
Beyond Control: Exploring Novel File System Objects for
Data-Only Attacks on Linux Systems

Jinmeng Zhou

jinmengzhou@zju.edu.cn

Zhejiang University

China

Jiayi Hu

2020141530121@stu.scu.edu.cn

Sichuan University

China

Ziyue Pan

ziyuepan@zju.edu.cn

Zhejiang University

China

Jiaxun Zhu

sevenswords@zju.edu.cn

Zhejiang University

China

Guoren Li

gli076@ucr.edu

University of California, Riverside

USA

Wenbo Shen

shenwenbo@zju.edu.cn

Zhejiang University

China

Yulei Sui

y.sui@unsw.edu.au

University of New South Wales

Australia

Zhiyun Qian

zhiyunq@cs.ucr.edu

University of California, Riverside

USA

ABSTRACT
The widespread deployment of control-flow integrity has propelled

non-control data attacks into the mainstream. In the domain of

OS kernel exploits, by corrupting critical non-control data, local

attackers can directly gain root access or privilege escalation with-

out hijacking the control flow. As a result, OS kernels have been

restricting the availability of such non-control data. This forces at-

tackers to continue to search for more exploitable non-control data

in OS kernels. However, discovering unknown non-control data

can be daunting because they are often tied heavily to semantics

and lack universal patterns.

We make two contributions in this paper: (1) discover critical

non-control objects in the file subsystem and (2) analyze their ex-

ploitability. This work represents the first study, with minimal

domain knowledge, to semi-automatically discover and evaluate

exploitable non-control data within the file subsystem of the Linux

kernel. Our solution utilizes a custom analysis and testing frame-

work that statically and dynamically identifies promising candidate

objects. Furthermore, we categorize these discovered objects into

types that are suitable for various exploit strategies, including a

novel strategy necessary to overcome the defense that isolates

many of these objects. These objects have the advantage of being

exploitable without requiring KASLR, thus making the exploits sim-

pler and more reliable. We use 18 real-world CVEs to evaluate the

exploitability of the file system objects using various exploit strate-

gies. We develop 10 end-to-end exploits using a subset of CVEs

against the kernel with all state-of-the-art mitigations enabled.

CCS CONCEPTS
• Security and privacy→ Operating systems security.

KEYWORDS
Linux Kernel Security; Data-only Attack; File System

1 INTRODUCTION
Control flow hijacking used to be the mainstream attack method to

exploit memory errors; however, it has become difficult to achieve

after the Control Flow Integrity (CFI) defense was introduced. As

a result, data-only attacks have become popular [55, 58, 67]. For

example, a common data being targeted in the Linux kernel is

modprobe_path [21, 25, 29, 79, 30, 47, 64, 63]. As long as an at-

tacker can overwrite its value with a file path that points to the

attacker-controlled executable file, it will be executed with the root

privilege [57]. There is no need to collect and stitch together ROP

gadgets in such data-only attacks. However, modprobe_path is a

global variable, and overwriting it requires defeating the KASLR

defense, which randomizes the address of all global variables. This

is an extra complexity that can be a hurdle for exploits and exploit

reliability.

Alternative to global variables, heap variables also contain criti-

cal data that can be leveraged to achieve privilege escalation. They

are easier to exploit for common types of vulnerabilities, such as

out-of-bound (OOB) memory access and use-after-free (UAF). This

is because such vulnerabilities offer relative heap memory write,

whereas KASLR does not help. For instance, attackers can spray

struct cred objects and use OOB or UAF vulnerabilities to over-

write their uid fields to 0, achieving the root privilege [44]. However,
because of their popularity, such objects are restricted nowadays.

For example, they are now isolated from the other heap objects and,

therefore, much more difficult to exploit [68], requiring unstable

cross-cache attacks. In Android kernels, they are even protected

by the hypervisor [48, 61]. Because the well-known critical objects

are specifically protected through advanced defenses [36, 3, 48, 61],

attackers no longer target them even if they manage to achieve an

arbitrary write primitive.

To fill the gap, we seek to identify additional heap objects suitable

for data-only attacks. Unfortunately, discovering unknown non-

control data (heap objects or not) can be daunting because they are

tied heavily to semantics (e.g., user id) and lack universal patterns.

In this paper, we perform a systematic investigation of objects

associated with the file subsystem in the Linux kernel. This is

ar
X

iv
:2

40
1.

17
61

8v
1

 [
cs

.C
R

]
 3

1
Ja

n
20

24

because file systems contain many critical files, e.g., \etc\passwd.
If an attacker can manipulate a file system into overwriting such a

critical file, an attacker can achieve privilege escalation directly [56].

To date, few exploitable objects have been identified in the file

subsystem of the Linux kernel [40]. This is due to the lack of a

systematic and automatic analysis of critical objects based on their

semantics. To our knowledge, the only work that attempts to collect

critical non-control data automatically in the Linux kernel is KE-

NALI [62]. However, there are two serious limitations of the work:

(1) its heuristic is overly generic (not specific to the file subsystem)

and misses or falsely identifies many objects; (2) it does not analyze

the exploitability of the identified objects.

Our solution is two-fold. First, we leverage minimal domain

knowledge of the file subsystem in the Linux kernel to identify

file system key objects (FSKO) with critical fields more accurately

and completely. Specifically, the process starts with a few anchor

objects in abstract layers of the file subsystem. Then, it identifies ad-

ditional related objects in other layers through tailored propagation

rules. We propose a framework named FSKO-AUTO that integrates

static analysis with dynamic testing as a strategy to identify FSKOs

and verify that their semantics are appropriate for exploitation.

In total, FSKO-AUTO finds critical 23 fields within heap objects

whose corruption directly achieves privilege escalation. Second,

we map these objects into three targeted exploit strategies suitable

for achieving privilege escalation using FSKO objects. Since many

FSKOs are located in isolated slab caches, we leverage a novel ex-

ploit strategy that uses “bridge objects” to construct a powerful and

general primitive of page UAF, which can reliably exploit FSKOs

without having to resort to cross-cache attacks.

Out of 26 recent CVEs, our solution could demonstrate exploitabil-

ity for 18 of them, implying its real-world impact and generality. For

a subset of the 18 CVEs, wemanaged to write 10 end-to-end exploits,

achieving privilege escalation by corrupting the FSKO objects with

various exploit strategies. The results show that we can write di-

verse exploits without having to bypass KASLR, which makes the

exploits simpler and more reliable than previous methods.

In summary, the paper makes three contributions.

• Semi-automatic FSKO identification and confirmation.With

the help of static analysis and dynamic confirmation, we are able

to drastically reduce the manual effort in identifying and con-

firming FSKOs. This led to 23 unique FSKO fields, covering all

publicly exploited objects in the file subsystem.

• Exploitability analysis and novel exploit strategy.We an-

alyze the exploitability of these FSKOs when paired with vul-

nerabilities of different capabilities and slab cache requirements.

We propose a novel strategy that enables the many FSKOs to be

exploitable, despite the fact that they are in isolated slab caches.

• Practical evaluation and findings.We confirmed that 18 out of

26 CVEs are exploitable using the FSKOs and further developed

10 end-to-end exploits for a subset of them. The identified objects

allow our exploits to avoid bypassing KSLARs and be future-

proof against CFI and advanced protection of well-known data.

2 MOTIVATION AND THREAT MODEL
Motivation. After control flow attacks are mitigated, data-only

attacks have gained popularity. These attacks specifically target

and corrupt a program’s data rather than its control flow [33]. In

the context of the Linux kernel, data-only attacks often target two

types of data: (1) global variables and (2) heap variables. For global

variables, the most widely targeted variable is modprobe_path [21,

25, 29, 79, 30, 47, 64, 63]. The variable is a string, the corruption

of which can lead to the kernel executing an attacker-controlled

executable file as root [57]. For heap variables, the most common

ones are the cred [40] and the page table [23]. Corrupting them

can lead to privilege escalation directly.

Vulnerable object Target object

Vulnerable object Target object

cred->uid

(1) heap OOB write ➔ arbtrary write (& KASLR byass) ➔
privilege escalation

Critical field:

Data pointer field

(1) heap OOB write ➔ privilege escalation

Critical global variable:
e.g., modprobe_path

Figure 2: Corrupting critical heap object vs. corrupting criti-
cal global variable.

Using a common type of kernel vulnerability — heap out-of-

bound write — as an example illustrated in Figure 2, achieving

privilege escalation by corrupting critical global variables is signifi-

cantly more cumbersome than corrupting critical heap variables.

As shown in Figure 2(a), there are two extra steps: (1) deriving an

arbitrary write primitive by corrupting a data pointer in a heap

object and (2) bypassing KASLR to obtain the correct address of the

global variable. In contrast, Figure 2(b) illustrates how overwriting

a critical heap variable can directly lead to privilege escalation.

The example assumes the heap variables can be co-located with

the vulnerable object, which may not always be possible. This is

especially the case when defenses increasingly target the commonly

exploited objects, e.g., isolation of struct cred in dedicated slab

caches. It usually requires infoleak to obtain their address and ar-

bitrary write primitive to corrupt them [19]. More importantly,

commercial kernels apply advanced defenses, e.g., changing ker-

nel configs and using hypervisors to deny illegitimate accesses,

to prevent corruption of the critical objects in the dedicated slab

cache [36, 3, 48, 61]. This motivates the discovery of additional

critical heap objects.

Threat Model. We assume an unprivileged user aims to achieve

local privilege escalation by exploiting a memory error in the kernel.

Specifically, the error allows limited memory writes (e.g., OOBwrite

or UAF write), possibly as limited as a single-bit write. We do not
assume the availability of arbitrary memory write primitives, i.e.,

write anywhere in memory.

We assume the Linux kernel enables all modern mitigations, in-

cluding CFI [41, 49], W⊕X [71], KASLR [34], SMAP/SMEP (x86) [51,

42, 43], PAN/PXN (ARM) [43], and KPTI [50]. An unprivileged

user cannot modify kernel code or inject code into the kernel data

segment, and the kernel address is randomized. The kernel is re-

stricted from accessing the data or executing the code in user space.

2

Cross-Layer FSKOs
Discovery

Anchor Object
Discovery

Dynamic
Verification

Anchor Objects Identified Objects File System Key Objects

Abstract FS Layer

...
x

x

xx

xbitcode

Domain
Knowledge

Figure 1: The work overview of identifying FSKOs spreading all layers in the file system.

Control flow can not be hijacked. Besides, we assume advanced de-

fenses of well-known non-control data are safeguarded, including

modprobe_path, cred, and page table [36, 48, 61].

Attack Goal. Our goal is to achieve privilege escalation directly

by corrupting non-control heap objects in the file subsystem of the

Linux kernel. We envision two high-level approaches to achieve

the goal. First, an attacker can corrupt certain heap objects (e.g.,

representing file permissions or owners) to gain write access to files

that are read-only to the attacker [4, 22, 40], e.g., /etc/password.
Second, an attacker can corrupt certain heap objects to turn non-

setuid-root executable files into setuid root [52]; the attacker can
succeed when the executables are either controlled by the attacker

or already has sufficient functionalities, e.g., /usr/bin/vi.
In this paper, we focus on extracting heap objects in the file

subsystem that match the above semantic descriptions in §3 suitable

for exploitation and evaluating the practical uses them in §4.

3 FSKO IDENTIFICATION
In this section, we focus on identifying objects in the file subsys-

tems that can lead to privilege escalation when specific fields are

corrupted. We refer to them as FSKOs, i.e., File System Key Objects.

There are two main challenges in FSKO identification:

Challenge 1: There are a large number of unique objects in the

file subsystem of the Linux kernel, i.e., 3,553 structs and 554,161

fields in kernel v5.14. Enumerating them manually is infeasible.

Challenge 2: These objects are scattered across several layers,

encompassing both abstract layers (e.g., VFS) and concrete file

system implementations (e.g., ext2, ext3). This makes it difficult to

have a clean heuristic that works across layers.

To this end, we propose a new framework, FSKO-AUTO, that

combines static analysis and dynamic verification in a structured

pipeline, as shown in Figure 1. For the first challenge, we propose

to focus on identifying a small set of anchor objects with specific

semantics and in abstract layers only to bootstrap the identification

process.

For the second challenge, from the anchor objects in abstract

layers, we develop custom static analysis rules to search across other

layers automatically. Finally, we develop a dynamic verification

process to confirm the statically identified objects are, in fact, with

the right semantics, and that corruption of them leads to privilege

escalation.

3.1 Anchor Object Discovery
We define anchor objects to be FSKOs with fields that (1) hold

the semantic that has security implications – we consider specifi-

cally three classes of semantics, and (2) reside in the abstract layer,

making it more manageable to analyze, compatible with different

implementations.

Trigger

Metadata Content

File
Operation

sector ID
Operation

User Proc

page

sector ID

page
...

Buffered I/O

Direct I/O

User buffer

Semantics

File System Functionality

Permission check

Figure 3: File system functionality in the abstract.

Classes of Semantics. As shown in Figure 3, file systems have a

few basic design elements. In general, a file consists of two parts: file
content that stores the actual data; file metadata that encompasses

properties like creation time, name, ownership, and permission.

Furthermore, there are operations performed over files, e.g., read,

write, and execute. Naturally, they correspond to the three classes of

semantics that matter to privilege escalation. We consider this min-

imal domain knowledge necessary for identifying critical objects

in the file subsystem.

(1) Metadata: Unprivileged users can corrupt permission or own-

ership objects to obtain authorization over files that are not owned

by the attacker. For example, an attacker can weaken the permis-

sion or change the ownership so that a sensitive read-only file is

writable by the attacker [4]. They can also create a new file with

malicious payload and turn it into a setuid root executable which

will execute as root [52].

(2) Content: Corrupting content of sensitive files can obviously

lead to privilege escalation, e.g., /etc/passwd. In terms of heap

objects, we know that file content can be represented as caches in

memory [22], for buffered I/O. In the case of direct I/O, the write

will occur directly on the hard drive.

(3) Operation: An attacker can corrupt a file operation (repre-

sented by some heap object) from a read or an execute into a write,

resulting in the corruption of file content indirectly (we have not

seen any instance of similar strategies used in practice). This re-

quires the attacker to have read or execute access already but not

the write access. Note that these operations are performed only

after successful permission checks. This means that an attacker

cannot prematurely corrupt the operation and has to wait until the

permission check is passed [40].

Abstract File System Layers. As part of the domain knowledge,

the Linux file subsystem is designed to be layered, much like any

complex system. As shown in Figure 4, there are four layers from

the top to the bottom: virtual file system (VFS), file system imple-

mentations, generic block, and drivers. Specifically, we consider

3

Virutal File System

ext2 ext4 FAT...

Generic Block layer

SATA PCI SCSI...

Figure 4: Simplified file system layers in Linux kernel.

1 static int acl_permission_check(struct inode *inode, int mask) {
2 unsigned int mode = inode->i_mode;
3 if (likely(uid_eq(current_fsuid(), inode->i_uid))) {
4 mask &= 7;
5 mode >>= 6;
6 return (mask & ~mode) ? -EACCES : 0;
7 }
8 ...
9 }
10

11 int generic_permission(struct inode *inode, int mask) {
12 int ret;
13 ret = acl_permission_check(inode, mask);
14 ...
15 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
16 }

Figure 5: DAC permission check validates the user-intended
permission using defined macro (v5.14).

two well-known abstract FS layers in the Linux kernel: the VFS
layer and the generic block layer. The former sits immediately

below the syscall interface, e.g., invoked by open, read, and write.
The latter sits below the layer of file system implementations that

calculate file location on disk, so it connects the memory page and

the disk sector. Both layers are agnostic to different underlying file

system implementations (e.g., ext2, ext4) and various disk drivers.

We choose abstract layers as opposed to the concrete file system

implementation layers because of the smaller and more manageable

scope. It is also because sensitive FSKOs must already be defined in

the abstract layers. Furthermore, such FSKOs may be propagated

into various concrete file system implementation layers, which we

will capture automatically through static analysis.

Object Identification. To identify objects relating to the three

classes of semantics described earlier, we first identify the syscalls

that can potentially affect the corresponding semantics (e.g., open()
relates to metadata). We then review the functions involved in the

syscalls that fall under the two abstract layers. For a specific class

of semantic, we also follow certain heuristics to help us narrow

down the search scope.

(1) Metadata: We rely on well-defined keywords and macros

that identify the permission objects in the VFS layer. Specifically,

we grep variable names and fields with “uid” and “gid” that iden-

tify inode->i_uid and inode->i_gid as the user ID and group ID

of the owner of the file. Regarding permission objects, we reuse

macros from a previous work aiming to identify permission-check-

related kernel functions [78]. We limit our scope to macros related

to discretionary access control (DAC) (e.g., no SeLinux policy con-

sidered). We include the three key macros: MAY_EXEC, MAY_READ,

and MAY_WRITE, as well as S_ISUID and S_ISGID representing se-
tuid and setgid permissions. From these macros, we then statically

track what variables are “tainted” by them using a simple data

flow analysis. The mask variable in line 15 in Figure 5 illustrates an

example variable identified this way. We additionally track what

variables are involved in bitwise operations with the previously

identified variables. The mode variable in line 6 corresponds to this.

All the objects that contain such variables are then recorded as

anchor objects, e.g., inode, whose i_mode field corresponds to the

mode local variable.

(2) Content: As alluded to earlier, file content can be represented

in memory (buffered I/O) or on disk (direct I/O). Specifically, the in-

memory caches are accessible via data pointers; the on-disk file con-

tent is addressable by sector numbers. In reviewing the syscall doc-

umentation, we realize that a flag in the open() syscall controls the
access mode, and therefore, we consider the access mode separately

for read() and write() syscalls, i.e., we review their call graphs

conditioned on the access mode. In summary, we find page caches

accessed through inode->i_mapping and file->f_mapping in the
VFS layer, which is one anchor object. We find an anchor object

in the generic block layer that contains the sector numbers and

interacts with the disk, bio->bi_iter->bi_sector.
(3) Operation: We primarily focus on reviewing the read() and

write() syscalls as the file operation is likely encoded in some

form internally in the two abstract layers. To be more efficient,

we compare the call graph of the two syscalls and focus on the

functions that are shared by both and stop when the call graphs

diverge. The intuition is that the divergence should exist before

the divergence that leads to the separate functions being invoked.

For buffered I/O, we find that there is no object representing file

operations as the kernel quickly diverges by calling vfs_read()
and vfs_write() to distinguish the read and write operations. On

the other hand, for direct I/O, we find there is an object called

bio->bi_opf in the generic block layer.

3.2 Cross-Layer FSKOs Discovery
In this step, we develop custom static analysis rules that track the

propagation of anchor objects into other concrete implementation

layers. In order to track the flow of these objects properly, these

rules operate forward and backward. Ultimately, the key is to iden-

tify other objects that carry the same or similar semantics. Our static

analysis takes critical fields identified in anchor objects as input and

outputs the derived fields in other objects. At a high level, the rules

explore the data dependency and control dependency of the anchor

objects with specific considerations of file system characteristics.

The static analysis consists of 3K LoC using LLVM/Clang 14.0.0.

Definitions. We categorize file metadata, content, and operation

into two types of data, flags and references, to simplify the descrip-

tion of our algorithm. Flags represent file metadata and operations;

overwriting the corresponding fields of such objects or object fields

with constants (permission of 777 allows anyone to read/write a

file) can directly lead to privilege escalation. References represent
file content, i.e., file cache (pointers) and disk locations (sector num-

bers), which correspond to buffered I/O and direct I/O, respectively.

Modifying the reference from pointing to a regular writable file

(low-privilege) to a read-only (high-privilege) file can achieve root.

4

Table 1: Custom Propagation Rules.

Data dependency Control dependency

Flag Assignment (optionally

involving logical ops)

Value influence by control

Reference Assignment (optionally

involving arithmetic ops)

Reference assignment influ-

enced by a flag variable

Scope. In practice, both data types above are represented as fields

encapsulated in FSKOs (structs). Therefore, our analysis starts track-

ing the propagation of such fields throughout the file subsystem –

to see how they end up being associated with fields in other structs.

Note that we intentionally exclude the tracking of FSKO structs

themselves, which may be address-taken and assigned to a pointer

field of another non-FSKO struct. We call such non-FSKO structs

wrapper objects, i.e., an object that has a pointer pointing to an

FSKO. Even though an attack can corrupt the pointer in a wrapper

object and force it to point to a new object, we find that oftentimes

such a whole object replacement can lead to kernel instability or

broken functionalities. For example, one can replace a pointer field

in a wrapper object of file: file->f_inode, to attempt to write to

a sensitive file. However, we find the kernel loses the ability to

write to this file in the future regardless of who opens it (including

root users). These anomalies could jeopardize the attack’s stealth,

leading to its detection.

Analysis. First of all, to analyze a complex subsystem like the file

system, we already face a significant challenge of pointer analy-

sis, which is a foundation of data flow analysis. This is because,

especially, there are multiple syscalls that are dependent on each

other, e.g., open(), read(), write(), and mmap(). One syscall may

store something on the heap, and another syscall may retrieve

it subsequently (i.e., aliases across syscalls). We borrow the tech-

nique proposed in prior work, which uses access-path-based ap-

proaches (considering multiple levels of types) to identify aliases

across syscalls [77]. In addition, we use the state-of-the-art indirect

call analysis [45] that prunes many false indirect call edges.

Rule 1: Flag Propagation. We summarize the rules for tracking

flags and references in Table 1. In the case of tracking a flag variable

(e.g., a field within an anchor object), it is considered to potentially

influence or be influenced by another variable through data or

control dependency. Specifically, we consider both forward and

backward dependencies. We customize the data dependency by

tracing the direct assignment (e.g., a = b) and the assignment

involving logical expressions (e.g., a = b & STATE), including
AND(&), OR(|), NOT(∼). This is based on the observation that flags

typically involve bitwise operations. Arithmetic operations are

not included because flags are unlikely to be used in addition or

subtraction operations. This helps us eliminate false positives.

Rule 2: Reference Propagation. The rules tracking a reference
variable are also shown in Table 1. First, we consider a reference

object propagates its particular value to another reference through

solely data dependency (an exception will be discussed later). It

is obvious if other variables also store sector numbers and page
pointers, e.g., due to assignments, then clearly, these other vari-

ables will also be considered references. Here, we also customize

the data dependency rules, by allowing arithmetic operations be-

cause a reference can be used to add a relative value to find the

neighbor reference. This customization excludes other types of data

dependency, such as those bitwise operations in logical expressions.

Second, in addition to data dependencies, we also consider con-

trol dependencies in a very limited capacity. This is because there

can be flag variables that determine a reference’s value through

control dependency (e.g., whether a reference will now point to a

new page cache, e.g., DirtyCow [22]). We generalize this pattern

to consider whether any variables in a condition can lead to two

branches where (1) at least one of the branches sees an assignment

to a reference, (2) the assignment differs in the two branches – one

branch missing an assignment or the reference is assigned two

different values in the two branches.

3.3 Dynamic Verification
After identifying all candidate FSKOs and their specific fields, FSKO-

AUTO dynamically verifies if they are true positives by forcefully

corrupting their values at runtime and observing the effects relat-

ing to privilege escalation. Dynamic verification is non-trivial and

necessary before writing the exploit of FSKOs. This is because we

observe some objects seem to contain critical fields, but they can

not lead to privilege escalation due to various reasons. One reason is

that a pathmay be infeasible or require privileges to reach. For exam-

ple, our static analysis observes that iattr->ia_mode is assigned
to inode->i_mode where the latter field represents the file per-

mission. This makes the former object seemingly exploitable since

we have an opportunity to manipulate the permission. However,

it turns out that only the file’s owner can trigger the assignment

when setting the file attributes, making the object non-exploitable.

Another reason is that the dependency relationship does not

guarantee the same semantics, especially in the case of objects iden-

tified by control dependency. As shown in Figure 7, filp->f_flags
is identified as a candidate FSKO field (with the FSKO being struct
file) because it can influence the value of file->f_mode through

control dependency. However, the former has a completely differ-

ent semantic than the latter. Furthermore, even if the former can

influence the value of the latter, the values assigned in lines 2 and

4 are not useful in making the file writable.

We develop a process to perform the dynamic verification. To

begin the process, we first collect userspace test cases to cover

the file-related operations such as read, write, and mmap. This

is necessary for us to observe and modify the values of a specific

FSKO field in the kernel. We rely on two sources: (1) syzkaller traces

collected during our fuzzing campaign and (2) manually curated test

cases. We need to curate test cases because the test cases created by

the vanilla syzkaller are insufficient. For example, syzkaller does not

create multiple file systems to exercise the data structures specific

to each file system (e.g., ext2, ext3). Fortunately, the number of file

system-related syscalls is limited, and we managed to cover more

than half of FSKO field candidates in the end (see details in §5).

Next, for the uses of specific FSKO fields covered by test cases at

runtime, we simulate a successful attack by corrupting specific fields

in FSKOs. At first glance, it is challenging to simulate a successful

attack because we do not know what value to write into a specific

field of an FSKO. To overcome this issue, we apply differential

5

VFS (Abstract)

File System
Implementation

file{ f_mode f_mapping }

File Metadata

inode{ i_uid i_mode i_pipe i_mapping }

Page
Cache

Dirty COW

Dirty Cred

File Content

...

...

ext4

Disk

...

... ...

Buffered
I/O

Direct
I/O

page
cache

user
page

ext2_inode

ext2_inode_info

ext4_inode

ext4_inode_info

address_space{ i_pages }

pipe_inode_info
{ bufs }

Memory

propagation

point-to

data exchange

sector

Dirty Pipe

Memory
Management

ext2

sector sector sector sector sector

bio{ bi_opf bvec_iter{ bi_sector }}Generic Block (Abstract)

Driver
request{ cmd_flags bio }

SATA SCSI PCI ...

Buffer Cache buffer_head{ b_blocknr b_page }

pipe_buffer{ page }

iomap{ addr }

Figure 6: Some key objects identified by FSKO-AUTO are highlighted in red, propagating all file system layers.

1 if (filp->f_flags & O_EXCL)
2 filp->f_mode |= FMODE_EXCL;
3 if ((filp->f_flags & O_ACCMODE) == 3)
4 filp->f_mode |= FMODE_WRITE_IOCTL;

Figure 7: The false positive introduced by control dependency

analysis to automatically retrieve the appropriate value that can

likely lead to privilege escalation. We apply this strategy to the two

conceived attack approaches described in the attack goals of §2.

Using the approach of “turning a read-only file into a writable file”

as an example, below is how we perform the differential testing:

(1) Record the value of a specific FSKO field of interest (e.g.,

file->f_mode) in a successful write operation (against a test file

we create).

(2) Replace the value of the same FSKO field in a read operation

(e.g., against \etc\passwd) with the value recorded in the write

operation. In the case of file->f_mode, this effectively changes

the file permission from read-only to writable.

(3) Observe whether the read operation is now turned into a

successful write operation. If so, the FSKO field candidate is deemed

a valid one.

3.4 Summary of Identified Objects
FSKO-AUTO initially identified 258 candidate FSKOs with static

analysis. After we apply dynamic verification, 25 heap FSKOs and

8 stack FSKOs are confirmed to be effective for privilege escalation,

we focus on the heap objects in this paper and will discuss them in

more detail in §5.

In Figure 6, we illustrate and categorize some representative

objects that are identified across various layers of the Linux ker-

nel file subsystem, from the VFS layer at the top all the way to

the driver layer at the bottom. We can see the left part represents

the metadata, while the right side represents the content, with a

dotted vertical line separating them. Taking inode->i_mode as an

example anchor representing file permission, it propagated to an-

other object file->f_mode which represents permission as well.

Of course, to corrupt these objects, we need to first be able to allo-

cate them. For struct inode, we find it is possible to allocate it

individually and as part of bigger objects, e.g., ext2_inode_info,
that are specific to file system implementations. At the lower layers

of the file subsystem, we started with the anchor of sector number

bio->bi_iter->bi_sector but found other object fields with sim-

ilar semantics. For example, buffer_head->b_blocknr represents

sector numbers as well in the buffer cache-related data structure

(they are used to map higher-level concepts such as pages into

lower-layer concepts such as sector numbers). Ultimately, these ad-

ditionally discovered objects and fields give the attack significantly

more flexibility in the object to choose in heap fengshui. We will

discuss a more complete list of FSKOs in Table 4.

It is worth noting that all key objects leveraged in prior ex-

ploits (which also target file system-related objects), including

DirtyPipe, DirtyCow, and DirtyCred, are discovered in our work.

For example, we find pipe_buffer->flags and vm_fault->flags
which are used by DirtyPipe and DirtyCOW to manipulate flags

that control which reference object is used. We also discovered

file->f_mapping which represents a file page. One exception is

that DirtyCred also targeted wrapper objects of struct file, i.e.,
objects that contain a pointer to struct file objects. As men-

tioned, we intentionally exclude any wrapper object in our work-

flow. As discussed in §3.2, swapping wrapper objects can lead to

system stability issues. Nevertheless, in the case of struct file
specifically, it turns out that it is safe to swap. We leave the investi-

gation of wrapper objects to future work.

4 EXPLOITABLITY ANALYSIS
So far, we have gathered a list of FSKOs with specific critical fields

for which we know their corruption will lead to privilege escalation.

The dynamic verification step, however, only verified the semantics

of FSKO fields by forcefully overwriting them. In the real world,

we need to pair these objects with specific vulnerabilities (e.g.,

OOB and UAF). In general, the more FSKOs, the more likely we

can pair one with a given vulnerability successfully. We show the

exploitability analysis overview in Figure 8, including flag and

reference corruption. Besides, we propose a new page-UAF strategy

6

BugsBugs
Privilege escalation：

[FSKO, (1)exp]
[FSKO, (2)exp]

[bridge, FSKO, (3)exp]
[bridge, FSKO, (3)exp]

…
Bridge Objects

... ...

...

...

Pairing Objects with Flag Field Pairing Reference Object Page-UAF-Based FSKO Read/Write

Flags

...
...

FSKOs

References

indirectly
corrupt

Malicious
operation

Low Privilege

High Privilege

point to

swapcorrupt

BugsBugsBugs

corrupt

corrupt

Figure 8: The work overview of exploitability analysis to find effective objects.

Table 2: The requirements to corrupt FSKOs.

Object Types Information
Leakage

Memory Corruption
Capability

Flags / Limited write

File cache pointers Required Write controllable value

File cache pointers / Write last few bits/bytes

Disk sector numbers / Write controllable value

to pivot OOB/UAF bugs into a page UAF to then subsequently

corrupt both flag and reference.

Pairing FSKOs with vulnerabilities. There are two key dimen-

sions related to pairing objects with vulnerabilities:

(1) Capability of a vulnerability. As studied in [9], different vulnera-

bilities can exhibit different write capabilities, e.g., offset and length

of an OOB write, as well as the possible values of the write (see

Figure 2). Depending on the specific capability, we might choose to

pair an FSKO with fields at the right offset.

(2) Slab cache of the vulnerable object. In heap exploits, a target

object (e.g., FSKO) needs to be placed in the same slab cache (e.g.,

kmalloc-512) that the vulnerable object resides in [11]. The more

FSKOs, the more likely we can find an object that co-locates with

the vulnerable object. Otherwise, an attacker would resort to cross-

cache attacks, which is considered much less reliable [31].

4.1 Pairing Requirement #1: Write Capability
Pairing Flag Objects. Objects with flag fields are straightforward.

As long as they can be overwritten as pre-determined constant

values, an attack would succeed. The only requirement is that the

vulnerability (e.g., OOB write and UAF write) can overwrite at the

specific field offset with an expected value. In the case of permission

and setuid, it is sufficient to set a single bit (e.g., in inode->imode)
to turn a file into writable by all users or setuid root executable

(created by the attacker). Similarly, in the case of file operations, it

is sufficient to set a single bit (e.g., in bio->bi_opf) to turn a file

access request from read to write. In the case of owners, an attacker

can write 0 to the owner field (e.g., inode->i_uid) of a setuid file

created by the attacker, turning it into a setuid root executable;

alternatively, an attacker can write 1000 to the owner field so that

the attacker user becomes the owner of a critical file.

Note that for the FSKO fields derived from anchor objects, their

semantics could change and we cannot write the same constants as

if they are anchor objects. Nevertheless, as mentioned in §3.3, we

can retrieve the proper values for such objects at runtime (during

a successful write operation) and reuse them. We list the exact

constant values expected for a variety of flag objects later in Table 4.

In summary, flag objects are generally easy to pair, requiring only

limited write capabilities, e.g., setting a specific bit or writing a few

bytes with constants or attacker-controlled values.

Pairing Reference Objects. As mentioned earlier, reference ob-

jects include data that represent file content, i.e., file page cache

pointers or sector numbers. Generally speaking, we envision the

proper exploit strategy to be swapping the references so that they

point to a sensitive file for corruption.

To overwrite file cache pointers, the most straightforward ap-

proach is to use a specific file page address corresponding to a

sensitive file. However, this approach requires an extra step of in-

foleak. In addition, it also requires the value of the write primitive

to be controlled by the attacker because the address of a file page is

dynamically determined on the heap. Alternatively, one can spray

a large number of file pages corresponding to sensitive files so that

they are co-located with the file page of an attacker-owned file.

Overwriting the lower bits of the file page pointer (e.g., setting the

lower two bytes to 0) will cause it to point to a nearby page. This

method does not require any infoleak, and the write capability is

also less demanding. This method has been used in prior work,

e.g., Dirtycred [40]. However, this method places requirements on

vulnerability writing capabilities, and some do not support only

overwriting the lower bits. However, we need to place the page

caches of the low-privilege and high-privilege files adjacent to each

other. This highly requires manipulation of the memory layout,

which is difficult and unstable. We can use page UAF to overcome

this problem and corrupt references.

To overwrite sector numbers, we find that it does not require any

infoleak because unprivileged users in Linux can obtain the sector

numbers of any file through an ioctl() syscall with FS_IOC_FIEMAP.
The syscall can retrieve the logical and physical block numbers [26],

and the sector numbers can be computed by shifting several bits of

the block numbers. This method requires a write capability with

attacker-controlled values, as the sector numbers of sensitive files

can be various integer values on different systems.

We summarize the write capability requirement of different types

of objects in Table 2.

4.2 Pairing Requirement #2: Slab Cache
As mentioned before, we would like a diverse set of FSKOs that

exist in various slab caches so that they can be co-located with a

vulnerable object in a given vulnerability. As will be shown later

in Table 4, most FSKOs are unfortunately located in dedicated slab

caches, e.g., ext4_inode_cachep that hosts only a single type of

objects. This makes them unlikely to be co-located with a vulnerable

7

object. To overcome this, we come up with a novel and general

exploit strategy that can indirectly achieve complete FSKO read

and write without resorting to cross-cache attacks, called Page
UAF strategy. Besides, it also does not relying on a pre-existing

information leakage primitive to bypass KASLR.

Page UAF Strategy. Given that most FSKOs are located in dedi-

cated slab caches, we will pursue other non-FSKOs that are located

in more standard slab caches (e.g., kmalloc-512), and by corrupting
them we can reach a new primitive, i.e., page-level UAF, sufficiently

strong to set up future FSKO read/write (and even other types of

objects that are not protected by any advanced defenses). We term

these non-FSKOs bridge objects. It turns out that there are many

suitable bridge objects with variable sizes and can be placed in

many different standard slab caches. We illustrate the two main

steps in Figure 9 and explain them in detail below:

1. Page-level UAF construction. We consider bridge objects to be

those that contain struct page pointers, e.g., struct pipe_buffer.
This is because a struct page (64 bytes) object corresponds to a
4KB physical memory page. Through the bridge object, an attacker

can manipulate (read or write) the physical page. If we can cause a

UAF of a page object, the kernel would not only free the 64-byte

object but also effectively release the corresponding physical page,

creating a page-level UAF.

As shown in Figure 9, to trigger an invalid page free, we can

first allocate multiple bridge objects (at least two) that co-locate

with the vulnerable object (not shown in the figure). For bugs with

standard OOB or UAF write primitives, we can use the primitive

to corrupt the page pointer field in a bridge object (e.g., the first

field of pipe_buffer and configfs_buf) such that it points to

another 64-byte page object nearby. This effectively causes two

pointers to point to the same object. A user-space program can trig-

ger free_pages() on one of the objects (e.g., by calling close()),
which will create a dangling pointer to the freed page object and
the corresponding physical page. In other words, we can read/write

the corresponding physical page that is now considered freed by

the OS kernel. For example, one can write to a pipe, which will lead

to a write of the physical page, via the pipe_buffer object.
For bugs that have double free primitives, which often can be

achieved from UAF by triggering the free() operation twice. For

the first free, we spray a harmless object (e.g., msg_msg) to take

the freed slot. The object should take attacker-controlled value

from user space. Then, we trigger the kernel code to write the

harmless object until reaching a certain offset, and use the FUSE

technique [27] to stop the writing right before a planned offset –

corresponding to the page pointer field of a planned bridge object.

Now, we trigger the free for a second time to spray the planned

bridge object to take the slot. The writing process is restarted to

continue overwriting the lower bits of the page pointer field, which

leads to a page UAF. Previously, to trigger page-level frees from

double frees, one had to free an entire slab and then do cross-cache

technique [40] whereas we do not need to.

2. FSKO corruption through page-level UAF. Now that we have a

freed physical page and a dangling pointer that can read/write it.

It is fairly easy to then allocate and corrupt FSKO objects. This

is because the flag and reference objects are eventually allocated

through the buddy allocator at the page granularity. Therefore,

corrupt & free corrupt & free

Example 1: free a page pointer in
pipe_buffer by filpping one bit

Example 2: free a page pointer in
configfs_buffer by filpping one bit

Allocated
object

Freed
object

Allocated
page

Freed
page

page pool

physical
memory 4KB 4KB

0x40 0x40

page1 page2 page pool

physical
memory 4KB 4KB

0x40 0x40

page1 page2

Page-Level UAF

pipe_buffer pipe_buffer

page* page*

kmalloc
(slab)

① ②
configfs_buf configfs_buf

page * page*

kmalloc
(slab)

① ②

Flag: indirectly corrupt pipe_buffer->flags
to write a read—only file

FSKO Corruption

page*

kmalloc
(slab)

page pool

physical
memory 4KB 4KB

0x40 0x40

page1 page2

...

flags

0x40

page3

pipe_buffer

page*

read-only file

page*

kmalloc
(slab)

page pool

physical
memory 4KB 4KB

0x40

page2

file ...

f_mapping

...

Read After Free

Read Pointer

Step 1: Read the file->f_mapping value of a
read-only file by calling read()

kmalloc
(slab)

page pool

physical
memory

0x40

page2

0x40

page3

0x40

page4... ...

Write After Free

Write Pointer

Step 2: Replace the file->f_mapping of a
read-write file with the read-only one

Write Page

Reference Corruption

user

configfs_read_iter()

read-only

0x40

page3

0x40

page4...

page*

configfs_write_iter()

file

f_mapping

read-write read-writeread-only

4KB
file ...

f_mapping

file

f_mapping

dangling pointer

dangling pointerdangling pointer

Read/Write After Free

page*

kmalloc
(slab)

page pool

physical
memory 4KB 4KB

0x40

page1

...

f_mapping

0x40

page3

file

read-only

dangling pointer

Read/Write After Free

0x40

page2

read-write

Reference: indirect corrupt file->f_mapping
swap to the page cache of a read-only file

①
file
②

Figure 9: Use page-UAF strategy to corrupt flag and reference
object, resulting in writing read-only files.

attackers can spay FSKOs into the freed page, as shown in Figure 9,

as long as they have already exhausted all existing slab caches.

Figure 9 showed two example FSKOs that we successfully ex-

ploited. In the first example, we allocate struct pipe_buffer
objects (they are both bridge objects and FSKOs). We then con-

nect the pipe to a read-only sensitive file via splice() syscall, and

achieve write permission by corrupting pipe_buffer->flags. In
the second example, we allocate two struct file objects. The

first object corresponds to a read-only sensitive file, and we then

read its file->f_mapping, which points to a data structure that

represents its file content. We then allocate a second struct file
object that corresponds to an attacker-created file. Next, we write

its f_mapping field with the value of the first file object. This

allows the attacker to use the second file to write into the first.

Bridge object discovery. We simply query structs that contain

struct page fields and record those that are found in our fuzzing

campaign and manually curated test cases. Note that there are

some bridge objects where a user cannot perform read and write

operations over the page. We exclude such objects. Finally, we list

the exploitable bridge objects in Table 5. Even though the number

of such bridge objects is not very large, there are 8 objects that are

elastic, i.e., with variable sizes. This makes them ideal for satisfying

the slab cache requirement.

To our knowledge, we have not seen widespread use of bridge

objects to achieve page-level UAF in real-world exploits. The only

example we are aware of is a CTF competition [5] that uses the

struct pipe_buffer as a bridge object. However, we note that

struct pipe_buffer is being isolated into kmalloc-cg slab using
flag GFP_ACCOUNT after Linux kernel v5.14. This slab is segregated

8

Table 3: Statistical results of identified objects.

Category #

Security Impact

PE NPE No test

Metadata 148 9 61 78

Flag Operation 29 8 11 10

COW 5 2 0 3

Reference

Sector 54 10 26 18

Page Cache 22 4 3 15

Sum / 258 33 101 124

PE: can lead to Privilege Escalation after dynamic validation.

NPE: cannot lead to Privilege Escalation after dynamic validation.

No test: can not dynamically verify.

from the commonly used slab with flag GFP_KERNEL. It may require

cross-cache corruption in future exploits.

Summary. The core of the page UAF strategy leverages insuffi-

cient page isolation. Unlike the slab caches with over a hundred

isolated groups which offer strong isolation (as is the case for most

FSKOs), there are only at most six page groups that are isolated

from each other [46]. Because of this, the pages whose content is

fully controlled by users (e.g., pipe pages) are not isolated from the

page used in the slab. In other words, the slabs (that host FSKOs)

can reuse the freed user-controlled pages, rendering the page-UAF

strategy successful. This strategy also works for not just FSKOs but

any other types of objects in isolated slab caches. For example, cred
in dedicated caches can be used as well if they are not prevented

by advanced protections (e.g., hypervisor monitoring).

5 EVALUATION
Experiment setup. (1) FSKO identification: We performed our

static analysis and dynamic testing against the Linux kernel v5.14.

(2) Exploitability analysis: We sample 26 recent Linux kernel CVEs

that are either OOB, UAF, or double-free from 2020 to 2023. This

includes 24 vulnerabilities from prior work [40], and 2 additional

OOB ones missed by the prior work.

5.1 Exploitable Objects
Overall, as shown in Table 3, our static analysis found 258 key

fields within 142 structure objects. Then, 134 fields are verified

dynamically with test cases, out of which 23 fields belonging to

17 FSKOs are confirmed to lead to privilege escalation. We list all

these 23 FSKO fields in Table 4 as well as a few other seemingly

promising ones that did not get confirmed successfully. Note that

we have deduplicated the objects by counting file-system-specific

objects and fields only once, e.g., ext2_inode and ext4_inode are

deduplicated. Even though not the focus of our research, we also

find extra 8 in stack objects and list them in Table 7 in the appendix.

The objects dynamically verified to be exploitable for privilege

escalation are marked with". For the remaining ones, there are a

few FSKO fields marked with%that looked like promising fields

(based on their names and usage patterns in source code). However,

when we verify them dynamically, overwriting their values did not

lead to privilege escalation. We also listed a few cases where we

do not have the right test cases to reach them dynamically (—). We

Table 4: Identified FSKOs. The attack succeeds (") as long as
corrupting them with the targeted values.

Data Category Target value Memory Cache

ext4_inode_info
->vfs_inode->i_uid->val

metadata (A) user id ext4_inode_cachep"

posix_acl
->a_entries->e_perm

metadata (A) MAY_WRITE variable size"

ext4_inode_info
->vfs_inode->i_mode

metadata (A) S_ISUID, S_IWOTH ext4_inode_cachep"

ext4_inode->i_uid metadata user id page"

ext4_inode->i_mode metadata S_ISUID,S_IWOTH page"

file->f_mode metadata FMODE_WRITE filp_cachep"

iattr->ia_mode metadata S_ISUID,S_IWOTH %
vm_area_struct
->vm_flags

metadata VM_WRITE vm_area_cachep"

nfs_pgio_header->rw_mode metadata FMODE_WRITE %
nfs_fattr->mode metadata — —

nfs_open_context->mode metadata FMODE_WRITE %

nfs_openargs->mode metadata FMODE_WRITE %
pnfs_layout_range

->iomode
metadata IOMODE_RW —

xfs_buf->b_flags operation XBF_WRITE %

iomap_dio->flags operation IOMAP_DIO_WRITE kmalloc-96"

dio->op operation REQ_OP_WRITE dio_cache"

request->cmd_flags operation REQ_OP_WRITE kmalloc; driver-specific"

bio->bi_opf operation (A) REQ_OP_WRITE slab cache; driver-specific"

scsi_cmnd->cmnd[0] operation WRITE_32 sd_cdb_pool"
aio_kiocb->kiocb.flags operation IOCB_WRITE —
dm_io_request->bi_op operation REQ_OP_WRITE %

pipe_buffer->flags COW

PIPE_BUF_FLAG_
CAN_MERGE

variable size"

fuse_copy_state->write COW 0 —
bio->bi_iter->bi_sector sector (A) - slab cache; driver-specific"

ext4_extent->ee_block sector - %

extent_status->es_pblk sector - ext4_es_cachep"

extent_map->block_start sector - extent_map_cache"

extent_state->start sector - %

buffer_head->b_blocknr sector - bh_cachep"

xfs_buf_map->bm_bn sector - %

request->__sector sector - kmalloc; driver-specific"

nvme_request->result sector - kmalloc; driver-specific"
ext4_inode_info->

vfs_inode->i_mapping
page cache tree - FS-specific"

file->f_mapping page cache tree (A) - filp_cachep"

pipe_buffer->page page cache - variable size"
address_space->i_pages

(xarray)
page cache - radix_tree_node_cachep"

bio_vec->bv_page* page cache - %

also show these unexploitable cases to demonstrate the necessity of

dynamic verification because they have similar semantics to FSKOs.

Note that we exclude some redundant data from the statistics

results. Specifically, the object inode is an embedded field and

accessible through ext4_inode_info->vfs_inode of inode type.

Therefore, the allocation of inode goes with the allocation of the

parent object, i.e., ext4_inode_info. Each file system implementa-

tion has its own parent object, like ext2_inode_info. FSKO-AUTO
identifies 48 parent objects which are not listed in the paper.

Now we explain the columns in Table 4. We show all FSKO

fields (including the struct name) in the first “Data” column. The

“Category” column lists the semantics of the FSKO fields, and (A)

represents an anchor object. The “Target value” column represents

the constants used to escalate privilege after corrupting an FSKO

field during dynamic verification. Finally, as for the last column,

the memory cache, a few objects are allocated in different caches

depending on where they are allocated (drivers or network proto-

cols), and their exact sizes vary accordingly. We label them with

a suffix “-specific” at the end (e.g., “driver-specific”). In addition,

some objects are allocated as arrays with variable sizes, and we de-

note them as “variable size”. Additionally, some objects are directly

9

Table 5: The bridge objects facilitating the page-UAF strategy.

Data Memory Cache Read/Write

address_space->i_pages
(xarray)

radix_tree_node_cachep ⋇ ⋆

pipe_buffer->page* variable size ⋇ ⋆
bio_vec->bv_page* variable size ⋇ ⋆

mptcp_data_frag->page* page ⋆
sock->sk_frag.page* slab cache/kmalloc; net-specific ⋆

wait_page_queue->page* variable size ⋇ ⋆
xfrm_state->xfrag->page* kmalloc-1k ⋇ ⋆

pipe_inode_info->tmp_page* kmalloc-192 ⋇ ⋆
lbuf->l_page* kmalloc-128 ⋇ ⋆

skb_shared_info->frags->bv_page* variable size ⋇ ⋆
cifs_writedata->pages** variable size ⋆
cifs_readdata->pages** variable size ⋇
fuse_args_pages->pages** variable size ⋆
ceph_sync_write() ** variable size ⋆
ceph_sync_read() ** variable size ⋇

process_vm_rw_core() ** variable size ⋇ ⋆
orangefs_bufmap_desc

->page_array**
variable size ⋇ ⋆

vm_struct->pages** variable size ⋇
agp_memory->pages** variable size ⋆
ttm_tt->pages** variable size ⋆

Sg_scatter_hold->pages** variable size ⋇
st_buffer->reserved_pages** variable size ⋇ ⋆

configfs_buffer->page kmalloc-128 ⋇ ⋆

⋇: the pointer can read information of the page content.

⋆: the pointer can write the page content through page pointer.

allocated via the page allocator instead of the slab/slub allocator,

and we use “page” in the table.

Flag objects. The beginning of Table 4 presents 13 flags that

result in privilege escalation as long as they are corrupted with

the targeted values. Again, we deduplicated FSKOs that are file

system specific and use objects under ext4 that represent others.
The COW in Table 3 and Table 4 means a special type of flag that

controls Copy-On-Write (COW). These flags are in conditional

branches controlling whether to obtain the existing page cache

or allocate a new page. It is worth mentioning that FSKO-AUTO

also identifies other COW objects for disk operations (instead of

memory). Unfortunately, we find that a normal user is not permitted

to trigger a disk COW of a read-only file; thus, such objects are not

included in our results.

Reference objects. We list 10 objects for sector numbers and 4

objects representing the page-cache tree in Table 4. Substituting

them with the reference for a read-only file enables unprivileged

users to write it. We also use ext4 as an example, ignoring similar

objects in other file systems.

Bridge Objects in page-UAF Strategy. Table 5 show 23 ex-

ploitable objects facilitating the page-UAF strategy. All these objects

can be corrupted to point to other pages, thus creating page UAFs

when they are freed. Then, we observe that 16 objects can be used

to read (⋇), and 20 write (⋆) the page content through their inside

pointer. 12 can achieve both reading and writing. In the first column

in Table 5, * signifies the field being of type page *. As for **, it
means the field is of type page **, i.e., a heap-allocated array of

page *. These arrays are often variable in size, and their elements

can be corrupted to construct page UAF. There is one entry (the

first) marked with xarray, which is a specific data structure that

is similar to page **. Finally, some entries in Table 5 are listed

with function names ending with () and ** (in the first column).

They represent cases where an array of page pointers are allocated
on the heap with kmalloc_array() without being assigned to a

field of any heap object (instead if it is assigned to a stack variable).

Nevertheless, the page pointer array can still be corrupted.

Comparison with KENALI [62]. We run the open-source code

in GitHub [35], which uses generic heuristics to identify as many

non-control data as possible across the Linux kernel, regardless of

their semantics and exploitability. The idea is to look at various that

can affect the control flow of the program, where one path leads

to an error code in return and the other does not. After running it

on the same kernel version v5.14, we found 189 struct types, and

only 10 of them belong to the file subsystem. 2 of them structs were

also found, namely inode and address_space. We investigated

the remaining 8, and none of them can lead to privilege escalation

using the three types of semantics we considered.

5.2 Exploitability Evaluation
Out of the 26 CVEs mentioned earlier, we confirmed that 18 of them

are exploitable, by attempting to pair FSKOs with the vulnerability

in the two dimensions: (1) write capabilities, and (2) slab cache

requirements. The 10 CVEs are not suitable for FSKOs because they

occur in specific subsystems that are not general to heap objects,

e.g., eBPF subsystem.

The results are shown in Table 6. We list the exploit strategies

suitable for each CVE. To further demonstrate the exploitability, we

develop 10 end-to-end exploits where the underlying Linux kernel

enables all the exploit mitigation mechanisms: CVE-2021-22600

(Double Free), CVE-2021-22555 (OOB), CVE-2022-0995 (OOB), and

CVE-2022-0185 (OOB), CVE-2023-5345 (UAF). These CVEs cover

all three kinds of vulnerabilities: OOB, UAF, and double-free. For

the remaining CVEs, we have determined that they can also be

exploited similarly based on their write capability and slab cache

requirement. However, writing them is time-consuming because of

tasks such as creating stable heap fengshui.

Corrupting flag objects. Corrupting flag objects is straightfor-
ward as long as the write capability is suitable for the specific flag

field. For this exercise, we write an exploit using CVE-2022-0995

(an OOB vulnerability) to corrupt the pipe_buffer->flags. This
vulnerability happens to have the right capability to write this

flag. This CVE provides a capability that sets an arbitrary bit to 1

based on the vulnerable object of size 0x38. After placing the FSKO

adjacent to the vulnerable object, we can directly corrupt the flag.

Corrupting reference objects. We write an exploit using CVE-

2021-22600 to corrupt the reference objects with the target value

after infoleak. Specifically, this double-free vulnerability enables

an attack to read the value of a page cache pointer to a read-only

file (by spraying pipe_buffer objects). Subsequently, we trigger
another double free to replace a read-write file’s page cache pointer

(again in pipe_buffer) to have it point to the read-only page cache.
Note that this exploit does require infoleak. Fortunately, we can

construct page UAF to avoid the need for infoleak for this CVE, as

discussed next.

Corrupting FSKOs via page-level UAF. We developed 8 ex-

ploits against CVE-2023-5345 (one exploit), CVE-2022-0995 (two

10

Table 6: Exploitability demonstrated on 18 real-world vulnerabilities using different exploit strategies. means the exploits
can not bypass CFI or data protection; means the exploits can bypass CFI but fail if data protection is enforced; means the
exploits can bypass both CFI and data protection.

CVE ID CVE Type Strategy
Existing Exploit Exploit FSKO

Bypass CFI &
Data Protection

No Need
InfoLeak

Bypass CFI &
Data Protection

No Need
InfoLeak

CVE-2023-5345 Use-After-Free Page UAF % "

CVE-2022-0995 Out-Of-Bounds Corrupt Flag, Page UAF % "

CVE-2022-0185 Out-Of-Bounds Page UAF % "

CVE-2021-22555 Out-Of-Bounds Page UAF % "

CVE-2021-22600 Double-Free Corrupt Flag, Page UAF % "

CVE-2022-27666 Out-Of-Bounds Page UAF % %

CVE-2022-25636 Out-Of-Bounds Corrupt Flag,Page UAF % "

CVE-2022-2639 Out-Of-Bounds Page UAF % "

CVE-2022-2588 Use-After-Free Corrupt Flag, Page UAF " "

CVE-2021-3492 Double Free Corrupt Flag, Page UAF % "

CVE-2021-43267 Out-Of-Bounds Page UAF % "

CVE-2021-41073 Use-After-Free Corrupt Flag, Page UAF % "

CVE-2021-4154 Use-After-Free Corrupt Flag, Page UAF " "

CVE-2021-42008 Out-Of-Bounds Page UAF % "

CVE-2021-27365 Out-Of-Bounds Page UAF % "

CVE-2021-26708 Use-After-Free Page UAF % %

CVE-2021-23134 Use-After-Free Corrupt Flag, Page UAF % "

CVE-2020-14386 Out-Of-Bounds Page UAF % "

exploits), CVE-2022-0185 (three exploits), CVE-2021-22555 (one ex-

ploit), and CVE-2021-22600 (one exploit), to corrupt FSKO fields,

pipe_buffer->flags, file->f_mode, and file->f_mapping. The
exploits spray bridge objects to construct page UAF –we specifically

target pipe_buffer->page and configfs_buffer->page. These
exploits are generally easier and more stable because there is no

need for infoleak, cross-cache attacks, and page-level fengshui.

Note that there are two exceptions: CVE-2022-27666 and CVE-

2021-26708, where we still need to construct an infoleak together

with the page-UAF strategy. This is due to their limited out-of-

bound write capabilities. Specifically, after performing an out-of-

bound write, the vulnerability of CVE-2022-27666 adds uncontrol-

lable junk data at the end, which makes it difficult to corrupt only

the lower bits of the page pointer. The vulnerability capability of

CVE-2021-26708 allows us to write four bytes at a fixed 0x40 offset

out-of-bounds, which do not match the offset of the lower bits of

page pointers in our bridge objects. Therefore, we have to construct

an infoleak to disclose a valid page pointer and then completely

replace the original page pointer.

Complexity Reduction. Given that our exploits, which use the

page-UAF strategy and directly overwrite flag, do not require in-

foleak or KASLR bypassing, we are interested in measuring the

exploit complexity by the number of lines of code (LoC). For the

exploits to corrupt flags, our exploits achieve 20% and 70% reduction

in exploit LoC compared to the original publicly available exploits.

The case with 70% reduction is where the capability of the CVE

allows a simple corruption of the flag at the correct offset (without

requiring the page-level UAF first). Even with the page-level UAF,

we still managed to see a 20% reduction in LoC. For the other ex-

ploits, we observe approximately a 30% reduction in LoC compared

to the original exploits. Besides, some of the original exploits are

based on return-oriented programming (ROP) and require an extra

offline step of gadget extraction. This step is not necessary in our

exploits. In summary, the complexity reduction is mainly due to

the absence of infoleak requirements and ROP (collect gadgets and

get their offsets).

Stability and Usability. The page-level-UAF-based exploits have

a high success rate, around 90% - 100%. We ran our exploit of five

exploits using CVE-2022-0995 and CVE-2022-0185. Each exploit

is run 10 times, and 9 or 10 out of 10 are successful without any

crashes. This is attributed to the fact that the exploits have a built-

in feedback mechanism (i.e., read of the physical page) that helps

make sure the final write is performed on the right target. Using

the feedback mechanism, we can restart the page-level UAF if the

expected target is not detected.

Future-proof. We compare our exploits with the publicly avail-

able exploits in Table 6. Note that a CVE can have multiple public

exploits, and we select the most powerful one that can bypass

as many protections as possible. Some exploits are rendered in-

effective under the deployment of CFI, and we use to indicate

the exploits that cannot bypass CFI. Besides CFI, it is a trend that

some critical non-control data will be protected, e.g., struct cred,
modprobe_path, and page table are already protected in Android

kernels [48, 61]. This will make a number of exploits obsolete in

the near future. We mark existing exploits with if they choose to

corrupt the non-control data that are protected today in Android

11

kernels (because they are likely going to be protected in Linux ker-

nels in the future). We use to represent the exploits that bypass

CFI and data protection.

Notably, we have verified that our exploits are able to succeed,

even when the kernel enables the protection against DiryCred,

i.e., providing isolation of file objects by separating them into

high-privileged and low-privileged ones. The reason this defense is

ineffective against our exploit strategy is that we do not rely on co-

locating high-privileged and low-privileged objects. Instead, once a

page is freed, we can spray all high-privileged objects, e.g., spraying

\etc\passwd files, and modify the permission file->f_mode.
To the best of our knowledge, only five open-source existing

exploits corrupt unprotected non-control data. But they all require

info leak%; our exploits do not". Four of them corrupt the flag

pipe_buffer->flags, which is found in our paper. One (CVE-2021-
22600) uses the User-Space-Mapping-Attack (USMA) technique

that requires the target code address through infoleak. However,

it typically leaks a specific address, where attackers calculate the

target address by adding an offset based on the leaked address. The

kernel code may differ version by version, resulting in the offset

not being the same and the need to adapt for different kernels.

6 DISCUSSION
Ethical consideration. This work does not find any new vulnera-

bilities but exploits only existing ones with newly identified data.

All exploited CVEs are patched already.

Defense. The newly identified objects in this work can enhance

existing protection mechanisms, fostering further research. Many

protection mechanisms can safeguard critical non-control objects,

such as data integrity using shadow memory [62] and supervisor-

based protection [48]. Many researchers propose various techniques

to prevent specific vulnerabilities from being exploited, e.g., eBPF-

based monitor [65], slab allocator redesign [24, 59, 1, 66, 54].

To mitigate the page UAF strategy that we proposed, we first

observe that it works because the kernel allows mixes of two types

of pages: (1) those freely accessible to user-space, e.g., pipe_buffer
pages where arbitrary read and write can be performed from the

user-space; (2) those that are used as slab caches. Our proposal

is simple: we can isolate these two types of page groups so that

they will never be overlapping in a page UAF situation. In fact,

the Linux kernel already has mechanisms of page isolation [46],

where between 4 and 6 page groups are enabled (depending on the

kernel config). We can simply add another page group to address

this concern.

Generality. Our methodology is general to other operating sys-

tems because the classification is based on three essential abstract

semantics of files. The elements are general not only to the file sys-

tems of Linux but also to the ones of others. For example, Android

inherited much of the Linux kernel file subsystem. FreeBSD [6]

has an object vnode in VFS similar to inode in Linux VFS. They

represent and manage a file on disk, indicating the generality. We

leave the exploration of other OS file subsystems as future work.

Other objects in the file subsystem. An interesting question

is how many more undiscovered objects are exploitable in the file

subsystem. We hypothesize there must be some for two reasons.

First, we have left out a large number of wrapper objects due to

potential challenges in overcoming the side effects of swapping

complex objects embodying multiple semantics. By our estimate,

there are about 500 wrapper objects that have pointers to one of

the FSKOs we identified. Second, we have considered only three

types of semantics relevant to privilege escalation. There could be

other types of semantics such as namespace, which potentially can

have implications on container escape and privilege escalation. We

leave the exploration of these additional objects as future work.

Other OS subsystems. In this paper, we have performed a system-

atic analysis of objects in the file subsystem suitable for non-control

attacks. We expect the experience can serve as a guideline for re-

searching other subsystems. For example, memory management

is a complex subsystem that likely will have many exploitable ob-

jects. So far, the page table has been the primary example. Another

example is the driver subsystem where many specialized drivers

exist. They are capable of managing their own memory and issuing

direct memory read/write from the devices (e.g., GPU).

7 RELATEDWORK
Kernel Vulnerability Exploitation. Control flow hijacking is

a powerful exploit strategy [7]. FUZE [70] and KOOBE [9] utilize

techniques like kernel fuzzing, symbolic execution, and heap ma-

nipulation for automatic exploit generation, targeting use-after-free

and out-of-bound vulnerabilities, respectively. These exploits cor-

rupt control data to achieve control flow hijacking. KEPLER [69]

leverages kernel-user interactions to convert control-flow hijacking

into stack overflow and ROP attacks. GREBE [39] and SyzScope [80]

investigate fuzzer-exposed bugs and reveal the transformation of

low-risk bugs into high-risk ones, such as control flow hijacking

for kernel exploitation. The prevalence of control flow hijacking

and code reuse attacks [76, 10] in real-world incidents has spurred

the development of various defense mechanisms [28, 73, 20, 75, 41,

49], making control-data related exploitation more challenging.

Non-Control Data Attacks. Turing-complete DOP [32] shows

code execution can be achieved by chaining data gadgets with-

out altering the control flow. However, it needs an arbitrary write

primitive, which is not always available in real-world vulnerabili-

ties. VIPER [74] identifies the syscall-guard variables in user space

programs that determine to invoke security-related system calls.

However, existing works on kernel space data-only attacks merely

concentrate on a limited set of known objects. Ret2page [55] cor-

rupts the page table entry to launch attacks. DirtyCred [40] of-

fers a new exploit strategy to grant high-privilege credentials to

normal users. DirtyCOW [22] exploits a race condition bug that

exists in Copy-on-Write. DirtyPipe [4, 15] leverages the use-before-

initialization flag of a pipe to write to the page cache, bypassing

permission checks. Previous work [8] shows that user identity, con-

figuration, input, and decision-making data can be exploited for

attacks. The variables controlling the Linux auditing framework,

AppArmor, and NULL pointer dereference mitigation can be by-

passed through data attacks [72]. Our work aims to discover more

critical non-control data and expose unknown exploitable objects

in the Linux kernel.

12

Protection of Critical Data. As for control data, control-flow in-

tegrity mechanisms are available in the mainline Linux kernel [13]

and enforced in Android by default [2], making hijacking con-

trol flow increasingly difficult. Moreover, commercial kernels use

advanced techniques to safeguard the commonly exploited non-

control data. These advanced defenses can protect specific data

from corruption even in the face of an attack achieving arbitrary

kernel-memory-write primitive. Specifically, Android uses the hy-

pervisor to monitor cred and page table via real-time protection [48,

61]. Meanwhile, the Page Protection Layer (PPL)[37], an Apple-

introduced feature tailored to protect certain parts of the kernel

from itself, is also utilized to protect critical data, including cred
and page tables [60, 3]. The global variable modprobe_path [38] can
be marked as read-only when enabling config introduced in Linux

kernel 4.11 (CONFIG_STATIC_USERMODEHELPER), and is not avail-

able by default in Android kernels. In research studies, other ideas

have been proposed, e.g., software-based shadow memory [35] and

hardware-based Extended Page Tables (EPT) [53] that target a wide

range of non-control objects. Unfortunately, their effectiveness

highly depends on their ability to identify meaningful non-control

data. For instance, since KENALI [35] failed to identify the majority

of FSKOs that we reported, our objects would not be put into the

protection domain.

8 CONCLUSION
This paper offers a comprehensive investigation into the exploitabil-

ity of non-control data in the Linux file system. We systematically

summarize three types of FSKOs for privilege escalation with the

help of automated analyses. We analyze their exploitability by un-

derstanding their requirements of pairing with vulnerabilities of

different capabilities. Along the way, we develop a novel strategy

that can indirectly read and write FSKOs with high reliability. Fi-

nally, using the discovered FSKOs, we develop end-to-end exploits

using 18 recent real-world CVEs.

REFERENCES
[1] Sam Ainsworth and Timothy M. Jones. 2020. Markus: drop-in use-after-free

prevention for low-level languages. In 2020 IEEE Symposium on Security and
Privacy (SP), 578–591. doi: 10.1109/SP40000.2020.00058.

[2] Android. [n. d.] Control flow integrity. https://source.android.com/docs/securi

ty/test/cfi. ().

[3] [n. d.] Apple-oss-distributions/xnu. https://github.com/apple-oss-distributions

/xnu. (Accessed on 09/18/2023). ().

[4] Aaron Esau. [n. d.] Arinerron/cve-2022-0847-dirtypipe-exploit: a root exploit

for cve-2022-0847 (dirty pipe). https://github.com/Arinerron/CVE-2022-0847-

DirtyPipe-Exploit. (Accessed on 12/05/2023). ().

[5] [n. d.] Arttnba3/d3ctf2023_d3kcache: attachment and write up for d^3ctf 2023’s

pwn challenge - d3kcache. https://github.com/arttnba3/D3CTF2023_d3kcache.

(Accessed on 09/30/2023). ().

[6] [n. d.] Basicvfsconcepts - freebsd wiki. https://wiki.freebsd.org/BasicVfsConce

pts. (Accessed on 12/11/2023). ().

[7] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas

R Gross. 2015. {Control-flow} bending: on the effectiveness of {control-flow}
integrity. In 24th USENIX Security Symposium (USENIX Security 15), 161–176.

[8] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K Iyer.

2005. Non-control-data attacks are realistic threats. In USENIX security sympo-
sium. Vol. 5, 146.

[9] Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian. 2020. {Koobe}:
towards facilitating exploit generation of kernel {out-of-bounds} write vul-
nerabilities. In 29th USENIX Security Symposium (USENIX Security 20), 1093–
1110.

[10] Yueqi Chen, Zhenpeng Lin, and Xinyu Xing. 2020. A systematic study of elastic

objects in kernel exploitation. In Proceedings of the 2020 ACM SIGSACConference
on Computer and Communications Security, 1165–1184.

[11] Yueqi Chen and Xinyu Xing. 2019. Slake: facilitating slab manipulation for

exploiting vulnerabilities in the linux kernel. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 1707–1722.

[12] Haehyun Cho, Jinbum Park, Joonwon Kang, Tiffany Bao, Ruoyu Wang, Yan

Shoshitaishvili, Adam Doupé, and Gail-Joon Ahn. 2020. Exploiting uses of

uninitialized stack variables in linux kernels to leak kernel pointers. In 14th
USENIX Workshop on Offensive Technologies (WOOT 20).

[13] [n. d.] Clang cfi support upstreamed for linux 5.13 - but only on arm64 for now

- phoronix. https://www.phoronix.com/news/Clang-CFI-Linux-5.13. (Accessed

on 09/28/2022). ().

[14] [n. d.] Cve - cve-2022-0435. https://cve.mitre.org/cgi-bin/cvename.cgi?name

=CVE-2022-0435. (Accessed on 08/03/2023). ().

[15] [n. d.] Cve - cve-2022-0847. https://cve.mitre.org/cgi-bin/cvename.cgi?name

=CVE-2022-0847. (Accessed on 09/28/2022). ().

[16] [n. d.] Cve - cve-2022-1015. https://cve.mitre.org/cgi-bin/cvename.cgi?name

=CVE-2022-1015. (Accessed on 08/03/2023). ().

[17] [n. d.] Cve - cve-2022-1016. https://cve.mitre.org/cgi-bin/cvename.cgi?name

=CVE-2022-1016. (Accessed on 08/03/2023). ().

[18] [n. d.] Cve - cve-2022-4378. https://cve.mitre.org/cgi-bin/cvename.cgi?name

=CVE-2022-4378. (Accessed on 08/03/2023). ().

[19] [n. d.] Cve-2021-26708 exploit. https://github.com/azpema/CVE-2021-26708/bl

ob/master/vuln.c. (Accessed on 01/25/2024). ().

[20] Rémi Denis-Courmont, Hans Liljestrand, Carlos Chinea, and Jan-Erik Ekberg.

2020. Camouflage: hardware-assisted cfi for the arm linux kernel. In 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[21] DEVIL. 2021. [CVE-2021-42008] Exploiting A 16-Year-Old Vulnerability In The

Linux 6pack Driver. https://syst3mfailure.io/sixpack- slab-out-of -bounds.

(2021).

[22] [n. d.] Dirty cow (cve-2016-5195). https : / / dirtycow . ninja/. (Accessed on

09/28/2022). ().

[23] 2023. Dirty Pagetable: A Novel Exploitation Technique To Rule Linux Kernel.

https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html. (2023).

[24] Márton Erdős, Sam Ainsworth, and Timothy M. Jones. 2022. Minesweeper:

a “clean sweep” for drop-in use-after-free prevention. In Proceedings of the
27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’22). Association for Computing

Machinery, Lausanne, Switzerland, 212–225. isbn: 9781450392051. doi: 10.114

5/3503222.3507712.

[25] 2021. Exploiting CVE-2021-43267. https://haxx.in/posts/pwning-tipc/. (2021).

[26] [n. d.] Fiemap, an extent mapping ioctl. https : / / lwn.net/Articles/297696/.

(Accessed on 01/20/2024). ().

[27] [n. d.] Fuse for linux exploitation 101. https://exploiter.dev/blog/2022/FUSE-ex

ploit.html. ().

[28] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016. Fine-

grained control-flow integrity for kernel software. In 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P). IEEE, 179–194.

[29] Hackthebox. 2022. CVE-2022-0185 Writeup. https://www.hackthebox.com/blo

g/CVE-2022-0185:_A_case_study. (2022).

[30] Cedric Halbronn. 2022. SETTLERS OF NETLINK: Exploiting a limited UAF in

nf_tables (CVE-2022-32250). https://research.nccgroup.com/2022/09/01/settler

s-of-netlink-exploiting-a-limited-uaf-in-nf_tables-cve-2022-32250. (2022).

[31] [n. d.] How autoslab changes the memory unsafety game. https://grsecurit

y.net/how_autoslab_changes_the_memory_unsafety_game. (Accessed on

01/20/2024). ().

[32] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,

and Zhenkai Liang. 2016. Data-oriented programming: on the expressiveness

of non-control data attacks. In 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, 969–986.

[33] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.

Block oriented programming: automating data-only attacks. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’18).

[34] [n. d.] Kernel address space layout randomization [lwn.net]. https://lwn.net

/Articles/569635/. (Accessed on 07/13/2023). ().

[35] [n. d.] Sslab-gatech/kernel-analyzer. https://github.com/sslab-gatech/kernel-a

nalyzer. (Accessed on 01/25/2024). ().

[36] [n. d.] Kernel exploitation techniques: modprobe_path. https://sam4k.com/like

-techniques-modprobe_path/. (Accessed on 01/08/2024). ().

[37] Ivan Krstic. 2019. Behind the Scenes of iOS and Mac Security. In (Blackhat
USA). https://i.blackhat.com/USA-19/Thursday/us-19-Krstic-Behind-The-Sc

enes-Of-IOS-And-Mas-Security.pdf.

[38] Guoren Li, Hang Zhang, Jinmeng Zhou, Wenbo Shen, Yulei Sui, and Zhiyun

Qian. 2023. A hybrid alias analysis and its application to global variable protec-

tion in the linux kernel. In Proceedings of the 32nd USENIX Security Symposium.

[39] Zhenpeng Lin, Yueqi Chen, Yuhang Wu, Dongliang Mu, Chensheng Yu, Xinyu

Xing, and Kang Li. 2022. Grebe: unveiling exploitation potential for linux kernel

bugs. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2078–2095.

13

https://doi.org/10.1109/SP40000.2020.00058
https://source.android.com/docs/security/test/cfi
https://source.android.com/docs/security/test/cfi
https://github.com/apple-oss-distributions/xnu
https://github.com/apple-oss-distributions/xnu
https://github.com/Arinerron/CVE-2022-0847-DirtyPipe-Exploit
https://github.com/Arinerron/CVE-2022-0847-DirtyPipe-Exploit
https://github.com/arttnba3/D3CTF2023_d3kcache
https://wiki.freebsd.org/BasicVfsConcepts
https://wiki.freebsd.org/BasicVfsConcepts
https://www.phoronix.com/news/Clang-CFI-Linux-5.13
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0435
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0435
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0847
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0847
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-1015
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-1015
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-1016
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-1016
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-4378
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-4378
https://github.com/azpema/CVE-2021-26708/blob/master/vuln.c
https://github.com/azpema/CVE-2021-26708/blob/master/vuln.c
https://syst3mfailure.io/sixpack-slab-out-of-bounds
https://dirtycow.ninja/
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html
https://doi.org/10.1145/3503222.3507712
https://doi.org/10.1145/3503222.3507712
https://haxx.in/posts/pwning-tipc/
https://lwn.net/Articles/297696/
https://exploiter.dev/blog/2022/FUSE-exploit.html
https://exploiter.dev/blog/2022/FUSE-exploit.html
https://www.hackthebox.com/blog/CVE-2022-0185:_A_case_study
https://www.hackthebox.com/blog/CVE-2022-0185:_A_case_study
https://research.nccgroup.com/2022/09/01/settlers-of-netlink-exploiting-a-limited-uaf-in-nf_tables-cve-2022-32250
https://research.nccgroup.com/2022/09/01/settlers-of-netlink-exploiting-a-limited-uaf-in-nf_tables-cve-2022-32250
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://github.com/sslab-gatech/kernel-analyzer
https://github.com/sslab-gatech/kernel-analyzer
https://sam4k.com/like-techniques-modprobe_path/
https://sam4k.com/like-techniques-modprobe_path/
https://i.blackhat.com/USA-19/Thursday/us-19-Krstic-Behind-The-Scenes-Of-IOS-And-Mas-Security.pdf
https://i.blackhat.com/USA-19/Thursday/us-19-Krstic-Behind-The-Scenes-Of-IOS-And-Mas-Security.pdf

[40] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. 2022. Dirtycred: escalating priv-

ilege in linux kernel. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security.

[41] [n. d.] Kernel support for control-flow enforcement [lwn.net]. https://lwn.net

/Articles/758245/. (Accessed on 09/27/2022). ().

[42] [n. d.] The status of kernel hardening [lwn.net]. https://lwn.net/Articles/70526

2/. (Accessed on 07/13/2023). ().

[43] [n. d.] Kernel.org/doc/documentation/security/self-protection.txt. https://ww

w.kernel.org/doc/Documentation/security/self-protection.txt. (Accessed on

07/13/2023). ().

[44] [n. d.] Linuxflaw/cve-2017-7184 at master · vulnreproduction/linuxflaw. http

s://github.com/VulnReproduction/LinuxFlaw/tree/master/CVE-2017-7184.

(Accessed on 01/07/2024). ().

[45] Kangjie Lu. 2023. Practical program modularization with type-based depen-

dence analysis. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 1610–1624.

[46] [n. d.] Migrate type - linux source code (v5.14.21) - bootlin. https://elixir.bootli

n.com/linux/v5.14.21/source/mm/page_alloc.c. (Accessed on 01/25/2024). ().

[47] Arthur Mongodin. 2022. [CVE-2022-34918] A crack in the Linux firewall. https

://randorisec.fr/crack-linux-firewall. (2022).

[48] Peng Ning. 2014. Samsung knox and enterprise mobile security. In Proceedings
of the 4th ACM Workshop on Security and Privacy in Smartphones & Mobile
Devices, 1–1.

[49] [n. d.] X86: add support for clang cfi [lwn.net]. https://lwn.net/Articles/869267/.

(Accessed on 09/27/2022). ().

[50] [n. d.] The current state of kernel page-table isolation [lwn.net]. https://lwn.ne

t/Articles/741878/. (Accessed on 07/13/2023). ().

[51] [n. d.] Supervisor mode access prevention [lwn.net]. https://lwn.net/Articles/5

17475/. (Accessed on 07/13/2023). ().

[52] [n. d.] Privilege escalation via setuid. https://antonyt.com/blog/2020-03-22/pri

vilege-escalation-via-setuid. (Accessed on 12/05/2023). ().

[53] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P Ke-

merlis, and Michalis Polychronakis. 2020. Xmp: selective memory protection

for kernel and user space. In 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 563–577.

[54] [n. d.] Randomized slab caches for kmalloc() [lwn.net]. https://lwn.net/Article

s/938246/. (Accessed on 12/19/2023). ().

[55] [n. d.] Us-22-wang-ret2page-the-art-of-exploiting-use-after-free-vulnerabilities-

in-the-dedicated-cache.pdf. https://i.blackhat.com/USA-22/Thursday/US-22-

WANG-Ret2page-The-Art-of-Exploiting-Use-After-Free-Vulnerabilities-in

-the-Dedicated-Cache.pdf. (Accessed on 07/20/2023). ().

[56] sam4k. 2022. CVE-2023-29383: Abusing Linux chfn toMisrepresent /etc/passwd.

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/cve-2023

-29383-abusing-linux-chfn-to-misrepresent-etc-passwd/. (2022).

[57] sam4k. 2022. Kernel Exploitation Techniques: modprobe_path. https://sam4k.c

om/like-techniques-modprobe_path. (2022).

[58] Di Shen. 2017. Defeating samsung knox with zero privilege. BlackHat USA,
13–14.

[59] Zekun Shen and Brendan Dolan-Gavitt. 2020. Heapexpo: pinpointing pro-

moted pointers to prevent use-after-free vulnerabilities. In Proceedings of the
36th Annual Computer Security Applications Conference (ACSAC ’20). Asso-

ciation for Computing Machinery, <conf-loc>, <city>Austin</city>, <coun-

try>USA</country>, </conf-loc>, 454–465. isbn: 9781450388580. doi: 10.1145

/3427228.3427645.

[60] Siguza. 2019. Evolution of iOS mitigations. In (TyphoonCon). https://raw.githu
busercontent.com/ssd-secure-disclosure/typhooncon2019/master/Siguza%20

-%20Mitigations.pdf.

[61] Samsung Enterprise Mobility Solutions. 2015. White paper: an overview of the

samsung knox platform. (2015).

[62] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William Harris, Taesoo Kim,

and Wenke Lee. 2016. Enforcing kernel security invariants with data flow

integrity. In NDSS.
[63] S.T.A2.R.S Team. 2023. CVE-2023-32233: Privilege escalation in Linux Kernel

due to a Netfilter nf_tables vulnerability. https://www.tarlogic.com/blog/cve-2

023-32233-vulnerability. (2023).

[64] TurtleARM. 2023. CVE-2023-0179-PoC. https://github.com/TurtleARM/CVE-2

023-0179-PoC. (2023).

[65] Zicheng Wang, Yueqi Chen, and Qingkai Zeng. 2023. PET: prevent discovered

errors from being triggered in the linux kernel. In 32nd USENIX Security Sym-
posium (USENIX Security 23). USENIX Association, Anaheim, CA, (Aug. 2023),

4193–4210. isbn: 978-1-939133-37-3. https://www.usenix.org/conference/useni

xsecurity23/presentation/wang-zicheng.

[66] Brian Wickman, Hong Hu, Insu Yun, DaeHee Jang, JungWon Lim, Sanidhya

Kashyap, and Taesoo Kim. 2021. Preventing Use-After-Free attacks with fast

forward allocation. In 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, (Aug. 2021), 2453–2470. isbn: 978-1-939133-24-3. https:

//www.usenix.org/conference/usenixsecurity21/presentation/wickman.

[67] [n. d.] Will’s root: reviving exploits against cred structs - six byte cross cache

overflow to leakless data-oriented kernel pwnage. https://www.willsroot.io/20

22/08/reviving-exploits-against-cred-struct.html. (Accessed on 12/07/2023). ().

[68] [n. d.] Will’s root: reviving exploits against cred structs - six byte cross cache

overflow to leakless data-oriented kernel pwnage. https://www.willsroot.io/20

22/08/reviving-exploits-against-cred-struct.html. (Accessed on 01/07/2024). ().

[69] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. 2019. {Kepler}: facilitating
control-flow hijacking primitive evaluation for linux kernel vulnerabilities. In

28th USENIX Security Symposium (USENIX Security 19), 1187–1204.
[70] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou. 2018.

{Fuze}: towards facilitating exploit generation for kernel {use-after-free}
vulnerabilities. In 27th USENIX Security Symposium (USENIX Security 18), 781–
797.

[71] [n. d.] Extending the use of ro and nx [lwn.net]. https://lwn.net/Articles/42248

7/. (Accessed on 07/13/2023). ().

[72] Jidong Xiao, Hai Huang, and Haining Wang. 2015. Kernel data attack is a

realistic security threat. In International Conference on Security and Privacy in
Communication Systems. Springer, 135–154.

[73] Yutian Yang, Songbo Zhu, Wenbo Shen, Yajin Zhou, Jiadong Sun, and Kui

Ren. 2019. Arm pointer authentication based forward-edge and backward-edge

control flow integrity for kernels. arXiv preprint arXiv:1912.10666.
[74] Hengkai Ye, Song Liu, Zhechang Zhang, and Hong Hu. 2023. VIPER: spotting

Syscall-Guard variables for Data-Only attacks. In 32nd USENIX Security Sym-
posium (USENIX Security 23). USENIX Association, Anaheim, CA, (Aug. 2023),

1397–1414. isbn: 978-1-939133-37-3. https://www.usenix.org/conference/useni

xsecurity23/presentation/ye.

[75] Sungbae Yoo, Jinbum Park, Seolheui Kim, Yeji Kim, and Taesoo Kim. 2022. {In-
kernel}{control-flow} integrity on commodity {oses} using {arm} pointer
authentication. In 31st USENIX Security Symposium (USENIX Security 22), 89–
106.

[76] Kyle Zeng, Yueqi Chen, Haehyun Cho, Xinyu Xing, Adam Doupé, Yan Shoshi-

taishvili, and Tiffany Bao. 2022. Playing for {k (h) eaps}: understanding and
improving linux kernel exploit reliability. In 31st USENIX Security Symposium
(USENIX Security 22), 71–88.

[77] Hang Zhang, Weiteng Chen, Yu Hao, Guoren Li, Yizhuo Zhai, Xiaochen Zou,

and Zhiyun Qian. 2021. Statically discovering high-order taint style vulner-

abilities in os kernels. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 811–824.

[78] Jinmeng Zhou, Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung,

Ahmed Azab, Ruowen Wang, Peng Ning, and Kui Ren. 2022. Automatic per-

mission check analysis for linux kernel. IEEE Transactions on Dependable and
Secure Computing.

[79] Xiaochen Zou. 2022. CVE-2022-27666 Writeup. https://etenal.me/archives/1825.

(2022).

[80] Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang, and Zhiyun Qian. 2022.

{Syzscope}: revealing {high-risk} security impacts of {fuzzer-exposed} bugs
in linux kernel. In 31st USENIX Security Symposium (USENIX Security 22), 3201–
3217.

A APPENDIX
Additionally, we also verified 8 FSKO fields are in the stack shown

in Table 7, which may raise security concerns for stack-based cor-

ruption [16, 17, 18, 14, 69, 12]. Besides, DirtyCOW is a logic bug

that manipulates the flag vm_fault->flags in the stack to achieve

root. We believe these objects may also be valuable in stack-based

vulnerabilities and logic bugs for the future research.

Table 7: Identified and verified critical FSKOs in the stack.

Data Category Target value Verified

iov_iter->data_source operation WRITE "

iomap_iter->flags operation IOMAP_WRITE "
blk_mq_alloc_data

->cmd_flags
operation REQ_OP_WRITE "

vm_fault->flags COW FAULT_FLAG_WRITE "

iomap->addr sector sector number "

ext4_map_blocks->m_pblk sector sector number "

xfs_bmbt_irec->br_startblock sector sector number "

erofs_map_blocks->m_pa sector sector number "

14

https://lwn.net/Articles/758245/
https://lwn.net/Articles/758245/
https://lwn.net/Articles/705262/
https://lwn.net/Articles/705262/
https://www.kernel.org/doc/Documentation/security/self-protection.txt
https://www.kernel.org/doc/Documentation/security/self-protection.txt
https://github.com/VulnReproduction/LinuxFlaw/tree/master/CVE-2017-7184
https://github.com/VulnReproduction/LinuxFlaw/tree/master/CVE-2017-7184
https://elixir.bootlin.com/linux/v5.14.21/source/mm/page_alloc.c
https://elixir.bootlin.com/linux/v5.14.21/source/mm/page_alloc.c
https://randorisec.fr/crack-linux-firewall
https://randorisec.fr/crack-linux-firewall
https://lwn.net/Articles/869267/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://antonyt.com/blog/2020-03-22/privilege-escalation-via-setuid
https://antonyt.com/blog/2020-03-22/privilege-escalation-via-setuid
https://lwn.net/Articles/938246/
https://lwn.net/Articles/938246/
https://i.blackhat.com/USA-22/Thursday/US-22-WANG-Ret2page-The-Art-of-Exploiting-Use-After-Free-Vulnerabilities-in-the-Dedicated-Cache.pdf
https://i.blackhat.com/USA-22/Thursday/US-22-WANG-Ret2page-The-Art-of-Exploiting-Use-After-Free-Vulnerabilities-in-the-Dedicated-Cache.pdf
https://i.blackhat.com/USA-22/Thursday/US-22-WANG-Ret2page-The-Art-of-Exploiting-Use-After-Free-Vulnerabilities-in-the-Dedicated-Cache.pdf
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/cve-2023-29383-abusing-linux-chfn-to-misrepresent-etc-passwd/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/cve-2023-29383-abusing-linux-chfn-to-misrepresent-etc-passwd/
https://sam4k.com/like-techniques-modprobe_path
https://sam4k.com/like-techniques-modprobe_path
https://doi.org/10.1145/3427228.3427645
https://doi.org/10.1145/3427228.3427645
https://raw.githubusercontent.com/ssd-secure-disclosure/typhooncon2019/master/Siguza%20-%20Mitigations.pdf
https://raw.githubusercontent.com/ssd-secure-disclosure/typhooncon2019/master/Siguza%20-%20Mitigations.pdf
https://raw.githubusercontent.com/ssd-secure-disclosure/typhooncon2019/master/Siguza%20-%20Mitigations.pdf
https://www.tarlogic.com/blog/cve-2023-32233-vulnerability
https://www.tarlogic.com/blog/cve-2023-32233-vulnerability
https://github.com/TurtleARM/CVE-2023-0179-PoC
https://github.com/TurtleARM/CVE-2023-0179-PoC
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-zicheng
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-zicheng
https://www.usenix.org/conference/usenixsecurity21/presentation/wickman
https://www.usenix.org/conference/usenixsecurity21/presentation/wickman
https://www.willsroot.io/2022/08/reviving-exploits-against-cred-struct.html
https://www.willsroot.io/2022/08/reviving-exploits-against-cred-struct.html
https://www.willsroot.io/2022/08/reviving-exploits-against-cred-struct.html
https://www.willsroot.io/2022/08/reviving-exploits-against-cred-struct.html
https://lwn.net/Articles/422487/
https://lwn.net/Articles/422487/
https://www.usenix.org/conference/usenixsecurity23/presentation/ye
https://www.usenix.org/conference/usenixsecurity23/presentation/ye
https://etenal.me/archives/1825

	Abstract
	1 Introduction
	2 Motivation and Threat Model
	3 FSKO Identification
	3.1 Anchor Object Discovery
	3.2 Cross-Layer FSKOs Discovery
	3.3 Dynamic Verification
	3.4 Summary of Identified Objects

	4 Exploitablity Analysis
	4.1 Pairing Requirement #1: Write Capability
	4.2 Pairing Requirement #2: Slab Cache

	5 Evaluation
	5.1 Exploitable Objects
	5.2 Exploitability Evaluation

	6 Discussion
	7 Related Work
	8 Conclusion
	A appendix

