This print-out should have 9 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Find the value of f_x and f_y at (1, -1) when

$$f(x,y) = \frac{2}{xy} + 4x^2 + y^2.$$

1.
$$f_x\Big|_{(1,-1)} = -6$$
, $f_y\Big|_{(1,-1)} = 0$

2.
$$f_x\Big|_{(1,-1)} = 6$$
, $f_y\Big|_{(1,-1)} = -3$

3.
$$f_x\Big|_{(1,-1)} = 10, \quad f_y\Big|_{(1,-1)} = 0$$

4.
$$f_x\Big|_{(1,-1)} = 10$$
, $f_y\Big|_{(1,-1)} = -4$ **correct**

5.
$$f_x\Big|_{(1,-1)} = -6$$
, $f_y\Big|_{(1,-1)} = -4$

Explanation:

Differentiating f first with respect to x and then with respect to y we obtain

$$\frac{\partial f}{\partial x} = -\frac{2}{x^2y} + 8x, \quad \frac{\partial f}{\partial y} = -\frac{2}{xy^2} + 2y.$$

Thus at (1, -1),

$$f_x\Big|_{(1,-1)} = 10, \quad f_y\Big|_{(1,-1)} = -4$$
.

002 10.0 points

Determine $f_{xx} + f_{yy}$ when

$$f(x,y) = (x-5)(y+1)(x+y+3).$$

1.
$$f_{xx} + f_{yy} = 2(x+y+6)$$

2.
$$f_{xx} + f_{yy} = 2(x+y-4)$$
 correct

3.
$$f_{xx} + f_{yy} = x + y - 4$$

4.
$$f_{xx} + f_{yy} = x + y + 6$$

5.
$$f_{xx} + f_{yy} = 2(x+y-6)$$

Explanation:

Using the product rule to differentiate

$$f(x,y) = (x-5)(y+1)(x+y+3)$$

first with respect to x and then with respect to y we obtain

$$f_x = (y+1)(x+y+3) + (x-5)(y+1)$$

and

$$f_y = (x-5)(x+y+3) + (x-5)(y+1).$$

Repeating this we next obtain

$$f_{xx} = 2(y+1), \quad f_{yy} = 2(x-5).$$

Consequently,

$$f_{xx} + f_{yy} = 2(x+y-4)$$
.

003 10.0 points

Determine $f_{xx}f_{yy} - (f_{xy})^2$ when

$$f(x,y) = \frac{2}{3}x^3 + 2y^2 + 6x + 2y + 2xy.$$

1.
$$f_{xx}f_{yy} - (f_{xy})^2 = 16x + 4$$

2.
$$f_{xx}f_{yy} - (f_{xy})^2 = 8x + 4$$

3.
$$f_{xx}f_{yy} - (f_{xy})^2 = 16x - 4$$
 correct

4.
$$f_{xx}f_{yy} - (f_{xy})^2 = 16x - 2$$

5.
$$f_{xx}f_{yy} - (f_{xy})^2 = 8x - 4$$

Explanation:

After differentiation once

$$f_x = 2x^2 + 6 + 2y$$
, $f_y = 4y + 2 + 2x$.

After differentiating a second time therefore, we see that

$$f_{xx} = 4x$$
, $f_{xy} = 2$, $f_{yy} = 4$.

Consequently,

$$f_{xx}f_{yy} - (f_{xy})^2 = 16x - 4.$$

004 10.0 points

Determine $f_x - f_y$ when

$$f(x,y) = 3x^2 + xy - 2y^2 - x + 3y.$$

1.
$$f_x - f_y = 7x - 3y - 4$$

2.
$$f_x - f_y = 7x - 3y + 2$$

3.
$$f_x - f_y = 5x + 5y + 2$$

4.
$$f_x - f_y = 5x - 3y - 4$$

$$\mathbf{5.} \ f_x - f_y = 7x + 5y + 2$$

6.
$$f_x - f_y = 5x + 5y - 4$$
 correct

Explanation:

After differentiation we see that

$$f_x = 6x + y - 1, \quad f_y = x - 4y + 3.$$

Consequently,

$$f_x - f_y = 5x + 5y - 4$$
.

005 10.0 points

Determine f_x when

$$f(x,y) = (2x+y)e^{x/y}$$
.

1.
$$f_x = \left(\frac{x}{y} - 1\right) e^{x/y}$$

2.
$$f_x = \left(\frac{2x}{y} + 3\right)e^{x/y}$$
 correct

3.
$$f_x = \left(\frac{2x}{y} + 1\right) e^{x/y}$$

4.
$$f_x = \left(\frac{x}{y} + 1\right) e^{x/y}$$

5.
$$f_x = \left(\frac{x}{y} - 3\right) e^{x/y}$$

6.
$$f_x = \left(\frac{2x}{y} - 3\right) e^{x/y}$$

Explanation:

Differentiating with respect to x keeping y fixed, we see that

$$f_x = 2e^{x/y} + \left(\frac{2x+y}{y}\right)e^{x/y}.$$

Consequently,

$$f_x = \left(\frac{2x}{y} + 3\right)e^{x/y} \quad .$$

006 10.0 points

Find u_t when

$$u = xe^{-2t}\sin\theta.$$

1.
$$u_t = -2e^{-2t}\sin\theta$$

$$2. u_t = e^{-2t} \sin \theta$$

3.
$$u_t = -2xe^{-2t}\sin\theta$$
 correct

4.
$$u_t = 2xe^{-2t}\sin\theta$$

5.
$$u_t = xe^{-2t}\cos\theta$$

Explanation:

Differentiating

$$u = xe^{-2t}\sin\theta$$

with respect to t keeping x and θ fixed, we see that

$$u_t = -2xe^{-2t}\sin\theta.$$

007 10.0 points

Determine the second partial f_{xy} of f when

$$f(x,y) = \frac{3x^2}{y} + \frac{y^2}{16x}.$$

1.
$$f_{xy} = \frac{6x}{y^2} + \frac{y}{8x^2}$$

2.
$$f_{xy} = 6x - y$$

3.
$$f_{xy} = -\frac{6x}{y^2} - \frac{y}{8x^2}$$
 correct

4.
$$f_{xy} = \frac{6x}{y^2} - \frac{y}{8x^2}$$

5.
$$f_{xy} = 6x + y$$

Explanation:

Differentiating with respect to x, we obtain

$$f_x = \frac{6x}{y} - \frac{y^2}{16x^2},$$

and so after differentiation with respect to y we see that

$$f_{xy} = -\frac{6x}{y^2} - \frac{y}{8x^2}.$$

008 10.0 points

Determine

$$\frac{\partial z}{\partial y}$$

when $z = 3e^{-x/y}$.

1.
$$\frac{\partial z}{\partial y} = \frac{3}{y^2} e^{-x/y}$$

2.
$$\frac{\partial z}{\partial y} = \frac{3x}{y^2} e^{-x/y}$$
 correct

$$3. \frac{\partial z}{\partial y} = -\frac{3}{y^2} e^{-x/y}$$

4.
$$\frac{\partial z}{\partial y} = -\frac{3x}{y}e^{-x/y}$$

$$5. \ \frac{\partial z}{\partial y} = -\frac{3x}{y^2} e^{-x/y}$$

$$\mathbf{6.} \ \frac{\partial z}{\partial y} = \frac{3x}{y} e^{-x/y}$$

Explanation:

Differentiating z with respect to y keeping x fixed we see that

$$\frac{\partial z}{\partial y} = 3e^{-x/y} \cdot \frac{\partial (-x/y)}{\partial y}.$$

Consequently,

$$\frac{\partial z}{\partial y} = \frac{3x}{y^2} e^{-x/y} \ .$$

009 10.0 points

Determine f_{xy} when

$$f(x, y) = 2y \tan^{-1}\left(\frac{y}{x}\right).$$

1.
$$f_{xy} = \frac{xy^2}{x^2 + y^2}$$

2.
$$f_{xy} = \frac{xy}{x^2 + y^2}$$

$$3. f_{xy} = \frac{4x^2y}{(x^2+y^2)^2}$$

4.
$$f_{xy} = -\frac{4x^2y}{(x^2+y^2)^2}$$
 correct

$$5. f_{xy} = -\frac{4xy}{x^2 + y^2}$$

6.
$$f_{xy} = -\frac{x^2y}{(x^2+y^2)^2}$$

Explanation:

By the Chain Rule,

$$\frac{\partial}{\partial x} \left(\tan^{-1} \frac{y}{x} \right) = -\frac{y}{x^2} \left(\frac{1}{1 + (y/x)^2} \right)$$
$$= -\frac{y}{x^2 + y^2}.$$

Since we can choose whether to differentiate with respect to x or y first, for simplicity we will choose to first differentiate with respect to x. But then

$$f_x = \frac{-2y^2}{x^2 + y^2}.$$

Differentiating partially now with respect to y we see that

$$f_{xy} = \frac{(x^2 + y^2)(-4y) + 2y^2(2y)}{(x^2 + y^2)^2}.$$

Consequently,

$$f_{xy} = -\frac{4x^2y}{(x^2+y^2)^2} \ .$$

keywords: partial differentiation, mixed partial derivative, Chain Rule, inverse tangent, PartialDiffMV, PartialDiffMVExam,