
GNN: A Survey on Architectures and Optimizations

Saksham Goel, Aneesh Shetty, Anubhav Goel
{saksham,aneeshks,anubhavg}@cs.utexas.edu

The University of Texas at Austin

Abstract
Graph Neural Networks have achieved unprecedented
success in modeling graph-structured problems. However,
they are computationally expensive to train and use in
production. Practitioners are forced to compromise on
the size of their training graph and the depth & power of
their neural network. Consequently, a large number of
approximations and optimization techniques have been
developed over the last several years to overcome these
limitations. This survey is an attempt to systematically
classify these techniques, helping practitioners evaluate
holistically and apply them in a context-sensitive manner.
We compare and contrast key ideas from nine recent rep-
resentative papers that describe various optimized GNN
architectures, neighborhood sampling techniques, and
computational models for efficient training and deploy-
ment. In particular, this survey is organized as follows:
• Section 1 defines the general node classification
problem that GNNs aim to solve. It then describes
three popular GNN architectures along with their
limitations.
• Section 2 introduces the idea of neighborhood sam-
pling. It categorizes these techniques into four dis-
tinct classes, and describes the key ideas in each
class through several recent papers.
• Finally, Section 3 describes a novel computational
model to improve end-to-end GNN training perfor-
mance.

1 Architectures
GraphNeural Networks (GNNs) tackle the semi-supervised
problem of classifying nodes in an undirected graph
G = (V, E). This task has two inputs. First is the fea-
ture matrix 𝑋 ∈ R𝑁×𝐶 , where the row vector 𝑋𝑖 denotes
the features of the ith node. 𝐶 is the number of features
per node, and 𝑁 = |V| is the number of nodes in the
graph. The second input is the true labels of only some
nodes, where the label for the 𝑗 th node is represented as
another vector 𝑍 𝑗 ∈ R𝐵. The goal is to learn the labels
of all nodes, i.e., 𝑍 ∈ R𝑁×𝐵 . More concretely, we wish to
learn a function 𝑓 such that

𝑍 = 𝑓 (𝑋,G) (1)

using the given true labels. A well studied instantiation
of this problem is image classification, where the pixels

are arranged in a lattice. Graph node classification gen-
eralizes this problem for structured, non-Euclidean data,
with the underlying belief that this structure contains
additional information that is not captured by the per-
node input features. Examples include social networks,
citation networks, web graphs, telecom networks, and
more.

The fundamental idea behind GNNs is to build a deep
neural network model to learn 𝑓 . We now discuss three
prominent classes of architectures to design such a neural
network.

1.1 Graph Convolution Networks
Graph Convolutional Network (GCN) is a GNN variant
that attempts to generalize Convolutional Neural Net-
works (CNNs), which have achieved phenomenal success
in image-related tasks [1–3]. The core building block
of CNNs is the discrete convolution operator, that is re-
peatedly used to apply a learned ‘filter’ on input features.
Discrete convolution exploits spatial locality between pix-
els, but it is only defined for lattice graphs. To extend this
to general graphs, [4] defines a graph Fourier Transform,
and [5] uses the convolution theorem to define a graph
convolution operator ∗G such that:

𝑔\ ∗G 𝑥 = 𝑈𝑔\𝑈
⊤𝑥 (2)

where 𝑔\ = 𝑑𝑖𝑎𝑔(\) is a filter parameterized by \ ∈ R𝑁 ,
𝑥 ∈ R𝑁 is a per-node signal (or feature), and 𝑈 is the
eigenvector matrix of the normalized laplacian of G1. Cal-
culating the eigen decomposition of the laplacian, and
multiplying 𝑈 in Equation 2 is computationally prohib-
itive for large graphs. As a result, [6] and [7] expand
graph convolution using Chebyshev polynomials and per-
form a series of first-order approximations to show that:

𝑔\ ∗G 𝑥 ≈ 𝑤 (�̃�−
1
2 �̃��̃�−

1
2)𝑥 (3)

where �̃� = 𝐴+𝐼𝑁 , i.e., the adjacency matrix with self loops
added. Similarly �̃� = 𝐷+𝐼𝑁 .𝑤 ∈ R is a single ‘weight’ that
approximates the effect of \ . Equation 3 only depends on
the neighbors of a node to compute its convolution with a
filter. Thus, it is inexpensive to compute and can be easily
parallelized. We omit the details of this approximation
for brevity, and refer the reader to the original texts [4–7]
for a more comprehensive treatment.
1The laplacian of a graph is defined as 𝐷 − 𝐴, where 𝐷 and 𝐴 are the
degree and adjacency matrix respectively.

1

(a) An example undirected graph (b) Neural Network for the example graph with 𝐾 layers. Each layer has
a node for every vertex, and connects to its neighbors in the previous
layer.

Figure 1. Graph with its corresponding GNN

With the graph convolution operator defined, a neural
network convolutional layer can be defined as follows:

𝐻 (𝑘+1) = 𝜎
(
𝑔\ (𝑘+1) ∗G 𝐻 (𝑘)

)
≈ 𝜎

(
�̃�−

1
2 �̃��̃�−

1
2𝐻 (𝑘)𝑊 (𝑘+1)

)
(4)

or equivalently, as a per-node equation,

ℎ
(𝑘+1)
𝑣 ≈ 𝜎 ©«

∑︁
𝑢∈N(𝑣)∪{𝑣}

ℎ
(𝑘)
𝑢√︁

|N (𝑣) | · |N (𝑢) |
𝑊 (𝑘+1)ª®¬ (5)

This extends Equation 3 to work with multi-dimensional
features andmultiple filters. Here,𝐻 (𝑘) = [ℎ (𝑘)𝑣] ∈ R𝑁×𝑂𝑘 ,
and ℎ (𝑘)𝑣 is the activation (or features) of node 𝑣 at the
𝑘 th layer. 𝜎 (·) is a non-linear function (for example ReLU
or softmax).𝑊 (𝑘+1) ∈ R𝑂𝑘×𝑂𝑘+1 is the weight matrix be-
tween 𝑘 th and (𝑘 + 1)th layers that represents 𝑂𝑘+1 num-
ber of filters. Each filter convolves all 𝑂𝑘 input features
of neighboring nodes to produce a single output fea-
ture. N(𝑣) denotes the neighborhood set of node 𝑣 i.e.,
N(𝑣) = {𝑣 ′ | (𝑣 ′, 𝑣) ∈ E}. A variable number of such layers,
say 𝐾 , can be stacked together with the first and the last
layer matching the input and output dimensions respec-
tively. This means ℎ (0)

𝑖
= 𝑋𝑖 (and 𝑂0 = 𝐶) and ℎ (𝐾)

𝑖
= 𝑍𝑖

(and 𝑂𝐾 = 𝐵) for every node 𝑖. It is worth reiterating that
features of a node at layer 𝑘 + 1 only depends on layer
𝑘 nodes that are a single hop away in the graph. As a
result, more layers allow the network to incorporate the
effect of nodes that are farther away. Figure 1b shows the
schematic diagram of these layers for an example graph.

Similar to any other neural network, the𝑊 (𝑘) weight
filter matrix at each layer can be learned by gradient
descent. [7] defines a cross-entropy loss using only the

given true labels, indexed by the set 𝑌𝐿, as follows:

L = −
∑︁
𝑖∈𝑌𝐿

𝐵∑︁
𝑏=1

𝑍 true
𝑖𝑏

log(𝑍𝑖𝑏) (6)

where 𝑍 true and 𝑍 are the true and predicted labels re-
spectively. Similarly, [8] defines a loss function for the
unsupervised setting, i.e., when no true labels are avail-
able. It encourages nearby nodes to have similar repre-
sentations and penalizes similarity for disparate nodes.
Real world graphs grow dynamically and new unla-

beled nodes and edges may be added to a graph after the
weights matrices have been learned. Retraining weights
periodically from scratch using these new connections
may be infeasible. [8] shows that this may not be needed;
weights once learned on the original graph perform rea-
sonably well in predicting the labels of new nodes that
were not present in the training set.

1.2 Simple GCN
Simple GCN [9] (SGC) is the spiritual precursor of GCN,
although with the benefit of hindsight. It argues that
the neural network proposed by GCN is far too complex,
and a simpler architecture may be sufficient to learn
𝑓 in most cases. Specifically, it proposes removing the
non-linearity function from all layers except the last. As
a result, using Equation 4, the activation at the output
layer can be directly expressed as a simple function of
the input features:

𝐻 (𝐾) ≈ 𝜎
(
(�̃�− 1

2 �̃��̃�−
1
2)𝐾𝑋𝑊 (1)𝑊 (2) · · ·𝑊 (𝐾)

)
Moreover, the product of all the weight matrices can be
learned together as a singlematrix𝑊 =𝑊 (1)𝑊 (2) · · ·𝑊 (𝐾) .
This simplifies the expression to:

𝐻 (𝐾) ≈ 𝜎
(
(�̃�− 1

2 �̃��̃�−
1
2)𝐾𝑋𝑊

)
(7)

2

This simplified equation has several benefits. First, (�̃�− 1
2 �̃��̃�−

1
2)𝐾

can be precomputed; forward propagation reduces to ex-
actly two sparse-matrix multiplications (SpMM) along
with a final non-linear function such as softmax. This
is significantly more efficient than Equation 4, which
requires matrix multiplications for every layer. Second,
Equation 7 can be interpreted as logistic regression on
preprocessed input �̃� = (�̃�− 1

2 �̃��̃�−
1
2)𝐾𝑋 . The preprocess-

ing step incorporates features from nodes within 𝐾-hops.
Logistic regression is a convex optimization problem with
a global optima. It can be solved accurately and quickly
using Stochastic Gradient Descent. Together, these sim-
plifications result in a much lower memory footprint and
computational complexity.
Experiments validate this claim. SGC improves end-

to-end training and inference time by atleast an order
of magnitude on most major graph datasets [10] when
compared to GCN or even its optimized versions [11]
(discussed later). SGC is also remarkably competitive,
performing within 1% of other more complex architec-
tures in terms of test accuracy.

1.3 Other Architectures
Several recent papers have focused on designing other
alternative neural network architectures for the node
classification problem. The most prominent of these is
GraphSAGE [8], which templatizes Equation 5 as follows:

ℎ
(𝑘+1)
𝑣 = 𝜎 (Con(ℎ (𝑘)𝑣 ,Agg({ℎ (𝑘)𝑢 |𝑢 ∈ N (𝑣)})) ·𝑊 (𝑘+1))

(8)
Here, Agg(·) and Con(·) represent any generic aggre-
gate and concatenate functions respectively. Agg(·) ag-
gregates the activations of neighbors of a node. Con(·)
concatenates the aggregation with the node’s own pre-
vious activation. Specific instantiations of Agg(·) and
Con(·) include a variety of differentiable operators, be-
yond the one given in Equation 5. Table 1 shows a few
examples. In practice, ℎ (𝑘+1)𝑣 is also normalized to a unit
vector to prevent the exploding or vanishing gradient
problems.

Architectures Agg(ℎ1, · · · , ℎ𝑛) Con(ℎ𝑣, 𝑥)

GCN
∑
𝑖

ℎ𝑖√
N(𝑖)

ℎ𝑣
N(𝑣) +

𝑥√
N(𝑣)

GraphSAGE-mean
∑
𝑖

ℎ𝑖
ℎ𝑣+𝑥
N(𝑣)

GraphSAGE-pool max𝑖 (ℎ𝑖) ℎ𝑣 ∥𝑥
GraphSAGE-LSTM LSTM(ℎ1, · · · , ℎ𝑛) ℎ𝑣 ∥𝑥

Table 1. Different aggregate and concatenate functions

Experiments show that these new aggregation and con-
catenate functions improve prediction accuracy on most
datasets, presumably because of their higher expressive

capabilities. Out of all different aggregators presented,
the LSTM aggregator performs the best. The max pooling
operator also results in comparable performance while
being computationally inexpensive.
However, GraphSAGE pays for this with a loss in in-

terpretability. It moves away from the spectral theory
roots: it isn’t clear if any general aggregate function is
related to the approximation of the graph convolution
operator defined in Equation 3. Further, it is not clear
why non-symmetric aggregation functions like LSTM per-
form better, even though neighbors of a node have no
inherent order.

2 Stochastic Sampling
The GNN architectures described above do not scale to
real-world graphs with a large number of nodes and
edges. This scaling problem can be attributed to two
main reasons. First, the space and time complexity of
GNN training is proportional to the size of the graph. In
particular, the forward pass algorithm (Equation 8) de-
pends on the entire neighborhood of a node to compute
its activation. This leads to the worst-case time complex-
ity of O(|V|2) per layer, or O(𝐾 ∗ |V|2) for the entire
network. Further, backpropagation to compute gradients
using the loss function defined in Equation 6 requires
storing the activations of all neighbors of nodes in the pre-
vious layer. In the worst case, this has a space complexity
of O(𝐾 ∗ |V|).
Secondly, there is usually significant variance in the

sizes of neighborhoods of different nodes. This variance is
reflected in the time it takes to compute their activations
and gradients, making it hard to effectively parallelize
GNN training on GPUs.

To mitigate these training challenges, a series of papers
have introduced and extended the idea of “sampling”.
Sampling techniques approximate the effect of the full
neighborhood of a node with a small, randomized subset.
The size of this subset is usually bounded, resulting in a
much lower computational complexity. These techniques
can be broadly classified into three categories: node-wise,
layer-wise, and subgraph-wise. We now discuss a few
representative papers that highlight each of these classes.

2.1 Node-Wise Sampling
2.1.1 GraphSAGE. GraphSAGE [8] introduces the idea
of node-wise neighborhood sampling. It suggests uni-
formly sampling a subset from the set of neighbors of
each node at every layer in the network. The size of this
set is fixed for every node at a particular layer. Figure 2
shows example subsets of neighborhoods of different
nodes.. Let 𝑆𝑘 denote the size of the fixed-size subset that
is sampled at for the neighborhood of every node at layer
𝑘. Then, the space and time complexity is of the order

3

Figure 2. To compute the activation of the red node,
only some selected neighbors (green) are sampled and
aggregated. Similarly, for green nodes, only the blue
nodes are sampled.

O(Π𝐾
𝑘=1𝑆𝑘) per batch, i.e. for a single pass of forward and

backward propagation. 𝑆𝑖 , 𝑖 ∈ {1, 2, · · · , 𝐾} are hyperpa-
rameters that can be chosen by the user. The values of
𝑆𝑖 are chosen to be small enough so that Π𝐾

𝑘=1𝑆𝑘 << |V|2.
As a result, training GNNs using this sampling technique
is significantly more efficient.
Results and Limitations. For the experiments presented
in the paper, the authors show that increasing values of 𝑆𝑖
yield decreasing marginal benefits in accuracy. However,
the total training time grows super-linearly with 𝑆𝑖 . For
a two-layer network (𝐾 = 2), they choose 𝑆1 and 𝑆2 such
that 𝑆1 × 𝑆2 ≤ 500 for all datasets [10].
A major limitation of this work is that it does not ex-

plore sampling techniques beyond uniform sampling. Fur-
ther, it does not experiment with different-sized subsets
of neighbors for each node. A degree-dependent sam-
pling strategy could be a possible substitution for uniform
sampling.

2.1.2 PinSage. PinSage [12] is a large-scale deep rec-
ommendation engine that was developed and deployed
at Pinterest. PinSage combines the ideas of random walk
statistics and neighborhood-based aggregation to extract
important information from both of them. PinSage is
included as a part of this study due to the numerous im-
provements that it makes over GraphSAGE as well as its
demonstration of using the discussed methods in a prac-
tical setting, namely web-based recommender systems.

PinSage leverages some key ideas to improve the train-
ing of GCNs on large graphs which can be summarized
as follows:

1. On-the-fly convolutions: This idea is borrowed from
GraphSAGE wherein instead of using the entire
Laplacian of the graph during the convolution op-
eration, a smaller neighborhood (obtained from
node-wise sampling) is used.

2. Producer-consumer minibatch construction: This is
one of the main contributions of this paper which

ensures maximum GPU utilization. A large memory,
CPU-based producer can store the entire graph and
efficiently sample node neighborhoods as well as
fetch features required to define the convolution
whereas a GPU-based consumer model takes as
input the computation graphs formulated by the
producer and performs loss backpropagation.

3. Efficient MapReduce inference: This distributes the
trained model in such a way that generating infer-
ence minimizes computation.

The problem is organized as follows: users interact with
pins, which are visual bookmarks to online content on
Pinterest, such that can be organized into boards, on the
basis of thematic relationship. The recommendation task
is as follows: given a pin that has been marked by a user,
identify a closely related pin, that is, find related pins
to a given pin. The problem is modeled as a bipartite
graph with one set of nodes being the pins and the other
set being the boards. The edges connect pins which are
linked to various boards. The proposed algorithm aims to
find vector embeddings, i.e., activation of the final layer, for
each node and then recommendations can be made using
nearest-neighbor lookup algorithms in the embedding
space.
The forward pass for the algorithm looks the same as

Equation 8 with the exception that the neighborhood set
N(𝑣) is not sampled uniformly as in GraphSAGE. The con-
cept of importance-based neighborhoods is used instead,
that is, selecting nodes from the neighborhood of a node
that exert the most influence on it. To determine this, the
authors perform random walks starting at a given node 𝑢
and compute the 𝐿1-normalized visit count of the nodes
visited during the random walk.

For this paper, the authors consider the top𝑇 neighbors
for a given node in every layer (in contrast to 𝑆𝑘 for the
𝑘𝑡ℎ layer in GraphSAGE). Keeping track of the normalized
counts of the nodes visited during a random walk allows
the algorithm to aggregate their embeddings using a
weighted average (normalized counts) which takes into
account the influence of each neighbor. The authors refer
to this as importance pooling.
As mentioned earlier, the producer-consumer mini-

batch construction scheme is used to make maximum
utilization of CPU and GPU memory. The adjacency list
and the feature matrices for huge graphs are stored in
CPU memory where the random walks are performed. At
the beginning of each iteration, the features as well as
the weights associated with each minibatch are fed to
the GPU memory where the training happens.
Once the training is complete, fetching embeddings

for nodes during inference for huge graphs might still
introduce latency, especially in the case of the bipartite
graph in question, which requires computing embeddings

4

for the two sets of nodes in different ways. The authors
develop an inference procedure specific to this problem
(which uses pins and boards) whichworks in the following
steps:

1. The first step involves mapping all pins to the em-
bedding space using the trained model.

2. The second step involves aggregating (reducing) the
mapping of pins associated with a board to find out
the embedding of the board.

The authors introduce one final optimization idea to im-
prove training which is Curriculum Training. The idea is
that the model is fed harder and harder examples in each
epoch while learning so as to improve the learning curve
trajectory (in this case, a hard-to-learn example would
be a pair of nodes that are not significantly further apart
in the graph but should not be close in the embedding
space).
Results and Limitations. The authors define metrics for
measuring the performance of recommendation systems,
hit-rate and Mean Reciprocal Rank. PinSage achieves a
significantly higher performance for both of these metrics
against all of the measured baselines as well as the per-
formed ablation studies (using aggregation schemes that
do not make use of neighborhood weights in contrast to
importance pooling).
Additionally, the authors perform head-to-head user

studies against baselines where a user is presented with
two examples from PinSage and a baseline in addition
to a reference pin, and the user to asked to pick a rec-
ommendation based on the reference or assign them an
equal score. PinSage exhibits a higher win percentage
against all the baselines.
One major limitation of this work is that it focuses

on baselines such as visual and annotation embeddings
which make no use of the graph structure and hence, it
may not be fair to use them for comparison. The only
graph-based method that they use is Pixie which does
not use any neural network over the graph structure and
relies on randomwalks only. The other major limitation is
that even though the method makes use of CPU and GPU
runtimes, the authors report times for the GPU section
of the pipeline, and no CPU times are reported. The CPU
memory requirements (which are expected to be quite
high since the entire graph along with features and node-
wise neighborhood weights need to be stored) are not
mentioned as well.

2.2 Layer-Wise Sampling
While the node-wise sampling idea cut some cost, it still
suffers from the exponential expansion of neighbors. Fast-
GCN [11] was the first to present the idea to view graph
convolutions and the final loss as an integral transform

of the activation from one layer to another, and of sam-
pling a certain number of nodes in one sampling step.
To introduce layer-wise sampling, we recall the forward
propagation for graph convolutions from Equation 5 re-
stated as an integral:

ℎ (𝑘+1) (𝑣) = 𝜎
(∫
𝑢∈V′

𝐴(𝑢, 𝑣).ℎ (𝑘) (𝑢).𝑊 (𝑘+1) .𝑑𝑃 (𝑢)
)

(9)

Where𝐴(𝑢, 𝑣) = 𝐴(𝑢,𝑣)√
|N (𝑢) | |N (𝑣) |

is the normalized Laplacian

relation, and the activations at each layer are interpreted
as functions of the nodes. This integral is imagined to
be over an infinite graph G′ = (V′, E′). The actual graph
data G = (V, E) is assumed to be induced from this
infinite graph after sampling V from V′ using some
probability measure (V′, F , 𝑃). Each node is assumed
to be drawn from an iid random variable. Thus, using
some bootstrapped sampling distribution 𝑄 over V, the
integral becomes:

ℎ (𝑘+1) (𝑣) = 𝜎
(
`
(𝑘+1)
𝑄
(𝑣)𝑊 (𝑘+1)

)
(10)

where

`
(𝑘+1)
𝑄
(𝑣) = E𝑢∼𝑄

[
𝐴(𝑢, 𝑣).ℎ (𝑘) (𝑢). 𝑑𝑃 (𝑢)

𝑑𝑄 (𝑢)

]
(11)

In general, 𝑄 (𝑢) denotes the probability of sampling
node 𝑢 for layer 𝑘 conditioned on the sampled nodes
𝑣1, · · · , 𝑣𝑡𝑘+1 in layer 𝑘 + 1. Without loss of generality, as-
sume that the nodes are sampled starting from the top
layers to the bottom. To speed up forward propagation of
Equation 10, the paper uses Monte-Carlo approximation
to compute ` (𝑘+1) :

ˆ̀ (𝑘+1)
𝑄
(𝑣𝑖) =

1
𝑡𝑘

𝑡𝑘∑︁
𝑗=1

𝐴(𝑢 𝑗 , 𝑣𝑖).ℎ (𝑘) (𝑢 𝑗)
𝑄 (𝑢 𝑗 |𝑣1, · · · , 𝑣𝑡𝑘+1)

(12)

Here, ˆ̀ (𝑘+1)
𝑄
(𝑣𝑖) is the approximate expectation for layer

𝑘 + 1 for node 𝑣𝑖 , where 𝑢 𝑗 ∼ 𝑄 (𝑢 𝑗 |𝑣1, · · · , 𝑣𝑡𝑘+1) is the
probability of sampling node 𝑢 𝑗 in layer 𝑘 given nodes
𝑣1, · · · , 𝑣𝑡𝑘+1 in layer 𝑘 + 1. A variety of sampling methods
have been developed by analyzing different choice of 𝑄.
Typically, they aim to reduce the variance of the estimator
ˆ̀ (𝑘+1)
𝑄
(𝑣𝑖), i.e., find a sampling probability distribution

𝑄 that minimizes Var𝑄
[

ˆ̀ (𝑘+1)
𝑄
(𝑣𝑖)

]
. Other methods work

on different objectives, such as reducing the sparseness
of forward computation defined in this way.

2.2.1 FastGCN. FastGCN [11] is a method for train-
ing GCN that uses independent sampling of nodes in
each layer to reduce expensive computation. By inter-
preting the convolution operation in GCN as an integral
transformation of the embedding function, FastGCN esti-
mates node embeddings using the Monte Carlo approach,
which involves approximating embeddings by sampling

5

a certain number of nodes in each layer. This inductive
learning process achieves a significant speedup for GCN
training.
In FastGCN, the sampling is done independently for

each layer in a batched manner, and even within each
layer, the nodes are sampled independently. This makes
the sampling fast and efficient. To reduce the variance of
the estimator, FastGCN suggests an importance sampling
technique to alter the probability distribution. While the
optimal distribution to minimize Var𝑄

[
ˆ̀ (𝑘+1)
𝑄
(𝑣𝑖)

]
is ex-

pensive to compute since it depends on the parameters,
the paper suggests the sampling probability distribution:

𝑄 (𝑢) =

∑
𝑣∈V

𝐴(𝑣,𝑢)2∑
𝑢∈V

∑
𝑣∈V

𝐴(𝑣,𝑢)2
, 𝑢 ∈ V (13)

works well in practice in comparision against uniform
sampling distribution. Intuitively, the importance sam-
pling denotes that a node with higher in-degree has a
higher probability of being sampled. The sampling dis-
tribution is also independent of the layer, as well as the
nodes sampled in the layer till now. The algorithm sam-
ples 𝑡𝑘 nodes for each layer 𝑘 of the GCN according to 𝑄,
and the inter-layer connections are reconstructed using
the graph G to compute the forward pass for the sampled
nodes. This paper formally proves that the constructed
Monte-Carlo estimator is consistent, i.e., with increasing
the number of samples, the estimator ˆ̀ (𝑘+1)

𝑄
(𝑣𝑖) converges

to the expected value.
Results and Limitations. This method alleviates the
overhead of exponential expansion of neighborhood in
node-wise sampling method which had a complexity of
O(Π𝐾

𝑘=1𝑆𝑘) to a linear trend of O(∑𝐾
𝑘=1 𝑆𝑘) per batch. This

saves computation costs in both memory and time to
sample. This paper is the first to introduce a scalable
mini-batch procedure, and also formally shows the con-
verge theoretically and in practice onmost common graph
datasets. FastGCN also first describes a close to optimal
importance sampling method using the in-degree of the
node, for sampling nodes independently in each layer,
and across layers.
The paper evaluates the effective speed-up by com-

paring the total training time until convergence, against
the original GCN, batched GCN and GraphSAGE. They
find that FastGCN has orders of magnitude improvement,
particularly so for larger and dense graphs, e.g. on Reddit
FastGCN has the 5x speedup in training time compared
to GraphSAGE, and 100x speedup compared to batched
GCN implementation, while the original GCN implemen-
tation goes out of memory. FastGCN had a 15x speedup
to GraphSAGE on CORA and PubMed dataset.

They also report only a marginal difference in micro F1
scores in the downstream tasks for these datasets, with

a maximum deviation of only 0.01 from the best model
which was usually GraphSAGE.

A core limitation of FastGCN is that since the inter-layer
sampling is also independent, it may cause the situation
that the sampled nodes are not connected in two con-
secutive layers. While importance sampling might miti-
gate this effect a little, in general this can result in very
sparsely connected layers during forward propagation
and gradient computation. This can deteriorate training
and model performance.

2.2.2 LADIES. Layer Dependent Importance Sampling
(LADIES) builds directly on top of FastGCN to fix its
core limitation. It proposes a layer-dependent impor-
tance sampling approach to reduce sparsity in the inter-
layer connections introduced by independent sampling,
while also maintaining the linear trend in the memory
consumption.
To solve the above challenge, LADIES performs layer-

dependent sampling in a top-down manner. Given the
sampled vertices V (𝑘+1) = {𝑣1, · · · , 𝑣𝑡𝑘+1 } for layer 𝑘 + 1,
the probability of sampling 𝑢 in layer 𝑘 is given by:

𝑄 (𝑘) (𝑢 |V (𝑘+1)) =

∑
𝑣∈V (𝑘+1)

𝐴(𝑢, 𝑣)2∑
𝑢∈V

∑
𝑣∈V (𝑘+1)

𝐴(𝑢, 𝑣)2
, 𝑢 ∈ V (14)

Observe that if 𝑢 is not the neighbor of any of the nodes
sampled in the next layer 𝑘 + 1, then 𝑄 (𝑘) (𝑢 |V (𝑘+1)) = 0.
This means that LADIES only samples a node in layer 𝑘,
if it is a neighbor of some node in layer 𝑘 + 1. Moreover,
the importance sampling here intuitively denotes that a
node 𝑢 which connects to more nodes in layer 𝑘 + 1 has
a higher probability of being sampled for layer 𝑘. This
makes the computation graph for the batch dense, since
with high probability, a large number of edges will be
connected between layers.
Results and Limitations. LADIES maintains the linear
trend of O(∑𝐾

𝑘=1 𝑆𝑘) memory per batch, with a little in-
creasing in computation time due to dependence in sam-
pling from top layer to the next. This also makes the
sampled computation graph denser (more edges across
layer), thereby solving a major drawback of FastGCN.
This improves the rate of convergence of mini-batch gra-
dient descent and the training procedure.

The authors evaluate LADIES on the same datasets as
the others (CORA, PubMed, and Reddit) [10] and report
Micro F1 for downstream tasks, and the total training
time, per-batch computation time and memory usage.
They observe that layer-sampling methods like LADIES
and FastGCN are more robust to noisy and stochastic data
in the graphs compared to full batch methods. LADIES
has a time and memory complexity similar to FastGCN,
which are improvements over GCN and GraphSAGE. The
authors observe that for dense graphs like Reddit, their

6

Micro F1 score is a consistent improvement over Fast-
GCN under the observation that FastGCN can have many
sparse computation graphs due to its sampling procedure
not being neighborhood aware.

2.3 Subgraph-Based Sampling
When considering any node-wise or layer-wise sampling
method to select a subset of the neighborhood graph on
which to perform the training, it is important to note that
the nodes which are sampled for each mini-batch are
reused during every epoch of backpropagation. This mo-
tivates the selection of a mini-batch in such a fashion that
each mini-batch contains closely-connected subgraphs of
the entire graph.
The above insight can be formalized by the notion of

Embedding Utilization. Consider a GNN with 𝐾 layers.
Subsequently, consider a node 𝑖 at layer 𝑘 whose acti-
vation is used 𝑢 times for the computation of all node
activations at layer 𝑘 +1. Then, the embedding utilization
of this node at layer 𝑘 is defined as 𝑢. If we sample a
mini-batch by performing random sampling, we expect
the value of 𝑢 to be extremely small since graphs are
usually large and sparse.
ClusterGCN [13] is a framework that aims to sam-

ple nodes such that embedding utilization is maximized.
This, in turn, reduces computations per batch. This prob-
lem is solved by connecting embedding utilization to a
clustering objective. Consider a batch of nodes B that is
used across all the layers of the neural network. Denote
the subgraph formed by the nodes in B as GB . Since
GB is used to compute the activations in every layer, the
embedding utilization is equal to the number of edges
present in B. This motivates the design of B so as to maxi-
mize the number of edges within the batch and minimize
the number of edges between each batch.

ClusterGCN works as follows: for a graph G, partition
its nodes into 𝑐 groups V = [V1,V2, · · · ,V𝑐] where V𝑖
consists of the nodes in the 𝑖𝑡ℎ partition. This will give us
𝑐 subgraphs

Ḡ = [G1, · · · ,G𝑐] = [(V1, E1), · · · , (V𝑐 , E𝑐)],
where each E𝑖 consists of the edges only between the
nodes inV𝑖 . Using this, we can rewrite the adjacency ma-
trix (denoted as 𝐴) as a decomposition of 𝑐2 submatrices
as follows:

𝐴 = 𝐴 + Δ =

𝐴11 . . . 𝐴1𝑐
...

. . .
...

𝐴𝑐1 . . . 𝐴𝑐𝑐

 (15)

where

𝐴 =

𝐴11 . . . 0
...

. . .
...

0 . . . 𝐴𝑐𝑐

 ,Δ =

0 . . . 𝐴1𝑐
...

. . .
...

𝐴𝑐1 . . . 0

 (16)

where each diagonal block 𝐴𝑖𝑖 of size |V𝑖 | × |V𝑖 | contains
the links within G𝑖 . Δ contains the remaining off-diagonal
entries of 𝐴. Similarly, the feature vectors 𝑋 and labels
𝑍 can be partitioned as [𝑋1, · · · , 𝑋𝑐] and [𝑍1, · · · , 𝑍𝑐] re-
spectively according to the clusters. The block-diagonal
approximation results in the loss function being decom-
posable into batches. Using 𝐴 as the approximation of 𝐴
allows the forward and the backpropagation steps to be
written as matrix multiplications instead of neighborhood
search procedures.

Graph clustering methods such as Metis [14] and Gra-
clus [15] can be used to perform the clustering step to
create the batches as mentioned above. These methods
capture the community structure of the graph and pro-
mote in-cluster links, which is beneficial for two reasons:

1. The embedding utilization is equivalent to the num-
ber of edges in each cluster which are maximized
by the very construction of these methods.

2. If we approximate 𝐴 by 𝐴, then the error term
comes from the Δ matrix which denotes the edges
between the clusters which are minimized during
the cluster construction.

One consequence of using subgraph as the batch is that
the computation is essentially now broken down to a
subgraph level wherein a single batch can be loaded into
the memory and processed independently of the other
batches, leading to a more memory-efficient algorithm.
The above scheme completely disregards the edges

between the clusters (ignores Δ), and the authors re-
fer to it as the vanilla cluster-GCN scheme. Removing
these edges can lead to increased approximation error
in the gradients. However, there is a more fundamen-
tal problem with using clustering methods to obtain the
subgraphs. Clustering algorithms group similar nodes
together, which can lead to the distribution of the clus-
ters being different from the original graph, which can
lead to a bias in the estimate of the gradients. This is
confirmed by looking at the entropy distribution for each
cluster which in many cases, is not representative of the
overall entropy distribution, which leads to convergence
issues.

The workaround is as follows: cluster the graph into 𝑝
clusters keeping the value of 𝑝 very large. The batch B
can be constructed by sampling 𝑞 such clusters

B = V𝑖1 ∪V𝑖2 ∪ · · · ∪ V𝑖𝑞

where V𝑖 𝑗 is the 𝑗𝑡ℎ cluster (out of 𝑞 clusters which have
been sampled) for the 𝑖𝑡ℎ batch. Additionally, once this
sampling is complete, the edges between the different
clusters are added back.
Results and Limitations. Using the scheme where a
batch is composed of multiple clusters results in smaller
variance across the batches and reduces the bias in the

7

gradient computation. The overall effect is fast conver-
gence, low memory requirement, and low runtime. Ad-
ditionally, with this setup, the authors train deeper net-
works on huge graphs which was previously not possible
since the computation would result in an out-of-memory
error on the GPU. The deeper networks exhibit improved
performance.
One limitation of this work is that it is not applicable

to graphs when each node in the graph has a similar
degree. In this case, the clustering process will not be
possible and even if the clusters are obtained by random
sampling, the approximation error due to ignoring the
edges between the batches will be very high which will
result in convergence issues.

2.4 Heterogenous Sampling Method
The heterogeneous sampling method [16] (HetGNN) is
a new approach for handling heterogeneity in graphs
and improving training speed. This method focuses on
efficiently sampling from various types of nodes in a het-
erogeneous graph, which contains nodes and edges of
different types. A heterogeneous graph extends the defi-
nition of a regular graph such that G = (V, E,OV ,RE),
where OV and RE represent node and edge types. The
previously described Graph Neural Network approaches
are not directly applicable to heterogeneous graphs due to
two key properties: heterogeneity and semantics. Since
these graphs contain multiple types of nodes and rela-
tions, the aggregation function cannot be directly applied
to them. Additionally, they contain semantic informa-
tion that is implicitly captured by higher-order relations,
called meta-paths. Different meta-paths reveal different
semantics, serving as a way to observe the target node’s
local structure. In general, the relationships between
nodes in G are complex and imbalanced, resulting in
nodes having different numbers of neighbors and differ-
ent types of neighbors with unbalanced numbers. This
makes sampling neighbors and capturing neighborhood
representation a significant challenge.

GNNs typically aggregate features from a node’s direct
neighbors, as seen in §1. Concretely, directly extending
previous methods to heterogeneous graphs can cause the
following issues:

• They cannot capture equitable information from
different types of neighbors, resulting in insufficient
or incorrect representation
Suppose there is a heterogenous graphs of Authors,
their Publications, the Conferences of the papers
and Places (where the authors live as well as the
conferences). Directly applying a standard GNN
here will treat the author-location edges same as
author-publication edges and might also mix their
embeddings while aggregation. This can result in

a noisy learning with no grounding based on the
actual attribute of the node.
Moreover, just a neighbor aggregation might not
help to learn representation that encodes informa-
tion about k-hop neighbors where different hops
result in different types of nodes.
• These approaches are weakened by varying neigh-
borhood sizes and cannot aggregate content fea-
tures from heterogeneous neighbors. This leads to
noisy representation for nodes with a large degree
and many different kinds of neighbors and insuffi-
cient representation for nodes with a low degree
and mostly homogeouns neighbors.

To address these issues, HetGNN designed a new strat-
egy for sampling heterogeneous neighbors. This approach
is based on the random walk with restart (RWR) algo-
rithm and comprises of two steps that enable it to collect
neighbors of all node types and group neighbors with
the same content features:

1. Sampling fixed length RWR. It starts a randomwalk
from node 𝑣 ∈ V. The walk iteratively travels to
the neighbors of current node or returns to the
starting node with a probability 𝑝. RWR runs until
it successfully collects a fixed number of nodes,
denoted as RWR(𝑣). Note that numbers of different
types of nodes in RWR(𝑣) are constrained to ensure
that all node types are sampled for 𝑣 .

2. Grouping different types of neighbors. For each
node type 𝑡 , we select top 𝑘𝑡 nodes from RWR(𝑣)
according to frequency and take them as the set of
𝑡-type correlated neighbors of node 𝑣, denoted as
N𝑡 (𝑣).

This method avoids the discussed issues since RWR
collects all types of neighbors for each node. As a result, it
does not suffer from just the first-order approximation as
in other GNN methods. The sampled neighborhood size
of each node is fixed and only the most frequently visited
neighbors are selected, keeping the computation cost
low. This can work in tandem with other layer sampling
procedures for training since now a new neighborhood
set N𝑡 (𝑣) has been defined for each type 𝑡 . Neighbors
of the same type (having the same content features)
are grouped such that type-based aggregation can be
deployed.
Results and Limitations. The major advantage of Het-
erogenous GNN is that it allows the extensive use of
context data present in the nodes, jointly along with the
graph information. While the experiments done by the
paper are extensive over different heterogenous graph
settings in Citation and Conferences networks and rec-
ommendation networks, a major section of the paper
went into motivating architectures for neural networks
to create various kinds of encoding and combining the

8

encoders. The novelty in the paper is in the handling of
heterogenous data as neighbors of different kinds using
a Random Walk strategy to collect higher hop neighbors
which are of different types.

The authors evaluate HetGNN against other models
like GraphSAGE and GAT, and observe a relative improve-
ment of 5 - 10% in the efficacy of the generated embed-
dings for downstream tasks like recommendation, link
prediction and inductive node classification in heteroge-
nous graphs.

A limitation is that a major portion of the paper seemed
to tackle problems by increasing the capacity of the neu-
ral networks employed, and the authors do not note
down for a fair comparision with other GNN architec-
tures based on the capacity of the models (number of
parameters in the architecture). So it us unclear if the
improvement is because of the RWR sampling + type ag-
gregation procedure, or just due to the increase in model
capacity.

3 Removing Redundant Computations
Next, we describe a technique to improve the perfor-
mance of the forward pass algorithm without any loss
in accuracy. [17] identifies and describes a method to
reduce redundant computations in Equation 8. Their find-
ings are based on two key observations. First, they note
that most real-world graphs are clustered, i.e., nodes of-
ten have multiple common neighbors. For instance, social
networks evolve following the rule of triadic closure: if
the connections 𝑢 − 𝑣 and 𝑢 −𝑤 exist, there is a tendency
for the new connection 𝑣 − 𝑤 to be formed. Figure 1a
shows an example graph where nodes 𝐴 and 𝐵 have two
common neighbors – 𝐶 and 𝐷.
Second, the Agg(·) function can often be reduced to

repeated application of an associative binary operator on
neighbors. For instance, this binary operator is sum in
the case of GraphSAGE-mean:

Aggmean (ℎ𝑢, ℎ𝑣, ℎ𝑤) = Aggmean (ℎ𝑢,Aggmean (ℎ𝑣, ℎ𝑤))
= ℎ𝑢 + (ℎ𝑣 + ℎ𝑤) (17)

These two observations can be put together to identify
redundant computations in Equation 8. The aggregate
over the neighbors of any node can be reduced to the re-
peated application of a binary operator. Since nodes often
have common neighbors, several intermediate operands
of this binary operation are repeated. As an example,
consider a GraphSAGE-mean based neural network (see
Table 1) for the graph in Figure 1a. The (𝑘 + 1)th layer
activations of node 𝐴 and 𝐵 can be computed as follows:

ℎ
(𝑘+1)
𝐴

= 𝜎 (Con(ℎ (𝑘)
𝐴
, ℎ
(𝑘)
𝐵
+ (ℎ (𝑘)

𝐶
+ ℎ (𝑘)

𝐷
)) ·𝑊 (𝑘+1)) (18)

ℎ
(𝑘+1)
𝐵

= 𝜎 (Con(ℎ (𝑘)
𝐵
, ℎ
(𝑘)
𝐴
+ (ℎ (𝑘)

𝐶
+ ℎ (𝑘)

𝐷
)) ·𝑊 (𝑘+1)) (19)

Figure 3. An example HAG for the graph in Figure 1a. 𝐼
is an intermediate node that stores the aggregation of 𝐶
and 𝐷. This is used twice: to compute the activations of
𝐴 and 𝐵.

Clearly, (ℎ (𝑘)
𝐶
+ ℎ (𝑘)

𝐷
) is computed twice and is redundant.

In general, the number of redundancies scale with the
size of the graph.

[17] removes these redundancies by introducing inter-
mediate nodes in the graph. These intermediate nodes
store the result of partial aggregates such as (ℎ (𝑘)

𝐶
+ ℎ (𝑘)

𝐷
)

that can be reused during the computation of activa-
tions of nodes. Specifically, it introduces a modified graph
G′ = (V,V𝐴, E′) built using the original graph G.V𝐴 de-
notes a new set of intermediate nodes, and E′ is the
new edge set with edges between both sets of nodes.
Edges connected to or from intermediate nodes are di-
rected. This modified graph is called a HAG. For any
𝑣 ∈ V⋃V𝐴, the forward-pass algorithm is modified to
work with HAGs as follows:

𝑎
(𝑘+1)
𝑣 =

{
Agg({ℎ (𝑘)𝑢 |𝑢 ∈ N ′ (𝑣)})) 𝑣 ∈ V𝐴
ℎ
(𝑘)
𝑣 𝑣 ∈ V

(20)

ℎ
(𝑘+1)
𝑣 = 𝜎 (Con(ℎ (𝑘)𝑣 ,Agg({𝑎 (𝑘+1)𝑢 |𝑢 ∈ N ′ (𝑣)})) ·𝑊 (𝑘+1))

(21)

whereN ′ (𝑣) is the new neighborhood function according
to E′. Intuitively, 𝑎 (𝑘+1)𝑣 stores the aggregate of activations
of incoming nodes connected to an intermediate node
𝑣. This aggregate is then reused to calculate the next
layer’s activation of every outgoing node connected to
𝑣. Figure 3 shows a HAG corresponding to our example
graph. A HAG G′ is equivalent to a graph G iff for every
original node 𝑣 ∈ V, the expression of activation ℎ𝑣 is
equivalent in both the cases.

3.1 Building a HAG
We briefly cover the algorithm to build an equivalent
HAG starting from any general graph. The paper lim-
its the search space of equivalent HAGs by bounding
the maximum number of intermediate nodes that can
be introduced. In other words, |V𝐴 | ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, where
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 is a hyperparameter of the HAG building al-
gorithm. This bound is motivated by multiple reasons.

9

First, each additional intermediate node in the HAG has
a memory overhead to store 𝑎𝑣 2. Further, empirically,
the reduction in redundancy has diminishing marginal re-
turns as 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 increases; the additional time to search
in a larger space may outweigh the benefit at the frontier.
Finding the optimal HAG equivalent to a given graph,

i.e., the HAG that reduces the most number of redundant
computations with up to 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 intermediate nodes, is
NP-hard. This can be proven by a reduction from the well-
known maximum coverage problem. Worse, real-world
graphs have a large (≥ 107) number of edges. Any super
log-linear algorithm to build a HAG would be computa-
tionally infeasible.

To this end, [17] describes a simple (1− 1
𝑒
)−approximation

algorithm with time complexity O(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × |V| + |E| ×
log(|V|)). It initializes a HAG G′ = (V,V𝐴, E′) such that
V𝐴 = 𝜙 and E′ = E. The algorithm then proceeds in two
steps. First, it finds the pair of nodes with the maximum
overlapping neighborhood sets:

(𝑢∗, 𝑣∗) = argmax
𝑢,𝑣∈V

(|N ′ (𝑢) ∩ N ′ (𝑣) |) (22)

Then, it introduces a new intermediate node 𝑤 that cap-
tures the partial aggregate of all the common neighboring
nodes. The node and edge set can be updated as follows:

V𝐴 ←V𝐴 ∪ {𝑤} (23)
E′ ← E′ ∪ {(𝑤,𝑢∗), (𝑤, 𝑣∗)} ∪ {(𝑥,𝑤) |𝑥 ∈ N (𝑢) ∩ N (𝑣)}

(24)
E′ ← E′ − {(𝑥,𝑢∗), (𝑥, 𝑣∗) |𝑥 ∈ N (𝑢) ∩ N (𝑣)} (25)

These two steps are repeated until 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 number of
intermediate nodes are added.

3.2 Results and Limitations
This technique is almost universally beneficial. HAGs re-
duce the number of aggregation operations over the regu-
lar graph. Since the result of the computation remains the
same, there is no loss in accuracy. Further, the cost to com-
pute a HAG using the linear algorithm described above,
and its memory overhead, was found to be negligible in
several experiments. Results on standard graph datasets
[10] show that the end-to-end performance of training
and inference improves by 1.2 × −3× with 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 set
to |V |4 . The exact speedup depends on the sparsity and
clustering of the graph.

Notwithstanding these advantages, HAGs suffer from a
few limitations. For one, they require that the aggregate
function is associative. Recent GNN architectures such as
Graph Attention Networks [18] and Temporal GATs [19]
use complex non-associative aggregate functions; this
technique cannot be extended to such architectures as is.

2However, in practice, this memory overhead is negligible since memory
can be reused across layers.

Further, the paper provides little guidance on choosing
the right 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 hyperparameter. It also assumes that
the computational cost to aggregate several activations
together is the same as repeated pairwise aggregations.
This may not be true in the presence of SIMD vectoriza-
tion instructions on modern CPUs. A better cost model
beyond just reducing the number of aggregations can
incorporate such overheads.

References
[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[3] A. Howard, A. Zhmoginov, L.-C. Chen, M. Sandler, and M. Zhu,
“Inverted residuals and linear bottlenecks: Mobile networks for
classification, detection and segmentation,” in CVPR, 2018.

[4] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “Signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular
data domains,” CoRR, vol. abs/1211.0053, 2012. [Online].
Available: http://arxiv.org/abs/1211.0053

[5] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Proceedings of the 30th International Conference on Neural In-
formation Processing Systems, ser. NIPS’16. Red Hook, NY, USA:
Curran Associates Inc., 2016, p. 3844–3852.

[6] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets
on graphs via spectral graph theory,” Applied and Computational
Harmonic Analysis, vol. 30, no. 2, pp. 129–150, 2011. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S1063520310000552

[7] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” in International Conference
on Learning Representations, 2017. [Online]. Available: https:
//openreview.net/forum?id=SJU4ayYgl

[8] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representa-
tion learning on large graphs,” in Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems, ser.
NIPS’17. Red Hook, NY, USA: Curran Associates Inc., 2017, p.
1025–1035.

[9] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger,
“Simplifying graph convolutional networks,” in Proceedings of
the 36th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp.
6861–6871. [Online]. Available: https://proceedings.mlr.press/
v97/wu19e.html

[10] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[11] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph
convolutional networks via importance sampling,” in Interna-
tional Conference on Learning Representations, 2018. [Online].
Available: https://openreview.net/forum?id=rytstxWAW

[12] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton,
and J. Leskovec, “Graph convolutional neural networks for
web-scale recommender systems,” in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, ser. KDD ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 974–983. [Online]. Available:

10

http://arxiv.org/abs/1211.0053
https://www.sciencedirect.com/science/article/pii/S1063520310000552
https://www.sciencedirect.com/science/article/pii/S1063520310000552
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.mlr.press/v97/wu19e.html
http://snap.stanford.edu/data
https://openreview.net/forum?id=rytstxWAW

https://doi.org/10.1145/3219819.3219890
[13] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,

“Cluster-gcn: An efficient algorithm for training deep and large
graph convolutional networks,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, ser. KDD ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 257–266. [Online]. Available:
https://doi.org/10.1145/3292500.3330925

[14] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on scien-
tific Computing, vol. 20, no. 1, pp. 359–392, 1998.

[15] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without
eigenvectors a multilevel approach,” IEEE transactions on pattern
analysis and machine intelligence, vol. 29, no. 11, pp. 1944–1957,
2007.

[16] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla,
“Heterogeneous graph neural network,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, ser. KDD ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 793–803. [Online]. Available:
https://doi.org/10.1145/3292500.3330961

[17] Z. Jia, S. Lin, R. Ying, J. You, J. Leskovec, and A. Aiken,
“Redundancy-free computation for graph neural networks,” in
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, ser. KDD ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 997–1005.
[Online]. Available: https://doi.org/10.1145/3394486.3403142

[18] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
and Y. Bengio, “Graph attention networks,” in International
Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=rJXMpikCZ

[19] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and
M. Bronstein, “Temporal graph networks for deep learning on
dynamic graphs,” in ICML 2020Workshop on Graph Representation
Learning, 2020.

11

https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330961
https://doi.org/10.1145/3394486.3403142
https://openreview.net/forum?id=rJXMpikCZ

	Abstract
	1 Architectures
	1.1 Graph Convolution Networks
	1.2 Simple GCN
	1.3 Other Architectures

	2 Stochastic Sampling
	2.1 Node-Wise Sampling
	2.2 Layer-Wise Sampling
	2.3 Subgraph-Based Sampling
	2.4 Heterogenous Sampling Method

	3 Removing Redundant Computations
	3.1 Building a HAG
	3.2 Results and Limitations

	References

