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This print-out should have 7 questions.
Multiple-choice questions may continue on
the next column or page – find all choices
before answering.

001 10.0 points

Find the degree 2 Taylor polynomial of f
centered at x = 2 when

f(x) = 5x lnx .

1. 10 + 5 ln 2(x− 2) +
5

2
(x− 2)2

2. 10 + 5(ln 2 + 1)(x− 2) +
5

4
(x− 2)2

3. 10 + 2 ln 5(x− 2) +
5

4
(x− 2)2

4. 10 ln 2 + 5(ln 2 + 1)(x− 2) +
5

2
(x− 2)2

5. 10 ln 2 + 5 ln 2(x− 2) +
5

4
(x− 2)2

6. 10 ln 2 + 5(ln 2 + 1)(x − 2) +
5

4
(x − 2)2

correct

Explanation:

The degree 2 Taylor polynomial of f cen-
tered at x = 2 is given by

T2(x) = f(2) + f ′(2)(x− 2)

+
1

2!
f ′′(2)(x− 2)2 .

When f(x) = 5x lnx, therefore,

f ′(x) = 5 lnx+ 5, f ′′(x) =
5

x
.

But when f(2) = 10 ln 2,

f ′(2) = 5(ln 2 + 1) , f ′′(2) =
5

2
.

Consequently, the degree 2 Taylor polynomial
centered at x = 2 of f is

10 ln 2 + 5(ln 2 + 1)(x− 2) +
5

4
(x− 2)2 .

002 10.0 points

Determine the degree three Taylor polyno-
mial centered at x = 1 for f when

f(x) = e2−3x .

1. T3 = e5
(

1 + 3x−

9

2
x2 +

9

2
x3

)

2. T3 = e−1
(

1− 3x+
9

2
x2 −

9

2
x3

)

3. T3 =1− 3(x− 1)

+
9

2
(x− 1)2 −

9

2
(x− 1)3

4. T3 =e−1
(

1− 3(x− 1)

+
9

2
(x− 1)2 −

9

2
(x− 1)3

)

correct

5. T3 =e5
(

1 + 3(x− 1)

−

9

2
(x− 1)2 +

9

2
(x− 1)3

)

Explanation:

The degree three Taylor polynomial cen-
tered at x = 1 for a function f is defined
by

T3(x) = f(1) + f ′(1)(x− 1)

+
1

2!
f ′′(1)(x− 1)2 +

1

3!
f ′′′(1)(x− 1)3.

When f(x) = e2−3x we use the Chain Rule
repeatedly to compute the derivatives of f :

f ′(x) = −3e2−3x, f ′′(x) = 32e2−3x,
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and

f ′′′(x) = −33e2−3x.

Thus

f(1) = e−1, f ′(1) = −3e−1,

f ′′(1) = 32e−1, f ′′′(1) = −33e−1.

Consequently,

T3 =e−1
(

1− 3(x− 1)

+
9

2
(x− 1)2 −

9

2
(x− 1)3

)

.

003 10.0 points

Find the degree three Taylor polynomial T3
centered at x = 0 for f when

f(x) = ln(2− 3x) .

1. T3(x) = ln 2 +
3

2
x−

9

8
x2 +

9

16
x3

2. T3(x) =
3

2
x+

9

8
x2 +

9

8
x3

3. T3(x) =
3

2
x−

9

8
x2 −

9

8
x3

4. T3(x) = ln 2−
3

2
x+

9

8
x2 −

9

8
x3

5. T3(x) =
3

2
x−

9

8
x2 +

9

8
x3

6. T3(x) = ln 2−
3

2
x−

9

8
x2−

9

8
x3 correct

Explanation:

The degree three Taylor polynomial cen-
tered at x = 0 for a function f is defined
by

p3(x) = f(0) + f ′(0)x

+
1

2!
f ′′(0)x2 +

1

3!
f ′′′(0)x3 .

We use the Chain Rule repeatedly to compute
the derivatives of f :

f ′(x) = −

3

2− 3x
, f ′′(x) = −

9

(2− 3x)2
,

and

f ′′′(x) = −

54

(2− 3x)3
.

Thus

f(0) = ln 2, f ′(0) = −

3

2
,

1

2!
f ′′(0) = −

9

8
,

1

3!
f ′′′(0) = −

9

8
,

and so

T3(x) = ln 2−
3

2
x−

9

8
x2 −

9

8
x3 .

004 10.0 points

Find the Taylor series centered at the origin
for the function

f(x) = x cos(6x) .

1. f(x) =

∞
∑

n=0

(−1)n

(2n)!
x2n+1

2. f(x) =

∞
∑

n=0

6n

n!
xn+1

3. f(x) =

∞
∑

n=0

(−1)n62n

(2n)!
x2n+1 correct

4. f(x) =

∞
∑

n=0

62n

(2n)!
x2n+1

5. f(x) =

∞
∑

n=0

(−1)n6n

n!
xn+1

Explanation:
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The Taylor series centered at the origin for
cos(x) is

cos(x) =

∞
∑

n=0

(−1)n

(2n)!
x2n .

But then

x cos(6x) = x

∞
∑

n=0

(−1)n

(2n)!
(6x)2n .

Consequently, the Taylor series representa-
tion for f centered at the origin is

f(x) =
∞
∑

n=0

(−1)n62n

(2n)!
x2n+1 .

005 10.0 points

Use the degree 2 Taylor polynomial cen-
tered at the origin for f to estimate the inte-
gral

I =

∫ 1

0

f(x) dx

when

f(x) = e−x2/2 .

1. I ≈

5

6
correct

2. I ≈

1

3

3. I ≈

1

2

4. I ≈ 1

5. I ≈

2

3

Explanation:

When f(x) = e−x2/2, we see that

f ′(x) = −xe−x2/2 ,

while

f ′′(x) = −e−x2/2 + x2e−x2/2 .

In this case,

f(0) = 1, f ′(0) = 0, f ′′(0) = −1 .

Thus the degree 2 Taylor polynomial for f

centered at the origin is

T2(x) = 1−
1

2
x2 .

But then

I ≈

∫ 1

0

T2(x) dx =

∫ 1

0

(

1−
1

2
x2
)

dx .

Consequently,

I ≈

[

x−

1

6
x3

]1

0
=

5

6
.

006 10.0 points

Use the degree 2 Taylor polynomial cen-
tered at the origin for f to estimate the inte-
gral

I =

∫ 1

0

f(x) dx

when
f(x) =

√

1 + x2 .

1. I ≈ 1

2. I ≈

2

3

3. I ≈

7

6
correct

4. I ≈

4

3

5. I ≈

5

6

Explanation:

When

f(x) =
√

1 + x2 = (1 + x2)1/2 ,

we see that

f ′(x) = x(1 + x2)−1/2 ,
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while

f ′′(x) = (1 + x2)−1/2
− x2(1 + x2)−3/2 .

In this case,

f(0) = 1, f ′(0) = 0, f ′′(0) = 1 .

Thus the degree 2 Taylor polynomial for f

centered at the origin is

T2(x) = 1 +
1

2
x2 .

But then

I ≈

∫ 1

0

T2(x) dx =

∫ 1

0

(

1 +
1

2
x2
)

dx .

Consequently,

I ≈

[

x+
1

6
x3

]1

0
=

7

6
.

007 10.0 points

Use the Taylor series for e−x2

to evaluate
the integral

I =

∫ 3

0

2 e−x2

dx .

1. I =

∞
∑

k=0

(−1)k

k!(2k + 1)
2 · 32k+1 correct

2. I =

∞
∑

k=0

(−1)k

k!
2 · 32k

3. I =

n
∑

k=0

1

k!(2k + 1)
2 · 32k+1

4. I =

∞
∑

k=0

1

k!
2 · 32k

5. I =

∞
∑

k=0

(−1)k

2k + 1
2 · 32k+1

Explanation:

The Taylor series for ex is given by

ex = 1 + x+
1

2!
x2 + . . .+

1

n!
xn + . . .

and its interval of convergence is (−∞, ∞).
Thus we can substitute x → −x2 for all val-
ues of x, showing that

e−x2

=

∞
∑

k=0

(−1)k

k!
x2k

everywhere on (−∞, ∞). Thus

I =

∫ 3

0

2
(

∞
∑

k=0

(−1)k

k!
x2k

)

dx.

But we can change the order of summation
and integration on the interval of convergence,
so

I = 2

∞
∑

k=0

(

∫ 3

0

(−1)k

k!
x2k

)

dx

= 2

∞
∑

k=0

[ (−1)k

k!(2k + 1)
x2k+1

]3

0
.

Consequently,

I =
∞
∑

k=0

(−1)k

k!(2k + 1)
2 · 32k+1 .


