This print-out should have 10 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Determine whether the series

$$\sum_{n=0}^{\infty} 4\left(\frac{2}{3}\right)^n$$

is convergent or divergent, and if convergent, find its sum.

- 1. convergent, sum = $\frac{12}{5}$
- **2.** convergent, sum = 12
- 3. divergent
- 4. convergent, sum = -13
- 5. convergent, sum = 13

002 10.0 points

Determine whether the infinite series

$$4-3+\frac{9}{4}-\frac{27}{16}+\frac{81}{64}$$
 ...

is convergent or divergent, and if convergent, find its sum.

- 1. convergent with sum $\frac{7}{16}$
- 2. divergent
- **3.** convergent with sum $\frac{16}{7}$
- **4.** convergent with sum 16
- 5. convergent with sum $\frac{1}{16}$

Determine whether the series

$$2+3+\frac{9}{2}+\frac{27}{4}+\cdots$$

is convergent or divergent, and if convergent, find its sum.

1. convergent with sum = 9

2. convergent with sum
$$=\frac{1}{4}$$

- **3.** convergent with sum = 4
- 4. divergent
- 5. convergent with sum $=\frac{1}{9}$

004 10.0 points

Determine if the series

$$\sum_{n=1}^{\infty} \frac{1+2^n}{4^n}$$

converges or diverges, and if it converges, find its sum.

- 1. converges with sum $=\frac{3}{2}$
- 2. converges with sum $=\frac{11}{6}$
- **3.** series diverges
- 4. converges with sum $=\frac{5}{3}$
- 5. converges with sum $=\frac{7}{6}$
- 6. converges with sum $=\frac{4}{3}$

005 10.0 points If the n^{th} partial sum of $\sum_{n=1}^{\infty} a_n$ is $S_n = \frac{3n-5}{n+1},$

What is the sum of $\sum_{n=1}^{\infty} a_n$?	$1. \frac{n}{n-1}$
1. sum = 3	$2.\frac{2^n-1}{2^n}$
2. sum = 4	3. $\frac{1}{2^n}$
3. sum = 1	4. 1
4. sum $= 0$	n
5. sum $= 2$	5. $\overline{n+1}$

006 10.0 points

If the n^{th} partial sum S_n of an infinite series

$$\sum_{n=1}^{\infty} a_n$$

is given by

$$S_n = 7 - \frac{n}{6^n}$$

find a_n for n > 1.

1.	a_n	=	$7\left(\frac{7n-6}{6^n}\right)$
2.	a_n	=	$7\left(\frac{n-6}{6^{n-1}}\right)$
3.	a_n	=	$\frac{7n-6}{6^n}$
4.	a_n	=	$\frac{n-6}{6^{n-1}}$
5.	a_n	=	$7\left(\frac{5n-6}{6^n}\right)$
6.	a_n	=	$\frac{5n-6}{6^n}$

10.0 points 007

Find the general term for the sequence of partial sums for the series:

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$$

1. $n - 1$
2^n-1
2. 2^n
1
3. $\overline{2^n}$
4. 1
n
5. $n+1$

10.0 points 008

Find the general term for the sequence of partial sums for

	$\sum_{n=1}^\infty \frac{1}{3^n}$	
$1.\frac{\frac{3^n-1}{2}}{3^n}$		
1. $\frac{1}{2}$		
$\frac{3^n-1}{3^n}$		
4.1		
5. $\frac{1}{3^n}$		

009 10.0 points

Find the general term for the sequence of partial sums for the series:

$$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \cdots$$

1.
$$\frac{n}{n+1}$$

•

$$\frac{1}{n(n+1)}$$
3. 1
4. $\frac{1}{n+1}$
5. $\frac{1}{2^n}$

010 10.0 points

Determine whether the series is convergent or divergen by expressing s_n as a telescoping sum. If it is convergent find its sum.

$$\sum_{n=1}^\infty \frac{1}{n(n+1)}$$

- **1.** convergent with a sum of 0
- 2. divergent
- **3.** convergent with a sum of 2
- 4. convergent with a sum of 1
- **5.** convergent with a sum of -1