This print-out should have 10 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Determine whether the series

$$\sum_{n=0}^{\infty} 4\left(\frac{2}{3}\right)^n$$

is convergent or divergent, and if convergent, find its sum.

- 1. convergent, sum = $\frac{12}{5}$
- **2.** convergent, sum = 12 correct
- 3. divergent
- 4. convergent, sum = -13
- 5. convergent, sum = 13

Explanation:

The given series is an infinite geometric series

$$\sum_{n=0}^{\infty} a r^n$$

with a = 4 and $r = \frac{2}{3}$. But the sum of such a series is

(i) convergent with sum $\frac{a}{1-r}$ when |r| < 1,

(ii) divergent when $|r| \ge 1$.

Consequently, the given series is

convergent, sum = 12 .

002 10.0 points

Determine whether the infinite series

$$4 - 3 + \frac{9}{4} - \frac{27}{16} + \frac{81}{64} \cdots$$

is convergent or divergent, and if convergent, find its sum.

1. convergent with sum
$$\frac{7}{16}$$

- 2. divergent
- **3.** convergent with sum $\frac{16}{7}$ correct
- 4. convergent with sum 16

5. convergent with sum $\frac{1}{16}$

Explanation: The infinite series

 $4 - 3 + \frac{9}{4} - \frac{27}{16} + \frac{81}{64} \cdots = \sum_{n=1}^{\infty} a r^{n-1}$

is an infinite geometric series with a = 4 and $r = -\frac{3}{4}$.

But a geometric series

$$\sum_{n=1}^{\infty} a r^{n-1}$$

- (i) converges with sum $\frac{a}{1-r}$ when |r| < 1,
- (ii) and diverges when $|r| \ge 1$.

Consequently, the given series is

convergent with sum $\frac{16}{7}$

003 10.0 points

Determine whether the series

$$2+3+\frac{9}{2}+\frac{27}{4}+\cdots$$

is convergent or divergent, and if convergent, find its sum.

1. convergent with sum = 9

- 2. convergent with sum $=\frac{1}{4}$
- **3.** convergent with sum = 4
- 4. divergent correct
- 5. convergent with sum $=\frac{1}{9}$

Explanation:

The series

$$2+3+\frac{9}{2}+\frac{27}{4}+\cdots = \sum_{n=1}^{\infty} a r^{n-1}$$

is an infinite geometric series in which a = 2and $r = \frac{3}{2}$. But such a series is

(i) convergent with sum $\frac{a}{1-r}$ when |r| < 1,

(ii) divergent when $|r| \ge 1$.

Thus the given series is

divergent

004 10.0 points

Determine if the series

$$\sum_{n=1}^{\infty} \frac{1+2^n}{4^n}$$

converges or diverges, and if it converges, find its sum.

6

- 1. converges with sum $=\frac{3}{2}$
- **2.** converges with sum = $\frac{11}{6}$
- **3.** series diverges

6. converges with sum
$$=\frac{4}{3}$$
 correct

Explanation:

An infinite geometric series $\sum_{n=1}^{\infty} a r^{n-1}$

(i) converges when
$$|r| < 1$$
 and has

$$\operatorname{sum} = \frac{a}{1-r},$$

while it

(ii) diverges when $|r| \ge 1$.

Now

$$\sum_{n=1}^{\infty} \frac{1}{4^n} = \sum_{n=1}^{\infty} \frac{1}{4} \left(\frac{1}{4}\right)^{n-1}$$

is a geometric series with $a = r = \frac{1}{4} < 1$. Thus it converges with

$$\operatorname{sum} = \frac{1}{3},$$

while

W

$$\sum_{n=1}^{\infty} \frac{2^n}{4^n} = \sum_{n=1}^{\infty} \frac{1}{2} \left(\frac{1}{2}\right)^{n-1}$$

is a geometric series with $a = r = \frac{1}{2} < 1$. Thus it too converges, and it has

$$sum = 1$$
.

Consequently, being the sum of two convergent series, the given series

converges with sum
$$= \frac{1}{3} + 1 = \frac{4}{3}$$
.

005 10.0 points
If the
$$n^{th}$$
 partial sum of $\sum_{n=1}^{\infty} a_n$ is $S_n = \frac{3n-5}{n+1}$,
hat is the sum of $\sum_{n=1}^{\infty} a_n$?

n = 1

By definition, the n^{th} partial sum of

$$\sum_{n=1}^{\infty} a_n$$

is given by

$$S_n = a_1 + a_2 + \dots + a_n \, .$$

In particular,

$$a_n = \begin{cases} S_n - S_{n-1}, & n > 1, \\ S_n, & n = 1. \end{cases}$$

Thus

$$a_n = S_n - S_{n-1} = \frac{n-1}{6^{n-1}} - \frac{n}{6^n}$$
$$= \frac{6(n-1)}{6^n} - \frac{n}{6^n}$$

when
$$n > 1$$
. Consequently,

$$a_n = \frac{5n-6}{6^n}$$

for n > 1.

007 10.0 points

Find the general term for the sequence of partial sums for the series:

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$$

1.
$$\frac{n}{n-1}$$
2.
$$\frac{2^n - 1}{2^n}$$
 correct
3.
$$\frac{1}{2^n}$$
4. 1
5.
$$\frac{n}{n+1}$$
Explanation:

1. sum =
$$3$$
 correct

2. sum = 4

3. sum = 1

4. sum = 0

5. sum = 2

Explanation:

By definition

sum =
$$\lim_{n \to \infty} S_n$$
 = $\lim_{n \to \infty} \left(\frac{3n-5}{n+1} \right)$.

Thus

sum = 3.

006 10.0 points

If the n^{th} partial sum S_n of an infinite series

$$\sum_{n=1}^{\infty} a_n$$

is given by

$$S_n = 7 - \frac{n}{6^n},$$

find a_n for n > 1.

1.
$$a_n = 7\left(\frac{7n-6}{6^n}\right)$$

2. $a_n = 7\left(\frac{n-6}{6^{n-1}}\right)$
3. $a_n = \frac{7n-6}{6^n}$
4. $a_n = \frac{n-6}{6^{n-1}}$
5. $a_n = 7\left(\frac{5n-6}{6^n}\right)$
6. $a_n = \frac{5n-6}{6^n}$ correct

Explanation:

$$s_{1} = \frac{1}{2}, s_{2} = \frac{3}{4}, s_{3} = \frac{7}{8}, s_{4} = \frac{15}{16}$$
Therefore we can write
$$s_{n} = \frac{2^{n} - 1}{2^{n}}$$
3. 1
1

008 10.0 points

Find the general term for the sequence of partial sums for

$$\sum_{n=1}^{\infty} \frac{1}{3^n}$$
1.
$$\frac{\frac{3^n - 1}{2}}{3^n}$$
 correct
2.
$$\frac{1}{2}$$
3.
$$\frac{3^n - 1}{3^n}$$
4. 1
5.
$$\frac{1}{3^n}$$

Explanation:

 $s_1 = \frac{1}{3}, s_2 = \frac{4}{9}, s_3 = \frac{13}{27}.$ Therefore we can write $s_n = \frac{\frac{3^n - 1}{2}}{3^n}$

009 10.0 points

Find the general term for the sequence of partial sums for the series:

$$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \cdots$$

1.
$$\frac{n}{n+1}$$
 correct

3. 1
4.
$$\frac{1}{n+1}$$

5. $\frac{1}{2^n}$

Explanation:

 $s_1=rac{1}{2}, s_2=rac{2}{3}, s_3=rac{3}{4}, s_4=rac{4}{5}$ Therefore we can write $s_n=rac{n}{n+1}$

010 10.0 points

Determine whether the series is convergent or divergen by expressing s_n as a telescoping sum. If it is convergent find its sum.

$$\sum_{n=1}^{\infty}rac{1}{n(n+1)}$$

- 1. convergent with a sum of 0
- 2. divergent
- **3.** convergent with a sum of 2
- 4. convergent with a sum of 1 correct
- 5. convergent with a sum of -1

Explanation:

Using partial fractions we can rewrite the general term as

$$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$$

We can then write out the sequence of partial sums

$$s_1 = 1 - rac{1}{2}$$
 $s_2 = \left(1 - rac{1}{2}
ight) + \left(rac{1}{2} - rac{1}{3}
ight)$ $s_3 = \left(1 - rac{1}{2}
ight) + \left(rac{1}{2} - rac{1}{3}
ight) + \left(rac{1}{3} - rac{1}{4}
ight)$

Then we can see that

$$s_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$s_n = 1 - rac{1}{n+1}$$

Then we can evaluate the limit

$$\lim_{n o\infty}s_n=\lim_{n o\infty}1-rac{1}{n+1}=1$$