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ABSTRACT

Despite its success in many areas, deep learning is a poor fit for

use in hardware predictors because these models are impractically

large and slow, but this paper shows how we can use deep learning

to help design a new cache replacement policy. We first show that

for cache replacement, a powerful LSTM learning model can in

an offline setting provide better accuracy than current hardware

predictors. We then perform analysis to interpret this LSTM model,

deriving a key insight that allows us to design a simple online model

that matches the offline model’s accuracy with orders of magnitude

lower cost.

The result is the Glider cache replacement policy, which we

evaluate on a set of 33 memory-intensive programs from the SPEC

2006, SPEC 2017, and GAP (graph-processing) benchmark suites.

In a single-core setting, Glider outperforms top finishers from the

2nd Cache Replacement Championship, reducing the miss rate over

LRU by 8.9%, compared to reductions of 7.1% for Hawkeye, 6.5%

for MPPPB, and 7.5% for SHiP++. On a four-core system, Glider

improves IPC over LRU by 14.7%, compared with improvements of

13.6% (Hawkeye), 13.2% (MPPPB), and 11.4% (SHiP++).
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1 INTRODUCTION

By extracting useful patterns from large corpuses of data, deep

learning has produced dramatic breakthroughs in computer vision,

speech recognition, and natural language processing (NLP), and it

has shown promise for advancing many other fields of science and

engineering [6, 10, 11, 32, 37]. It is therefore natural to wonder if

deep learning could drive innovation in the computer architecture

domain. In particular, modern microprocessors include many hard-

ware predictorsÐfor branch prediction, for cache replacement, for

data prefetching, etcÐand deep learning offers a method of training

these predictors. Moreover, problems such as cache replacement

and data prefetching have been heavily studied over many years,

so it makes sense to seek new tools to help us further advance the

field.

The term deep learning typically refers to the use of multi-layer

neural networks. The use of multiple layers is significant because

it provides the ability to learn non-linear relationships at multiple

levels of abstraction. The ability to recurse, as seen in recurrent

neural networks (RNNs), a type of deep learning model1, allows

RNNs to effectively represent any number of layers, making them

quite powerful. And while machine learning models such as RNNs

have been extremely successful, powerful new models and vari-

ants, such as attention mechanisms [36] and Transformer [53], are

constantly being proposed.

Unfortunately, these powerful learning models have not been

exploited by architects, who have instead built hardware predic-

tors using simpler learning techniques, such as tables and percep-

trons [20, 52]. Perceptrons, however, represent just a single layer

of a neural network, so they do not approach the power of deep

learning models such as RNNs.

The basic problem is that deep learning models are ill suited

for use in hardware predictors. First, deep learning models require

enormous resources to train. The training iterates multiple times

over the training data and takes hours, days, or even months to com-

plete. Thus, this training is performed offline, which is reasonable

for applications such as NLP and computer vision whose prediction

targets do not change over time, but offline training is much less

effective for hardware predictors because (1) computer programs

exhibit time-varying phase behavior , so prediction targets change

as the program executes, and (2) the behavior of one program can

1A learning model is a broad term that describes any of several different types of
machine learning algorithms, such as a neural network, a Support Vector Machine, or
a perceptron.
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differ wildly from that of another.2 Second, even after these deep

learning models are trained and compressed, they are still too large

to be implemented on a chip to make predictions. Finally, these deep

models are slow, typically taking several milliseconds to produce a

prediction, while hardware predictors typically need a prediction

within nanoseconds.

This paper presents a novel approach for addressing this mis-

match between deep learning models and hardware predictors, and

we demonstrate the strength of our approach by using it to advance

the state-of-the-art in the well-studied area of cache replacement.

Our approach uses powerful offline machine learning to develop

insights that can improve the design of online hardware predictors.

More specifically, our approach has three steps. First, we design

a powerful, unconstrained deep RNN model that is trained offline

for individual programs. Second, we interpret this offline model

to reveal an important insightÐdescribed shortlyÐthat is useful

for cache designers. Third, we use this insight to design a simple

online model that matches the offline model’s accuracy with orders

of magnitude lower cost. It is this simpler online model that can

be implemented in hardware and trained dynamically, much like

existing predictors for cache replacement [20, 29, 55].

In choosing an unconstrained offline model, we build on the

assumption that control flow is an important aspect of program

behavior, so we posit that our offline model should be able to rea-

son about time-ordered events. Thus, to build the unconstrained

offline model, we first formulate cache replacement as a sequence

labeling problem, where the goal is to assign each element in a

sequence of memory accesses a binary label that indicates whether

the accessed data should be cached or not (see Figure 2). We use

Belady’s MIN algorithm to provide oracle labels for our training

data. Then, inspired by the recent success of LSTM3 [16] and atten-

tion mechanisms [35, 36] in sequence modeling tasks, we design

an attention-based LSTM as our offline model. We find that this

offline model improves accuracy significantly (82.6% vs. 72.2% for

prior art [20]).

An analysis of the attentionweights inside the LSTM then reveals

several insights. First, the LSTM benefits when given as input a

long history of past load instructions, so we conclude that optimal

caching decisions depend on the program’s control-flow history and

that a long control-flow history is beneficial. Second, the optimal

decisions depend primarily on the presence of a few elements in

the control-flow history, not the full ordered sequence.

We use these insights to design a new hand-crafted feature that

represents a program’s control-flow history compactly and that

can be used with a much simpler linear learning model known as a

support vector machine (SVM). Our SVM is trained online in hard-

ware, and it matches the LSTM’s offline accuracy with significantly

less overhead; in fact, an online SVM is equivalent to a perceptron,

which has been used in commercial branch predictors.

To summarize, this paper makes three contributions:

• We present the first use of deep learning to improve the

design of hardware cache replacement policies.

2In fact, the behavior of a single program can behave wildly different from one input
to another. For example, consider how the behavior of gcc differs when compiling, say,
matrix multiplication as opposed to an OS.
3LSTM (Long Short Term Memory) is a special variant of recurrent neural networks
that can effectively learn long-term dependences in sequential data.

• We design an attention-based LSTM model that (1) signif-

icantly improves prediction accuracy and (2) can be inter-

preted through an attention mechanism to derive important

insights about caching.

• We use these insights to produce the Glider4 cache replace-

ment policy, which uses an SVM-based predictor to outper-

form the best cache replacement policies from the 2nd Cache

Replacement Championship. Glider significantly improves

upon Hawkeye, the previous state-of-the-art and winner

of the 2nd Cache Replacement Championship. In a single-

core setting, Glider reduces the miss rate over LRU by 8.9%,

compared to a reduction of 6.5% for Hawkeye. In a multi-

core setting, Glider reduces the miss rate over LRU by 14.7%,

compared with 13.6% for Hawkeye.

The remainder of this paper is organized as follows. Section 2

places our work in the context of previous work. Section 3 then

describes enough of Hawkeye to make this paper accessible. We

then describe our solution and empirically evaluate it in Sections 4

and 5, before presenting concluding remarks.

2 RELATED WORK

We now discuss related work in cache replacement before we dis-

cuss work that applies machine learning to other parts of the mi-

croarchitecture.

2.1 Cache Replacement

There has been no prior work that applies deep learning to the hard-

ware cache replacement problem, but replacement policies have

evolved from ever more sophisticated heuristic-based solutions to

learning-based solutions. Our work continues this trend.

Heuristic-Driven Solutions. Most prior cache replacement policies

use heuristics that are designed for commonly observed access pat-

terns [2, 7ś9, 17, 22, 28, 30, 33, 34, 38, 40, 41, 44, 49ś51, 54], leading

to variations of the LRU policy, the MRU policy, and combinations

of the two. Other heuristics are based on frequency counters [12,

31, 42] or re-reference interval prediction [22]. Still other heuristics

estimate the reuse distance of incoming lines, and they protect

lines until their expected reuse distance expires [2, 7, 8, 17, 51]. A

common drawback of all heuristic-based policies is that they are

customized for a limited class of known cache access patterns.

Learning-Based Solutions. State-of-the-art solutions [20, 21, 29,
55] take a learning-based approach, as they learn from past caching

behavior to predict future caching priorities. Such policies phrase

cache replacement as a binary classification problem, where the

goal is to predict whether an incoming line is cache-friendly or

cache-averse. For example, SDBP [29] and SHiP [55] monitor evic-

tions from a sampler to learn whether a given load instruction is

likely to insert cache-friendly lines. Instead of learning the behavior

of heuristic-based policies, Hawkeye [20] learns from the optimal

solution for past accesses. By providing oracle labels for past ac-

cesses, Hawkeye phrases cache replacement as a supervised learning

4A glider is a simple engineless aircraft that is built from the same principles of flight
that underlie more powerful and complex engined aircraft. The glider’s simplicity
stems from its reliance on more powerful aircraft to do the heavy lifting of getting it
to altitude.
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problem.5 Our work builds on Hawkeye, but we use deep learning

to design a better predictor than Hawkeye’s PC-based predictor.

Machine Learning-Based Solutions. There has been little previ-

ous work that applies machine learning to the cache replacement

problem. The most closely related solutions [27, 52] use an on-

line perceptron [43] to improve the accuracy of cache replacement

predictors. In particular, Teran et al. [27] use a perceptron predic-

tor with a short, ordered history of program counters as an input

feature. Glider also uses a perceptron with a history of program

counters, but it differs from Teran et al.’s solution in its input his-

tory representation. In particular, Glider uses an unordered history
of unique PCs, which provides two benefits. First, because it does

not include duplicate occurrences of the same PC, Glider uses an

effectively longer control-flow history (20 for Glider vs. 3 for per-

ceptron) for the same hardware budget. Second, by relaxing the

ordering requirement among these unique PCs, Glider trains much

faster than solutions that must learn the behavior of every distinct

ordering in different predictor entries.

More recently, Teran et al.’s perceptron was outperformed by

MPPPB [27], which uses offline genetic algorithms to choose rele-

vant features from a comprehensive list of hand-crafted features

that go beyond control-flow information. Our work differs from

MPPPB by identifying insights that lead to a more effective fea-

ture representation. In Section 5, we show that Glider outperforms

MPPPB, but the use of MPPPB’s features within a deep neural

network model is a promising avenue for future research.

Finally, in earlier work, Jiménez used genetic algorithms [25] to

modulate caching priorities for lines that hit in the cache. His work

is enlightening because it unifies the notions of cache insertion and

promotion, but his solution does not generalize well because it is

trained offline on a small number of programs.

2.2 Machine Learning in Computer
Architecture

Extremely simple machine learning algorithms, such as the percep-

tron [43], have been used in dynamic branch prediction [23, 24, 26].

For branch prediction, the use of perceptrons enabled the use of

long branch histories, which inspired many future academic and

commercial branch predictor implementations [45ś48].

Complex machine learning algorithms have been adopted di-

rectly to implement hardware predictors for shared resource man-

agement [5], prefetching [14, 39], and DRAM scheduling [19], but

these solutions are largely impractical given their large hardware

complexity and large training latencies.

3 BACKGROUND

Since our solution uses recurrent neural networks and attention

mechanisms, we now provide background on these topics.

3.1 The Hawkeye Cache

This paper builds on the Hawkeye cache replacement policy [20],

which phrases cache replacement as a supervised learning problem

5Supervised learning is a form of machine learning where the model is learned using
labeled data.

in which a predictor is trained from the optimal caching solution

for past cache accesses.

Figure 1 shows the overall structure of Hawkeye. Its main compo-

nents are OPTgen, which simulates the optimal solution’s behavior

to produce training labels, and the Hawkeye Predictor which learns

the optimal solution. The Hawkeye predictor is a binary classifier,

whose goal is to predict whether data loaded by a memory access is

likely to be cached or not by the optimal algorithm. Cache-friendly
data is inserted in the cache with high priority, and cache-averse
data is inserted with low priority.

OPTgen
Hawkeye 

Predictor
Last Level 

Cache

Computes OPT’s 

decisions for the past

Remembers past OPT 

decisions

Cache 

Access 

Stream

 OPT

 hit/miss

 

Insertion 

Priority

 

PC

Figure 1: Overview of the Hawkeye Cache.

Hawkeye uses the PC as a feature and maintains a table of coun-

ters to learn whether memory accesses by a given PC tend to be

cache-friendly or cache-averse. While the Hawkeye Cache has

been quite successfulÐit won the 2017 Cache Replacement Cham-

pionship [1]Ðits simple predictor achieves only 72.4% accuracy on

a set of challenging benchmarks.

3.2 Recurrent Neural Networks

Recurrent neural networks are extremely popular because they

achieve state-of-the-art performance for many sequential prediction
problems, including those found in NLP and speech recognition.

Sequential prediction problems can make predictions either for the

entire sequence (sequence classification) or for each element within

the sequence (sequence labeling). More technically, RNNs use their

internal hidden states h to process a sequence, such that the hidden

state of any given timestep depends on the previous hidden state

and the current input.

LSTM is a widely used variant of RNNs that is designed to learn

long, complex patterns within a sequence. Here, a complex pattern

is one that can exhibit non-linear correlation among elements in

a sequence. For example, noun-verb agreement in the English lan-

guage can be complicated by prepositional phrases, so the phrase,

łthe idea of using many layers" is singular, even though the prepo-

sitional phrase (łof using many layers") is plural.

We use LSTM because it has been successfully applied to prob-

lems that are similar to our formulation of caching, which we

describe in Section 4. For example, part-of-speech tagging and

name-entity recognition in NLP are both sequence labeling tasks

that aim to assign a label to each element of a sentence.

3.3 Attention Mechanisms

LSTM has recently been coupled with attention mechanisms, which
enable a sequence model to focus its attention on certain inputs.

For example, when performing machine translation from a source

language, say French, to a target language, say English, an attention
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mechanism could be used to learn the correlation between words in

the original French sentence and its corresponding English transla-

tion [36]. As another example, in visual question answering systems,

attention mechanisms have been used to focus on important parts

of an image that are relevant to a particular question [35].

Mathematically, a typical attention mechanism quantifies the

correlation between the hidden states ht of the current step and all

previous steps in the sequence using a scoring function which is

then normalized with the softmax function:

at (s) =
exp(score(ht ,hs ))∑
s ′ exp(score(ht ,hs ′))

(1)

where at (s) is the attention weight that represents the impact of the

past hidden state s on the current hidden state t . Different scoring

functions can be chosen [36], and the attention weights are further

applied to the past hidden states to obtain the context vector:

ct =
∑

s

atshs (2)

The context vector represents the cumulative impact of all past

hidden states on the current step, which along with the current

hidden states ht form the output of the current step.

4 OUR SOLUTION

Our solution improves the accuracy of Hawkeye. Since Hawkeye

learns from the optimal caching solution, improvements in the

Hawkeye predictor’s accuracy lead to replacement decisions that

are closer to Belady’s optimal solution, resulting in higher cache

hit rates.

To improve predictor accuracy, we note that modern replace-

ment policies [20, 29, 55], including Hawkeye, use limited program

contextÐnamely, the PCÐto learn repetitive caching behavior. For

example, if lines loaded by a given PC tend to be cache-friendly,

then these policies will predict that future accesses by the same PC

will also be cache-friendly. Our work aims to improve prediction ac-

curacy by exploiting richer dynamic program context, specifically,

the sequence of past memory accesses that led to the current mem-

ory access. Thus, we formulate cache replacement as a sequence
labeling problemwhere the goal is to label each access in a sequence

with a binary label. More specifically, the input is a sequence of

loads identified by their PC, and the goal is to learn whether a PC

tends to access lines that are cache-friendly or cache-averse.

There are two reasons why we choose to identify loads by their

PC instead of their memory address. First, there are fewer PCs, so

they repeat more frequently than memory addresses, which speeds

up training. Second, and more importantly, the size and learning

time of LSTM both grow in proportion to the number of unique

inputs, and since the number of unique addresses is 100-1000×

larger than the typical inputs for LSTM [36], the use of memory

addresses is infeasible for LSTM.

We now summarize our three-step approach:

(1) Unconstrained Offline Caching Model. First, we design

an unconstrained caching model that is trained offline (see

Section 4.1). Our offline model uses an LSTM with an atten-

tion mechanism that identifies important PCs in the input

sequence.We show that this model significantly outperforms

the state-of-the-art Hawkeye predictor.

(2) Offline Analysis. Second, we analyze the attention layer

and discover an important insight: Caching decisions de-

pend primarily on the presence of a few memory accesses,

not on the full ordered sequence (see Section 4.2). Thus, we

can encode our input feature (the history of PCs) more com-

pactly so that the important memory accesses can be easily

identified in hardware by a simple hardware-friendly linear

model.

(3) Practical Online Model. Third, we use the insights from

our analysis to build a practical SVM model that is trained

online to identify the few important PCs; this SVM model

comes close to the accuracy of the much larger and slower

LSTM (see Section 4.3). The online version of this SVMmodel

is essentially a perceptron.

4.1 LSTM with Scaled Attention

We now introduce our LSTM model that is designed for cache

replacement. At a high level, our LSTM takes as input a sequence of

load instructions and assigns as output a binary prediction to each

element in the sequence, where the prediction indicates whether

the corresponding load should be cached or not (see Figure 2).

LSTMPC1, PC2, …, PCn-1, PCn 1, 0, …, 1, 1

Input sequence Output labels

Figure 2: Our LSTM-based sequence labeling model takes

as input a sequence of PCs and produces as output cache-

friendly (1) or cache-averse (0) labels.

PC
-N+1

Y
1

Y
N

Binary Caching Decisions

PC
0

. . . . . . PC
N

. . . . . .PC
1

. . . . . .

Warmup Sequence

. . . . . . . . . . . .

Attention Layer

Embedding Layer

LSTM LSTM LSTM LSTM

Figure 3: The attention-based LSTM network architecture.

LSTM handles a sequence of input recurrently.

Figure 3 shows the network architecture of our LSTM model.

We see that it consists of three layers: (1) an embedding layer, (2) a
1-layer LSTM, and (3) an attention layer. Since PCs are categorical

in nature, our model uses a one-hot representation for PCs,6 where

the size of the PC vocabulary is the total number of PCs in the

6A one-hot representation is a bit-vector with exactly one bit set.
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program. However, the one-hot representation is not ideal for neural

networks because it treats each PC equally. So to create learnable

representations for categorical features like the PC, we use an

embedding layer before the LSTM layer. The LSTM layer learns

caching behavior, and on top of the LSTM we add a scaled attention

layer to learn correlations among PCs; we describe this layer in

Section 4.2. Figure 3 shows the attention layer at time step N .

Since the memory access trace is too long (see Table 2) for LSTM-

based models, we first preprocess the trace by slicing it into fixed-

length sequences of length 2N . To avoid losing context for the

beginning of each slice of the trace, we overlap consecutive se-

quences by half of the sequence length N . The first half of each

sequence is thus a warmup sequence that provides context for the

predictions of the second half of the sequence. In particular, for

a memory access sequence PC−N+1, ..., PCN , the first half of the

sequence PC−N+1 to PC0 provides context of at least length N for

PC1 to PCN . During training and testing, only the output decisions

Y1 to YN for time step 1, ..., N are collected from this sequence.

Table 5.6 shows our specific hyper-parameters.

4.2 Insights from Our LSTM Model

Our LSTM model is effective but impractical, so we conduct several

experiments to understand why our LSTM works well. First, we

note that the LSTM’s accuracy improves as we increase the PC

history length from 10 to 30, and the accuracy benefits saturate

at a history length of 30 (see Figure 14). This leads us to our first

observation:

Observation 1. Our model benefits from a long history of past
PCs, in particular, the past 30 PCs.

To gain even deeper insights into our attention-based LSTM

model, we use the scaled attention mechanism to find the source

of its accuracy. Our analysis of the attention layer reveals that

while the history of PCs is a valuable feature, a completely ordered

representation of the PC history is unnecessary. We now explain

how we designed the attention layer so that it would reveal insights.

Attention Layer Design. Our attention layer uses the state-of-the-

art attention mechanism with scaling [53] (see Equation 3). Our

scaled attention layer uses a scaled dot-product to compute the

attention weight vector at , which captures the correlation between

the target element and the source elements in the sequence; we define
a target element to be the load instruction for which the model

will make a prediction, and we define the source elements to be

the past load instructions in the sequence that the model uses to

make the prediction. Specifically, at is computed by first using a

scoring function to compare the hidden states of the current target

ht against each source element hs , before then scaling with a factor

f and normalizing the scores to a distribution using the softmax

function. The attention weight vector is then used to compute a

context vector, ct , which is concatenated with ht to determine the

output decision. In this paper, we use the dot product as the scoring

function.

at (s) =
exp(f · score(ht ,hs ))∑
s ′ exp(f · score(ht ,hs ′)

(3)

While the attention’s scaling factor was originally used to deal

with the growing magnitude of dot products with the input di-

mension [53], we find a new use of the scaling factor: A moderate

increase in the scaling factor forces sparsity in the attention weight

vectors but has minimal influence on accuracy. A sparse attention

weight vector indicates that only a few source elements in the se-

quence influence the prediction. For our caching model, we would

expect the attention weights to quantify the correlation between

the target memory access at time step N and the source memory
accesses from timesteps 1 to N − 1. Unfortunately, we find that the

attention layer without scaling (or scaling factor of 1) presents a

nearly uniform attention weight distribution, thus providing little

useful information. To avoid this uniform distribution, we increase

the scaling factor f to force the sparsity in attention weight dis-

tribution, thereby revealing dependences between source accesses

and target access.

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 4: Cumulative distribution function of attention

weight distribution for omnetpp.

Insights From The Scaled Attention Layer. Figure 4 shows for one
benchmark the cumulative distribution function of the attention

weight distributions with different scaling factors. Surprisingly,

we see that without losing accuracy, the scaled attention weight

distribution becomes biased towards a few source accesses, which

shows that our model can make correct predictions based on just a

few source memory accesses.

Figures 5(a) and (b) show the attention weight distributions for

100 and 10 consecutive memory accesses, respectively. Each row

represents the attention weight vector for one target memory ac-

cess; white boxes indicate strong correlation between source and

target, and black boxes indicate weak correlation. Figure 5(a) shows

that typically only a few source memory accesses have dominant

attention weights, indicating that only a few source memory ac-

cesses influence the caching decision of the target memory access.

Zooming in, Figure 5(b) shows that the same source memory access

has dominant attention weights for nearly every target, forming

an oblique line as its offset increases with the row index. Several
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Figure 5: Attention weight vectors of consecutive memory

accesses. The y-axis shows the indices of target memory ac-

cesses, and the x-axis shows the offset of source memory

accesses from the target. The white boxes show that tar-

get memory accesses are strongly correlated with just a few

source memory accesses.
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Figure 6: Accuracy for the original ordered sequence and the

randomly shuffled sequence.

oblique lines can be seen in Figure 5(a), which shows that a few

source accesses are important for almost every target access. There-

fore, we obtain our second observation:

Observation 2. Our model can achieve good accuracy by at-
tending to just a few sources.

From observation 2, we posit that optimal caching decisions

depend not on the order of the sequence but on the presence of

important PCs. To confirm this conjecture, we randomly shuffleÐfor

time step NÐour test sequence from time step 1 to N − 1; Figure 6

shows that this randomly shuffled sequence sees only marginal

performance degradation compared to the original, giving rise to

observation 3.

Observation 3. Prediction accuracy is largely insensitive to the
order of the sequence.

These observations lead to an important insight into the caching

problem.

Important Insight. Optimal caching decisions can be better pre-
dicted with a long history of past load instructions, but they depend
primarily on the presence of a few PCs in this long history, not the full
ordered sequence. Thus, with an appropriate feature design, caching
can be simplified from a sequence labeling problem to a binary classi-
fication problem.

To better understand the program semantics behind this insight,

we map source and target PCs back to the source code and find

that our model is able to learn high-level application-specific se-

mantics that lead to different caching behaviors of target PCs (see

Section 5.5).

4.3 Integer SVM and a k-sparse Binary Feature

Our insights reveal that it is possible to substitute the LSTM with a

simpler model that does not need to capture position and ordering

information within the input sequence. Therefore, we simplify our

input feature representation to remove duplicate PCs and to forego

ordering information, and we feed this simplified hand-crafted

feature into a hardware-friendly Integer Support Vector Machine

(ISVM). Note that since we remove duplicate PCs, our hand-crafted

feature can capture an effective history length of 30 PCs with fewer

history elements (5 in our experiments). We denote this compressed

history length as k .

In particular, we design a k-sparse binary feature to represent

PCs of a memory access sequence, where a k-sparse binary feature

has k 1s in the vector and 0s elsewhere. Specifically, the k-sparse

binary feature vector is represented as x ∈ {0, 1}u , where u is the

total number of PCs and the t th entry xt is a 0/1 indicator, denoting

whether the t th PC is within the sequence or not. For a given time

step, this vector shows the lastk unique PCs for the current memory

access. Figure 7 shows the one-hot representation and k-sparse

binary feature for two sequences. We see that regardless of the

order and the position of each PC, the k-sparse representations for

two sequences are identical. Thus, our feature design exploits the

fact that the order is not important for the optimal caching decision,

thereby simplifying the prediction problem.

We then use an SVM with the k-sparse binary feature. Since

integer operations are much cheaper in hardware than floating

point operations, we use an Integer SVM (ISVM) with an integer

margin and learning rate of 1. While several variations exist, we

use hinge loss as our objective function for optimization, which is

defined as
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Sequence 1: PC0, PC1, PC3

Sequence Representation: [1, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 0, 1]

k-sparse Binary Feature: [1, 1, 0, 1]

Sequence 2: PC3, PC1, PC0

Sequence Representation: [0, 0, 0, 1]

[0, 1, 0, 0]

[1, 0, 0, 0]

k-sparse Binary Feature: [1, 1, 0, 1]

Figure 7: Examples of k-sparse binary feature. For simplicity, the total number of PCs is 4 and k is 3.

l(x,y) = max(0, 1 − y ·wT
x) (4)

where w is the weight vector of the SVM and y ∈ {±1} is the

expected output.

Fact 1. With binary features, the use of gradient descent with
learning rate γ = 1

n for an integer n is equivalent to optimizing the
following objective function with learning rate 1.

l̃(x,y) = max(0,n − y ·wT
x) (5)

Suppose we are optimizing (4) with initial weight vector w(0),

and learning rate 1
n produces the trace w

(0)
,w

(1)
, . . . ,w

(m)
, . . ..

Then optimizing (5) with initial weight vector n ·w(0) and learning

rate 1 produces n ·w(0)
,n ·w(1)

, . . . ,n ·w(m)
, . . ., which means that

they give the same prediction on any training sample. Therefore,

by setting the learning rate to one, weight updates will be integral

and we can avoid floating point operations. Thus, ISVM trained

in an online manner is equivalent to a perceptron [52] that uses a

threshold to prevent inadequate training.

ISVM is more amenable to hardware implementation than a

vanilla SVM, and because it is a simpler model, it is likely to con-

verge faster than an LSTM model and to achieve good performance

in an online manner. In the following experiments, we use k = 5.

Thus, our Glider solution consists of the ISVM model and k-sparse

feature.

4.4 Hardware Design

Figure 8 shows the hardware implementation of Glider’s predictor,

which has two main components: (1) a PC History Register (PCHR)

and (2) an ISVM Table. The PCHR maintains an unordered list of

the last 5 PCs seen by each core; we model the PCHR as a small LRU

cache that tracks the 5 most recent PCs. The ISVM Table tracks the

weights of each PC’s ISVM; we model it as a direct-mapped cache

that is indexed by a hash of the current PC and that returns the

ISVM’s weights for that PC.

Each PC’s ISVM consists of 16 weights for different possible

PCs in the history register. To find the 5 weights corresponding to

the current contents of the PCHR, we create a 4-bit hash for each

element in the PCHR (creating 5 indices in the range 0 to 15), and

we retrieve the 5 weights at the corresponding indices. For example,

in Figure 8, the PCHR contains PC0, PC2, PC5, PC9 and PC15, and

we retrieve weiдht0, weiдht2, weiдht5 (not shown), weiдht9 (not

shown) andweiдht15 for both training and prediction. A detailed

storage and latency analysis is presented in Section 5.4.

We now discuss the operations of Glider’s predictor in more

detail. For details on other aspects of the replacement policy, in-

cluding insertion and eviction, we refer the reader to the Hawkeye

policy [20].

ISVM-1 

ISVM-2 

. 

. 

. 

PCcurrent 
PC0, PC2, PC5, PC9, PC15 

ISVM- n 

Weight 0 

Weight 1 

Weight 2 

Weight 15 

. 

. 

. 

Cache-Friendly or 

Cache-Averse ∑ 

PC History Register (PCHR) 

The ISVM Table 

Figure 8: The Glider predictor.

Training. Glider is trained based on the behavior of a few sam-

pled sets [20, 40]. On access to a sampled set, Glider retrieves

the weights corresponding to the current PC and the PCHR. The

weights are incremented by 1 if OPTgen determines that the line

should have been cached; it is decremented otherwise. In keep-

ing with the perceptron update rule [27, 52], the weights are not

updated if their sum is above a certain threshold. To find a good

threshold, Glider’s predictor dynamically selects among a fixed

set of thresholds (0, 30, 100, 300, and 3000). While this adaptive

threshold provides some benefit for single-core workloads, the

performance is largely insensitive to the choice of threshold for

multi-core workloads.

Prediction. To make a prediction, the weights corresponding

to the current PC and the PCHR are summed. If the summation

is greater than or equal to a threshold (60 in our simulations), we

predict that the line is cache-friendly and insert it with high priority

(RRPV=07). If the summation is less than 0, we predict that the line

is cache-averse and insert it with low priority (RRPV=7). For the

remaining cases (sum between 0 and 60), we determine that the line

is cache-friendly with a low confidence and insert it with medium

priority (RRPV=2).

5 EVALUATION

We evaluate our ideas by comparing in an offline setting our simple

ISVMmodel against a more powerful LSTMmodel (Section 5.2). We

then compare Glider against other online models, ie, against three

of the top policies from the 2nd Cache Replacement Championship

7The Re-Reference Prediction Value (RRPV) counter is used by many modern replace-
ment policies [20, 22, 55] and indicates the relative importance of cache lines.
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Table 1: Baseline configuration.

L1 I-Cache 32 KB, 8-way, 4-cycle latency

L1 D-Cache 32 KB, 8-way, 4-cycle latency

L2 Cache 256 KB, 8-way, 12-cycle latency

LLC per core 2MB, 16-way, 26-cycle latency

DRAM

tRP=tRCD=tCAS=24

800MHz, 3.2 GB/s for single-core,

and 12.8 GB/s for 4-core

Table 2: Statistics for benchmarks used in offline analysis.

# of # of # of Ave. # Ave. #

Program Accesses PCs Addrs Accesses Accesses

per PC per Addr

mcf 19.9M 650 0.87M 30K 22.9

omnetpp 4.8M 1498 0.44M 3.2K 10.9

soplex 9.4M 2348 0.39M 3.9K 24.1

sphinx 3.0M 1698 0.11M 1.7K 27.3

astar 1.2M 54 0.31M 22K 3.8

lbm 5.0M 55 0.71M 90K 7.0

(Section 5.3), before discussing the practicality of our solution (Sec-

tion 5.4).

5.1 Methodology

Simulator. We evaluate our models using the simulation frame-

work released by the 2nd JILP Cache Replacement Championship

(CRC2), which is based on ChampSim [1] and models a 4-wide

out-of-order processor with an 8-stage pipeline, a 128-entry re-

order buffer and a three-level cache hierarchy. Table 1 shows the

parameters for our simulated memory hierarchy.

Benchmarks. To evaluate our models, we use the 33 memory-

sensitive applications of SPEC CPU2006 [15], SPEC CPU2017, and
GAP [3], which we define as the applications that show more than

1 LLC miss per kilo instructions (MPKI). We run the benchmarks

using the reference input set, and as with the CRC2, we use Sim-

Point to generate for each benchmark a single sample of 1 billion

instructions. We warm the cache for 200 million instructions and

measure the behavior of the next 1 billion instructions.

Multi-Core Workloads. Our multi-core experiments simulate four

benchmarks running on 4 cores, choosing 100 mixes from all possi-

ble workload mixes. For each mix, we simulate the simultaneous

execution of the SimPoint samples of the constituent benchmarks

until each benchmark has executed at least 250M instructions. If a

benchmark finishes early, it is rewound until every other applica-

tion in the mix has finished running 250M instructions. Thus, all the

benchmarks in the mix run simultaneously throughout the sampled

execution. Our multi-core simulation methodology is similar to

that of CRC2 [1].

To evaluate performance, we report the weighted speedup nor-

malized to LRU for each benchmark mix. This metric is commonly

used to evaluate shared caches [1, 20, 27] because it measures the

overall performance of the mix and avoids domination by bench-

marks of high IPC. The metric is computed as follows. For each

program sharing the cache, we compute its IPC in a shared envi-

ronment (IPCshared ) and its IPC when executing in isolation on

the same cache (IPCsinдle ). We then compute the weighted IPC of

the mix as the sum of IPCshared /IPCsinдle for all benchmarks in

the mix, and we normalize this weighted IPC with the weighted

IPC using the LRU replacement policy.

Settings for Offline Evaluation. Since LSTM and SVM are typically

trained offlineÐrequiring multiple iterations through the entire

datasetÐwe evaluate these models with traces of LLC accesses,

which are generated by running applications through ChampSim.

For every LLC access, the trace contains a (PC, optimal decision)

tuple. The optimal decisions are obtained by running an efficient

variant of Belady’s algorithm [20]. Because these models require

significant training time, we run our offline learning models on

250 millions of instruction for a subset of single-core benchmarks.

These benchmarks are statically summarized in Table 2. For offline

evaluation, we use the first 75% of each trace for training and the last

25% for testing. The models evaluated in this section are insensitive

to the split ratio, as long as at least 50% is used for training. For

offline evaluation, models are iteratively trained until convergence.

Baseline Replacement Policies. Using the offline settings, we com-

pare the accuracy of the attention-based LSTM and the offline ISVM

models to two state-of-the-art hardware caching models, namely,

Hawkeye [20] and Perceptron [52].

Hawkeye uses a statistical model that assumes that memory

accesses by the same PC have the same caching behavior over a

period of time. In particular, Hawkeye uses a table of counters,

where each counter is associated with a PC and is incremented or

decremented based on optimal decisions for that PC. Perceptron

uses a linear perceptron model with a list of features including the

PC of the past 3 memory accesses.

The Perceptron model respects the order of these PCs, but we

find that using longer PC histories with order is not as effective as

without order. For a fair comparison of PC history as the feature,

we implement an SVM with the same hinge loss for Perceptron that

uses the PC of the past 3 memory accesses, respecting the order,

and that learns from Belady’s optimal solution.8

To evaluate Glider as a practical replacement policy, we com-

pare Glider againstHawkeye [20], SHiP++ [56] andMPPPB [27],

which are the first, second and fourth finishers in the most recent

Cache Replacement Championship (CRC2) [1]. For all techniques,

we use code that is publicly available by CRC2. For single-thread

benchmarks, we also simulate Belady’s optimal replacement policy

(MIN) [4].

5.2 Comparison of Offline Models

Figure 9 compares the accuracy of our models when trained offline.

We see that (1) our attention-based LSTM improves accuracy by

10.4% over the Hawkeye baseline and (2) with a 9.1% accuracy

improvement over Hawkeye, our offline ISVM comes close to the

8Although our implementation of Percepton has now become quite different from the
original implementation in terms of the features, model, and labeling, we still refer
to this model as Perceptron in the offline comparison because it is inspired by that
work [52].
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performance of LSTM. These results confirm our insight that we

can approximate the powerful attention-based LSTMwith a simpler

hardware-friendly predictor.
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Figure 9: Accuracy comparison of offline predictors.
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Figure 10: Accuracy comparison of online predictors.

5.3 Comparison of Online Models

We now compare the accuracy and speedup of our practical models

when trained online as the program executes, i.e., we compare

Glider against Hawkeye, SHiP++, and MPPPB.

Online training accuracy. Figure 10 shows that Glider is more

accurate than state-of-the-art online models, including Hawkeye

(88.8% vs. 84.9%). On the subset of benchmarks used for training the

offline models, the accuracy improves from 73.5% to 82.4%, which

is similar to the offline improvements from 72.2% to 81.2%. Thus,

Glider is as effective as the offline attention-based LSTM model,

and insights from offline training carry over to online predictors.

Single-Core Performance. Figure 11 shows that Glider signifi-

cantly reduces the LLC miss rate in comparison with the three

state-of-the-art replacement policies. In particular, Glider achieves

an average miss reduction of 8.9% on the 33 memory-intensive

benchmarks, while Hawkeye, MPPPB, and SHiP++ see miss reduc-

tions of 7.1%, 6.5%, and 7.5%, respectively. Figure 12 shows that

Glider achieves a speedup of 8.1% over LRU. By contrast, Hawk-

eye, MPPPB, and SHiP++ improve performance over LRU by 5.9%,

7.6%, and 7.1%, respectively. These improvements indicate that even

though our insights were derived from an offline attention-based

LSTMmodel, they carry over to the design of practical online cache

replacement policies.

Multi-Core Performance. Figure 13 shows that Glider performs

well on a 3-core system as it improves performance by 14.7%, com-

pared with the 13.6%, 11.4%, and 13.2% improvements for Hawkeye,

SHiP++, and MPPPB, respectively, indicating that our features and

insights are applicable to both private and shared caches.

Effective Sequence Length. Figure 14 shows the relationship be-

tween history length and offline accuracy, where the sequence

length for the attention-based LSTM ranges from 10 to 100, and the

number of unique PCs (k value) for offline ISVM and the number of

PCs for Perceptron range from 1 to 10. We make three observations.

First, the LSTM benefits from a history of 30 PCs, which is signifi-

cantly larger than the history length of 3 considered by previous

solutions [52]. Second, the offline ISVM with only 6 unique PCs

approaches the accuracy of the attention-based LSTM; thus, the

k-sparse feature representation used by ISVM effectively captures

a long history with fewer elements, and this representation works

well even with a linear model. Third, the accuracy curve of the

perceptron, which uses an ordered PC history with repetition, does

not scale as well as our ISVM, and it saturates at a history length

of 4, indicating that the linear model does not work well with an

ordered history representation.

5.4 Practicality of Glider vs. LSTM

We now compare the practicality of the attention-based LSTM with

Glider along two dimensions: (1) hardware budget and (2) training

overhead.

Hardware Budget of Glider vs. LSTM. In Glider, we replace the

predictor module of Hawkeye with ISVM, keeping other modules

the same as Hawkeye. For a 16-way 2MB LLC, Hawkeye’s bud-

gets for replacement state per line, sampler, and OPTgen are 12KB,

12.7KB, and 4KB, respectively. The main overhead of Glider is the

predictor that replaces Hawkeye’s per-PC counters with ISVM. For

each ISVM, we track 16 weights, and each weight is 8-bit wide. Thus,

each ISVM consumes 16 bytes. Since we track 2048 PCs, Glider’s

predictor consumes a total of 32.8KB. The PCHR with the history of

past 5 accesses is only 0.1KB. Thus, Glider’s total hardware budget

is 61.6 KB. Note that the attention-based LSTM model is at least 3

orders of magnitude more expensive in terms of both storage and

computational costs. (See Table 3.)

Since the Glider predictor requires only two table lookups to

perform both training and prediction, its latency can be easily

hidden by the latency of accessing the last-level cache.

Convergence Rate of Glider vs. LSTM. As discussed, deep learning
models, such as LSTM, typically need to train for multiple iterations

to converge. For caching, training over multiple iterations would

imply that a trace of LLC accesses would need to be stored for

training iterations, which is infeasibly expensive. Instead, for cache

replacement, we need the machine learning model to train in an
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Figure 11: Miss rate reduction for single-core benchmarks.
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Figure 12: Speedup comparison for single-core benchmarks.

Table 3: Model size and computation cost. LSTM uses floating point operations; the other models use integer ops.

Model Model Size (in KB)
Computational Cost per Sample (# operations)

Training Test

LSTM (predictor only) ∼ 5 × 103 ∼ 2.4 × 103 ∼ 0.12 × 103

Glider 62 8 8

Perceptron 29 9 9

Hawkeye 32 1 1

online manner, that is, by making a single pass over the input

data. Figure 15 shows that with offline training, our offline ISVM

achieves good accuracy in one iteration, while the LSTM takes

10-15 iterations to converge. We also see that online models, such

as, Perceptron and Hawkeye, converge fast but have the limited

accuracy.
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On the Practicality of Deep Learning for Caching. The main bar-

riers to the use of deep learning models for hardware prediction

are model size, computational cost, and offline training. The model

size of our attention-based LSTM is at least 1 megabyte, which

significantly exceeds the hardware budget for hardware caches. In

addition, LSTM typically requires floating-point operations, while

models such as Perceptron and ISVM use integer operations. For-

tunately, recent studies [13, 18] have shown the great potential of

reducing the model size and computational costs by 30× to 50×

through model compression techniques, such as quantization, prun-

ing, and integerization/binarization. However, these models need

to be pre-trained offline before being compressed and deployed,

which is difficult for hardware prediction problems where program

behavior varies from benchmark to benchmark and even from one

input to another input of the same benchmark. Given their problem

with underfitting (poor performance in the first 10 iterations) as

shown in Figure 15, it’s clear that even with further compression

techniques, deep learning models are still not ready for direct use

in hardware predictors.

5.5 Learning High-Level Program Semantics

Our attention-based LSTM model is able to learn high-level pro-

gram semantics to better predict the optimal caching solution. For

example, for the omnetpp benchmark that simulates network pro-

tocols such as HTTP, the model discovers that certain types of

network messages tend to be cache-friendly, while other types of

messages tend to be cache-averse. Furthermore, the model discov-

ers this relationship by distinguishing the different control-flow

paths for different types of messages.

Table 4: The attention-based LSTM model improves accu-

racy for four target PCs in scheduleAt()method, and all four

target PCs attend to the same source PC.

Target PC Source PC Hawkeye’s Attention-based

Accuracy(%) LSTM’s

Accuracy (%)

44c7f6 44e141 74.8 90.1

4600ec 44e141 53.2 94.1

44dd98 44e141 67.1 92.3

43fb10 44e141 73.4 91.0

More specifically, consider the scheduleAt() method, which is

frequently called inside omnetpp to schedule incoming messages

at a given time t . The scheduleAt() method takes as an argument

a message pointer, and it dereferences this pointer resulting in a

memory access to the object residing at the pointer location (see

Figure 17). Table 4 shows the model’s accuracy for four target

load instructions (PCs) that access this object. We see that (1) the

attention-based LSTM model significantly improves accuracy for

all four target PCs, and (2) all four target PCs share the same anchor
PC (the source PC with the highest attention weight).

To understand the accuracy improvement for the target PCs

in the scheduleAt() method, Figure 16 shows that scheduleAt() is
invoked from various locations in the source code, with each invoca-

tion passing it a different message pointer. We find that the anchor

PC belongs to one of these calling methods, called scheduleEn-
dIFGPeriod(), implying that load instructions in the scheduleAt()
method tend to be cache-friendly when the scheduleAt() method

is called from scheduleEndIFGPeriod() with the endIFGMsg pointer,
whereas they tend to be cache-averse when scheduleAt() is called
from other methods with other message pointers. Thus, by correlat-

ing the control-flow histories of load instructions in the scheduleAt()
method, our model has discovered that the endIFGMsg object has
better cache locality than endJamSignal and endTxMsg objects.
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scheduleAt 

(time, message) 

sendJamSignal()
{

     ...

     scheduleAt (t, endJamMsg)

}

scheduleEndIFGPeriod()
{

     ...

     scheduleAt (t, endIFGMsg)

}

scheduleEndTXPeriod()
{

     ...

     scheduleAt (t, endTxMsg)

}

Function with anchor PC 40e141  

Function with target PCs 

Figure 16: The anchor PC belongs to one of the calling con-

texts for the target PCs.

C code for Source PC 44c7f6

1 int cSimpleModule::scheduleAt(simtime_t t,	cMessage *msg)

2 {

3 if	(t<simTime())

4 throw	new	cException(eBACKSCHED);

5 . . .

6 //	set	message	parameters	and	schedule	it

7 msg->setSentFrom(this,	-1,	simTime());

8 msg->setArrival(this,	-1,	t);

9 ev.messageSent(	msg );

10 simulation.msgQueue.insert(	msg );

11 return 0;

12 }

Assembly Code for Target PC 44c7f6

1 <_ZN13cSimpleModule10scheduleAtEdP8cMessage>:

2 44c730: 48	89	5c	24	e8 mov %rbx,-0x18(%rsp)

3 . . .

4 44c7f6: 48	8b	03 mov (%rbx),%rax

5 44c7f9: 48	89	ee mov %rbp,%rsi

6 44c7fc: 48	89	df mov %rbx,%rd

Figure 17: Source code and assembly code for target PC

44c7f6 in scheduleAt()method (lines in bold).

5.6 Model Specifications

The hyper-parameters for the attention-based LSTM model and

Glider are given in Table 5. Here we explain how we identify key

hyper-parameters, namely, the sequence length for the attention-

based LSTM model and the number of unique PCs (k) for Glider

and Perceptron.

For the offline ISVM, we consider step sizes n from 0.0001 to

1 with a multiple of 5 (0.0001, 0.0005, 0.001, 0.005, ...), and for the

corresponding Glider model we use an update threshold of 1
n with

a fixed step size of 1. To avoid the need to perform floating point

operations, no decay is used.

6 CONCLUSIONS

In this paper, we have shown how deep learning can help solve the

cache replacement problem. We first designed a powerful attention-

based LSTM model that uses the control-flow behavior of programs

to significantly improve the prediction of caching behavior. While

Table 5: Offline Model Specifications

LSTM

train/test split 0.75/0.25

embedding size 128

network size 128

Optimizer Adam

learning rate 0.001

Glider

k (# unique PCs) 5

step size 0.001

this solution is impractical for hardware cache replacement, we

have shown that we can interpret the LSTM model to derive an

important insight, and we have used this insight to design an SVM-

based predictor that (1) comes close to the accuracy of our LSTM

model, (2) is dramatically simpler than our LSTM model, and (3)

performs well in an online setting, i.e., as a hardware predictor.

The end result is Glider, a practical cache replacement policy that

provides accuracy and performance that is superior to the previous

state-of-the-art policies.

More broadly, our approach to arrive at Glider suggests that deep

learning can play a crucial role in systematically exploring features

and feature representations that can improve the effectiveness of

much simpler models, such as perceptrons, that hardware design-

ers already use. However, domain knowledge is critical for this

approach to work. In particular, the domain expert must formulate

the problem appropriately, supply relevant features to build an effec-

tive offline model, and use indirect methods to interpret the trained

model. Our paper illustrates one instanceÐcache replacementÐ

where this approach is successful. We hope that the insights and

techniques presented in this paper can inspire the design of similar

solutions for other microarchitectural prediction problems, such as,

branch prediction, data prefetching, and value prediction.
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