This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 (part 1 of 3) 10.0 points

For the differential equation

$$\frac{dy}{dx} + 2y = 8e^{3x}$$

(i) first find its general solution.

1. $y = \frac{8}{5}e^{-3x} + Ce^{-2x}$ 2. $y = \frac{1}{5}e^{3x} + Ce^{-2x}$ 3. $y = \frac{8}{5}e^{-3x} + Ce^{2x}$ 4. $y = \frac{8}{5}e^{3x} + Ce^{2x}$ 5. $y = \frac{8}{5}e^{3x} + Ce^{-2x}$ correct

Explanation:

The integrating factor for the first order differential equation

$$\frac{dy}{dx} + 2y = 8e^{3x}$$

is

$$\mu = e^{\int 2 \, dx} = e^{2x}.$$

Thus after multiplying both sides by e^{2x} we can rewrite it as

$$\frac{d}{dx}\left(y\,e^{2x}\right) \,=\,8\,e^{5x}$$

Consequently, its general solution is given by

$$y e^{2x} = \int e^{5x} dx = \frac{8}{5}e^{5x} + C$$

where C is an arbitrary constant, so

$$y = \frac{8}{5}e^{3x} + C e^{-2x}$$

with C an arbitrary constant.

002 (part 2 of 3) 10.0 points

(ii) Then find the particular solution y_0 such that $y_0(0) = 8$.

1.
$$y_0 = \frac{8}{5}e^{3x} + \frac{32}{5}e^{-2x}$$
 correct
2. $y_0 = \frac{8}{5}e^{-3x} + \frac{32}{5}e^{2x}$
3. $y_0 = -\frac{8}{5}e^{3x} + \frac{32}{5}e^{-2x}$
4. $y_0 = \frac{8}{5}e^{3x} - \frac{32}{5}e^{-2x}$
5. $y_0 = \frac{1}{5}e^{3x} + \frac{32}{5}e^{-2x}$

Explanation:

For the particular solution y_0 the value of C is determined by the condition y(0) = 8 since

$$y(0) = 8 \implies 8 = \frac{8}{5} + C$$

Consequently,

$$y_0 = \frac{8}{5}e^{3x} + \frac{32}{5}e^{-2x}.$$

003 (part 3 of 3) 10.0 points

(iii) For the particular solution y_0 in (ii), determine the value of $y_0(1)$.

1.
$$\frac{8}{5}e^3 - \frac{32}{5}e^{-2}$$

2. $\frac{1}{5}e^3 - \frac{32}{5}e^{-2}$
3. $\frac{8}{5}e^{-3} + \frac{32}{5}e^2$
4. $\frac{8}{5}e^3 + \frac{32}{5}e^{-2}$ correct
5. $\frac{1}{5}e^3 + \frac{32}{5}e^{-2}$

Explanation:

At x = 1, therefore,

$$y_0(1) = \frac{8}{5}e^3 + \frac{32}{5}e^{-2}.$$

004 10.0 points

If y_0 is the solution of the equations

$$xy' + 2y = 4x, \quad y(1) = 6,$$

determine the value of $y_0(2)$.

1. $y_0(2) = \frac{11}{3}$ 2. $y_0(2) = \frac{43}{12}$ 3. $y_0(2) = \frac{7}{2}$ 4. $y_0(2) = \frac{15}{4}$ 5. $y_0(2) = \frac{23}{6}$ correct

Explanation:

After dividing we see that the given differential equation becomes

(‡)
$$y' + \frac{2}{x}y = 4,$$

which is a first order linear equation having integrating factor

$$\mu(x) = \exp\left(\int \frac{2}{x} dx\right) = x^2.$$

With this (\ddagger) becomes

$$x^2y' + 2xy = 4x^2.$$

Thus

$$x^2y = \int 4x^2 \, dx = \frac{4x^3}{3} + C,$$

where C is an arbitrary constant. For y_0 the value of C is determined by the condition y(1) = 6. Consequently,

$$y_0(x) = \frac{1}{3} \left(4x + \frac{6(3) - 4}{x^2} \right).$$

At x = 2, therefore,

$$y_0(2) = \frac{23}{6}.$$

005 10.0 points

If y_1 is the particular solution of the differential equation

$$\frac{dy}{dx} - \frac{2y}{x} = 6x^2 - 6$$

which satisfies y(1) = 6, determine the value of $y_1(2)$.

1. $y_1(2) = 35$ **2.** $y_1(2) = 34$ **3.** $y_1(2) = 32$ **4.** $y_1(2) = 33$

5.
$$y_1(2) = 36$$
 correct

Explanation:

The integrating factor needed for the first order differential equation (\ddagger) is

$$\mu = e^{-\int \frac{2}{x} dx} = e^{-2\ln x} = \frac{1}{x^2}$$

After multiplying both sides of (‡) by $1/x^2$ we can thus rewrite the equation as

$$\frac{d}{dx}\left(\frac{y}{x^2}\right) = 6 - \frac{6}{x^2}$$

Consequently, the general solution of (‡) is given by

$$\frac{y}{x^2} = 6x + \frac{6}{x} + C$$

where C is an arbitrary constant. For the particular solution y_1 the value of C is determined by the condition y(1) = 6 since

$$y(1) = 6 \quad \Longrightarrow \quad 6 = 12 + C,$$

and so

$$y_1(x) = x^2 \Big(6x + \frac{6}{x} - 6 \Big).$$

At x = 2, therefore,

$$y_1(2) = 36.$$

006 10.0 points Solve the differential equation $y'+2y = 2e^x$.

1.
$$y = \frac{2}{3}e^{-x} + Ce^{-2x}$$

2. $y = \frac{2}{3}e^{x} + Ce^{-2x}$ correct
3. $y = -\frac{2}{3}e^{x} + Ce^{2x}$
4. $y = -\frac{2}{3}e^{x} + Ce^{-2x}$
5. $y = \frac{2}{3}e^{x} + Ce^{2x}$

$$t\frac{dy}{dt} + 2y = t^5, \quad t > 0, y (1) = 0.$$

1. $y = \frac{t^6}{7} - \frac{1}{7t^2}$
2. $y = \frac{t^5}{7} - \frac{1}{7t^2}$ correct
3. $y = \frac{t^5}{7} - \frac{1}{7t^3}$
4. $y = \frac{t^5}{7} + \frac{1}{7t^2}$
5. $y = \frac{t^5}{7} - \frac{1}{7t^4}$

Explanation:

Explanation:

007 10.0 points

Solve the differential equation

$$(5+t)\frac{du}{dt} + u = 5+t, \quad t > 0$$

1. $u = \frac{t^2 + 5t}{2(t+5)} + C$
2. $u = \frac{t^2 + 10t + 2C}{2(t+5)}$ correct
3. $u = \frac{t^2 + 5t + 2C}{2(t+5)}$
4. $u = \frac{t^2 + 5t + C}{t+5}$
5. $u = \frac{t^2 + 5t}{t+5} + C$

Explanation:

Solve the initial-value problem