
In Proceedings of the Sixth IEEE International Conference on Data Mining (ICDM-06). pp. 87-96, Hong Kong, December 2006.

Adaptive Blocking: Learning to Scale Up Record Linkage

Mikhail Bilenko∗

Microsoft Research

One Microsoft Way

Redmond, WA 98052 USA

mbilenko@microsoft.com

Beena Kamath∗

Google Inc.

1600 Amphitheatre Parkway

Mountain View, CA 94043 USA

beena@google.com

Raymond J. Mooney

Dept. of Computer Sciences

University of Texas at Austin

1 University Station C0500

Austin, TX 78712 USA

mooney@cs.utexas.edu

Abstract

Many data mining tasks require computing similarity be-

tween pairs of objects. Pairwise similarity computations are

particularly important in record linkage systems, as well as

in clustering and schema mapping algorithms. Because the

number of object pairs grows quadratically with the size of

the dataset, computing similarity between all pairs is im-

practical and becomes prohibitive for large datasets and

complex similarity functions. Blocking methods alleviate

this problem by efficiently selecting approximately similar

object pairs for subsequent distance computations, leaving

out the remaining pairs as dissimilar. Previously proposed

blocking methods require manually constructing an index-

based similarity function or selecting a set of predicates,

followed by hand-tuning of parameters. In this paper, we in-

troduce an adaptive framework for automatically learning

blocking functions that are efficient and accurate. We de-

scribe two predicate-based formulations of learnable block-

ing functions and provide learning algorithms for train-

ing them. The effectiveness of the proposed techniques

is demonstrated on real and simulated datasets, on which

they prove to be more accurate than non-adaptive blocking

methods.

1 Introduction

A number of machine learning and data mining tasks in-

volve computing similarity between pairs of instances. For

example, in record linkage (also known as object identifi-

cation [39], de-duplication [35], entity matching [11, 37, 2]

and identity uncertainty [33, 25]), similarity must be com-

puted between record pairs to identify groups of records

that refer to the same underlying entity. Many clustering

algorithms, e.g., greedy agglomerative or spectral cluster-

∗Work done at the University of Texas at Austin

ing methods, require similarity to be computed between all

pairs of instances to form the pairwise similarity matrix,

which is then used by the clustering algorithm [19, 31]. A

number of schema mapping methods also rely on pairwise

similarity computations between descriptions of concepts or

records belonging to them [12].

Because the total number of pairwise similarity compu-

tations grows quadratically with the size of the input dataset,

scaling the above tasks to large datasets is problematic. Ad-

ditionally, even for small datasets, estimation of the full

similarity matrix can be difficult if computationally costly

similarity functions are used. At the same time, in many

tasks, the majority of similarity computations are unneces-

sary because most instance pairs are highly dissimilar and

have no influence on the task output. Avoiding the unnec-

essary computations results in a sparse similarity matrix,

which can be exploited by many algorithms, allowing them

to scale up to large datasets.

Blocking methods efficiently select a subset of record

pairs for subsequent similarity computation, ignoring the re-

maining pairs as highly dissimilar and therefore irrelevant.

A number of blocking algorithms have been proposed by

researchers in the past years [15, 20, 18, 26, 1, 6, 21, 41].

These techniques typically form groups (blocks) of obser-

vations using indexing or sorting. This allows efficient se-

lection of instance pairs from each block for subsequent

similarity computations. Some blocking methods are based

on the assumption that there exists a pre-defined similarity

metric that correctly captures similar pairs for the domain

and task at hand, e.g., edit distance [6, 21] or Jaccard sim-

ilarity [26], while others assume that forming blocks based

on lexicographic sorting of records on some field(s) yields

an optimal strategy [18, 41]. Manual selection of fields

and parameter tuning are required by all existing blocking

strategies to reduce the number of returned dissimilar pairs

while retaining the similar pairs.

Since an appropriate blocking strategy can be highly

domain-dependent, the ad-hoc construction and manual

tuning of blocking methods makes this task non-trivial. A

suboptimal blocking method may lead to over-selection of

many dissimilar pairs that impedes efficiency, or, worse,

under-selection of important similar pairs that decreases ac-

curacy. Because there can be many potentially useful block-

ing criteria over multiple record fields, there is a need for au-

tomating the process of constructing blocking strategies so

that all same-entity or same-cluster pairs are retained while

the maximum number of dissimilar pairs is discarded.

In this paper, we formalize the problem of learning an

optimal blocking strategy using training data. In many

record linkage domains, some fraction of instances con-

tain true entity identifiers, e.g., UPC (bar code) numbers for

retail products, SSN numbers for individuals, ISBN num-

bers for books, or DOI identifiers for citations. In domains

where such supervision is unavailable, it can be obtained

by performing clustering or record linkage on a subset of

data where all object pairs can be used. Labeled data then

allows evaluating possible blocking functions and selecting

from them one that is optimal: it selects all or nearly all

coreferent pairs (that describe the same entity or belong to

the same cluster), and a minimal number of non-coreferent

pairs (that describe different entities or belong to different

clusters).

We propose to construct blocking functions based on sets

of general blocking predicates which efficiently select all

instance pairs that satisfy some binary similarity criterion.

Table 1 below shows examples of predicates for specific

record fields in different domains. We formulate the prob-

lem of learning an optimal blocking function as the task

of finding a combination of blocking predicates that cap-

tures all or nearly all coreferent object pairs and a minimal

number of non-coreferent pairs. Our approach is general in

the sense that we do not place restrictions on the similarity

predicates computed on instance pairs selected by blocking,

such as requiring them to be an inner product or to corre-

spond to a distance metric.

We consider two types of blocking functions: disjunc-

tions of blocking predicates and predicates combined in dis-

junctive normal form (DNF). We show that the problem of

constructing an optimal blocking function can be formu-

lated as an instance of the Red-Blue Set Cover problem [5].

While finding a globally optimal solution for this problem is

NP-hard, our formulation allows employing an efficient ap-

proximation algorithm for learning blocking functions. Em-

pirical evaluation on synthetic and real-world record linkage

datasets demonstrates the benefits of our approach and its

advantages over non-adaptive blocking functions.

2 Problem Formulation

2.1 Record Linkage

While there are many tasks in data mining and artificial

intelligence applications that require computing pairwise

Domain Blocking Predicate

Census Data Same 1st Three Chars in Last Name

Product Normalization Common token in Manufacturer

Citations Publication Year same or off-by-one

Table 1. Examples of blocking predicates
from different record linkage domains

similarity over a dataset, in this paper we use record link-

age as an example of an application that requires efficiently

selecting a subset of similar pairs where objects are often

described by heterogeneous fields. Our techniques can be

directly extended to clustering and schema mapping, while

extending them for use with kernel methods remains an in-

teresting challenge for future work.

Record linkage is the problem of determining which

database records refer to the same underlying entity. It

is an integral part of many systems that combine infor-

mation from multiple sources on the web, such as dig-

ital libraries [16], customer review and recommendation

sites [39, 28], and comparison shopping systems [3]. Other

domains where record linkage problem is commonly stud-

ied include census and mailing data [40, 35, 6] and health-

care records [32].

The overall problem of identifying coreferent records

has been studied in several research communities under

different names that include record linkage [15, 40], the

merge/purge problem [40], duplicate detection [29, 35, 4],

reference matching [26, 23], object identification [39, 38],

entity name matching and clustering [11, 37], hardening

soft databases [10], fuzzy de-duplication [6], identity un-

certainty [33, 25], robust reading [24], reference reconcilia-

tion [13], and entity resolution [2].

Most systems solve the record linkage problem in three

stages. First, a subset of candidate pairs is selected among

all record pairs that must contain all (or nearly all) pairs

of coreferent records. Second, similarity is estimated for

the candidate pairs using one or more similarity func-

tions [11, 39, 35, 4]. Finally, linkage decisions are made

for all candidate pairs using the computed pairwise similar-

ities, either in isolation for each pair or collectively over

the entire set of records. In this work, we focus on the

first stage where candidate pairs are selected by a block-

ing algorithm for subsequent similarity calculations. Un-

like previous approaches that rely on pre-selected or hand-

constructed blocking methods, we will employ machine

learning techniques to automatically construct efficient and

accurate blocking functions.

2.2 Problem Setting

Let us formally define the problem of learning an opti-

mal blocking function. We assume that a training dataset

Dtrain = {X ,Y } is available that includes a set X = {xi}
n
i=1

of n records known to refer to m true objects: Y = {yi}
n
i=1,

each yi is the true object identifier for the i-th record: yi ∈
{1, . . . ,m}. Each record xi may have one or more fields.

We assume that a set of s general blocking predicates

{pi}
s
i=1 is available, where each predicate pi corresponds to

two functions:

• Indexing function hi(·) is a unary function that is ap-

plied to a field value from some domain Dom(hi) (e.g.,

strings, integers, or categories) and generates one or

more keys for the field value: hi : Dom(hi) → U∗,

where U is the set of all possible keys;

• Equality function pi(·, ·) returns 1 if the intersection of

the key sets produced by the indexing function on its

arguments is non-empty, and returns zero otherwise:

pi(x j,xk) = 1 iff hi(x j)∩ hi(xk) 6= /0. Any record pair

(x j,xk) for which pi(x j,xk) = 1 is covered by the pred-

icate pi.

Each general blocking predicate can be instantiated for

a particular field (or a combination of fields) in a given

domain, resulting in a set of specific blocking predicates

for the domain. Given a database with d fields and a set

of s general blocking predicates, we obtain t ≤ s× d spe-

cific predicates P = {pi}
t
i=1 by applying the general pred-

icates to all fields of the appropriate type. For example,

suppose we have four general predicates defined for all tex-

tual fields: “Contain Common Token”, “Exact Match”, and

“Same 1st Three Chars”, “Contains Same or Off-By-One

Integer”. When these general predicates are instantiated for

the bibliographic citation domain with five textual fields,

author, title, venue, year, and other, we obtain 5× 4 = 20

specific blocking predicates for this domain. Figure 1 below

demonstrates the values produced by the indexing functions

of these specific blocking predicates on a sample citation

record (we assume that all strings are converted to lower-

case and punctuation is removed before the application of

the indexing functions).

Multiple blocking predicates are combined by an overall

blocking function fP constructed using the set P of predi-

cates. Like the individual predicates, fP corresponds to both

an indexing function that can be applied to any record, and

an equality function for any pair of records. Pairs for which

the equality function returns 1 are covered: they comprise

the set of candidate pairs returned for subsequent similarity

computation, while pairs for which the blocking function

returns 0 are ignored (uncovered). Efficient generation of

the set of candidate pairs requires computing the indexing

function for all records, followed by retrieval of all candi-

date pairs using inverted indices.

Given the set P = {pi}
t
i=1 containing t specific blocking

predicates, the objective of the adaptive blocking frame-

work is to identify an optimal blocking function f ∗P that

combines all or a subset of the predicates in P so that the

set of candidate pairs it returns contains all or nearly all

coreferent (positive) record pairs and a minimal number of

non-coreferent (negative) record pairs.

Formally, this objective can be expressed as follows:

f ∗P = argmin
fP

∑
(xi,x j)∈R

fP (xi,x j)

s.t. |B |− ∑
(xi,x j)∈B

fP (xi,x j) < ε
(1)

where R = {(xi,x j) : yi 6= y j} is the set of non-coreferent

pairs, B = {(xi,x j) : yi = y j} is the set of coreferent pairs,

and ε is a small value indicating that up to ε coreferent pairs

may remain uncovered, thus accommodating noise and par-

ticularly difficult coreferent pairs. The optimal blocking

function f ∗P must be found in a hypothesis space that corre-

sponds to some method of combining the individual block-

ing predicates. In this paper, we consider two classes of

blocking functions:

• Disjunctive blocking selects record pairs that are cov-

ered by at least one blocking predicate from the subset

of predicates that comprise the blocking function. This

strategy can be viewed as covering pairs for which a

the equality function for at least one of the selected

predicates returns 1. The blocking function is trained

by selecting a subset of blocking predicates from P .

• Disjunctive Normal Form (DNF) blocking selects

object pairs that are covered by at least one conjunc-

tion of blocking predicates from a constructed set of

conjunctions. This strategy can be viewed as covering

record pairs for which at least one equality function

of a conjunction of predicates returns 1. The block-

ing function is trained by constructing a DNF formula

from the blocking predicates.

Each type of blocking functions leads to a distinct for-

mulation of the objective (1), and we consider them indi-

vidually in the following subsections.

2.2.1 Disjunctive blocking

Given a set of potential blocking predicates P = {pi}
t
i=1,

a disjunctive blocking function corresponds to selecting

some subset of predicates P ′ ⊆ P , performing blocking

using each pi ∈ P ′, and then selecting record pairs that

share at least one common key in the key sets computed

by the indexing functions of the selected predicates. Then,

the equality function for the disjunctive blocking function

based on predicate subset P ′ = {pi1 , . . . , pik} returns 1 if

the equality function for at least one predicate returns 1:

fP ′(xi,x j) = pi1(xi,x j)∨·· ·∨ pik(xi,x j).
Learning the optimal blocking function f ∗P requires se-

lecting a subset P ∗ of predicates that results in all or nearly

all coreferent pairs being covered by at least one predicate

Sample record:

author

Freund, Y.

year

(1995).

title

Boosting a weak learning algorithm by majority.

venue

Information and Computation,

other

121(2), 256-285

Blocking predicates and key sets produced by their indexing functions for the record:

author title venue year other

Contain Common

Token

{freund, y} {boosting, a, weak,

learning, algorithm, by,

majority}

{information,

computation}
{1995} {121, 2, 256, 285}

Exact Match {’freund y’} {’boosting a weak

learning algorithm by

majority’}

{’information and

computation’}
{’1995’} {’121 2 256 285’}

Same 1st Three

Chars

{fre} {boo} {inf} {199} {121}

Contains Same or

Off-By-One Integer

/0 /0 /0

{1994 1995,

1995 1996}

{120 121, 121 122, 1 2,

2 3, 255 256, 256 257,

284 285, 285 286}

Figure 1. Blocking key values for a sample record

in P ∗, and a minimal number of non-coreferent pairs be-

ing covered. Then the general adaptive blocking problem in

Eq.(1) can be written as follows:

w
∗ = argmin

w

∑
(xi,x j)∈R

[wT
p(xi,x j) > 0℄

s.t. |B |− ∑
(xi,x j)∈B

[wT
p(xi,x j) > 0℄ < ε

w is binary

(2)

where w is a binary vector of length t encoding which of

the potential blocking criteria are selected, and p(xi,x j) is a

vector of binary values returned by the t predicates for pair

(xi,x j).
This formulation of the learnable blocking problem is

equivalent to the Red-Blue Set Cover problem [5] if ε = 0.

Figure 2 illustrates the equivalence. The task of selecting

a subset of predicates is represented by a graph with three

sets of vertices. The bottom row of β vertices corresponds

to positive (coreferent) record pairs designated as the set of

blue elements B = {b1, . . . ,bβ}. The top row of ρ vertices

corresponds to negative (non-coreferent) record pairs desig-

nated as the set of red elements R = {r1, . . . ,rρ}. The mid-

dle row of t vertices represents the set of blocking predicates

P , where each pi ∈ P corresponds to a set covering some

red and blue elements. Every edge between an element ver-

tex and a predicate vertex indicates that the record pair rep-

resented by the element vertex is covered by the predicate.

Learning the optimal disjunctive blocking function is then

equivalent to selecting a subset of predicate vertices with

their incident edges so that at least β−ε blue (positive) ver-

Positive

Negative pairs

pairs

Blocking predicates
P = {p1, . . . , pt}

R = {r1, . . . ,rρ} = {(xi,x j) : yi 6= y j}

B = {b1, . . . ,bβ} = {(xi,x j) : yi = y j}

Figure 2. Red-blue set cover view of blocking

tices have at least one incident edge, while the cover cost,

equal to the number of red (negative) vertices with at least

one incident edge, is minimized.

2.2.2 DNF Blocking

In some domains, a disjunctive combination of blocking

predicates may be an insufficient representation of the op-

timal blocking strategy. For example, in US Census data,

conjunctions of predicates such as “Same Zip AND Same 1st

Char in Surname” yield useful blocking criteria [41]. To in-

corporate such predicate conjunctions, we must extend the

disjunctive formulation described above to combine predi-

cates in disjunctive normal form (DNF). Then, that hypoth-

esis space for the blocking function must include disjunc-

tions of not just individual blocking predicates, but also of

their conjunctions.

A search for the optimal DNF blocking function can be

viewed as solving an extended variant of the red-blue set

cover problem. In that variant, the cover is constructed us-

ing not only the sets representing the original predicates, but

also using additionally constructed sets representing predi-

cate conjunctions. Because the number of all possible con-

junctions is exponential, only conjunctions up to predeter-

mined length k are considered. In Figure 2, considering a

conjunction of blocking predicates corresponds to adding a

vertex to the middle row, along with edges connecting it to

the red and blue vertices from the intersection of covered

vertex sets for the individual predicates in the conjunction.

The learnable blocking problem is then analogous to one

for disjunctive blocking: it is the task of selecting a set of

predicate vertices, including those for conjunctions, so that

at least β−ε blue vertices have one or more incident edges,

while the number of red vertices with at least one incident

edge is minimized.

3 Algorithms

3.1 Pairwise Training Data

For record linkage, supervision is available in many do-

mains in the form of records for which the true entities

to which they refer are known, as discussed in Section 1.

Such labeled records comprise the training dataset Dtrain =
{X ,Y } that can be used to generate pairwise supervision

for learning the blocking function in the form of corefer-

ent (blue) and non-coreferent (red) record pairs. For large

databases, it is impractical to explicitly generate and store

in memory all positive and negative pairs. However, the set

of covered pairs for each predicate can be computed using

the indexing function and stored in an inverted index. Then,

predicate covers can be stored and accessed efficiently us-

ing bit arrays.

If training data is unavailable, it can be obtained au-

tomatically by performing linkage or clustering without

blocking on a subset of the database. Then, linkage or clus-

tering output provides training data for learning the block-

ing function for future iterations.

3.2 Learning Blocking Functions

3.2.1 Disjunctive Blocking

The equivalence of learning optimal disjunctive blocking

and the red-blue set cover problem described in Section

2.2.1 has discouraging implications at first glance. The red-

blue set cover problem is NP-hard, and Carr et al. [5] have

shown that unless P=NP, it cannot be efficiently approxi-

mated within a factor O(2log1−δ t), δ = 1/log logc t for any

constant c, where t is the number of predicates under con-

sideration. However, several approximate algorithms have

been proposed for the red-blue set cover problem [5, 34].

We propose to learn disjunctive blocking functions by mod-

ifying Peleg’s greedy algorithm to obtain a “soft cover”

where up to ε blue elements may remain uncovered. The

algorithm has an approximation ratio of 2
√

t logβ [34], and

is particularly suitable for the adaptive blocking setting as it

involves early discarding of particularly costly sets (block-

ing predicates that cover too many non-coreferent pairs),

leading to more space-efficient learning of the blocking

function.

The outline of the algorithm APPROXRBSETCOVER

is shown in Figure 3. The algorithm is provided with

training data in the form of β coreferent record pairs

B = {b1, . . . ,bβ} and ρ non-coreferent records pairs R =
{r1, . . . ,rβ}, where each ri and bi represents a record pair

(xi1 ,xi2). For each predicate pi ∈ P , let covered nega-

tives R (pi) be the set of negative pairs it covers, pred-

icate cost r(pi) be the number of negative pairs it cov-

ers r(pi) = |R (pi)|, covered positives B(pi) be the set of

positive pairs it covers, and coverage b(pi) be the number

of covered positives, b(pi) = |B(pi)|. For each negative

pair ri = (xi1 ,xi2), let the degree deg(ri,P) be the num-

ber of predicates in P that cover it; degree for a positive

pair, deg(bi,P), is defined analogously. In step 1 of the al-

gorithm, blocking predicates that cover too many negative

pairs are discarded, where the parameter η can be set to

a fraction of the total number of pairs in the dataset. Then,

negative pairs covered by too many predicates are discarded

in step 4, which intuitively corresponds to disregarding non-

coreferent pairs that are highly similar and are placed in the

same block by many predicates.

Next, a standard weighted set cover problem is set up

for the remaining predicates and pairs by setting the cost of

each predicate to be the number of negatives it covers and

removing the negatives. The resulting weighted set cover

problem is solved in steps 6-11 using Chvatal’s greedy ap-

proximation algorithm [8]. The algorithm iteratively con-

structs the cover, at each step adding the blocking predi-

cate pi that maximizes a greedy heuristic: the ratio of the

number of previously uncovered positives over the predicate

cost. To soften the constraint requiring all positive pairs to

be covered, we add an early stopping condition permitting

up to ε positives to remain uncovered. In practice, ε should

be set to 0 at first, and then gradually increased if the cover

identified by the algorithm is too costly for the application

at hand (that is, when covering all positives incurs covering

too many negatives). If the minimal acceptable proportion

of covered positives (minimum desired recall) is known to

be r for the domain at hand, ε can be set to rβ.

3.2.2 DNF Blocking

Learning DNF blocking can be viewed as an extension

of learning disjunctive blocking where not only individual

blocking predicates may be selected, but also their conjunc-

tions. We assume that conjunctions that include up to k

predicates are considered. Because enumerating over all

possible conjunctions of predicates results in an exponential

number of predicate sets under consideration, we propose a

Algorithm: APPROXRBSETCOVER

Input: Training set B = {b1, . . . ,bβ} and R = {r1, . . . ,rρ} where

each bi ∈ B is a pair of coreferent records (xi1 ,xi2) s.t. yi1 = yi2

each ri ∈ R is a pair of non-coreferent records (xi1 ,xi2) s.t. yi1 6= yi2

Set of blocking predicates P = {p1, . . . , pt}
Maximum number of coreferent pairs allowed to be uncovered ε
Maximum number of pairs that any predicate may cover η

Output: A disjunctive blocking function based on subset P ∗ ⊂ P

Method:

1. Discard from P all predicates pi for which r(pi) ≥ η:

P ←{pi ∈ P |r(pi) ≤ η}.

2. If |B |− |B(P)| > ε return P (cover is not feasible, η is too low)

3. Set γ =
√

t/ logβ.

4. Discard all ri covered by more than γ predicates:

R ←{ri ∈ R |deg(ri,P) ≤ γ}
5. Construct an instance of weighted set cover T by discarding

elements of R , creating a set τi for each pi ∈ P , and setting

its weight ω(τi) = r(pi).
6. T ∗ ← /0
7. while |B| ≥ ε
8. select τi ∈ T that maximizes b(τi)/ω(τi)
9. B ← B −B(τi)
10. T ∗ ← T ∗∪{τi}
11. Return the set of predicates P ∗ corresponding to T ∗.

Figure 3. The algorithm for learning disjunc-
tive blocking

two-stage procedure, shown in Figure 4.

First, a set of t(k− 1) predicate conjunctions of lengths

between 2 and k is created in a greedy fashion in steps 3-4.

Candidate conjunctions are constructed iteratively starting

with each predicate pi ∈ P . At each step, another predicate

is added to the current conjunction so that the ratio between

the number of positives and the number of negatives cov-

ered by the conjunction is maximally improved. This leads

to k− 1 conjunctions being added to the candidate set P (c)

for each predicate. If a certain conjunction has already been

added in a previous iteration, the conjunction with next-best

coverage ratio is added instead.

After the candidate set of conjunctions P (c) is con-

structed, the conjunctions are added to P , the set of indi-

vidual predicates. Then, the APPROXRBSETCOVER algo-

rithm described in the previous section is used to learn a

blocking function that corresponds to a DNF formula over

the blocking predicates.

3.3 Blocking with the Learned Functions

Efficiency considerations, which are the primary moti-

vation for this work, require the learned blocking functions

to perform the actual blocking on new, unlabeled data in an

effective manner. After the blocking function is learned us-

ing training data, it should be applied to the test data (for

the actual linkage or clustering task) without explicitly con-

structing all pairs of records and evaluating the predicates

on them. This is achieved by applying the indexing function

for every blocking predicate or conjunction in the learned

Algorithm: APPROXDNF

Input: Training set B = {b1, . . . ,bβ} and R = {r1, . . . ,rρ} where

each bi is a pair of coreferent records (xi1 ,xi2) s.t. yi1 = yi2

each ri is a pair of non-coreferent records (xi1 ,xi2) s.t. yi1 6= yi2

Set of blocking predicates P = {p1, . . . , pt}
Maximum number of coreferent pairs allowed to be uncovered ε
Maximum number of pairs that any predicate may cover η
Maximum conjunction length, k

Output: A DNF blocking function based on P :

(pi1 ∧·· ·∧ pi′1
)∨·· ·∨ (pin ∧·· ·∧ pi′n

), each i′j ≤ k

Method:

1. Discard from P all predicates pi for which r(pi) ≥ η:

P ←{pi ∈ P |r(pi) ≤ η}.

2. P (c) = /0
3. For each pi ∈ P

4. Construct k−1 candidate conjunctions p
(c)
i = pi ∧·· ·∧ pik

by iteratively selecting pi j
that maximizes cover b(p

(c)
i)/r(p

(c)
i),

adding each p
(c)
i to P (c).

5. Return APPROXRBSETCOVER(R ,B ,P ∪P (c),ε,η).

Figure 4. The algorithm for learning DNF

blocking

blocking function to every record in the test dataset. Thus,

an inverted index is constructed for each predicate or con-

junction in the blocking function. In each inverted index,

every key is associated with a list of instances for which the

indexing function of the corresponding predicate returns the

key value. Disjunctive and DNF blocking can then be per-

formed by iterating over every key in all inverted indices

and returning all pairs of records that occur in the same list

for any key.

The computational complexity as well as the reduction in

the number of pairs due to disjunctive and DNF blocking are

analogous to those for previously proposed blocking func-

tions such as canopies [26] and key-based blocking [20].

If the indexing function for a selected predicate generates

an average of f keys per record, and |U| total keys are

produced, the computational complexity for applying each

blocking predicate as well as the number of candidate pairs

it produces is O(f 2n2/|U|). Given that f is typically 1 or a

small integer, while |U| is a large number, this represents a

O(f 2/|U|) reduction in the number of candidate pairs from

all pairs in a dataset. Computational complexity of block-

ing scales linearly with the number of selected predicates,

which is typically small.

4 Experiments

4.1 Methodology and Datasets

We evaluate the effectiveness of the proposed methods

for learning blocking functions using two metrics: reduc-

tion ratio and recall. These measures are defined with

respect to the number of coreferent and non-coreferent

record pairs that are covered by a blocking function fP in

a database of n records:

ReductionRatio = 1.0−
∑(xi,x j)∈R fP (xi,x j)+∑(xi,x j)∈B fP (xi,x j)

n(n−1)/2

Recall =
∑(xi,x j)∈B fP (xi,x j)

|B |

Intuitively, recall captures blocking accuracy by measur-

ing the proportion of truly coreferent record pairs that have

been covered by the blocking function. an ideal blocking

function would have recall of 1.0, indicating that all coref-

erent pairs are covered. Reduction ratio measures the ef-

ficiency gain due to blocking by measuring what propor-

tion of all pairs in the dataset is filtered out by the blocking

function. Without blocking, the reduction ratio is 0 since

all record pairs are returned, while a higher number indi-

cates what proportion of pairs is not covered, and therefore

will not require similarity computations in the subsequent

record linkage stages or in the clustering algorithm. Note

that efficiency savings due to blocking are more substantial

if collective (graph-based) inference methods are used for

linkage or clustering [33, 25, 38, 2], as the time complexity

of these methods increases superlinearly with the number of

record pairs under consideration.

Results are obtained using 10 runs of two-fold cross-

validation. Using a higher number of folds would result

in fewer coreferent records in the test fold, which would ar-

tificially make the blocking task easier. During each run,

the dataset is split into two folds by randomly assigning all

records for every underlying entity to one of the folds. The

blocking function is then trained using record pairs gener-

ated from the training fold. The learned blocking function

is used to perform blocking on the test fold, based on which

recall and reduction ratio are measured.

We present results on two datasets: Cora and Addresses.

The Cora dataset contains 2191 5-field citations to 305

computer science papers. It was obtained by combining

the multiple datasets used in [26], and removing records

that are exact duplicates. While it is a relatively small-

scale dataset, accurate linkage on this dataset requires com-

putationally intensive string similarity functions and bene-

fits from collective linkage methods, justifying the need for

blocking [4, 26]. Addresses is a dataset containing names

and addresses of 50,000 9-field records for 10,000 individu-

als that was generated using the DBGEN program provided

by Hernandez and Stolfo [18]. We use the following general

predicates are for constructing learnable blocking functions:

• Exact Match: covers instances that have the same

value for the field;

• Contain Common Token: covers instances that contain

a common token in the field value;

• Contain Common Integer: covers instances that con-

tain a common token consisting of digits in the field

value;

• Contain Same or Off-by-One Integer: covers instances

that contain integer tokens that are equal or differ by at

most 1;

• Same n First Chars, n = 3,5,7: covers instances that

have a common character prefix in the field value;

• Contain Common Token n-gram, n = 2,4,6: covers

instances that contain a common length-n contiguous

subsequence of tokens;

• Token-based TF-IDF > δ, δ = 0.2,0.4,0.6,0.8,1.0:

covers instances where token-based TF-IDF cosine

similarity between field values is greater than the

threshold δ;

• n-gram-based TF-IDF > δ, δ = 0.2,0.4,0.6,0.8,1.0,
n = 3,5: covers instances where TF-IDF cosine simi-

larity between n-gram representations of field values is

greater than the threshold δ.

As described in Section 2.2, these general predicates

are instantiated for all fields in the given database. Algo-

rithms presented in Section 3 are used to construct blocking

functions by selecting subsets of the resulting field-specific

predicates. For DNF blocking, conjunctions of length 2

were employed, as experiments with longer conjunctions

did not lead to improvements over blocking based on a 2-

DNF.

We vary the value of the parameter ε (which specifies

the number of coreferent pairs allowed to remain uncov-

ered) by setting to rβ for different values of desired recall

r between 0.0 and 1.0, where β is the number of coreferent

record pairs in the training fold. This parameter captures

the dependence between the reduction ratio and recall: if ε
is high, fewer predicates are selected resulting in lower re-

call since not all coreferent pairs are retrieved. At the same

time, the reduction ratio is higher for higher ε since fewer

pairs are covered by the learned blocking function, lead-

ing to higher efficiency. By varying ε, we obtain a series

of results that demonstrate the trade-off between obtaining

higher recall and improving the reduction ratio.

We compare the proposed methods with CANOPIES [26],

a popular blocking method relying on token-based or n-

gram-based TF-IDF similarity computed using an inverted

index. In a previous study, Baxter et al. [1] have com-

pared several manually-tuned blocking strategies and found

CANOPIES to produce the best overall results. CANOPIES

also allows trading off recall and the reduction ratio by vary-

ing the threshold parameter that controls the coverage of

the blocking.1 We tried both token-based CANOPIES and

tri-gram based CANOPIES and chose the best-performing

variants as baselines: token-based indexing for Cora, and

tri-gram indexing for Addresses. This difference is due to

1The original CANOPIES algorithm allows varying two separate thresh-

old parameters, however, empirical results have shown that using the same

value for both thresholds yields the best performance [26].

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.95 0.96 0.97 0.98 0.99 1

R
e
d
u
c
ti
o
n
 R

a
ti
o

Recall

DNF
Disjunctive

Canopies

Figure 5. Blocking results for the Cora dataset

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

R
e
d
u
c
ti
o
n
 R

a
ti
o

Recall

DNF
Disjunctive

Canopies

Figure 6. Blocking results for the Addresses

dataset

the fact that most variation between coreferent citations in

Cora is due to insertions and deletions of whole words,

making token-based similarity more appropriate. Corefer-

ent records in Addresses, on other hand, mostly differ due

to misspellings and character-level transformations that n-

gram similarity is able to capture.

4.2 Results and Discussion

Figures 5 and 6 show the reduction ratio versus recall

curves for the two types of learned blocking functions de-

scribed above and for CANOPIES. From these results, we

observe that both variants of adaptive blocking outperform

the unlearned baseline: combining multiple predicates al-

lows achieving higher recall levels as well as achieving

higher reduction ratios. DNF blocking is more accurate

than disjunctive blocking, and on Addresses it also achieves

higher recall, while for Cora the maximum recall is com-

parable. Because DNF blocking is based on predicate con-

junctions, non-coreferent pairs are more easily avoided by

the blocking function: conjunctions effectively form high-

precision, low-recall rules that cover smaller subsets of

coreferent pairs but fewer non-coreferent pairs compared to

single predicates. While none of the methods achieve 100%

recall (as it would effectively require returning all record

pairs), for both datasets adaptive blocking is able to achieve

higher recall than CANOPIES. Thus, using learnable block-

ing functions leads to both accuracy and efficiency improve-

ments.

Table 2 shows the actual number of record pairs returned

by the different blocking methods at highest achieved re-

call. These results demonstrate the significance of differ-

ences in the reduction ratio between the different blocking

functions: because the total number of pairs is very large,

Cora Addresses

DNF Blocking, 23,499 4,890,410

Disjunctive Blocking 41,439 4,090,283

Canopies 125,986 1,745,995

Total number of pairs 606,182 312,487,500

Table 2. Average number of pairs covered by

the learned blocking functions at the highest
achieved recall

differences in the reduction ratio translate into significant

savings in the number of pairs for which similarity must be

computed. Note that the smaller number of pairs returned

by CANOPIES and disjunctive blocking on Addresses corre-

sponds to a significantly lower recall, while for a fixed recall

level DNF blocking either does as well or better.

Cora Addresses

DNF Blocking 26.9 735.81

Disjunctive Blocking 32.4 409.4

Canopies 16.0 572.7

Table 3. Average blocking time, CPU seconds

Table 3 shows the blocking times for the different meth-

ods measured at maximum achieved recall, where block-

ing time is defined as the total CPU time required by the

blocking function to construct the blocks and generate the

candidate pairs. These results show that learnable block-

ing functions incur a relatively modest increase in compu-

tational time despite the fact that they utilize many pred-

icates. This is due to the fact that the learned predicates

that cover few negatives typically require smaller inverted

indices than the one built by canopies using tokens or n-

grams, where each token or n-gram occurs in many strings.

Many predicates employed by the adaptive blocking func-

tions, on other hand, map each string to a single key, re-

sulting in more efficient retrieval of covered pairs. Inverted

indices corresponding to conjunctions are even more effi-

cient as they contain many keys (the cross product of the

key sets for the predicates in the conjunction) and thus pro-

duce smaller blocks. This results in better performance of

DNF blocking compared to disjunctive blocking on Cora,

where the number of predicates in the constructed block-

ing function is similar for the two methods. On Addresses,

DNF blocking constructs functions containing more pred-

icates, which on one hand incurs a computational penalty,

but on the other hand leads to higher recall.

Overall, the results demonstrate that adaptive blocking

functions significantly improve the efficiency of record link-

age, and provide an attractive methodology for scaling up

data mining tasks that rely on similarity computations be-

tween pairs of instances.

5 Related Work

A number of blocking methods have been proposed by

researchers for speeding up record linkage and cluster-

ing [15, 22, 30, 20, 18, 26, 1, 6, 21, 17, 41].

Our predicate-based blocking approach is most closely

related to key-based methods developed by researchers

working on record linkage for Census data [22, 30, 20, 41].

These methods form blocks by applying an indexing func-

tion for a chosen predicate to each record and assigning

all records that return the same value (key) to the same

block [22, 20, 41]. While the predicates are typically chosen

manually by trial and error, in recent work Winkler [41] pro-

posed a capture-recapture methodology for evaluating the

accuracy of individual blocking predicates. Integrating this

approach within an adaptive blocking algorithm is an inter-

esting avenue for future work.

Another popular blocking technique is the sorted neigh-

borhood method proposed by Hernandez and Stolfo [18].

This method forms blocks by sorting the records in a

database using lexicographic criteria and selecting all

records that lie within a window of fixed size. Multiple sort-

ing passes are performed to increase coverage.

The CANOPIES blocking algorithm of McCallum et

al. [26] relies on a similarity function that allows efficient

retrieval of all records within a certain distance threshold

from a randomly chosen record. Blocks are formed by ran-

domly selecting a “canopy center” record and retrieving all

records that are similar to the chosen record within a certain

(“loose”) threshold. Records that are closer than a “tight”

threshold are removed from the set of possible canopy cen-

ters, which is initialized with all records in the dataset.

This process is repeated iteratively, resulting in formation of

blocks selected around the canopy centers. Inverted index-

based similarity functions such as Jaccard or TF-IDF co-

sine similarity are typically used with the canopies method

as they allow fast selection of nearest neighbors based on

co-occurring tokens. Inverted indices based on character n-

grams are employed in the blocking methods described by

Elfeky et al. [14], Chaudhuri et al. [6], and Christen and

Churches [7].

Recently, Jin et al. [21] proposed a blocking method

based on mapping database records to a low-dimensional

metric space, where fast nearest-neighbor searching meth-

ods can be used. While this approach can be used with ar-

bitrary similarity functions, it is computationally expensive

compared to the sorting and index-based algorithms.

A key distinction between prior work and our approach

is that previously described methods focus on improving

blocking efficiency while assuming that an accurate block-

ing function is known and its parameters have been tuned

manually. In contrast, our approach attempts to construct an

optimal blocking function automatically. Because blocking

functions can be learned using any combination of similar-

ity predicates on different record fields, and no assumptions

are made about the number of record fields or their type,

our approach can be used for adapting the blocking func-

tion in any domain, while allowing human experts to add

domain-specific predicates.

In parallel independent work, Michelson and

Knoblock [27] have proposed an alternative method

for automatically learning blocking functions in the context

of record linkage. Their approach is similar to ours in that

it learns predicate-based blocking functions in DNF form

using an iterative covering algorithm. Experimental studies

of the different variants of the overall iterative algorithm

present an interesting issue for future research.

6 Future Work and Conclusions

In this paper, we have formalized the problem of adapt-

ing the blocking function to a given domain, described two

types of blocking functions, and provided learning algo-

rithms for training the blocking functions. In future work,

we are interested in extending our adaptive blocking ap-

proach to other data mining tasks, such as clustering and

schema mapping. An interesting open question is whether

blocking can be used for kernel methods [36], where the

need to construct a kernel matrix over all pairs of input in-

stances along with the requirement that the matrix be posi-

tive semidefinite presents a significant obstacle to scaling up

to large datasets. Another avenue for future research is com-

paring our approach to the use of rule learning algorithms

such as RIPPER [9] for constructing blocking functions.

References

[1] R. Baxter, P. Christen, and T. Churches. A comparison of

fast blocking methods for record linkage. In Proceedings

of KDD-2003 Workshop on Data Cleaning, Record Linkage,

and Object Consolidation.

[2] I. Bhattacharya and L. Getoor. A latent dirichlet model

for unsupervised entity resolution. In Proceedings of SDM-

2006.

[3] M. Bilenko, S. Basu, and M. Sahami. Adaptive product nor-

malization: Using online learning for record linkage in com-

parison shopping. In Proceedings of ICDM-2005.

[4] M. Bilenko and R. J. Mooney. Adaptive duplicate detection

using learnable string similarity measures. In Proceedings

of KDD-2003.

[5] R. D. Carr, S. Doddi, G. Konjevod, and M. Marathe. On

the Red-Blue Set Cover problem. In Proceedings of SODA-

2000.

[6] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Ro-

bust and efficient fuzzy match for online data cleaning. In

Proceedings of SIGMOD-2003.

[7] P. Christen and T. Churches. Febrl –

freely extensible biomedical record linkage.

http://datamining.anu.edu.au/linkage.html.

[8] V. Chvatal. A greedy heuristic for the set covering problem.

Mathematics of Operations Research, 4(3):233–235, 1979.

[9] W. W. Cohen. Fast Effective Rule Induction. In Proceedings

of ICML-1995.

[10] W. W. Cohen, H. Kautz, and D. McAllester. Hardening soft

information sources. In Proceedings of KDD-2000.

[11] W. W. Cohen and J. Richman. Learning to match and clus-

ter large high-dimensional data sets for data integration. In

Proceedings of KDD-2002.

[12] A. Doan, J. Madhavan, P. Domingos, and A. Y. Halevy.

Learning to map between ontologies on the semantic web.

In Proceedings of WWW-2002.

[13] X. Dong, A. Halevy, and J. Madhavan. Reference recon-

ciliation in complex information spaces. In Proceedings of

SIGMOD-2005.

[14] M. G. Elfeky, A. K. Elmagarmid, and V. S. Verykios. TAI-

LOR: A record linkage tool box. In Proceedings of ICDE-

2002.

[15] I. P. Fellegi and A. B. Sunter. A theory for record linkage.

Journal of the American Statistical Association, 64:1183–

1210, 1969.

[16] C. L. Giles, K. Bollacker, and S. Lawrence. CiteSeer: An

automatic citation indexing system. In Proceedings of ACM

DL-1998.

[17] L. Gu and R. Baxter. Adaptive filtering for efficient record

linkage. In Proceedings of SDM-2004.

[18] M. A. Hernández and S. J. Stolfo. The merge/purge problem

for large databases. In Proceedings of SIGMOD-95.

[19] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A

review. ACM Computing Surveys, 31(3):264–323, 1999.

[20] M. A. Jaro. Advances in record-linkage methodology as ap-

plied to matching the 1985 census of Tampa, Florida. Jour-

nal of the American Statistical Association, 84(406):414–

420, 1989.

[21] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in

large data sets. In Proceedings of DASFAA-2003.

[22] R. P. Kelley. Advances in record linkage methodology: a

method for determining the best blocking strategy. In Record

Linkage Techniques, pages 199–203, Arlington, VA, 1985.

[23] S. Lawrence, K. Bollacker, and C. L. Giles. Autonomous

citation matching. In Proceedings of AGENTS-1999.

[24] X. Li, P. Morie, and D. Roth. Robust reading: Identification

and tracing of ambiguous names. In Proceedings of NAACL-

2004.

[25] A. McCallum and B. Wellner. Conditional models of iden-

tity uncertainty with application to noun coreference. In

NIPS 17, 2005.

[26] A. K. McCallum, K. Nigam, and L. Ungar. Efficient cluster-

ing of high-dimensional data sets with application to refer-

ence matching. In Proceedings of KDD-2000.

[27] M. Michelson and C. A. Knoblock. Learning blocking

schemes for record linkage. In Proceedings of AAAI-2006.

[28] S. N. Minton, C. Nanjo, C. A. Knoblock, M. Michalowski,

and M. Michelson. A heterogeneous field matching method

for record linkage. In Proceedings of ICDM-2005.

[29] A. E. Monge and C. P. Elkan. An efficient domain-

independent algorithm for detecting approximately dupli-

cate database records. In Proceedings of SIGMOD DMKD,

1997.

[30] H. B. Newcombe. Handbook of record linkage: methods for

health and statistical studies, administration, and business.

Oxford, 1988.

[31] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering:

Analysis and an algorithm. In NIPS 13, 2001.

[32] G. N. Norén, R. Orre, and A. Bate. A hit-miss model for

duplicate detection in the WHO Drug Safety Database. In

Proceedings of KDD-2005.

[33] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser.

Identity uncertainty and citation matching. In NIPS 15,

2003.

[34] D. Peleg. Approximation algorithms for the Label-

CoverMAX and Red-Blue Set Cover problems. In Proceed-

ings of SWAT-2000, LNCS 1851.

[35] S. Sarawagi and A. Bhamidipaty. Interactive deduplication

using active learning. In Proceedings of KDD-2002.

[36] B. Schölkopf and A. J. Smola. Learning with kernels - sup-

port vector machines, regularization, optimization and be-

yond. MIT Press, 2002.

[37] W. Shen, X. Li, and A. Doan. Constraint-based entity match-

ing. In Proceedings of AAAI-2005.

[38] P. Singla and P. Domingos. Object identification with

attribute-mediated dependences. In Proceedings of PKDD-

2005.

[39] S. Tejada, C. A. Knoblock, and S. Minton. Learning

domain-independent string transformation weights for high

accuracy object identification. In Proceedings of KDD-

2002.

[40] W. E. Winkler. The state of record linkage and current re-

search problems. Tech. report, Statistical Research Division,

U.S. Census Bureau, Washington, DC, 1999.

[41] W. E. Winkler. Approximate string comparator search strate-

gies for very large administrative lists. Tech. report, Statis-

tical Research Division, U.S. Census Bureau, Washington,

DC, 2005.

