
Replication Study: Controlled Generation using Diffusion-LM and
FUDGE

Anubhav Goel
Department of Computer Science
The University of Texas at Austin
anubhav.goel@utexas.edu

Devyani Maladkar
Department of Computer Science
The University of Texas at Austin

devyani.maladkar@utexas.edu

Abstract

With the recent explosion in the popularity of
large language models, controlling their behav-
ior has become an important problem. The
task of controlled generation, which entails
performing control on the output of a lan-
guage model without heavy retraining, has re-
ceived increased attention from the research
community in recent years. For this replication
study, we look at Diffusion-LM and FUDGE,
two popular methods for handling controlled
generation. This paper is organized as fol-
lows: we begin with an overview of the task
of controlled generation, followed by an expo-
sition of the principles and methodology un-
derpinning Diffusion-LM and FUDGE. Subse-
quently, we discuss various fine-tuning meth-
ods that serve as benchmarks for our investiga-
tion. Centering on semantic control and parts-
of-speech (POS) tagging tasks, we delineate
our experimental design to assess the afore-
mentioned models. We conclude this study
with an extensive analysis of the results that
we obtain and their direct comparison with ex-
isting implementations.

1 Controlled Generation

In recent years, the field of natural language pro-
cessing has witnessed a surge in the adoption and
popularity of language models, which can be at-
tributed to their remarkable ability to generate
human-like text. Models such as GPT-4 have spear-
headed this revolution, paving the way for numer-
ous applications spanning content generation, vir-
tual assistants, and sentiment analysis.
Despite these advancements, deploying language
models in real-world settings remains a challeng-
ing problem, with a focus on controlled generation,
which remains an open problem in this field. These
methods aim to address potential pitfalls such as
bias, offensiveness, and inaccuracy in generated
content by fine-tuning and monitoring models. We

underscore the importance of controlled generation
in harnessing the immense potential of language
models while mitigating the risks inherent in their
deployment across various applications.
More concretely, given a language model whose
outputs can be modeled as a probability distribu-
tion P (X) over natural language sequences X (or
P (X|I) given input I , such as in the case of ma-
chine translation task), and an attribute a, we would
like to sample outputs from the distribution P (X|a)
(or P (X|I, a)).
An initial approach to controlled generation is fine-
tuning the language model according to a given
control in a supervised learning setup, that is, given
(control, text) pairs, the model weights can be re-
trained. This poses several challenges, starting with
the fact that it requires heavy retraining of language
models for every control. It also requires access to
the entire model architecture which may not always
be available. Additionally, the above methodology
does not allow for the composition of controls ei-
ther (without another round of retraining). This
motivates the need for modular and lightweight
models for controlled generation.
While there has been some success in achieving
simple controls such as controlling the sentiment
of the output, more complex controls such as gen-
erating an output corresponding to a sequence of
POS tags or controlling the semantic content of
output remain challenging and is an open problem
in the field of natural language processing.
For this replication study, we look at Diffusion-LM
(using continuous diffusion to create a hierarchical
latent space representation which can be manipu-
lated using gradient-based methods to incorporate
the control) and FUDGE (Future Discriminators
for Generation) (using a classifier for attribute a in
conjunction with Bayes’ Rule to condition the out-
put of the model such that the control is satisfied).

2 Diffusion-LM

Diffusion-LM (Li et al., 2022) extends the idea of
continuous diffusions, which was previously suc-
cessfully applied to vision and audio domains, to
text. However, adapting this idea requires the addi-
tion of embedding steps and decoding steps to the
existing diffusion framework, learning the embed-
ding function as well as proposing techniques for
improved decoding. We begin with an overview of
diffusion models.

2.1 Diffusion Models for Continuous
Domains

Diffusion models are latent variable models which
work as follows: given data x0 ∈ Rd, it is modeled
as a sequence of latent variables xT , ..., x0, which
each latent variable in Rd and xT being a Gaussian
random variable. The key idea is to incrementally
denoise the sequence xT :1 to approximate the sam-
ples from the target data distribution. Additionally,
we model xT ∼ N (0, I) and the denoising process
is modeled as

p(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

where the µθ and Σθ are modeled by a deep learn-
ing framework such as a transformer.
Additionally, a forward process is defined which
computes the intermediate latent space representa-
tion x1:T . This is achieved by incrementally adding
Gaussian noise to the data, such that at step T , the
samples xT are approximately Gaussian. The for-
ward process can then be modeled as

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

where βt is a hyperparameter (amount of noise
added at step t). The forward process does not
contain any trainable parameters. The diffusion
model aims to maximize the marginal likelihood
of the data which leads to the following variational
lower bound on log(pθ(x0))

Lvlb(x0) = Eq(x1:T |x0)[log
q(xT |x0)
pθ(xT)

+ ΣT
t=2log

q(xt−1|x0, xt)
pθ(xt−1|xt)

− logpθ(x0|x1)].

However, this objective is numerically unstable and
is generally substituted by

L(x0) = ΣT
t=1Eq(xt|x0)‖µθ(xt, t)− µ̂(xt, x0)‖2

where µ̂(xt, x0) is the mean of the distribution
q(xt−1|x0, xt), which can be shown to be a closed
form Gaussian.

2.2 Diffusion Models for Language
Extending the above idea to discrete text, we need
an embedding function that maps each word to a
vector in Rd. An end-to-end framework is proposed
which learns the diffusion model parameters as
well as the word embedding function. Similarly,
we need to add a trainable rounding function as
well which can be used to decode text from the
continuous vector representation.
The decoder function is slightly harder to model
in this case, since the x0 obtained using the model
does not map exactly to a (unique) word. This
problem arises due to the fact that the loss does not
enforce a constraint on the structure of x0 to force
it to commit to one word, except at time steps near
t = 0. The workaround suggested for this problem
is to model x0 at every step and re-parametrize the
loss function as follows

L(x0) = ΣT
t=1Ext‖fθ(xt, t)− x0‖2

where fθ() denotes the model output. Forcing the
neural network to predict x0 at every step forces it
to learn the word embedding structure. The denois-
ing step can be written as follows in this case

xt−1 =
√
ᾱtfθ(xt, t) +

√
1− ᾱtε

where ᾱt = Πt
u=0(1− βu) and ε ∼ N (0, I). The

authors introduce a clamping trick, which maps
fθ(xt, t) to its closest word embedding at each step
such that the denoising equation now becomes

xt−1 =
√
ᾱtclamp(fθ(xt, t)) +

√
1− ᾱtε

which further forces commitment to a single word
and reduces decoding errors in the model.

2.3 Controllable Text Generation
The approach to controlling the output of the LM
is motivated by the Bayesian formulation and in-
stead of being performed on the discrete text, the
control is performed on the sequence of latent
representations x0:T . This control can be mod-
eled as decoding from the distribution p(x0:T |c) =
ΠT
t=1p(xt−1|xt, c) which at each time step can be

simplified by Bayes’ rule as follows

p(xt−1|xt, c) ∝ p(xt−1|xt)p(c|xt−1, xt)
∝ p(xt−1|xt)p(c|xt−1)

where the second term is simplified using condi-
tional independence assumption for diffusion mod-
els. The gradient update on xt−1 can now be tem-
platized as follows:

∇xt−1 logp(xt−1|xt, c) = ∇xt−1 logp(xt−1|xt)
+∇xt−1 logp(c|xt−1)

Fluency Regularization can be performed by multi-
plying one of the terms with a hyperparameter λ to
control the tradeoff between fluency and control.

2.4 Implementation

We trained the language model as well as all the
classifiers that we used in our experiments ground
up using the implementation provided by the au-
thors (Li et al., 2022) (Transformer architecture
with 80M parameters and diffusion steps (T) set to
2000).

3 FUDGE

Future Discriminators for Generation (Yang and
Klein, 2021) provides a flexible method for the
task of controlled text generation. Given attribute
a (for example sentiment) and a language model,
FUDGE uses Bayes’ rule to decompose the desired
conditional distribution P (x|a), to introduce con-
trol P (a|x) onto the output of the language model
P (x). This method requires access to the output
probabilities (logits) of the language model only.
In order to model P (a|x), a binary predictor is
learned which indicates whether the attribute a will
be satisfied in the final completed sentence, based
on the incomplete sentence prefix.
Let x = x1...n be a complete sentence where each
xi represents a word in the sentence (please note
the difference in notation from the previous sec-
tion where each xt denotes an intermediate latent
space representation of a sequence of words). The
language generation is done by an autoregressive
model which models P (xi|x1:i−1) (note that this is
in contrast to Diffusion-LM which does not use the
autoregressive model). We can obtain the entire se-
quence P (x) = P (x1:n) by sampling at each point
in the sequence using the below decomposition,

P (x1:n) =

n∏
i=1

P (xi|x1:i−1)

Consequently, it can be extended to model con-
trolled generation as follows

P (X = x1:n|a) =

n∏
i=1

P (xi|x1:i−1, a)

The Bayes’ rule gives us

P (xi|x1:i−1, a) ∝ P (a|x1:i−1)P (xi|x1:i−1)

P (a|x1:i−1) is modeled using the binary predictor
as mentioned earlier. The performance of the bi-
nary predictor is crucial to condition the output of
the language model. We train our classifier using
a dataset of the form (x1:n, a). However, the im-
portant point to note here is that we need to train a
future predictor, which is a classifier that can out-
put the probability of an attribute given not just
the complete sentence but incomplete prefixes of
the sentence as well. This makes designing such a
classifier challenging and necessitates the need to
train it on incomplete prefixes of the training data
as well ((x1:i, a), i < n).
Additionally, as in the previous section, we use a
hyperparameter λ to control the tradeoff between
fluency and control. This is referred to as the
temperature term in the Bayesian decomposition,
which controls the sensitivity of the generation to
the binary predictor’s output. With this term, the
equation can be rewritten as follows

P (xi|x1:i−1, a) ∝ P (a|x1:i−1) (P (xi|x1:i−1))λ

3.1 Implementation

The FUDGE implementation as presented in (Yang
and Klein, 2021) does not extend naturally to our
control tasks (Section 6), so we implement the
framework from scratch, following the outline in
(Li et al., 2022).
We choose the GPT-2 small architecture model
for the language model in the FUDGE framework.
We fine-tune the pre-trained model on the E2E
dataset (Section 5). For both the tasks during sen-
tence generation, we choose the top 20 values of
P (xi|x1:i−1), that is we take only the words with
the 20 highest probabilities by the language model,
and then apply the controls, as opposed to applying
the control on all 50257 words of the vocab. Since
the language model is task-independent, we train it
once and use the same model for all control tasks.
For the semantic control task, we train a future dis-
criminator for each of the 8 attributes. For each

Model Test Train Valid
bert-name 99.1 99.8 99.7
bert-near 82.6 99.9 82.6
bert-price 92.69 96.57 86.97
bert-customer-rating 90.5 96.21 85.8
gpt2-area 97.30 97.05 97.50
gpt2-food 64.79 82.15 55.82
gpt2-type 61.87 86.44 92.55
gpt2-family-friendly 92.77 94.03 93.59

Table 1: Accuracy score for best future discriminator
models.

binary predictor, we use a transformer-based archi-
tecture. Since the predictor performance is crucial
to obtaining high control accuracy, we experiment
with two transformer architectures - distilled-BERT
and GPT-2 small. For some attributes such as name
and price, distilled-BERT gives a higher perfor-
mance while for other attributes, GPT-2 small out-
performs BERT. The predictor performances for
different attributes have been presented in Table
1. For each control, we pick the classifier that per-
forms the best.
Due to computational constraints, for each training
pair of the form (x1:n, a) in the train split of the
E2E dataset we randomly generate (x1:i, a) for a
few values of i (as described earlier), rather than
training on all prefixes as suggested in (Yang and
Klein, 2021). We perform hyperparameter tuning
to establish a good tradeoff between fluency and
control.
We also extend the semantic control task to multi-
control settings. Given a set of attributes (type,
food, area), we combine the future discrimina-
tor values of P (ai|x) for each attribute to obtain
P (x|a1, a2, a3).
For the POS tags control task, we use an off-the-
shelf POS tagger for the future discriminator model,
namely the flair POS tagger (Akbik et al., 2019).

4 Fine-Tuning

As we mentioned earlier, Fine-tuning is a straight-
forward and intuitive way to guide a language
model for controlled generation. Conditional train-
ing aims to embed the control into the text gener-
ation by carefully fine-tuning. The common ap-
proaches involve using RL and using controlled
datasets. For this project, we make use of the con-
trolled dataset approach. We follow a similar ap-
proach as introduced in CTRL (Keskar et al., 2019).

For the controlled generation task, we use a pre-
trained language model and fine-tune the model on
the data using control code prefixes.

4.1 Implementation
We use a fine-tuned GPT-2 model for compari-
son of controlled text generation tasks. We use
this for baseline comparison as done in (Li et al.,
2022). The fine-tuned GPT-2 model consists of
a pre-trained GPT-2 small model which we fine-
tune directly on the controlled generation task. We
frame the controlled generation task as a language-
modeling task and fine-tune the model. The train-
ing data and the prompt used as control at genera-
tion time are shown in Table 3.
For the semantic control task, we set the controls
as the prefix of the training text, followed by the
review. During generation given only the prefix
is given to the model to generate the text. When
training the model, we shuffle the order and num-
ber of controls in the prefix to prevent the model
from learning any spurious relation to the position
and count of controls. For the POS control task, we
train using the POS tag sequence for the sentence
as the prefix.
We train a GPT-2 model separately for each control
task. At the time of generation, we use different
methods of decoding. We present the controlled
generation results for beam search, nucleus sam-
pling, and greedy decoding.

attribute values example
name 34 The Eagle, Cotto
near 19 Café Sicilia,

Burger King
area 2 riverside,

city centre
price 6 cheap,

more than £ 30
Type 3 coffee shop, pub,

restaurant
food 7 English, Japanese,

Indian
family-friendly 2 yes, no
customer rating 6 low, 5 out of 5

Table 2: E2E dataset attributes.

5 Dataset

We use the E2E dataset (Novikova et al., 2017)
for training all the language models and classifiers

Semantic Control Task
Train Instance name : The Vaults | Type : pub | price : more than £ 30 | customer rating : 5

out of 5 | near : Café Adriatic ‖ The Vaults pub near Café Adriatic has a 5 star
rating . Prices start at £ 30.

Generation Prompt name : The Vaults | Type : pub | price : more than £ 30 | customer rating : 5
out of 5 | near : Café Adriatic ‖

POS Control Task
Train Instance START ADV NOUN ADV ADP PROPN PROPN PUNCT DET PROPN NOUN

NOUN VERB ADJ NOUN NOUN CCONJ AUX PART VERB NOUN NOUN
PUNCT ‖Only feet away from Cafe Sicilia, The Punter Coffee Shop offers low
price coffee and does not have family restrooms.

Generation Prompt START ADV NOUN ADV ADP PROPN PROPN PUNCT DET PROPN NOUN
NOUN VERB ADJ NOUN NOUN CCONJ AUX PART VERB NOUN NOUN
PUNCT PROPN ‖

Table 3: Sample instances of training and generation for Fine Tune models for controlled Text Generation

(predictors) which we have described above. This
dataset contains 50K reviews for restaurants. Each
review has 8 attributes. The details of the attributes
and the values are in Table 2.

6 Tasks

We consider 3 control tasks to test the performance
(in terms of perplexity (fluency) as well as accu-
racy (control) of the aforementioned controlled text
generation models. The control tasks consist of se-
mantic control, POS sequence control, and length
control. The setup as well as the control tasks have
been borrowed from the Diffusion-LM paper (Li
et al., 2022). The tasks vary in ease of control with
semantic control being considerably easier as com-
pared to POS tags sequence. The accuracy score
is calculated based on exact match for the controls.
We describe the calculation of our accuracy as well
as perplexity in the following subsections.

6.1 Accuracy

Semantic Control: Given the (attribute, value)
pair as the control, we generate text such that it
satisfies attribute = value. For accuracy, we check
if a given generation contains the exact match and
we set the accuracy to be the number of genera-
tions containing the exact match divided by the
total number of generations.
POS Tags Sequence Control: Given a Parts-Of-
Speech tags sequence, we want to generate a sen-
tence that matches the given sequence. We use Uni-
versal POS tags. For the accuracy score, we tried
matching the exact POS sequence as mentioned in
the Diffusion-LM paper (Li et al., 2022) but found

that it gave us very low accuracy numbers for all
the methods which were hard to compare. In this
case, we switched our approach such that we mea-
sured the fraction of POS tags that match with the
target sequence and labeled that as the accuracy.
Length Control: Given a target integer length we
want to generate a review of that length. For the
accuracy score, we allow a margin of 4 (length±
4).

6.2 Perplexity

We train a teacher LM (GPT-2) following the im-
plementation provided by (Li et al., 2022) to ob-
tain perplexity scores for the generated sentences.
This teacher LM is trained with the UNK token
included.
The Diffusion-LM implementation uses a word-
level tokenizer including the UNK token, whereas
the FUDGE and FT implementation use the default
tokenizer for GPT-2 which is a sub-word tokenizer.
The Diffusion-LM implementation creates a vo-
cabulary from the training dataset replacing the
low-frequency words with UNK. As a result of this
difference, we evaluate two values for perplexity
as follows

1. Evaluation without re-tokenization: We
obtain the perplexity scores for the FUDGE
outputs as is, without re-tokenizing it in the
space of the tokens used by Diffusion-LM
(which contains UNKs).

2. Handling UNK: We use the word level tok-
enizer of the Diffusion-LM to re-encode the
outputs of FUDGE. This introduces UNK to-

kens in the outputs. We then generate perplex-
ity scores for these outputs.

We report both the perplexity values because the
outputs containing UNK are qualitatively poor as
they can be difficult to interpret for humans. Note:
the perplexity value for Diffusion-LM will be the
same for both approaches.
Additionally, this occurrence of UNK is solely
due to the design choice employed in the im-
plementation of Diffusion-LM (Li et al., 2022)
for which we were unable to find any reasoning.
While in FUDGE and FT, to maintain the integrity
of the GPT-2 implementation we choose the de-
fault tokenizer and generate outputs without UNKs.

7 Experiments

This being a replication study, we use Table 2 from
(Li et al., 2022) as a reference for our results. For
each of the following subsections, we first present
the results from (Li et al., 2022) and then docu-
ment the results that we obtain followed by a direct
comparison and analysis of the two.

7.1 Accuracy
We present the accuracy results on the semantic
control and the POS tags control task as reported
in (Li et al., 2022).

Model Semantic Control POS Tags
Diffusion-LM 81.2% 90.0%

FUDGE 69.9% 27.0%
FT-Sample 72.5% 89.5%
FT-Search 89.9% 93.0%

Table 4: Control Accuracy results as presented in (Li
et al., 2022). Note that the results for FT-Greedy were
not reported in the paper.

We present the accuracy results on the semantic
control and the POS tags control task as obtained
by us.

Model Semantic Control POS Tags
Diffusion-LM 77.44% 84.95%

FUDGE 41.77% 12.87%
FT-Sample 91.13% 60.02%
FT-Search 91.77% 63.42%
FT-Greedy 87.34% 62.40%

Table 5: Control Accuracy results as obtained during
the replication study.

We expect the results for the Diffusion-LM
model to be close to what has been reported in
the paper since we made use of the code provided
by the authors. However, (Li et al., 2022) does
not provide any details of how FUDGE was imple-
mented for the semantic control task, nor is there
any detailed description of training language mod-
eling or classifiers in their setup. Hence, we expect
to see a larger difference in the results for FUDGE.
Moreover, (Li et al., 2022) does not talk about its
fine-tuning approach in detail either so we observe
some differences in the accuracy scores there as
well.
We observe that semantic control is an easier task
(models achieve reasonably high accuracy on it),
whereas generating a sentence given a sequence of
POS tags is considerably harder and we observe
that the performance from all the models is low on
this task except Diffusion-LM which still manages
to do well.
Fine-tuning models performs better overall in both
metrics (with the exception of control accuracy on
the POS tags task). This is not surprising, it is
known that fine tuning large language models per-
forms well on a wide variety of unseen downstream
tasks. However, this can require significant com-
pute (in terms of memory and runtime) and will
not be robust to frequently changing controls as the
fine-tuning will require heavy retraining. Addition-
ally, depending on the nature of the control task, a
significant amount of data is required for obtaining
good performance and avoid memorization by the
language model. On the contrary, plug-and-play
models such as FUDGE can be advantageous as
they require very less compute and can perform
well if the task is well formulated for the future
discriminator. Unlike FT models, they do not re-
quire access to the entire language model which
may not be available in closed implementations.
Even Diffusion-LM is quite lightweight and re-
quires training only a classifier which can then be
used to alter the gradients of the diffusion language
model.
We perform the length task as well (which is a
classifier-free task in the case of Diffusion-LM).
The method of implementing the length control in
Diffusion-LM is that the authors use infilling set-
ting the word at the location of the given length to
be the END token. Diffusion-LM gives an accuracy
of 92% (our implementation in contrast to 99.9%
as presented in the paper). There is no descrip-

tion of how to extend the length task to FUDGE
and FT models. For FUDGE, we implemented a
classifier that predicts when the END token would
occur, thus setting the length in terms of tokens,
however, FUDGE makes use of subword tokens
so this methodology did not work. Additionally,
FUDGE requires a good future discriminator for
the control to work. In case of a task such as length
it is difficult train such a model.

7.2 Perplexity

The perplexity results for semantic control and POS
tags control tasks as reported in (Li et al., 2022)
have been shown below.

Model Semantic Control POS Tags
Diffusion-LM 2.55 5.16

FUDGE 2.83 7.96
FT-Sample 2.87 4.72
FT-Search 1.78 3.31

Table 6: Perplexity results as presented in (Li et al.,
2022). Note that the results for FT-Greedy were not
reported in the paper.

As we described above, we use two approaches
to calculate the perplexity during our experiments.
We present results from the approaches in the tables
below.

Model Semantic Control POS Tags
Diffusion-LM 8.54 6.95

FUDGE 7.04 17.68
FT-Sample 2.26 5.12
FT-Search 2.98 10.89
FT-Greedy 4.84 4.52

Table 7: Perplexity results as obtained during the repli-
cation study using the perplexity approach suggested in
(Li et al., 2022) (using UNK in the tokenizer space).

Model Semantic Control POS Tags
Diffusion-LM 8.54 6.95

FUDGE 4.48 15.04
FT-Sample 2.80 4.18
FT-Search 2.58 3.98
FT-Greedy 2.68 4.08

Table 8: Perplexity results as obtained during the repli-
cation study using the perplexity approach as the modi-
fication without re-encoding the output of FUDGE and
FT.

As noted in the section above, the observations
about the task of semantic control being easier com-
pared to POS tags still follows as we overall lower
perplexity scores for semantic control compared
to POS tags (with the exception of Diffusion-LM
which performs better on the POS tags task).
Additionally, we observe that when we re-encode
using the Diffusion-LM tokenizer the perplexity
increases due to the introduction of UNKs. De-
spite the re-encoding scheme, the FUDGE model
still does well compared to the Diffusion-LM for
the semantic control task. Without handling the
UNK tokens, the outputs from FT and FUDGE are
very well placed in terms of perplexity. Though
the control for FUDGE may not be as powerful
as Diffusion-LM, the usability of the outputs from
Diffusion-LM significantly decreases due to the
introduction of UNKs. Therefore, we see a trade-
off wherein although Diffusion-LM exerts stronger
control accuracy, the UNKs as well as higher per-
plexity values make FUDGE a more usable scheme
in real-world applications.

7.3 Qualitative Results

We present some qualitative outputs (control, sen-
tence) pairs to demonstrate the performance of var-
ious models in Table 9. For the semantic control
task, we have presented examples where all the
models perform well in terms of both control and
fluency.
For the POS control task which is arguably harder,
we present an output from Diffusion-LM which pri-
oritizes fluency over control accuracy (the sentence
is supposed to end with punctuation and proper
noun, but in the output this order is reversed to
make the sentence sensible). The other models do
not exhibit the same behavior with FT adding a
proper noun (restaurant name) after the end of the
sentence. FUDGE shows the worst performance
here which is exhibited given its poor control accu-
racy in this task.

7.4 Fluency Regularization in FUDGE

Since we implemented FUDGE from the ground
up, we had to perform extensive analysis to tune the
fluency regularization control (hyperparameter λ in
our analysis) to obtain strong control accuracy. We
present an analysis of the hyperparameter control
for both control tasks. We plotted both control
accuracy and perplexity against λ for both tasks
and we present our results below.

Semantic Control Task (name, The Vaults)
Diffusion LM The Vaults is a coffee shop near Café Brazil in the city centre . It has a customer

rating of 3 out of 5 .
FUDGE A coffee shop called The Vaults is located near Café Rouge.
FT-Search The Vaults is a coffee shop providing Italian food in the moderate price range.

It is located in the city centre.
FT-Sample The Vaults is a coffee shop that is family friendly and serves French food. It

has a low customer rating and the price range is less than £ 20. It is located in
the riverside area near Café Brazil.

FT-Greedy The Vaults is a fast food restaurant with a price range of £ 20 - 25.
Semantic Control Task DET NOUN NOUN ADP PROPN VERB DET NOUN NOUN ADP NUM

ADP ADP NUM CCONJ DET ADJ NOUN NOUN PUNCT PROPN
Diffusion LM A coffee shop in riverside with a customer rating of 1 out of 5 and a high price

range is Zizzi .
FUDGE Alimentum in Riverside provides a family atmosphere with a mid to upper

£££price range. Aliment
FT-Search The coffee shop near Avalon has a customer rating of 5 out of 5 and a moderate

price range. Fitzbillies
FT-Sample The coffee shop near Avalon has a customer rating of 5 out of 5 and a moderate

price range, Wildwood
FT-Greedy The coffee shop near Avalon has a customer rating of 5 out of 5 and a moderate

price range. Wildwood

Table 9: Sample instances of training and generation for different models for controlled Text Generation

Figure 1: Control Accuracy and Perplexity while vary-
ing λ for the Semantic Control task.

Figure 2: Control Accuracy and Perplexity while vary-
ing λ for the POS Tags Sequence task.

We can observe in both the plots that both the ac-
curacy and the perplexity increase with increasing
λ. This is in line with our expectations since in-
creasing λ promotes control accuracy over fluency,
which results in higher accuracy scores at the cost
of higher perplexity (which implies lower fluency).
However, we note that the accuracy starts stagnat-
ing after a certain value of λ. We look at several
qualitative results to reason this as follows. Since
we sample only the top 20 outputs from the lan-
guage model and calculate the classifier scores for
those samples only, if the required value of the
control is not present in the top 20 samples, the
classifier score will be low for all the samples, and
increasing λ, in this case, will not lead to increase
in the accuracy. We use the value of λ where the
accuracy starts to saturate (λ = 8 for the semantic
control task and λ = 12 for the POS tags sequence
task).

7.5 Multiple Control Composition

We observe that the nature of FUDGE (using
different classifiers for each attribute) not only
allows us to combine multiple controls but allows
us to assign different weights (different λi for each
ai) to different controls. This task can be thought

of as controlling the strength of each control.
We perform this analysis (which is novel from both
the papers that we study) and observe the effects
of assigning different weights to different controls.
We perform experiments over the semantic control
task where we pick 3 controls (type, area, food)
and assign different weights to each and record
the accuracy with respect to each control for a
different combination of weights. We record our
results in Table 10.

Hyperparameter
Values

Type Area Food

λType = 8
λArea = 1 78.57 26.19 35.71
λFood = 1

λType = 8
λArea = 6 54.76 59.52 35.71
λFood = 1

λType = 8
λArea = 6 59.52 52.38 52.38
λFood = 6

Table 10: Results showing the weighted composition
of different controls using different λ for each control
and the effect on accuracy for each control.

We can observe that we set λType = 8 and
λArea = λFood = 1, a higher priority is assigned
to incorporate the given value of the type control
as against the given values of the area and the food
controls. This is evident in the higher accuracy with
respect to the type control. Increasing λArea to 6
increases its accuracy showing a clear correlation
between the associated weight and the control ac-
curacy. However, this comes at the cost of reduced
accuracy for the λType. Subsequently, increasing
the value of λFood also results in an increase in its
accuracy.
In the process of tuning the λ values for different
classifiers, we observe that for the single attribute
control, we can obtain better performance by using
different λ values. The result for FUDGE presented
in Section 7.1 can be further improved by consid-
ering this fine hyperparameter tuning. Using this
scheme we get a significant increase, resulting in a
48% accuracy for FUDGE (compared to 41.77%
earlier).

8 Conclusion

We motivate the study of Controlled Generation by
emphasizing its importance in the deployment of
language models for real-world tasks and define it
formally. We observe that even though fine-tuning
is a straightforward approach to this task but it re-
quires heavy retraining and does not allow for the
easy composition of controls motivating the need
for modular and lightweight methods for controlled
generation.
We look at two important models for controlled
generation, namely Diffusion-LM, and FUDGE,
and study and explore the key ideas behind their
methodologies. We evaluate their performance on
semantic control and POS control tasks while us-
ing fine-tuned language models as a baseline. We
use two primary metrics for our evaluation: con-
trol accuracy and perplexity. We conclude that
Diffusion-LM outperforms FUDGE for both the
control tasks in terms of accuracy but FUDGE per-
forms better in terms of fluency in the semantic
control task whereas, for POS control, which is a
harder task, FUDGE does poorly in terms of per-
plexity as well. Even though FT models perform
well, they are compute-intensive and not suitable
for the composition of controls.
Having implemented FUDGE ground up, we ex-
plore tuning the tradeoff between fluency and con-
trol as well as the composition of multiple controls
and how to potentially strengthen one control with
respect to others in the multiple control setting.

9 Code

We have uploaded all the code written by us during
this project to the following GitHub repository:
github.com/YANI-ALT/Controlled-Text-
Generation

Acknowledgements

We would like to thank Prof. Greg Durrett and
Kaj Bostrom for their constant assistance in this
work. The discussions with Kaj gave us a lot of
insight into the issues we faced for reproducing the
baselines and understanding the implementations
in the literature.

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.

https://github.com/YANI-ALT/Controlled-Text-Generation
https://github.com/YANI-ALT/Controlled-Text-Generation

FLAIR: An easy-to-use framework for state-of-the-
art NLP. In NAACL 2019, 2019 Annual Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 54–59.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
Ctrl: A conditional transformer language model for
controllable generation.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani,
Percy Liang, and Tatsunori B. Hashimoto. 2022.
Diffusion-lm improves controllable text generation.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 201–206, Saarbrücken, Germany. Association
for Computational Linguistics.

Kevin Yang and Dan Klein. 2021. FUDGE: Controlled
text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics.

http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
https://doi.org/10.48550/ARXIV.2205.14217
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276

