𝑋௜൅ଵ ൌ 0 ↔ 0

𝑋௜ ൌ 0,𝑋௜൅ଵ ൌ 1 ↔ 10

𝑋௜ ൌ 1,𝑋௜൅ଵ ൌ 0 ↔ 110

𝑋௜ ൌ 1,𝑋௜൅ଵ ൌ 1 ↔ 111
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The total message transmitted is the successive encodings of the preceding

pairs.

For instance, if the outcome TTTHHTTTTH is observed, then the message

 is sent. The average number of bits needed to transmit the message

with this code is

Up to this point, we have assumed that the message sent at location  is received

without error at location  However, there are always certain errors that can occur

because of random disturbances along the communications channel. Such random

disturbances might lead, for example, to the message 00101101, sent at  being

received at  in the form 01101101.

Let us suppose that a bit transmitted at location  will be correctly received at

location  with probability  independently from bit to bit. Such a communications

system is called a binary symmetric channel. Suppose further that  and we

want to transmit a message consisting of a large number of bits from  to  Thus,

direct transmission of the message will result in an error probability of .20 for each

bit, which is quite high. One way to reduce this probability of bit error would be to

transmit each bit 3 times and then decode by majority rule. That is, we could use the

following scheme:

Encode Decode Encode Decode

Note that if no more than one error occurs in transmission, then the bit will be

correctly decoded. Hence, the probability of bit error is reduced to

a considerable improvement. In fact, it is clear that we can make the probability of bit

error as small as we want by repeating the bit many times and then decoding by

majority rule. For instance, the scheme

010110010

5൥1ቆ
3
4
ቇ
ଶ

൅ 2ቆ
1
4
ቇቆ

3
4
ቇ ൅ 3ቆ

1
4
ቇቆ

3
4
ቇ ൅ 3ቆ

1
4
ቇ
ଶ

൩ ൌ
135
16

ൎ 8.44

𝐴

𝐵.

𝐴,

𝐵

𝐴

𝐵 𝑝,

𝑝 ൌ .8

𝐴 𝐵.

0 → 000 000

001

010

100

⎫

⎬

⎭

⎪

⎪

→ 0

1 → 111 111

110

101

011

⎫

⎬

⎭

⎪

⎪

→ 1

ሺ.2ሻଷ ൅ 3ሺ.2ሻଶሺ.8ሻ ൌ .104
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Encode Decode

 of 17 0’s By majority rule

 of 17 1’s

will reduce the probability of bit error to below .01.

The problem with this type of encoding scheme is that although it decreases the

probability of bit error, it does so at the cost of also decreasing the effective rate of

bits sent per signal. (See Table 9.1. )

Table 9.1 Repetition of Bits Encoding Scheme.

Probability of error (per bit) Rate (bits transmitted per signal)

.20 1

.10

.01

In fact, at this point it may appear inevitable to the reader that decreasing the

probability of bit error to 0 always results in also decreasing the effective rate at

which bits are transmitted per signal to 0. However, a remarkable result of

information theory known as the noisy coding theorem and due to Claude Shannon

demonstrates that this is not the case. We now state this result as Theorem 4.2 .

Theorem 4.2 The noisy coding theorem

There is a number  such that for any value  that is less than  and for any

 there exists a coding–decoding scheme that transmits at an average rate

of  bits sent per signal and with an error (per bit) probability of less than  The

largest such value of — call it C  –is called the channel capacity, and for the

binary symmetric channel,

†For an entropy interpretation of C*, see Theoretical Exercise 9.18.

0 → string

1 → string

.33 ቆ ൌ
1
3
ቇ

.06 ቆ ൌ
1

17
ቇ

𝐶 𝑅 𝐶,

𝜀 ൐ 0,

𝑅 𝜀.

𝐶 *†

𝐶* ൌ 1 ൅ 𝑝 log𝑝 ൅ ሺ1 െ 𝑝ሻ logሺ1 െ 𝑝ሻ
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The Poisson process having rate  is a collection of random variables 

that relate to an underlying process of randomly occurring events. For instance, 

represents the number of events that occur between times 0 and  The defining

features of the Poisson process are as follows:

i. The number of events that occur in disjoint time intervals are independent.

ii. The distribution of the number of events that occur in an interval depends only

on the length of the interval.

iii. Events occur one at a time.

iv. Events occur at rate 

It can be shown that  is a Poisson random variable with mean  In addition, if

 are the times between the successive events, then they are independent

exponential random variables with rate 

A sequence of random variables  each of which takes on one of the values

 is said to be a Markov chain with transition probabilities  if, for all

If we interpret  as the state of some process at time  then a Markov chain is a

sequence of successive states of a process that has the property that whenever it

enters state  then, independently of all past states, the next state is  with

probability  for all states  and  For many Markov chains, the probability of

being in state  at time  converges to a limiting value that does not depend on the

initial state. If we let  denote these limiting probabilities, then they are

the unique solution of the equations

Moreover,  is equal to the long-run proportion of time that the chain is in state 

Let  be a random variable that takes on one of  possible values according to the

set of probabilities  The quantity

λ ሼ𝑁ሺ𝑡ሻ, 𝑡 ൒ 0ሽ
𝑁ሺ𝑡ሻ

𝑡.

λ.

𝑁ሺ𝑡ሻ λ𝑡 .

𝑇௜, 𝑖 ൒ 1,

λ.

𝑋௡, 𝑛 ൒ 0,

0, ... , 𝑀, 𝑃௜, ௝
𝑛, 𝑖଴, ... , 𝑖௡, 𝑖, 𝑗,

𝑃൛𝑋௡൅ଵ ൌ 𝑗ห𝑋௡ ൌ 𝑖, 𝑋௡െଵ ൌ 𝑖௡െଵ, ... , 𝑋଴ ൌ 𝑖଴ൟ ൌ 𝑃௜, ௝

𝑋௡ 𝑛,

𝑖, 𝑗

𝑃௜, ௝, 𝑖 𝑗.

𝑗 𝑛

𝜋௝, 𝑗 ൌ 0, ... , 𝑀,

𝜋௝ ൌ ෍
௜ ൌ ଴

ெ

𝜋௜𝑃௜, ௝ 𝑗 ൌ 0, ... , 𝑀

෍
௝ ൌ ଵ

ெ

𝜋௝ ൌ 1

𝜋௝ 𝑗.

𝑋 𝑛

൛𝑝ଵ, ... , 𝑝௡ൟ .
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is called the entropy of  It can be interpreted as representing either the average

amount of uncertainty that exists regarding the value of  or the average information

received when  is observed. Entropy has important implications for binary codings

of 

𝐻ሺ𝑋ሻ ൌ െ ෍
௜ ൌ ଵ

௡

𝑝௜ logଶሺ𝑝௜ሻ

𝑋.

𝑋

𝑋

𝑋.

9.1. Customers arrive at a bank at a Poisson rate  Suppose that two

customers arrived during the first hour. What is the probability that

a. both arrived during the first 20 minutes?

b. at least one arrived during the first 20 minutes?

9.2. Cars cross a certain point in the highway in accordance with a

Poisson process with rate  per minute. If Al runs blindly across the

highway, what is the probability that he will be uninjured if the amount

of time that it takes him to cross the road is  seconds? (Assume that if

he is on the highway when a car passes by, then he will be injured.) Do

this exercise for 

9.3. Suppose that in Problem 9.2 , Al is agile enough to escape

from a single car, but if he encounters two or more cars while

attempting to cross the road, then he is injured. What is the probability

that he will be unhurt if it takes him  seconds to cross? Do this

exercise for 

9.4. Suppose that 3 white and 3 black balls are distributed in two urns

in such a way that each urn contains 3 balls. We say that the system is

in state  if the first urn contains  white balls,  At each stage,

1 ball is drawn from each urn and the ball drawn from the first urn is

placed in the second, and conversely with the ball from the second urn.

Let  denote the state of the system after the th stage, and compute

the transition probabilities of the Markov chain 

9.5. Consider Example 2a . If there is a 50–50 chance of rain today,

compute the probability that it will rain 3 days from now if  and

9.6. Compute the limiting probabilities for the model of Problem 9.4

.

9.7. A transition probability matrix is said to be doubly stochastic if

λ.

λ ൌ 3

𝑠

𝑠 ൌ 2, 5, 10, 20 .

𝑠

𝑠 ൌ 5, 10, 20, 30 .

𝑖 𝑖 𝑖 ൌ 0,1,2,3 .

𝑋௡ 𝑛

ሼ𝑋௡, 𝑛 ൒ 0ሽ .

𝛼 ൌ .7
𝛽 ൌ .3 .
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for all states  Show that such a Markov chain is ergodic,

then 

9.8. On any given day, Buffy is either cheerful (c), so-so (s), or gloomy

(g). If she is cheerful today, then she will be c, s, or g tomorrow with

respective probabilities .7, .2, and .1. If she is so-so today, then she will

be c, s, or g tomorrow with respective probabilities .4, .3, and .3. If she

is gloomy today, then Buffy will be c, s, or g tomorrow with probabilities

.2, .4, and .4. What proportion of time is Buffy cheerful?

9.9. Suppose that whether it rains tomorrow depends on past weather

conditions only through the past 2 days. Specifically, suppose that if it

has rained yesterday and today, then it will rain tomorrow with

probability .8; if it rained yesterday but not today, then it will rain

tomorrow with probability .3; if it rained today but not yesterday, then it

will rain tomorrow with probability .4; and if it has not rained either

yesterday or today, then it will rain tomorrow with probability .2. What

proportion of days does it rain?

9.10. A certain person goes for a run each morning. When he leaves

his house for his run, he is equally likely to go out either the front or the

back door, and similarly, when he returns, he is equally likely to go to

either the front or the back door. The runner owns 5 pairs of running

shoes, which he takes off after the run at whichever door he happens

to be. If there are no shoes at the door from which he leaves to go

running, he runs barefooted. We are interested in determining the

proportion of time that he runs barefooted.

a. Set this problem up as a Markov chain. Give the states and the

transition probabilities.

b. Determine the proportion of days that he runs barefooted.

9.11. This problem refers to Example 2f .

a. Verify that the proposed value of  satisfies the necessary

equations.

b. For any given molecule, what do you think is the (limiting)

probability that it is in urn 1?

c. Do you think that the events that molecule  is in urn 1 at

a very large time would be (in the limit) independent?

d. Explain why the limiting probabilities are as given.

෍
௜ ൌ ଴

ெ

𝑃௜௝ ൌ 1

𝑗 ൌ 0, 1, ... , 𝑀 .

ෑ
௝
ൌ 1/ሺ𝑀 ൅ 1ሻ, 𝑗 ൌ 0, 1, ... , 𝑀 .

ෑ
௝

𝑗, 𝑗 ൒ 1,
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9.12. Determine the entropy of the sum that is obtained when a pair of

fair dice is rolled.

9.13. Prove that if  can take on any of  possible values with

respective probabilities  then  is maximized when

 What is  equal to in this case?

9.14. A pair of fair dice is rolled. Let

and let  equal the value of the first die. Compute (a)  (b) 

and (c) H(X, Y).

9.15. A coin having probability  of coming up heads is flipped 6

times. Compute the entropy of the outcome of this experiment.

9.16. A random variable can take on any of  possible values 

with respective probabilities  We shall attempt to

determine the value of  by asking a series of questions, each of which

can be answered “yes” or “no.” For instance, we may ask “Is ”

or “Is  equal to either  or  or ” and so on. What can you say

about the average number of such questions that you will need to ask

to determine the value of 

9.17. Show that for any discrete random variable  and function 

9.18. In transmitting a bit from location  to location  if we let 

denote the value of the bit sent at location  and  denote the value

received at location  then  is called the rate of

transmission of information from A to B. The maximal rate of

transmission, as a function of  is called the

channel capacity. Show that for a binary symmetric channel with

 the channel capacity is attained

by the rate of transmission of information when  and its

value is 

𝑋 𝑛

𝑃ଵ, ... , 𝑃௡, 𝐻ሺ𝑋ሻ

𝑃௜ ൌ 1/𝑛, 𝑖 ൌ 1, ... , 𝑛 . 𝐻ሺ𝑋ሻ

𝑋 ൌ ቊ
1 if  the sum of  the dice is 6

0 otherwise

𝑌 𝐻ሺ𝑌ሻ, 𝐻௒ሺ𝑋ሻ,

𝑝 ൌ 2
3

𝑛 𝑥ଵ, ... , 𝑥௡
𝑝ሺ𝑥௜ሻ, 𝑖 ൌ 1, ... , 𝑛 .

𝑋

𝑋 ൌ 𝑥ଵ?

𝑋 𝑥ଵ 𝑥ଶ 𝑥ଷ?

𝑋?

𝑋 𝑓,
𝐻ሺ𝑓ሺ𝑋ሻሻ ൑ 𝐻ሺ𝑋ሻ

𝐴 𝐵, 𝑋

𝐴 𝑌

𝐵, 𝐻ሺ𝑋ሻ െ 𝐻௒ሺ𝑋ሻ

𝑃ሼ𝑋 ൌ 1ሽ ൌ 1 െ 𝑃ሼ𝑋 ൌ 0ሽ,

𝑃ሼ𝑌 ൌ 1 ||𝑋 ൌ 1ሽ ൌ 𝑃ሼ𝑌 ൌ 0 ||𝑋 ൌ 0ሽ ൌ 𝑝,

𝑃ቄ𝑋 ൌ 1ቅ ൌ 1
2

1 ൅ 𝑝 log𝑝 ൅ ሺ1 െ 𝑝ሻ logሺ1 െ 𝑝ሻ .

9.1. Events occur according to a Poisson process with rate  per

hour.

a. What is the probability that no events occur between times 8

and 10 in the morning?

b. What is the expected value of the number of events that occur

λ ൌ 3

697 of 848



between times 8 and 10 in the morning?

c. What is the expected time of occurrence of the fifth event after

2 P.M.?

9.2. Customers arrive at a certain retail establishment according to a

Poisson process with rate  per hour. Suppose that two customers

arrive during the first hour. Find the probability that

a. both arrived in the first 20 minutes;

b. at least one arrived in the first 30 minutes.

9.3. Four out of every five trucks on the road are followed by a car,

while one out of every six cars is followed by a truck. What proportion

of vehicles on the road are trucks?

9.4. A certain town’s weather is classified each day as being rainy,

sunny, or overcast, but dry. If it is rainy one day, then it is equally

likely to be either sunny or overcast the following day. If it is not rainy,

then there is one chance in three that the weather will persist in

whatever state it is in for another day, and if it does change, then it is

equally likely to become either of the other two states. In the long

run, what proportion of days are sunny? What proportion are rainy?

9.5. Let  be a random variable that takes on 5 possible values with

respective probabilities .35, .2, .2, .2, and .05. Also, let  be a

random variable that takes on 5 possible values with respective

probabilities .05, .35, .1, .15, and .35.

a. Show that 

b. Using the result of Problem 9.13 , give an intuitive

explanation for the preceding inequality.

λ

𝑋

𝑌

𝐻ሺ𝑋ሻ ൐ 𝐻ሺ𝑌ሻ .

Kඍඕඍඖඡ, J., L. Sඖඍඔඔ, and A. Kඖඉ඘඘. Denumerable Markov Chains. New

York: D. Van Nostrand Company, 1966.

Pඉකජඍඖ, E. Stochastic Processes. San Francisco: Holden-Day, Inc., 1962.

R඗ඛඛ, S. M. Introduction to Probability Models, 11th ed. San Diego: Academic

Press, Inc., 2014.

[1]

[2]

[3]
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10.1 Introduction

10.2 General Techniques for Simulating Continuous Random Variables

10.3 Simulating from Discrete Distributions

10.4 Variance Reduction Techniques

How can we determine the probability of our winning a game of solitaire? (By

solitaire, we mean any one of the standard solitaire games played with an ordinary

deck of 52 playing cards and with some fixed playing strategy.) One possible

approach is to start with the reasonable hypothesis that all (52)! possible

arrangements of the deck of cards are equally likely to occur and then attempt to

determine how many of these lead to a win. Unfortunately, there does not appear to

be any systematic method for determining the number of arrangements that lead to a

win, and as (52)! is a rather large number and the only way to determine whether a

particular arrangement leads to a win seems to be by playing the game out, it can be

seen that this approach will not work.

In fact, it might appear that the determination of the probability of winning at solitaire

is mathematically intractable. However, all is not lost, for probability falls not only

within the realm of mathematics, but also within the realm of applied science; and, as

in all applied sciences, experimentation is a valuable technique. For our solitaire

example, experimentation takes the form of playing a large number of such games

or, better yet, programming a computer to do so. After playing, say,  games, if we let

R඗ඛඛ, S. M. Stochastic Processes, 2d ed. New York: John Wiley & Sons, Inc.,

1996.

𝑛

𝑋௜ ൌ ቊ
1 if  the 𝑖th game results in a win

0 otherwise
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then  will be independent Bernoulli random variables for which

Hence, by the strong law of large numbers, we know that

will, with probability 1, converge to  That is, by playing a large

number of games, we can use the proportion of games won as an estimate of the

probability of winning. This method of empirically determining probabilities by means

of experimentation is known as simulation.

In order to use a computer to initiate a simulation study, we must be able to generate

the value of a uniform (0, 1) random variable; such variates are called random

numbers. To generate them, most computers have a built-in subroutine, called a

random-number generator, whose output is a sequence of pseudorandom

numbers—a sequence of numbers that is, for all practical purposes, indistinguishable

from a sample from the uniform (0, 1) distribution. Most random-number generators

start with an initial value  called the seed, and then recursively compute values by

specifying positive integers  and  and then letting

where the foregoing means that  is divided by  and the remainder is taken

as the value of  Thus, each  is either  and the quantity  is

taken as an approximation to a uniform (0, 1) random variable. It can be shown that

subject to suitable choices for  and Equation (1.1)  gives rise to a

sequence of numbers that look as if they were generated from independent uniform

(0, 1) random variables.

As our starting point in simulation, we shall suppose that we can simulate from the

uniform (0, 1) distribution, and we shall use the term random numbers to mean

independent random variables from this distribution.

In the solitaire example, we would need to program a computer to play out the game

starting with a given ordering of the cards. However, since the initial ordering is

supposed to be equally likely to be any of the (52)! possible permutations, it is also

necessary to be able to generate a random permutation. Using only random

numbers, the following algorithm shows how this can be accomplished. The

𝑋௜, 𝑖 ൌ 1, ... , 𝑛

𝐸ሾ𝑋௜ሿ ൌ 𝑃ሼwin at solitaireሽ

෍
௜ ൌ ଵ

௡
𝑋௜
𝑛
ൌ

number of  games won
number of  games played

𝑃ሼwin at solitaireሽ

𝑋଴,

𝑎, 𝑐, 𝑚,

𝑋௡൅ଵ ൌ ሺ𝑎𝑋௡ ൅ 𝑐ሻ modulo 𝑚 𝑛 ൒ 0

(1.1)

𝑎𝑋௡ ൅ 𝑐 𝑚

𝑋௡൅ଵ. 𝑋௡ 0, 1, ... , 𝑚 െ 1, 𝑋௡/𝑚

𝑎, 𝑐, 𝑚,
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algorithm begins by randomly choosing one of the elements and then putting it in

position  it then randomly chooses among the remaining elements and puts the

choice in position  and so on. The algorithm efficiently makes a random choice

among the remaining elements by keeping these elements in an ordered list and

then randomly choosing a position on that list.

Example 1a Generating a random permutation

Suppose we are interested in generating a permutation of the integers 

such that all ! possible orderings are equally likely. Then, starting with any initial

permutation, we will accomplish this after  steps, where we interchange the

positions of two of the numbers of the permutation at each step. Throughout, we

will keep track of the permutation by letting  denote the number

currently in position  The algorithm operates as follows:

1. Consider any arbitrary permutation, and let  denote the element in

position  [For instance, we could take ]

2. Generate a random variable  that is equally likely to equal any of the

values 

3. Interchange the values of  and  The value of  will now

remain fixed. [For instance, suppose that  and initially

 If  then the new permutation is

 and element 3 will remain in

position 4 throughout.]

4. Generate a random variable  that is equally likely to be either 

5. Interchange the values of  and  [If  then the new

permutation is ]

6. Generate  which is equally likely to be either 

7. Interchange the values of  and  [If  then the new

permutation is  and this is the final

permutation.]

8. Generate  and so on. The algorithm continues until  is generated,

and after the next interchange the resulting permutation is the final one.

To implement this algorithm, it is necessary to be able to generate a random

variable that is equally likely to be any of the values  To accomplish

this, let  denote a random number—that is,  is uniformly distributed on (0, 1)—

and note that  is uniform on  Hence,

𝑛;

𝑛 െ 1,

1, 2, ... , 𝑛

𝑛

𝑛 െ 1

𝑋ሺ𝑖ሻ,𝑖 ൌ 1, ... , 𝑛

𝑖.

𝑋ሺ𝑖ሻ

𝑖, 𝑖 ൌ 1... ,𝑛. 𝑋ሺ𝑖ሻ ൌ 𝑖, 𝑖 ൌ 1, ... , 𝑛.

𝑁௡

1, 2, ... , 𝑛.

𝑋ሺ𝑁௡ሻ 𝑋ሺ𝑛ሻ. 𝑋ሺ𝑛ሻ

𝑛 ൌ 4

𝑋ሺ𝑖ሻ ൌ 𝑖, 𝑖 ൌ 1, 2, 3, 4. 𝑁ସ ൌ 3,

𝑋ሺ1ሻ ൌ 1, 𝑋ሺ2ሻ ൌ 2, 𝑋ሺ3ሻ ൌ 4, 𝑋ሺ4ሻ ൌ 3,

𝑁௡െଵ 1, 2, ...,
𝑛 െ 1.

𝑋ሺ𝑁௡െଵሻ 𝑋ሺ𝑛 െ 1ሻ. 𝑁ଷ ൌ 1,

𝑋ሺ1ሻ ൌ 4, 𝑋ሺ2ሻ ൌ 2, 𝑋ሺ3ሻ ൌ 1, 𝑋ሺ4ሻ ൌ 3.

𝑁௡െଶ, 1, 2,  ... ,   𝑛 െ 2.

𝑋ሺ𝑁௡െଶሻ 𝑋ሺ𝑛 െ 2ሻ. 𝑁ଶ ൌ 1,

𝑋ሺ1ሻ ൌ 2, 𝑋ሺ2ሻ ൌ 4, 𝑋ሺ3ሻ ൌ 1, 𝑋ሺ4ሻ ൌ 3,

𝑁௡െଷ, 𝑁ଶ

1, 2,  ... ,   𝑘.

𝑈 𝑈

𝑘𝑈 ሺ0, 𝑘ሻ.

𝑃ቄ𝑖 െ 1 ൏ 𝑘𝑈 ൏ 𝑖ቅ ൌ
ଵ

௞
𝑖 ൌ 1,   ... ,    𝑘
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so if we take  where  is the integer part of  (that is, the largest

integer less than or equal to ), then  will have the desired distribution.

The algorithm can now be succinctly written as follows:

The foregoing algorithm for generating a random permutation is extremely useful.

For instance, suppose that a statistician is developing an experiment to compare

the effects of  different treatments on a set of  subjects. He decides to split the

subjects into  different groups of respective sizes  where

with the members of the th group to receive treatment  To

eliminate any bias in the assignment of subjects to treatments (for instance, it

would cloud the meaning of the experimental results if it turned out that all the

“best’’ subjects had been put in the same group), it is imperative that the

assignment of a subject to a given group be done “at random.” How is this to be

accomplished?

Another technique for randomly dividing the subjects when 

was presented in Example 2g of Chapter 6 . The preceding

procedure is faster, but requires more space than the one of

Example 2g.

A simple and efficient procedure is to arbitrarily number the subjects 1 through 

and then generate a random permutation  of  Now assign

subjects  to be in group 1;  to be in

group 2; and, in general, group  is to consist of subjects numbered

𝑁௞ ൌ ሾ𝑘𝑈ሿ ൅ 1, ሾ𝑥ሿ 𝑥

𝑥 𝑁௞

Let  be any permutation of  [For instance, we

can set ]

Let 

Generate a random number  and set 

Interchange the values of  and 

Reduce the value of  by 1, and if  go to step 3.

 is the desired random generated permutation.

Step 1. 𝑋ሺ1ሻ,   ... ,   𝑋ሺ𝑛ሻ 1, 2,  ... ,   𝑛.

𝑋ሺ𝑖ሻ ൌ 𝑖,  𝑖 ൌ 1,  ... ,   𝑛.

Step 2. 𝐼 ൌ 𝑛.

Step 3. 𝑈 𝑁 ൌ ሾ𝐼𝑈ሿ ൅ 1.

Step 4. 𝑋ሺ𝑁ሻ 𝑋ሺ𝐼ሻ.

Step 5. 𝐼 𝐼 ൐ 1,

Step 6. 𝑋ሺ1ሻ,   ... ,   𝑋ሺ𝑛ሻ

𝑚 𝑛

𝑚 𝑛ଵ,  𝑛ଶ,   ... ,   𝑛௠ ,

𝛴௜ൌଵ
௠  𝑛௜ ൌ 𝑛, 𝑖 𝑖.

†

† 𝑚 ൌ 2

𝑛

𝑋ሺ1ሻ,   ... ,   𝑋ሺ𝑛ሻ 1, 2,  ... ,   𝑛.

𝑋ሺ1ሻ,  𝑋ሺ2ሻ,   ... ,   𝑋ሺ𝑛ଵሻ 𝑋ሺ𝑛ଵ ൅ 1ሻ,   ... ,   𝑋ሺ𝑛ଵ ൅ 𝑛ଶሻ

𝑗
𝑋ሺ𝑛ଵ ൅ 𝑛ଶ ൅⋯ ൅ 𝑛௝െଵ ൅ 𝑘ሻ,  𝑘 ൌ 1,  ... ,   𝑛௝.
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In this section, we present two general methods for using random numbers to

simulate continuous random variables.

A general method for simulating a random variable having a continuous distribution

—called the inverse transformation method—is based on the following proposition.

Proposition 2.1

Let  be a uniform (0, 1) random variable. For any continuous distribution

function  if we define the random variable  by

then the random variable  has distribution function  [  is defined to equal

that value  for which ]

Proof

Now, since  is a monotone function, it follows that  if and only if

 Hence, from Equation (2.1) , we have

It follows from Proposition 2.1  that we can simulate a random variable  having

a continuous distribution function  by generating a random number  and then

setting 

Example 2a Simulating an exponential random variable

If  then  is that value of  such that

or

Hence, if  is a uniform (0, 1) variable, then

𝑈

𝐹, 𝑌

𝑌 ൌ 𝐹െଵሺ𝑈ሻ

𝑌 𝐹. 𝐹െଵሺ𝑥ሻ

𝑦 𝐹ሺ𝑦ሻ ൌ 𝑥.

𝐹௒ሺ𝑎ሻ ൌ 𝑃ሼ𝑌 ൑ 𝑎ሽ

ൌ 𝑃൛𝐹െଵሺ𝑈ሻ ൑ 𝑎ൟ

(2.1)

𝐹ሺ𝑥ሻ 𝐹െଵሺ𝑈ሻ ൑ 𝑎

𝑈 ൑ 𝐹ሺ𝑎ሻ.

𝐹௒ሺ𝑎ሻ ൌ 𝑃ሼ𝑈 ൑ 𝐹ሺ𝑎ሻሽ

ൌ 𝐹ሺ𝑎ሻ

𝑋

𝐹 𝑈

𝑋 ൌ 𝐹െଵሺ𝑈ሻ.

𝐹ሺ𝑥ሻ ൌ 1 െ 𝑒െ௫, 𝐹െଵሺ𝑢ሻ 𝑥

1 െ 𝑒െ௫ ൌ 𝑢

𝑥 ൌ െ logሺ1 െ 𝑢ሻ

𝑈
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is exponentially distributed with mean 1. Since  is also uniformly distributed

on (0, 1), it follows that  is exponential with mean 1. Since  is

exponential with mean  when  is exponential with mean 1, it follows that

 is exponential with mean 

The results of Example 2a  can also be utilized to stimulate a gamma random

variable.

Example 2b Simulating a gamma random variable

To simulate from a gamma distribution with parameters  when  is an

integer, we use the fact that the sum of  independent exponential random

variables, each having rate  has this distribution. Hence, if  are

independent uniform (0, 1) random variables, then

has the desired distribution.

Suppose that we have a method for simulating a random variable having density

function  We can use this method as the basis for simulating from the

continuous distribution having density  by simulating  from  and then

accepting the simulated value with a probability proportional to 

Specifically, let  be a constant such that

We then have the following technique for simulating a random variable having

density 

𝐹െଵሺ𝑈ሻ ൌ െ logሺ1 െ 𝑈ሻ

1 െ 𝑈

െlog𝑈 𝑐𝑋

𝑐 𝑋

െ𝑐 log𝑈 𝑐.

ሺ𝑛, 𝜆ሻ

ሺ𝑛,  λሻ 𝑛

𝑛

𝜆, 𝑈ଵ,   ... ,   𝑈௡

𝑋 ൌ െ ෍
௜ ൌ ଵ

௡
1
𝜆

log𝑈௜ ൌ െ
1
𝜆

logቌ ෑ
௜ ൌ ଵ

௡

𝑈௜ቍ

𝑔ሺ𝑥ሻ.

𝑓ሺ𝑥ሻ 𝑌 𝑔

𝑓ሺ𝑌ሻ/𝑔ሺ𝑌ሻ.

𝑐

𝑓ሺ𝑦ሻ
𝑔ሺ𝑦ሻ

൑ 𝑐 for all 𝑦

𝑓.

Simulate  having density  and simulate a random number 

If  set  Otherwise return to step 1.

Step 1. 𝑌 𝑔 𝑈.

Step 2. 𝑈 ൑ 𝑓ሺ𝑌ሻ/𝑐𝑔ሺ𝑌ሻ, 𝑋 ൌ 𝑌.
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The rejection method is expressed pictorially in Figure 10.1 . We now prove that it

works.

Figure 10.1 Rejection method for simulating a random variable  having

density function 

Proposition 2.2

The random variable  generated by the rejection method has density function 

Proof Let  be the value obtained and let  denote the number of necessary

iterations. Then

where  Now, by independence, the joint density function

of  and  is

so, using the foregoing, we have

Letting  approach  and using the fact that  is a density gives

𝑋

𝑓.

𝑋 𝑓.

𝑋 𝑁

𝑃ሼ𝑋 ൑ 𝑥ሽ ൌ 𝑃ሼ𝑌ே ൑ 𝑥ሽ

ൌ 𝑃ቊ𝑌 ൑ 𝑥 |𝑈 ൑
𝑓ሺ𝑌ሻ
𝑐𝑔ሺ𝑌ሻ

ቋ

ൌ
𝑃ቊ𝑌 ൑ 𝑥,   𝑈 ൑

𝑓ሺ𝑌ሻ
𝑐𝑔ሺ𝑌ሻ

ቋ

𝐾

𝐾 ൌ 𝑃ሼ𝑈 ൑ 𝑓ሺ𝑌ሻ/𝑐𝑔ሺ𝑌ሻ ሽ.

𝑌 𝑈

𝑓ሺ𝑦,  𝑢ሻ ൌ 𝑔ሺ𝑦ሻ 0 ൏ 𝑢 ൏ 1

𝑃ሼ𝑋 ൑ 𝑥ሽ ൌ
ଵ

௄
           ∬

                                   ௬    ൑   ௫

଴    ൑   ௨    ൑   ௙ ሺ௬ ሻ/௖ ௚ ሺ௬ ሻ

𝑔ሺ𝑦ሻ𝑑𝑢 𝑑𝑦

ൌ
ଵ

௄
඲
െஶ

௫

඲

଴

௙ሺ௬ሻ/௖௚ሺ௬ሻ

𝑑𝑢 𝑔ሺ𝑦ሻ 𝑑𝑦

ൌ
ଵ

௖௄
඲
െஶ

௫

𝑓ሺ𝑦ሻ 𝑑𝑦

(2.2)

𝑋 ∞ 𝑓
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Hence, from Equation (2.2) , we obtain

which completes the proof.

Remarks

a. Note that the way in which we “accept the value  with probability ”

is by generating a random number  and then accepting  if 

b. Since each iteration will independently result in an accepted value with

probability  it follows that the number of

iterations has a geometric distribution with mean 

Example 2c Simulating a normal random variable

To simulate a unit normal random variable  (that is, one with mean 0 and

variance 1), note first that the absolute value of  has probability density function

We will start by simulating from the preceding density function by using the

rejection method, with  being the exponential density function with mean 1—that

is,

Now, note that

1 ൌ
1
𝑐𝐾
඲
െஶ

ஶ

𝑓ሺ𝑦ሻ𝑑𝑦 ൌ
1
𝑐𝐾

𝑃ሼ𝑋 ൑ 𝑥ሽ ൌ ඲
െஶ

௫

𝑓ሺ𝑦ሻ𝑑𝑦

𝑌 𝑓ሺ𝑌ሻ/𝑐𝑔ሺ𝑌ሻ

𝑈 𝑌 𝑈 ൑ 𝑓ሺ𝑌ሻ/𝑐𝑔ሺ𝑌ሻ.

𝑃ሼ𝑈 ൑ 𝑓ሺ𝑌ሻ/𝑐𝑔ሺ𝑌ሻሽ ൌ 𝐾 ൌ 1/𝑐,

𝑐.

𝑍

𝑍

𝑓ሺ𝑥ሻ ൌ
2

2𝜋√
𝑒െ௫

మ/ଶ 0 ൏ 𝑥 ൏ ∞

(2.3)

𝑔

𝑔ሺ𝑥ሻ ൌ 𝑒െ௫ 0 ൏ 𝑥 ൏ ∞
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Hence, we can take  so, from Equation (2.4) ,

Therefore, using the rejection method, we can simulate the absolute value of a

unit normal random variable as follows:

Once we have simulated a random variable  having Equation (2.3)  as its

density function, we can then generate a unit normal random variable  by letting

 be equally likely to be either  or 

In step (b), the value  is accepted if  which is equivalent

to  However, in Example 2a , it was shown that  is

exponential with rate 1, so steps (a) and (b) are equivalent to

Suppose now that the foregoing results in  being accepted—so we know that

 is larger than  By how much does the one exceed the other? To

answer this question, recall that  is exponential with rate 1; hence, given that it

exceeds some value, the amount by which  exceeds  [that is, its

“additional life” beyond the time ] is (by the memoryless property)

also exponentially distributed with rate 1. That is, when we accept step  not

only do we obtain  (the absolute value of a unit normal), but, by computing

𝑓ሺ𝑥ሻ
𝑔ሺ𝑥ሻ

ൌ
2
𝜋ඨ

expቊ
െሺ𝑥ଶ െ 2𝑥ሻ

2
ቋ

ൌ
2
𝜋ඨ

expቊ
െሺ𝑥ଶ െ 2𝑥 ൅ 1ሻ

2
൅

1
2
ቋ

ൌ
2𝑒
𝜋ඨ exp൝

െሺ𝑥 െ 1ሻଶ

2
ൡ

൑
2𝑒
𝜋ඨ

(2.4)

𝑐 ൌ 2𝑒/𝜋ඥ ;

𝑓ሺ𝑥ሻ
𝑐𝑔ሺ𝑥ሻ

ൌ exp൝
െሺ𝑥 െ 1ሻଶ

2
ൡ

Generate independent random variables  and  being exponential with

rate 1 and  being uniform on (0, 1).

If  set  Otherwise, return to (a).

(a) 𝑌 𝑈, 𝑌

𝑈

(b) 𝑈 ൑ exp൛ െ ሺ𝑌 െ 1ሻଶ/2ൟ, 𝑋 ൌ 𝑌.

𝑋

𝑍

𝑍 𝑋 െ𝑋.

𝑌 𝑈 ൑ exp൛ െ ሺ𝑌 െ 1ሻଶ/2ൟ,

െlog𝑈 ൒ ሺ𝑌 െ 1ሻଶ/2. െlog𝑈

(a ) Generate independent exponentials  and  each with rate 1.

(b ) If  set  Otherwise, return to (a ).

' 𝑌ଵ 𝑌ଶ,

' 𝑌ଶ ൒ ሺ𝑌ଵ െ 1ሻଶ/2, 𝑋 ൌ 𝑌ଵ. '

𝑌ଵ
𝑌ଶ ሺ𝑌ଵ െ 1ሻଶ/2.

𝑌ଶ
𝑌ଶ ሺ𝑌ଵ െ 1ሻଶ/2

ሺ𝑌ଵ െ 1ሻଶ/2

ሺ𝑏'ሻ,

𝑋
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 we also can generate an exponential random variable (that is

independent of ) having rate 1.

Summing up, then, we have the following algorithm that generates an

exponential with rate 1 and an independent unit normal random variable:

The random variables  and  generated by the foregoing algorithm are

independent, with  being normal with mean 0 and variance 1 and  being

exponential with rate 1. (If we want the normal random variable to have mean 

and variance  we just take )

Remarks

a. Since  the algorithm requires a geometrically distributed

number of iterations of step 2 with mean 1.32.

b. If we want to generate a sequence of unit normal random variables, then

we can use the exponential random variable  obtained in step 3 as the

initial exponential needed in step 1 for the next normal to be generated.

Hence, on the average, we can simulate a unit normal by generating

 exponentials and computing 1.32 squares.

Example 2d Simulating normal random variables: the polar method

It was shown in Example 7b of Chapter 6  that if  and  are independent unit

normal random variables, then their polar coordinates

 are independent, with  being exponentially

distributed with mean 2 and  being uniformly distributed on  Hence, if 

and  are random numbers, then, using the result of Example 2a , we can

set

𝑌ଶ െ ሺ𝑌ଵ െ 1ሻଶ/2,

𝑋

Generate  an exponential random variable with rate 1.

Generate  an exponential random variable with rate 1.

If  set  and go to step 4.

Otherwise, go to step 1.

Generate a random number  and set

Step 1. 𝑌ଵ,

Step 2. 𝑌ଶ,

Step 3. 𝑌ଶ െ ሺ𝑌ଵ െ 1ሻଶ/2 ൐ 0, 𝑌 ൌ 𝑌ଶ െ ሺ𝑌ଵ െ 1ሻଶ/2

Step 4. 𝑈,

𝑍 ൌ

⎧

⎨

⎩

⎪

⎪

𝑌ଵ if 𝑈 ൑
1
2

െ𝑌ଵ if 𝑈 ൐
1
2

𝑍 𝑌

𝑍 𝑌

𝜇

𝜎ଶ, 𝜇 ൅ 𝜎𝑍.

𝑐 ൌ 2𝑒/𝜋ඥ ൎ 1.32,

𝑌

1.64ሺ ൌ 2 ൈ 1.32 െ 1ሻ

𝑋 𝑌

𝑅 ൌ 𝑋ଶ ൅ 𝑌ଶඥ ,   Θ ൌ െଵሺ𝑌/𝑋ሻ 𝑅ଶ

Θ ሺ0,2𝜋ሻ. 𝑈ଵ
𝑈ଶ

𝑅 ൌ ሺ െ 2 log 𝑈ଵሻ
ଵ/ଶ

Θ ൌ 2𝜋𝑈ଶ

708 of 848



from which it follows that

are independent unit normals.

The preceding approach to generating unit normal random variables is called the

Box–Muller approach. Its efficiency suffers somewhat from its need to compute the

sine and cosine values. There is, however, a way to get around this potentially time-

consuming difficulty. To begin, note that if  is uniform on (0, 1), then 2  is uniform

on (0, 2), so  is uniform on  Thus, if we generate random numbers 

and  and set

then  is uniformly distributed in the square of area 4 centered at (0, 0). (See

Figure 10.2 )

Figure 10.2

Suppose now that we continually generate such pairs  until we obtain one

that is contained in the disk of radius 1 centered at (0, 0)—that is, until  It

then follows that such a pair  is uniformly distributed in the disk. Now, let 

denote the polar coordinates of this pair. Then it is easy to verify that  and  are

independent, with  being uniformly distributed on (0, 1) and  being uniformly

𝑋 ൌ 𝑅 cos Θ ൌ ሺ െ 2 log𝑈ଵሻ
ଵ/ଶcosሺ2𝜋𝑈ଶሻ

𝑌 ൌ 𝑅 sin Θ ൌ ሺ െ 2 log𝑈ଵሻ
ଵ/ଶsinሺ2𝜋𝑈ଶሻ

(2.5)

𝑈 𝑈

2𝑈 െ 1 ሺ െ 1,1ሻ. 𝑈ଵ
𝑈ଶ

𝑉ଵ ൌ 2𝑈ଵ െ 1

𝑉ଶ ൌ 2𝑈ଶ െ 1

ሺ𝑉ଵ,  𝑉ଶሻ

ሺ𝑉ଵ,  𝑉ଶሻ

𝑉ଵ
ଶ ൅ 𝑉ଶ

ଶ ൑ 1.

ሺ𝑉ଵ,  𝑉ଶሻ 𝑅̅̅̅,Θ̅̅

𝑅̅̅ ̅ Θ̅̅

𝑅̅̅̅
ଶ

Θ̅̅
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distributed on  (See Problem 10.13 .)

Since

it follows from Equation (2.5)  that we can generate independent unit normals 

and  by generating another random number  and setting

In fact, because (conditional on )  is uniform on (0, 1) and is

independent of  we can use it instead of generating a new random number  thus

showing that

are independent unit normals, where

Summing up, we have the following approach to generating a pair of independent

unit normals:

The preceding algorithm is called the polar method. Since the probability that a

ሺ0,2𝜋ሻ.

sin Θ̅̅ ൌ
𝑉ଶ
𝑅̅̅
ൌ

𝑉ଶ

𝑉ଵ
ଶ ൅ 𝑉ଶ

ଶ
ට

cos Θ̅̅ ൌ
𝑉ଵ
𝑅̅̅ ̅
ൌ

𝑉ଵ

𝑉ଵ
ଶ ൅ 𝑉ଶ

ଶ
ට

𝑋

𝑌 𝑈

𝑋 ൌ ሺ െ 2log𝑈ሻଵ/ଶ𝑉ଵ/𝑅̅̅

𝑌 ൌ ሺ െ 2log𝑈ሻଵ/ଶ𝑉ଶ/𝑅̅̅ ̅

𝑉ଵ
ଶ ൅ 𝑉ଶ

ଶ ൑ 1 𝑅̅̅̅
ଶ

𝜃̅̅, 𝑈,

𝑋 ൌ ሺ െ 2log 𝑅̅̅
ଶ
ሻ
ଵ/ଶ 𝑉ଵ

𝑅̅̅̅
ൌ

െ2log 𝑆
𝑆ඨ 𝑉ଵ

𝑌 ൌ ሺ െ 2log 𝑅̅̅ ଶ̅ሻ
ଵ/ଶ 𝑉ଶ

𝑅̅̅ ̅
ൌ

െ2log 𝑆
𝑆ඨ 𝑉ଶ

𝑆 ൌ 𝑅̅̅̅
ଶ
ൌ 𝑉ଵ

ଶ ൅ 𝑉ଶ
ଶ

Generate random numbers  and 

Set 

If  return to step 1.

Return the independent unit normals

Step 1. 𝑈ଵ 𝑈ଶ.

Step 2. 𝑉ଵ ൌ 2𝑈ଵ െ 1, 𝑉ଶ ൌ 2𝑈ଶ െ 1, 𝑆 ൌ 𝑉ଵ
ଶ ൅ 𝑉ଶ

ଶ.

Step 3. 𝑆 ൐ 1,

Step 4.

𝑋 ൌ
െ2 log 𝑆

𝑆ඨ 𝑉ଵ,  𝑌 ൌ
െ2 log 𝑆

𝑆ඨ 𝑉ଶ
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random point in the square will fall within the circle is equal to  (the area of the

circle divided by the area of the square), it follows that, on average, the polar method

will require  iterations of step 1. Hence, it will, on average, require 2.546

random numbers, 1 logarithm, 1 square root, 1 division, and 4.546 multiplications to

generate 2 independent unit normals.

Example 2e Simulating a chi-squared random variable

The chi-squared distribution with  degrees of freedom is the distribution of

 where  are independent unit normals. Now, it

was shown in Section 6.3  of Chapter 6  that  has an exponential

distribution with rate  Hence, when  is even (say,  has a gamma

distribution with parameters  Thus,  has a chi-squared

distribution with 2  degrees of freedom. Accordingly, we can simulate a chi-

squared random variable with  degrees of freedom by first simulating a unit

normal random variable  and then adding  to the foregoing. That is,

where  are independent,  is a unit normal, and  are

uniform (0, 1) random variables.

All of the general methods for simulating random variables from continuous

distributions have analogs in the discrete case. For instance, if we want to simulate a

random variable  having probability mass function

we can use the following discrete time analog of the inverse transform technique:

To simulate  for which  let  be uniformly distributed over (0, 1) and

set

𝜋/4

4/𝜋 ൎ 1.273

𝑛

𝜒௡
ଶ ൌ 𝑍ଵ

ଶ ൅ ⋯ ൅ 𝑍௡
ଶ, 𝑍௜,  𝑖 ൌ 1,  ... ,   𝑛

𝑍ଵ
ଶ ൅ 𝑍ଶ

ଶ

1
2

. 𝑛 𝑛 ൌ 2𝑘ሻ,  𝜒ଶ௞
ଶ

ቀ𝑘,   1
2
ሻ. െ2logሺ∏௜ൌଵ

௞ 𝑈௜ሻ

𝑘

2𝑘 ൅ 1

𝑍 𝑍ଶ

𝜒ଶ௞൅ଵ
ଶ ൌ 𝑍ଶ െ 2 logቌ ෑ

௜ ൌ ଵ

௞

𝑈௜ቍ

𝑍,  𝑈ଵ,   ... ,   𝑈௡ 𝑍 𝑈ଵ,   ... ,   𝑈௡

𝑍

𝑃ሼ𝑋 ൌ 𝑥௝ሽ ൌ 𝑃௝,   𝑗 ൌ 0, 1,  ... ,    ෍
௝

𝑃௝ ൌ 1

𝑋 𝑃൛𝑋 ൌ 𝑥௝ൟ ൌ 𝑃௝, 𝑈
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Since

it follows that  has the desired distribution.

Example 3a The geometric distribution

Suppose that independent trials, each of which results in a “success” with

probability  are continually performed until a success occurs. Letting

 denote the necessary number of trials; then

which is seen by noting that  if the first  trials are all failures and the th

trial is a success. The random variable  is said to be a geometric random

variable with parameter  Since

we can simulate such a random variable by generating a random number  and

then setting  equal to that value  for which

or, equivalently, for which

𝑋 ൌ

⎧

⎨

⎩

⎪
⎪
⎪

⎪
⎪
⎪

𝑥ଵ if  𝑈 ൑ 𝑃ଵ
𝑥ଶ if  𝑃ଵ ൏ 𝑈 ൑ 𝑃ଵ ൅ 𝑃ଶ
⋮

𝑥௝ if   ෍
ଵ

௝ െ ଵ

𝑃௜ ൏ 𝑈 ൑ ෍
௜

௝

𝑃௜

⋮

𝑃ሼ𝑋 ൌ 𝑥௝ሽ ൌ 𝑃ቐ ෍
ଵ

௝ െ ଵ

𝑃௜ ൏ 𝑈 ൑ ෍
ଵ

௝

𝑃௜ቑ ൌ 𝑃௝

𝑋

𝑝,0 ൏ 𝑝 ൏ 1,

𝑋

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ ሺ1 െ 𝑝ሻ௜െଵ𝑝 𝑖 ൒ 1

𝑋 ൌ 𝑖 𝑖 െ 1 𝑖

𝑋

𝑝.

෍
௜ െ ଵ

௝ െ ଵ

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ 1 െ 𝑃ሼ𝑋 ൐ 𝑗 െ 1ሽ

ൌ 1 െ 𝑃ሼϐirst  𝑗 െ 1 are all failuresሽ

ൌ 1 െ ሺ1 െ 𝑝ሻ௝െଵ 𝑗 ൒ 1

𝑈

𝑋 𝑗

1 െ ሺ1 െ 𝑝ሻ௝െଵ ൏ 𝑈 ൑ 1 െ ሺ1 െ 𝑝ሻ௝

ሺ1 െ 𝑝ሻ௝ ൑ 1 െ 𝑈 ൏ ሺ1 െ 𝑝ሻ௝െଵ
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Since  has the same distribution as  we can define  by

where the inequality has changed sign because  is negative [since

]. Using the notation [ ] for the integer part of  (that is, [ ]

is the largest integer less than or equal to ), we can write

As in the continuous case, special simulating techniques have been developed for

the more common discrete distributions. We now present two of these.

Example 3b Simulating a Binomial Random Variable

A binomial ( ) random variable can easily be simulated by recalling that it can

be expressed as the sum of  independent Bernoulli random variables. That is, if

 are independent uniform (0, 1) variables, then letting

it follows that  is a binomial random variable with parameters  and 

Example 3c Simulating a Poisson Random Variable

To simulate a Poisson random variable with mean  generate independent

uniform (0, 1) random variables  stopping at

The random variable  has the desired distribution. That is, if we

continue generating random numbers until their product falls below  then the

number required, minus 1, is Poisson with mean 

That  is indeed a Poisson random variable having mean  can perhaps

1 െ 𝑈 𝑈, 𝑋

𝑋 ൌ min ൛𝑗:ሺ1 െ 𝑝ሻ௝ ൑ 𝑈ൟ

ൌ min ሼ𝑗: 𝑗 logሺ1 െ 𝑝ሻ ൑ log𝑈ሽ

ൌ min ቊ𝑗: 𝑗 ൒
log𝑈

logሺ1 െ 𝑝ሻ
ቋ

logሺ1 െ 𝑝ሻ

logሺ1 െ 𝑝ሻ ൐  log1 ൌ 0 𝑥 𝑥 𝑥

𝑥

𝑋 ൌ 1 ൅ ቈ
log𝑈

logሺ1 െ 𝑝ሻ
቉

𝑛, 𝑝

𝑛

𝑈ଵ,   ... ,   𝑈௡

𝑋௜ ൌ ቊ
1 if  𝑈௜ ൏ 𝑝

0 othewise

𝑋 ≡ ෍
௜ ൌ ଵ

௡

𝑋௜ 𝑛 𝑝.

𝜆,

𝑈ଵ,  𝑈ଶ,  ...

𝑁 ൌ min ቐ𝑛: ෑ
௜ ൌ ଵ

௡

𝑈௜ ൏ 𝑒െఒቑ

𝑋 ≡ 𝑁 െ 1

𝑒െఒ,

𝜆.

𝑋 ≡ 𝑁 െ 1 𝜆
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be most easily seen by noting that

is equivalent to

or, taking logarithms, to

or

However,  is exponential with rate 1, so  can be thought of as being the

maximum number of exponentials having rate 1 that can be summed and still be

less than  But by recalling that the times between successive events of a

Poisson process having rate 1 are independent exponentials with rate 1, it

follows that  is equal to the number of events by time  of a Poisson process

having rate 1; thus,  has a Poisson distribution with mean 

Let  have a given joint distribution, and suppose that we are interested in

computing

where  is some specified function. It sometimes turns out that it is extremely difficult

to analytically compute  and when such is the case, we can attempt to use

simulation to estimate  This is done as follows: Generate  having the

same joint distribution as  and set

𝑋 ൅ 1 ൌ min ቐ𝑛: ෑ
௜ ൌ ଵ

௡

𝑈௜ ൏ 𝑒െఒቑ

𝑋 ൌ max ቐ𝑛: ෑ
௜ ൌ ଵ

௡

𝑈௜ ൒ 𝑒െఒቑ where  ෑ
௜ ൌ ଵ

଴

𝑈௜ ≡ 1

𝑋 ൌ max ቐ𝑛: ෍
௜ ൌ ଵ

௡

log𝑈௜ ൒ െ 𝜆ቑ

𝑋 ൌ max ቐ𝑛: ෍
௜ ൌ ଵ

௡

െ log𝑈௜ ൑ 𝜆ቑ

െlog𝑈௜ 𝑋

λ.

𝑋 λ

𝑋 λ.

𝑋ଵ,   ... ,   𝑋௡

𝜃 ≡ 𝐸ሾ𝑔ሺ𝑋ଵ,   ... ,   𝑋௡ሻሿ

𝑔

𝜃,

𝜃. 𝑋ଵ
ሺଵሻ,   ... ,   𝑋௡

ሺଵሻ

𝑋ଵ,   ... ,   𝑋௡
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Now let  simulate a second set of random variables (independent of the

first set) having the distribution of  and set

Continue this until you have generated  (some predetermined number) sets and so

have also computed  Now,  are independent and identically

distributed random variables, each having the same distribution as 

Thus, if we let  denote the average of these  random variables—that is, if

then

Hence, we can use  as an estimate of  Since the expected square of the

difference between  and  is equal to the variance of  we would like this quantity

to be as small as possible. [In the preceding situation,  which is

usually not known in advance, but must be estimated from the generated values

] We now present three general techniques for reducing the variance of

our estimator.

In the foregoing situation, suppose that we have generated  and  which are

identically distributed random variables having mean  Now,

Hence, it would be advantageous (in the sense that the variance would be reduced)

if  and  were negatively correlated rather than being independent. To see how

we could arrange this, let us suppose that the random variables  are

independent and, in addition, that each is simulated via the inverse transform

𝑌ଵ ൌ 𝑔ሺ𝑋ଵ
ሺଵሻ,   ... ,   𝑋௡

ሺଵሻሻ

𝑋ଵ
ሺଶሻ,   ... ,   𝑋௡

ሺଶሻ

𝑋ଵ,   ... ,   𝑋௡

𝑌ଶ ൌ 𝑔ሺ𝑋ଵ
ሺଶሻ,   ... ,   𝑋௡

ሺଶሻሻ

𝑘

𝑌ଵ,  𝑌ଶ,   ... ,   𝑌௞. 𝑌ଵ,   ... ,   𝑌௞
𝑔ሺ𝑋ଵ,   ... ,   𝑋௡ሻ.

𝑌̅̅̅ ̅ 𝑘

𝑌̅̅̅ ̅ൌ ෍
௜ ൌ ଵ

௞
𝑌௜
𝑘

𝐸ሾ𝑌̅̅ሿ̅ ൌ 𝜃

𝐸ሾሺ𝑌̅̅̅ െ̅ 𝜃ሻଶሿ ൌ varሺ𝑌̅̅̅ሻ̅

𝑌̅̅̅ 𝜃.

𝑌̅̅̅ ̅ 𝜃 𝑌̅̅̅ ̅,

varሺ𝑌̅̅̅ሻ̅ ൌ varሺ𝑌௜ሻ/𝑘,

𝑌ଵ,   ... ,   𝑌௡.

𝑌ଵ 𝑌ଶ,

𝜃.

varቆ
𝑌ଵ ൅ 𝑌ଶ

2
ቇ ൌ

1
4
ሾvarሺ𝑌ଵሻ ൅ varሺ𝑌ଶሻ ൅ 2Covሺ𝑌ଵ,   𝑌ଶሻሿ

ൌ
varሺ𝑌ଵሻ

2
൅

covሺ𝑌ଵ,   𝑌ଶሻ
2

𝑌ଵ 𝑌ଶ
𝑋ଵ,   ... ,   𝑋௡
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technique. That is,  is simulated from  where  is a random number and

 is the distribution of  Thus,  can be expressed as

Now, since  is also uniform over (0, 1) whenever  is a random number (and is

negatively correlated with ), it follows that  defined by

will have the same distribution as  Hence, if  and  were negatively correlated,

then generating  by this means would lead to a smaller variance than if it were

generated by a new set of random numbers. (In addition, there is a computational

savings because, rather than having to generate  additional random numbers, we

need only subtract each of the previous  numbers from 1.) Although we cannot, in

general, be certain that  and  will be negatively correlated, this often turns out to

be the case, and indeed it can be proven that it will be so whenever  is a monotonic

function.

Let us start by recalling the conditional variance formula (see Section 7.5.4)

Now, suppose that we are interested in estimating  by simulating

 and then computing  If, for some random variable  we

can compute  then, since  it follows from the preceding

conditional variance formula that

Thus, since  it follows that  is a better estimator of  than

is 

Example 4a Estimation of 

Let  and  be random numbers and set  As noted in

Example 2d ,  will be uniformly distributed in the square of area 4

centered at (0, 0). The probability that this point will fall within the inscribed circle

of radius 1 centered at (0, 0) (see Figure 10.2 ) is equal to  (the ratio of the

area of the circle to that of the square). Hence, upon simulating a large number 

of such pairs and setting

𝑋௜ 𝐹௜
െଵሺ𝑈௜ሻ, 𝑈௜

𝐹௜ 𝑋௜. 𝑌ଵ

𝑌ଵ ൌ 𝑔ሺ𝐹ଵ
െଵሺ𝑈ଵሻ,   ... ,   𝐹௡

െଵሺ𝑈௡ሻሻ

1 െ 𝑈 𝑈

𝑈 𝑌ଶ

𝑌ଶ ൌ 𝑔ሺ𝐹ଵ
െଵሺ1 െ 𝑈ଵሻ,   ... ,   𝐹௡

െଵሺ1 െ 𝑈௡ሻሻ

𝑌ଵ. 𝑌ଵ 𝑌ଶ
𝑌ଶ

𝑛

𝑛

𝑌ଵ 𝑌ଶ
𝑔

Varሺ𝑌ሻ ൌ 𝐸ሾVarሺ𝑌 ||𝑍ሻሿ ൅ Varሺ𝐸ሾ𝑌 ||𝑍ሿሻ

𝐸ሾ𝑔ሺ𝑋ଵ,   ... ,   𝑋௡ሻሿ

𝐗 ൌ ሺ𝑋ଵ,   ... ,   𝑋௡ሻ 𝑌 ൌ 𝑔ሺ𝐗ሻ. 𝑍

𝐸ሾ𝑌 ||𝑍ሿ, varሺ𝑌 ||𝑍ሻ ൒ 0,

Varሺ𝐸ሾ𝑌 |𝑍ሿሻ ൑ Varሺ𝑌ሻ

𝐸ሾ𝐸ሾ𝑌 ||𝑍ሿሿ ൌ 𝐸ሾ𝑌ሿ, 𝐸ሾ𝑌 ||𝑍ሿ 𝐸ሾ𝑌ሿ

𝑌.

𝜋

𝑈ଵ 𝑈ଶ 𝑉௜ ൌ 2𝑈௜ െ 1, 𝑖 ൌ 1,2.

ሺ𝑉ଵ,  𝑉ଶሻ

𝜋/4

𝑛

716 of 848



it follows that  will be independent and identically distributed

random variables having  Thus, by the strong law of large numbers,

Therefore, by simulating a large number of pairs  and multiplying the

proportion of them that fall within the circle by 4, we can accurately approximate

The preceding estimator can, however, be improved upon by using conditional

expectation. If we let  be the indicator variable for the pair  then, rather

than using the observed value of  it is better to condition on  and so utilize

Now,

so

Thus, an improvement on using the average value of  to estimate  is to use

the average value of  Indeed, since

where  is uniform over (0, 1), we can generate  random numbers  and use

the average value of  as our estimate of  (Problem 10.14  shows

that this estimator has the same variance as the average of the  values,

)

𝐼௝ ൌ ቊ
1 if the  𝑗th pair falls within the circle

0 otherwise

𝐼௝,   𝑗 ൌ 1,  ... ,   𝑛,

𝐸ሾ𝐼௝ሿ ൌ 𝜋/4.

𝐼ଵ ൅ ⋯ ൅ 𝐼௡
𝑛

→
𝜋
4
 as 𝑛 → ∞

ሺ𝑉ଵ,  𝑉ଶሻ

𝜋.

𝐼 ሺ𝑉ଵ,  𝑉ଶሻ,

𝐼, 𝑉ଵ

𝐸ሾ𝐼 ||𝑉ଵሿ ൌ 𝑃൛𝑉ଵ
ଶ ൅ 𝑉ଶ

ଶ ൑ 1 ห𝑉ଵൟ

ൌ 𝑃൛𝑉ଶ
ଶ ൑ 1 െ 𝑉ଵ

ଶห𝑉ଵൟ

𝑃൛𝑉ଶ
ଶ ൑ 1 െ 𝑉ଵ

ଶห𝑉ଵ ൌ 𝜈ൟ ൌ 𝑃൛𝑉ଶ
ଶ ൑ 1 െ 𝜈ଶൟ

ൌ 𝑃൛െ 1 െ 𝜈ଶ√ ൑ 𝑉ଶ ൑ 1 െ 𝜈ଶ√ ൟ

ൌ 1 െ 𝜈ଶ√

𝐸ሾ𝐼 |𝑉ଵሿ ൌ 1 െ 𝑉ଵ
ଶ

ට

𝐼 𝜋/4

1 െ 𝑉ଵ
ଶ

ට .

𝐸൥ 1 െ 𝑉ଵ
ଶ

ට ൩ ൌ ඲
െଵ

ଵ

1
2

1 െ 𝜈ଶඥ 𝑑𝜈 ൌ ඲

଴

ଵ

1 െ 𝑢ଶඥ 𝑑𝑢 ൌ 𝐸ቂ 1 െ 𝑈ଶඥ ቃ

𝑈 𝑛 𝑈

1 െ 𝑈ଶඥ 𝜋/4.

𝑛

1 െ 𝑉ଶඥ .
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The preceding estimator of  can be improved even further by noting that the

function  is a monotonically decreasing function of 

and so the method of antithetic variables will reduce the variance of the estimator

of  That is, rather than generating  random numbers and using the

average value of  as an estimator of  we would obtain an improved

estimator by generating only /2 random numbers  and then using one-half the

average of  as the estimator of 

The following table gives the estimates of  resulting from simulations, using

 based on the three estimators.

Method Estimate of 

Proportion of the random points that fall in the circle 3.1612

Average value of 3.128448

Average value of 3.139578

A further simulation using the final approach and  yielded the estimate

3.143288.

Again, suppose that we want to use simulation to estimate [ (X)], where 

 But suppose now that for some function  the expected value of (X) is

known—say, it is  Then, for any constant  we can also use

as an estimator of [ (X)]. Now,

Simple calculus shows that the foregoing is minimized when

𝜋

𝑔ሺ𝑢ሻ ൌ 1 െ 𝑢ଶ√ ,0 ൑ 𝑢 ൑ 1, 𝑢,

𝐸ሾ 1 െ 𝑈ଶඥ ሿ. 𝑛

1 െ 𝑈ଶඥ 𝜋/4,

𝑛 𝑈

1 െ 𝑈ଶඥ ൅ 1 െ ሺ1 െ 𝑈ሻଶට 𝜋/4.

𝜋

𝑛 ൌ 10,000,

𝜋

1 െ 𝑈ଶඥ

1 െ 𝑈ଶඥ ൅ 1 െ ሺ1 െ 𝑈ሻଶට

𝑛 ൌ 64,000

𝐸 𝑔 Xൌ

ሺ𝑋ଵ,   ... ,   𝑋௡ሻ. 𝑓, 𝑓

𝐸ሾ𝑓ሺ𝐗ሻሿ ൌ 𝜇. 𝑎,

𝑊 ൌ 𝑔ሺ𝐗ሻ ൅ 𝑎ሾ𝑓ሺ𝐗ሻ െ 𝜇ሿ

𝐸 𝑔

varሺ𝑊ሻ ൌ varሾ𝑔ሺ𝐗ሻሿ ൅ 𝑎ଶ varሾ𝑓ሺ𝐗ሻሿ ൅ 2𝑎 covሾ𝑔ሺ𝐗ሻ,  𝑓ሺ𝐗ሻሿ

(4.1)

𝑎 ൌ
െcovሾ𝑓ሺ𝐗ሻ,  𝑔ሺ𝐗ሻሿ

varሾ𝑓ሺ𝐗ሻሿ

(4.2)
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and for this value of 

Unfortunately, neither Var[ (X)] nor Cov[ (X)], (X)] is usually known, so we cannot

in general obtain the foregoing reduction in variance. One approach in practice is to

use the simulated data to estimate these quantities. This approach usually yields

almost all of the theoretically possible reduction in variance.

Let  be a continuous distribution function and  a uniform (0, 1) random variable.

Then the random variable  has distribution function  where  is that

value  such that  Applying this result, we can use the values of uniform (0,

1) random variables, called random numbers, to generate the values of other random

variables. This technique is called the inverse transform method.

Another technique for generating random variables is based on the rejection method.

Suppose that we have an efficient procedure for generating a random variable from

the density function  and that we desire to generate a random variable having

density function  The rejection method for accomplishing this starts by determining

a constant  such that

It then proceeds as follows:

1. Generate  having density 

2. Generate a random number 

3. If  set  and stop.

4. Return to step 1.

The number of passes through step 1 is a geometric random variable with mean 

Standard normal random variables can be efficiently simulated by the rejection

method (with  being exponential with mean 1) or by the technique known as the

polar algorithm.

To estimate a quantity  one often generates the values of a partial sequence of

𝑎,

varሺ𝑊ሻ ൌ varሾ𝑔ሺ𝐗ሻሿ െ
covሾ𝑓ሺ𝐗ሻ,  𝑔ሺ𝐗ሻሿଶ

varሾ𝑓ሺ𝐗ሻሿ

(4.3)

𝑓 𝑓 𝑔

𝐹 𝑈

𝐹െଵሺ𝑈ሻ 𝐹, 𝐹െଵሺ𝑢ሻ

𝑥 𝐹ሺ𝑥ሻ ൌ 𝑢.

𝑔

𝑓.

𝑐

max
𝑓ሺ𝑥ሻ
𝑔ሺ𝑥ሻ

൑ 𝑐

𝑌 𝑔.

𝑈.

𝑈 ൑ 𝑓ሺ𝑌ሻ/𝑐𝑔ሺ𝑌ሻ, 𝑋 ൌ 𝑌

𝑐.

𝑔

𝜃,
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random variables whose expected value is  The efficiency of this approach is

increased when these random variables have a small variance. Three techniques

that can often be used to specify random variables with mean  and relatively small

variances are

1. the use of antithetic variables,

2. the use of conditional expectations, and

3. the use of control variates.

𝜃.

𝜃

10.1. The following algorithm will generate a random permutation of the

elements  It is somewhat faster than the one presented in

Example 1a  but is such that no position is fixed until the algorithm

ends. In this algorithm,  can be interpreted as the element in

position 

Go to step 3.

a. Explain in words what the algorithm is doing.

b. Show that at iteration —that is, when the value of  is

initially set—  is a random permutation of

Hint: Use induction and argue that

10.2. Develop a technique for simulating a random variable having

density function

1, 2,  ... ,   𝑛.

𝑃ሺ𝑖ሻ

𝑖.

Set 

Set 

If  stop. Otherwise, let 

Generate a random number  and let

Step 1. 𝑘 ൌ 1.

Step 2. 𝑃ሺ1ሻ ൌ 1.

Step 3. 𝑘 ൌ 𝑛, 𝑘 ൌ 𝑘 ൅ 1.

Step 4. 𝑈
𝑃ሺ𝑘ሻ ൌ 𝑃ሺሾ𝑘𝑈ሿ ൅ 1ሻ

𝑃ሺሾ𝑘𝑈ሿ ൅ 1ሻ ൌ 𝑘

𝑘 𝑃ሺ𝑘ሻ

𝑃ሺ1ሻ,  𝑃ሺ2ሻ,   ... ,   𝑃ሺ𝑘ሻ
1, 2,  ... ,   𝑘.

𝑃௞൛𝑖ଵ,  𝑖ଶ,  ... ,  𝑖௝െଵ,  𝑘,  𝑖௝,  ... ,  𝑖௞െଶ,  𝑖ൟ

  ൌ 𝑃௞െଵ൛𝑖ଵ,  𝑖ଶ,  ... ,  𝑖௝െଵ,  𝑖,  𝑖௝,  ... ,  𝑖௞െଶൟ
1
𝑘

  ൌ
1
𝑘!
 by the induction hypothesis

𝑓ሺ𝑥ሻ ൌ ൝
𝑒ଶ௫ െ∞ ൏ 𝑥 ൏ 0

𝑒െଶ௫ 0 ൏ 𝑥 ൏ ∞
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10.3. Give a technique for simulating a random variable having the

probability density function

10.4. Present a method for simulating a random variable having

distribution function

10.5. Use the inverse transformation method to present an approach

for generating a random variable from the Weibull distribution

10.6. Give a method for simulating a random variable having failure

rate function
a. 
b. 
c. 
d. 

10.7. Let  be the distribution function

a. Give a method for simulating a random variable having

distribution  that uses only a single random number.

b. Let  be independent random numbers. Show that

c. Use part (b) to give a second method of simulating a random

variable having distribution 

10.8. Suppose it is relatively easy to simulate from  for each

 How can we simulate from

𝑓ሺ𝑥ሻ ൌ

⎧

⎨

⎩

⎪

⎪

1
2
ሺ𝑥 െ 2ሻ 2 ൑ 𝑥 ൑ 3

1
2
൬2 െ

𝑥
3
൰ 3 ൏ 𝑥 ൑ 6

0 otherwise

𝐹ሺ𝑥ሻ ൌ

⎧

⎨

⎩

⎪
⎪

⎪
⎪

0 𝑥 ൑ െ 3

1
2
൅
𝑥
6

െ3 ൏ 𝑥 ൏ 0

1
2
൅
𝑥ଶ

32
0 ൏ 𝑥 ൑ 4

1 𝑥 ൐ 4

𝐹ሺ𝑡ሻ ൌ 1 െ 𝑒െ௔௧
ഁ
 𝑡 ൒ 0

𝜆ሺ𝑡ሻ ൌ 𝑐;
λሺ𝑡ሻ ൌ 𝑐𝑡;
λሺ𝑡ሻ ൌ 𝑐𝑡ଶ;
λሺ𝑡ሻ ൌ 𝑐𝑡ଷ.

𝐹
𝐹ሺ𝑥ሻ ൌ 𝑥௡ 0 ൏ 𝑥 ൏ 1

𝐹

𝑈ଵ,   ... ,   𝑈௡
𝑃ሼmaxሺ𝑈ଵ,   ... ,   𝑈௡ሻ ൑ 𝑥ሽ ൌ 𝑥௡

𝐹.

𝐹௜
𝑖 ൌ 1,  ... ,   𝑛.
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a. 

b. 

10.9. Suppose we have a method for simulating random variables from

the distributions  and  Explain how to simulate from the

distribution

Give a method for simulating from

10.10. In Example 2c  we simulated the absolute value of a unit

normal by using the rejection procedure on exponential random

variables with rate 1. This raises the question of whether we could

obtain a more efficient algorithm by using a different exponential

density—that is, we could use the density  Show that the

mean number of iterations needed in the rejection scheme is minimized

when 

10.11. Use the rejection method with  to determine

an algorithm for simulating a random variable having density function

10.12. Explain how you could use random numbers to approximate

 where  is an arbitrary function.

Hint: If  is uniform on (0, 1), what is 

10.13. Let  be uniformly distributed in the circle of radius 1

centered at the origin. Its joint density is thus

Let  and  denote the polar

coordinates of ( ). Show that  and  are independent, with  being

uniform on (0, 1) and  being uniform on 

10.14. In Example 4a, we showed that

𝐹ሺ𝑥ሻ ൌ ෑ
௜ ൌ ଵ

௡

𝐹௜ሺ𝑥ሻ?

𝐹ሺ𝑥ሻ ൌ 1 െ ෑ
௜ ൌ ଵ

௡

ሾ1 െ 𝐹௜ሺ𝑥ሻሿ?

𝐹ଵ 𝐹ଶ.

𝐹ሺ𝑥ሻ ൌ 𝑝𝐹ଵሺ𝑥ሻ ൅ ሺ1 െ 𝑝ሻ𝐹ଶሺ𝑥ሻ 0 ൏ 𝑝 ൏ 1

𝐹ሺ𝑥ሻ ൌ

⎧

⎨

⎩

⎪

⎪

1
3
ሺ1 െ 𝑒െଷ௫ሻ ൅

2
3
𝑥 0 ൏ 𝑥 ൑ 1

4
1
3
ሺ1 െ 𝑒െଷ௫ሻ ൅

2
3

𝑥 ൐ 1

𝑔ሺ𝑥ሻ ൌ 𝜆𝑒െλ௫.

𝜆 ൌ 1.

𝑔ሺ𝑥ሻ ൌ 1,0 ൏ 𝑥 ൏ 1,

𝑓ሺ𝑥ሻ ൌ ൝
60𝑥ଷሺ1 െ 𝑥ሻଶ 0 ൏ 𝑥 ൏ 1

0 otherwise

଴׬
ଵ
𝑘ሺ𝑥ሻ𝑑𝑥, 𝑘ሺ𝑥ሻ

𝑈 𝐸ሾ𝑘ሺ𝑈ሻሿ?

ሺ𝑋,  𝑌ሻ

𝑓ሺ𝑥,𝑦ሻ ൌ
1
𝜋

0 ൑ 𝑥ଶ ൅ 𝑦ଶ ൑ 1

𝑅 ൌ ሺ𝑋ଶ ൅ 𝑌ଶሻଵ/ଶ 𝜃 ൌ െଵሺ𝑌/𝑋ሻ

𝑋, 𝑌 𝑅 𝜃 𝑅ଶ

𝜃 ሺ0,2𝜋ሻ.
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when  is uniform  and  is uniform (0, 1). Now show that

and find their common value.

10.15.

a. Verify that the minimum of (4.1 ) occurs when  is as given by

(4.2 ).

b. Verify that the minimum of (4.1 ) is given by (4.3 ).

10.16. Let  be a random variable on (0, 1) whose density is 

Show that we can estimate  by simulating  and then taking

 as our estimate. This method, called importance sampling,

tries to choose  similar in shape to  so that  has a small

variance.

𝐸ሾሺ1 െ 𝑉ଶሻଵ/ଶሿ ൌ 𝐸ሾሺ1 െ 𝑈ଶሻଵ/ଶሿ ൌ
𝜋
4

𝑉 ሺ െ 1,1ሻ 𝑈

varሾሺ1 െ 𝑉ଶሻଵ/ଶሿ ൌ varሾሺ1 െ 𝑈ଶሻଵ/ଶሿ

𝑎

𝑋 𝑓ሺ𝑥ሻ.

଴׬
ଵ
𝑔ሺ𝑥ሻ𝑑𝑥 𝑋

𝑔ሺ𝑋ሻ/𝑓ሺ𝑋ሻ

𝑓 𝑔, 𝑔ሺ𝑋ሻ/𝑓ሺ𝑋ሻ

10.1. The random variable  has probability density function

a. Find the value of the constant 

b. Give a method for simulating such a random variable.

10.2. Give an approach for simulating a random variable having probability

density function

10.3. Give an efficient algorithm to simulate the value of a random variable

with probability mass function

10.4. If  is a normal random variable with mean  and variance  define a

random variable  that has the same distribution as  and is negatively

correlated with it.

10.5. Let  and  be independent exponential random variables with mean 1.

a. Explain how we could use simulation to estimate 

b. Show how to improve the estimation approach in part (a) by using a

control variate.

𝑋
𝑓ሺ𝑥ሻ ൌ 𝐶𝑒௫ 0 ൏ 𝑥 ൏ 1

𝐶.

𝑓ሺ𝑥ሻ ൌ 30ሺ𝑥ଶ െ 2𝑥ଷ ൅ 𝑥ସሻ 0 ൏ 𝑥 ൏ 1

𝑝ଵ ൌ .15 𝑝ଶ ൌ .2 𝑝ଷ ൌ .35 𝑝ସ ൌ .30

𝑋 𝜇 𝜎ଶ,

𝑌 𝑋

𝑋 𝑌

𝐸ሾ𝑒௑௒ሿ.
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[1] Ross, S. M. Simulation. 5th ed. San Diego: Academic Press, Inc., 2012.

1. 67,600,000; 19,656,000

2. 1296

4. 24; 4

5. 144; 18

6. 2401

7. 720; 72; 144; 72

8. 120; 1260; 34,650

9. 27,720

10. 40,320; 10,080; 1152; 2880; 384

11. 720; 72; 144

12. 280, 270

13. 89

14. 24,300,000; 17,100,720

15. 190

16. 2,598,960

18. 42; 94

19. 604,800

20. 600

21. 896; 1000; 910

22. 36; 26

23. 35

24. 18

25. 48

28. 

30. 27,720

31. 65,536; 2520

32. 12,600; 945

33. 564,480

34. 165; 35

35. 1287; 14,112

52!/ሺ13!ሻସ
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36. 220; 572

9. 74

10. .4; .1

11. 70; 2

12. .5; .32; 149/198

13. 20,000; 12,000; 11,000; 68,000; 10,000

14. 1.057

15. .0020; .4226; .0475; .0211; .00024

17. .1102

18. .048

19. 5/18

20. .9052

22. 

23. 5/12

25. .4

26. .492929

28. .0888; .2477; .1244; .2099

30. 1/18; 1/6; 1/2

31. 2/9; 1/9

33. 70/323

34. .000547

36. .0045; .0588

37. .0833; .5

38. 4

39. .48

40. .8134; .1148

41. .5177

44. .3; .2; .1

46. 5

47. .1399

48. .00106

49. .4329

50. 

52. .2133841

53. 12/35

54. .0511

55. .2198; .0342

ሺ𝑛 ൅ 1ሻ/2௡

2.6084 ൈ 10െ଺
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1. 1/3

2. 1/6; 1/5; 1/4; 1/3; 1/2; 1

3. .339

5. 6/91

6. 1/2

7. 2/3

8. 1/2

9. 7/11

10. .22

11. 1/17; 1/33

12. 2/3

13. .504; .3629

15. 35/768; 35/128

16. .4848

17. .9835

18. .0792; .264

19. .331; .383; .286; .4862

20. 44.29; 41.18

21. .4; 1/26

22. .496; 3/14; 9/62

23. 5/9; 1/6; 5/54

24. 4/9; 1/2

26. 1/3; 1/2

28. 20/21; 40/41

30. 3/128; 29/1536

31. .0893

32. 7/12; 3/5

35. .76, 49/76

36. 27/31

37. .62, 10/19

38. 1/2

39. 1/3; 1/5; 1

40. 12/37

41. 46/185

42. 3/13; 5/13; 5/52; 15/52

43. 43/459

44. 1.03 percent; .3046

45. 4/9

47. .58; 28/58
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50. 2/3

52. .175; 38/165; 17/33

53. .65; 56/65; 8/65; 1/65; 14/35; 12/35; 9/35

54. 

55. 3/20; 17/27

56. .40; 17/40; 3/8; 0.08825

57. 

58. 

60. 9

62. (c) 2/3

65. 2/3; 1/3; 3/4

66. 1/6; 3/20

69. .4375

73. (i) 9/128, 9/128, 18/128, 110/128 (ii) 1/32, 1/32, 1/16, 15/16

74. 1/9; 1/18

76. 1/16; 1/32; 5/16; 1/4; 31/32

77. 9/19

78. 3/4, 7/12

81. 

82. .5550

86. .5; .6; .8

87. 9/19; 6/19; 4/19; 7/15; 53/165; 7/33

91. 9/16

94. 97/142; 15/26; 33/102

95. 

96. 

1
4
ሺ2𝑝ଷ ൅ 𝑝ଶ ൅ 𝑝ሻ

𝑝ଷ/ሾ𝑝ଷ ൅ ሺ1 െ 𝑝ሻଷሿ; ሾ𝑝ଷሺ1 െ ሺ1 െ 𝑝ሻସሻ ൅ ሺ1 െ 𝑝ሻଷ

ሺ1 െ 𝑝ସሻሿ/ሾ𝑝ଷ ൅ ሺ1 െ 𝑝ሻଷሿ

ሺ1/2ሻ/ሺ1 െ ሺ1/2ሻ௡െଵሻ

2𝑝ଷሺ1 െ 𝑝ሻ ൅ 2𝑝ሺ1 െ 𝑝ሻଷ; 𝑝ଶ/ሺ1 െ 2𝑝 ൅ 2𝑝ଶሻ

1
𝑛
ሺ1 െ ሺ1 െ 𝑝ሻ௡ሻ

𝑝1ሺ1 െ 𝑝2ሻ െ 𝑝ଵ𝑝ଶ/2; 𝑝ଶ/ሺ2 െ 𝑝ଶሻ

1. 

4. (a) 1/2; 5/18; 5/36; 5/84; 5/252; 1/252; 0; 0; 0; 0

5. 

6. 

11b. 

12. 

13. 

𝑝ሺ4ሻ ൌ 6/91; 𝑝ሺ2ሻ ൌ 8/91; 𝑝ሺ1ሻ ൌ 32/91; 𝑝ሺ0ሻ ൌ 1/91; 𝑝ሺ െ 1ሻ ൌ 16/91;

𝑝ሺ െ 2ሻ ൌ 28/91

𝑛 െ 2𝑖; 𝑖 ൌ 0,...,𝑛

𝑝ሺ3ሻ ൌ 𝑝ሺ െ 3ሻ ൌ 1/8; 𝑝ሺ1ሻ ൌ 𝑝ሺ െ 1ሻ ൌ 3/8

ଵ଴
ሺ𝑗 ൅ 1ሻ

𝑝ሺ4ሻ ൌ 1/16; 𝑝ሺ3ሻ ൌ 1/8; 𝑝ሺ2ሻ ൌ 1/16; 𝑝ሺ0ሻ ൌ 1/2; 𝑝ሺ െ 𝑖ሻ ൌ 𝑝ሺ𝑖ሻ;

𝑝ሺ0ሻ ൌ 1

𝑝ሺ0ሻ ൌ .28; 𝑝ሺ500ሻ ൌ .27, 𝑝ሺ1000ሻ ൌ .315; 𝑝ሺ1500ሻ ൌ .09;
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14. 

16. 

17. 1/4; 1/6; 1/12; 1/2

19. 1/2; 1/10; 1/5; 1/10; 1/10

20. .5918; no; 

21. 39.28; 37

24. 

25. .46, 1.3

27. 

28. 3/5

31. 

32. 

33. 3

35. 

38. 82.2; 84.5

40. 3/8

41. 11/243

43. 2.8; 1.476

46. 3

52. 17/12; 99/60

53. 1/10; 1/10

54. 

56. 

57. 

58. .03239

59. 110;

63. .8886

64. .4082

66. .0821; .2424

68. .3935; .2293; .3935

69. 

70. 

71. 

73. 

74. .1500; .1012

76. 5.8125

77. 32/243; 4864/6561; 160/729; 160/729

84. 3/10; 5/6; 75/138

85. .3439

86. 1.5

𝑝ሺ2000ሻ ൌ .045

𝑝ሺ0ሻ ൌ 1/2; 𝑝ሺ1ሻ ൌ 1/6; 𝑝ሺ2ሻ ൌ 1/12; 𝑝ሺ3ሻ ൌ 1/20; 𝑝ሺ4ሻ ൌ 1/5

𝑘/ሺ𝑘 ൅ 1ሻ!, 1 ൑ 𝑘 ൏ 𝑛, 1/𝑛!, 𝑘 ൌ 𝑛

െ .108

𝑝 ൌ 11/18; maximum ൌ 23/72

𝐴ሺ𝑝 ൅ 1/10ሻ

𝑝*

11 െ 10ሺ.9ሻଵ଴

െ .067; 1.089

𝑒െ .ଶ; 1 െ 1.2𝑒െ .ଶ

1 െ 𝑒െ .଺; 1 െ 𝑒െଶଵଽ.ଵ଼

𝑒െଶଶ;  1 െ 3.2𝑒െଶଶ

2/ሺ2𝑛 െ 1ሻ; 2/ሺ2𝑛 െ 2ሻ; 𝑒െଵ

2/𝑛; ሺ2𝑛 െ 3ሻ/ሺ𝑛 െ 1ሻଶ; 𝑒െଶ

𝑒െଵ଴௘
െఱ

𝑝 ൅ ሺ1 െ 𝑝ሻ𝑒െఒ௧
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89. .1793; 1/3; 4/3

2. 

3. no; no

4. 1/2, .8999

5. 

6. 

7. 3/5; 6/5

8. 2

10. 2/3; 2/3

11. 2/5

13. 2/3; 1/3

15. .7977; .6827; .3695; .9522; .1587

16. 

17. .315; .136

18. 22.66

19. 14.56

20. .9994; .75; .977

22. .974

23. .9253; .1762

26. .0606; .0525

28. .8363

29. .9993

32. 

33. exponential with parameter 1

34. 

35. exponential with parameter 

39. 3/5

41. 

42. 1/

3.5𝑒െହ/ଶ

1 െ ሺ.01ሻଵ/ହ

4,0, ∞

ሺ.9938ሻଵ଴

𝑒െଵ; 𝑒െଵ/ଶ

𝑒െଵ; 1/3

𝜆/𝑐

𝑎 ൌ െ 2, 𝑏 ൌ 22

𝑦

2. (a) 14/39; 10/39; 10/39; 5/39 (b) 84; 70; 70; 70; 40; 40; 40; 15 all divided

by 429

3. 15/26; 5/26; 5/26; 1/26

4. (a) 64/169; 40/169; 40/169; 25/169

6. .20, .30, .30, .20; .18, .30, .31, .21; 2.5; 2.55; 1.05; 1.0275

7. 𝑝ሺ𝑖,𝑗ሻ ൌ 𝑝ଶሺ1 െ 𝑝ሻ௜൅௝
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8. 

9. 

10. 

12. 

13. 1/6; 1/2

15. 

16. 

17. 1/3

19. –

21. 2/5; 2/5

22. no; 1/3

23. 1/2; 2/3; 1/20; 1/18

25. 

28.  1

29. .0326

30. .3772; .2061

31. .0829; .3766

32. 5/16; .0228

33. 

34. 

35. (a) .6572; (b) yes; (d) .2402

36. .9346

37. 

39. 5/13; 8/13

40. 1/6; 5/6; 1/4; 3/4

45. 

46. 

50. 

51. .79297

52. 

56. 

57. 

60. (a) 

𝑐 ൌ 1/8; 𝐸ሾ𝑋ሿ ൌ 0

ሺ12𝑥ଶ ൅ 6𝑥ሻ/7; 15/56; .8625; 5/7; 8/7

1/2; 1 െ 𝑒െ௔

39.3𝑒െହ

𝜋/4

𝑛ሺ1/2ሻ௡െଵ

Inሺ𝑦ሻ,  0 ൏ 𝑦 ൏ 1; 1,  0 ൏ 𝑥 ൏ 1;1/2; 1/4

𝑒െଵ/𝑖!
1
2
𝑒െ௧; െ3𝑒െଶ

𝑃ሺ𝑋ଵ ൅ 𝑋ଶ ൐ 25ሻ; 𝑃ሺ𝑋ଵ ൐ 15ሻ

20 ൅ 5 2√

𝑒െଶ; 1 െ 3𝑒െଶ

ሺ𝑦 ൅ 1ሻଶ𝑥𝑒െ௫ሺ௬൅ଵሻ; 𝑥𝑒െ௫௬; 𝑒െ௔

1/2 ൅ 3𝑦/ሺ4𝑥ሻ െ 𝑦ଷ/ሺ4𝑥ଷሻ

ሺሺ𝐿 െ 2𝑑ሻ/𝐿ሻଷ

1 െ 𝑒െହఒ௔; ሺ1 െ 𝑒െఒ௔ሻ
ହ

𝑟/𝜋

𝑟

𝑢/ሺ𝜈 ൅ 1ሻଶ

1. 52.5/12

2. 324; 198.8

3. 1/2; 1/4; 0

4. 1/6; 1/4; 1/2

730 of 848



5. 3/2

6. 35

7. .9; 4.9; 4.2

8. 

10. .6; 0

11. 

12. 

14. 

15. 1/2

18. 4

21. .9301; 87.5755

22. 14.7

23. 147/110

26. 

29.  12; 4; 

31. 175/6

33. 14, 45

34. 20/19; 360/361

35. 21.2; 18.929; 49.214

36. 

37. 0

38. 1.94, 2.22; .6964, .6516; .0932; .1384

40. 1/8

43. 6; 112/33

44. 100/19; 16,200/6137; 10/19; 3240/6137

47. 1/2; 0

49. 

50. 6; 7; 5.8192

51. 6.07

52. 

53. 

55. 12

56. 8

58. 

59. 12.5

64.

65. 

68. 

ሺ1 െ ሺ1 െ 𝑝ሻேሻ/𝑝

2ሺ𝑛 െ 1ሻ𝑝ሺ1 െ 𝑝ሻ

ሺ3𝑛ଶ െ 𝑛ሻ/ሺ4𝑛 െ 2ሻ, 3𝑛ଶ/ሺ4𝑛 െ 2ሻ

𝑚/ሺ1 െ 𝑝ሻ

𝑛/ሺ𝑛 ൅ 1ሻ; 1/ሺ𝑛 ൅ 1ሻ
437
35

;
123
35

െ𝑛/36

1/ሺ𝑛 െ 1ሻ

2𝑦ଶ

𝑦ଷ/4

𝑁ሺ1 െ 𝑒െଵ଴/ேሻ

𝑝 ൅ 1,  ෍
௜ൌ଴

ସ
ቆ

4

𝑖
ቇ𝑝௜ሺ1 െ 𝑝ሻସെ௜𝑒െሺସ൅௜ሻሺ4 ൅ 𝑖ሻ଺/6!; ሺ1 ൅ 𝑝ሻ/ሺ1 െ 𝑝ሻ; ሺሺ1 െ 𝑝ሻ𝑒ሻ/ሺ𝑒ଶ െ 𝑝ሻ

1/2;  1/3;  1/ሺ𝑛ሺ𝑛 ൅ 1ሻሻ

െ96/145

731 of 848



70. 4.2; 5.16

71. 218

72. 

74. 1/2; 1/16; 2/81

75. 1/2, 1/3

77. 

78.  yes; 

84. .151; .141

𝑥ሾ1 ൅ ሺ2𝑝 െ 1ሻଶሿ
௡

1/𝑖; ሾ𝑖ሺ𝑖 ൅ 1ሻሿെଵ;∞

𝜇; 1 ൅ 𝜎ଶ; 𝜎ଶ

1. 

2. 

3. 

4. 

5. .1416

6. .9431

7. .3085

8. .6932

9. 

10. 117

11. 

13. .0162; .0003; .2514; .2514

14. 

16. .013; .018; .691

18. 

23. .769; .357; .4267; .1093; .112184

24. answer is (a)

൒ 19/20

15/17;   ൒ 3/4;   ൒ 10

൒ 3

൑ 4/3;  .8428

ሺ258ሻଶ

൒ .057

𝑛 ൒ 23

൑ .2

1. 1/9; 5/9

3. .9953; .9735; .9098; .7358

10. (b)1/6

14. 2.585; .5417; 3.1267

15. 5.5098
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1.1.

a. There are 4! different orderings of the letters C, D, E, F. For each of

these orderings, we can obtain an ordering with A and B next to each

other by inserting A and B, either in the order A, B or in the order B, A,

in any of 5 places, namely, either before the first letter of the

permutation of C, D, E, F, or between the first and second, and so on.

Hence, there are  arrangements. Another way of solving

this problem is to imagine that B is glued to the back of A. Then there

are 5! orderings in which A is immediately before B. Since there are

also 5! orderings in which B is immediately before A, we again obtain a

total of  different arrangements.

b. There are  possible arrangements, and since there are as

many with A before B as with B before A, there are 360 arrangements.

c. Of the 720 possible arrangements, there are as many that have A

before B before C as have any of the 3! possible orderings of A, B, and

C. Hence, there are  possible orderings.

d. Of the 360 arrangements that have A before B, half will have C before

D and half D before C. Hence, there are 180 arrangements having A

before B and C before D.

e. Gluing B to the back of A and D to the back of C yields  different

orderings in which B immediately follows A and D immediately follows

C. Since the order of A and B and of C and D can be reversed, there

are  different arrangements.

f. There are 5! orderings in which E is last. Hence, there are

 orderings in which E is not last.

1.2.  3! 4! 3! 3!, since there are 3! possible orderings of countries and then

the countrymen must be ordered.

1.3.
a. 
b.  The result of part (b) follows because there

are  choices not including A or B and there are  choices

in which a specified one of A and B, but not the other, serves. The latter

follows because the serving member of the pair can be assigned to any

of the 3 offices, the next position can then be filled by any of the other 8

people, and the final position by any of the remaining 7.
c. 

2 ⋅ 5 ⋅ 4! ൌ 240

2 ⋅ 5! ൌ 240

6! ൌ 720

720/6 ൌ 120

4! ൌ 24

4 ⋅ 24 ൌ 96

6! െ 5! ൌ 600

10 ⋅ 9 ⋅ 8 ൌ 720
8 ⋅ 7 ⋅ 6 ൅ 2 ⋅ 3 ⋅ 8 ⋅ 7 ൌ 672.

8 ⋅ 7 ⋅ 6 3 ⋅ 8 ⋅ 7

8 ⋅ 7 ⋅ 6 ൅ 3 ⋅ 2 ⋅ 8 ൌ 384.
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d. 
e. 

1.4.

a. 

b. 

1.5.

1.6.  There are  choices of the three places for the letters. For

each choice, there are  different license plates. Hence, altogether

there are  different plates.

1.7.  Any choice of  of the  items is equivalent to a choice of 

namely, those items not selected.

1.8.

a. 

b.  since there are  choices of the  places to put the zeroes

and then each of the other  positions can be any of the digits

1.9.

a. 

b. 

c. 

d. 

e. 

1.10.  There are  numbers in which no digit is repeated. There

are  numbers in which only one specified digit appears twice, so

there are  numbers in which only a single digit appears twice.

There are  numbers in which two specified digits appear twice, so there

3 ⋅ 9 ⋅ 8 ൌ 216.
9 ⋅ 8 ⋅ 7 ൅ 9 ⋅ 8 ൌ 576.

ቆ
10

7
ቇ

ቆ
5

3
ቇቆ

5

4
ቇ ൅ ቆ

5

4
ቇቆ

5

3
ቇ ൅ ቆ

5

5
ቇቆ

5

2
ቇ

ቆ
7

3,2,2
ቇ ൌ 210

ቆ
7

3
ቇ ൌ 35

ሺ26ሻଷሺ10ሻସ

35 ⋅ ሺ26ሻଷ ⋅ ሺ10ሻସ

𝑟 𝑛 𝑛 െ 𝑟,

10 ⋅ 9 ⋅ 9⋯9 ൌ 10 ⋅ 9௡െଵ

ቆ
𝑛

𝑖
ቇ9௡െ௜, ቆ

𝑛

𝑖
ቇ 𝑖

𝑛 െ 𝑖
1, . . . , 9.

ቆ
3𝑛

3
ቇ

3ቆ
𝑛

3
ቇ

ቆ
3

1
ቇቆ

2

1
ቇቆ
𝑛

2
ቇቆ
𝑛

1
ቇ ൌ 3𝑛ଶሺ𝑛 െ 1ሻ

𝑛ଷ

ቆ
3𝑛

3
ቇ ൌ 3ቆ

𝑛

3
ቇ ൅ 3𝑛ଶሺ𝑛 െ 1ሻ ൅ 𝑛ଷ

9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5

ቆ
5

2
ቇ ⋅ 8 ⋅ 7 ⋅ 6

9ቆ
5

2
ቇ ⋅ 8 ⋅ 7 ⋅ 6

7 ⋅
5!

2!2!
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are  numbers in which two digits appear twice. Thus, the answer is

1.11.

a. We can regard this as a seven-stage experiment. First choose the 

married couples that have a representative in the group, and then

select one of the members of each of these couples. By the

generalized basic principle of counting, there are  different

choices.

b. First select the  married couples that have a representative in the

group, and then select the  of those couples that are to contribute a

man. Hence, there are  different choices. Another

way to solve this is to first select  men and then select  women not

related to the selected men. This shows that there are

 different choices.

1.12.  The first term gives the number of

committees that have 3 women and 3 men; the second gives the number that

have 4 women and 2 men.

1.13.  (number of solutions of  (number of solutions of

 (number of solutions of  = 

1.14.  ince there are  positive vectors whose sum is  there must be

 such vectors. But  is the number of subsets of size 

from the set of numbers  in which  is the largest element in the

subset. Consequently,  is just the total number of subsets of size

 from a set of size  showing that the preceding answer is equal to 

1.15.  Let us first determine the number of different results in which 

people pass. Because there are  different groups of size  and ! possible

ቆ
9

2
ቇ 7 ⋅

5!
2!2!

9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5 ൅ 9 ቆ
5

2
ቇ ⋅ 8 ⋅ 7 ⋅ 6 ൅ ቆ

9

2
ቇ 7 ⋅

5!
2!2!

6

 ቆ
10

6
ቇ2଺

6

3

ቆ
10

6
ቇቆ

6

3
ቇ ൌ

10!
4!3!3!

3 3

ቆ
10

3
ቇቆ

7

3
ቇ ൌ

10!
3!3!4!

ቆ
8

3
ቇቆ

7

3
ቇ ൅ ቆ

8

4
ቇቆ

7

2
ቇ ൌ 3430.

𝑥ଵ ൅ ⋯ ൅ 𝑥ହ ൌ 4ሻ

𝑥ଵ ൅ ⋯ ൅ 𝑥ହ ൌ 5ሻ 𝑥ଵ ൅ ⋯ ൅ 𝑥ହ ൌ 6ሻ ቆ
8

4
ቇቆ

9

4
ቇቆ

10

4
ቇ.

ቆ
𝑗 െ 1

𝑛 െ 1
ቇ 𝑗,

෍
௝ ൌ ௡

௞

ቆ
𝑗 െ 1

𝑛 െ 1
ቇ ቆ

𝑗 െ 1

𝑛 െ 1
ቇ 𝑛

ሼ1, . . . ,𝑘ሽ 𝑗

෍
௝ ൌ ௡

௞

ቆ
𝑗 െ 1

𝑛 െ 1
ቇ

𝑛 𝑘, ቆ
𝑘

𝑛
ቇ.

𝑘

ቆ
𝑛

𝑘
ቇ 𝑘 𝑘
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orderings of their scores, it follows that there are  possible results in

which  people pass. Consequently, there are  possible results.

1.16.  The number of subsets of size  is  Because the

number of these that contain none of the first five elements is 

the number that contain at least one is 3480. Another way to solve this

problem is to note that there are  that contain exactly  of the first

five elements and sum this for 

1.17.  Multiplying both sides by  we must show that

This follows because the right side is equal to

For a combinatorial argument, consider a group of  items and a subgroup of

 of the  items. Then  is the number of subsets of size  that contain 

items from the subgroup of size  is the number that contain  item

from the subgroup, and  is the number that contain  items from the

subgroup. Adding these terms gives the total number of subgroups of size 

namely, 

1.18.  There are  choices that can be made from families consisting of a

single parent and 1 child; there are  choices that can be made from

families consisting of a single parent and 2 children; there are 

choices that can be made from families consisting of 2 parents and a single

child; there are  choices that can be made from families

consisting of 2 parents and 2 children; there are  choices that can

be made from families consisting of 2 parents and 3 children. Hence, there

are 83 possible choices.

1.19.  First choose the  positions for the digits, and then put in the letters

and digits. Thus, there are  different plates.

If the digits must be consecutive, then there are  possible positions for the

digits, showing that there are now  different

plates.

ቆ
𝑛

𝑘
ቇ𝑘!

𝑘 ෍
௞ ൌ ଴

௡

ቆ
𝑛

𝑘
ቇ𝑘!

4 ቆ
20

4
ቇ ൌ 4845.

ቆ
15

4
ቇ ൌ 1365,

ቆ
5

𝑖
ቇቆ

14

4 െ 𝑖
ቇ 𝑖

𝑖 ൌ 1, 2, 3, 4.

2,
𝑛ሺ𝑛 െ 1ሻ ൌ 𝑘ሺ𝑘 െ 1ሻ ൅ 2𝑘ሺ𝑛 െ 𝑘ሻ ൅ ሺ𝑛 െ 𝑘ሻሺ𝑛 െ 𝑘 െ 1ሻ

𝑘ଶሺ1 െ 2 ൅ 1ሻ ൅ 𝑘ሺ െ 1 ൅ 2𝑛 െ 𝑛 െ 𝑛 ൅ 1ሻ ൅ 𝑛ሺ𝑛 െ 1ሻ

𝑛

𝑘 𝑛 ቆ
𝑘

2
ቇ 2 2

𝑘, 𝑘ሺ𝑛 െ 𝑘ሻ 1

ቆ
𝑛 െ 𝑘

2
ቇ 0

2,

ቆ
𝑛

2
ቇ.

3

3 ⋅ 1 ⋅ 2 ൌ 6

5 ⋅ 2 ⋅ 1 ൌ 10

7 ⋅ 2 ⋅ 2 ൌ 28

6 ⋅ 2 ⋅ 3 ൌ 36

3

 ቆ
8

3
ቇ ⋅ 26 ⋅ 25 ⋅ 24 ⋅ 23 ⋅ 22 ⋅ 10 ⋅ 9 ⋅ 8 

6

 6 ⋅ 26 ⋅ 25 ⋅ 24 ⋅ 23 ⋅ 22 ⋅ 10 ⋅ 9 ⋅ 8 
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1.20.

a. Follows since  is the number of  letter permutations of the

values  in which  appears  times, 

b. 

1.21.  giving that

𝑛!
𝑥ଵ !⋯𝑥௥ !

𝑛

1, . . . ,𝑟 𝑖 𝑥௜ ෍
௜ൌଵ

௥
 𝑥௜ ൌ 𝑛.

෍
௫భ൅ . . . ൅௫ೝ ൌ௡

𝑛!
𝑥ଵ !⋯𝑥௥ !

ൌ ሺ1 ൅ . . . ൅ 1ሻ௡ ൌ 𝑟௡.

ሺ1 െ 1ሻ௡ ൌ 1 െ ቆ
𝑛

1
ቇ ൅ ቆ

𝑛

2
ቇ ൅ . . . ൅ ሺ െ 1ሻ௡ቆ

𝑛

𝑛
ቇ,

ቆ
𝑛

1
ቇ െ ቆ

𝑛

2
ቇ ൅ . . . ൅ ሺ െ 1ሻ௡൅ଵቆ

𝑛

𝑛
ቇ ൌ 1.

2.1.
a. 
b. 
c. 
d. 

e. 8

f. 

2.2.  Let  be the event that a suit is purchased,  be the event that

a shirt is purchased, and  be the event that a tie is purchased. Then

a. 
b. The probability that two or more items are purchased is

Hence, the probability that exactly 1 item is purchased is

2.3.  By symmetry, the 14th card is equally likely to be any of the 52

cards; thus, the probability is 4/52. A more formal argument is to count

the number of the 52! outcomes for which the 14th card is an ace. This

yields

Letting  be the event that the first ace occurs on the 14th card, we

have

2 ⋅ 3 ⋅ 4 ൌ 24
2 ⋅ 3 ൌ 6
3 ⋅ 4 ൌ 12
𝐴𝐵 ൌ ሼሺ𝑐,  pasta,  𝑖ሻ, ሺ𝑐,  rice,  𝑖ሻ, ሺ𝑐,  potatoes,  𝑖ሻሽ

𝐴𝐵𝐶 ൌ ሼሺ𝑐,  rice,  𝑖ሻሽ

𝐴 𝐵

𝐶
𝑃ሺ𝐴 ∪ 𝐵 ∪ 𝐶ሻ ൌ .22 ൅ .30 ൅ .28 െ .11 െ .14 െ .10 ൅ .06 ൌ .51

1 െ .51 ൌ .49

𝑃ሺ𝐴𝐵 ∪ 𝐴𝐶 ∪ 𝐵𝐶ሻ ൌ .11 ൅ .14 ൅ .10 െ .06 െ .06

െ .06 ൅ .06 ൌ .23

.51 െ .23 ൌ .28.

𝑝 ൌ
4  ⋅  51  ⋅ 50 ⋯ 2  ⋅ 1

ሺ52ሻ!
ൌ

4
52

𝐴
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2.4.  Let  denote the event that the minimum temperature is 70

degrees. Then

Since  and  subtracting one of the preceding

equations from the other yields

or 

2.5.

a. 

b. 

2.6.  Let  be the event that both balls are red, and let  be the event

that both are black. Then

2.7.

a. 

b. 

c. 

2.8.

a. 

𝑃ሺ𝐴ሻ ൌ
48 ⋅ 47 ⋯ 36 ⋅ 4

52 ⋅ 51 ⋯ 40 ⋅ 39
ൌ .0312

𝐷

𝑃ሺ𝐴 ∪ 𝐵ሻ ൌ 𝑃ሺ𝐴ሻ ൅ 𝑃ሺ𝐵ሻ െ 𝑃ሺ𝐴𝐵ሻ ൌ .7 െ 𝑃ሺ𝐴𝐵ሻ

𝑃ሺ𝐶 ∪ 𝐷ሻ ൌ 𝑃ሺ𝐶ሻ ൅ 𝑃ሺ𝐷ሻ െ 𝑃ሺ𝐶𝐷ሻ ൌ .2 ൅ 𝑃ሺ𝐷ሻ െ 𝑃ሺ𝐷𝐶ሻ

𝐴 ∪ 𝐵 ൌ 𝐶 ∪ 𝐷 𝐴𝐵 ൌ 𝐶𝐷,

0 ൌ .5 െ 𝑃ሺ𝐷ሻ

𝑃ሺ𝐷ሻ ൌ .5.

52 ⋅ 48 ⋅ 44 ⋅ 40
52 ⋅ 51 ⋅ 50 ⋅ 49

ൌ .6761

52 ⋅ 39 ⋅ 26 ⋅ 13
52 ⋅ 51 ⋅ 50 ⋅ 49

ൌ .1055

𝑅 𝐵

𝑃ሺ𝑅 ∪ 𝐵ሻ ൌ 𝑃ሺ𝑅ሻ ൅ 𝑃ሺ𝐵ሻ ൌ
3 ⋅ 4

6 ⋅ 10
൅

3 ⋅ 6
6 ⋅ 10

ൌ 1/2

1

ቆ
40

8
ቇ
ൌ 1.3 ൈ 10െ଼

ቆ
8

7
ቇቆ

32

1
ቇ

ቆ
40

8
ቇ

ൌ 3.3 ൈ 10െ଺

ቆ
8

6
ቇቆ

32

2
ቇ

ቆ
40

8
ቇ

൅ 1.3 ൈ 10െ଼ ൅ 3.3 ൈ 10െ଺ ൌ 1.8 ൈ 10െସ

3  ⋅  4 ⋅  4  ⋅ 3

ቆ
14

4
ቇ

ൌ .1439
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b. 

c. 

2.9.  Let  and consider the experiment of randomly

choosing an element of  Then  and the results

follow from Propositions 4.3 and 4.4.

2.10.  Since there are  outcomes in which the position of

horse number 1 is specified, it follows that  Similarly,

 and  Hence, from Self-Test Problem

2.9 , we obtain 

2.11.  One way to solve this problem is to start with the

complementary probability that at least one suit does not appear. Let

 be the event that no cards from suit  appear. Then

The desired probability is then 1 minus the preceding. Another way to

solve is to let A be the event that all 4 suits are represented, and then

use

where  ( ), for instance, is the probability that the first card is

from a new suit, the second is from a new suit, the third is from a new

suit, the fourth is from an old suit (that is, one which has already

ቆ
4

2
ቇቆ

4

2
ቇ

ቆ
14

4
ቇ

ൌ .0360

ቆ
8

4
ቇ

ቆ
14

4
ቇ
ൌ .0699

𝑆 ൌ ∪
௜ ൌ ଵ

௡
𝐴௜,

𝑆. 𝑃ሺ𝐴ሻ ൌ 𝑁ሺ𝐴ሻ/𝑁ሺ𝑆ሻ,

5! ൌ 120

𝑁ሺ𝐴ሻ ൌ 360.

𝑁ሺ𝐵ሻ ൌ 120, 𝑁ሺ𝐴𝐵ሻ ൌ 2 ⋅ 4! ൌ 48.

𝑁ሺ𝐴 ∪ 𝐵ሻ ൌ 432.

𝐴௜, 𝑖 ൌ 1, 2, 3, 4, 𝑖

𝑃ቆ ∪
௜ ൌ ଵ

ସ
𝐴௜ቇ ൌ ෍

௜

𝑃ሺ𝐴௜ሻ െ෍
௝

෍
௜ : ௜ ழ ௝

𝑃൫𝐴௜𝐴௝൯

൅⋯ െ 𝑃ሺ𝐴ଵ𝐴ଶ𝐴ଷ𝐴ସሻ

ൌ 4
ቆ

39

5
ቇ

ቆ
52

5
ቇ
െ ቆ

4

2
ቇ
ቆ

26

5
ቇ

ቆ
52

5
ቇ
൅ ቆ

4

3
ቇ
ቆ

13

5
ቇ

ቆ
52

5
ቇ

ൌ 4
ቆ

39

5
ቇ

ቆ
52

5
ቇ
െ 6

ቆ
26

5
ቇ

ቆ
52

5
ቇ
൅ 4

ቆ
13

5
ቇ

ቆ
52

5
ቇ

𝑃ሺ𝐴ሻ ൌ 𝑃ሺ𝑛,  𝑛,  𝑛,  𝑛,  𝑜ሻ ൅ 𝑃ሺ𝑛,  𝑛,  𝑛,  𝑜,  𝑛ሻ ൅ 𝑃ሺ𝑛,  𝑛,  𝑜,  𝑛,  𝑛ሻ

൅𝑃ሺ𝑛,  𝑜,  𝑛,  𝑛,𝑛ሻ

𝑃 𝑛, 𝑛, 𝑛, 𝑜, 𝑛
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appeared) and the fifth is from a new suit. This gives

2.12.  There are  different divisions of the 10 players into a

first roommate pair, a second roommate pair, and so on. Hence, there

are  divisions into 5 roommate pairs. There are 

ways of choosing the frontcourt and backcourt players to be in the

mixed roommate pairs and then 2 ways of pairing them up. As there is

then 1 way to pair up the remaining two backcourt players and

 ways of making two roommate pairs from the remaining

four frontcourt players, the desired probability is

2.13.  Let  denote the event that letter  is repeated; similarly,

define the events  and  Then

2.14.  Let  Then

where the final equality uses the fact that the  are mutually exclusive.

The inequality then follows, since 

2.15.

𝑃ሺ𝐴ሻ ൌ
52  ⋅  39  ⋅  26  ⋅  13  ⋅  48  ൅  52  ⋅  39  ⋅  26  ⋅  36  ⋅  13

52  ⋅  51  ⋅  50  ⋅  49  ⋅  48

൅
52  ⋅  39  ⋅  24  ⋅  26  ⋅  13  ൅  52  ⋅  12  ⋅  39  ⋅  26  ⋅  13

52  ⋅  51  ⋅  50  ⋅  49  ⋅  48

ൌ
52  ⋅  39  ⋅  26  ⋅  13ሺ48  ൅  36  ൅  24  ൅  12ሻ

52  ⋅  51  ⋅  50  ⋅  49  ⋅  48

ൌ .2637

ሺ10ሻ!/2ହ

ሺ10ሻ!/ሺ5!2ହሻ ቆ
6

2
ቇቆ

4

2
ቇ

4!/ሺ2!2ଶሻ ൌ 3

𝑃ሼ2 mixed pairsሽ ൌ
ቆ

6

2
ቇ ቆ

4

2
ቇ ሺ2ሻሺ3ሻ

ሺ10ሻ!/ሺ5!2ହሻ
ൌ .5714

𝑅 𝑅

𝐸 𝑉.
𝑃ሼsame letterሽ ൌ 𝑃ሺ𝑅ሻ  ൅  𝑃ሺ𝐸ሻ  ൅  𝑃ሺ𝑉ሻ

ൌ
2
7

1
8
  ൅  

3
7

1
8
  ൅  

1
7

1
8
ൌ

3
28

𝐵ଵ ൌ 𝐴ଵ, 𝐵௜ ൌ 𝐴௜ቆ ∪
௝ ൌ ଵ

௜ െ ଵ
𝐴௝ቇ

௖

,𝑖 ൐ 1.

𝑃൬ ∪
௜ ൌ ଵ

ஶ 𝐴௜൰ ൌ 𝑃൬ ∪
௜ ൌ ଵ

ஶ 𝐵௜൰

ൌ ෍
௜ ൌ ଵ

ஶ

𝑃ሺ𝐵௜ሻ

൑ ෍
௜ ൌ ଵ

ஶ

𝑃ሺ𝐴௜ሻ

𝐵௜
𝐵௜ ⊂ 𝐴௜.
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2.16.  The number of partitions for which  is a subset is equal to

the number of partitions of the remaining  elements into 

nonempty subsets, namely,  Because there are 

partitions of  into  nonempty subsets and then a choice of

 of them in which to place element 1, it follows that there are

 partitions for which  is not a subset. Hence, the result

follows.

2.17.  Let  denote, respectively, the events that there are no

red, no white, and no blue balls chosen. Then

Thus, the probability that all colors appear in the chosen subset is

approximately 

2.18.

a. 

b. Because there are  nonblue balls, the probability is

c. Because there are  possible orderings of the different colors

and all possibilities for the final  balls are equally likely, the

probability is 

𝑃൬ ∩
௜ ൌ ଵ

ஶ 𝐴௜൰ ൌ 1 െ 𝑃൬൬ ∩
௜ ൌ ଵ

ஶ 𝐴௜൰
௖

൰

ൌ 1 െ 𝑃൬ ∪
௜ ൌ ଵ

ஶ 𝐴௜
௖൰

൒ 1 െ ෍
௜ ൌ ଵ

ஶ

𝑃ሺ𝐴௜௖ሻ

ൌ 1

ሼ1ሽ
𝑛 െ 1 𝑘 െ 1

𝑇௞െଵሺ𝑛 െ 1ሻ. 𝑇௞ሺ𝑛 െ 1ሻ

ሼ2, . . . , 𝑛 െ 1ሽ 𝑘

𝑘

𝑘𝑇௞ሺ𝑛 െ 1ሻ ሼ1ሽ

𝑅, 𝑊, 𝐵

𝑃ሺ𝑅 ∪𝑊 ∪ 𝐵ሻ ൌ 𝑃ሺ𝑅ሻ ൅ 𝑃ሺ𝑊ሻ ൅ 𝑃ሺ𝐵ሻ െ 𝑃ሺ𝑅𝑊ሻ

െ𝑃ሺ𝑅𝐵ሻ െ 𝑃ሺ𝑊𝐵ሻ ൅ 𝑃ሺ𝑅𝑊𝐵ሻ

ൌ
ቆ

13

5
ቇ

ቆ
18

5
ቇ
  ൅  

ቆ
12

5
ቇ

ቆ
18

5
ቇ
  ൅  

ቆ
11

5
ቇ

ቆ
18

5
ቇ
  െ  

ቆ
7

5
ቇ

ቆ
18

5
ቇ

െ 
ቆ

6

5
ቇ

ቆ
18

5
ቇ
  െ  

ቆ
5

5
ቇ

ቆ
18

5
ቇ

ൎ 0.2933

1 െ 0.2933 ൌ 0.7067.

8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4
17 ⋅ 16 ⋅ 15 ⋅ 14 ⋅ 13

ൌ
2

221
9

 
9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5

17 ⋅ 16 ⋅ 15 ⋅ 14 ⋅ 13
ൌ

9
442

.

3!

3

 
3! ⋅ 4 ⋅ 8 ⋅ 5
17 ⋅ 16 ⋅ 15

ൌ
4

17
.
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d. The probability that the red balls are in a specified 4 spots is

 Because there are  possible locations of the

red balls where they are all together, the probability is

2.19.

a. The probability that the 10 cards consist of  spades,  hearts, 

diamonds, and  club is  Because there

are  possible choices of the suits to have  and  cards,

respectively, it follows that the probability is

b. Because there are  choices of the two suits that are to

have  cards and then  choices for the suit to have  cards, the

probability is 

2.20.  All the red balls are removed before all the blue ones if and

only if the very last ball removed is blue. Because all  balls are

equally likely to be the last ball removed, the probability is 

 
4 ⋅ 3 ⋅ 2 ⋅ 1

17 ⋅ 16 ⋅ 15 ⋅ 14
.  14

 
14 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1
17 ⋅ 16 ⋅ 15 ⋅ 14

ൌ
1

170
. 

4 3 2

1  
ቆ

13

4
ቇቆ

13

3
ቇቆ

13

2
ቇቆ

13

1
ቇ

ቆ
52

10
ቇ

. 

4! 4,3,2, 1

 
24ቆ

13

4
ቇቆ

13

3
ቇቆ

13

2
ቇቆ

13

1
ቇ

ቆ
52

10
ቇ

. 

ቆ
4

2
ቇ ൌ 6

3 2 4

 
12ቆ

13

3
ቇቆ

13

3
ቇቆ

13

4
ቇ

ቆ
52

10
ቇ

. 

30

10/30.

3.1.

a. 

b. 

𝑃ሺno acesሻ ൌ ቆ
35

13
ቇ ቆ

39

13
ቇ

1 െ 𝑃ሺno acesሻ െ
4 ቆ

35

12
ቇ

ቆ
39

13
ቇ
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c. 

3.2.  Let  denote the event that the life of the battery is greater than

a. 

b. 

3.3.  Put 1 white and 0 black balls in urn one, and the remaining 9 white and

10 black balls in urn two.

3.4.  Let  be the event that the transferred ball is white, and let  be the

event that a white ball is drawn from urn . Then

3.5.

a.  since  and

 because  and  are mutually exclusive.

b. 

3.6.  Let  denote the event that ball  is black, and let  Then

3.7.  Let  denote the event that both cards are aces.

𝑃ሺ𝑖 acesሻ ൌ
ቆ

3

𝑖
ቇቆ

36

13 െ 𝑖
ቇ

ቆ
39

13
ቇ

𝐿௜
10,000 ൈ 𝑖 miles.

𝑃ሺ𝐿ଶ|𝐿ଵሻ ൌ 𝑃ሺ𝐿ଵ𝐿ଶሻ/𝑃ሺ𝐿ଵሻ ൌ 𝑃ሺ𝐿ଶሻ/𝑃ሺ𝐿ଵሻ ൌ 1/2
𝑃ሺ𝐿ଷ|𝐿ଵሻ ൌ 𝑃ሺ𝐿ଵ𝐿ଷሻ/𝑃ሺ𝐿ଵሻ ൌ 𝑃ሺ𝐿ଷሻ/𝑃ሺ𝐿ଵሻ ൌ 1/8

𝑇 𝑊

𝐵

𝑃ሺ𝑇 ||𝑊ሻ ൌ
𝑃ሺ𝑊 ||𝑇ሻ𝑃ሺ𝑇ሻ

𝑃ሺ𝑊||𝑇ሻ𝑃ሺ𝑇ሻ ൅ 𝑃ሺ𝑊||𝑇
௖ሻ𝑃ሺ𝑇௖ሻ

ൌ
ሺ2/7ሻሺ2/3ሻ

ሺ2/7ሻሺ2/3ሻ ൅ ሺ1/7ሻሺ1/3ሻ
ൌ 4/5

𝑃ሺ𝐸|𝐸 ∪ 𝐹ሻ ൌ
𝑃ሺ𝐸ሺ𝐸 ∪ 𝐹ሻሻ
𝑃ሺ𝐸 ∪ 𝐹ሻ

ൌ
𝑃ሺ𝐸ሻ

𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐹ሻ
𝐸ሺ𝐸 ∪ 𝐹ሻ ൌ 𝐸

𝑃ሺ𝐸 ∪ 𝐹ሻ ൌ 𝑃ሺ𝐸ሻ ൅ 𝑃ሺ𝐹ሻ 𝐸 𝐹

𝑃൫𝐸௝ห ∪௜ൌଵஶ 𝐸௜൯ ൌ
𝑃൫𝐸௝ሺ ∪௜ൌଵஶ 𝐸௜ሻ൯
𝑃ሺ ∪௜ൌଵஶ 𝐸௜ሻ

ൌ
𝑃൫𝐸௝൯

෍
௜ൌଵ

ஶ
𝑃ሺ𝐸௜ሻ

𝐵௜ 𝑖 𝑅௜ ൌ 𝐵௜
௖.

𝑃ሺ𝐵ଵ |𝑅ଶሻ ൌ
𝑃ሺ𝑅ଶ ||𝐵ଵሻ𝑃ሺ𝐵ଵሻ

𝑃ሺ𝑅ଶ||𝐵ଵሻ𝑃ሺ𝐵ଵሻ ൅ 𝑃ሺ𝑅ଶ||𝑅ଵሻ𝑃ሺ𝑅ଵሻ

ൌ
ሾ𝑟/ሾሺ𝑏 ൅ 𝑟 ൅ 𝑐ሻሿሾ𝑏/ሺ𝑏 ൅ 𝑟ሻሿ

ሾ𝑟/ሺ𝑏 ൅ 𝑟 ൅ 𝑐ሻሿሾ𝑏/ሺ𝑏 ൅ 𝑟ሻሿ ൅ ሾሺ𝑟 ൅ 𝑐ሻ/ሺ𝑏 ൅ 𝑟 ൅ 𝑐ሻሿሾ𝑟/ሺ𝑏 ൅ 𝑟ሻሿ

ൌ
𝑏

𝑏 ൅ 𝑟 ൅ 𝑐

𝐵
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a. 

b. Since the second card is equally likely to be any of the remaining 51, of

which 3 are aces, we see that the answer in this situation is also 3/51.

c. Because we can always interchange which card is considered first and

which is considered second, the result should be the same as in part

(b). A more formal argument is as follows:

d. 

3.8.

Hypothesis  is 1.5 times as likely.

3.9.  Let  denote the event that the plant is alive and let  be the event

that it was watered.

a. 

b. 

3.10.

a. Let  be the event that at least one red ball is chosen. Then

𝑃ሼ𝐵 | yes to ace of  spadesሽ ൌ
𝑃ሼ𝐵, yes to ace of  spadesሽ
𝑃ሼyes to ace of  spadesሽ

ൌ
ቆ

1

1
ቇቆ

3

1
ቇ

ቆ
52

2
ቇ

/
ቆ

1

1
ቇቆ

51

1
ቇ

ቆ
52

2
ቇ

ൌ 3/51

𝑃ሼ𝐵|second is aceሽ ൌ
𝑃ሼ𝐵, second is aceሽ
𝑃ሼsecond is aceሽ

ൌ
𝑃ሺ𝐵ሻ

𝑃ሺ𝐵ሻ ൅ 𝑃ሼϐirst is not ace, second is aceሽ

ൌ
ሺ4/52ሻሺ3/51ሻ

ሺ4/52ሻሺ3/51ሻ ൅ ሺ48/52ሻሺ4/51ሻ

ൌ 3/51

𝑃ሼ𝐵|at least oneሽ ൌ
𝑃ሺ𝐵ሻ

𝑃ሼat least oneሽ

ൌ
ሺ4/52ሻሺ3/51ሻ

1 െ ሺ48/52ሻሺ47/51ሻ

ൌ 1/33

𝑃ሺ𝐻 ||𝐸ሻ
𝑃ሺ𝐺 ||𝐸ሻ

ൌ
𝑃ሺ𝐻𝐸ሻ
𝑃ሺ𝐺𝐸ሻ

ൌ
𝑃ሺ𝐻ሻ𝑃ሺ𝐸 ||𝐻ሻ
𝑃ሺ𝐺ሻ𝑃ሺ𝐸 ||𝐺ሻ

𝐻

𝐴 𝑊

𝑃ሺ𝐴ሻ ൌ 𝑃ሺ𝐴||𝑊ሻ𝑃ሺ𝑊ሻ ൅ 𝑃ሺ𝐴||𝑊
௖ሻ𝑃ሺ𝑊௖ሻ

ൌ ሺ.85ሻ ሺ.9ሻ ൅ ሺ.2ሻ ሺ.1ሻ ൌ .785

𝑃ሺ𝑊௖ ||𝐴
௖ሻ ൌ

𝑃ሺ𝐴௖ ||𝑊
௖ሻ𝑃ሺ𝑊௖ሻ

𝑃ሺ𝐴௖ሻ

ൌ
ሺ.8ሻሺ.1ሻ

.215
ൌ

16
43

𝑅
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b. Let  be the event there are exactly  green balls chosen. Working

with the reduced sample space yields

3.11.  Let  be the event that the battery works, and let  and  denote the

events that the battery is a type  and that it is a type  battery, respectively.
a. 

b. 

3.12.  Let  be the event that Maria likes book  Then

Using that  is the union of the mutually exclusive events  and  we

see that

Thus,

3.13.

a. This is the probability that the last ball removed is blue. Because each

of the  balls is equally likely to be the last one removed, the

probability is 

b. This is the probability that the last red or blue ball to be removed is a

blue ball. Because it is equally likely to be any of the  red or blue

balls, the probability that it is blue is 

c. Let  denote, respectively, the events that the first color

removed is blue, the second is red, and the third is green. Then

where  is just the probability that the very last ball is green and

 is computed by noting that given that the last ball is green,

𝑃ሺ𝑅ሻ ൌ 1 െ 𝑃ሺ𝑅௖ሻ ൌ 1 െ
ቆ

22

6
ቇ

ቆ
30

6
ቇ

𝐺ଶ 2

𝑃ሺ𝐺ଶ|𝑅௖ሻ ൌ
ቆ

10

2
ቇቆ

12

4
ቇ

ቆ
22

6
ቇ

𝑊 𝐶 𝐷

𝐶 𝐷
 𝑃ሺ𝑊ሻ ൌ 𝑃ሺ𝑊 ||𝐶ሻ𝑃ሺ𝐶ሻ ൅ 𝑃ሺ𝑊 ||𝐷ሻ𝑃ሺ𝐷ሻ ൌ .7ሺ8/14ሻ ൅ .4ሺ6/14ሻ ൌ 4/7

𝑃ሺ𝐶|𝑊௖ሻ ൌ
𝑃ሺ𝐶𝑊௖ሻ
𝑃ሺ𝑊௖ሻ

ൌ
𝑃ሺ𝑊௖||𝐶ሻ𝑃ሺ𝐶ሻ

3/7
ൌ

.3ሺ8/14ሻ
3/7

ൌ .4

𝐿௜ 𝑖,𝑖 ൌ 1,2.

𝑃ሺ𝐿ଶ|𝐿ଵ
௖ሻ ൌ

𝑃ሺ𝐿ଵ
௖𝐿ଶሻ

𝑃ሺ𝐿ଵ
௖ሻ

ൌ
𝑃ሺ𝐿ଵ

௖𝐿ଶሻ
.4

𝐿ଶ 𝐿ଵ𝐿ଶ 𝐿ଵ
௖𝐿ଶ,

.5 ൌ 𝑃ሺ𝐿ଶሻ ൌ 𝑃ሺ𝐿ଵ𝐿ଶሻ ൅ 𝑃ሺ𝐿ଵ
௖𝐿ଶሻ ൌ .4 ൅ 𝑃ሺ𝐿ଵ

௖𝐿ଶሻ

𝑃ሺ𝐿ଶ ||𝐿ଵ
௖ሻ ൌ

.1

.4
ൌ .25

30

1/3.

30

1/3.

𝐵ଵ,  𝑅ଶ,  𝐺ଷ

𝑃ሺ𝐵ଵ𝑅ଶ𝐺ଷሻ ൌ 𝑃ሺ𝐺ଷሻ𝑃ሺ𝑅ଶ|𝐺ଷሻ𝑃ሺ𝐵ଵ|𝑅ଶ𝐺ଷሻ ൌ
8

38
20
30

ൌ
8

57

𝑃ሺ𝐺ଷሻ

𝑃ሺ𝑅ଶ ||𝐺ଷሻ
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each of the  red and  blue balls is equally likely to be the last of

that group to be removed, so the probability that it is one of the red

balls is  (Of course, 

d. 

3.14.  Let  be the event that the coin lands heads, let  be the event that

 is told that the coin landed heads, let  be the event that  forgets the result

of the toss, and let  be the event that  is told the correct result. Then

a. 

b. 

c. 

Now,

giving the result 

3.15.  Since the black rat has a brown sibling, we can conclude that both of

its parents have one black and one brown gene.

a. 

b. Let  be the event that all 5 offspring are black, let  be the event that

the black rat has 2 black genes, and let  be the event that it has 1

black and 1 brown gene. Then

3.16.  Let  be the event that a current flows from  to  and let  be the

event that relay  closes. Then

Now,

20 10

20/30. 𝑃ሺ𝐵ଵ|𝑅ଶ𝐺ଷሻ ൌ 1.ሻ

 𝑃ሺ𝐵ଵሻ ൌ 𝑃ሺ𝐵ଵ𝐺ଶ𝑅ଷሻ ൅ 𝑃ሺ𝐵ଵ𝑅ଶ𝐺ଷሻ ൌ
20
38

8
18

൅
8

57
ൌ

64
171

𝐻 𝑇௛
𝐵 𝐹 𝐴

𝐶 𝐵
𝑃ሺ𝑇௛ሻ ൌ 𝑃ሺ𝑇௛|𝐹ሻ𝑃ሺ𝐹ሻ ൅ 𝑃ሺ𝑇௛|𝐹௖ሻ𝑃ሺ𝐹௖ሻ

ൌ ሺ.5ሻሺ.4ሻ ൅ 𝑃ሺ𝐻ሻሺ.6ሻ

ൌ .68
𝑃ሺ𝐶ሻ ൌ 𝑃ሺ𝐶|𝐹ሻ𝑃ሺ𝐹ሻ ൅ 𝑃ሺ𝐶|𝐹௖ሻ𝑃ሺ𝐹௖ሻ

ൌ ሺ.5ሻ ሺ.4ሻ ൅ 1 ሺ.6ሻ ൌ .80

𝑃ሺ𝐻|𝑇௛ሻ ൌ
𝑃ሺ𝐻𝑇௛ሻ
𝑃ሺ𝑇௛ሻ

𝑃ሺ𝐻𝑇௛ሻ ൌ 𝑃ሺ𝐻𝑇௛|𝐹ሻ𝑃ሺ𝐹ሻ ൅ 𝑃ሺ𝐻𝑇௛|𝐹௖ሻ𝑃ሺ𝐹௖ሻ

ൌ 𝑃ሺ𝐻|𝐹ሻ𝑃ሺ𝑇௛|𝐻𝐹ሻ𝑃ሺ𝐹ሻ ൅ 𝑃ሺ𝐻ሻ𝑃ሺ𝐹௖ሻ

ൌ ሺ.8ሻ ሺ.5ሻ ሺ.4ሻ  ൅  ሺ.8ሻ ሺ.6ሻ ൌ .64

 𝑃ሺ𝐻 ||𝑇௛ሻ ൌ .64/.68 ൌ 16/17.

𝑃ሺ2 black | at least oneሻ ൌ
𝑃ሺ2ሻ

𝑃ሺat least oneሻ
ൌ

1/4
3/4

ൌ
1
3

𝐹 𝐵ଶ
𝐵ଵ

𝑃ሺ𝐵ଶ|𝐹ሻ ൌ
𝑃ሺ𝐹|𝐵ଶሻ𝑃ሺ𝐵ଶሻ

𝑃ሺ𝐹|𝐵ଶሻ𝑃ሺ𝐵ଶሻ ൅ 𝑃ሺ𝐹|𝐵ଵሻ𝑃ሺ𝐵ଵሻ

ൌ
ሺ1ሻሺ1/3ሻ

ሺ1ሻሺ1/3ሻ ൅ ሺ1/2ሻହሺ2/3ሻ
ൌ

16
17

𝐹 𝐴 𝐵, 𝐶௜
𝑖

𝑃ሺ𝐹ሻ ൌ 𝑃ሺ𝐹|𝐶ଵሻ𝑝ଵ ൅ 𝑃ሺ𝐹|𝐶ଵ
௖ሻ൫1 െ 𝑝ଵ൯
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Also,

Hence, for part (a), we obtain

For part (b), let  Then

3.17.  Let  be the event that component 1 is working, and let  be the

event that the system functions.

a. 

where  was computed by noting that it is equal to 1 minus the

probability that components 1 and 2 are both failed.

b. 

where  was computed by noting that it is equal to the probability

that all 3 components work plus the three probabilities relating to

exactly 2 of the components working.

3.18.  If we assume that the outcomes of the successive spins are

independent, then the conditional probability of the next outcome is

unchanged by the result that the previous 10 spins landed on black.

3.19.  Condition on the outcome of the initial tosses:

so,

𝑃ሺ𝐹|𝐶ଵሻ ൌ 𝑃ሺ𝐶ସ ∪ 𝐶ଶ𝐶ହ ∪ 𝐶ଷ𝐶ହሻ

ൌ 𝑝ସ ൅ 𝑝ଶ𝑝ହ ൅ 𝑝ଷ𝑝ହ െ 𝑝ସ𝑝ଶ𝑝ହ
െ 𝑝ସ𝑝ଷ𝑝ହ െ 𝑝ଶ𝑝ଷ𝑝ହ ൅ 𝑝ସ𝑝ଶ𝑝ହ𝑝ଷ

𝑃ሺ𝐹|𝐶ଵ
௖ሻ ൌ 𝑃ሺ𝐶ଶ𝐶ହ ∪ 𝐶ଶ𝐶ଷ𝐶ସሻ

ൌ 𝑝ଶ𝑝ହ ൅ 𝑝ଶ𝑝ଷ𝑝ସ െ 𝑝ଶ𝑝ଷ𝑝ସ𝑝ହ

𝑃ሺ𝐹ሻ ൌ 𝑝ଵሺ𝑝ସ ൅ 𝑝ଶ𝑝ହ ൅ 𝑝ଷ𝑝ହ െ 𝑝ସ𝑝ଶ𝑝ହ

െ 𝑝ସ𝑝ଷ𝑝ହ െ 𝑝ଶ𝑝ଷ𝑝ହ ൅ 𝑝ସ𝑝ଶ𝑝ହ𝑝ଷሻ

൅ሺ1 െ 𝑝ଵሻ𝑝ଶሺ𝑝ହ ൅ 𝑝ଷ𝑝ସ െ 𝑝ଷ𝑝ସ𝑝ହሻ

𝑞௜ ൌ 1 െ 𝑝௜.

𝑃ሺ𝐶ଷ|𝐹ሻ ൌ 𝑃ሺ𝐹|𝐶ଷሻ𝑃ሺ𝐶ଷሻ/𝑃ሺ𝐹ሻ

ൌ 𝑝ଷሾ1 െ 𝑃ሺ𝐶ଵ௖𝐶ଶ௖ ∪ 𝐶ସ௖𝐶ହ௖ሻሿ/𝑃ሺ𝐹ሻ

ൌ 𝑝ଷ൫1 െ 𝑞ଵ𝑞ଶ െ 𝑞ସ𝑞ହ ൅ 𝑞ଵ𝑞ଶ𝑞ସ𝑞ହ൯/𝑃ሺ𝐹ሻ

𝐴 𝐹

𝑃ሺ𝐴|𝐹ሻ ൌ
𝑃ሺ𝐴𝐹ሻ
𝑃ሺ𝐹ሻ

ൌ
𝑃ሺ𝐴ሻ
𝑃ሺ𝐹ሻ

ൌ
1/2

1 െ ሺ1/2ሻଶ
ൌ

2
3

𝑃ሺ𝐹ሻ

𝑃ሺ𝐴|𝐹ሻ ൌ
𝑃ሺ𝐴𝐹ሻ
𝑃ሺ𝐹ሻ

ൌ
𝑃ሺ𝐹|𝐴ሻ𝑃ሺ𝐴ሻ

𝑃ሺ𝐹ሻ
ൌ

ሺ3/4ሻሺ1/2ሻ

ሺ1/2ሻଷ ൅ 3ሺ1/2ሻଷ
ൌ

3
4

𝑃ሺ𝐹ሻ

𝑃ሺ𝐴 oddሻ ൌ 𝑃ଵሺ1 െ 𝑃ଶሻ ሺ1 െ 𝑃ଷሻ ൅ ሺ1 െ 𝑃ଵሻ𝑃ଶ𝑃ଷ

൅ 𝑃ଵ𝑃ଶ𝑃ଷ𝑃ሺ𝐴 oddሻ

൅ ሺ1 െ 𝑃ଵሻ ሺ1 െ 𝑃ଶሻ ሺ1 െ 𝑃ଷሻ𝑃ሺ𝐴 oddሻ
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3.20.  Let  and  be the events that the first trial is larger and that the

second is larger, respectively. Also, let  be the event that the results of the

trials are equal. Then

But, by symmetry,  thus,

Another way of solving the problem is to note that

To see that the two expressions derived for  are equal, observe that

3.21.  Let  then

Now, by symmetry,

𝑃ሺ𝐴 oddሻ ൌ
𝑃ଵሺ1 െ 𝑃ଶሻ ሺ1 െ 𝑃ଷሻ ൅ ሺ1 െ 𝑃ଵሻ𝑃ଶ𝑃ଷ
𝑃ଵ ൅ 𝑃ଶ ൅ 𝑃ଷ െ 𝑃ଵ𝑃ଶ െ 𝑃ଵ𝑃ଷ െ 𝑃ଶ𝑃ଷ

𝐴 𝐵

𝐸

1 ൌ 𝑃ሺ𝐴ሻ ൅ 𝑃ሺ𝐵ሻ ൅ 𝑃ሺ𝐸ሻ

𝑃ሺ𝐴ሻ ൌ 𝑃ሺ𝐵ሻ:

𝑃ሺ𝐵ሻ ൌ
1 െ 𝑃ሺ𝐸ሻ

2
ൌ

1 െ ෍
௜ ൌ ଵ

௡

𝑝௜
ଶ

2

𝑃ሺ𝐵ሻ ൌ ෍
௜

෍
௝ வ ௜

𝑃ሼϐirst trial results in 𝑖,  second trial results in  𝑗ሽ

ൌ ෍
௜

෍
௝ வ ௜

𝑝௜𝑝௝

𝑃ሺ𝐵ሻ

1 ൌ ෍
௜ ൌ ଵ

௡

𝑝௜ ෍
௝ ൌ ଵ

௡

𝑝௝

ൌ ෍
௜

෍
௝

𝑝௜𝑝௝

ൌ ෍
௜

𝑝௜
ଶ ൅෍

௜

෍
௝ ஷ ௜

𝑝௜𝑝௝

ൌ ෍
௜

𝑝௜
ଶ ൅ 2෍

௜

෍
௝ வ ௜

𝑝௜𝑝௝

𝐸 ൌ ሼ𝐴 gets more heads than 𝐵ሽ;
𝑃ሺ𝐸ሻ ൌ 𝑃ሺ𝐸|𝐴 leads after both ϐlip 𝑛ሻ𝑃ሺ𝐴 leads after both ϐlip 𝑛ሻ

൅ 𝑃ሺ𝐸|even after both ϐlip 𝑛ሻ𝑃ሺeven after both ϐlip 𝑛ሻ

൅ 𝑃ሺ𝐸|𝐵 leads after both ϐlip 𝑛ሻ𝑃ሺ𝐵 leads after both ϐlip 𝑛ሻ

ൌ 𝑃ሺ𝐴 leadsሻ ൅
1
2
𝑃ሺevenሻ
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Hence,

3.22.

a. Not true: In rolling 2 dice, let 

 and 2nd die does not land on 3

Then

b. 

c. 

3.23.

a. necessarily false; if they were mutually exclusive, then we would have

b. necessarily false; if they were independent, then we would have

c. necessarily false; if they were mutually exclusive, then we would have

d. possibly true

3.24.  The probabilities in parts (a), (b), and (c) are  and

 respectively.

𝑃ሺ𝐴 leadsሻ ൌ 𝑃ሺ𝐵 leadsሻ

ൌ
1 െ 𝑃ሺevenሻ

2

𝑃ሺ𝐸ሻ ൌ
1
2

𝐸 ൌ ሼsum is 7ሽ,
𝐹 ൌ ሼ1st die does not land on 4ሽ, 𝐺 ൌ ሼ ሽ.

𝑃ሺ𝐸|𝐹 ∪ 𝐺ሻ ൌ
𝑃ሼ7, not  ሺ4, 3ሻሽ
𝑃ሼnot  ሺ4, 3ሻሽ

ൌ
5/36

35/36
ൌ 5/35 ് 𝑃ሺ𝐸ሻ

𝑃ሺ𝐸ሺ𝐹 ∪ 𝐺ሻሻ ൌ 𝑃ሺ𝐸𝐹 ∪ 𝐸𝐺ሻ

ൌ 𝑃ሺ𝐸𝐹ሻ ൅ 𝑃ሺ𝐸𝐺ሻ since 𝐸𝐹𝐺 ൌ 0

ൌ 𝑃ሺ𝐸ሻሾ𝑃ሺ𝐹ሻ ൅ 𝑃ሺ𝐺ሻሿ

ൌ 𝑃ሺ𝐸ሻ𝑃ሺ𝐹 ∪ 𝐺ሻ since 𝐹𝐺 ൌ 0

𝑃ሺ𝐺|𝐸𝐹ሻ ൌ
𝑃ሺ𝐸𝐹𝐺ሻ
𝑃ሺ𝐸𝐹ሻ

ൌ
𝑃ሺ𝐸ሻ𝑃ሺ𝐹𝐺ሻ
𝑃ሺ𝐸𝐹ሻ

            since 𝐸 is independent of 𝐹𝐺

ൌ
𝑃ሺ𝐸ሻ𝑃ሺ𝐹ሻ𝑃ሺ𝐺ሻ
𝑃ሺ𝐸ሻ𝑃ሺ𝐹ሻ

    by independence

ൌ 𝑃ሺ𝐺ሻ .

0 ൌ 𝑃ሺ𝐴𝐵ሻ ് 𝑃ሺ𝐴ሻ𝑃ሺ𝐵ሻ

𝑃ሺ𝐴𝐵ሻ ൌ 𝑃ሺ𝐴ሻ𝑃ሺ𝐵ሻ ൐ 0

𝑃ሺ𝐴 ∪ 𝐵ሻ ൌ 𝑃ሺ𝐴ሻ ൅ 𝑃ሺ𝐵ሻ ൌ 1.2

.5,ሺ.8ሻଷ ൌ .512,

ሺ.9ሻ଻ ൎ .4783,
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3.25.  Let  denote the event that radio  is defective. Also, let 

and  be the events that the radios were produced at factory  and at factory

 respectively. Then

3.26.  We are given that  and must show that this implies that

 One way is as follows:

3.27.  The result is true for  With  denoting the event that there are 

red balls in the urn after stage  assume that

Now let  denote the event that there are  red balls in the

urn after stage  Then

Because there are  balls in the urn after stage  it follows that

 is the probability that a red ball is chosen when  of the 

balls in the urn are red and  is the probability that a red ball is not

chosen when  of the  balls in the urn are red. Consequently,

𝐷௜,𝑖 ൌ 1,2, 𝑖 𝐴

𝐵 𝐴

𝐵,

𝑃ሺ𝐷ଶ|𝐷ଵሻ ൌ
𝑃ሺ𝐷ଵ𝐷ଶሻ
𝑃ሺ𝐷ଵሻ

ൌ
𝑃ሺ𝐷ଵ𝐷ଶ|𝐴ሻ𝑃ሺ𝐴ሻ ൅ 𝑃ሺ𝐷ଵ𝐷ଶ|𝐵ሻ𝑃ሺ𝐵ሻ
𝑃ሺ𝐷ଵ|𝐴ሻ𝑃ሺ𝐴ሻ ൅ 𝑃ሺ𝐷ଵ|𝐵ሻ𝑃ሺ𝐵ሻ

ൌ
ሺ.05ሻଶሺ1/2ሻ ൅ ሺ.01ሻଶሺ1/2ሻ
ሺ.05ሻሺ1/2ሻ ൅ ሺ.01ሻሺ1/2ሻ

ൌ 13/300

𝑃ሺ𝐴𝐵ሻ ൌ 𝑃ሺ𝐵ሻ

𝑃ሺ𝐵௖𝐴௖ሻ ൌ 𝑃ሺ𝐴௖ሻ.

𝑃ሺ𝐵௖𝐴௖ሻ ൌ 𝑃൫ሺ𝐴 ∪ 𝐵ሻ௖൯

ൌ 1 െ 𝑃ሺ𝐴 ∪ 𝐵ሻ

ൌ 1 െ 𝑃ሺ𝐴ሻ െ 𝑃ሺ𝐵ሻ ൅ 𝑃ሺ𝐴𝐵ሻ

ൌ 1 െ 𝑃ሺ𝐴ሻ

ൌ 𝑃ሺ𝐴௖ሻ

𝑛 ൌ 0. 𝐴௜ 𝑖

𝑛,

𝑃ሺ𝐴௜ሻ ൌ
1

𝑛 ൅ 1
,  𝑖 ൌ 1, . . . , 𝑛 ൅ 1

𝐵௝,  𝑗 ൌ 1, . . . , 𝑛 ൅ 2, 𝑗

𝑛 ൅ 1.

𝑃ሺ𝐵௝ሻ ൌ ෍
௜ ൌ ଵ

௡ ൅ ଵ

𝑃൫𝐵௝ห𝐴௜൯𝑃ሺ𝐴௜ሻ

ൌ
1

𝑛 ൅ 1
෍

௜ ൌ ଵ

௡ ൅ ଵ

𝑃൫𝐵௝ห𝐴௜൯

ൌ
1

𝑛 ൅ 1
ൣ𝑃൫𝐵௝ห𝐴௝െଵ൯ ൅ 𝑃൫𝐵௝ห𝐴௜൯൧

𝑛 ൅ 2 𝑛,

𝑃൫𝐵௝ห𝐴௝െଵ൯ 𝑗 െ 1 𝑛 ൅ 2

𝑃ሺ𝐵௝ ห𝐴௝ሻ

𝑗 𝑛 ൅ 2

𝑃൫𝐵௝ห𝐴௝െଵ൯ ൌ
𝑗 െ 1
𝑛 ൅ 2

, 𝑃൫𝐵௝ห𝐴௝൯ ൌ
𝑛 ൅ 2 െ 𝑗
𝑛 ൅ 2
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Substituting these results into the equation for  gives

This completes the induction proof.

3.28.  If  is the event that player  receives an ace, then

By arbitrarily numbering the aces and noting that the player who does not

receive ace number one will receive  of the remaining  cards, we see

that

Therefore,

We may regard the card division outcome as the result of two trials, where

trial  is said to be a success if ace number  goes to the first player.

Because the locations of the two aces become independent as  goes to

infinity, with each one being equally likely to be given to either player, it follows

that the trials become independent, each being a success with probability 1/2.

Hence, in the limiting case where  the problem becomes one of

determining the conditional probability that two heads result, given that at

least one does, when two fair coins are flipped. Because  converges to

1/3, the answer agrees with that of Example 2b.

3.29.

a. For any permutation  of  the probability that the

successive types collected is  is 

Consequently, the desired probability is 

b. For  all distinct,

which follows because there are no coupons of types  when

each of the  independent selections is one of the other  types. It

𝑃ሺ𝐵௝ሻ

𝑃ሺ𝐵௝ሻ ൌ
1

𝑛 ൅ 1
⎡
⎣

𝑗 െ 1
𝑛 ൅ 2

൅
𝑛 ൅ 2 െ 𝑗
𝑛 ൅ 2

⎤
⎦
ൌ

1
𝑛 ൅ 2

𝐴௜ 𝑖

𝑃ሺ𝐴௜ሻ ൌ 1 െ
ቆ

2𝑛 െ 2

𝑛
ቇ

ቆ
2𝑛

𝑛
ቇ

ൌ 1 െ
1
2
𝑛 െ 1

2𝑛 െ 1
ൌ

3𝑛 െ 1
4𝑛 െ 2

𝑛 2𝑛 െ 1

𝑃ሺ𝐴ଵ𝐴ଶሻ ൌ
𝑛

2𝑛 െ 1

𝑃ሺ𝐴ଶ௖||𝐴ଵሻ ൌ 1 െ 𝑃ሺ𝐴ଶ|𝐴ଵሻ ൌ 1 െ
𝑃ሺ𝐴ଵ𝐴ଶሻ
𝑃ሺ𝐴ଵሻ

ൌ
𝑛 െ 1

3𝑛 െ 1

𝑖, 𝑖 ൌ 1, 2, 𝑖

𝑛

𝑛 → ∞,

𝑛 െ 1
3𝑛 െ 1

𝑖ଵ, . . . , 𝑖௡ 1, 2, . . . ,𝑛,

𝑖ଵ, . . . , 𝑖௡ 𝑝௜భ⋯𝑝௜೙ ൌ ෑ
௜ൌଵ

௡
𝑝௜.

𝑛!ෑ
௜ൌଵ

௡
𝑝௜.

𝑖ଵ, . . . ,𝑖௞

𝑃ሺ𝐸௜భ⋯𝐸௜ೖሻ ൌ ቆ
𝑛 െ 𝑘
𝑛

ቇ
௡

𝑖ଵ, . . . , 𝑖௞
𝑛 𝑛 െ 𝑘
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now follows by the inclusion–exclusion identity that

Because  is the probability that one of each type is

obtained, by part (a) it is equal to  Substituting this into the

preceding equation gives

or

or

3.30.

Using

gives

3.31.

a. 2/5

b. 5/6

3.32.

a. 1/7

b. 1/6

𝑃൫ ∪௜ൌଵ
௡ 𝐸௜൯ ൌ ෍

௞ ൌ ଵ

௡

ሺെ1ሻ௞൅ଵቆ
𝑛

𝑘
ቇቆ
𝑛 െ 𝑘
𝑛

ቇ
௡

1 െ 𝑃ሺ ∪௜ൌଵ
௡ 𝐸௜ሻ

𝑛!
𝑛௡

.

1 െ
𝑛!
𝑛௡

ൌ ෍
௞ ൌ ଵ

௡

ሺ െ 1ሻ௞൅ଵቆ
𝑛

𝑘
ቇቆ
𝑛 െ 𝑘
𝑛

ቇ
௡

𝑛! ൌ 𝑛௡ െ ෍
௞ ൌ ଵ

௡

ሺ െ 1ሻ௞൅ଵቆ
𝑛

𝑘
ቇሺ𝑛 െ 𝑘ሻ௡

𝑛! ൌ ෍
௞ ൌ ଴

௡

ሺ െ 1ሻ௞ቆ
𝑛

𝑘
ቇሺ𝑛 െ 𝑘ሻ௡

𝑃ሺ𝐸|𝐸 ∪ 𝐹ሻ ൌ 𝑃ሺ𝐸|𝐹ሺ𝐸 ∪ 𝐹ሻሻ𝑃ሺ𝐹|𝐸 ∪ 𝐹ሻ

൅𝑃ሺ𝐸|𝐹௖ሺ𝐸 ∪ 𝐹ሻሻ𝑃ሺ𝐹௖||𝐸 ∪ 𝐹ሻ

𝐹ሺ𝐸 ∪ 𝐹ሻ ൌ 𝐹 and 𝐹௖ሺ𝐸 ∪ 𝐹ሻ ൌ 𝐹௖𝐸

𝑃ሺ𝐸|𝐸 ∪ 𝐹ሻ ൌ 𝑃ሺ𝐸|𝐹ሻ𝑃ሺ𝐹|𝐸 ∪ 𝐹ሻ ൅ 𝑃ሺ𝐸|𝐸𝐹௖ሻ𝑃ሺ𝐹௖||𝐸 ∪ 𝐹ሻ

ൌ 𝑃ሺ𝐸|𝐹ሻ𝑃ሺ𝐹|𝐸 ∪ 𝐹ሻ ൅ 𝑃ሺ𝐹௖||𝐸 ∪ 𝐹ሻ

൒ 𝑃ሺ𝐸|𝐹ሻ𝑃ሺ𝐹|𝐸 ∪ 𝐹ሻ ൅ 𝑃ሺ𝐸|𝐹ሻ𝑃ሺ𝐹௖||𝐸 ∪ 𝐹ሻ

ൌ 𝑃ሺ𝐸|𝐹ሻ
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3.33.

The second equality in the preceding used that 

3.34.  Let  be the event that player 1 wins the contest. Letting  be the

event that player  does not play in round 1, we obtain by conditioning on

whether or not  occurs, that

where the preceding used that if  occurs then 1 would have to beat both 2

and 3 to win the tournament. To compute  condition on which of 2 or

3 wins the first game. Letting  be the event that  wins the first game

Hence,  Also,

3.35.

Now,

giving that

𝑃ሺ𝐸|𝐹𝐺௖ሻ ൌ
𝑃ሺ𝐸𝐹𝐺௖ሻ
𝑃ሺ𝐹𝐺௖ሻ

ൌ
𝑃ሺ𝐸𝐹ሻ െ 𝑃ሺ𝐸𝐹𝐺ሻ
𝑃ሺ𝐹ሻ െ 𝑃ሺ𝐹𝐺ሻ

ൌ
𝑃ሺ𝐸ሻ𝑃ሺ𝐹ሻ െ 𝑃ሺ𝐸ሻ𝑃ሺ𝐹ሻ𝑃ሺ𝐺ሻ

𝑃ሺ𝐹ሻ െ 𝑃ሺ𝐹ሻ𝑃ሺ𝐺ሻ

ൌ 𝑃ሺ𝐸ሻ

𝐸𝐹 ൌ 𝐸𝐹𝐺 ∪ 𝐸𝐹𝐺௖.

𝑊ଵ 𝑂

1

𝑂
𝑃ሺ𝑊ଵሻ ൌ 𝑃ሺ𝑊ଵ |𝑂ሻ𝑃ሺ𝑂ሻ ൅ 𝑃ሺ𝑊ଵ ||𝑂

௖ሻ𝑃ሺ𝑂௖ሻ

ൌ 𝑃ሺ𝑊ଵ |𝑂ሻ
1
3
  ൅  

1
3

1
4

2
3

𝑂௖

𝑃ሺ𝑊ଵ ||𝑂ሻ,

𝐵௜ 𝑖
𝑃ሺ𝑊ଵ|𝑂ሻ ൌ 𝑃ሺ𝑊ଵ|0,  𝐵ଶሻ𝑃ሺ𝐵ଶ|𝑂ሻ ൅ 𝑃ሺ𝑊ଵ|0,  𝐵ଷሻ𝑃ሺ𝐵ଷ|𝑂ሻ

ൌ
1
3

2
5
൅

1
4

3
5
ൌ 17/60

𝑃ሺ𝑊ଵሻ ൌ 3/20.

𝑃ሺ𝑂|𝑊ଵሻ ൌ
𝑃ሺ𝑊ଵ|𝑂ሻ𝑃ሺ𝑂ሻ

𝑃ሺ𝑊ଵሻ
ൌ
ሺ17/60ሻሺ1/3ሻ

3/20
ൌ 17/27

𝑃ሺall white || sameሻ ൌ
𝑃ሺall whiteሻ
𝑃ሺsameሻ

𝑃ሺall whiteሻ ൌ
ቆ

5

4
ቇ

ቆ
22

4
ቇ

,  𝑃ሺsameሻ ൌ
ቆ

4

4
ቇ ൅ ቆ

5

4
ቇ ൅ ቆ

6

4
ቇ ൅ ቆ

7

4
ቇ

ቆ
22

4
ቇ

𝑃ሺall white || sameሻ ൌ
ቆ

5

4
ቇ

ቆ
4

4
ቇ ൅ ቆ

5

4
ቇ ൅ ቆ

6

4
ቇ ൅ ቆ

7

4
ቇ
ൌ

5
56
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3.36.  Let  be the probability that 3 beats 4. Because 1 beats 2 with

probability 1/3,

3.37.

a. Condition on who wins the first game to obtain:

b. Condition on the opponent of player 4. If  is the event that  is the

opponent,  then

Hence,

𝐵ଷ

𝑃ሺ1ሻ ൌ 𝑃ሺ1|𝐵ଷሻ𝑃ሺ𝐵ଷሻ ൅ 𝑃ሺ1|𝐵ଷ
௖ሻ𝑃ሺ𝐵ଷ௖ሻ ൌ ሺ1/3ሻሺ1/4ሻሺ3/7ሻ

൅ ሺ1/3ሻሺ1/5ሻሺ4/7ሻ ൌ 31/420

𝑃ሺ𝑊ଷሻ ൌ 𝑃ሺ𝑊ଷ|1 winsሻሺ1/3ሻ  ൅  𝑃ሺ𝑊ଷ|2 winsሻ ሺ2/3ሻ

ൌ ሺ1/3ሻሺ3/4ሻ ෑ
௜ ൌ ସ

௡
3

𝑖 ൅ 3
  ൅  ሺ2/3ሻሺ3/5ሻ ෑ

௜ ൌ ସ

௡
3

𝑖 ൅ 3

ൌ
13
20

ෑ
௜ ൌ ସ

௡
3

𝑖 ൅ 3

𝑂௜ 𝑖

𝑖 ൌ 1, 2, 3,

𝑃ሺ𝑂ଵሻ ൌ
1
3

1
4
ൌ

1
12

𝑃ሺ𝑂ଶሻ ൌ
2
3

2
5
ൌ

4
15

𝑃ሺ𝑂ଷሻ ൌ 1 െ
1

12
െ

4
15

ൌ
13
20

𝑃ሺ𝑊ସሻ ൌ ෍
௜ ൌ ଵ

ଷ

𝑃ሺ𝑊ସ|𝑂௜ሻ𝑃ሺ𝑂௜ሻ ൌ
4
5

1
12

൅
4
6

4
15

൅
4
7

13
20

ൌ
194
315

4.1.  Since the probabilities sum to 1, we must have

 implying that

 Hence,

4.2.  The relationship implies that  where

 Because these probabilities sum to 1, it follows that

Hence,

4𝑃ሼ𝑋 ൌ 3ሽ ൅ .5 ൌ 1,

𝑃ሼ𝑋 ൌ 0ሽ ൌ .375,𝑃ሼ𝑋 ൌ 3ሽ ൌ .125.
𝐸ሾ𝑋ሿ ൌ 1ሺ.3ሻ ൅ 2ሺ.2ሻ ൅ 3ሺ.125ሻ ൌ 1.075.

𝑝௜ ൌ 𝑐௜𝑝଴, 𝑖 ൌ 1, 2,

𝑝௜ ൌ 𝑃൛𝑋 ൌ 𝑖ൟ.

𝑝଴ሺ1 ൅ 𝑐 ൅ 𝑐ଶሻ ൌ 1 ⇒ 𝑝଴ ൌ
1

1 ൅ 𝑐 ൅ 𝑐ଶ

𝐸ሾ𝑋ሿ ൌ 𝑝ଵ ൅ 2𝑝ଶ ൌ
𝑐 ൅ 2𝑐ଶ

1 ൅ 𝑐 ൅ 𝑐ଶ
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4.3.  Let  be the number of flips. Then the probability mass function of

 is

Hence,

4.4.  The probability that a randomly chosen family will have  children

is  Thus,

Also, since there are  children in families having  children, it follows

that the probability that a randomly chosen child is from a family with 

children is  Therefore,

Thus, we must show that

or, equivalently, that

or, equivalently, that

But, for a fixed pair  the coefficient of  in the left-side summation of

the preceding inequality is  whereas its coefficient in the right-hand

𝑋

𝑋
𝑝ଶ ൌ 𝑝ଶ ൅ ሺ1 െ 𝑝ሻଶ, 𝑝ଷ ൌ 1 െ 𝑝ଶ ൌ 2𝑝ሺ1 െ 𝑝ሻ

𝐸ሾ𝑋ሿ ൌ 2𝑝ଶ ൅ 3𝑝ଷ ൌ 2𝑝ଶ ൅ 3ሺ1 െ 𝑝ଶሻ ൌ 3 െ 𝑝ଶ െ ሺ1 െ 𝑝ሻଶ

𝑖

𝑛௜/𝑚.

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

௥

𝑖𝑛௜/𝑚

𝑖𝑛௜ 𝑖

𝑖

𝑖𝑛௜/ ෍
௜ ൌ ଵ

௥

𝑖𝑛௜.

𝐸ሾ𝑌ሿ ൌ

෍
௜ ൌ ଵ

௥

𝑖ଶ𝑛௜

෍
௜ ൌ ଵ

௥

𝑖𝑛௜

෍
௜ ൌ ଵ

௥

𝑖ଶ𝑛௜

෍
௜ ൌ ଵ

௥

𝑖𝑛௜

൒

෍
௜ ൌ ଵ

௥

𝑖𝑛௜

෍
௜ ൌ ଵ

௥

𝑛௜

෍
௝ ൌ ଵ

௥

𝑛௝ ෍
௜ ൌ ଵ

௥

𝑖ଶ𝑛௜ ൒ ෍
௜ ൌ ଵ

௥

𝑖𝑛௜ ෍
௝ ൌ ଵ

௥

𝑗𝑛௝

෍
௜ ൌ ଵ

௥

෍
௝ ൌ ଵ

௥

𝑖ଶ𝑛௜𝑛௝ ൒ ෍
௜ ൌ ଵ

௥

෍
௝ ൌ ଵ

௥

𝑖𝑗𝑛௜𝑛௝

𝑖, 𝑗, 𝑛௜𝑛௝
𝑖ଶ ൅ 𝑗ଶ,
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summation is  Hence, it suffices to show that

which follows because 

4.5.  Let  Then  and  so

implying that  Hence, 

4.6.  If you wager  on a bet that wins the amount wagered with

probability  and loses that amount with probability  then your

expected winnings are

which is positive (and increasing in ) if and only if  Thus, if

 one maximizes one’s expected return by wagering 0, and if

 one maximizes one’s expected return by wagering the maximal

possible bet. Therefore, if the information is that the .6 coin was chosen,

then you should bet 10; if the information is that the .3 coin was chosen,

then you should bet 0. Hence, your expected payoff is

Since your expected payoff is 0 without the information (because in this

case the probability of winning is ), it follows that if the

information costs less than 1, then it pays to purchase it.

4.7.

a. If you turn over the red paper and observe the value  then your

expected return if you switch to the blue paper is

Thus, it would always be better to switch.

b. Suppose the philanthropist writes the amount  on the red paper.

Then the amount on the blue paper is either  or  Note that if

 then the amount on the blue paper will be at least  and

will thus be accepted. Hence, in this case, the reward is equally

likely to be either  or  so

If  then the blue paper will be accepted if its value is

 and rejected if it is  Therefore,

2𝑖𝑗.
𝑖ଶ ൅ 𝑗ଶ ൒ 2𝑖𝑗

ሺ𝑖 െ 𝑗ሻଶ ൒ 0.

𝑝 ൌ 𝑃ሼ𝑋 ൌ 1ሽ. 𝐸ሾ𝑋ሿ ൌ 𝑝 Varሺ𝑋ሻ ൌ 𝑝ሺ1 െ 𝑝ሻ,
𝑝 ൌ 3𝑝ሺ1 െ 𝑝ሻ

𝑝 ൌ 2/3. 𝑃ሼ𝑋 ൌ 0ሽ ൌ 1/3.

𝑥

𝑝 1 െ 𝑝,

𝑥𝑝 െ 𝑥ሺ1 െ 𝑝ሻ ൌ ሺ2𝑝 െ 1ሻ𝑥

𝑥 𝑝 ൐ 1/2.

𝑝 ൑ 1/2,

𝑝 ൐ 1/2,

1
2
ሺ1.2 െ 1ሻ10 ൅

1
2

0 െ 𝐶 ൌ 1 െ 𝐶

1
2
ሺ.6ሻ ൅

1
2
ሺ.3ሻ ൏ 1/2

𝑥,

2𝑥ሺ1/2ሻ ൅ 𝑥/2ሺ1/2ሻ ൌ 5𝑥/4 ൐ 𝑥

𝑥

2𝑥 𝑥/2.

𝑥/2 ൒ 𝑦, 𝑦

2𝑥 𝑥/2,
𝐸ሾ𝑅௬ሺ𝑥ሻሿ ൌ 5𝑥/4, if  𝑥/2 ൒ 𝑦

𝑥/2 ൏ 𝑦 ൑ 2𝑥,

2𝑥 𝑥/2.
𝐸ሾ𝑅௬ሺ𝑥ሻሿ ൌ 2𝑥ሺ1/2ሻ ൅ 𝑥ሺ1/2ሻ ൌ 3𝑥/2, if  𝑥/2 ൏ 𝑦 ൑ 2𝑥
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Finally, if  then the blue paper will be rejected. Hence, in

this case, the reward is  so

That is, we have shown that when the amount  is written on the

red paper, the expected return under the -policy is

4.8.  Suppose that  independent trials, each of which results in a

success with probability  are performed. Then the number of successes

will be less than or equal to  if and only if the number of failures is

greater than or equal to  But since each trial is a failure with

probability  it follows that the number of failures is a binomial

random variable with parameters  and  Hence,

The final equality follows from the fact that the probability that the number

of failures is greater than or equal to  is 1 minus the probability that it

is less than 

4.9.  Since  we are given that

 Thus,  or  Hence,

4.10.  Let  denote the number on the th ball drawn.

Then

Therefore,

4.11.

a. Given that  wins the first game, it will win the series if, from then

2𝑥 ൏ 𝑦,

𝑥,
𝑅௬ሺ𝑥ሻ ൌ 𝑥, if  2𝑥 ൏ 𝑦

𝑥

𝑦

𝐸ሾ𝑅௬ሺ𝑥ሻሿ ൌ

⎧

⎨
⎩

⎪

⎪

𝑥 if  𝑥 ൏ 𝑦/2

3𝑥/2 if  𝑦/2 ൑ 𝑥 ൏ 2𝑦

5𝑥/4 if  𝑥 ൒ 2𝑦

𝑛

𝑝,

𝑖

𝑛 െ 𝑖.

1 െ 𝑝,

𝑛 1 െ 𝑝.
𝑃ሼBin ሺ𝑛,𝑝ሻ ൑ 𝑖ሽ ൌ 𝑃ሼBin ሺ𝑛, 1 െ 𝑝ሻ ൒ 𝑛 െ 𝑖ሽ

ൌ 1 െ 𝑃ሼBin ሺ𝑛, 1 െ 𝑝ሻ ൑ 𝑛 െ 𝑖 െ 1ሽ

𝑛 െ 𝑖

𝑛 െ 𝑖.

𝐸ሾ𝑋ሿ ൌ 𝑛𝑝, Varሺ𝑋ሻ ൌ 𝑛𝑝ሺ1 െ 𝑝ሻ,

𝑛𝑝 ൌ 6, 𝑛𝑝ሺ1 െ 𝑝ሻ ൌ 2.4. 1 െ 𝑝 ൌ .4, 𝑝 ൌ .6, 𝑛 ൌ 10.

𝑃ሼ𝑋 ൌ 5ሽ ൌ ቆ
10

5
ቇሺ.6ሻହሺ.4ሻହ

𝑋௜, 𝑖 ൌ 1, . . . ,𝑚, 𝑖

𝑃ሼ𝑋 ൑ 𝑘ሽ ൌ 𝑃ሼ𝑋ଵ ൑ 𝑘,𝑋ଶ ൑ 𝑘, .   .   . ,𝑋௠ ൑ 𝑘ሽ

ൌ 𝑃ሼ𝑋ଵ ൑ 𝑘ሽ𝑃ሼ𝑋ଶ ൑ 𝑘ሽ ⋯ 𝑃ሼ𝑋௠ ൑ 𝑘ሽ

ൌ ቆ
𝑘
𝑛
ቇ
௠

𝑃ሼ𝑋 ൌ 𝑘ሽ ൌ 𝑃ሼ𝑋 ൑ 𝑘ሽ െ 𝑃ሼ𝑋 ൑ 𝑘 െ 1ሽ ൌ ቆ
𝑘
𝑛
ቇ
௠

െ ቆ
𝑘 െ 1
𝑛

ቇ
௠

𝐴
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on, it wins 2 games before team  wins 3 games. Thus,

b. 

4.12.  To obtain the solution, condition on whether the team wins this

weekend:

4.13.  Let  be the event that the jury makes the correct decision, and

let  be the event that four of the judges agreed. Then

Also,

4.14.  Assuming that the number of hurricanes can be approximated by

a Poisson random variable, we obtain the solution

𝐵

𝑃ሼ𝐴 wins |𝐴 wins ϐirstሽ ൌ ෍
௜ ൌ ଶ

ସ

ቆ
4

𝑖
ቇ𝑝௜ሺ1 െ 𝑝ሻସെ௜

𝑃ሼ𝐴 wins ϐirst | 𝐴 winsሽ ൌ
𝑃ሼ𝐴 wins | 𝐴 wins ϐirstሽ𝑃ሼ𝐴 wins ϐirstሽ

𝑃ሼ𝐴 winsሽ

ൌ

෍
௜ ൌ ଶ

ସ

ቆ
4

𝑖
ቇ 𝑝௜൅ଵሺ1 െ 𝑝ሻସെ௜

෍
௜ ൌ ଷ

ହ

ቆ
5

𝑖
ቇ 𝑝௜ሺ1 െ 𝑝ሻହെ௜

.5 ෍
௜ ൌ ଷ

ସ

ቆ
4

𝑖
ቇሺ.4ሻ௜ሺ.6ሻସെ௜ ൅ .5 ෍

௜ ൌ ଷ

ସ

ቆ
4

𝑖
ቇሺ.7ሻ௜ሺ.3ሻସെ௜

𝐶

𝐹

𝑃ሺ𝐶ሻ ൌ ෍
௜ ൌ ସ

଻

ቆ
7

𝑖
ቇሺ.7ሻ௜ሺ.3ሻ଻െ௜

𝑃ሺ𝐶 |𝐹ሻ ൌ
௉ሺ஼ிሻ

௉ሺிሻ

ൌ
ቆ
଻
ସ
ቇሺ.଻ሻరሺ.ଷሻయ

ቆ
଻
ସ
ቇሺ.଻ሻరሺ.ଷሻయ൅ቆ

଻
ଷ
ቇሺ.଻ሻయሺ.ଷሻర

ൌ .7

෍
௜ ൌ ଴

ଷ

𝑒െହ.ଶሺ5.2ሻ௜/𝑖!
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4.15.

4.16.

𝐸ሾ𝑌ሿ ൌ ෍
௜ ൌ ଵ

ஶ

𝑖𝑃ሼ𝑋 ൌ 𝑖ሽ/𝑃ሼ𝑋 ൐ 0ሽ

ൌ 𝐸ሾ𝑋ሿ/𝑃ሼ𝑋 ൐ 0ሽ

ൌ
𝜆

1 െ 𝑒െఒ

Let  be the event that girl  and girl  choose different boys. Then

Therefore,

Because, when  is large,  is small and nearly equal to

 it follows from the Poisson paradigm that the number of

couples is approximately Poisson distributed with mean

 Hence,  and 

To determine the probability that a given set of  girls all are

coupled, condition on whether or not  occurs, where  is the

event that they all choose different boys. This gives

Therefore,

and the inclusion–exclusion identity yields

a. 1/𝑛

b. 𝐷 𝑖 𝑗

𝑃ሺ𝐺௜𝐺௝ሻ ൌ 𝑃൫𝐺௜𝐺௝ห𝐷൯𝑃ሺ𝐷ሻ ൅ 𝑃൫𝐺௜𝐺௝ห𝐷
௖൯𝑃ሺ𝐷௖ሻ

ൌ ሺ1/𝑛ሻଶሺ1 െ 1/𝑛ሻ

ൌ
𝑛 െ 1
𝑛ଷ

𝑃൫𝐺௜|𝐺௝൯ ൌ
𝑛 െ 1
𝑛ଶ

c. d. 𝑛 𝑃ሺ𝐺௜ ห𝐺௝ሻ

𝑃ሺ𝐺௜ሻ,

෍
௜ൌଵ

௡
𝑃ሺ𝐺௜ሻ ൌ 1. 𝑃଴ ൎ 𝑒െଵ 𝑃௞ ൎ 𝑒െଵ/𝑘!

e. 𝑘

𝐷 𝐷

𝑃ሺ𝐺௜భ⋯𝐺௜ೖሻ ൌ 𝑃൫𝐺௜భ⋯𝐺௜ೖ
|
|𝐷൯𝑃ሺ𝐷ሻ

൅𝑃൫𝐺௜భ⋯𝐺௜ೖ
|
|𝐷

௖൯𝑃ሺ𝐷௖ሻ

ൌ 𝑃൫𝐺௜భ⋯𝐺௜ೖ
|
|𝐷൯𝑃ሺ𝐷ሻ

ൌ ሺ1/𝑛ሻ௞
𝑛ሺ𝑛 െ 1ሻ⋯ሺ𝑛 െ 𝑘 ൅ 1ሻ

𝑛௞

ൌ
𝑛!

ሺ𝑛 െ 𝑘ሻ!𝑛ଶ௞

෍
௜భ ழ .   .   . ழ ௜ೖ

𝑃ሺ𝐺௜భ⋯𝐺௜ೖሻ ൌ ቆ
𝑛

𝑘
ቇ𝑃ሺ𝐺௜భ⋯𝐺௜ೖሻ

ൌ
௡!௡!

ሺ௡െ௞ሻ!ሺ௡െ௞ሻ!௞ !௡మೖ
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4.17.

a. Because woman  is equally likely to be paired with any of the

remaining  people, 

b. Because, conditional on  woman  is equally likely to be paired

with any of  people, 

c. When  is large, the number of wives paired with their husbands

will approximately be Poisson with mean

 Therefore, the probability that there

is no such pairing is approximately 

d. It reduces to the match problem.

4.18.

a. 

b. If  is her final winnings and  is the number of bets she makes,

then, since she would have won 4 bets and lost  bets, it

follows that

Hence,

4.19.  The probability that a round does not result in an “odd person” is

equal to 1/4, the probability that all three coins land on the same side.

a. 

b. 

4.20.  Let  Then

1 െ 𝑃଴ ൌ 𝑃ሺ ∪௜ൌଵ
௡ 𝐺௜ሻ ൌ ෍

௞ ൌ ଵ

௡

ሺ െ 1ሻ௞൅ଵ
𝑛!𝑛!

ሺ𝑛 െ 𝑘ሻ!ሺ𝑛 െ 𝑘ሻ!𝑘!𝑛ଶ௞

𝑖

2𝑛 െ 1 𝑃ሺ𝑊௜ሻ ൌ
1

2𝑛 െ 1
𝑊௝, 𝑖

2𝑛 െ 3 𝑃൫𝑊௜|𝑊௝൯ ൌ
1

2𝑛 െ 3
𝑛

෍
௜ൌଵ

௡
𝑃ሺ𝑊௜ሻ ൌ

𝑛
2𝑛 െ 1

ൎ 1/2.

𝑒െଵ/ଶ.

ቆ
8

3
ቇ ሺ9/19ሻଷሺ10/19ሻହሺ9/19ሻ ൌ ቆ

8

3
ቇ ሺ9/19ሻସሺ10/19ሻହ

𝑊 𝑋

𝑋 െ 4

𝑊 ൌ 20 െ 5ሺ𝑋 െ 4ሻ ൌ 40 െ 5𝑋

𝐸ሾ𝑊ሿ ൌ 40 െ 5𝐸ሾ𝑋ሿ ൌ 40 െ 5ሾ4/ሺ9/19ሻሿ ൌ െ 20/9

ሺ1/4ሻଶሺ3/4ሻ ൌ 3/64
ሺ1/4ሻସ ൌ 1/256

𝑞 ൌ 1 െ 𝑝.
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4.21.  Since  will equal 1 with probability  or 0 with probability

 it follows that it is a Bernoulli random variable with parameter 

Because the variance of such a Bernoulli random variable is  we

have

Hence,

4.22.  Let  denote the number of games that you play and  the

number of games that you lose.

a. After your fourth game, you will continue to play until you lose.

Therefore,  is a geometric random variable with parameter

 so

b. If we let  denote the number of losses you have in the first 4

𝐸ሾ1/𝑋ሿ ൌ ෍
௜ ൌ ଵ

ஶ 1
𝑖
𝑞௜െଵ𝑝

ൌ
𝑝
𝑞

෍
௜ ൌ ଵ

ஶ

𝑞௜/𝑖

ൌ
𝑝
𝑞

෍
௜ ൌ ଵ

ஶ

඲

଴

௤

𝑥௜െଵ𝑑𝑥

ൌ
𝑝
𝑞
඲

଴

௤

෍
௜ ൌ ଵ

ஶ

𝑥௜െଵ𝑑𝑥

ൌ
𝑝
𝑞
඲

଴

௤
1

1 െ 𝑥
𝑑𝑥

ൌ
𝑝
𝑞
඲

௣

ଵ
1
𝑦
𝑑𝑦

ൌ െ
𝑝
𝑞

logሺ𝑝ሻ

𝑋 െ 𝑏
𝑎 െ 𝑏

𝑝

1 െ 𝑝, 𝑝.

𝑝ሺ1 െ 𝑝ሻ,

𝑝ሺ1 െ 𝑝ሻ ൌ Var ቆ
𝑋 െ 𝑏
𝑎 െ 𝑏

ቇ ൌ
1

ሺ𝑎 െ 𝑏ሻଶ
Varሺ𝑋 െ 𝑏ሻ

ൌ
1

ሺ𝑎 െ 𝑏ሻଶ
Varሺ𝑋ሻ

Varሺ𝑋ሻ ൌ ሺ𝑎 െ 𝑏ሻଶ𝑝ሺ1 െ 𝑝ሻ

𝑋 𝑌

𝑋 െ 4

1 െ 𝑝,

𝐸ሾ𝑋ሿ ൌ 𝐸ሾ4 ൅ ሺ𝑋 െ 4ሻሿ ൌ 4 ൅ 𝐸ሾ𝑋 െ 4ሿ ൌ 4 ൅
1

1 െ 𝑝

𝑍
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games, then  is a binomial random variable with parameters 4

and  Because  we have

4.23.  A total of  white balls will be withdrawn before a total of  black

balls if and only if there are at least  white balls in the first 

withdrawals. (Compare with the problem of the points, Example 4j of

Chapter 3 .) With  equal to the number of white balls among the first

 balls withdrawn,  is a hypergeometric random variable, and it

follows that

4.24.  Because each ball independently goes into urn  with the same

probability  it follows that  is a binomial random variable with

parameters 

First note that  is the number of balls that go into either urn  or urn

 Then, because each of the  balls independently goes into one of

these urns with probability  it follows that  is a binomial

random variable with parameters  and 

By the same logic,  is a binomial random variable with

parameters  and  Therefore,

4.25.  Let  equal  if person  has a match, and let it equal 

otherwise. Then

is the number of matches. Taking expectations gives

where the final equality follows because person  is equally likely to end

𝑍

1 െ 𝑝. 𝑌 ൌ 𝑍 ൅ 1,
𝐸ሾ𝑌ሿ ൌ 𝐸ሾ𝑍 ൅ 1ሿ ൌ 𝐸ሾ𝑍ሿ ൅ 1 ൌ 4ሺ1 െ 𝑝ሻ ൅ 1

𝑛 𝑚

𝑛 𝑛 ൅𝑚െ 1

𝑋

𝑛 ൅𝑚െ 1 𝑋

𝑃ሼ𝑋 ൒ 𝑛ሽ ൌ ෍
௜ ൌ ௡

௡ ൅ ௠ െ ଵ

𝑃ሼ𝑋 ൌ 𝑖ሽ

ൌ ෍
௜ ൌ ௡

௡ ൅ ௠ െ ଵ ቆ
𝑁

𝑖
ቇቆ

𝑀

𝑛 ൅𝑚െ 1 െ 𝑖
ቇ

ቆ
𝑁 ൅𝑀

𝑛 ൅𝑚െ 1
ቇ

𝑖

𝑝௜, 𝑋௜
𝑛 ൌ 10, 𝑝 ൌ 𝑝௜.

𝑋௜ ൅ 𝑋௝ 𝑖

𝑗. 10

𝑝௜ ൅ 𝑝௝, 𝑋௜ ൅ 𝑋௝
10 𝑝௜ ൅ 𝑝௝.

𝑋ଵ ൅ 𝑋ଶ ൅ 𝑋ଷ
10 𝑝ଵ ൅ 𝑝ଶ ൅ 𝑝ଷ.

𝑃ሼ𝑋ଵ ൅ 𝑋ଶ ൅ 𝑋ଷ ൌ 7ሽ ൌ ቆ
10

7
ቇ ሺ𝑝ଵ ൅ 𝑝ଶ ൅ 𝑝ଷሻ

଻ሺ𝑝ସ ൅ 𝑝ହሻ
ଷ

𝑋௜ 1 𝑖 0

𝑋 ൌ ෍
௜ ൌ ଵ

௡

𝑋௜

𝐸ሾ𝑋ሿ ൌ 𝐸቎ ෍
௜ ൌ ଵ

௡

𝑋௜቏ ൌ ෍
௜ ൌ ଵ

௡

𝐸ሾ𝑋௜ሿ ൌ ෍
௜ ൌ ଵ

௡

𝑃ሼ𝑋௜ ൌ 1ሽ ൌ ෍
௜ ൌ ଵ

௡

1/𝑛 ൌ 1

𝑖
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up with any of the  hats.

To compute  we use Equation (9.1), which states that

Now, for 

Hence,

which yields

4.26.  With  we have, on the one hand,

On the other hand,

However, given that the first trial is not a success, the number of trials

needed for a success is  plus the geometrically distributed number of

additional trials required. Therefore,

𝑛

Varሺ𝑋ሻ,

𝐸ሾ𝑋ଶሿ ൌ ෍
௜ ൌ ଵ

௡

𝐸ሾ𝑋௜ሿ ൅ ෍
௜ ൌ ଵ

௡

෍
௝ ஷ ௜

𝐸ሾ𝑋௜𝑋௝ሿ

𝑖 ് 𝑗,

𝐸ሾ𝑋௜𝑋௝ሿ ൌ 𝑃൛𝑋௜ ൌ 1,𝑋௝ ൌ 1ൟ ൌ 𝑃ሼ𝑋௜ ൌ 1ሽ𝑃൛𝑋௝ ൌ 1 ห𝑋௜ ൌ 1ൟ

ൌ
1
𝑛

1
𝑛 െ 1

𝐸ሾ𝑋ଶሿ ൌ 1 ൅ ෍
௜ ൌ ଵ

௡

෍
௝ ஷ ௜

1
𝑛ሺ𝑛 െ 1ሻ

ൌ 1 ൅ 𝑛ሺ𝑛 െ 1ሻ
1

𝑛ሺ𝑛 െ 1ሻ
ൌ 2

Varሺ𝑋ሻ ൌ 2 െ 1ଶ ൌ 1

𝑞 ൌ 1 െ 𝑝,

𝑃ሺ𝐸ሻ ൌ ෍
௜ ൌ ଵ

ஶ

𝑃ሼ𝑋 ൌ 2𝑖ሽ

ൌ ෍
௜ ൌ ଵ

ஶ

𝑝𝑞ଶ௜െଵ

ൌ 𝑝𝑞 ෍
௜ ൌ ଵ

ஶ

ሺ𝑞ଶሻ௜െଵ

ൌ 𝑝𝑞
1

1 െ 𝑞ଶ

ൌ
𝑝𝑞

ሺ1 െ 𝑞ሻሺ1 ൅ 𝑞ሻ
ൌ

𝑞
1 ൅ 𝑞

𝑃ሺ𝐸ሻ ൌ 𝑃ሺ𝐸 ||𝑋 ൌ 1ሻ𝑝 ൅ 𝑃ሺ𝐸 ||𝑋 ൐ 1ሻ𝑞 ൌ 𝑞𝑃ሺ𝐸 ||𝑋 ൐ 1ሻ

1

𝑃ሺ𝐸|𝑋 ൐ 1ሻ ൌ 𝑃ሺ𝑋 ൅ 1 is evenሻ ൌ 𝑃ሺ𝐸௖ሻ ൌ 1 െ 𝑃ሺ𝐸ሻ
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which yields 

4.27.  In order for  one of the teams must be up 3 games to 2

after the first 5 games and then must win game 6. This gives

On the other hand,  if each team wins 3 of the first 6 games. Hence,

Hence,

Calculus shows that  is minimized when  with the

minimizing value equal to 

(b) In order for  one of the teams must be up 3 games to 2 after the

first 5 games, and because when  each team is equally likely to

win game 6, it is just as likely that  will equal 6 as that it will equal 7.

(c) Imagine that the teams continue to play even after one of them has

won the series. The team that wins the first game must win at least 3 of

the next 6 games played to win the series. Hence, the desired answer is

4.28.

a. The negative binomial represents the number of balls withdrawn in

a similar experiment but with the exception that the withdrawn ball

would be replaced before the next drawing.

b. Using the hint, we note that  if the first  balls withdrawn

contain exactly  white balls and the next withdrawn ball is

white. Hence,

4.29.

a. 

 𝑃ሺ𝐸ሻ ൌ 𝑞/ሺ1 ൅ 𝑞ሻ.

𝑁 ൌ 6

𝑃ሺ𝑁 ൌ 6ሻ ൌ ቆ
5

3
ቇ 𝑝ଷሺ1 െ 𝑝ሻଶ𝑝 ൅ ቆ

5

3
ቇ ሺ1 െ 𝑝ሻଷ𝑝ଶ ሺ1 െ 𝑝ሻ

ൌ 10ሺ𝑝ସሺ1 െ 𝑝ሻଶ ൅ ሺ1 െ 𝑝ሻସ𝑝ଶሻ

𝑁 ൌ 7

𝑃ሺ𝑁 ൌ 7ሻ ൌ ቆ
6

3
ቇ 𝑝ଷሺ1 െ 𝑝ሻଷ ൌ 20𝑝ଷሺ1 െ 𝑝ሻଷ

𝑃ሺ𝑁 ൌ 6ሻ െ 𝑃ሺ𝑁 ൌ 7ሻ ൌ 𝑝ଶሺ1 െ 𝑝ሻଶ

൫10𝑝ଶ ൅ 10 ሺ1 െ 𝑝ሻଶ െ 20𝑝 ሺ1 െ 𝑝ሻ൯

ൌ 𝑝ଶሺ1 െ 𝑝ሻଶሺ40𝑝ଶ െ 40𝑝 ൅ 10ሻ

40𝑝ଶ െ 40𝑝 ൅ 10 𝑝 ൌ 1/2

0.

𝑁 ൒ 6

𝑝 ൌ 1/2

𝑁

෍
௜ൌଷ

଺
ቆ

6

𝑖
ቇሺ1/2ሻ଺ ൌ 42/64.

𝑋 ൌ 𝑟 𝑟 െ 1

𝑘 െ 1

𝑃ሺ𝑋 ൌ 𝑟ሻ ൌ
ቆ

௡
௞െଵ

ቇቆ
௠
௥െ௞

ቇ

ቆ
௡൅௠
௥െଵ

ቇ

௡െ௞൅ଵ

௡൅௠െ௥൅ଵ
,

𝑘 ൑ 𝑟 ൑ 𝑚൅ 𝑘

1
3
ቆ

8

5
ቇ൫ሺ1/3ሻହሺ2/3ሻଷ ൅ ሺ1/2ሻ଼ ൅ ሺ3/4ሻହሺ1/4ሻଷ൯
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b. 

4.30.  Binomial with parameters  and 

4.31.

4.32.  if the first  balls consist of  red and  blue

balls, and the next ball is red. Hence,

Let  be the number of balls that have to be removed until a total of  blue

balls have been removed. Then,  and for 

Now,  Because  and  either if 

or if  we have, for  that

1
3
ሾሺ2/3ሻସሺ1/3ሻ ൅ ሺ1/2ሻହ ൅ ሺ1/4ሻସሺ3/4ሻሿ

𝑛 1 െ 𝑝.

𝑃ሺ𝑋 ൌ 𝑘ሻ ൌ
ቆ
𝑘 െ 1

𝑖 െ 1
ቇቆ
𝑛 ൅ 𝑚 െ 𝑘

𝑛 െ 𝑖
ቇ

ቆ
𝑛 ൅ 𝑚

𝑛
ቇ

𝑋 ൌ 𝑖 𝑖 െ 1 𝑟 െ 1 𝑖 െ 𝑟

𝑃ሺ𝑋 ൌ 𝑖ሻ ൌ
ቆ

𝑛

𝑟 െ 1
ቇቆ

𝑚

𝑖 െ 𝑟
ቇ

ቆ
𝑛 ൅𝑚

𝑖 െ 1
ቇ

𝑛 െ 𝑟 ൅ 1
𝑛 ൅𝑚 െ 𝑖 ൅ 1

.

𝑌 𝑠

𝑉 ൌ minሺ𝑋, 𝑌ሻ 𝑖 ൏ 𝑟 ൅ 𝑠,
𝑃ሺ𝑉 ൌ 𝑖ሻ ൌ 𝑃ሺ𝑋 ൌ 𝑖ሻ ൅ 𝑃ሺ𝑌 ൌ 𝑖ሻ

ൌ
ቆ

𝑛

𝑟 െ 1
ቇቆ

𝑚

𝑖 െ 𝑟
ቇ

ቆ
𝑛 ൅ 𝑚

𝑖 െ 1
ቇ

𝑛 െ 𝑟 ൅ 1
𝑛 ൅𝑚 െ 𝑖 ൅ 1

൅
ቆ

𝑚

𝑠 െ 1
ቇቆ

𝑛

𝑖 െ 𝑠
ቇ

ቆ
𝑛 ൅ 𝑚

𝑖 െ 1
ቇ

𝑚 െ 𝑠 ൅ 1
𝑛 ൅𝑚 െ 𝑖 ൅ 1

𝑍 ൌ maxሺ𝑋, 𝑌ሻ. 𝑍 ൒ 𝑟 ൅ 𝑠, 𝑍 ൌ 𝑖 ൒ 𝑟 ൅ 𝑠 𝑋 ൌ 𝑖

𝑌 ൌ 𝑖, 𝑖 ൒ 𝑟 ൅ 𝑠,
𝑃ሺ𝑍 ൌ 𝑖ሻ ൌ 𝑃ሺ𝑋 ൌ 𝑖ሻ ൅ 𝑃ሺ𝑌 ൌ 𝑖ሻ

ൌ
ቆ

𝑛

𝑟 െ 1
ቇቆ

𝑚

𝑖 െ 𝑟
ቇ

ቆ
𝑛 ൅𝑚

𝑖 െ 1
ቇ

𝑛 െ 𝑟 ൅ 1
𝑛 ൅𝑚 െ 𝑖 ൅ 1

൅
ቆ

𝑚

𝑠 െ 1
ቇቆ

𝑛

𝑖 െ 𝑠
ቇ

ቆ
𝑛 ൅𝑚

𝑖 െ 1
ቇ

𝑚 െ 𝑠 ൅ 1
𝑛 ൅ 𝑚 െ 𝑖 ൅ 1
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 if the  red ball is removed before a total of  balls have been

removed. That is,

𝑋 ൏ 𝑌 𝑟௧௛ 𝑟 ൅ 𝑠

𝑃ሺ𝑋 ൏ 𝑌ሻ ൌ 𝑃ሺ𝑋 ൏ 𝑟 ൅ 𝑠ሻ

ൌ ෍
௜ ൌ ௥

௥ ൅ ௦ െ ଵ ቆ
𝑛

𝑟 െ 1
ቇቆ

𝑚

𝑖 െ 𝑟
ቇ

ቆ
𝑛 ൅𝑚

𝑖 െ 1
ቇ

𝑛 െ 𝑟 ൅ 1
𝑛 ൅𝑚 െ 𝑖 ൅ 1

.

5.1.  Let  be the number of minutes played.
a. 

b. 

c. 

d. 

5.2.

a. 

b. 

5.3.  First, let us find  by using

a. 

b. 

5.4.  Since

we obtain  Hence,

a. 

b. 

𝑋
𝑃ሼ𝑋 ൐ 15ሽ ൌ 1 െ 𝑃ሼ𝑋 ൑ 15ሽ ൌ 1 െ 5ሺ.025ሻ ൌ .875
𝑃ሼ20 ൏ 𝑋 ൏ 35ሽ ൌ 10ሺ.05ሻ ൅ 5ሺ.025ሻ ൌ .625
𝑃ሼ𝑋 ൏ 30ሽ ൌ 10ሺ.025ሻ ൅ 10ሺ.05ሻ ൌ .75
𝑃ሼ𝑋 ൐ 36ሽ ൌ 4ሺ.025ሻ ൌ .1

1 ൌ ଴׬
ଵ
𝑐𝑥௡𝑑𝑥 ൌ 𝑐/ሺ𝑛 ൅ 1ሻ ⇒ 𝑐 ൌ 𝑛 ൅ 1

𝑃ሼ𝑋 ൐ 𝑥ሽ ൌ ሺ𝑛 ൅ 1ሻ׬௫
ଵ
𝑥௡𝑑𝑥 ൌ 𝑥௡൅ଵቚ

௫

ଵ
ൌ 1 െ 𝑥௡൅ଵ

𝑐

1 ൌ ඲

଴

ଶ

𝑐𝑥ସ𝑑𝑥 ൌ 32𝑐/5 ⇒ 𝑐 ൌ 5/32

𝐸ሾ𝑋ሿ ൌ
5

32
଴׬
ଶ
𝑥ହ𝑑𝑥 ൌ

5
32

64
6
ൌ 5/3

𝐸ሾ𝑋ଶሿ ൌ
5

32
଴׬
ଶ
𝑥଺𝑑𝑥 ൌ

5
32

128
7

ൌ 20/7 ⇒ Varሺ𝑋ሻ ൌ 20/7 െ ሺ5/3ሻଶ ൌ 5/63

1 ൌ ඲

଴

ଵ

ሺ𝑎𝑥 ൅ 𝑏𝑥ଶሻ𝑑𝑥 ൌ 𝑎/2 ൅ 𝑏/3

.6 ൌ ඲

଴

ଵ

ሺ𝑎𝑥ଶ ൅ 𝑏𝑥ଷሻ𝑑𝑥 ൌ 𝑎/3 ൅ 𝑏/4

𝑎 ൌ 3.6,𝑏 ൌ െ 2.4.

𝑃ሼ𝑋 ൏ 1/2ሽ ൌ ଴׬
ଵ/ଶ

ሺ3.6𝑥 െ 2.4𝑥ଶሻ𝑑𝑥 ൌ ሺ1.8𝑥ଶ െ .8𝑥ଷሻ||଴
ଵ/ଶ

ൌ .35

𝐸ሾ𝑋ଶሿ ൌ ଴׬
ଵ
ሺ3.6𝑥ଷ െ 2.4𝑥ସሻ 𝑑𝑥 ൌ .42 ⇒ Varሺ𝑋ሻ ൌ .06
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5.5.  For 

5.6.  If you bid  then you will either win the bid and make a

profit of  with probability  or lose the bid and make a

profit of 0 otherwise. Therefore, your expected profit if you bid  is

Differentiating and setting the preceding equal to 0 gives

Therefore, you should bid  Your expected profit will be 40/7

thousand dollars.

5.7.

a. 

b. 

c. 

d. 

The answer to part (d) could also have been obtained by multiplying

the probabilities in parts (a), (b), and (c).

5.8.  Let  be the test score, and let  Note that  is a

standard normal random variable.
a. 

b. 

5.9.  Let  be the travel time. We want to find  such that

which is equivalent to

𝑖 ൌ 1, . . . ,𝑛,
𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ 𝑃ሼInt ሺ𝑛𝑈ሻ ൌ 𝑖 െ 1ሽ

ൌ 𝑃ሼ𝑖 െ 1 ൑ 𝑛𝑈 ൏ 𝑖ሽ

ൌ 𝑃ቊ
𝑖 െ 1
𝑛

൑ 𝑈 ൏
𝑖
𝑛
ቋ

ൌ 1/𝑛

𝑥,70 ൑ 𝑥 ൑ 140,

𝑥 െ 100 ሺ140 െ 𝑥ሻ/70

𝑥
1

70
ሺ𝑥 െ 100ሻሺ140 െ 𝑥ሻ ൌ

1
70
ሺ240𝑥 െ 𝑥ଶ െ 14000ሻ

240 െ 2𝑥 ൌ 0

$120,000.

𝑃ሼ𝑈 ൐ .1ሽ ൌ 9/10
𝑃ሼ𝑈 ൐ .2 ||𝑈 ൐ .1ሽ ൌ 𝑃ሼ𝑈 ൐ .2ሽ/𝑃ሼ𝑈 ൐ .1ሽ ൌ 8/9
𝑃ሼ𝑈 ൐ .3 ||𝑈 ൐ .2,𝑈 ൐ .1ሽ ൌ 𝑃ሼ𝑈 ൐ .3ሽ/𝑃ሼ𝑈 ൐ .2ሽ ൌ 7/8
𝑃ሼ𝑈 ൐ .3ሽ ൌ 7/10

𝑋 𝑍 ൌ ሺ𝑋 െ 100ሻ/15. 𝑍

𝑃ሼ𝑋 ൐ 125ሽ ൌ 𝑃ሼ𝑍 ൐ 25/15ሽ ൎ .0478
𝑃ሼ90 ൏ 𝑋 ൏ 110ሽ ൌ 𝑃ሼെ10/15 ൏ 𝑍 ൏ 10/15ሽ

ൌ 𝑃ሼ𝑍 ൏ 2/3ሽ െ 𝑃ሼ𝑍 ൏ െ 2/3ሽ

ൌ 𝑃ሼ𝑍 ൏ 2/3ሽ െ ሾ1 െ 𝑃ሼ𝑍 ൏ 2/3ሽሿ

ൎ .4950

𝑋 𝑥
𝑃ሼ𝑋 ൐ 𝑥ሽ ൌ .05

𝑃ቊ
𝑋 െ 40

7
൐
𝑥 െ 40

7
ቋ ൌ .05
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That is, we need to find  such that

where  is a standard normal random variable. But

Thus,

Therefore, you should leave no later than 8.485 minutes after 12 P.M.

5.10.  Let  be the tire life in units of one thousand, and let 

Note that  is a standard normal random variable.
a. 

b. 

c. 

5.11.  Let  be next year’s rainfall and let 

a. 

b. 

5.12.  Let  and  denote, respectively, the numbers of men and women

in the samples that earn, in units of  at least  per year. Also, let  be a

standard normal random variable.

a. 

b. 

𝑥

𝑃ቊ𝑍 ൐
𝑥 െ 40

7
ቋ ൌ .05

𝑍
𝑃ሼ𝑍 ൐ 1.645ሽ ൌ .05

𝑥 െ 40
7

ൌ 1.645 or 𝑥 ൌ 51.515

𝑋 𝑍 ൌ ሺ𝑋 െ 34ሻ/4.

𝑍
𝑃ሼ𝑋 ൐ 40ሽ ൌ 𝑃ሼ𝑍 ൐ 1.5ሽ ൎ .0668
𝑃ሼ30 ൏ 𝑋 ൏ 35ሽ ൌ 𝑃ሼ െ 1 ൏ 𝑍 ൏ .25ሽ ൌ 𝑃ሼ𝑍 ൏ .25ሽ െ 𝑃ሼ𝑍 ൐ 1ሽ ൎ .44
𝑃ሼ𝑋 ൐ 40|𝑋 ൐ 30ሽ ൌ 𝑃ሼ𝑋 ൐ 40ሽ/𝑃ሼ𝑋 ൐ 30ሽ

ൌ 𝑃ሼ𝑍 ൐ 1.5ሽ/𝑃ሼ𝑍 ൐ െ 1ሽ ൎ .079

𝑋 𝑍 ൌ ሺ𝑋 െ 40.2ሻ/8.4.
𝑃ሼ𝑋 ൐ 44ሽ ൌ 𝑃ሼ𝑍 ൐ 3.8/8.4ሽ ൎ 𝑃ሼ𝑍 ൐ .4524ሽ ൎ .3255

ቆ
7

3
ቇ ሺ.3255ሻଷሺ.6745ሻସ

𝑀௜ 𝑊௜

$1,000, 𝑖 𝑍

𝑃ሼ𝑊ଶହ ൒ 70ሽ

ൌ 𝑃ሼ𝑊ଶହ ൒ 69.5ሽ

ൌ 𝑃൝
𝑊ଶହ െ 200ሺ.34ሻ

200ሺ.34ሻሺ.66ሻඥ
൒

69.5 െ 200ሺ.34ሻ

200ሺ.34ሻሺ.66ሻඥ
ൡ

ൎ 𝑃ሼ𝑍 ൒ .2239ሽ

ൎ .4114
𝑃ሼ𝑀ଶହ ൒ 120ሽ

ൌ 𝑃ሼ𝑀ଶହ ൒ 120.5ሽ

ൌ 𝑃൝
𝑀ଶହ െ ሺ200ሻሺ.587ሻ

ሺ200ሻሺ.587ሻሺ.413ሻඥ
൒

120.5 െ ሺ200ሻሺ.587ሻ

ሺ200ሻሺ.587ሻሺ.413ሻඥ
ൡ

ൎ 𝑃ሼ𝑍 ൒ .4452ሽ

ൎ .6719
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c. 

Hence,

5.13.  The lack of memory property of the exponential gives the result

5.14.

a. 
b. 

c. 

d. Let  be a standard normal random variable. Use the identity

 to obtain

e. Use the result of Theoretical Exercise 5.5  to obtain

Hence, 

𝑃ሼ𝑀ଶ଴ ൒ 150ሽ 

  ൌ 𝑃ሼ𝑀ଶ଴ ൒ 149.5ሽ

  ൌ 𝑃൝
𝑀ଶ଴ െ ሺ200ሻሺ.745ሻ

ሺ200ሻሺ.745ሻሺ.255ሻඥ
൒

149.5 െ ሺ200ሻሺ.745ሻ

ሺ200ሻሺ.745ሻሺ.255ሻඥ
ൡ

  ൎ 𝑃ሼ𝑍 ൒ .0811ሽ

  ൎ .4677

𝑃ሼ𝑊ଶ଴ ൒ 100ሽ

  ൌ 𝑃ሼ𝑊ଶ଴ ൒ 99.5ሽ

  ൌ 𝑃൝
𝑊ଶ଴ െ ሺ200ሻሺ.534ሻ

ሺ200ሻሺ.534ሻሺ.466ሻඥ
൒

99.5 െ ሺ200ሻሺ.534ሻ

ሺ200ሻሺ.534ሻሺ.466ሻඥ
ൡ

  ൎ 𝑃ሼ𝑍 ൒ െ 1.0348ሽ

  ൎ .8496

𝑃ሼ𝑀ଶ଴ ൒ 150ሽ𝑃ሼ𝑊ଶ଴ ൒ 100ሽ ൎ .3974

𝑒െସ/ହ.

𝑒െଶ
మ
ൌ 𝑒െସ

𝐹ሺ3ሻ െ 𝐹ሺ1ሻ ൌ 𝑒െଵ െ 𝑒െଽ

𝜆ሺ𝑡ሻ ൌ 2𝑡𝑒െ௧
మ
/𝑒െ௧

మ
ൌ 2𝑡

𝑍

𝐸ሾ𝑋ሿ ൌ ଴׬
ஶ
𝑃ሼ𝑋 ൐ 𝑥ሽ𝑑𝑥

𝐸ሾ𝑋ሿ ൌ ඲

଴

ஶ

𝑒െ௫
మ
𝑑𝑥

ൌ 2െଵ/ଶ඲

଴

ஶ

𝑒െ௬
మ/ଶ𝑑𝑦

ൌ 2െଵ/ଶ 2𝜋√ 𝑃ሼ𝑍 ൐ 0ሽ

ൌ 𝜋√ /2

𝐸ሾ𝑋ଶሿ ൌ ඲

଴

ஶ

2𝑥𝑒െ௫
మ
𝑑𝑥 ൌ െ 𝑒െ௫

మ
ቮ

଴

ஶ

ൌ 1

Varሺ𝑋ሻ ൌ 1 െ 𝜋/4.
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5.15.

a. 

b. 

5.16.  For 

Differentiation yields

The proof when  is similar.

5.17.  If  denotes the number of the first  bets that you win, then the

amount that you will be winning after  bets is

Thus, we want to determine

when  is a binomial random variable with parameters  and 

a. When 

(Because you will be ahead after 34 bets if you win at least 1 bet, the

𝑃ሼ𝑋 ൐ 6ሽ ൌ expቄെ׬଴
଺
𝜆ሺ𝑡ሻ𝑑𝑡ቅ ൌ 𝑒െଷ.ସହ

𝑃ሼ𝑋 ൏ 8 |𝑋 ൐ 6ሽ ൌ 1 െ 𝑃ሼ𝑋 ൐ 8 |𝑋 ൐ 6ሽ

ൌ 1 െ 𝑃ሼ𝑋 ൐ 8ሽ/𝑃ሼ𝑋 ൐ 6ሽ

ൌ 1 െ 𝑒െହ.଺ହ/𝑒െଷ.ସହ

ൎ .8892

𝑥 ൒ 0,
𝐹ଵ/௑ሺ𝑥ሻ ൌ 𝑃ሼ1/𝑋 ൑ 𝑥ሽ

ൌ 𝑃ሼ𝑋 ൑ 0ሽ  ൅  𝑃ሼ𝑋 ൒ 1/𝑥ሽ

ൌ 1/2 ൅ 1 െ 𝐹௑ሺ1/𝑥ሻ

𝑓ଵ/௑ሺ𝑥ሻ ൌ 𝑥െଶ𝑓௑ሺ1/𝑥ሻ

ൌ
1

𝑥ଶ𝜋ሺ1 ൅ ሺ1/𝑥ሻଶሻ

ൌ 𝑓௑ሺ𝑥ሻ

𝑥 ൏ 0

𝑋 𝑛

𝑛
35𝑋 െ ሺ𝑛 െ 𝑋ሻ ൌ 36𝑋 െ 𝑛

𝑎 ൌ 𝑃ሼ36𝑋 െ 𝑛 ൐ 0ሽ ൌ 𝑃ሼ𝑋 ൐ 𝑛/36ሽ

𝑋 𝑛 𝑝 ൌ 1/38.

𝑛 ൌ 34,
𝑎 ൌ 𝑃ሼ𝑋 ൒ 1ሽ

ൌ 𝑃ሼ𝑋 ൐ .5ሽ        ሺthe continuity correctionሻ

ൌ 𝑃൝
𝑋 െ 34/38

34ሺ1/38ሻሺ37/38ሻඥ
൐

.5 െ 34/38

34ሺ1/38ሻሺ37/38ሻඥ
ൡ

   ൌ 𝑃൝
𝑋 െ 34/38

34ሺ1/38ሻሺ37/38ሻඥ
൐ െ .4229ൡ

   ൎ Φ ሺ.4229ሻ

   ൎ .6638
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exact probability in this case is )

b. When 

The exact probability—namely, the probability that a binomial 

 random variable is greater than 27—is .3961.

c. When 

The exact probability in this case is .0021.

5.18.  If  denotes the lifetime of the battery, then the desired probability,

 can be determined as follows:

Another approach is to directly condition on the type of battery and then use

the lack-of-memory property of exponential random variables. That is, we

could do the following:

1 െ ሺ37/38ሻଷସ ൌ .5961.

𝑛 ൌ 1000,
𝑎 ൌ 𝑃ሼ𝑋 ൐ 27.5ሽ

ൌ 𝑃൝
𝑋 െ 1000/38

1000ሺ1/38ሻሺ37/38ሻඥ
൐

27.5 െ 1000/38

1000ሺ1/38ሻሺ37/38ሻඥ
ൡ

ൎ 1 െ Φ ሺ.2339ሻ

ൎ .4075

𝑛 ൌ 1000,

𝑝 ൌ 1/38

𝑛 ൌ 100,000,
𝑎 ൌ 𝑃ሼ𝑋 ൐ 2777.5ሽ

ൌ 𝑃൝
𝑋 െ 100000/38

100000ሺ1/38ሻሺ37/38ሻඥ
൐

2777.5 െ 100000/38

100000ሺ1/38ሻሺ37/38ሻඥ
ൡ

ൎ 1 െ Φ ሺ2.883ሻ

ൎ .0020

𝑋

𝑃ሼ𝑋 ൐ 𝑠 ൅ 𝑡 ||𝑋 ൐ 𝑡ሽ,

𝑃ሼ𝑋 ൐ 𝑠 ൅ 𝑡|𝑋 ൐ 𝑡ሽ ൌ
𝑃ሼ𝑋 ൐ 𝑠 ൅ 𝑡,𝑋 ൐ 𝑡ሽ

𝑃ሼ𝑋 ൐ 𝑡ሽ

ൌ
𝑃ሼ𝑋 ൐ 𝑠 ൅ 𝑡ሽ
𝑃ሼ𝑋 ൐ 𝑡ሽ

ൌ

𝑃ሼ𝑋 ൐ 𝑠 ൅ 𝑡|battery is type 1ሽ𝑝ଵ

     ൅ 𝑃ሼ𝑋 ൐ 𝑠 ൅ 𝑡|battery is type 2ሽ𝑝ଶ
𝑃ሼ𝑋 ൐ 𝑡|battery is type 1ሽ𝑝ଵ

     ൅ 𝑃ሼ𝑋 ൐ 𝑡|battery is type 2ሽ𝑝ଶ

ൌ
𝑒െఒభሺ௦൅௧ሻ𝑝ଵ ൅ 𝑒െఒమሺ௦൅௧ሻ𝑝ଶ

𝑒െఒభ௧𝑝ଵ ൅ 𝑒െఒమ௧𝑝ଶ
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Now for  use

5.19.  Let  be an exponential random variable with mean 

a. The value  should be such that  Therefore,

or 

b. 

5.20.

a. 

b. Using the fact that  has the same distribution as  where  is a

standard normal random variable, yields

𝑃ሼ𝑋 ൐ 𝑠 ൅ 𝑡|𝑋 ൐ 𝑡ሽ

  ൌ 𝑃ሼ𝑋 ൐ 𝑠 ൅ 𝑡|𝑋 ൐ 𝑡,  type 1ሽ𝑃ሼtype 1|𝑋 ൐ 𝑡ሽ

  ൅ 𝑃ሼ𝑋 ൐ 𝑠 ൅ 𝑡|𝑋 ൐ 𝑡, type 2ሽ𝑃ሼtype 2|𝑋 ൐ 𝑡ሽ

  ൌ 𝑒െఒభ௦𝑃ሼtype 1|𝑋 ൐ 𝑡ሽ ൅ 𝑒െఒమ௦𝑃ሼtype 2|𝑋 ൐ 𝑡ሽ

𝑖 ൌ 1,2,

𝑃ሼtype 𝑖|𝑋 ൐ 𝑡ሽ ൌ
𝑃ሼtype 𝑖,𝑋 ൐ 𝑡ሽ

𝑃ሼ𝑋 ൐ 𝑡ሽ

ൌ
𝑃ሼ𝑋 ൐ 𝑡|type 𝑖ሽ𝑝௜

𝑃ሼ𝑋 ൐ 𝑡|type 1ሽ𝑝ଵ ൅ 𝑃ሼ𝑋 ൐ 𝑡|type 2ሽ𝑝ଶ

ൌ
𝑒െఒ೔௧𝑝௜

𝑒െఒభ௧𝑝ଵ ൅ 𝑒െఒమ௧𝑝ଶ

𝑋௜ 𝑖, 𝑖 ൌ 1, 2.

𝑐 𝑃ሼ𝑋ଵ ൐ 𝑐ሽ ൌ .05.
𝑒െ௖ ൌ .05 ൌ 1/20

𝑐 ൌ logሺ20ሻ ൌ 2.996.

𝑃ሼ𝑋ଶ ൐ 𝑐ሽ ൌ 𝑒െ௖/ଶ ൌ
1

20√
ൌ .2236

𝐸ሾሺ𝑍 െ 𝑐ሻ൅ሿ ൌ
1

2𝜋√
඲
െஶ

ஶ

ሺ𝑥 െ 𝑐ሻ൅𝑒െ௫
మ/ଶ𝑑𝑥

ൌ
1

2𝜋√
඲

௖

ஶ

ሺ𝑥 െ 𝑐ሻ𝑒െ௫
మ/ଶ𝑑𝑥

ൌ
1

2𝜋√
඲

௖

ஶ

𝑥𝑒െ௫
మ/ଶ𝑑𝑥 െ

1

2𝜋√
඲

௖

ஶ

𝑐𝑒െ௫
మ/ଶ𝑑𝑥

ൌ െ
1

2𝜋√
𝑒െ௫

మ/ଶ |
||
|௖

ஶ

െ 𝑐ሺ1 െ Φ ሺ𝑐ሻሻ

ൌ
1

2𝜋√
𝑒െ௖

మ/ଶ െ 𝑐ሺ1 െ Φ ሺ𝑐ሻሻ

𝑋 𝜇 ൅ 𝜎𝑍, 𝑍
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where 

5.21.  Only (b) is true.

5.22.

a. If  then for 

Hence,

The argument when  is similar.

b. For 

Differentiation yields

c. 

d. For 

Differentiating gives

e. Using that  the result follows from

(a), (b), and (d). A direct argument is that, for 

𝐸ሾሺ𝑋 െ 𝑐ሻ൅ሿ ൌ 𝐸ሾሺ𝜇 ൅ 𝜎𝑍 െ 𝑐ሻ൅ሿ

ൌ 𝐸ቈ൬𝜎൬𝑍 െ
𝑐 െ 𝜇
𝜎

൰൰
൅

቉

ൌ 𝐸ቈ𝜎൬𝑍 െ
𝑐 െ 𝜇
𝜎

൰
൅

቉

ൌ 𝜎𝐸ቈ൬𝑍 െ
𝑐 െ 𝜇
𝜎

൰
൅

቉

ൌ 𝜎⎡
⎣

1

2𝜋√
𝑒െ௔

మ/ଶ െ 𝑎ሺ1 െ Φ ሺ𝑎ሻሻ⎤
⎦

 𝑎 ൌ
𝑐 െ 𝜇
𝜎

.

𝑏 ൐ 0, 0 ൏ 𝑥 ൏ 𝑏,
𝑃ሺ𝑏𝑈 ൏ 𝑥ሻ ൌ 𝑃ሼ𝑈 ൏ 𝑥/𝑏ሽ ൌ 𝑥/𝑏.

𝑓௕௎ሺ𝑥ሻ ൌ 1/𝑏,0 ൏ 𝑥 ൏ 𝑏

𝑏 ൏ 0

𝑎 ൏ 𝑥 ൏ 1 ൅ 𝑎,
𝑃ሼ𝑎 ൅ 𝑈 ൏ 𝑥ሽ ൌ 𝑃ሼ𝑈 ൏ 𝑥 െ 𝑎ሽ ൌ 𝑥 െ 𝑎

𝑓௔൅௎ሺ𝑥ሻ ൌ 1,𝑎 ൏ 𝑥 ൏ 1 ൅ 𝑎

𝑎 ൅ ሺ𝑏 െ 𝑎ሻ𝑈

0 ൏ 𝑥 ൏ 1/2,
𝑃ሼminሺ𝑈, 1 െ 𝑈ሻ ൏ 𝑥ሽ ൌ 𝑃ሺሼ𝑈 ൏ 𝑥ሽ ∪ ሼ𝑈 ൐ 1 െ 𝑥ሽሻ

ൌ 𝑃ሼ𝑈 ൏ 𝑥ሽ ൅ 𝑃ሼ𝑈 ൐ 1 െ 𝑥ሽ ൌ 2𝑥

𝑓୫୧୬ ሺ௎, ଵെ௎ሻሺ𝑥ሻ ൌ 2, 0 ൏ 𝑥 ൏ 1/2

max ሺ𝑈,1 െ 𝑈ሻ ൌ 1 െ min ሺ𝑈,1 െ 𝑈ሻ,

1/2 ൏ 𝑥 ൏ 1,
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Hence,

5.23.

a. 

b. 

5.24.

a. 

b. With  being exponential with rate 

c.  Hence,

𝑃ሼmax ሺ𝑈, 1 െ 𝑈ሻ ൏ 𝑥ሽ ൌ 1 െ 𝑃ሼmax ሺ𝑈, 1 െ 𝑈ሻ ൐ 𝑥ሽ

ൌ 1 െ 𝑃ሺሼ𝑈 ൐ 𝑥ሽ ∪ ሼ𝑈 ൏ 1 െ 𝑥ሽሻ

ൌ 1 െ ሺ1 െ 𝑥ሻ െ ሺ1 െ 𝑥ሻ ൌ 2𝑥 െ 1

𝑓୫ୟ୶ ሺ௎,ଵെ௎ሻሺ𝑥ሻ ൌ 2, 1/2 ൏ 𝑥 ൏ 1

െஶ׬
଴

𝑒௫𝑑𝑥 ൅ 1 ൅ ଵ׬
ஶ
𝑒െሺ௫െଵሻ𝑑𝑥 ൌ 1 ൅ 1 ൅ 1 ൌ 3.

𝐸ሾ𝑋ሿ ൌ 1/2

𝜃
1 ൅ 𝜃

଴׬
ஶ
ሺ1 ൅ 𝑥ሻ𝜃𝑒െఏ௫𝑑𝑥 ൌ

𝜃
1 ൅ 𝜃

ሺ1 ൅
1
𝜃
ሻ ൌ 1.

𝑌 𝜃,

𝐸ሾ𝑋ሿ ൌ
𝜃

1 ൅ 𝜃
ሺ𝐸ሾ𝑌ሿ ൅ 𝐸ሾ𝑌ଶሿሻ ൌ

2 ൅ 𝜃
𝜃ሺ1 ൅ 𝜃ሻ

.

𝐸ሾ𝑋ଶሿ ൌ
𝜃

1 ൅ 𝜃
ሺ𝐸ሾ𝑌ଶሿ ൅ 𝐸ሾ𝑌ଷሿሻ ൌ

𝜃
1 ൅ 𝜃

ሺ
2

𝜃ଶ
൅

6

𝜃ଷ
ሻ.

Varሺ𝑋ሻ ൌ
𝜃

1 ൅ 𝜃
ሺ

2

𝜃ଶ
൅

6

𝜃ଷ
ሻ െ ሺ

2 ൅ 𝜃
𝜃ሺ1 ൅ 𝜃ሻ

ሻ
ଶ

6.1.
a. 

b. Let  Then

c. 

d. 

e. 

6.2.

a. With  we have

Hence,

3𝐶 ൅ 6𝐶 ൌ 1 ⇒ 𝐶 ൌ 1/9

𝑝ሺ𝑖,𝑗ሻ ൌ 𝑃ሼ𝑋 ൌ 𝑖, 𝑌 ൌ 𝑗ሽ.
𝑝ሺ1, 1ሻ ൌ 4/9,  𝑝ሺ1, 0ሻ ൌ 2/9,  𝑃ሺ0, 1ሻ ൌ 1/9,  𝑝ሺ0, 0ሻ ൌ 2/9

ሺ12ሻ!

2଺ ሺ1/9ሻ଺ሺ2/9ሻ଺

ሺ12ሻ!

ሺ4!ሻଷ
ሺ1/3ሻଵଶ

෍
௜ ൌ ଼

ଵଶ

ቆ
12

𝑖
ቇሺ2/3ሻ௜ሺ1/3ሻଵଶെ௜

𝑝௝ ൌ 𝑃ሼ𝑋𝑌𝑍 ൌ 𝑗ሽ,
𝑝଺ ൌ 𝑝ଶ ൌ 𝑝ସ ൌ 𝑝ଵଶ ൌ 1/4
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b. With  we have

Hence,

6.3.  In this solution, we will make use of the identity

which follows because  is the density function of a

gamma random variable with parameters  and  and must thus

integrate to 1.

a. 

Hence, 

b. Since the joint density is nonzero only when  and  we

have, for 

For 

c. 

𝐸ሾ𝑋𝑌𝑍ሿ ൌ ሺ6 ൅ 2 ൅ 4 ൅ 12ሻ/4 ൌ 6

𝑞௝ ൌ 𝑃ሼ𝑋𝑌 ൅ 𝑋𝑍 ൅ 𝑌𝑍 ൌ 𝑗ሽ,
𝑞ଵଵ ൌ 𝑞ହ ൌ 𝑞଼ ൌ 𝑞ଵ଺ ൌ 1/4

𝐸ሾ𝑋𝑌 ൅ 𝑋𝑍 ൅ 𝑌𝑍ሿ ൌ ሺ11 ൅ 5 ൅ 8 ൅ 16ሻ/4 ൌ 10

඲

଴

ஶ

𝑒െ௫𝑥௡𝑑𝑥 ൌ 𝑛!

𝑒െ௫𝑥௡/𝑛!, 𝑥 ൐ 0,

𝑛 ൅ 1 𝜆

1 ൌ 𝐶඲

଴

ஶ

𝑒െ௬඲
െ௬

௬

ሺ𝑦 െ 𝑥ሻ 𝑑𝑥 𝑑𝑦

ൌ 𝐶඲

଴

ஶ

𝑒െ௬2𝑦ଶ 𝑑𝑦 ൌ 4𝐶

𝐶 ൌ 1/4.

𝑦 ൐ 𝑥 𝑦 ൐ െ 𝑥,

𝑥 ൐ 0,

𝑓௑ሺ𝑥ሻ ൌ
1
4
඲

௫

ஶ

ሺ𝑦 െ 𝑥ሻ 𝑒െ௬𝑑𝑦

ൌ
1
4
඲

଴

ஶ

𝑢𝑒െሺ௫൅௨ሻ𝑑𝑢

ൌ
1
4
𝑒െ௫

𝑥 ൏ 0,

𝑓௑ሺ𝑥ሻ ൌ
1
4
඲
െ௫

ஶ

ሺ𝑦 െ 𝑥ሻ 𝑒െ௬𝑑𝑦

ൌ
1
4
ሾ െ 𝑦𝑒െ௬ െ 𝑒െ௬ ൅ 𝑥𝑒െ௬ሿെ௫

ஶ

ൌ ሺ െ 2𝑥𝑒௫ ൅ 𝑒௫ሻ/4

𝑓௒ሺ𝑦ሻ ൌ
1
4
𝑒െ௬׬െ௬

௬
ሺ𝑦 െ 𝑥ሻ 𝑑𝑥 ൌ

1
2
𝑦ଶ𝑒െ௬
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d. 

e. 

6.4.  The multinomial random variables  represent the

numbers of each of the types of outcomes  that occur in n

independent trials when each trial results in one of the outcomes

with respective probabilities  Now, say that a trial results in a

category 1 outcome if that trial resulted in any of the outcome types

 say that a trial results in a category 2 outcome if that trial resulted

in any of the outcome types  and so on. With these

definitions,  represent the numbers of category 1 outcomes,

category 2 outcomes, up to category k outcomes when n independent

trials that each result in one of the categories  with respective

probabilities  are performed. But by definition,

such a vector has a multinomial distribution.

6.5.

a. Letting  we have

b. Letting  we have

c. Letting  we have

6.6.

a. 

𝐸ሾ𝑋ሿ ൌ
1
4
቎඲

଴

ஶ

𝑥𝑒െ௫𝑑𝑥 ൅඲
െஶ

଴

ሺ െ 2𝑥ଶ𝑒௫ ൅ 𝑥𝑒௫ሻ 𝑑𝑥቏

ൌ
1
4
቎1 െ඲

଴

ஶ

ሺ2𝑦ଶ𝑒െ௬ ൅ 𝑦𝑒െ௬ሻ 𝑑𝑦቏

ൌ
1
4
ሾ1 െ 4 െ 1ሿ ൌ െ 1

𝐸ሾ𝑌ሿ ൌ
1
2
଴׬
ஶ
𝑦ଷ𝑒െ௬ 𝑑𝑦 ൌ 3

𝑋௜,  𝑖 ൌ 1, …, 𝑟,

1, …, 𝑟

1, …, 𝑟

𝑝ଵ, …,𝑝௥ .

1, …, 𝑟ଵ;

𝑟ଵ ൅ 1, …, 𝑟ଵ ൅ 𝑟ଶ;

𝑌ଵ, …,𝑌௞

1, …, 𝑘

෍
௝ൌ௥೔െభ ൅ଵ

௥೔െభ ൅௥೔
𝑝௜,  𝑖 ൌ  1, …, 𝑘,

𝑝௝ ൌ 𝑃ሼ𝑋𝑌𝑍 ൌ 𝑗ሽ,
𝑝ଵ ൌ 1/8, 𝑝ଶ ൌ 3/8, 𝑝ସ ൌ 3/8, 𝑝଼ ൌ 1/8

𝑝௝ ൌ 𝑃ሼ𝑋𝑌 ൅ 𝑋𝑍 ൅ 𝑌𝑍 ൌ 𝑗ሽ,
𝑝ଷ ൌ 1/8, 𝑝ହ ൌ 3/8, 𝑝଼ ൌ 3/8, 𝑝ଵଶ ൌ 1/8

𝑝௝ ൌ 𝑃൛𝑋ଶ ൅ 𝑌𝑍 ൌ 𝑗ൟ,
𝑝ଶ ൌ 1/8, 𝑝ଷ ൌ 1/4, 𝑝ହ ൌ 1/4, 𝑝଺ ൌ 1/4, 𝑝଼ ൌ 1/8

1 ൌ ඲

଴

ଵ

඲

ଵ

ହ

ሺ𝑥/5 ൅ 𝑐𝑦ሻ 𝑑𝑦 𝑑𝑥

ൌ ඲

଴

ଵ

ሺ4𝑥/5 ൅ 12𝑐ሻ 𝑑𝑥

ൌ 12𝑐 ൅ 2/5
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Hence, 

b. No, the density does not factor.

c. 

6.7.

a. Yes, the joint density function factors.

b. 

c. 

d. 

e. 

f. 

6.8.  Let  denote the time at which a shock type  of  occurs.

For 

6.9.

a. No, advertisements on pages having many ads are less likely to be

chosen than are ones on pages with few ads.

b. 

c. 

d. 

𝑐 ൌ 1/20.

𝑃ሼ𝑋 ൅ 𝑌 ൐ 3ሽ ൌ ඲

଴

ଵ

඲

ଷെ௫

ହ

ሺ𝑥/5 ൅ 𝑦/20ሻ 𝑑𝑦 𝑑𝑥

ൌ ඲

଴

ଵ

ሾሺ2 ൅ 𝑥ሻ𝑥/5 ൅ 25/40 െ ሺ3 െ 𝑥ሻଶ/40ሿ 𝑑𝑥

ൌ 1/5 ൅ 1/15 ൅ 5/8 െ 19/120 ൌ 11/15

𝑓௑ሺ𝑥ሻ ൌ 𝑥׬଴
ଶ
𝑦𝑑𝑦 ൌ 2𝑥,  0 ൏ 𝑥 ൏ 1

𝑓௒ሺ𝑦ሻ ൌ 𝑦׬଴
ଵ
𝑥𝑑𝑥 ൌ 𝑦/2, 0 ൏ 𝑦 ൏ 2

𝑃ሼ𝑋 ൏ 𝑥,𝑌 ൏ 𝑦ሽ ൌ 𝑃ሼ𝑋 ൏ 𝑥ሽ𝑃ሼ𝑌 ൏ 𝑦ሽ

ൌ minሺ1, 𝑥ଶሻminሺ1,  𝑦ଶ/4ሻ, 𝑥  ൐  0,𝑦  ൐  0

𝐸ሾ𝑌ሿ ൌ ଴׬
ଶ
𝑦ଶ/2𝑑𝑦 ൌ 4/3

𝑃ሼ𝑋 ൅ 𝑌 ൏ 1ሽ ൌ ඲

଴

ଵ

𝑥඲

଴

ଵെ௫

𝑦 𝑑𝑦 𝑑𝑥

ൌ
1
2
඲

଴

ଵ

𝑥ሺ1 െ 𝑥ሻଶ𝑑𝑥 ൌ 1/24

𝑇௜ 𝑖, 𝑖 ൌ 1,2,3,

𝑠 ൐ 0,𝑡 ൐ 0,
𝑃ሼ𝑋ଵ ൐ 𝑠,𝑋ଶ ൐ 𝑡ሽ ൌ 𝑃ሼ𝑇ଵ ൐ 𝑠,𝑇ଶ ൐ 𝑡,𝑇ଷ ൐ maxሺ𝑠, 𝑡ሻሽ

ൌ 𝑃ሼ𝑇ଵ ൐ 𝑠ሽ𝑃ሼ𝑇ଶ ൐ 𝑡ሽ𝑃ሼ𝑇ଷ ൐ maxሺ𝑠, 𝑡ሻሽ

ൌ expሼെ𝜆ଵ𝑠ሽexpሼെ𝜆ଶ𝑡ሽexpሼെ𝜆ଷ maxሺ𝑠, 𝑡ሻሽ

ൌ expሼെሺ𝜆ଵ𝑠 ൅ 𝜆ଶ𝑡 ൅ 𝜆ଷ maxሺ𝑠, 𝑡ሻሻሽ

1
𝑚
𝑛ሺ𝑖ሻ
𝑛

෍
௜ ൌ ଵ

௠

𝑛ሺ𝑖ሻ

𝑛𝑚
ൌ 𝑛̅̅/𝑛,  where 𝑛̅̅ ൌ ෍

௜ ൌ ଵ

௠

𝑛ሺ𝑖ሻ/𝑚

ሺ1 െ 𝑛̅̅/𝑛ሻ௞െଵ
1
𝑚
𝑛ሺ𝑖ሻ
𝑛

1
𝑛ሺ𝑖ሻ

ൌ ሺ1 െ 𝑛̅̅/𝑛ሻ௞െଵ/ሺ𝑛𝑚ሻ
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e. 

f. The number of iterations is geometric with mean 

6.10.
a. 

b. Step 2. Generate a uniform (0, 1) random variable  If

 go to step 3. Otherwise return to step 1.

Step 3. Generate a uniform (0, 1) random variable  and select

the element on page  in position 

6.11.  Yes, they are independent. This can be easily seen by

considering the equivalent question of whether  is independent of 

But this is indeed so, since knowing when the first random variable

greater than  occurs does not affect the probability distribution of its

value, which is the uniform distribution on (  1).

6.12.  Let  denote the probability of obtaining  points on a single

throw of the dart. Then

a. 
b. 
c. 
d. 

e. 
f. 

6.13.  Let  be a standard normal random variable.

a. 

෍
௞ ൌ ଵ

ஶ 1
𝑛𝑚

ሺ1 െ 𝑛̅̅/𝑛ሻ௞െଵ ൌ
1
𝑛̅̅𝑚

.

𝑛 𝑛√

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ 1/𝑚,  𝑖 ൌ 1, . . . ,𝑚.

𝑈.

𝑈 ൏ 𝑛ሺ𝑋ሻ/𝑛,

𝑈,

𝑋 ሾ𝑛ሺ𝑋ሻ𝑈ሿ ൅ 1

𝑋ே 𝑁.

𝑐

𝑐,

𝑝௜ 𝑖

𝑝ଷ଴ ൌ 𝜋/36

𝑝ଶ଴ ൌ 4𝜋/36 െ 𝑝ଷ଴ ൌ 𝜋/12

𝑝ଵ଴ ൌ 9𝜋/36 െ 𝑝ଶ଴ െ 𝑝ଷ଴ ൌ 5𝜋/36

𝑝଴ ൌ 1 െ 𝑝ଵ଴ െ 𝑝ଶ଴ െ 𝑝ଷ଴ ൌ 1 െ 𝜋/4

𝜋/12
𝜋/9
1 െ 𝜋/4
𝜋ሺ30/36 ൅ 20/12 ൅ 50/36ሻ ൌ 35𝜋/9
ሺ𝜋/4ሻଶ

2ሺ𝜋/36ሻሺ1 െ 𝜋/4ሻ ൅ 2ሺ𝜋/12ሻሺ5𝜋/36ሻ

𝑍

𝑃ቐ ෍
௜ ൌ ଵ

ସ

𝑋௜ ൐ 0ቑ ൌ 𝑃

⎧

⎨

⎩

⎪
⎪

⎪
⎪

෍
௜ ൌ ଵ

ସ

𝑋௜ െ 6

24√
൐

െ6

24√

⎫

⎬

⎭

⎪
⎪

⎪
⎪

ൎ 𝑃ሼ𝑍 ൐ െ 1.2247ሽ ൎ .8897
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b. 

c. 

6.14.  In the following,  does not depend on 

which shows that, conditional on  is a Poisson random

variable with mean  That is,

6.15.

a. The Jacobian of the transformation is

As the equations  imply that  we

obtain

or, equivalently,

b. For 

𝑃ቐ ෍
௜ ൌ ଵ

ସ

𝑋௜ ൐ 0| ෍
௜ ൌ ଵ

ଶ

𝑋௜ ൌ െ 5ቑ ൌ 𝑃ሼ𝑋ଷ ൅ 𝑋ସ ൐ 5ሽ

ൌ 𝑃ቊ
𝑋ଷ ൅ 𝑋ସ െ 3

12√
൐ 2/ 12√ ቋ

ൎ 𝑃ሼ𝑍 ൐ .5774ሽ ൎ .2818

𝑃ቐ ෍
௜ ൌ ଵ

ସ

𝑋௜ ൐ 0 |𝑋ଵ ൌ 5ቑ ൌ 𝑃ሼ𝑋ଶ ൅ 𝑋ଷ ൅ 𝑋ସ ൐ െ 5ሽ

ൌ 𝑃ቊ
𝑋ଶ ൅ 𝑋ଷ ൅ 𝑋ସ െ 4.5

18√
൐ െ 9.5/ 18√ ቋ

ൎ 𝑃ሼ𝑍 ൐ െ 2.239ሽ ൎ .9874

𝐶 𝑛.
𝑃ሼ𝑁 ൌ 𝑛|𝑋 ൌ 𝑥ሽ ൌ 𝑓௑หேሺ𝑥 |𝑛ሻ𝑃ሼ𝑁 ൌ 𝑛ሽ/𝑓௑ሺ𝑥ሻ

ൌ 𝐶
1

ሺ𝑛 െ 1ሻ!
ሺ𝜆𝑥ሻ௡െଵሺ1 െ 𝑝ሻ௡െଵ

ൌ 𝐶ሺ𝜆ሺ1 െ 𝑝ሻ𝑥ሻ௡െଵ/ሺ𝑛 െ 1ሻ!

𝑋 ൌ 𝑥, 𝑁 െ 1

𝜆ሺ1 െ 𝑝ሻ𝑥.
𝑃ሼ𝑁 ൌ 𝑛 |𝑋 ൌ 𝑥ሽ ൌ 𝑃ሼ𝑁 െ 1 ൌ 𝑛 െ 1 |𝑋 ൌ 𝑥ሽ

ൌ 𝑒െఒሺଵെ௣ሻ௫ሺ𝜆ሺ1 െ 𝑝ሻ𝑥ሻ௡െଵ/ሺ𝑛 െ 1ሻ!,  𝑛  ൒  1.

𝐽 ൌ ቤ
1 0

1 1
ቤ ൌ 1

𝑢 ൌ 𝑥, 𝑣 ൌ 𝑥 ൅ 𝑦 𝑥 ൌ 𝑢, 𝑦 ൌ 𝑣 െ 𝑢,

𝑓௎,௏ሺ𝑢,𝑣ሻ ൌ 𝑓௑,௒ሺ𝑢,𝑣 െ 𝑢ሻ ൌ 1, 0 ൏ 𝑢 ൏ 1, 0 ൏ 𝑣 െ 𝑢 ൏ 1

𝑓௎,௏ሺ𝑢,𝑣ሻ ൌ 1, maxሺ𝑣 െ 1,0ሻ ൏ 𝑢 ൏ minሺ𝑣,1ሻ

0 ൏ 𝑣 ൏ 1,

𝑓௏ሺ𝑣ሻ ൌ ඲

଴

௩

𝑑𝑢 ൌ 𝑣
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For 

6.16.  Let  be a uniform random variable on (7, 11). If you bid

 you will be the high bidder with probability

Hence, your expected gain—call it —if you bid  is

Calculus shows this is maximized when 

6.17.  Let  be a permutation of  Then

Therefore, the desired probability is !  which reduces to 

when all 

6.18.

a. Because  it follows that 

b. Consider the  coordinates whose -values are equal to 0, and

call them the red coordinates. Because the  coordinates whose 

-values are equal to 1 are equally likely to be any of the  sets

of  coordinates, it follows that the number of red coordinates

among these  coordinates has the same distribution as the

number of red balls chosen when one randomly chooses  of a set

of  balls of which  are red. Therefore,  is a hypergeometric

random variable.

c. 

d. Using the formula for the variance of a hypergeometric given in

Example 8j of Chapter 4 , we obtain

1 ൑ 𝑣 ൑ 2,

𝑓௏ሺ𝑣ሻ ൌ ඲

௩െଵ

ଵ

𝑑𝑢 ൌ 2 െ 𝑣

𝑈

𝑥 ,7 ൑ 𝑥 ൑ 10,

ሺ𝑃ሼ𝑈 ൏ 𝑥ሽሻଷ ൌ ቆ𝑃ቊ
𝑈 െ 7

4
൏
𝑥 െ 7

4
ቋቇ

ଷ

ൌ ቆ
𝑥 െ 7

4
ቇ
ଷ

𝐸ሾ𝐺ሺ𝑥ሻሿ 𝑥

𝐸ሾ𝐺ሺ𝑥ሻሿ ൌ
1

64
ሺ𝑥 െ 7ሻଷሺ10 െ 𝑥ሻ

𝑥 ൌ 37/4.

𝑖ଵ,𝑖ଶ, . . . ,𝑖௡, 1,2, . . . ,𝑛.
𝑃ሼ𝑋ଵ ൌ 𝑖ଵ,  𝑋ଶ ൌ 𝑖ଶ, .   .   . ,  𝑋௡ ൌ 𝑖௡ሽ

ൌ 𝑃ሼ𝑋ଵ ൌ 𝑖ଵሽ𝑃ሼ𝑋ଶ ൌ 𝑖ଶሽ ⋯𝑃ሼ𝑋௡ ൌ 𝑖௡ሽ

ൌ 𝑝௜భ𝑝௜మ⋯𝑝௜೙
ൌ 𝑝ଵ𝑝ଶ⋯𝑝௡

𝑛 𝑝ଵ𝑝ଶ⋯𝑝௡,
𝑛!
𝑛௡

𝑝௜ ൌ 1/𝑛.

෍
௜ ൌ ଵ

௡

𝑋௜ ൌ ෍
௜ ൌ ଵ

௡

𝑌௜, 𝑁 ൌ 2𝑀.

𝑛 െ 𝑘 𝑌

𝑘 𝑋

ቆ
𝑛

𝑘
ቇ

𝑘

𝑘

𝑘

𝑛 𝑛 െ 𝑘 𝑀

𝐸ሾ𝑁ሿ ൌ 𝐸ሾ2𝑀ሿ ൌ 2𝐸ሾ𝑀ሿ ൌ
2𝑘ሺ𝑛 െ 𝑘ሻ

𝑛

Varሺ𝑁ሻ ൌ 4 Varሺ𝑀ሻ ൌ 4
𝑛 െ 𝑘
𝑛 െ 1

𝑘ሺ1 െ 𝑘/𝑛ሻሺ𝑘/𝑛ሻ
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6.19.

a. First note that  is a normal random variable

with mean 0 and variance  that is independent of 

Consequently, given that  is a normal random variable

with mean  and variance 

b. Because the conditional density function of  given that  is

a density function whose argument is  anything that does not

depend on  can be regarded as a constant. (For instance,  is

regarded as a fixed constant.) In the following, the quantities

 are all constants that do not depend on 

But we recognize the preceding as the density function of a normal

random variable with mean  and variance 

6.20.

𝑆௡ െ 𝑆௞ ൌ ෍
௜ ൌ ௞ ൅ ଵ

௡

𝑍௜

𝑛 െ 𝑘 𝑆௞.

𝑆௞ ൌ 𝑦, 𝑆௡
𝑦 𝑛 െ 𝑘.

𝑆௞ 𝑆௡ ൌ 𝑥

𝑦,

𝑦 𝑥

𝐶௜, 𝑖 ൌ 1, 2, 3, 4 𝑦:

𝑓ௌೖ หௌ೙ሺ𝑦|𝑥ሻ ൌ
𝑓ௌೖ ,ௌ೙

ሺ𝑦, 𝑥ሻ

𝑓ௌ೙ሺ𝑥ሻ

ൌ 𝐶ଵ𝑓ௌ೙ หௌೖሺ𝑥|𝑦ሻ𝑓ௌೖሺ𝑦ሻ ൭where 𝐶ଵ ൌ
1

𝑓ௌ೙ሺ𝑥ሻ
൱

ൌ 𝐶ଵ
1

2𝜋√ 𝑛 െ 𝑘√
𝑒െሺ௫െ௬ሻ

మ/ଶሺ௡െ௞ሻ 1

2𝜋√ 𝑘√
𝑒െ௬

మ/ଶ௞

ൌ 𝐶ଶ exp൝െ
ሺ𝑥 െ 𝑦ሻଶ

2ሺ𝑛 െ 𝑘ሻ
െ
𝑦ଶ

2𝑘
ൡ

ൌ 𝐶ଷ expቊ
2𝑥𝑦

2ሺ𝑛 െ 𝑘ሻ
െ

𝑦ଶ

2ሺ𝑛 െ 𝑘ሻ
െ
𝑦ଶ

2𝑘
ቋ

ൌ 𝐶ଷ expቊെ
𝑛

2𝑘ሺ𝑛 െ 𝑘ሻ
ቆ𝑦ଶ െ 2

𝑘
𝑛
𝑥𝑦ቇቋ

ൌ 𝐶ଷ exp൝െ
𝑛

2𝑘ሺ𝑛 െ 𝑘ሻ
൥ቆ𝑦 െ

𝑘
𝑛
𝑥ቇ

ଶ

െ ቆ
𝑘
𝑛
𝑥ቇ

ଶ

൩ൡ

ൌ 𝐶ସ exp൝െ
𝑛

2𝑘ሺ𝑛 െ 𝑘ሻ
ቆ𝑦 െ

𝑘
𝑛
𝑥ቇ

ଶ

ൡ

𝑘
𝑛
𝑥

𝑘ሺ𝑛 െ 𝑘ሻ
𝑛

.

781 of 848



a. 

Thus, the probability that  is the largest value is independent of

which is the largest of the other five values. (Of course, this would

not be true if the  had different distributions.)

b. One way to solve this problem is to condition on whether 

Now,

Also, by symmetry,

From part (a),

Thus, conditioning on whether  yields the result

6.21.

6.22.  Suppose  and consider  If there have been

 failures after trial  then there have been  successes by that point.

Hence, the conditional distribution of  given that  is the

distribution of  plus the number of additional trials after trial  until there

have been an additional  successes. Hence, for 

𝑃ሼ𝑋଺ ൐ 𝑋ଵ|𝑋ଵ ൌ maxሺ𝑋ଵ, .   .   . ,𝑋ହሻሽ

ൌ
𝑃ሼ𝑋଺ ൐ 𝑋ଵ,  𝑋ଵ ൌ maxሺ𝑋ଵ, .   .   . ,𝑋ହሻሽ

𝑃ሼ𝑋ଵ ൌ maxሺ𝑋ଵ, .   .   . ,𝑋ହሻሽ

ൌ
𝑃ሼ𝑋଺ ൌ maxሺ𝑋ଵ, .   .   . ,𝑋଺ሻ,  𝑋ଵ ൌ maxሺ𝑋ଵ, .   .   . ,𝑋ହሻሽ

1/5

ൌ 5
1
6

1
5
ൌ

1
6

𝑋଺

𝑋௜
𝑋଺ ൐ 𝑋ଵ.

𝑃ሼ𝑋଺ ൐ 𝑋ଶ ||𝑋ଵ ൌ maxሺ𝑋ଵ, . . . ,𝑋ହሻ,𝑋଺ ൐ 𝑋ଵሽ ൌ 1

𝑃ሼ𝑋଺ ൐ 𝑋ଶ ||𝑋ଵ ൌ maxሺ𝑋ଵ, .   .   . ,𝑋ହሻ,𝑋଺ ൏ 𝑋ଵሽ ൌ
1
2

𝑃ሼ𝑋଺ ൐ 𝑋ଵ ||𝑋ଵ ൌ maxሺ𝑋ଵ, .   .   . ,𝑋ହሻሽ ൌ
1
6

𝑋଺ ൐ 𝑋ଵ

𝑃ሼ𝑋଺ ൐ 𝑋ଶ ||𝑋ଵ ൌ maxሺ𝑋ଵ, .   .   . ,𝑋ହሻሽ ൌ
1
6
൅

1
2

5
6
ൌ

7
12

𝑃ሼ𝑋 ൐ 𝑠,𝑌 ൐ 𝑡ሽ

ൌ 1 െ 𝑃ሺሼ𝑋 ൑ 𝑠ሽ ∪ ሼ𝑌 ൑ 𝑡ሽሻ

ൌ 1 െ 𝑃ሼ𝑋 ൑ 𝑠ሽ െ 𝑃ሼ𝑌 ൑ 𝑡ሽ ൅ 𝑃ሼ𝑋 ൑ 𝑠,𝑌 ൑ 𝑡ሽ
𝑗 ൏ 𝑖, 𝑃ሺ𝑋௥ ൌ 𝑖, 𝑌௦ ൌ 𝑗ሻ.

𝑠 𝑗 𝑗 െ 𝑠

𝑋௥, 𝑌௦ ൌ 𝑗,

𝑗 𝑗

𝑟 െ 𝑗 ൅ 𝑠 𝑗 ൏ 𝑖
𝑃ሺ𝑋௥ ൌ 𝑖,  𝑌௦ ൌ 𝑗ሻ ൌ 𝑃ሺ𝑌௦ ൌ 𝑗ሻ𝑃ሺ𝑋௥ ൌ 𝑖 |𝑌௦ ൌ 𝑗ሻ

ൌ 𝑃ሺ𝑌௦ ൌ 𝑗ሻ𝑃ሺ𝑋௦൅௥െ௝ ൌ 𝑖 െ 𝑗ሻ

ൌ ቆ
𝑗 െ 1

𝑠 െ 1
ቇ ሺ1 െ 𝑝ሻ௦𝑝௝െ௦

ቆ
𝑖 െ 𝑗 െ 1

𝑠 ൅ 𝑟 െ 𝑗 െ 1
ቇ 𝑝௦൅௥െ௝ሺ1 െ 𝑝ሻ௜െ௦െ௥, 𝑗 ൏ 𝑖
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6.23.  For 

6.24.

6.25.

a. 

b. Condition on the number of times  would advance if  played

forever, to obtain 

c. 

6.26.

a. even;

b. 1;

c. 

d. 

giving that

For 

𝑥 ൐ 𝑥଴, 𝑃ሺ𝑋 ൐ 𝑥|𝑋 ൐ 𝑥଴ሻ ൌ
𝑃ሺ𝑋 ൐ 𝑥ሻ
𝑃ሺ𝑋 ൐ 𝑥଴ሻ

ൌ
𝑎ఒ𝑥െఒ

𝑎ఒ𝑥଴
െఒ ൌ 𝑥଴

ఒ𝑥െఒ

඲
െஶ

ஶ

𝑓௑ห௒ሺ𝑥|𝑦ሻ𝑓௒ሺ𝑦ሻ 𝑑𝑦 ൌ ඲
െஶ

ஶ
𝑓ሺ𝑥,𝑦ሻ
𝑓௒ሺ𝑦ሻ

𝑓௒ሺ𝑦ሻ 𝑑𝑦

ൌ ඲
െஶ

ஶ

𝑓ሺ𝑥,  𝑦ሻ 𝑑𝑦

ൌ 𝑓௑ሺ𝑥ሻ

𝑝௜
௞ቆ1 െෑ

௝ஷ௜
ሺ1 െ 𝑝௝

௞ሻቇ

𝑖 𝑖

෍
௞ൌ଴

ஶ
𝑝௜
௞ሺ1 െ 𝑝௜ሻෑ

௝ஷ௜
ሺ1 െ 𝑝௝

௞൅ଵሻ.

෍
௞ൌ଴

ஶ
𝑝௜
௞ሺ1 െ 𝑝௜ሻෑ

௝ஷ௜
ሺ1 െ 𝑝௝

௞ሻ.

ෑ
௜ൌଵ

௡
ሺ2𝛼௜ െ 1ሻ;

ෑ
௜ ൌ ଵ

௡

ሺ2𝛼௜ െ 1ሻ ൌ 𝐸ሾ ෑ
௜ ൌ ଵ

௡

𝑌௜ሿ

ൌ 𝑃ሺ ෑ
௜ ൌ ଵ

௡

𝑌௜ ൌ 1ሻ െ 𝑃ሺ ෑ
௜ ൌ ଵ

௡

𝑌௜ ൌ െ 1ሻ

ൌ 2𝑃ሺ ෑ
௜ ൌ ଵ

௡

𝑌௜ ൌ 1ሻ െ 1

𝑃ሺ𝑆 is evenሻ ൌ 𝑃ሺ ෑ
௜ ൌ ଵ

௡

𝑌௜ ൌ 1ሻ ൌ
1 ൅ෑ

௜ൌଵ

௡
ሺ2𝛼௜ െ 1ሻ

2

0 ൏ 𝑥 ൏ 1
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where  does not depend on  Hence, we can

conclude that the conditional density of  given that  is beta with

parameters  As a byproduct, we also see that

 or equivalently that

𝑓௑หேሺ𝑥 |𝑛ሻ ൌ
𝑃ሺ𝑁 ൌ 𝑛 |𝑋 ൌ 𝑥ሻ𝑓௑ሺ𝑥ሻ

𝑃ሺ𝑁 ൌ 𝑛ሻ

ൌ
ቆ
𝑛 ൅𝑚

𝑛
ቇ𝑥௡ሺ1 െ 𝑥ሻ௠𝑥௔െଵሺ1 െ 𝑥ሻ௕െଵ

𝐵ሺ𝑎, 𝑏ሻ𝑃ሺ𝑁 ൌ 𝑛ሻ

ൌ 𝐾𝑥௡൅௔െଵሺ1 െ 𝑥ሻ௠൅௕െଵ

𝐾 ൌ
ቆ
𝑛 ൅ 𝑚

𝑛
ቇ

𝐵ሺ𝑎, 𝑏ሻ𝑃ሺ𝑁 ൌ 𝑛ሻ
𝑥.

𝑋 𝑁 ൌ 𝑛

𝑛 ൅ 𝑎, 𝑚൅ 𝑏.

ቆ
𝑛 ൅𝑚

𝑛
ቇ

𝐵ሺ𝑎, 𝑏ሻ𝑃ሺ𝑁 ൌ 𝑛ሻ
ൌ

1
𝐵ሺ𝑎 ൅ 𝑛, 𝑏 ൅𝑚ሻ

,

𝑃ሺ𝑁 ൌ 𝑛ሻ ൌ
ቆ
𝑛 ൅ 𝑚

𝑛
ቇ𝐵ሺ𝑎 ൅ 𝑛,  𝑏 ൅ 𝑚ሻ

𝐵ሺ𝑎, 𝑏ሻ

7.1.

a. 

b. 

c. 

7.2.  Let  equal 1 if the th ball withdrawn is white and the  is

black, and let  equal 0 otherwise. If  is the number of instances in

which a white ball is immediately followed by a black one, then we may

express  as

Thus,

𝑑 ൌ ෍
௜ ൌ ଵ

௠

1/𝑛ሺ𝑖ሻ

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ 𝑃ሼሾ𝑚𝑈ሿ ൌ 𝑖 െ 1ሽ ൌ 𝑃ሼ𝑖 െ 1 ൑ 𝑚𝑈 ൏ 𝑖ሽ ൌ 1/𝑚, 𝑖 ൌ 1, . . . ,𝑚

𝐸ቈ
𝑚
𝑛ሺ𝑋ሻ

቉ ൌ ෍
௜ ൌ ଵ

௠
𝑚
𝑛ሺ𝑖ሻ

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ ෍
௜ ൌ ଵ

௠
𝑚
𝑛ሺ𝑖ሻ

1
𝑚
ൌ 𝑑

𝐼௝ 𝑗 ሺ𝑗 ൅ 1ሻ

𝐼௝ 𝑋

𝑋

𝑋 ൌ ෍
௝ ൌ ଵ

௡ ൅ ௠ െ ଵ

𝐼௝
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The preceding used the fact that each of the  balls is equally

likely to be the th one selected and, given that that selection is a white

ball, each of the other  balls is equally likely to be the next

ball chosen.

7.3.  Arbitrarily number the couples, and then let  equal 1 if married

couple number  is seated at the same table. Then, if 

represents the number of married couples that are seated at the same

table, we have

so

a. To compute  in this case, consider wife number  Since

each of the  groups of size 3 not including her is equally

likely to be the remaining members of her table, it follows that

the probability that her husband is at her table is

Hence,  and so

𝐸ሾ𝑋ሿ ൌ ෍
௝ ൌ ଵ

௡ ൅ ௠ െ ଵ

𝐸ሾ𝐼௝ሿ

ൌ ෍
௝ ൌ ଵ

௡ ൅ ௠ െ ଵ

𝑃൛𝑗௧௛ selection is white,  ሺ𝑗 ൅ 1ሻ is blackൟ

ൌ ෍
௝ ൌ ଵ

௡ ൅ ௠ െ ଵ

𝑃൛𝑗௧௛ selection is whiteൟ𝑃൛ሺ𝑗 ൅ 1ሻ is black ||𝑗
௧௛ is whiteൟ

ൌ ෍
௝ ൌ ଵ

௡ ൅ ௠ െ ଵ
𝑛

𝑛 ൅ 𝑚
𝑚

𝑛 ൅𝑚െ 1

ൌ
𝑛𝑚
𝑛 ൅𝑚

𝑛 ൅𝑚

𝑗

𝑛 ൅ 𝑚 െ 1

𝐼௝
𝑗,  𝑗 ൌ 1, . . . ,10, 𝑋

𝑋 ൌ ෍
௝ ൌ ଵ

ଵ଴

𝐼௝

𝐸ሾ𝑋ሿ ൌ ෍
௝ ൌ ଵ

ଵ଴

𝐸ሾ𝐼௝ሿ

𝐸ሾ𝐼௝ሿ 𝑗.

ቆ
19

3
ቇ

ቆ
1

1
ቇቆ

18

2
ቇ

ቆ
19

3
ቇ

ൌ
3

19

𝐸ሾ𝐼௝ሿ ൌ 3/19
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b. In this case, since the 2 men at the table of wife  are equally

likely to be any of the 10 men, it follows that the probability that

one of them is her husband is 2/10, so

7.4.  From Example 2i , we know that the expected number of

times that the die need be rolled until all sides have appeared at least

once is  Now, if we let 

denote the total number of times that side  appears, then, since

 is equal to the total number of rolls, we have

But, by symmetry,  will be the same for all  and thus it follows

from the preceding that 

7.5.  Let  equal 1 if we win 1 when the th red card to show is

turned over, and let  equal 0 otherwise. (For instance,  will equal 1 if

the first card turned over is red.) Hence, if  is our total winnings, then

Now,  will equal 1 if  red cards appear before  black cards. By

symmetry, the probability of this event is equal to 1/2; therefore,

 and 

7.6.  To see that  note that if all events occur, then both

sides of the preceding inequality are equal to  whereas if they do not

all occur, then the inequality reduces to  which is clearly true

in this case. Taking expectations yields

However, if we let  equal 1 if  occurs and 0 otherwise, then

Since  the result follows.

7.7.  Imagine that the values  are lined up in their numerical

𝐸ሾ𝑋ሿ ൌ 30/19

𝑗

𝐸ሾ𝐼௝ሿ ൌ 2/10 and 𝐸ሾ𝑋ሿ ൌ 2

6ሺ1 ൅ 1/2 ൅ 1/3 ൅ 1/4 ൅ 1/5 ൅ 1/6ሻ ൌ 14.7. 𝑋௜
𝑖

෍
௜ ൌ ଵ

଺

 𝑋௜

14.7 ൌ 𝐸 ቎ ෍
௜ ൌ ଵ

଺

𝑋௜቏ ൌ ෍
௜ ൌ ଵ

଺

𝐸ሾ𝑋௜ሿ

𝐸ሾ𝑋௜ሿ 𝑖,

𝐸ሾ𝑋ଵሿ ൌ 14.7/6 ൌ 2.45.

𝐼௝ 𝑗

𝐼௝ 𝐼ଵ
𝑋

𝐸ሾ𝑋ሿ ൌ 𝐸቎ ෍
௝ ൌ ଵ

௡

𝐼௝቏ ൌ ෍
௝ ൌ ଵ

௡

𝐸ሾ𝐼௝ሿ

𝐼௝ 𝑗 𝑗

𝐸ሾ𝐼௝ሿ ൌ 1/2 𝐸ሾ𝑋ሿ ൌ 𝑛/2.

𝑁 ൑ 𝑛 െ 1 ൅ 𝐼,

𝑛,

𝑁 ൑ 𝑛 െ 1,

𝐸ሾ𝑁ሿ ൑ 𝑛 െ 1 ൅ 𝐸ሾ𝐼ሿ

𝐼௜ 𝐴௜

𝐸ሾ𝑁ሿ ൌ 𝐸቎ ෍
௜ ൌ ଵ

௡

𝐼௜቏ ൌ ෍
௜ ൌ ଵ

௡

𝐸ሾ𝐼௜ሿ ൌ ෍
௜ ൌ ଵ

௡

𝑃ሺ𝐴௜ሻ

𝐸ሾ𝐼ሿ ൌ 𝑃ሺ𝐴ଵ⋯𝐴௡ሻ,

1,2, . . . ,𝑛
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order and that the  values selected are considered special. From

Example 3e , the position of the first special value, equal to the

smallest value chosen, has mean 

For a more formal argument, note that  if none of the 

smallest values are chosen. Hence,

which shows that  has the same distribution as the random variable of

Example 3e  (with the notational change that the total number of

balls is now  and the number of special balls is ).

7.8.  Let  denote the number of families that depart after the

Sanchez family leaves. Arbitrarily number all the  non-Sanchez

families, and let  equal 1 if family  departs after the

Sanchez family does. Then

Taking expectations gives

Now consider any non-Sanchez family that checked in  pieces of

luggage. Because each of the  pieces of luggage checked in either

by this family or by the Sanchez family is equally likely to be the last of

these  to appear, the probability that this family departs after the

Sanchez family is  Because the number of non-Sanchez families

who checked in  pieces of luggage is  when  or  when

 we obtain

7.9.  Let the neighborhood of any point on the rim be the arc starting

at that point and extending for a length 1. Consider a uniformly chosen

point on the rim of the circle—that is, the probability that this point lies

on a specified arc of length  is —and let  denote the number of

𝑘

1 ൅
𝑛 െ 𝑘
𝑘 ൅ 1

ൌ
𝑛 ൅ 1
𝑘 ൅ 1

.

𝑋 ൒ 𝑗 𝑗 െ 1

𝑃ሼ𝑋 ൒ 𝑗ሽ ൌ
ቆ
𝑛 െ 𝑗 ൅ 1

𝑘
ቇ

ቆ
𝑛

𝑘
ቇ

ൌ
ቆ
𝑛 െ 𝑘

𝑗 െ 1
ቇ

ቆ
𝑛

𝑗 െ 1
ቇ

𝑋

𝑛 𝑘

𝑋

𝑁 െ 1

𝐼௥, 1 ൑ 𝑟 ൑ 𝑁 െ 1, 𝑟

𝑋 ൌ ෍
௥ ൌ ଵ

ே െ ଵ

𝐼௥

𝐸ሾ𝑋ሿ ൌ ෍
௥ ൌ ଵ

ே െ ଵ

𝑃ሼfamily 𝑟 departs after the Sanchez familyሽ

𝑘

𝑘 ൅ 𝑗

𝑘 ൅ 𝑗
𝑘

𝑘 ൅ 𝑗
.

𝑘 𝑛௞ 𝑘 ് 𝑗, 𝑛௝ െ 1

𝑘 ൌ 𝑗,

𝐸ሾ𝑋ሿ ൌ ෍
௞

𝑘𝑛௞
𝑘 ൅ 𝑗

െ
1
2

𝑥
𝑥

2𝜋
𝑋
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points that lie in its neighborhood. With  defined to equal 1 if item

number  is in the neighborhood of the random point and to equal 0

otherwise, we have

Taking expectations gives

But because item  will lie in its neighborhood if the random point is

located on the arc of length 1 going from item  in the counterclockwise

direction, it follows that

Hence,

Because  at least one of the possible values of  must exceed

3, proving the result.

7.10.  If  then

so the Taylor series expansion of  about  gives

Taking expectations yields

Hence,

𝐼௝
𝑗

𝑋 ൌ ෍
௝ ൌ ଵ

ଵଽ

𝐼௝

𝐸ሾ𝑋ሿ ൌ ෍
௝ ൌ ଵ

ଵଽ

𝑃ሼitem  𝑗 lies in the neighborhood of  the

      random pointሽ

𝑗

𝑗

𝑃ሼitem  𝑗 lies in the neighborhood of  the random pointሽ ൌ
1

2𝜋

𝐸ሾ𝑋ሿ ൌ
19
2𝜋

൐ 3

𝐸ሾ𝑋ሿ ൐ 3, 𝑋

𝑔ሺ𝑥ሻ ൌ 𝑥ଵ/ଶ,

𝑔ᇱሺ𝑥ሻ ൌ
1
2
𝑥െଵ/ଶ, 𝑔ᇳሺ𝑥ሻ ൌ െ

1
4
𝑥െଷ/ଶ

𝑥√ 𝜆

𝑋√ ൎ 𝜆√ ൅
1
2
𝜆െଵ/ଶሺ𝑋 െ 𝜆ሻ െ

1
8
𝜆െଷ/ଶሺ𝑋 െ 𝜆ሻଶ

𝐸ሾ 𝑋√ ሿ ൎ 𝜆√ ൅
1
2
𝜆െଵ/ଶ𝐸ሾ𝑋 െ 𝜆ሿ െ

1
8
𝜆െଷ/ଶ𝐸ሾሺ𝑋 െ 𝜆ሻଶሿ

ൌ 𝜆√ െ
1
8
𝜆െଷ/ଶ𝜆

ൌ 𝜆√ െ
1
8
𝜆െଵ/ଶ
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7.11.  Number the tables so that tables 1, 2, and 3 are the ones with

four seats and tables 4, 5, 6, and 7 are the ones with two seats. Also,

number the women, and let  equal 1 if woman  is seated with her

husband at table  Note that

and

Now,  denotes the number of married couples that are seated at the

same table, we have

7.12.  Let  equal 1 if individual  does not recruit anyone, and let 

equal 0 otherwise. Then

Hence,

Varሺ 𝑋√ ሻ ൌ 𝐸ሾ𝑋ሿ െ ሺ𝐸ሾ 𝑋√ ሿሻ
ଶ

≃ 𝜆 െ ቆ 𝜆√ െ
1
8
𝜆െଵ/ଶቇ

ଶ

ൌ 1/4 െ
1

64𝜆

ൌ 1/4

𝑋௜,௝ 𝑖

𝑗.

𝐸ሾ𝑋௜,௝ሿ ൌ
ቆ

2

2
ቇቆ

18

2
ቇ

ቆ
20

4
ቇ

ൌ
3

95
, 𝑗 ൌ 1, 2, 3

𝐸ሾ𝑋௜,௝ሿ ൌ
1

ቆ
20

2
ቇ
ൌ

1
190

, 𝑗 ൌ 4, 5, 6, 7

𝑋

𝐸ሾ𝑋ሿ ൌ 𝐸቎ ෍
௜ ൌ ଵ

ଵ଴

෍
௝ ൌ ଵ

଻

𝑋௜,௝቏

ൌ ෍
௜ ൌ ଵ

ଵ଴

෍
௝ ൌ ଵ

ଷ

𝐸ሾ𝑋௜,௝ሿ ൅ ෍
௜ ൌ ଵ

ଵ଴

෍
௝ ൌ ସ

଻

𝐸ሾ𝑋௜,௝ሿ

𝑋௜ 𝑖 𝑋௜

𝐸ሾ𝑋௜ሿ ൌ 𝑃ሼ𝑖 does not recruit any of  𝑖 ൅ 1, 𝑖 ൅ 2, .   .   . ,𝑛ሽ

ൌ
𝑖 െ 1
𝑖

𝑖
𝑖 ൅ 1

⋯
𝑛 െ 2
𝑛 െ 1

ൌ
𝑖 െ 1
𝑛 െ 1

𝐸቎ ෍
௜ ൌ ଵ

௡

𝑋௜቏ ൌ ෍
௜ ൌ ଵ

௡
𝑖 െ 1
𝑛 െ 1

ൌ
𝑛
2
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From the preceding, we also obtain

Now, for 

Thus,

Therefore,

7.13.  Let  equal 1 if the th triple consists of one of each type of

player. Then

Hence, for part (a), we obtain

Varሺ𝑋௜ሻ ൌ
𝑖 െ 1
𝑛 െ 1

ቆ1 െ
𝑖 െ 1
𝑛 െ 1

ቇ ൌ
ሺ𝑖 െ 1ሻሺ𝑛 െ 𝑖ሻ

ሺ𝑛 െ 1ሻଶ

𝑖 ൏ 𝑗,

𝐸ሾ𝑋௜𝑋௝ሿ ൌ
𝑖 െ 1
𝑖
⋯
𝑗 െ 2
𝑗 െ 1

𝑗 െ 2
𝑗

𝑗 െ 1
𝑗 ൅ 1

⋯
𝑛 െ 3
𝑛 െ 1

ൌ
ሺ𝑖 െ 1ሻሺ𝑗 െ 2ሻ
ሺ𝑛 െ 2ሻሺ𝑛 െ 1ሻ

Covሺ𝑋௜,𝑋௝ሻ ൌ
ሺ𝑖 െ 1ሻሺ𝑗 െ 2ሻ
ሺ𝑛 െ 2ሻሺ𝑛 െ 1ሻ

െ
𝑖 െ 1
𝑛 െ 1

𝑗 െ 1
𝑛 െ 1

ൌ
ሺ𝑖 െ 1ሻሺ𝑗 െ 𝑛ሻ

ሺ𝑛 െ 2ሻሺ𝑛 െ 1ሻଶ

Varቌ ෍
௜ ൌ ଵ

௡

𝑋௜ቍ ൌ ෍
௜ ൌ ଵ

௡

Varሺ𝑋௜ሻ ൅ 2 ෍
௜ ൌ ଵ

௡ െ ଵ

෍
௝ ൌ ௜ ൅ ଵ

௡

Covሺ𝑋௜,𝑋௝ሻ

ൌ ෍
௜ ൌ ଵ

௡
ሺ𝑖 െ 1ሻሺ𝑛 െ 𝑖ሻ

ሺ𝑛 െ 1ሻଶ
൅ 2 ෍

௜ ൌ ଵ

௡ െ ଵ

෍
௝ ൌ ௜ ൅ ଵ

௡
ሺ𝑖 െ 1ሻሺ𝑗 െ 𝑛ሻ

ሺ𝑛 െ 2ሻሺ𝑛 െ 1ሻଶ

ൌ
1

ሺ𝑛 െ 1ሻଶ
෍

௜ ൌ ଵ

௡

ሺ𝑖 െ 1ሻሺ𝑛 െ 𝑖ሻ

  െ
1

ሺ𝑛 െ 2ሻሺ𝑛 െ 1ሻଶ
෍

௜ ൌ ଵ

௡ െ ଵ

ሺ𝑖 െ 1ሻሺ𝑛 െ 𝑖ሻሺ𝑛 െ 𝑖 െ 1ሻ

𝑋௜ 𝑖

𝐸ሾ𝑋௜ሿ ൌ
ቆ

2

1
ቇቆ

3

1
ቇቆ

4

1
ቇ

ቆ
9

3
ቇ

ൌ
2
7

𝐸቎ ෍
௜ ൌ ଵ

ଷ

𝑋௜቏ ൌ 6/7
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It follows from the preceding that

Also, for 

Hence, for part (b), we obtain

7.14.  Let  equal 1 if the th card is an ace and let 

be 0 otherwise. Let  equal 1 if the th card is a spade and let 

otherwise. Now,

However,  is clearly independent of  because knowing the suit of a

particular card gives no information about whether it is an ace and thus

cannot affect the probability that another specified card is an ace. More

formally, let  be the events, respectively, that card  is a

spade, a heart, a diamond, and a club. Then

But, by symmetry, we have

Varሺ𝑋௜ሻ ൌ ሺ2/7ሻሺ1 െ 2/7ሻ ൌ 10/49

𝑖 ് 𝑗,

𝐸ሾ𝑋௜𝑋௝ሿ ൌ 𝑃൛𝑋௜ ൌ 1,𝑋௝ ൌ 1ൟ

ൌ 𝑃ሼ𝑋௜ ൌ 1ሽ𝑃൛𝑋௝ ൌ 1 ห𝑋௜ ൌ 1ൟ

ൌ
ቆ

2

1
ቇቆ

3

1
ቇቆ

4

1
ቇ

ቆ
9

3
ቇ

ቆ
1

1
ቇቆ

2

1
ቇቆ

3

1
ቇ

ቆ
6

3
ቇ

ൌ 6/70

Varቌ ෍
௜ ൌ ଵ

ଷ

𝑋௜ቍ ൌ ෍
௜ ൌ ଵ

ଷ

Varሺ𝑋௜ሻ ൅ 2෍ ෍
௝ வ ଵ

Covሺ𝑋௜,𝑋௝ሻ

ൌ 30/49 ൅ 2ቆ
3

2
ቇቆ

6
70

െ
4

49
ቇ

ൌ
312
490

𝑋௜, 𝑖 ൌ 1, . . . ,13, 𝑖 𝑋௜
𝑌௝ 𝑗 𝑌௝ ൌ 0

Covሺ𝑋,𝑌ሻ ൌ Covቌ ෍
௜ ൌ ଵ

ଵଷ

𝑋௜, ෍
௝ ൌ ଵ

ଵଷ

𝑌௝ቍ

ൌ ෍
௜ ൌ ଵ

ଵଷ

෍
௝ ൌ ଵ

ଵଷ

Covሺ𝑋௜,𝑌௝ሻ

𝑋௜ 𝑌௝

𝐴௜,௦, 𝐴௜,௛, 𝐴௜,ௗ, 𝐴௜,௖ 𝑖

𝑃൛𝑌௝ ൌ 1ൟ ൌ
1
4
൫𝑃൛𝑌௝ ൌ 1ห𝐴௜,௦ൟ ൅ 𝑃൛𝑌௝ ൌ 1 ห𝐴௜,௛ൟ

൅𝑃൛𝑌௝ ൌ 1 ห𝐴௜,ௗൟ ൅ 𝑃൛𝑌௝ ൌ 1 ห𝐴௜,௖ൟ൯
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Therefore,

As the preceding implies that

we see that  and  are independent. Hence,  and

thus 

The random variables  and  although uncorrelated, are not

independent. This follows, for instance, from the fact that

7.15.

a. Your expected gain without any information is 0.

b. You should predict heads if  and tails otherwise.

c. Conditioning on  the value of the coin, gives

7.16.  Given that the name chosen appears in  different

positions on the list, since each of these positions is equally likely to be

the one chosen, it follows that

Hence,

Thus, 

7.17.  Letting  equal 1 if a collision occurs when the th item is

placed, and letting it equal 0 otherwise, we can express the total

number of collisions  as

𝑃൛𝑌௝ ൌ 1 ห𝐴௜,௦ൟ ൌ 𝑃൛𝑌௝ ൌ 1 ห𝐴௜,௛ൟ ൌ 𝑃൛𝑌௝ ൌ 1 ห𝐴௜,ௗൟ

ൌ 𝑃൛𝑌௝ ൌ 1 ห𝐴௜,௖ൟ

𝑃൛𝑌௝ ൌ 1ൟ ൌ 𝑃൛𝑌௝ ൌ 1 ห𝐴௜,௦ൟ

𝑃൛𝑌௝ ൌ 1ൟ ൌ 𝑃൛𝑌௝ ൌ 1 ห𝐴௜,௦
௖ ൟ

𝑌௝ 𝑋௜ Covሺ𝑋௜,  𝑌௝ሻ ൌ 0,

Covሺ𝑋,  𝑌ሻ ൌ 0.

𝑋 𝑌,

𝑃ሼ𝑌 ൌ 13 ||𝑋 ൌ 4ሽ ൌ 0 ് 𝑃ሼ𝑌 ൌ 13ሽ

𝑝 ൐ 1/2

𝑉,

𝐸ሾGainሿ ൌ ඲

଴

ଵ

𝐸ሾGain |𝑉 ൌ 𝑝ሿ𝑑𝑝

ൌ ඲

଴

ଵ/ଶ

ሾ1ሺ1 െ 𝑝ሻ െ 1ሺ𝑝ሻሿ 𝑑𝑝 ൅඲

ଵ/ଶ

ଵ

ሾ1ሺ𝑝ሻ െ 1ሺ1 െ 𝑝ሻሿ 𝑑𝑝

ൌ 1/2

𝑛ሺ𝑋ሻ

𝐸ሾ𝐼 ||𝑛ሺ𝑋ሻሿ ൌ 𝑃ሼ𝐼 ൌ 1 ||𝑛ሺ𝑋ሻሽ ൌ 1/𝑛ሺ𝑋ሻ

𝐸ሾ𝐼ሿ ൌ 𝐸ሾ1/𝑛ሺ𝑋ሻሿ

𝐸ሾ𝑚𝐼ሿ ൌ 𝐸ሾ𝑚/𝑛ሺ𝑋ሻሿ ൌ 𝑑.

𝑋௜ 𝑖

𝑋
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Therefore,

To determine  condition on the cell in which it is placed.

The next to last equality used the fact that, conditional on item  being

placed in cell  item  will cause a collision if any of the preceding 

items were put in cell  Thus,

Interchanging the order of the summations gives

Looking at the result shows that we could have derived it more easily

by taking expectations of both sides of the identity

The expected number of nonempty cells is then found by defining an

indicator variable for each cell, equal to 1 if that cell is nonempty and to

0 otherwise, and then taking the expectation of the sum of these

indicator variables.

7.18.  Let  denote the length of the initial run. Conditioning on the

first value gives

𝑋 ൌ ෍
௜ ൌ ଵ

௠

𝑋௜

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

௠

𝐸ሾ𝑋௜ሿ

𝐸ሾ𝑋௜ሿ,

𝐸ሾ𝑋௜ሿ ൌ ෍
௝

𝐸ሾ𝑋௜| placed in cell  𝑗ሿ𝑝௝

ൌ ෍
௝

𝑃ሼ𝑖 causes collision |placed in cell  𝑗ሽ𝑝௝

ൌ ෍
௝

ሾ1 െ ሺ1 െ 𝑝௝ሻ
௜െଵሿ𝑝௝

ൌ 1 െ෍
௝
ሺ1 െ 𝑝௝ሻ

௜െଵ𝑝௝

𝑖

𝑗, 𝑖 𝑖 െ 1

𝑗.

𝐸ሾ𝑋ሿ ൌ 𝑚 െ ෍
௜ ൌ ଵ

௠

෍
௝ ൌ ଵ

௡

ሺ1 െ 𝑝௝ሻ
௜െଵ𝑝௝

𝐸ሾ𝑋ሿ ൌ 𝑚 െ 𝑛 ൅ ෍
௝ ൌ ଵ

௡

ሺ1 െ 𝑝௝ሻ
௠

number of  nonempty cells ൌ 𝑚െ 𝑋

𝐿
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Now, if the first value is one, then the length of the run will be the

position of the first zero when considering the remaining 

values, of which  are ones and  are zeroes. (For instance, if the

initial value of the remaining  is zero, then ) As a similar

result is true given that the first value is a zero, we obtain from the

preceding, upon using the result from Example 3e , that

7.19.  Let  be the number of flips needed for both boxes to become

empty, and let  denote the number of heads in the first  flips.

Then

Now, if the number of heads in the first  flips is  then the

number of additional flips is the number of flips needed to obtain an

additional  heads. Similarly, if the number of heads in the first

 flips is  then, because there would have been a total of

 tails, the number of additional flips is the number needed

to obtain an additional  heads. Since the number of flips needed

for  outcomes of a particular type is a negative binomial random

variable whose mean is  divided by the probability of that outcome, we

obtain

7.20.  Taking expectations of both sides of the identity given in the

𝐸ሾ𝐿ሿ ൌ 𝐸ሾ𝐿 |ϐirst value is oneሿ
𝑛

𝑛 ൅ 𝑚

൅𝐸ሾ𝐿 |ϐirst value is zeroሿ
𝑚

𝑛 ൅𝑚

𝑛 ൅𝑚െ 1

𝑛 െ 1 𝑚

𝑛 ൅𝑚െ 1 𝐿 ൌ 1.

𝐸ሾ𝐿ሿ ൌ
𝑛 ൅ 𝑚
𝑚൅ 1

𝑛
𝑛 ൅𝑚

൅
𝑛 ൅𝑚
𝑛 ൅ 1

𝑚
𝑛 ൅𝑚

ൌ
𝑛

𝑚൅ 1
൅

𝑚
𝑛 ൅ 1

𝑋

𝑌 𝑛 ൅𝑚

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଴

௡ ൅ ௠

𝐸ሾ𝑋 |𝑌 ൌ 𝑖ሿ𝑃ሼ𝑌 ൌ 𝑖ሽ

ൌ ෍
௜ ൌ ଴

௡ ൅ ௠

𝐸ሾ𝑋|𝑌 ൌ 𝑖ሿቆ
𝑛 ൅ 𝑚

𝑖
ቇ 𝑝௜ሺ1 െ 𝑝ሻ௡൅௠െ௜

𝑛 ൅ 𝑚 𝑖, 𝑖 ൑ 𝑛,

𝑛 െ 𝑖

𝑛 ൅ 𝑚 𝑖, 𝑖 ൐ 𝑛,

𝑛 ൅𝑚 െ 𝑖 ൏ 𝑚

𝑖 െ 𝑛

𝑗

𝑗

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଴

௡
𝑛 െ 𝑖
𝑝

ቆ
𝑛 ൅𝑚

𝑖
ቇ𝑝௜ሺ1 െ 𝑝ሻ௡൅௠െ௜

൅ ෍
௜ ൌ ௡ ൅ ଵ

௡ ൅ ௠
𝑖 െ 𝑛
1 െ 𝑝

ቆ
𝑛 ൅ 𝑚

𝑖
ቇ𝑝௜ሺ1 െ 𝑝ሻ௡൅௠െ௜
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hint yields

Taking the expectation inside the integral sign is justified because all

the random variables  are nonnegative.

7.21.  Consider a random permutation  that is equally likely

to be any of the  permutations. Then

where the final equality followed from the assumption that 

Since the preceding shows that

it follows that there must be some permutation  for which

𝐸ሾ𝑋௡ሿ ൌ 𝐸቎𝑛඲

଴

ஶ

𝑥௡െଵ𝐼௑ሺ𝑥ሻ 𝑑𝑥቏

ൌ 𝑛඲

଴

ஶ

𝐸ሾ𝑥௡െଵ𝐼௑ሺ𝑥ሻሿ 𝑑𝑥

ൌ 𝑛඲

଴

ஶ

𝑥௡െଵ𝐸ሾ𝐼௑ሺ𝑥ሻሿ 𝑑𝑥

ൌ 𝑛඲

଴

ஶ

𝑥௡െଵ𝐹̅̅̅ሺ̅𝑥ሻ 𝑑𝑥

𝐼௑ሺ𝑥ሻ,  0 ൏ 𝑥 ൏ ∞,

𝐼ଵ, . . . , 𝐼௡
𝑛!

𝐸ሾ𝑎ூೕ𝑎ூೕ൅భ ሿ ൌ ෍
௞

𝐸ቂ𝑎ூೕ𝑎ூೕ൅భ ቚ𝐼௝ ൌ 𝑘ቃ൛𝐼௝ ൌ 𝑘ൟ

ൌ
1
𝑛
෍
௞

𝑎௞𝐸ቂ𝑎ூೕ൅భ ቚ𝐼௝ ൌ 𝑘ቃ

ൌ
1
𝑛
෍
௞

𝑎௞෍
௜

𝑎௜𝑃൛𝐼௝൅ଵ ൌ 𝑖ห𝐼௝ ൌ 𝑘ൟ

ൌ
1

𝑛ሺ𝑛 െ 1ሻ
෍
௞

𝑎௞ ෍
௜ ஷ ௞

𝑎௜

ൌ
1

𝑛ሺ𝑛 െ 1ሻ
෍
௞

𝑎௞ሺ െ 𝑎௞ሻ

൏ 0

෍
௜ൌଵ

௡
𝑎௜ ൌ 0.

𝐸቎ ෍
௝ ൌ ଵ

௡ െ ଵ

𝑎ூೕ𝑎ூೕ൅భ቏ ൏ 0

𝑖ଵ, . . . , 𝑖௡

෍
௝ ൌ ଵ

௡ െ ଵ

𝑎௜ೕ𝑎௜ೕ൅భ ൏ 0
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7.22.
a. 

b. 

c. Conditioning on  gives

7.23.

where the next to last equality used the fact that 

7.24.  Let  equal  if the th card chosen is an ace, and let it equal

 otherwise. Because

𝐸ሾ𝑋ሿ ൌ 𝜆ଵ ൅ 𝜆ଶ, 𝐸ሾ𝑌ሿ ൌ 𝜆ଶ ൅ 𝜆ଷ
Covሺ𝑋,𝑌ሻ ൌ Covሺ𝑋ଵ ൅ 𝑋ଶ,  𝑋ଶ ൅ 𝑋ଷሻ

ൌ Covሺ𝑋ଵ,𝑋ଶ ൅ 𝑋ଷሻ ൅ Covሺ𝑋ଶ,  𝑋ଶ ൅ 𝑋ଷሻ

ൌ Covሺ𝑋ଶ,  𝑋ଶሻ

ൌ Varሺ𝑋ଶሻ

ൌ λଶ
𝑋ଶ

 𝑃ሼ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗ሽ

ൌ ෍
௞

𝑃ሼ𝑋 ൌ 𝑖,𝑌 ൌ 𝑗 |𝑋ଶ ൌ 𝑘ሽ𝑃ሼ𝑋ଶ ൌ 𝑘ሽ

ൌ ෍
௞

𝑃ሼ𝑋ଵ ൌ 𝑖 െ 𝑘,𝑋ଷ ൌ 𝑗 െ 𝑘|𝑋ଶ ൌ 𝑘ሽ𝑒െఒమ𝜆ଶ
௞/𝑘!

ൌ ෍
௞

𝑃ሼ𝑋ଵ ൌ 𝑖 െ 𝑘,𝑋ଷ ൌ 𝑗 െ 𝑘ሽ𝑒െఒమ𝜆ଶ
௞/𝑘!

ൌ ෍
௞

𝑃ሼ𝑋ଵ ൌ 𝑖 െ 𝑘ሽ𝑃ሼ𝑋ଷ ൌ 𝑗 െ 𝑘ሽ𝑒െఒమ𝜆ଶ
௞/𝑘!

ൌ ෍
௞ ൌ ଴

୫୧୬ ሺ௜ . ௝ ሻ
𝑒െఒభ

𝜆ଵ
௜െ௞

ሺ𝑖 െ 𝑘ሻ!
𝑒െఒయ

𝜆ଷ
௝െ௞

ሺ𝑗 െ 𝑘ሻ!
𝑒െఒమ

𝜆ଶ
௞

𝑘!

Corrቌ෍
௜

𝑋௜, ෍
௝

𝑌௝ቍ ൌ
Covሺ෍

௜
𝑋௜, ෍

௝
𝑌௝ሻ

Varሺ෍
௜
𝑋௜ሻVarሺ෍

௝
𝑌௝ሻඨ

ൌ
෍

௜
෍

௝
Covሺ𝑋௜,𝑌௝ሻ

𝑛𝜎௫ଶ𝑛𝜎௬ଶට

ൌ
෍

௜
Covሺ𝑋௜,𝑌௜ሻ ൅෍

௜
෍

௝ஷ௜
Covሺ𝑋௜,𝑌௝ሻ

𝑛𝜎௫𝜎௬

ൌ
𝑛𝜌𝜎௫𝜎௬
𝑛𝜎௫𝜎௬

ൌ 𝜌
 Covሺ𝑋௜,𝑌௜ሻ ൌ 𝜌𝜎௫𝜎௬

𝑋௜ 1 𝑖

0
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and  it follows that  But, with 

being the event that the ace of spades is chosen, we have

Using that  gives the result

Similarly, letting  be the event that at least one ace is chosen, we have

Thus,

Another way to solve this problem is to number the four aces, with the

ace of spades having number  and then let  equal  if ace number 

is chosen and  otherwise. Then

𝑋 ൌ ෍
௜ ൌ ଵ

ଷ

𝑋௜

𝐸ሾ𝑋௜ሿ ൌ 𝑃ሼ𝑋௜ ൌ 1ሽ ൌ 1/13, 𝐸ሾ𝑋ሿ ൌ 3/13. 𝐴

𝐸ሾ𝑋ሿ ൌ 𝐸ሾ𝑋|𝐴ሿ𝑃ሺ𝐴ሻ ൅ 𝐸ሾ𝑋|𝐴௖ሿ𝑃ሺ𝐴௖ሻ

ൌ 𝐸ሾ𝑋|𝐴ሿ
3

52
൅ 𝐸ሾ𝑋|𝐴௖ሿ

49
52

ൌ 𝐸ሾ𝑋|𝐴ሿ
3

52
൅

49
52

𝐸቎ ෍
௜ ൌ ଵ

ଷ

𝑋௜|𝐴
௖቏

ൌ 𝐸ሾ𝑋|𝐴ሿ
3

52
൅

49
52

෍
௜ ൌ ଵ

ଷ

𝐸ሾ𝑋௜|𝐴
௖ሿ

ൌ 𝐸ሾ𝑋|𝐴ሿ
3

52
൅

49
52

3
3

51

𝐸ሾ𝑋ሿ ൌ 3/13

𝐸ሾ𝑋|𝐴ሿ ൌ
52
3
ቆ

3
13

െ
49
52

3
17
ቇ ൌ

19
17

ൌ 1.1176

𝐿
𝐸ሾ𝑋ሿ ൌ 𝐸ሾ𝑋|𝐿ሿ𝑃ሺ𝐿ሻ ൅ 𝐸ሾ𝑋|𝐿௖ሿ𝑃ሺ𝐿௖ሻ

ൌ 𝐸ሾ𝑋|𝐿ሿ𝑃ሺ𝐿ሻ

ൌ 𝐸ሾ𝑋|𝐿ሿቆ1 െ
48 ⋅ 47 ⋅ 46
52 ⋅ 51 ⋅ 50

ቇ

𝐸ሾ𝑋|𝐿ሿ ൌ
3/13

1 െ
48 ⋅ 47 ⋅ 46
52 ⋅ 51 ⋅ 50

ൎ 1.0616

1, 𝑌௜ 1 𝑖

0
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where we used that the fact given that the ace of spades is chosen the

other two cards are equally likely to be any pair of the remaining 

cards; so the conditional probability that any specified card (not equal

to the ace of spades) is chosen is  Also,

Because

we obtain the same answer as before.

7.25.
a. 

b. It follows from part (a) that  Therefore,

The result now follows because 

c. Since  is normal with mean  and variance  we have

7.26.  Let  be the number of heads in the first  flips. Let

 be the number of flips needed to amass at least  heads

and at least  tails. Conditioning on  gives

𝐸ሾ𝑋|𝐴ሿ ൌ 𝐸቎ ෍
௜ ൌ ଵ

ସ

𝑌௜|𝑌ଵ ൌ 1቏

ൌ 1 ൅ ෍
௜ ൌ ଶ

ସ

𝐸ሾ𝑌௜|𝑌ଵሿ

ൌ 1 ൅ 3 ⋅
2

51
ൌ 19/17

51

2/51.

𝐸ሾ𝑋|𝐿ሿ ൌ 𝐸቎ ෍
௜ ൌ ଵ

ସ

𝑌௜|𝐿቏ ൌ ෍
௜ ൌ ଵ

ସ

𝐸ሾ𝑌௜|𝐿ሿ ൌ 4𝑃ሼ𝑌ଵ ൌ 1|𝐿ሽ

𝑃ሼ𝑌ଵ ൌ 1|𝐿ሽ ൌ 𝑃ሺ𝐴|𝐿ሻ ൌ
𝑃ሺ𝐴𝐿ሻ
𝑃ሺ𝐿ሻ

ൌ
𝑃ሺ𝐴ሻ
𝑃ሺ𝐿ሻ

ൌ
3/52

1 െ
48 ⋅ 47 ⋅ 46
52 ⋅ 51 ⋅ 50

𝐸ሾ𝐼 ||𝑋 ൌ 𝑥ሿ ൌ 𝑃ሼ𝑍 ൏ 𝑋 ||𝑋 ൌ 𝑥ሽ ൌ 𝑃ሼ𝑍 ൏ 𝑥 ||𝑋 ൌ 𝑥ሽ ൌ 𝑃ሼ𝑍 ൏ 𝑥ሽ ൌ Φ ሺ𝑥ሻ

𝐸ሾ𝐼 ||𝑋ሿ ൌ Φ ሺ𝑋ሻ.
𝐸ሾ𝐼ሿ ൌ 𝐸ሾ𝐸ሾ𝐼 ||𝑋ሿሿ ൌ 𝐸ሾ Φ ሺ𝑋ሻሿ

𝐸ሾ𝐼ሿ ൌ 𝑃ሼ𝐼 ൌ 1ሽ ൌ 𝑃ሼ𝑍 ൏ 𝑋ሽ.
𝑋 െ 𝑍 𝜇 2,

𝑃ሼ𝑋 ൐ 𝑍ሽ ൌ 𝑃ሼ𝑋 െ 𝑍 ൐ 0ሽ

ൌ 𝑃ቊ
𝑋 െ 𝑍 െ 𝜇

2√
൐
െ𝜇

2√
ቋ

ൌ 1 െ Φ ൬
െ𝜇

2√
൰

ൌ Φ ൬
𝜇

2√
൰

𝑁 𝑛 ൅𝑚െ 1

𝑀 ൌ maxሺ𝑋, 𝑌ሻ 𝑛

𝑚 𝑁
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Now, suppose we are given that there are a total of  heads in the first

 trials. If  then we have already obtained at least  tails,

so the additional number of flips needed is equal to the number needed

for an additional  heads; similarly, if  then we have already

obtained at least  heads, so the additional number of flips needed is

equal to the number needed for an additional  tails.

Consequently, we have

The expected number of flips to obtain either  heads or  tails,

 is now given by

7.27.  This is just the expected time to collect  of the  types of

coupons in Example 2i . By the results of that example the solution

is

7.28.  With 

𝐸ሾ𝑀ሿ ൌ ෍
௜

𝐸ሾ𝑀|𝑁 ൌ 𝑖ሿ𝑃ሼ𝑁 ൌ 𝑖ሽ

ൌ ෍
௜ ൌ ଴

௡ െ ଵ

𝐸ሾ𝑀|𝑁 ൌ 𝑖ሿ𝑃ሼ𝑁 ൌ 𝑖ሽ ൅ ෍
௜ ൌ ௡

௡ ൅ ௠ െ ଵ

𝐸ሾ𝑀|𝑁 ൌ 𝑖ሿ𝑃ሼ𝑁 ൌ 𝑖ሽ

𝑖

𝑛 ൅ 𝑚 െ 1 𝑖 ൏ 𝑛, 𝑚

𝑛 െ 𝑖 𝑖 ൒ 𝑛,

𝑛

𝑚 െ ሺ𝑛 ൅ 𝑚 െ 1 െ 𝑖ሻ

𝐸ሾ𝑀ሿ ൌ ෍
௜ ൌ ଴

௡ െ ଵ

ቆ𝑛 ൅ 𝑚െ 1 ൅
𝑛 െ 𝑖
𝑝

ቇ𝑃ሼ𝑁 ൌ 𝑖ሽ

  ൅ ෍
௜ ൌ ௡

௡ ൅ ௠ െ ଵ

ቆ𝑛 ൅ 𝑚 െ 1 ൅
𝑖 ൅ 1 െ 𝑛

1 െ 𝑝
ቇ𝑃ሼ𝑁 ൌ 𝑖ሽ

ൌ 𝑛 ൅ 𝑚െ 1 ൅ ෍
௜ ൌ ଴

௡ െ ଵ
𝑛 െ 𝑖
𝑝

ቆ
𝑛 ൅𝑚 െ 1

𝑖
ቇ 𝑝௜ሺ1 െ 𝑝ሻ௡൅௠െଵെ௜

  ൅ ෍
௜ ൌ ௡

௡ ൅ ௠ െ ଵ
𝑖 ൅ 1 െ 𝑛

1 െ 𝑝
ቆ
𝑛 ൅𝑚െ 1

𝑖
ቇ 𝑝௜ሺ1 െ 𝑝ሻ௡൅௠െଵെ௜

𝑛 𝑚

𝐸ሾminሺ𝑋, 𝑌ሻሿ,

𝐸ሾminሺ𝑋,𝑌ሻሿ ൌ 𝐸ሾ𝑋 ൅ 𝑌 െ𝑀ሿ ൌ
𝑛
𝑝
൅

𝑚
1 െ 𝑝

െ 𝐸ሾ𝑀ሿ

𝑛 െ 1 𝑛

1 ൅
𝑛

𝑛 െ 1
൅

𝑛
𝑛 െ 2

൅ . . . ൅
𝑛
2

𝑞 ൌ 1 െ 𝑝,

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

ஶ

𝑃ሼ𝑋 ൒ 𝑖ሽ ൌ ෍
௜ ൌ ଵ

௡

𝑃ሼ𝑋 ൒ 𝑖ሽ ൌ ෍
௜ ൌ ଵ

௡

𝑞௜െଵ ൌ
1 െ 𝑞௡

𝑝
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7.29.

Hence,

Because

the preceding shows that all of the following are equivalent when  and

 are Bernoulli:
A. 
B. 
C. 
D. 
E. 

7.30.  Number the individuals, and let  equal  if the th individual

who has hat size  chooses a hat of that size, and let  equal 

otherwise. Then the number of individuals who choose a hat of their

size is

Hence,

7.31.  Letting  and  be, respectively, the variances of  and of 

we obtain, upon squaring both sides, the equivalent inequality

Using that  the preceding inequality

becomes

which has already been established.

7.32.  Noting that  is equal to  plus the number of the values

 that are smaller than  it follows that if we let 

equal 1 if  and let it equal  otherwise, that

Covሺ𝑋,𝑌ሻ ൌ 𝐸ሾ𝑋𝑌ሿ െ 𝐸ሾ𝑋ሿ𝐸ሾ𝑌ሿ

ൌ 𝑃ሺ𝑋 ൌ 1,𝑌 ൌ 1ሻ െ 𝑃ሺ𝑋 ൌ 1ሻ𝑃ሺ𝑌 ൌ 1ሻ

Covሺ𝑋,𝑌ሻ ൌ 0 ⇔ 𝑃ሺ𝑋 ൌ 1, 𝑌 ൌ 1ሻ ൌ 𝑃ሺ𝑋 ൌ 1ሻ𝑃ሺ𝑌 ൌ 1ሻ

Covሺ𝑋,𝑌ሻ ൌ Covሺ1 െ 𝑋, 1 െ 𝑌ሻ ൌ െ Covሺ1 െ 𝑋,𝑌ሻ

ൌ െCovሺ𝑋, 1 െ 𝑌ሻ

𝑋

𝑌
Covሺ𝑋, 𝑌ሻ ൌ 0
𝑃ሺ𝑋 ൌ 1, 𝑌 ൌ 1ሻ ൌ 𝑃ሺ𝑋 ൌ 1ሻ𝑃ሺ𝑌 ൌ 1ሻ
𝑃ሺ1 െ 𝑋 ൌ 1, 1 െ 𝑌 ൌ 1ሻ ൌ 𝑃ሺ1 െ 𝑋 ൌ 1ሻ𝑃ሺ1 െ 𝑌 ൌ 1ሻ
𝑃ሺ1 െ 𝑋 ൌ 1, 𝑌 ൌ 1ሻ ൌ 𝑃ሺ1 െ 𝑋 ൌ 1ሻ𝑃ሺ𝑌 ൌ 1ሻ
𝑃ሺ𝑋 ൌ 1, 1 െ 𝑌 ൌ 1ሻ ൌ 𝑃ሺ𝑋 ൌ 1ሻ𝑃ሺ1 െ 𝑌 ൌ 1ሻ

𝑋௜,௝ 1 𝑗

𝑖 𝑋௜,௝ 0

𝑋 ൌ ෍
௜ ൌ ଵ

௥

෍
௝ ൌ ଵ

௡ ೔

𝑋௜,௝

𝐸ሾ𝑋ሿ ൌ ෍
௜ ൌ ଵ

௥

෍
௝ ൌ ଵ

௡ ೔

𝐸ሾ𝑋௜,௝ሿ ൌ ෍
௜ ൌ ଵ

௥

෍
௝ ൌ ଵ

௡ ೔ ℎ௜
𝑛
ൌ

1
𝑛
෍

௜ ൌ ଵ

௥

ℎ௜𝑛௜

𝜎௫ଶ 𝜎௬ଶ 𝑋 𝑌,

Varሺ𝑋 ൅ 𝑌ሻ ൑ 𝜎௫ଶ ൅ 𝜎௬ଶ ൅ 2𝜎௫𝜎௬

Varሺ𝑋 ൅ 𝑌ሻ ൌ 𝜎௫ଶ ൅ 𝜎௬ଶ ൅ 2Covሺ𝑋, 𝑌ሻ,

Corrሺ𝑋,𝑌ሻ ൌ
Covሺ𝑋,𝑌ሻ
𝜎௫𝜎௬

൑ 1

𝑋 𝑖

𝑅௡൅ଵ, . . . ,𝑅௡൅௠ 𝑋, 𝐼௡൅௞
𝑅௡൅௞ ൏ 𝑋 0
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Taking expectations gives that

Now,

where the final equality used that  is equally likely to be either the

smallest, the second smallest,  or the  smallest of the

values  Hence,

7.33.

a. 

b.  which gives that

c.  giving that

d. 

e. Differentiate part (d) to obtain the density 

𝑋 ൌ 𝑖 ൅ ෍
௞ ൌ ଵ

௠

𝐼௡൅௞

𝐸ሾ𝑋ሿ ൌ 𝑖 ൅ ෍
௞ ൌ ଵ

௠

𝐸ሾ𝐼௡൅௞ሿ

𝐸ሾ𝐼௡൅௞ሿ ൌ 𝑃ሺ𝑅௡൅௞ ൏ 𝑋ሻ

ൌ 𝑃ሺ𝑅௡൅௞ ൏ 𝑖௧௛ smallest of  𝑅ଵ, .   .   . ,𝑅௡ሻ

ൌ 𝑃ሺ𝑅௡൅௞ is one of  the 𝑖 smallest of  the values

𝑅ଵ, .   .   . ,𝑅௡,  𝑅௡൅௞ሻ

ൌ
𝑖

𝑛 ൅ 1

𝑅௡൅௞
. . . , ሺ𝑛 ൅ 1ሻ௦௧

𝑅ଵ, . . . ,𝑅௡, 𝑅௡൅௞.

𝐸ሾ𝑋ሿ ൌ 𝑖 ൅ 𝑚
𝑖

𝑛 ൅ 1

𝐸ሾ𝑋ሿ ൌ ଴׬
ଵ
𝐸ሾ𝑋|𝑌 ൌ 𝑦ሿ 𝑑𝑦 ൌ ଴׬

ଵ𝑦
2
 𝑑𝑦 ൌ 1/4

𝐸ሾ𝑋𝑌ሿ ൌ ଴׬
ଵ
𝐸ሾ𝑋𝑌|𝑌 ൌ 𝑦ሿ 𝑑𝑦 ൌ ଴׬

ଵ𝑦ଶ

2
𝑑𝑦 ൌ 1/6,

Covሺ𝑋, 𝑌ሻ ൌ 1/6 െ 1/8 ൌ 1/24

𝐸ሾ𝑋ଶሿ ൌ ଴׬
ଵ
𝐸ൣ𝑋ଶห𝑌 ൌ 𝑦൧ 𝑑𝑦 ൌ ଴׬

ଵ𝑦ଶ

3
𝑑𝑦 ൌ 1/9,

Varሺ𝑋ሻ ൌ
1
9
െ

1
16

ൌ
7

144

𝑃ሺ𝑋 ൑ 𝑥ሻ ൌ ඲

଴

ଵ

𝑃ሺ𝑋 ൑ 𝑥|𝑌 ൌ 𝑦ሻ 𝑑𝑦

ൌ ඲

଴

௫

𝑃ሺ𝑋 ൑ 𝑥|𝑌 ൌ 𝑦ሻ 𝑑𝑦 ൅඲

௫

ଵ

𝑃ሺ𝑋 ൑ 𝑥|𝑌 ൌ 𝑦ሻ 𝑑𝑦

ൌ ඲

଴

௫

𝑑𝑦 ൅඲

௫

ଵ
𝑥
𝑦
 𝑑𝑦

ൌ 𝑥 െ 𝑥 logሺ𝑥ሻ

𝑓ሺ𝑥ሻ ൌ െ logሺ𝑥ሻ,
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0 ൏ 𝑥 ൏ 1.

8.1.  Let  denote the number of sales made next week, and note that  is

integral. From Markov’s inequality, we obtain the following:

a. 

b. 

8.2.

a. 

b. 

In part (a), we used Chebyshev’s inequality; in part (b), we used its

one-sided version. (See Proposition 5.1. )

8.3.  First note that  and

Using Chebyshev’s inequality in part (a) and the one-sided version in parts (b)

and (c) gives the following results:

a. 

b. 

c. 

8.4.  If  is the number produced at factory  and  the number produced at

factory  then

8.5.  Note first that

𝑋 𝑋

𝑃ሼ𝑋 ൐ 18ሽ ൌ 𝑃ሼ𝑋 ൒ 19ሽ ൑
𝐸ሾ𝑋ሿ
19

ൌ 16/19

𝑃ሼ𝑋 ൐ 25ሽ ൌ 𝑃ሼ𝑋 ൒ 26ሽ ൑
𝐸ሾ𝑋ሿ
26

ൌ 16/26

𝑃ሼ10 ൑ 𝑋 ൑ 22ሽ ൌ 𝑃ሼ|𝑋 െ 16| ൑ 6ሽ

ൌ 𝑃ሼ|𝑋 െ 𝜇| ൑ 6ሽ

ൌ 1 െ 𝑃ሼ|𝑋 െ 𝜇| ൐ 6ሽ

൒ 1 െ 9/36 ൌ 3/4

𝑃ሼ𝑋 ൒ 19ሽ ൌ 𝑃ሼ𝑋 െ 16 ൒ 3ሽ ൑
9

9 ൅ 9
ൌ 1/2

𝐸ሾ𝑋 െ 𝑌ሿ ൌ 0
Varሺ𝑋 െ 𝑌ሻ ൌ Varሺ𝑋ሻ ൅ Varሺ𝑌ሻ െ 2Covሺ𝑋,𝑌ሻ ൌ 28

𝑃ሼ ||𝑋 െ 𝑌 || ൐ 15ሽ ൑ 28/225

𝑃ሼ𝑋 െ 𝑌 ൐ 15ሽ ൑
28

28 ൅ 225
ൌ 28/253

𝑃ሼ𝑌 െ 𝑋 ൐ 15ሽ ൑
28

28 ൅ 225
ൌ 28/253

𝑋 𝐴 𝑌

𝐵,
𝐸ሾ𝑌 െ 𝑋ሿ ൌ െ2, Varሺ𝑌 െ 𝑋ሻ ൌ 36 ൅ 9 ൌ 45

𝑃ሼ𝑌 െ 𝑋 ൐ 0ሽ ൌ 𝑃ሼ𝑌 െ 𝑋 ൒ 1ሽ

ൌ 𝑃ሼ𝑌 െ 𝑋 ൅ 2 ൒ 3ሽ ൑
45

45 ൅ 9
ൌ 45/54

𝐸ሾ𝑋௜ሿ ൌ ඲

଴

ଵ

2𝑥ଶ𝑑𝑥 ൌ 2/3
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Now use the strong law of large numbers to obtain

8.6.  Because  and

we have  Thus, if there are  components on

hand, then

where  is a standard normal random variable. Since

we see that  should be chosen so that

A numerical computation gives the result 

8.7.  If  is the time required to service a machine, then

Also, since the variance of an exponential random variable is equal to the

square of its mean, we have

Therefore, with  being the time required to service job  and 

being a standard normal random variable, it follows that

𝑟 ൌ lim
௡ → ஶ

𝑛
𝑆௡

ൌ lim
௡ → ஶ

1
𝑆௡/𝑛

ൌ
1

lim
௡ → ஶ

𝑆௡/𝑛

ൌ 1/ሺ2/3ሻ ൌ 3/2

𝐸ሾ𝑋௜ሿ ൌ 2/3

𝐸ሾ𝑋௜
ଶሿ ൌ ඲

଴

ଵ

2𝑥ଷ𝑑𝑥 ൌ 1/2

Varሺ𝑋௜ሻ ൌ 1/2 െ ሺ2/3ሻଶ ൌ 1/18. 𝑛

𝑃ሼ𝑆௡ ൒ 35ሽ ൌ 𝑃ሼ𝑆௡ ൒ 34.5ሽ  ሺthe continuity correctionሻ

ൌ 𝑃൝
𝑆௡ െ 2𝑛/3

𝑛/18ඥ
൑

34.5 െ 2𝑛/3

𝑛/18ඥ
ൡ

ൎ 𝑃൝𝑍 ൒
34.5 െ 2𝑛/3

𝑛/18ඥ
ൡ

𝑍
𝑃ሼ𝑍 ൐ െ 1.284ሽ ൌ 𝑃ሼ𝑍 ൏ 1.284ሽ ൎ .90

𝑛
ሺ34.5 െ 2𝑛/3ሻ ൎ െ 1.284 𝑛/18ඥ

𝑛 ൌ 55.

𝑋
𝐸ሾ𝑋ሿ ൌ .2 ൅ .3 ൌ .5

Varሺ𝑋ሻ ൌ ሺ.2ሻଶ ൅ ሺ.3ሻଶ ൌ .13

𝑋௜ 𝑖, 𝑖 ൌ 1, . . . , 20, 𝑍
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8.8.  Note first that if  is the gambler’s winnings on a single bet, then

Therefore, with  having a standard normal distribution,

8.9.  Using the notation of Problem 8.7 , we have

Now,  so  should be such that

which yields 

8.10.  If the claim were true, then, by the central limit theorem, the average

nicotine content (call it ) would approximately have a normal distribution with

mean 2.2 and standard deviation .03. Thus, the probability that it would be as

high as 3.1 is

where  is a standard normal random variable.

8.11.

a. If we arbitrarily number the batteries and let  denote the life of battery

 then the  are independent and identically distributed

random variables. To compute the mean and variance of the life of, say,

battery  we condition on its type. Letting  equal  if battery  is type 

𝑃ሼ𝑋ଵ ൅ ⋯൅ 𝑋ଶ଴ ൏ 8ሽ ൌ 𝑃ቊ
𝑋ଵ ൅⋯ ൅ 𝑋ଶ଴ െ 10

2.6√
൏

8 െ 10

2.6√
ቋ

ൎ 𝑃ሼ𝑍 ൏ െ 1.24035ሽ

ൎ .1074

𝑋
𝐸ሾ𝑋ሿ ൌ െ .7 െ .4 ൅ 1 ൌ െ .1,𝐸ሾ𝑋ଶሿ ൌ .7 ൅ .8 ൅ 10 ൌ 11.5

  → Varሺ𝑋ሻ ൌ 11.49

𝑍

𝑃ሼ𝑋ଵ ൅ ⋯ ൅ 𝑋ଵ଴଴ ൑ െ .5ሽ ൌ 𝑃ቊ
𝑋ଵ ൅⋯ ൅ 𝑋ଵ଴଴ ൅ 10

1149√
൑
െ.5 ൅ 10

1149√
ቋ

ൎ 𝑃ሼ𝑍 ൑ .2803ሽ

ൎ .6104

𝑃ሼ𝑋ଵ ൅ ⋯൅ 𝑋ଶ଴ ൏ 𝑡ሽ ൌ 𝑃ቊ
𝑋ଵ ൅⋯ ൅ 𝑋ଶ଴ െ 10

2.6√
൏
𝑡 െ 10

2.6√
ቋ

ൎ 𝑃ቊ𝑍 ൏
𝑡 െ 10

2.6√
ቋ

𝑃ሼ𝑍 ൏ 1.645ሽ ൎ .95, 𝑡
𝑡 െ 10

2.6√
ൎ 1.645

𝑡 ൎ 12.65.

𝑋

𝑃ሼ𝑋 ൐ 3.1ሽ ൌ 𝑃ቊ
𝑋 െ 2.2

.03
൐

3.1 െ 2.2
.03

ቋ

ൎ 𝑃ሼ𝑍 ൐ 30ሽ

ൎ 0

𝑍

𝑋௜
𝑖, 𝑖 ൌ 1, . . . ,40, 𝑋௜

1, 𝐼 1 1 𝐴
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and letting it equal  if it is type  we have

yielding

In addition, using the fact that  we have

yielding

Thus,  are independent and identically distributed random

variables having mean  and variance  Hence,

with  we have

and the central limit theorem yields

b. For this part, let  be the total life of all the type  batteries and let 

be the total life of all the type  batteries. Then, by the central limit

theorem,  has approximately a normal distribution with mean

 and variance  and  has

approximately a normal distribution with mean  and

variance  Because the sum of independent normal

random variables is also a normal random variable, it follows that

 is approximately normal with mean  and variance 

Consequently, with 

8.12.  Let  denote the number of doctors who volunteer. Conditional on the

0 𝐵,
𝐸ሾ𝑋ଵ ||𝐼 ൌ 1ሿ ൌ 50,  𝐸ሾ𝑋ଵ ||𝐼 ൌ 0ሿ ൌ 30

𝐸ሾ𝑋ଵሿ ൌ 50𝑃ሼ𝐼 ൌ 1ሽ ൅ 30𝑃ሼ𝐼 ൌ 0ሽ ൌ 50ሺ1/2ሻ ൅ 30ሺ1/2ሻ ൌ 40

𝐸ሾ𝑊ଶሿ ൌ ሺ𝐸ሾ𝑊ሿሻଶ ൅ Varሺ𝑊ሻ,

𝐸ሾ𝑋ଵ
ଶห𝐼 ൌ 1ሿ ൌ ሺ50ሻଶ ൅ ሺ15ሻଶ ൌ 2725,

𝐸ሾ𝑋ଵ
ଶห𝐼 ൌ 0ሿ ൌ ሺ30ሻଶ ൅ 6ଶ ൌ 936

𝐸ሾ𝑋ଵ
ଶሿ ൌ ሺ2725ሻሺ1/2ሻ ൅ ሺ936ሻሺ1/2ሻ ൌ 1830.5

𝑋ଵ, . . . ,𝑋ସ଴
40 1830.5 െ 1600 ൌ 230.5.

𝑆 ൌ ෍
௜ൌଵ

ସ଴
𝑋௜,

𝐸ሾ𝑆ሿ ൌ 40ሺ40ሻ ൌ 1600,  Varሺ𝑆ሻ ൌ 40ሺ230.5ሻ ൌ 9220

𝑃ሼ𝑆 ൐ 1700ሽ ൌ 𝑃ቊ
𝑆 െ 1600

9220√
൐

1700 െ 1600

9220√
ቋ

ൎ 𝑃ሼ𝑍 ൐ 1.041ሽ

ൌ 1 െ Φ ሺ1.041ሻ ൌ .149

𝑆஺ 𝐴 𝑆஻
𝐵

𝑆஺
20ሺ50ሻ ൌ 1000 20ሺ225ሻ ൌ 4500, 𝑆஻

20ሺ30ሻ ൌ 600

20ሺ36ሻ ൌ 720.

𝑆஺ ൅ 𝑆஻ 1600 5220.

𝑆 ൌ 𝑆஺ ൅ 𝑆஻,

𝑃ሼ𝑆 ൐ 1700ሽ ൌ 𝑃ቊ
𝑆 െ 1600

5220√
൐

1700 െ 1600

5220√
ቋ

ൎ 𝑃ሼ𝑍 ൐ 1.384ሽ

ൌ 1 െ Φ ሺ1.384ሻ ൌ .084

𝑁
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event  the number of patients seen is distributed as the sum of 

independent Poisson random variables with common mean 30. Because the

sum of independent Poisson random variables is also a Poisson random

variable, it follows that the conditional distribution of  given that  is

Poisson with mean 30  Therefore,

As a result,

Also, by the conditional variance formula,

Because

we obtain 

To approximate  we would not be justified in assuming that the

distribution of  is approximately that of a normal random variable with mean

90 and variance 690. What we do know, however, is that

where  is the probability that a Poisson random variable with mean 30

is greater than 65. That is,

Because a Poisson random variable with mean 30  has the same distribution

as does the sum of 30  independent Poisson random variables with mean 1, it

follows from the central limit theorem that its distribution is approximately

normal with mean and variance equal to 30  Consequently, with  being a

Poisson random variable with mean 30  and  being a standard normal

random variable, we can approximate  as follows:

𝑁 ൌ 𝑖, 𝑖

𝑋 𝑁 ൌ 𝑖

𝑖.
𝐸ሾ𝑋 ||𝑁ሿ ൌ 30𝑁  Varሺ𝑋 ||𝑁ሻ ൌ 30𝑁

𝐸ሾ𝑋ሿ ൌ 𝐸ሾ𝐸ሾ𝑋 ||𝑁ሿሿ ൌ 30𝐸ሾ𝑁ሿ ൌ 90

Varሺ𝑋ሻ ൌ 𝐸ሾVarሺ𝑋||𝑁ሻሿ ൅ Varሺ𝐸ሾ𝑋||𝑁ሿሻ

ൌ 30𝐸ሾ𝑁ሿ ൅ ሺ30ሻଶVarሺ𝑁ሻ

Varሺ𝑁ሻ ൌ
1
3
ሺ2ଶ ൅ 3ଶ ൅ 4ଶሻ െ 9 ൌ 2/3

Varሺ𝑋ሻ ൌ 690.

𝑃ሼ𝑋 ൐ 65ሽ,
𝑋

𝑃ሼ𝑋 ൐ 65ሽ ൌ ෍
௜ ൌ ଶ

ସ

𝑃ሼ𝑋 ൐ 65|𝑁 ൌ 𝑖ሽ𝑃ሼ𝑁 ൌ 𝑖ሽ ൌ
1
3

෍
௜ ൌ ଶ

ସ

𝑃̅̅௜ሺ65ሻ

𝑃̅̅௜ሺ65ሻ 𝑖

𝑃̅̅௜ሺ65ሻ ൌ 1 െ ෍
௝ ൌ ଴

଺ହ

𝑒െଷ଴௜ሺ30𝑖ሻ௝/ 𝑗!

𝑖

𝑖

𝑖. 𝑋௜
𝑖 𝑍

𝑃̅̅௜ሺ65ሻ
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Therefore,

leading to the result

If we would have mistakenly assumed that  was approximately normal, we

would have obtained the approximate answer .8244. (The exact probability is

.7440.)

8.13.  Take logarithms and then apply the strong law of large numbers to

obtain

Therefore,

8.14.  Let  be the time it takes to process book  and let 

a. With  being a standard normal

𝑃̅̅௜ሺ65ሻ ൌ 𝑃ሼ𝑋 ൐ 65ሽ

ൌ 𝑃ሼ𝑋 ൒ 65.5ሽ

ൌ 𝑃ቊ
𝑋 െ 30𝑖

30𝑖√
൒

65.5 െ 30𝑖

30𝑖√
ቋ

ൎ 𝑃ቊ𝑍 ൒
65.5 െ 30𝑖

30𝑖√
ቋ

𝑃̅̅ଶሺ65ሻ ൎ 𝑃ሼ𝑍 ൒ .7100ሽ ൎ .2389

𝑃̅̅ଷሺ65ሻ ൎ 𝑃ሼ𝑍 ൒ െ 2.583ሽ ൎ .9951

𝑃̅̅ସሺ65ሻ ൎ 𝑃ሼ𝑍 ൒ െ 4.975ሽ ൎ 1

𝑃ሼ𝑋 ൐ 65ሽ ൎ .7447

𝑋

log൦ቌ ෑ
௜ ൌ ଵ

௡

𝑋௜ቍ

ଵ/௡

൪ ൌ
1
𝑛
෍

௜ ൌ ଵ

௡

logሺ𝑋௜ሻ → 𝐸ሾlogሺ𝑋௜ሻሿ

ቌ ෑ
௜ ൌ ଵ

௡

𝑋௜ቍ

ଵ/௡

→ 𝑒ாሾ୪୭୥ሺ௑೔ሻሿ

𝑋௜ 𝑖, 𝑆௡ ൌ ෍
௜ൌଵ

௡
𝑋௜.

𝑍

𝑃ሼ𝑆ସ଴ ൐ 420ሽ ൌ 𝑃ቊ
𝑆ସ଴ െ 400

40 ⋅ 9√
൐

420 െ 400

40 ⋅ 9√
ቋ

ൎ 𝑃ቊ𝑍 ൐
20

360√
ቋ ൎ .146
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b. 

We have assumed that the successive book processing times are

independent.

8.15.  Let  Also, let  and 

Then  and  are both increasing functions and so

 which is equivalent to

𝑃ሼ𝑆ଶହ ൑ 240ሽ ൌ 𝑃ቊ
𝑆ଶହ െ 250

25 ⋅ 9√
൑

240 െ 250

25 ⋅ 9√
ቋ

ൎ 𝑃ቊ𝑍 ൑ െ
10
15
ቋ ൎ .2525

𝑃ሺ𝑋 ൌ 𝑖ሻ ൌ 1/𝑛, 𝑖 ൌ 1, . . . , 𝑛. 𝑓ሺ𝑥ሻ ൌ 𝑎௫ 𝑔ሺ𝑥ሻ ൌ 𝑏௫.

𝑓 𝑔

𝐸ሾ𝑓ሺ𝑋ሻ𝑔ሺ𝑋ሻሿ ൒ 𝐸ሾ𝑓ሺ𝑋ሻሿ𝐸ሾ𝑔ሺ𝑋ሻሿ,

1
𝑛
෍

௜ ൌ ଵ

௡

𝑎௜𝑏௜ ൒ ሺ
1
𝑛
෍

௜ ൌ ଵ

௡

𝑎௜ሻሺ
1
𝑛
෍

௜ ൌ ଵ

௡

𝑏௜ሻ

9.1.  From axiom (iii), it follows that the number of events that

occur between times 8 and 10 has the same distribution as the

number of events that occur by time 2 and thus is a Poisson random

variable with mean 6. Hence, we obtain the following solutions for

parts (a) and (b):

a. 
b. 

c. It follows from axioms (ii) and (iii) that from any point in time

onward, the process of events occurring is a Poisson process

with rate  Hence, the expected time of the fifth event after 2

P.M. is  That is, the expected time of this

event is 3:40 P.M.

9.2.

a. 

𝑃ሼ𝑁ሺ10ሻ െ 𝑁ሺ8ሻ ൌ 0ሽ ൌ 𝑒െ଺

𝐸ሾ𝑁ሺ10ሻ െ 𝑁ሺ8ሻሿ ൌ 6

𝜆.

2 ൅ 𝐸ሾ𝑆ହሿ ൌ 2 ൅ 5/3.
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b. 

9.3.  Fix a point on the road and let  equal 0 if the th vehicle to

pass is a car and let it equal 1 if it is a truck,  We now suppose

that the sequence  is a Markov chain with transition

probabilities

Then the long-run proportion of times is the solution of

Solving the preceding equations gives

   𝑃ሼ𝑁ሺ1/3ሻ ൌ 2 ||𝑁ሺ1ሻ ൌ 2ሽ

ൌ
𝑃ሼ𝑁ሺ1/3ሻ ൌ 2,𝑁ሺ1ሻ ൌ 2ሽ

𝑃ሼ𝑁ሺ1ሻ ൌ 2ሽ

ൌ
𝑃ሼ𝑁ሺ1/3ሻ ൌ 2,𝑁ሺ1ሻ െ 𝑁ሺ1/3ሻ ൌ 0ሽ

𝑃ሼ𝑁ሺ1ሻ ൌ 2ሽ

ൌ
𝑃ሼ𝑁ሺ1/3ሻ ൌ 2ሽ𝑃ሼ𝑁ሺ1ሻ െ 𝑁ሺ1/3ሻ ൌ 0ሽ

𝑃ሼ𝑁ሺ1ሻ ൌ 2ሽ
 ሺby axiom ሺ𝑖𝑖ሻሻ

ൌ
𝑃ሼ𝑁ሺ1/3ሻ ൌ 2ሽ𝑃ሼ𝑁ሺ2/3ሻ ൌ 0ሽ

𝑃ሼ𝑁ሺ1ሻ ൌ 2ሽ
 ሺby axiom ሺ𝑖𝑖𝑖ሻሻ

ൌ
𝑒െఒ/ଷሺ𝜆/3ሻଶ/2!𝑒െଶఒ/ଷ

𝑒െఒ𝜆ଶ/2!

ൌ 1/9
     𝑃ሼ𝑁ሺ1/2ሻ ൒ 1||𝑁ሺ1ሻ ൌ 2ሽ ൌ 1 െ 𝑃ሼ𝑁ሺ1/2ሻ ൌ 0||𝑁ሺ1ሻ ൌ 2ሽ

ൌ 1 െ
𝑃ሼ𝑁ሺ1/2ሻ ൌ 0,𝑁ሺ1ሻ ൌ 2ሽ

𝑃ሼ𝑁ሺ1ሻ ൌ 2ሽ

ൌ 1 െ
𝑃ሼ𝑁ሺ1/2ሻ ൌ 0,𝑁ሺ1ሻ െ 𝑁ሺ1/2ሻ ൌ 2ሽ

𝑃ሼ𝑁ሺ1ሻ ൌ 2ሽ

ൌ 1 െ
𝑃ሼ𝑁ሺ1/2ሻ ൌ 0ሽ𝑃ሼ𝑁ሺ1ሻ െ 𝑁ሺ1/2ሻ ൌ 2ሽ

𝑃ሼ𝑁ሺ1ሻ ൌ 2ሽ

ൌ 1 െ
𝑃ሼ𝑁ሺ1/2ሻ ൌ 0ሽ𝑃ሼ𝑁ሺ1/2ሻ ൌ 2ሽ

𝑃ሼ𝑁ሺ1ሻ ൌ 2ሽ

ൌ 1 െ
𝑒െఒ/ଶ𝑒െఒ/ଶሺ𝜆/2ሻଶ/2!

𝑒െఒ𝜆ଶ/2!

ൌ 1 െ 1/4 ൌ 3/4

𝑋௡ 𝑛

𝑛 ൒ 1.

𝑋௡, 𝑛 ൒ 1,

𝑃଴,଴ ൌ 5/6, 𝑃଴,ଵ ൌ 1/6, 𝑃ଵ,଴ ൌ 4/5, 𝑃ଵ,ଵ ൌ 1/5

𝜋଴ ൌ 𝜋଴ሺ5/6ሻ ൅ 𝜋ଵሺ4/5ሻ

𝜋ଵ ൌ 𝜋଴ሺ1/6ሻ ൅ 𝜋ଵሺ1/5ሻ

𝜋଴ ൅ 𝜋ଵ ൌ 1

𝜋଴ ൌ 24/29  𝜋ଵ ൌ 5/29
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Thus,  percent of the vehicles on the road are cars.

9.4.  The successive weather classifications constitute a Markov

chain. If the states are 0 for rainy, 1 for sunny, and 2 for overcast,

then the transition probability matrix is as follows:

The long-run proportions satisfy

The solution of the preceding system of equations is

Hence, three-eighths of the days are sunny and one-fourth are rainy.

9.5.

a. A direct computation yields

b. Both random variables take on two of their values with the

same probabilities .35 and .05. The difference is that if they do

not take on either of those values, then  but not  is equally

likely to take on any of its three remaining possible values.

Hence, from Theoretical Exercise 9.13 , we would expect

the result of part (a).

2400/29 ൎ 83

𝐏 ൌ

0 1/2 1/2

1/3 1/3 1/3

1/3 1/3 1/3

𝜋଴ ൌ 𝜋ଵሺ1/3ሻ ൅ 𝜋ଶሺ1/3ሻ

𝜋ଵ ൌ 𝜋଴ሺ1/2ሻ ൅ 𝜋ଵሺ1/3ሻ ൅ 𝜋ଶሺ1/3ሻ

𝜋ଶ ൌ 𝜋଴ሺ1/2ሻ ൅ 𝜋ଵሺ1/3ሻ ൅ 𝜋ଶሺ1/3ሻ

1 ൌ 𝜋଴ ൅ 𝜋ଵ ൅ 𝜋ଶ

𝜋଴ ൌ 1/4, 𝜋ଵ ൌ 3/8, 𝜋ଶ ൌ 3/8

𝐻ሺ𝑋ሻ/𝐻ሺ𝑌ሻ ൎ 1.06

𝑋, 𝑌,

10.1.

a. 

b. 

Hence, if we let  then

or

1 ൌ 𝐶׬଴
ଵ
𝑒௫𝑑𝑥 ⇒ 𝐶 ൌ 1/ሺ𝑒 െ 1ሻ

𝐹ሺ𝑥ሻ ൌ 𝐶׬଴
௫
𝑒௬𝑑𝑦 ൌ

𝑒௫ െ 1
𝑒 െ 1

, 0 ൑ 𝑥 ൑ 1

𝑋 ൌ 𝐹െଵሺ𝑈ሻ,

𝑈 ൌ
𝑒௑ െ 1
𝑒 െ 1

𝑋 ൌ logሺ𝑈ሺ𝑒 െ 1ሻ ൅ 1ሻ

810 of 848



Thus, we can simulate the random variable  by generating a random

number  and then setting 

10.2.  Use the acceptance–rejection method with 

Calculus shows that the maximum value of /  occurs at a value of

 such that

or, equivalently, when

The maximum thus occurs when  and it follows that

Hence, the algorithm is as follows:

10.3.  It is most efficient to check the higher probability values first, as in the

following algorithm:

10.4.

10.5.

a. Generate 2  independent exponential random variables with mean

 and then use the estimator 

b. We can use  as a control variate to obtain an estimator of the type

Another possibility would be to use  as the control variate

and so obtain an estimator of the type

𝑋

𝑈 𝑋 ൌ logሺ𝑈ሺ𝑒 െ 1ሻ ൅ 1ሻ.

𝑔ሺ𝑥ሻ ൌ 1, 0 ൏ 𝑥 ൏ 1.

𝑓ሺ𝑥ሻ 𝑔ሺ𝑥ሻ

𝑥, 0 ൏ 𝑥 ൏ 1,
2𝑥 െ 6𝑥ଶ ൅ 4𝑥ଷ ൌ 0

4𝑥ଶ െ 6𝑥 ൅ 2 ൌ ሺ4𝑥 െ 2ሻሺ𝑥 െ 1ሻ ൌ 0

𝑥 ൌ 1/2,
𝐶 ൌ max 𝑓ሺ𝑥ሻ/𝑔ሺ𝑥ሻ ൌ 30ሺ1/4 െ 2/8 ൅ 1/16ሻ ൌ 15/8

Generate a random number 

Generate a random number 

f  set  else return to Step 1.

Step 1. 𝑈ଵ.

Step 2. 𝑈ଶ.

Step 3. 𝑈ଶ ൑ 16ሺ𝑈ଵ
ଶ െ 2𝑈ଵ

ଷ ൅ 𝑈ଵ
ସሻ, 𝑋 ൌ 𝑈ଵ;

Generate a random number 

If  set  and stop.

If  set  and stop.

If  set  and stop.

Step 1. 𝑈.

Step 2. 𝑈 ൑ .35, 𝑋 ൌ 3

Step 3. 𝑈 ൑ .65, 𝑋 ൌ 4

Step 4. 𝑈 ൑ .85, 𝑋 ൌ 2

Step 5.𝑋 ൌ 1.

2𝜇 െ 𝑋

𝑛

1, 𝑋௜, 𝑌௜, 𝑖 ൌ 1, . . . , 𝑛, ෍
௜ ൌ ଵ

௡

𝑒௑೔௒೔/𝑛.

𝑋𝑌

෍
௜ ൌ ଵ

௡

ሺ𝑒௑೔௒೔ ൅ 𝑐𝑋௜𝑌௜ሻ/𝑛

𝑋𝑌 ൅ 𝑋ଶ𝑌ଶ/2

෍
௜ ൌ ଵ

௡

ሺ𝑒௑೔௒೔ ൅ 𝑐ሾ𝑋௜𝑌௜ ൅ 𝑋௜
ଶ𝑌௜

ଶ/2 െ 1/2ሿሻ/𝑛
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Analytic Theory of Probability, (Laplace), 405

antithetic variables, 463

Archimedes, 211

Ars Conjectandi, 145, 397

associative law for events, 24

axioms of probability, 26–28

axioms of surprise, 438

ballot problem, 115

Banach match problem, 161–162

basic principle of counting, 2

generalized, 2

Bayes’ formula, 72, 103

Benford’s law distribution, 175–176

Bernouulli, Jacques, 145–146,

Bernoulli, James, 146, 397

Bernoulli, Nicholas, 145, 397

Bernoulli random variable, 137, 143

Bernoulli trials, 114

Bernstein polynomials, 427

Bertrand’s paradox, 199–200

best prize problem, 350–351

beta binomial random variable, 299

beta distribution, 221, 233, 298

The motivation behind the preceding formula is based on the fact that

the first three terms of the MacLaurin series expansion of  are𝑒௫௬

1 ൅ 𝑥𝑦 ൅ ሺ𝑥ଶ𝑦ଶሻ/2.
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binary symmetric channel, 445

binomial coefficients, 7

binomial random variable, 137, 174

normal approximation, 207–210

approximation to hypergeometric, 165

computing its mass function, 145

moments of, 322–323

simulation of, 461

sums of independent, 266–267, 366

with randomly chosen success probability, 351–352

binomial theorem, 7, 8

birthday problem, 38, 246–247

bivariate exponential distribution, 300

bivariate normal distribution, 272–274, 343–344, 372, 373

Bonferroni’s inequality, 55, 391

Boole’s inequality, 33, 57, 306–307

Borel, 409

Box-Muller simulation technique, 457

branching process, 389

bridge, 37–38, 60

Buffon’s needle problem, 249–250, 296

Cantor distribution, 387

Cauchy distribution, 220–221

Cauchy-Schwarz inequality, 387

center of gravity, 128

central limit theorem, 200, 397–399, 405

channel capacity, 446
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Chapman-Kolmogorov equations, 434–435

Chebychev’s inequality, 395

one-sided, 410, 411

and weak law of large numbers, 397

Chebychev’s sum inequality, 429

Chernoff bound, 412–413

for binomial, 413–414

for standard normal, 413

for Poisson, 413

chi-squared distribution, 261

density function, 261

relation to gamma distribution, 261

simulation of, 459

coding theory, 441

and entropy, 443

combinations, 5, 6

combinatorial analysis, 1

combinatorial identities, 18, 19, 20, 21

commutative law for events, 24

complement of an event, 24

complete graph, 93–94

computing expectations by conditioning, 339–340

computing probabilities by conditioning, 64–71, 72–78, 102, 349

concave function, 415

conditional covariance formula, 387

conditional cumulative distribution function, 270

conditional distribution, 267, 274

continuous case, 270
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discrete case, 267

conditional expectation, 337, 338

use in prediction, 356

use in simulation, 463

conditional independence, 100

conditional probability, 58, 59

as a long run relative frequency, 64

as a probability function, 95

satisfying axioms of probability, 95–96

conditional probability density function, 270

conditional probability distribution function, 267

conditional probability mass function, 267

conditional variance, 354

conditional variance formula, 354

and simulation, 463

continuity correction, 208

continuity property of probabilities, 44–46

continuous random variables, 189

control variate, 465

convex function, 415

convolution, 258

correlation, 334

coupon collecting problems, 121–123, 309–310, 320–321, 324–325, 327–328

covariance, 329

inequality, 415–417

craps, 341–343

cumulative distribution function, 123, 174

properties of, 172–174
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de Mere, Chevalier, 84

DeMoivre, A., 200, 210, 211, 399

DeMoivre-Laplace limit theorem, 207

DeMorgan’s laws, 26

dependent events, 78

dependent random variables, 248

deviations, 331

discrete random variables, 123, 174

distribution function, see cumulative distribution function,

distribution of a function of a random variable, 224–226

distribution of a sum of a independent random variables, 353–354

distributive law for events, 24

DNA match, 76–78

dominant genes, 108

double exponential distribution, see Lapace distribution

doubly stochastic matrix, 447–448

Ehrenfest urn model, 434, 437

entropy, 439

ergodic Markov chain, 436

Erlang distribution, 219

evaluating evidence, 70–72

events, 23

decreasing sequence of, 44

increasing sequence of, 44

independent, 78

mutually exclusive, 24

exchangeable random variables, 287–288
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expectation, 126, 174, 303, 375–376

of a beta random variable, 222

of a binomial random variable, 142, 170, 307

as a center of gravity, 128

of a continuous random variable, 193

of an exponential random variable, 212

of a function of a random variable, 128, 194

of a gamma random variable, 219

of a geometric random variable, 159–160

of a hypergeometric random variable, 166, 170, 308

of a negative binomial random variable, 162, 307–308

of a nonnegative random variable, 162

of a normal random variable, 202–203

of number of matches, 309

of number of runs, 310–311

of a Pareto random variable, 223–224

of a Poisson random variable, 148

of sums of a random number of random variables, 340–341

of sums of random variables, 167–170, 305

of the number of successes, 170

of a uniform random variable, 198

tables of, 364, 365

expected value, see expectation

exponential random variables, 211

moments of, 232

rate of, 216

relation to half life, 255–257

simulation of, 453
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sums of, 261

failure rate function, see hazard rate function,

Fermat, P., 84, 89

Fermat’s combinatorial identity, 18

first digit distribution, 175–176

first moment, see mean

frequency interpretation of probability, 27, 126

friendship paradox, 134–135, 178

Galton, F., 405–406

gambler’s ruin problem, 87–89, 346–348

application to drug testing 89–91

multiple player, 86–87

game theory, 177

gamma random variables, 218, 297

relation to chi–squared distribution, 219, 261–262, 296

relation to exponential random variables, 261

relation to Poisson process, 218–219

simulation of, 454

sums of independent, 261

gamma function, 218, 261

relation to beta function, 284

Gauss, KF, 210, 211

Gaussian distribution, see normal distribution

genetics, 108, 109–110

geometric random variable, 158, 174–175

simulation of, 460–461

geometrical probability, 199
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Gini index, 423–424

Hamiltonian path, 317–318

hazard rate function, 215–216, 296

relation to distribution function, 216

Huygens, C., 84, 89

hypergeometric random variable, 163–164, 175

relation to binomial, 165

moments of, 323–324

importance sampling, 467

inclusion-exclusion identity, 31–32, 314–315

inclusion-exclusion bounds, 32–33

independent events, 78, 80, 103

conditional, 100

independent increments, 430

independent random variables, 247–248, 252, 253, 257, 258

indicator random variables, 127,

information, 439

interarrival times of a Poisson process, 431–432

integer solution of equations, 12–13

intersection of events, 23, 24

inverse transform method, 453

discrete, 459–460

Jensen’s inequality, 415

joint cumulative probability distribution function, 237, 245

joint moment generating function, 370–371

joint probability density function, 241, 245

of functions of random variables, 280, 285
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joint probability mass function, 238

jointly continuous random variables, 241, 245

k-of-n system, 109

keno, 182

Khintchine, 397

knockout tournament, 11–12

Kolmogorov, A., 409

Kullback-Leiber divergence, 427

Laplace, P., 200, 399, 405–406

Laplace distribution, 214–215

Laplace’s rule of succession, 100–101, 115, 116

law of frequency of errors, 406

law of total probability, 72

laws of large numbers, 394

Legendre’s theorem, 233

Liapounoff, 399

limit of events, 44

lineqr prediction, 359

lognormal distribution, 226–227, 265

Lorenz curve, 420, 426, 428

of an exponentially distributed population, 422

of a Pareto distributed population, 422

of a uniformly distributed population, 421

properties of, 422–423

marginal probability mass function, 245

Markov chain, 432–433

Markov’s inequality, 394–395
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matching problem, 41–42, 55–56, 62–63, 99–100, 109, 324

maximum likelihood estimates, 183

maximums-minimums identity, 319–320

mean of a random variable, 132

measurable events, 29

median of a random variable, 232, 385

memoryless random variable, 213, 214

Mendel, G., 139

midrange, 298

minimax theorem, 177

mode of a random variable, 232

moment generating function, 360

of a binomialrandom variable, 361

of a chi-squared random variable, 367

of an exponential random variable, 363

of a normal random variable, 363–364

of a Poisson random variable, 362

of a sum of independent random variables, 364

of a sum of a random number of random variable, 367–368

tables for, 364, 365

moments of a random variable, 132

of the number of events that occur, 322

multinomial coefficients, 11

multinomial distribution, 246, 268, 336

multinomial theorem, 11

multiplication rule of probability, 61–62, 102

multivariate normal distribution, 371

joint moment generating function, 372
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mutually exclusive events, 24

NCAA tournament, 91–93

negative binomial random variable, 160, 161, 175

relation to binomial, 185

relation to geometric, 161

negative hypergeometric random variable, 188, 325–327

Newton, I., 211

noiseless coding theorem, 442–443

noisy coding theorem, 446

normal random variables, 200, 281–282

approximations to binomial, 207–208

characterization of, 250–251

joint distribution of sample mean and sample variance, 373–375

moments of, 390

simulation, 283–284

simulation by polar method, 457–459

simulation by rejection method, 455–457

sums of independent, 262–263, 366–367

null event, 24

null set, 24

odds of an event, 70–71, 102

order statistics, 276

density of , 278

joint density of, 276, 279

parallel system, 81

Pareto, 167

Pareto random variable, 223, 275

𝑗௧௛
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partition, 55, 57

Pascal, B., 84

Pascal random variables, see negative binomial random variables,

Pascal’s identity, 7

Pearson, K., 210

permutations, 3

personal view of probability, 48

Poisson, S., 146

Poisson paradigm, 151

Poisson process, 155–157, 430–432

Poisson random variables, 146, 174, 248–249, 268

as an approximation to binomial, 147

as an approximation to the number of events that occur, 149–151

bounds on the error of a Poisson approximation, 418–420

bounds on its probabilities, 413, 427

computing its probabilities, 158

simulation of, 461–462

sums of independent, 266, 366

poker, 36, 37

poker dice, 51

polar algorithm, 457–459

Polya’s urn model, 289

posterior probability, 101

power law density, 224

prior probability, 101

probabilistic method, 94, 317

probability of an event, 27

as a continuous set function, 44–46
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as a limiting proportion, 26–27

as a measure of belief, 48–49

probability density function, 189

of a function of a random variable, 225

relation to cumulative distribution function, 192

probability mass function, 123, 174

relation to cumulative distribution function, 125

problem of the points, 84–85, 161

quicksort algorithm, 312–314

random number, 391, 451

pseudo, 451

random number generator, 451

random permutation, 393, 451–452

random subset, 253–254

random variables, 119, 174

random walk, 435

range of a random sample, 279–280

rate of the exponential, 216

Rayleigh density function, 216, 283

record value, 387

reduced sample space, 60

rejection method of simulation, 454–455

relative frequency definition of probability, 27

Riemann zeta function, 167

round robin tournament, 115

runs, 43–44, 97–98, 151–155

longest, 151–155
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sample mean, 306

sample median, 278

sample space, 22

sample variance, 331

sampling from a finite population, 209–210

sampling with replacement, 52

sequential updating of information, 101–102

serve and rally games, 85–86

Shannon, C., 446

signal to noise ratio, 426

simulation, 451

St. Petersburg paradox, 178

standard deviation, 137, 174

inequality, 393

standard normal distribution function, 203–204

bounds, 427

table of, 204

standard normal random variable, 202

moments, 389

stationary increments, 430

Stieltjes integral, 375–376

Stirling’s approximation, 144

stochastically larger, 386

strong law of large numbers, 406–408

subjective probability, see personal probability

subset, 24

superset, 24

surprise, 438–439
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t distribution, 271–272

transition probabilities, 433

n–stage, 434

trials, 80

triangular distribution, 259

twin problem, 70

uncertainty, 439–441

uncorrelated random variables, 335

uniform random variables, 197

sums of independent, 258–260

union of events, 23, 24

probability formula for, 29–32

unit normal random variable, see standard normal random variable,

utility, 131–132,

value at risk, 206–207

variance, 132, 133, 136, 174

of a beta random variable, 223

of a binomial random variable, 142–143, 171, 332

of a continuous random variable, 196

of an exponential random variable, 212

of a gamma random variable, 219

of a geometric random variable, 160, 345–346

of a hypergeometric random variable, 166–167, 171–172

as a moment of inertia, 137

of a negative binomial random variable, 162

of a normal random variable, 202–203

of a Pareto random variable, 224
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of a Poisson random variable, 149

of a sum of a random number of random variables, 355

of sums of random variables, 330

of a uniform random variable, 199

of the number of successes, 171–172

tables for, 364, 365

Venn diagrams, 24, 25

von Neumann, J., 177

waiting times of a Poisson process, 432

weak law of large numbers, 397

Weibull distribution, 219–220

relation to exponential, 233

Weierstrass theorem, 427

Yule-Simon distribution, 183

zeta distribution, 167

Zipf distribution, see zeta distribution

E.T. Bell, Men of Mathematics, Simon and Schuster, 1986; P.S. Laplace, Analytical

Theory of Probability, Book II Chapter II, §4. pp. 194–203; Pierre-Simon, Marquis de

Laplace (1749–1827); Francis Galton, Natural Inheritance, published in 1889.

Bernoulli  indicates whether a trial that results in a success with probability

 is a success or not.

ሺ𝑝ሻ  𝑋

𝑝
𝑃ሼ𝑋 ൌ 1ሽ ൌ 𝑝

𝑃ሼ𝑋 ൌ 0ሽ ൌ 1 െ 𝑝
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Binomial  represents the number of successes in  independent trials

when each trial is a success with probability .

Note. Binomial Bernoulli

Geometric  is the number of trials needed to obtain a success when each

trial is independently a success with probability .

Negative Binomial  is the number of trials needed to obtain a total of 

successes when each trial is independently a success with probability .

Note.

1. Negative Binomial  = Geometric .

2. Sum of  independent Geometric  random variables is Negative

Binomial .

Poisson  is used to model the number of events that occur over a set

interval when these events are either independent or weakly dependent and each

has a small probability of occurrence.

Note.

1. A Poisson random variable  with parameter  provides a good

approximation to a Binomial  random variable when  is large and  is

small.

2. If events are occurring one at a time in a random manner for which (a) the

number of events that occur in disjoint time intervals is independent and

(b) the probability of an event occurring in any small time interval is

approximately  times the length of the interval, then the number of events

in an interval of length  will be a Poisson  random variable.

Hypergeometric  is the number of white balls in a random sample

𝐸ሾ𝑋ሿ ൌ 𝑝, Varሺ𝑋ሻ ൌ 𝑝ሺ1 െ 𝑝ሻ.

ሺ𝑛,𝑝ሻ  𝑋 𝑛

𝑝

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ ቆ
𝑛

𝑖
ቇ𝑝௜ሺ1 െ 𝑝ሻ௡െ௜, 𝑖 ൌ 0,  1,  … ,  𝑛

𝐸ሾ𝑋ሿ ൌ 𝑛𝑝, Varሺ𝑋ሻ ൌ 𝑛𝑝ሺ1 െ 𝑝ሻ.

ሺ1,𝑝ሻ ൌ   ሺ𝑝ሻ.

ሺ𝑝ሻ 𝑋

𝑝
𝑃ሺ𝑋 ൌ 𝑖ሻ ൌ 𝑝ሺ1 െ 𝑝ሻ௜െଵ, 𝑖 ൌ 1,2,...,

𝐸ሾ𝑋ሿ ൌ
ଵ

௣
, Varሺ𝑋ሻ ൌ

ଵെ௣

௣మ
.

ሺ𝑟,𝑝ሻ  𝑋 𝑟

𝑝

𝑃ሺ𝑋 ൌ 𝑖ሻ ൌ ቆ
𝑖 െ 1

𝑟 െ 1
ቇ𝑝௥ሺ1 െ 𝑝ሻ௜െ௥, 𝑖 ൌ 𝑟,𝑟 ൅ 1,𝑟 ൅ 2,...

𝐸ሾ𝑋ሿ ൌ
௥

௣
, Varሺ𝑋ሻ ൌ 𝑟

ଵെ௣

௣మ
.

ሺ1,𝑝ሻ ሺ𝑝ሻ

𝑟 ሺ𝑝ሻ

ሺ𝑟,𝑝ሻ

ሺ𝜆ሻ  𝑋

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ 𝑒െఒ𝜆௜/𝑖!, 𝑖 ൌ 0, 1, 2, ...

𝐸ሾ𝑋ሿ ൌ λ, Varሺ𝑋ሻ ൌ λ.

𝑋 𝜆 ൌ 𝑛𝑝

ሺ𝑛,𝑝ሻ 𝑛 𝑝

λ

𝑡 ሺλ𝑡ሻ

ሺ𝑚, 𝑁 െ 𝑚, 𝑛ሻ  𝑋
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of  balls chosen without replacement from an urn of  balls of which  are

white.

The preceding uses the convention that  if either  or 

With .

Note. If each ball were replaced before the next selection, then  would be a

Binomial  random variable.

Negative Hypergeometric  is the number of balls that need be removed from

an urn that contains  balls, of which  are white, until a total of  white balls

has been removed, where 

Uniform  is equally likely to be near each value in the interval . Its

density function is

Normal  is a random fluctuation arising from many causes. Its density

function is

1. When  is called a standard normal.

Notes.

2. If  is Normal  then  is standard normal.

3. Sum of independent normal random variables is also normal.

𝑛 𝑁 𝑚

𝑃ሼ𝑋 ൌ 𝑖ሽ ൌ
ቆ
𝑚

𝑖
ቇቆ
𝑁 െ𝑚

𝑛 െ 𝑖
ቇ

ቆ
𝑁

𝑛
ቇ

, 𝑖 ൌ 0, 1, 2, ...

ቆ
𝑟

𝑗
ቇ ൌ 0 𝑗 ൏ 0 𝑗 ൐ 𝑟.

𝑝 ൌ 𝑚/𝑁,  𝐸ሾ𝑋ሿ ൌ 𝑛𝑝, Varሺ𝑋ሻ ൌ
ேെ௡

ேെଵ
𝑛𝑝ሺ1 െ 𝑝ሻ

𝑋

ሺ𝑛,𝑝ሻ

 𝑋

𝑛 ൅ 𝑚 𝑛 𝑟

𝑟 ൑ 𝑛.

𝑃ሼ𝑋 ൌ 𝑘ሽ ൌ
ቆ

𝑛

𝑟 െ 1
ቇቆ

𝑚

𝑘 െ 𝑟
ቇ

ቆ
𝑛 ൅𝑚

𝑘 െ 1
ቇ

𝑛 െ 𝑟 ൅ 1
𝑛 ൅𝑚 െ 𝑘 ൅ 1

, 𝑘 ൒ 𝑟

𝐸ሾ𝑋ሿ ൌ 𝑟
௡൅௠൅ଵ

௡൅ଵ
, Varሺ𝑋ሻ ൌ

௠௥ሺ௡൅ଵെ௥ሻሺ௡൅௠൅ଵሻ

ሺ௡൅ଵሻమሺ௡൅ଶሻ

ሺ𝑎,𝑏ሻ  𝑋 ሺ𝑎,𝑏ሻ

𝑓ሺ𝑥ሻ ൌ
1

𝑏 െ 𝑎
, 𝑎 ൏ 𝑥 ൏ 𝑏

𝐸ሾ𝑋ሿ ൌ
௔൅௕

ଶ
, Varሺ𝑋ሻ ൌ

ሺ௕െ௔ሻమ

ଵଶ
.

ሺ𝜇,𝜎ଶሻ  𝑋

𝑓ሺ𝑥ሻ ൌ
1

2𝜋√ 𝜎
𝑒െሺ௫െఓሻ

మ/ଶఙమ, െ∞ ൏ 𝑥 ൏ ∞

𝐸ሾ𝑋ሿ ൌ 𝜇, Varሺ𝑋ሻ ൌ 𝜎ଶ .

𝜇 ൌ 0, 𝜎 ൌ 1, 𝑋

𝑋 ሺ𝜇, 𝜎ଶሻ, 𝑍 ൌ
௑െఓ

ఙ
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4. An important result is the central limit theorem, which states that the

distribution of the sum of the first  of a sequence of independent and

identically distributed random variables becomes normal as  goes to

infinity, for any distribution of these random variables that has a finite mean

and variance.

Exponential  is the waiting time until an event occurs when events are

occurring at a rate  Its density is

Note.  is memoryless, in that the remaining life of an item whose life distribution

is Exponential  is also Exponential  no matter what the current age of the

item is.

Gamma  When ,  is the waiting time until  events occur when events

are occurring at a rate  Its density is

where  is called the gamma function.

Note.

1. Gamma = Exponential

2. If the random variables are independent, then the sum of a Gamma

and a Gamma  is a Gamma

3. The sum of  independent and identically distributed exponentials with

parameter  is a Gamma  random variable.

Beta  is the distribution of a random variable taking on values in the

interval  Its density is

where  is called the beta function.

Note.

1. Beta = Uniform .

2. The  smallest of  independent Uniform  random variables is a

𝑛

𝑛

ሺλሻ  𝑋

λ ൐ 0.
𝑓ሺ𝑥ሻ ൌ λ𝑒െλ௫, 𝑥 ൐ 0

𝐸ሾ𝑋ሿ ൌ
ଵ

λ
, Varሺ𝑋ሻ ൌ

ଵ

λమ
, 𝑃ሺ𝑋 ൐ 𝑥ሻ ൌ 𝑒െλ௫, 𝑥 ൐ 0.

𝑋

ሺλሻ ሺλሻ, 

ሺ𝛼,λሻ  𝛼 ൌ 𝑛 𝑋 𝑛

λ ൐ 0.

𝑓ሺ𝑡ሻ ൌ
λ𝑒െλ௧ሺλ𝑡ሻఈെଵ

Γ ሺ𝛼ሻ
, 𝑡 ൐ 0

  Γ ሺ𝛼ሻ ൌ ଴׬
ஶ
𝑒െ௫𝑥ఈെଵ𝑑𝑥

𝐸ሾ𝑋ሿ ൌ
ఈ

λ
, Varሺ𝑋ሻ ൌ

ఈ

λమ
.

ሺ1,λሻ  ሺλሻ.

ሺ𝛼ଵ, λሻ 

ሺ𝛼ଶ, λሻ  ሺ𝛼ଵ ൅ 𝛼ଶ, λሻ.

𝑛

𝜆 ሺ𝑛,𝜆ሻ

ሺ𝑎, 𝑏ሻ  𝑋

ሺ0, 1ሻ.

𝑓ሺ𝑥ሻ ൌ
1

𝐵ሺ𝑎,𝑏ሻ
𝑥௔െଵሺ1 െ 𝑥ሻ௕െଵ, 0 ൏ 𝑥 ൏ 1

 𝐵ሺ𝑎,𝑏ሻ ൌ ඲

଴

ଵ

𝑥௔െଵሺ1 െ 𝑥ሻ௕െଵ𝑑𝑥

𝐸ሾ𝑋ሿ ൌ
௔

௔൅௕
, Varሺ𝑋ሻ ൌ

௔௕

ሺ௔൅௕ሻమሺ௔൅௕൅ଵሻ
.

ሺ1, 1ሻ ሺ0,1ሻ

𝑗௧௛ 𝑛 ሺ0, 1ሻ
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Beta  random variable.

Chi-Squared  is the sum of the squares of  independent standard

normal random variables. Its density is

Add  and 

Notes.

1. Chi-Squared = Gamma .

2. The sample variance of  independent and identically distributed Normal

 random variables multiplied by  is a Chi-Squared

random variable, and it is independent of the sample mean.

Cauchy  is the tangent of a uniformly distributed random angle between 

and . Its density is

 is undefined.

Pareto  If  is exponential with rate  and  then  is said to

Pareto with parameters  and . Its density is

When , , and when , .

Note.

The conditional distribution of  given that it exceeds  is Pareto ( ).

1. A First Course in Probability

2. A First Course in Probability

3. Contents

4. Preface

A. General Approach and Mathematical Level

B. Content and Course Planning

C. Changes for the Tenth Edition

5. Chapter 1 Combinatorial Analysis

A. Contents

ሺ𝑗, 𝑛 െ 𝑗 ൅ 1ሻ

ሺ𝑛ሻ 𝑋 𝑛

𝑓ሺ𝑥ሻ ൌ
𝑒െ௫/ଶ𝑥

೙
మ
െଵ

2௡/ଶ Γ ሺ𝑛/2ሻ
, 𝑥 ൐ 0

𝐸ሺ𝑋ሻ 𝑉𝑎𝑟ሺ𝑋ሻ

ሺ𝑛ሻ ሺ𝑛/2, 1/2ሻ

𝑛

ሺ𝜇, 𝜎ଶሻ 
௡െଵ

ఙమ
ሺ𝑛 െ 1ሻ

 𝑋 െ𝜋/2

𝜋/2

𝑓ሺ𝑥ሻ ൌ
1

𝜋ሺ1 ൅ 𝑥ଶሻ
, െ∞ ൏ 𝑥 ൏ ∞

𝐸ሾ𝑋ሿ

ሺλ, 𝑎ሻ 𝑌 λ 𝑎 ൐ 0, 𝑋 ൌ 𝑎𝑒௒

λ 𝑎
𝑓ሺ𝑥ሻ ൌ λ𝑎λ𝑥െሺλ൅ଵሻ,  𝑥 ൐ 𝑎

λ ൐ 1 𝐸ሾ𝑋ሿ ൌ
λ௔

λെଵ
λ ൐ 2 Varሺ𝑋ሻ ൌ

λ௔మ

ሺλെଶሻሺλെଵሻమ

𝑋 𝑥଴ ൐ 𝑎 λ,𝑥଴
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H. Summary
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L. Summary
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