This print-out should have 5 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Which of the following integrals are improper?

$$I_{1} = \int_{0}^{1} \frac{1}{\sqrt{x}} dx,$$
$$I_{2} = \int_{0}^{2} \frac{x+2}{x+1} dx,$$
$$I_{3} = \int_{1}^{\infty} \frac{1}{1+x^{2}} dx.$$

1. I_3 only

- **2.** none of them
- **3.** I_2 and I_3 only

4. I_2 only

- **5.** I_1 and I_3 only
- **6.** I_1 and I_2 only
- 7. I_1 only
- 8. all of them

002 10.0 points

Determine if the integral

$$I = \int_0^\infty e^{-9x} \, dx$$

is convergent, and if it is, find its value.

1. $I = -\frac{1}{9}$

2. = 9
3.
$$I = \frac{1}{9}$$

4. $I = -9$

5. integral is divergent

003 10.0 points

Determine if the improper integral

$$I = \int_4^\infty e^{-x/2} \, dx$$

converges, and if it does, compute its value.

I = e⁻²
 I = 2e²
 I does not converge
 I = 2e⁻²
 I = -2e⁻²

004 10.0 points

Determine if the improper integral

$$I = \int_4^\infty 2x e^{-4x^2} dx$$

converges, and if it does, find its value.

1.
$$I = \frac{1}{4}e^{-64}$$

2. $I = \frac{1}{4}e^{64}$

3. *I* does not converge

4.
$$I = 2e^{-64}$$

5.
$$I = \frac{1}{2}e^{64}$$

6. $I = \frac{1}{2}e^{-64}$

005 10.0 points

Determine if the improper integral

$$I = \int_{1}^{\infty} \frac{6x}{(1+x^2)^2} \, dx$$

converges, and if it does, compute its value.

- **1.** I = 6 **2.** $I = \frac{3}{2}$ **3.** I = 3**4.** I = 2
- **5.** integral doesn't converge