
Combining Branch History and Value History For Improved
Value Prediction

Chirag Sakhuja, Anjana Subramanian, Pawanbalakri Joshi, Akanksha Jain, Calvin Lin
The University of Texas at Austin

ABSTRACT
Context-based value predictors use either control-flow
context or data context to predict values. Those based
on control-flow context use branch histories to remem-
ber past values, but these predictors require lengthy
histories or complex hardware to make accurate pre-
dictions. Those based on data context use a history
of past values to predict a broader class of values, but
such predictors require long training times, and they
are complex due to speculative value histories.

We observe that the combination of branch and value
history provides better predictability than the use of
each history separately because the combination can
predict values in control-dependent sequences of val-
ues. Furthermore, the combination improves training
time by enabling accurate predictions to be made with
shorter history, and it simplifies hardware design by re-
ducing aliasing in back-to-back instructions, thus elim-
inating the need for speculative value histories. Based
on these observations, we propose a new unlimited bud-
get value predictor, Heterogeneous-Context Value Pre-
dictor (HCVP), that when hybridized with E-Stride,
achieves a geometric mean IPC of 3.88 (39.6% speedup
over baseline) on the 135 public traces, as compared
to 3.81 (37.2% speedup over baseline) for the current
leader of the Championship Value Prediction.

1. INTRODUCTION
Value prediction is an important means of improving

single-thread performance: The basic idea is to break
data dependences by predicting values rather than wait-
ing for them to be computed. The recent resurgence in
value predictor research stems from Perais’ idea of per-
forming misprediction recovery at commit time, which
greatly simplifies the logic [1]. This delayed recovery,
however, increases the penalty of mispredictions, so mod-
ern value predictors require extremely high accuracy,
typically over 99%. Thus, for value prediction, the re-
search challenge is to increase predictor coverage while
maintaining high accuracy.

Finite Context Method (FCM) based predictors [2],
including the DFCM++ predictor [3], use value history
to predict correlated values, namely, sequences of val-
ues that are not constant or strided but tend to repeat
over time. For example, if a linked list traversal repeat-

A B C

X

Y

Figure 1: Value history based predictors struggle with
control-dependent sequences.

edly produces the sequence of values A, B, C, X, then a
predictor can learn this sequence and predict that the
value X will be produced after it has produced A, B,
and C.

Unfortunately, the use of value history is problem-
atic when the sequence of values is control-dependent.
For example, a graph traversal might produce the value
sequence shown in Figure 1, where the successor of
C depends on a branch outcome. In such scenarios,
value histories yield inaccurate predictions, which de-
grades performance. To improve accuracy, existing so-
lutions [3] use extremely long value histories, hoping
that some past value produced by the same instruction
correlates with the next value. Long value histories in-
crease hardware overhead, lead to long training times,
and are not always successful in learning such divergent
patterns.

By contrast, context-based predictors that use con-
trol flow information can also achieve high accuracy [4].
Perais uses branch history, in particular, to predict control-
dependent values [1]. However, lengthy histories are
necessary to capture data-dependent values. For exam-
ple, to accurately predict the values in a linked list, the
branch history must be as long as the linked list.

This paper builds on the insight that control-dependent
sequences can be predicted by augmenting value history
with control flow information—in particular, the branch
history. Thus, our solution decomposes an instruction’s
value sequence into sub-sequences, such that each sub-
sequence shares the same branch history and is more
predictable than the combined sequence. For example,
the sequence in Figure 1 can be viewed as two sub-
sequences: (1) A, B, C, X with a branch history of (T,

0

5

10

15

1 2 4 8 16 32 64M
PK

I (
lo

w
er

 is
 b

et
te

r)

History Length

Average MPKI

Value History (DFCM++) Value + Branch History (Ours)

Figure 2: The combination of value history and branch
history enables the use of shorter value histories.

T, T, T), and (2) A, B, C, Y with a branch history of
(T, T, T, NT).

The combination of value history and branch his-
tory has two added benefits. First, it requires a much
shorter value history than previous solutions. Figure 2
compares the accuracy of DFCM++, a state-of-the-art
FCM predictor, with our proposed predictor at differ-
ent history lengths and shows that the combination
of branch history and value history achieves accept-
able misprediction rates (less than 2 MPKI) at history
lengths of 8 and 16, whereas value history alone neces-
sitates the use of history lengths of 32 or longer [3].
Second, it does not require a speculative history of val-
ues for in-flight instructions, a complication that has
plagued previous value-history-based predictors. As we
explain in Section 2.2, by using both the PC and branch
history as context, our predictor reduces the odds that
one of the sequence elements is in-flight, which allows
our predictor to simply ignore such scenarios when they
occur.

This paper makes the following contributions.

• We introduce the Heterogeneous-Context Value Pre-
dictor (HCVP) value predictor, which combines
branch history with a short value history to pro-
vide a better tradeoff between coverage and accu-
racy than the use of local value history alone.

• We show that our predictor does not require spec-
ulative value histories, leading to a simpler design
for value history based predictors.

• Using the Championship Value Predictor infras-
tructure, we show that our new value predictor
provides better speedup than the previous state-of-
the-art. In the unlimited budget category, HCVP
outperforms STEVES, the current championship
winner by 2.4% (39.6% for our predictor vs 37.2%
for STEVES).

2. SOLUTION
Heterogeneous-Context Value Prediction (HCVP) is

a context-based predictor that predicts sequences of cor-
related values. As explained in Section 1, HCVP learns
value sequences that share the same load instruction

and branch history. For example, for the control-dependent
value sequence shown in Figure 1, where C is sometimes
followed by X and sometimes by Y , HCVP learns two
separate sequences, namely, A,B,C,X and A,B,C, Y .

Additionally, for better predictability, instead of learn-
ing correlations between consecutive values, HCVP learns
correlations among deltas of consecutive values, where
the deltas can be arbitrarily large1. The goal is to be
able to learn repeating irregular stride sequences, such
as, −1,−2,+3, and apply them across different base val-
ues for higher coverage. Another benefit of separating
value history into a base and delta history is that HCVP
can quickly learn constant and strided values. For ex-
ample, constants are represented as a base value equal
to the constant value and a delta history of 0, 0, 0,

2.1 High-Level Design
Figure 3 shows HCVP’s high-level organization. We

see that HCVP has two components. The first com-
ponent consists of two tables—the Base History Table
(BHT) and Stride History Table (SHT)—which track
the value history for each program counter and global
branch history (PC,BHR) context. In particular, the
BHT stores the last seen value for a given (PC,BHR)
context, and the SHT stores the sequence of k deltas for
this context (k is the value history length). Both tables
are indexed using a combination of the program counter
(PC) and a global branch history register (BHR). The
second component, which includes the Value Prediction
Table (VPT), learns next values for a given sequence of
values.

Each table entry is augmented with a 4-bit confidence
counter. An entry is a candidate for replacement when
its confidence counter is 0.

Prediction.
To form a prediction, HCVP first probes the Base

History Table (BHT) and Stride History Table with the
current (PC,BHR) context, and if both tables have
entries, the stride history from the SHT is used to access
the Value Prediction Table (VPT). If the confidence
associated with the corresponding entry in the VPT is
sufficiently high, 10 in our case, HCVP will predict the
value by adding the output of the VPT to the base value
from the BHT. For example, if the BHT produces a base
value of A, and the VPT predicts a stride of +48, the
next predicted value will be A + 48.

If an instruction with the same (PC,BHR) is cur-
rently in-flight, no prediction is made.

Training.
On a correct prediction, the confidence of the corre-

sponding entries in all three tables is incremented, the
BHT is updated with the current value, and the SHT is
updated with the delta between the current value and
the base value that was used for prediction. For the
above example, the BHT will be updated to carry a base

1 This idea of separating values into base and deltas has
been applied to prior FCM-based predictors and is called
the Differential Finite Context Method (DFCM) [5].

2

(PC, BHR)

Stride History

Base Value

Stride

+

Prediction Make Prediction?

Base Value Table (BVT)

Stride History Table (SHT)

Value Prediction Table (VPT)

Figure 3: High-level organization of HCVP.

value of A + 48, and the SHT entry will be augmented
with a stride of +48. On an incorrect prediction, the
confidence for corresponding entries in all three tables
is set to 0.

If a miss in any of the three tables inhibits a pre-
diction, then the tables are initialized with appropriate
information.

2.2 The Update Problem
The update problem occurs when table entries be-

come stale when making back-to-back predictions, of-
ten in tight loops. Fundamentally, the update problem
is caused by having in-flight requests to the same en-
try in the table, leading to out-dated branch or value
history when a prediction must be made.

Our solution is to incorporate branch history. Since
branch history changes on each iteration of a tight loop,
repeated instances of instructions access different en-
tries of the table, greatly reducing the likelihood of
the update problem. We find that the incorporation
of branch history reduces the number of collisions with
in-flight instructions to the point that HCVP can still
achieve good performance while suppressing predictions
altogether on a collision.

2.3 E-Stride Hybrid
Though value history-based predictors can predict

constant and strided values, these patterns are not space
efficient. For example, to predict a constant value, the
stride history must consist of a sequence of 0s, while
a computation-based or branch history based predictor
could store these patterns in a single entry.

To improve the accuracy and coverage of HCVP, we
choose to hybridize with E-Stride, which allows HCVP
to focus resources on correlated patterns that E-Stride

Heterogeneous Context
Value Predictor (HCVP)

E-Stride

Make Prediction? Make Prediction?Prediction Prediction

Prediction Make Prediction?

0 1

Actual Value

Figure 4: Hybridizing HCVP with E-Stride.

Instruction Window Size 256
Fetch Width 16

Branch Prediction Two-level predictor
Memory Disambiguation Perfect

L1 cache 32 KB, 4-way, 64B, 2c
L2 cache 1 MB, 8-way, 64B, 12c
L3 cache 8 MB, 16-way, 128B, 60c

Main memory 150c fixed latency

Table 1: Baseline Microarchitecture

does not detect. Figure 4 shows how HCVP and E-
Stride interact: If E-Stride can make a prediction, it is
given priority. Both HCVP and E-Stride train on the
actual value, regardless of the source of the prediction.

3. EVALUATION
We follow the methodology prescribed by Champi-

onship Value Prediction (CVP) organizers for a year-
round competition that was started in 2018 [6]. In par-
ticular, we use the simulator and benchmarks provided
for the competition. The simulator models an out-of-
order pipeline and is configured according to the CVP
rules. The baseline configuration is listed in Table 1.

We present results for all 135 public traces provided
by the CVP committee. The traces, each with 30M dy-
namic instructions, include a mix of compute (integer
and floating point benchmarks) and server-class bench-
marks. These samae traces were used in CVP 2018.
We compare HCVP against the leading submissions on
the CVP leaderboard in the unlimited hardware budget
category. Specifically, we compare against H3VP, the
first predictor to achieve improvement over the base-
line in CVP in all budget categories, EVES [7], which
won the championship in 2018 in all budget categories,

3

3.06
3.49

3.77 3.81 3.88

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

H3VP DFCM++ EVES STEVES HCVP

IP
C

(h
ig

he
r i

s b
et

te
r)

Predictor

Geomean IPC

(a) IPC

0.27

1.21

0.36
0.45

0.85

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

H3VP DFCM++ EVES STEVES HCVP

M
PK

I (
lo

w
er

 is
 b

et
te

r)

Predictor

Average MPKI

(b) Accuracy

37%

64%

48%
53%

59%

0%

10%

20%

30%

40%

50%

60%

70%

H3VP DFCM++ EVES STEVES HCVP

%
 C

ov
er

ag
e

(h
ig

he
r i

s b
et

te
r)

Predictor

Average Coverage

(c) Coverage

Figure 5: Comparison of value predictors with unlimited budget across 135 public traces.

DFCM++ [3], the runner up to EVES in the unlimited
budget category, and STEVES [8], a recent submission
that outperforms EVES in the unlimited budget cate-
gory.

H3VP focuses on predicting hand-selected sequences
that were found to be useful. EVES combines VTAGE,
a state-of-the-art branch history based value predictor
for constant values, and Enhanced Stride, or E-Stride, is
a state-of-the-art branch history-based value predictor
for strided values. DFCM++ uses an FCM-based value
predictor, and STEVES is a hybrid between EVES and
DFCM++.

We configure each of the predictors according to their
original source code submission to the CVP website.
EVES uses a variable branch history register, ranging
from 0 to 512 bits, and DFCM++ uses value history
lengths of 32 and 64. HCVP uses a branch history reg-
ister of length 128 and a value history length of 16. All
of the predictors, including HCVP, are augmented with
the E-Stride predictor.

3.1 Comparison Against Prior Art
We now compare HCVP against the baselines in in

the unlimited category. This evaluation is useful for ex-
ploring the limits of prediction for different value pre-
diction algorithms.

Figure 5a compares HCVP against H3VP, DFCM++,
EVES, and STEVES under unlimited hardware bud-
gets. Each bar represents the geometric mean IPC over
a baseline with no value predictor. We see that HCVP
achieves the highest IPC. DFCM++, which is most
directly comparable to HCVP due to its use of value
history, achieves only a 3.49 IPC. Thus, HCVP signif-
icantly advances the state-of-the-art for both branch
history-based predictors and value history-based pre-
dictors.

Figures 5b and 5c show the MPKI (mispredictions per
thousand instructions measured over all instructions)
and coverage, respectively. HCVP sees a higher MPKI
than EVES and STEVES because it targets hard-to-
predict value sequences. However, this high MPKI is
compensated by HCVP’s 6.2% higher coverage than
STEVES and 10.3% higher coverage than EVES.

Compared to DFCM++, HCVP reduces MPKI sig-

nificantly, even though it uses much shorter history lengths.
DFCM++ tries to predict correlated values, but it can-
not handle divergence. Furthermore, DFCM++ spec-
ulatively updates its value history, which can lead to
cascading mispredictions. However, HCVP achieves sig-
nificantly less coverage than DFCM++ because it does
not predict in-flight (PC,BHR) pairs, which we mea-
sure to make up roughly 31% of prediction-eligible in-
structions. These results show that even though HCVP
sacrifices some coverage, it achieves a better tradeoff
between accuracy and coverage that results in an over-
all performance boost. By incorporating branch history
when accessing the BHT and SHT, HCVP significantly
reduces the impact of stale entries under back-to-back
predictions.

4. CONCLUSIONS
In this paper, we have introduced a method of iden-

tifying a new class of value patterns, namely, control-
dependent value sequences, that have not been previ-
ously explored. We have shown that it is possible to
predict these values by combining control-flow and value
history information, and we have shown that this com-
bination addresses many of the complications associ-
ated with FCM predictors. For example, it reduces the
amount of value history that is needed for high accuracy,
and it does not require speculative values for in-flight
instructions.

Leveraging these insights, we have proposed a new
value predictor, called the Heterogeneous-Context Value
Predictor. Prior FCM predictors consume megabytes of
storage, so HCVP is the most space-efficient design in
the FCM literature. We hope that our findings will en-
courage future work that explores hardware optimiza-
tions that reduce the cost of using value histories for
practical deployment.

Acknowledgments.
This work was partially funded by the Samsung Global

Research Outreach program. This work was also funded
in part by NSF Grant CCF-1823546 and a gift from In-
tel Corporation through the NSF/Intel Partnership on
Foundational Microarchitecture Research.

4

5. REFERENCES
[1] A. Perais, Increasing the performance of superscalar

processors through value prediction. PhD thesis, INRIA,
2015.

[2] Y. Sazeides and J. E. Smith, “Implementations of context
based value predictors,” tech. rep., Technical Report
ECE-97-8, University of Wisconsin-Madison, 1997.

[3] N. Deshmukh, S. Verma, P. Agrawal, B. Panda, and
M. Chaudhuri, “Dfcm++: Augmenting dfcm with early
update and data dependence-driven value estimation,” First
Championship Value Prediction, CVP 2018, 2018.

[4] T. Nakra, R. Gupta, and M. L. Soffa, “Global context-based
value prediction,” in Proceedings Fifth International
Symposium on High-Performance Computer Architecture,
pp. 4–12, IEEE, 1999.

[5] B. Goeman, H. Vandierendonck, and K. De Bosschere,
“Differential fcm: Increasing value prediction accuracy by
improving table usage efficiency,” in Proceedings HPCA
Seventh International Symposium on High-Performance
Computer Architecture, pp. 207–216, IEEE, 2001.

[6] “Championship value prediction,” 2018.
https://www.microarch.org/cvp1/index.html.

[7] A. Seznec, “Exploring value prediction with the eves
predictor,” 2018.

[8] A. Gupta, P. Mor, H. Taneja, and B. Panda, “Steves:
Pushing the limits of value predictors with sliding fcm and
eves,” Championship Value Prediction, 2019.

5

https://www.microarch.org/cvp1/index.html

	Introduction
	Solution
	High-Level Design
	The Update Problem
	E-Stride Hybrid

	Evaluation
	Comparison Against Prior Art

	Conclusions
	References

