Grade Report - Class: PHYS 303K (Fall 2024) Loveridge Assignment: Midterm I Morales, Abdon - abdonm@cs.utexas.edu

Problem 1: Consider the following quantities: distance *x*, velocity *v*, acceleration *a*, and time *t*.

Which of the following are dimensionally consistent? (choose all that apply)

Grade = 68.75%

Correct Answer		Student Final Su	ıbmission		Feedback
x = 3vt, v = 5at,	$v=rac{x^2}{at^3}$, $a^3=rac{x^2v}{t^5}$	$x = 3vt$, $a^3 = \frac{x^2v}{t^5}$,	$v = \frac{x^2}{at^3} ,$ $xa^2 = \frac{x^2v}{t^4} ,$	<i>x</i> = <i>t</i> ,	The units for x are m. Are the units for t also m? The units of xa^2 are $m \cdot (m/s^2)^2 = m^3/s^4$. What are the units of x^2v/t^4 ? One or more choices are missing from your selection. One or more choices in your selection are extra choices.
Grade Summary					
Deduction for	r Final Submission		31.25 %		
Deductions for	or Incorrect Submissions	s, Hints and Feedba	ick [?] 0%		
Student Gra	de = 100 - <mark>31.25</mark> - 0 = 68	8.75%			

Submission History

All Date times are displayed in Central Standard Time. Red submission date times indicate late work.

	Date	Time	Answer					Hints	Feedback
1	Sep 25, 2024	1:48 PM	x = 3vt	$v=\frac{x^2}{at^3}$	x = t,	$a^3 = \frac{x^2 v}{t^5}$	$xa^2 = \frac{x^2v}{t^4}$		

Problem 2: A particular gasoline tank can hold **47.5** kg of gasoline when full.

What is the depth, in meters, of the tank if it is a rectangular box 0.45-m wide by 0.85-m long? The density of gasoline is typically 0.680×10^3 kg/m³.

Grade	=	0%	

Correct Answer	Student Final Submission		Feedback
d = 0.1826	d = 0.7300		
Grade Summary			
Deduction for Final Submission	Deduction for Final Submission		
Deductions for Incorrect Submissions, Hints and Feedback [?]		0%	
Student Grade = 100 - 100 - 0 = 0%			

Submission History

Al	All Date times are displayed in Central Standard Time. Red submission date times indicate late work.						
	Date	Time	Answer	Hints	Feedback		
1	Sep 25, 2024	1:51 PM	d = 0.7300				

Problem 3: The intersection point of two lines acts as the vertex of two right triangles, as shown. The right angles and the legs of the triangles have been labeled. The relative scaling of side lengths and angle measures may differ from the illustration.

If $d_1 = 11.56$, $h_1 = 5.23$ and $h_2 = 2.31$, enter a value for side length d_2 .

Grade = 100%

Correct Answer	Student Final Submission		Feedback
$d_2 = 5.106$	$d_2 = 5.1058$		
Grade Summary	$a_2 = 5.100$		
Deduction for Final Submission		0%	
Deductions for Incorrect Submissions, Hints and Feedback [?]		0%	
Student Grade = 100 - 0 - 0 = 100%			

Submission History

All Date times are displayed in Central Standard Time. Red submission date times indicate late work.

	Date	Time	Answer	Hints	Feedback
1	Sep 25, 2024	1:13 PM	$d_2 = 5.1058 \ d_2 = 5.106$		

Problem 4: Convert the angle, specified in degrees, to an angle specified in radians.

Enter an angle, in radians, which is equal to 238.85° .

Grade = 100%

Correct Answer	Student Final Submission		Feedback
$\theta = 4.169 \text{ rad}$	$ \begin{aligned} \theta &= 4.1687189 \\ \theta &= 4.169 \text{ rad} \end{aligned} $		
Grade Summary			
Deduction for Final Submission		0%	
Deductions for Incorrect Submissions, Hints and Feedback [?]		0%	
Student Grade = 100 - 0 - 0 = 100%			

Submission History

All	Ill Date times are displayed in Central Standard Time. Red submission date times indicate late work.						
	Date	Time	Answer	Hints	Feedback		
1	Sep 25, 2024	1:17 PM	$\begin{array}{l} \theta = 4.1687189 \\ \theta = 4.169 \ \mathrm{rad} \end{array}$				

Problem 5: Solve the subsequent question concerning vectors.

From the given list choose all that are examples of vectors.

Grade = 100%

Correct Answer	Student Final Submission	Feedback		
Force., Acceleration. , Velocity.	Force., Acceleration. , Velocity.			
Grade Summary				
Deduction for Final Submission	0%			
Deductions for Incorrect Submissions, Hin	ts and Feedback [?] 0%			
Student Grade = 100 - 0 - 0 = 100%				

Submission History

All Date times are displayed in Central Standard Time. Red submission date times indicate late work.

Date	Time	Answer	Hints	Feedback
1 Sep 25, 2024	1:44 PM	Force., Acceleration. , Velocity.		

Problem 6: The figure shows three paths taken along the horizontal axis. Each path begins at the circular dot beneath the letter denoting the path's name and ends at the very tip of the arrow. In your calculations, round to the nearest integer.

Otheexpertta.com

Part (a) What is the distance traveled, in meters, for path C?

Grade = 0%

Correct Answer	Student Final Submission		Feedback
d = 13.00 m	d = 15.00 m		
Grade Summary			
Deduction for Final Submission		100 %	
Deductions for Incorrect Submissions, Hints and Feedback [?]		0%	
Student Grade = 100 - 100 - 0	0 = 0%		

Submission History

All Date times are displayed in	Central Standard Time.	Red submission date tim	es indicate late work.

Date	Time	Answer	Hints	Feedback
1 Sep 25, 2024	1:19 PM	d = 15.00 m		

Part (b) What is the magnitude of the displacement from start to finish, in meters, for path C?

Grade = 80%

Correct Answer	Student Final Submission		Feedback
$ \Delta x $ = 9.000 m	$ \Delta x $ = 13.00 m		This is total distance traveled. What is displacement?
Grade Summary			
Deduction for Final Submission	1	20 %	
Deductions for Incorrect Submi	ssions, Hints and Feedback [?]	0%	
Student Grade = 100 - 20 - 0 =	= 80%		

Submission History

All Date times are displayed in Central Standard Time. Red submission date times indicate late work.

Date	Time	Answer	Hints	Feedback
1 Sep 25, 2024	1:21 PM	$ \Delta x $ = 13.00 m		

Part (c) What is the displacement from start to finish, in meters, for path C?

Grade = 100%

Correct Answer	Student Final Submission		Feedback
$\Delta x = 9.000 \text{ m}$	Δx = 9.000 m		
Grade Summary			
Deduction for Final Submissi	on	0%	
Deductions for Incorrect Subr	nissions, Hints and Feedback [?]	0%	
Student Grade = 100 - 0 - 0	= 100%		

Submission History

All Date times are displayed in Central Standard Time. Red submission date times indicate late work.

Date	Time	Answer	Hints	Feedback
1 Sep 25, 2024	1:21 PM	Δx = 9.000 m		

Problem 7: A fireworks shell has a constant acceleration from rest to a velocity of 61 m/s over a distance of 9.5 m.

Part (a) How long, in seconds, does the acceleration last?

Grade =	75%

Correct Answer	Student Final Submission		Feedback
t = 0.3115 s	t = 0.1557 s		The shell does not move with constant velocity, or you have lost somewhere the factor of 2.
Grade Summary			
Deduction for Final Submiss	on	25 %	
Deductions for Incorrect Sub	missions, Hints and Feedback [?]	0%	
$\mathbf{C}_{\mathbf{t}} = \mathbf{J}_{\mathbf{t}} + \mathbf{C}_{\mathbf{t}} = \mathbf{J}_{\mathbf{t}} = \mathbf{J}_{\mathbf{t}} = \mathbf{J}_{\mathbf{t}} = \mathbf{J}_{\mathbf{t}}$	0 - 750/		

Student Grade = 100 - 25 - 0 = 75%

Submission History

All Date times are dis	played in Centra	ıl Standard Time.	Red submission date times indicate late wo	ork.		
Date	Time	Answer		Hints	Feedback	
1 Sep 25, 2024	1:27 PM	t = 0.1557 s				

Part (b) Calculate the acceleration, in meters per second squared.

Grade = 0%

Correct Answer	Student Final Submission		Feedback
$a = 195.8 \text{ m/s}^2$	$a = 3721 \text{ m/s}^2$		
Grade Summary			
Deduction for Final Submission	1	100 %	
Deductions for Incorrect Subm	issions, Hints and Feedback [?]	0%	
Student Grade = 100 - 100 - 0	= 0%		

Submission History

All Date times are displayed in Central Standard Time. Red submission date times indicate late work.

Date	Time	Answer	Hints	Feedback
1 Sep 25, 2024	1:48 PM	$a = 3721 \text{ m/s}^2$		

Problem 8: Please answer the following questions about displacement vs. time graphs.

Part (a) Which of the following graphs represents an impossible motion?

Grade = 100%

Correct Answer	Student Final Submission	Feedback	
Grade Summary			
Deduction for Final Sub	omission	0%	
Deductions for Incorrec	t Submissions, Hints and Feedback [?]	0%	
Student Grade = 100 -	0 - 0 = 100%		

Submission History

All Date times are displayed in Central Standard Time. Red submission date times indicate late work.

	Date	Time	Answer	Hints	Feedback
1	Sep 25, 2024	1:29 PM			

Part (b) Which graph has only negative velocity?

Grade = 0%Student Final SubmissionFeedback $\overbrace{0}$ $\overbrace{0}$ $\overbrace{0}$ Are there portions of this graph with a positive slope therefore a positive velocity? $\overbrace{0}$ $\overbrace{0}$ $\overbrace{0}$ $\overbrace{0}$ Grade Summary
Deductions for Incorrect Submission, Hints and Feedback [?]0%Submission HistoryAll Date times are displayed in Central Standard Time. Red submission date times indicate late work.DateTimeAnswerHintsFeedbackPateTimeAnswerHintsFeedbackPateTimeAnswerHintsFeedbackPateTimeAnswerHintsFeedback

	Date	Time	Answer	Hints	Feedback
1	Sep 25, 2024	1:49 PM	finghammat T()		

Part (c) Which graph represents an object being stationary for periods of time?

Grade = 100%

Correct Answer	Student Final Submission		Feedback
Grade Summary			
Deduction for Final Submission	1	0%	
Deductions for Incorrect Submi	issions, Hints and Feedback [?]	0%	
Student Grade = 100 - 0 - 0 =	100%		

Submission History

All Date times are displayed in Central Standard Time. Red submission date times indicate late work.

	Date	Time	Answer	Hints	Feedback
1	Sep 25, 2024	1:49 PM	t_{1}		

Problem 9: A point on the second hand of a clock has a centripetal acceleration of *0.079* cm/s².

How far is this point, in cm, from the rotational axis?

Grade = 0%

Correct Answer	Student Final Submission		Feedback	
<i>r</i> = 7.204	r = 5.320			
Grade Summary				
Deduction for Final Submi	ssion	100 %		
Deductions for Incorrect Submissions, Hints and Feedback [?]		0%		
Student Grade = 100 - 10	0 - 0 = 0%			

Submission History

Submission History								
All Date times are displayed in Central Standard Time. Red submission date times indicate late work.								
Date	Time	Answer	Hints	Feedback				
1 Sep 25, 2024	1:50 PM	r = 5.320						

Problem 10: A bullet is shot horizontally over level ground. The initial height is 1.83 m, and its initial speed is 202 m/s.

Part (a) How much time, in seconds, elapses before the bullet hits the ground?

Grade = 0%

Correct Answer	Student Final Submission		Feedback
t = 0.6111	t = 0.009057 t = 0.009057		
Grade Summary			
Deduction for Final Submission		100 %	
Deductions for Incorrect Submissions, Hints and Feedback [?]		0%	
Student Grade = 100 - 100	Student Grade = 100 - 100 - 0 = 0%		

Submission History

All Date times are dis	played in Central	Standard Time. Red	d submission date	times indicate late work.
------------------------	-------------------	--------------------	-------------------	---------------------------

	Date	Time	Answer	Hints	Feedback
1	Sep 25, 2024	1:43 PM	t = 0.009057 t = 0.009057		

Part (b) How far does the bullet travel horizontally, in meters, before hitting the ground?

Grade = 0%

Correct Answer	Student Final Submission	Feedback	
<i>x</i> = 123.4	x = 4.5321 x = 4.532		
Grade Summary			
Deduction for Final Submission		100%	
Deductions for Incorrect Submissions, Hints and Feedback [?]		0%	
Student Grade = 100 - 10	00 - 0 = 0%		

Submission History

All	Date times are disp	ite work.			
	Date	Time	Answer	Hints	Feedback
1	Sep 25, 2024	1:51 PM	x = 4.5321 x = 4.532		

All content © 2024 Expert TA, LLC