CS380L: Advanced Operating Systems
Final Project Report

Anubhav Goel (ag82989)
Aneesh Shetty (aks4724)

7 December 2022

Introduction

cp is the standard bash command used for copying files and directories in Linux.
The recursive flag cp -r is added if the copying task involves copying an entire
directory structure consisting of multiple files and folders. However a simple
strace of cp -r reveals several interesting points about its implementation.

1. cp -r first runs fstat on the source directory, to obtain the structure of
the directory to be copied.

2. cp -r sequentially calls open on each file in the source directory, creates
a new corresponding file in the destination directory using open, followed
by sequential calls of read and write.

3. cp -r uses the idea of synchronous 10, which essentially means that it
makes blocking read and write calls sequentially. Every subsequent call
will not be executed till the previous call has successfully returned. This
imposes a high overhead in terms of time.

4. cp -r calls close on the source and the destination file to conclude the
copying operation.

Note the call to fadvise with the flag POSIX_FAVD_SEQUENTIAL. This system
call tells the kernel that the source file will be read sequentially in the future
so that the kernel can do readahead and perform cache optimizations to favor
sequential reads.

Additionally, we note that the buffer size of reads and writes is 128 KB,
which might lead to optimization for calls where the file sizes are 128 KB.

newfstatat (AT_FDCWD, "source/file.txt", {st_mode=S_IFREG|0664,

«— st_size=1002, ...}, AT_SYMLINK_NOFOLLOW) = O
openat (AT_FDCWD, "source/file.txt", O_RDONLY|O_NOFOLLOW) = 3
newfstatat(3, "", {st_mode=S_IFREG|0664, st_size=1002, ...},

< AT_EMPTY_PATH) = O

openat (AT_FDCWD, "dest/file.txt", O_WRONLY|O_CREAT|O0_EXCL,
— 0664) = 4

newfstatat(4, "", {st_mode=S_IFREG|0664, st_size=0, ...},
< AT_EMPTY_PATH) = O

fadvise64(3, 0, 0, POSIX_FADV_SEQUENTIAL) = 0

read(3, "#!,/usr/bin/bash\n\n#_ sleep, 156\n# t"..., 131072) =
— 1002

write(4, "#!,/usr/bin/bash\n\n#_ sleep, 15\n# t"..., 1002) =
— 1002

read(3, "", 131072) =0

close(4) 0

close(3) 0

We write our own implementation to copy a directory recursively using the

idea of asynchronous 10. Asynchronous IO allows 1O operations to be processed
through non-blocking calls, that is, other calls and processes are allowed without
requiring a previous call to have returned successfully.
Linux has an existing asynchronous 10 interface called aio but it suffers from
various limitations including that it supports asynchronous IO only for 0_DIRECT
(or un-buffered) accesses. For this reason, we look at io_uring, a new interface
for asynchronous 10 operations which was introduced in Linux 5.1.

Using io_uring

The primary goal of io_uring is efficiency. To avoid copies of data in memory,
io_uring uses shared memory structures between the application and the kernel.
The memory structures are implemented as a pair of Single Produce Single
Consumer (SPSC) ring buffers, namely submission queue and completion
queue.

The application adds a read/write request to the tail of the submission queue
and updates it. The kernel reads requests from the head of the submission queue
and updates it. The requests are processes by the kernel and the completion
events are added to the tail of the completion queue, following which the kernel
updates the tail of the queue. Subsequently, the application reads the comple-
tion event from the head of the completion queue and updates it. The above set
of data structures and operations form the basis for copying files using io_uring.

Hypothesis

We write our own implementation for copying directory structures in Linux
mycp which utilizes io_uring to perform asynchronous reads and writes. We
expect the performance of mycp to be superior in comparison to the existing
implementation of cp -r in terms of the execution time for the above-mentioned
reasons. We plan to test our implementation over various file sizes and number
of files in the source directory to validate our hypothesis.

Design and Implementation

Data Structures
We create the following data structures for our implementation:

1. We create an Error class and Result class which we use for error handling,
we took inspiration for this class and the use of its variants from standard
Rust implementations.

2. We create a free_list class to allocate blocks for holding data associ-
ated with read/write requests. The size of the blocks allocated by the
free_list is a configurable parameter in our code.

3. We create a wrapped_fd class which is essentially a wrapper over file de-
scriptors to share it across workers. We create member functions to check
whether the file associated with a given fd is open or closed (is_fd-open()
and is_fd_closed()), as well asnotify_fd closed()) and ensure_fd_open().

4. We create an io_queue class which holds all functions for scheduling and
running copy jobs and workers. The main functions in this class are
add_one_worker () which creates a worker corresponding to a given data
block and adds it to a queue of pending workers and run_uring() which
submits copying to request to the io_uring submission queue.

5. We create a worker class which holds the data associated with one block.
Each worker corresponds to one read/write submission in the io_uring
which is done using the member function submit_read write_jobs().

Implementation

A flowchart demonstrating the key steps in our implementation has been added
below.

Create a copy job for
this file (each copy
job calls multiple
workers)

Each worker submits a
read/write request of a given |f«—
blocksize to the io_uring sqe

l

io_uring completes this request
using asynchronous 10 and adds
the completion event in io_uring cge

l

Create the corresponding folder Our program peeks at cqe to

in the destination directory and determine if workload corresponding
set this as source to a partcular worker was completed

successfully

If the filesystem
entry is a file

Traverse
filesystem with
the given source
argument as root

If the filesystem
entry is a folder

If it succeeds, If it doesn't, reschedule

terminate the worker the worker

Figure 1: Implementation flowchart for mycp

The implementation can be broken down into the following steps:

1. We traverse the source directory using

filesystem: :recursive_directory_iterator and check each directory
entry

(a) if the directory entry is a folder, we call mkdir at the corresponding
location in the destination directory

(b) if the directory entry is a regular file, we create add workers which
copy the file from the source to destination

(c) if the directory entry is not one of the above, we do not handle this
file type for the scope of this project

We traverse the source directory using Depth-First-Search.

2. For every file to be copied, we call fallocate using the file descriptor for
the file created at the destination with the size of the source file.

3. We maintain a free_list which we use for obtaining a block which forms
a single submission unit to the submission queue of io_uring.

4. For every block that we wish to copy, we create a worker corresponding
to it and this is represented by add_one_worker () call in our code. We
add this worker to the workers_pending _start queue which is protected
by a lock.

5. We create a separate thread in our main program which constantly looks
at the queue of workers which are pending and sends read and write
requests corresponding to the data that each worker is associated with.
This thread is created in start() function of our io_queue class. Sub-
sequently, run_uring() function submits requests to the io_uring corre-
sponding to each worker.

6. The run_uring() function picks the worker from the front of the queue
and pops the queue. This instance is represented by the need_to_add
variable.

7. For this instance, the member function submit_read write_jobs() is
called. The function calls io_uring prep_read() and io_uring prep_write()
which are a part of liburing.h library. An important implementation de-
tail at this point is that we use the IOSQE_IO_LINK flag to ensure that the
write operation is aborted automatically if the read operation
fails.

8. The run_uring() function peeks at the completion queue using
io_uring peek_cqe () and interprets the result of the completion event us-
ing cqe->user_data and cqe->res. Depending on the result, the worker
has executed successfully and the file is closed or there has been an error
and the worker is rescheduled.

9. A join() function finally cleans up the threads when all the workers have
finished running.

We make use of atomic keyword to declare sensitive variables and protect
worker queues using locks.

Evaluation

System Environment

We tested our implementation on our local systems which have the following
environments:

Anubhav’s PC
e Output of 1lscpu:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 39 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Vendor ID: GenuineIntel
Model name: Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz
CPU family: 6
Model: 158
Thread(s) per core: 1
Core(s) per socket: 4
CPU max MHz: 3500.0000
CPU min MHz: 800.0000
Caches (sum of all):
Li1d: 128 KiB (4 instances)
L1i: 128 KiB (4 instances)
L2: 1 MiB (4 instances)
L3: 6 MiB (1 instance)

Output of grep MemTotal /proc/meminfo:

MemTotal: 16268136 kB

Output of cat /proc/version:

Linux version 5.15.0-56-generic (buildd@lcy02-amd64-004) (
— gcc (Ubuntu 11.3.0-1ubuntul~22.04) 11.3.0, GNU 1d (GNU
< Binutils for Ubuntu) 2.38) #62-Ubuntu SMP Tue Nov 22
— 19:54:14 UTC 2022

Output of cat /sys/block/sdb/queue/rotational

1

Aneesh’s PC
e Output of lscpu:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 39 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Vendor ID: Genuinelntel
Model name: Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz
CPU family: 6
Model: 142
Thread(s) per core: 2
Core(s) per socket: 2
CPU max MHz: 3100.0000
CPU min MHz: 400.0000
Caches (sum of all):
L1d: 64 KiB (2 instances)
L1i: 64 KiB (2 instances)
L2: 512 KiB (2 instances)
L3: 3 MiB (1 instance)

e Output of grep MemTotal /proc/meminfo:

MemTotal: 8003252 kB

e Output of cat /proc/version:

Linux version 5.15.0-56-generic (buildd@lcy02-amd64-004) (
— gcc (Ubuntu 11.3.0-1ubuntul~22.04) 11.3.0, GNU 1d (GNU
< Binutils for Ubuntu) 2.38) #62-Ubuntu SMP Tue Nov 22
<5 19:54:14 UTC 2022

e Output of cat /sys/block/sdb/queue/rotational

1

Workloads and Experimental Results

In all results, a configuration of 128MB block size has been used in each block
in the ring. The ring size is 8 blocks (1 GB), and the maximum number of file
descriptors that can be open at any time is 900. Therefore, whenever the number
of files to be copied is significantly higher than this number, the performance of
mycp is negatively affected.

Time of Copy

We start by measuring the execution time of our implementation mycp and com-
pare it against baselines cp -r as well as rsync. We measure the execution time
of the methods against the number of files in the source directory for different
file sizes. We plot these values and the plots for 6 different file sizes, 128 KB,
400 KB, 1 MB, 4 MB, 16 MB, and 128 MB have been presented below. We use
/usr/bin/time to measure execution time and we use the following command
to clear caches to ensure a higher level of uniformity between the experiments
and simulate similar initial conditions for all the copy methods sudo bash -c
"echo 3 > /proc/sys/vm/drop_caches". Furthermore, we verify the correct-
ness of all our copy operations using diff -r.

128 KB Files 400 KB Files

Time (in seconds)

Time (in seconds)

[500 1000 1500 2000 2500 0 200 400 600 800 1000 1200
Number of Files Number of Files

1 MB Files 4 MB Files
100
80
El]
H]
g g 60
£ £
£ g
= £ 40
20
0
o 500 1000 1500 2000 2500 o 100 200 300 400 500 600
Number of Files Number of Files
16 MB Files 128 MB Files
80
60
70
50 -
60
€ E
£ 40 < 50
3 2
£ 30 £ 490
v o
= g%
20
20
104
10
01 0
0 50 100 150 200 250 2 4 6 8 10 12 14 16

Number of Files Number of Files

Figure 2: Copying times vs Number of files for different file sizes

As can be seen from the above plots, our implementation always does as well
as cp -r and rsync, if not significantly better in a majority of the experiments.
We also looked at performance for a small number of large files and observed
that our implementation continued to outperform cp -r. A table containing
our observations for execution times for large files is presented below.

Workload cp -r | rsync | mycp
Single file of 4 GB | 19.96s | 27.99s | 19.33 s
Single file of 8 GB | 25.68 s | 34.64 s | 19.56 s
Single file of 16 GB | 19.04 s | 26.62 s | 18.78 s

2 files of 4 GB 63.16 s | 72.74 s | 55.00 s

Table 1: Execution times for large files

We consider cases when the total size of the workload to be copied was the
same but the workload was split into varying number of files. We expected this
to be an interesting experiment since increasing number of files increases the
number of open, close, read and write system calls in cp -r. This does not
happen in mycp since io_uring essentially allows us to batch schedule a number
of system calls in the submission queue, thus reducing the number of switches
to kernel mode.

Same total workload (Size of each File = 1GB / Number of Files) Same total workload (Size of each File = 32MB / Number of Files)

6x10°

—— cp-r
rsync
—&— mycp
3x10% =
10° 4

10? 103 10° 10! 10? 10°
Number of Files (log scale) Number of Files (log scale)

4x10?

Time (in seconds) (log scale)
Time (in seconds) (log scale)

Figure 3: Copy times for same total workload

Figure 3 (left) shows the running time for a 1 GB workload, divided into
a number of files. As expected, with the increase in the number of files, the
overhead of system calls causes cp -r and rsync to slow down in comparison
to mycp. Notice that in this experiment, we don’t go much beyond the file de-
scriptor cap of 900.
We expect that increasing the number of files beyond this would cause con-
tention between the wrapped_fd structures to open their corresponding files,
which would cause mycp to slow down. Indeed this happens in the total work-
load of 32 MB with varying the number of files it is split into, as shown in Figure
3 (right).
So far, the experiments have been focusing on increasing the breadth of the
source directory (a high number of files in the source directory). We conduct
some experiments with regard to increasing depth in the source directory as
well. We write a bash script to make a source directory with a given depth
and place a single file inside the final folder. For example, a source directory
of depth 4 and placing a file of size 128 MB inside the final directory using the

10

above script gives the following output on using tree.

dir1/
dir2
dir3
dir4d
file_128MiB

3 directories, 1 file

However, in this case, we observe that the results show high variation. Our
implementation continues to consistently perform better than our baselines but
no clear dependence on depth can be observed. We also expect this since the
source directory walk happens in memory and does not involve I0. We have
presented the results here for completeness.

Time Variation with Depth

:Z +\/ A \/\ /

rsync
—— mycp

150 - W

125 T T T T

Time (in seconds)

= ~ ™ ™

~ o) i

o S o =)
| ! . L

Depth

Figure 4: Copy times variation with changing depth in source directory structure

Using SSD

We also experimented with running our code on SSD by moving our codebase to
tmp folder. Since SSD supports faster random reads and writes, we expect our
implementation to have a significant advantage. The plots from our experiments
have been shown below.

11

1 MB Files (55D)

1 MB Files (S5

—— cpr
rsync
1 - mycp

Time (in seconds)

D)

—— cpr
rsync
—e— mycp

101 4

Time (in seconds)

[500 1000 1500

Number of Files

2000

2500 102

Number of Files

Figure 5: Experiments run on SSD, regular scale (left) and log scale (right)

Memory Usage

One drawback which we noticed with our implementation compared to cp -r
and rsync is the high memory usage by our program. We measure the maximum
resident set size and observe that it is significantly high over all runs compared
to cp -r and rsync. As an example, we tabulate the values for one run which

involved copying 10 32 MB files.

Maximum RSS for cp -r
(in KB)

Maximum RSS for rsync
(in KB)

Maximum RSS for mycp
(in KB)

2742

4836

161035

Table 2: Maximum Resident Set Sizes for different copy methods

Additional Observations

During our experiments, we observed high variability in execution times of our
baselines cp -r and rsync compared to our implementation mycp. We believe
this is due to the low-level optimization that is present in the implementations
for these calls, however, we did not have the opportunity to investigate this
further under a formal hypothesis. However, we present our observation using
a simple measure of the standard deviation of the execution times of the three
methods over 10 runs of the following experiment: copying 50 4 MB files.

Copy Method

Execution Time
Standard Deviation

cp -r 0.67
rsync 0.59
mycp 0.08

Table 3: Standard deviation for execution times of different copy methods

12

The standard deviations for cp -r and rsync are ~ 25% of their means
whereas for our implementation, it is < 10% of the mean. We also plot the exe-
cution times to demonstrate the high variability of cp -r and rsync compared
to mycp.

Variability in Time of Copying

4.00 | ‘ — oo
rsync
3.75 —e— mycp

Time (in seconds)
Ind I w w w
wu ~ [=) [w
o w [s] w o
| | L L L

2.254

Experiment Number

Figure 6: Execution times of different copy methods over 10 runs

Conclusion

We observe that our implementation mycp outperforms cp -r and rsync across
a variety of workloads. We use this evidence to successfully validate our ini-
tial hypothesis that the use of io_uring for asynchronous IO can make read-
/write and subsequently copy operations faster. Additionally, our implementa-
tion takes advantage of the faster random access provided by SSD and leverages
it for even higher performance.

Additionally, we observe that our implementation has significantly less variabil-
ity in execution time compared to cp -r and rsync. This makes our implemen-
tation suitable for applications that require high reliability in terms of the time
of copying over speed.

Improvements and Future Work

e Our current implementation does not handle symlinks within the source
directory structure. Given more time, we would have liked to handle this
case as well.

e Currently we make a simple fallocate call to allocate space for the entire
file size at the destination. We can improve this using different flags
associated with fallocate.

13

References

https

https:

https

https:

https

https:
https:

https:

https

https

https:

https:

://www.cs.utexas.edu/~rossbach/cs3801/1lab/project.html

//kernel.dk/io_uring.pdf

://developer.ibm.com/articles/l-async/

//man7.org/linux/man-pages/man2/fallocate.2.html

://man7.org/linux/man-pages/man2/readahead.2.html

//linux.die.net/man/2/fadvise
//wheybags.com/blog/wcp.html

//unixism.net/loti/

://github.com/axboe/fio

://stackoverflow.com/questions/615625015/how-to-build-1liburing

//www.tecmint.com/clear-ram-memory-cache-buffer-and-swap-space-on-linux/

//stackoverflow.com/questions/2336242/recursive-mkdir-system-call-on-unix

Appendix: Terminal Screenshots

As proof of our results, we have attached selected terminal screenshots. Al-
though most of our results have been averaged over 5 iterations, we have at-
tached screenshots containing a single iteration for readability.

ch.sh 1 16MiB 128 true

axDataRate:

Figure 7: Terminal screenshot showing the significant advantage of our imple-
mentation compared to cp -r and rsync. The high maximum RSS for mycp is
also evident in this screenshot.

14

https://www.cs.utexas.edu/~rossbach/cs380l/lab/project.html
https://kernel.dk/io_uring.pdf
https://developer.ibm.com/articles/l-async/
https://man7.org/linux/man-pages/man2/fallocate.2.html
https://man7.org/linux/man-pages/man2/readahead.2.html
https://linux.die.net/man/2/fadvise
https://wheybags.com/blog/wcp.html
https://unixism.net/loti/
https://github.com/axboe/fio
https://stackoverflow.com/questions/61525015/how-to-build-liburing
https://www.tecmint.com/clear-ram-memory-cache-buffer-and-swap-space-on-linux/
https://stackoverflow.com/questions/2336242/recursive-mkdir-system-call-on-unix

Figure 8: Terminal screenshot showing significant time advantage in copying a
single large file (Single file of 1 GB) (SSD)

Figure 9: Terminal screenshot showing significant time advantage in copying a
large number of small files (1024 files of 32 KB) (SSD)

Figure 10: Terminal screenshot showing significant time advantage in copying
a large number of small files (4096 files of 32 KB) (SSD)

15

Figure 11: Terminal screenshot showing significant time advantage in copying
a moderate number of medium-sized files (16 files of 64 MB) (SSD)

Figure 12: Terminal screenshot showing significant time advantage in copying
a moderate number of medium-sized files (8 files of 128 MB) (SSD)

16

