1.2 First-order linear differential equations
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Example 7. Find the solution of the initial-value problem
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Solution. Here a(t)=1, so that

y(t)=exp(fa(t)dt)=exp(fldt)=e’.

Multiplying both sides of the equation by u(f) we obtain that
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EXERCISES

In each of Problems 1-7 find the general solution of the given differential
equation.
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In each of Problems 8-14, find the solution of the given initial-value prob-
lem.

8. %+\/1+12y=0, y(@=V5 9. %+\/1+:2e"y=0, y(©0)=1
10. ‘; +Vi+id e y=0, y0)=0 11 %—20}—t y(©0)=1
dy P dy 1 =
12 2 +y=1+1, y(})=0 B tr=1r y=2
d
4. 2 -2p=1, yO)=1

15. Find the general solution of the equation
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(Hint: Divide both sides of the equation by 1+ %)
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16. Find the solution of the initial-value problem

(l+12)%+4ty=t, y()=1.

17. Find a continuous solution of the initial-value problem
y+y=g(n, y(0)=0
where

-[2 0<ex<l
g(1) {0, t>1

18. Show that every solution of the equation (dy/dt)+ ay =be ™" where a and ¢
are positive constants and b is any real number approaches zero as ¢ ap-
proaches infinity.

19. Given the differential equation (dy/dr)+ a(r)y = f(t) with a(t) and f(¢) con-
tinuous for —oo <t < o0, a(t) > ¢>0, and lim,_,, f(1)=0, show that every
solution tends to zero as ¢ approaches infinity.

When we derived the solution of the nonhomogeneous equation we tacitly
assumed that the functions a(¢) and b(7) were continuous so that we could
perform the necessary integrations. If either of these functions was discon-
tinuous at a point ¢;, then we would expect that our solutions might be dis-
continuous at f=t,. Problems 20-23 illustrate the variety of things that
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