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Disagreement in Graph Neural Network Explanation Methods
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Abstract
Graph Neural Networks are increasingly being
used for complex tasks. The black-box nature of
these models requires post hoc explanation meth-
ods to understand the decision-making process of
the model. Many state of the art methods that ex-
ist to explain the model predictions do not always
provide the same explanation. In practical appli-
cations, this disagreement needs to be handled
carefully.

We propose metrics and perform an empirical
study to quantify the disagreement in graph-based
tasks among various explainers using multiple
prediction models and datasets. We find disagree-
ment among most explainers and find the degree
of disagreement changing with both prediction
models and datasets.

1. Introduction
Many real-world complex scenarios can be modeled as
graphs, such as criminal justice (Agarwal et al., 2021),
molecular chemistry (Sanchez-Lengeling et al., 2020), and
biological networks (Zitnik et al., 2018). Thus, Graph neu-
ral networks (GNNs) are increasingly gaining popularity in
the areas of representation learning. The complex black-box
nature makes is difficult to attain an understanding of the
decision-making process of these models. To identify sys-
tematic errors, potential biases and determine the reliability
of the models, several post-hoc graph explainability tech-
niques have been developed in recent literature. Most of
the popular post hoc explanation methods focus on instance-
level explanations of any given model (e.g., GNNExplainer
(Ying et al., 2019), PGExplainer (Luo et al., 2020), Grad-
CAM (Pope et al., 2019)). Certain generation-based model-
level explanation methods have also been proposed (XGNN
(Yuan et al., 2020)).

The increase in use of post hoc explanations to understand
the behavior of GNNs makes it crucial to assess their quality

1University of Teaxs at Austin. Correspondence to: Shray
Mathur <shray@utexas.edu>.

and reliability. However, evaluating the quality of GNN
explanations is challenging. In (Agarwal et al., 2022), the
authors evaluate GNN explanation methods using synthetic
datasets and find different explanation methods performed
the best in different datasets and performance measures.
Furthermore, it is also important to investigate whether the
explanations provided by these methods for the same task
disagree with each other. For instance, it is common practice
for ML practitioners and data scientists to employ multi-
ple such methods simultaneously, instead of using just one
(Kaur et al., 2020). A coherent understanding of model
behavior can be obtained if multiple methods generate con-
sistent explanations. But this may not always be the case.

When the disagreement problem occurs, practitioners need
to tackle it carefully as they may end up relying on mis-
leading explanations. This could lead to catastrophic conse-
quences – e.g., trusting and deploying racially biased mod-
els, trusting incorrect model predictions and recommending
sub-optimal treatments to patients, etc. (Slack et al., 2020).
Thus, it is critical to understand and quantify how often
explanations output by state-of-the-art graph explanation
methods disagree with each other. The authors in (Krishna
et al., 2022) suggested metrics to quantify and performed
an empirical study to measure disagreement in explanation
methods in ML models for tabular, image and text datasets.

In this work, we study the disagreement problem in the con-
text of GNNs and their corresponding explanation methods.
We study two graph-based tasks, node classification and
graph classification. We study a variety of graph models
across a number of datasets to do a comprehensive study.
Finally, we introduce graph-specific metrics to quantify the
disagreement between methods and present the results.

1.1. Related Work

Our work builds on the vast literature on explainable graph
machine learning and the limited literature on the disagree-
ment problem.

Explainable Graph Machine Learning: In recent times,
several approaches have been proposed to explain the pre-
dictions of deep graph models. These methods focus on
different aspects of the graph models and provide differ-
ent views to understand these models such as which input
edges are more important, which input nodes are more im-
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portant, which node features are more important and what
graph patterns will maximize the prediction of a certain
class. The techniques can be categorized into two main
classes: instance-level methods (CAM (Pope et al., 2019),
GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al.,
2020), GNN-LRP) and model-level methods (XGNN (Yuan
et al., 2020)). We focus on instance-level explainers in this
work. They are further categorized in Section 3.3.

The Disagreement Problem. (Krishna et al., 2022) intro-
duced and studied the disagreement problem with a focus
on tabular, image, and text datasets. More specifically, they
formalized the notion of disagreement between explana-
tions, and quantified the disagreement by proposing metrics
that focused on top-k features output by explanation meth-
ods. Graphs explanations pose challenges that were not
addressed in this study as graph explanations take into ac-
count the complex inherent structure of the data are typically
not in the form of top-k features but are in terms of node or
edge importance values. We look to extend the work done
in this paper to graph based scenarios. We focus our metrics
on disagreement in explanations that use graph structures.

1.2. Contributions

This paper contributes to the existing literature as follows:

1. We investigate the existence of disagreement in graph-
explainable machine learning. We study the problem
across various graph-based tasks, datasets, GNN-based
models, and explanation methods.

2. We then formalize the notion of explanation disagree-
ment in graphs using evaluation metrics to measure the
disagreement between two explanation methods. The
metrics focus on the disagreement among explainers
in terms of the graph structure being used.

2. Measuring Disagreement in GNNs
GNNs are used for a number of graph-related tasks. We
focus our attention on node classification and graph classifi-
cation in a supervised setting. Node classification assigns
a label to a node in a graph. The input is a training set
of graphs with a subset of nodes in each graph annotated
with their associated labels. Similarly, graph classification
assigns a label to a given graph. The input is a training set
of graphs annotated with their associated labels.

Explainers are used to analyze what features are being uti-
lized by the GNNs for making these predictions. We look
at the output of various explainers and come up with a
formal notion of disagreement between them. For our ex-
periments, the canonical output of an explainer is a list of
important nodes associated with the prediction made by the
GNN model. We use several ways to parse the output of an

explainer to this list which have been described as follows:

1. If an explainer outputs a list of binary importances
associated with each node for a particular prediction,
we create a list of important nodes by storing the nodes
corresponding to indices with bool value true.

2. If an explainer outputs a list of soft importances associ-
ated with each node (a floating point number between
0 and 1), we binarize this vector using a threshold of
0.5 and follow the methodology outlined for the first
case.

3. If an explainer outputs a set of edge importances, we
track the subgraph formed by the important edges and
pick the nodes that are a part of this subgraph.

Having obtained the output as a uniform structure across
various explainers, we now explain the metrics associated
with measuring the disagreement between these outputs.

2.1. Jaccard Index

Jaccard Index measures the similarity between two sets
using the idea of intersection-over-union. More formally,
the Jaccard Index between two sets A and B, J(A,B) is
given as

J(A,B) =
|A ∩B|
|A ∪B|

where |S| denotes the number of elements in set S. As
stated above, we obtain a list of important nodes associated
with each prediction as the output of all explainers. For the
node classification task, we obtain a list corresponding to
each node in the graph. For each of our node classification
datasets, we have a single graph in the dataset. Correspond-
ingly, we average the Jaccard Index over the nodes in the
graph between important nodes of two explainers. Formally,
we calculate the Jaccard Index between two explainers E1
and E2 with output list of important nodes S1i and S2i for
node i for a graph G with node set N as

J(E1, E2) =
1

|N|
∑
i∈N

|S1i ∩ S2i|
|S1i ∪ S2i|

We extend the above calculation for multiple graphs in the
dataset by taking the average over all the graphs (as in graph
classification) or maintaining tuples with members corre-
sponding to each graph. A lower Jaccard Index indicates a
higher degree of disagreement.

2.2. Centrality-based Measures

Centrality-based measures are scalar values assigned to
nodes in a graph that quantify the importance of the node in
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the graph. Based on varying notions of importance, there
exist various centrality-based measures such as Degree Cen-
trality, Closeness Centrality, Betweenness Centrality, Eigen-
vector Centrality, Hub Scores, and Authority Scores. The
procedure that we follow to calculate disagreement based on
these scores remains the same irrespective of which metric
is chosen. We focus on two metrics particularly, these are
described below:

1. Degree Centrality: Degree centrality for a node in a
graph is the ratio of the degree of the node (number of
edges connected to a node) to the maximum possible
degree in the graph. It is the simplest centrality-based
measure but quite effective. A node with a high degree
will be more central in the graph, for example, while
modeling social networks using graphs, a node with a
high degree centrality will imply a highly-connected
person in the social network.

2. Authority Scores: Hubs and authorities come from
the idea of ranking nodes in a network of web pages.
Hubs are nodes that do not contain a large amount of
information (or have low authority) but lead users to
pages with a high amount of information. Alternatively,
hubs can be seen as nodes pointing to a large number
of other nodes. Conversely, nodes with high author-
ity scores are pointed to by a large number of pages.
Authority scores can be computed using the Hyperlink-
Induced Topic Search algorithm (Kleinberg, 1999) and
are based on the eigenvalues of the adjacency matrix.
Since hub and authority scores can be viewed as duals
of each other, we focus only on authority scores.

To utilize these metrics for measuring disagreement in node
classification, we calculate the average score for the set of
important nodes corresponding to each node. This gives
a vector of size |N| × 1 of average centrality scores corre-
sponding to each explainer where N is the set of nodes in
the graph. We calculate cosine distance DC(A,B) between
two vectors A,B corresponding to two explainers which is
given by

DC(A,B) = 1− ATB

∥A∥2∥B∥2

to quantify the disagreement in this case. The value for this
metric ranges from 0-2 and a higher value of this metric
indicates a higher degree of disagreement.
In Graph Classification task, for each graph that is classified,
we can calculate the average value of the centrality-based
scores associated with the list of important nodes and obtain
a vector of size |G| × 1 where G is the set of graphs that we
perform the classification task on. We can apply the cosine
distance metric to this vector to quantify the disagreement
in this case.

3. Experiments
We leverage the metrics outlined in Section 2 and carry
out analysis with six explanation methods. We consider
GNN models for two tasks Node Classification and Graph
Classification. We train GNN models for each of the tasks
on widely-used datasets. In this section, we describe the
datasets that we use (Section 3.1 ), GNN models (Sec-
tion 3.2), explanation models (Section 3.3) and findings
(Section 3.4).

3.1. Datasets

For the empirical analysis, we use widely used datasets. For
node classification, we use Cora (Mccallum et al., 2000) and
CiteSeer (Giles et al., 1998) datasets available in PyTorch
Geometric. The datasets consist of academic publications
as the nodes and the citations between them as the links:
if publication A cites publication B, then the graph has an
edge from A to B. The nodes are classified into one of the
subjects.

For graph classification, we use TUDataset (Morris et al.,
2020) introduced by for graph classification, implemented
in PyTorch Geometric. The MUTAG (Debnath et al., 1991)
and PROTEINS (Dobson & Doig, 2003) dataset in particular
are selected for training. The MUTAG dataset consists of
of small molecules as graph (node as atoms and edge as
bonds) and class label representing the mutagenicity of the
molecule. The PROTEINS dataset arises from the field of
bio-informatics and consists of macro-molecules with each
amino-acid represented as node. The class labels indicate
whether the macro-molecule is an enzyme or not.

3.2. GNN Models

The GNN models trained for the node classification and
graph classification tasks are briefly described below. The
models were trained to obtain sufficient accuracy (Table 1
and Table 2). More advanced training regimes were not
required due to simplicity of models. Complex models were
avoided, but could be used for further analysis to study
effect of complexity on explainers.

GCN: This simple neural network model consists of a graph
convolution layer (Kipf & Welling). This layer is similar
to a conventional dense layer, with additional ability to use
structure of the graph, in particular information of the node
neighbours. The model was trained for node classification.

GAT: Graph Attention Network (Veličković et al., 2017)
uses additional attention coefficients alongside the graph
convolution layer implementation. We used two attention
layers and trained the model for node classification task.

GCN 3L: The model uses 3 Graph Convolution layers and
is trained for graph classification.
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Table 1. Node Classification Models Summary
DATASET MODEL TRAIN ACC. TEST ACC.

CORA
GCN 81.24 80.7
GAT 80.83 78.7

CITESEER
GCN 70.57 71.6
GAT 69.7 70.5

Table 2. Graph Classification Models Summary

DATASET MODEL TRAIN ACC. TEST ACC.

MUTAG GCN 3L 76.79 75
GRAPH CONV 84.82 90.79

PROTEINS GCN 3L 71.66 68.39
GRAPH CONV 81.26 70.18

GraphConv: This graph neural network model uses the
GraphConv layer introduced in (Morris et al., 2018). It im-
proves the generalisation ability by modifying the normali-
sation term accounting for the neighbouring node outputs.
This performs better in recognising higher-order structures
in graphs. These higher-order structures are important in the
characterization of social networks and molecule graphs and
hence makes this model suitable for the graph classification
task.

3.3. Explainers

In order to study disagreement, we select six explainers.
These explainers were used to obtain node-importance lists
used for measuring disagreement as mentioned in Section 2.
The three main types are Gradient Based, Perturbation based
and Surrogate Based, summarised in Figure 1.

Gradient Based

The gradient based methods are very popular neural network
explanation methods. These use the gradients or hidden fea-
ture map values as an approximation for input importance.
Using backpropagation, the gradients of the target predic-
tion are computed w.r.t. the inputs. These are extending in a
straightforward manner to GNNs. The explanation methods
- integrated gradients (ig), CAM (cam) (Pope et al., 2019)
and GradCAM (gcam) (Pope et al., 2019) belonging to this
type were used for studying disagreement.

Figure 1. Flowchart categorizing the GNN explainers

Perturbation Based

Perturbation based methods are widely used for explain-
ing deep image models. The idea is to use different input
perturbations to study how the output of the model varies.
Explainers for graph neural networks generate masks of
node, edge, node features and combine them with the input
to create a new graph that is fed to the GNN. The masks
are updated using the prediction from the GNN for the new
graph. This mask update and creation implements the notion
of perturbation in the input. Depending on the information
retained in the graph and the effect on the prediction the
importance of the various graph attributes is obtained. The
GNNExplainer (gnn) (Ying et al., 2019) and PGExplainer
(pge) (Luo et al., 2020) are two such perturbation methods
used for studying disagreement. The methods mainly differ
in the mask generation and mask update procedures.

Surrogate Based

Surrogate based explainers use an interpretable surrogate
model to approximate the predictions of the deep model for
the neighbouring areas of the input model. For graph neural
networks, for a given input graph they first obtain a local
dataset and fit an interpretable model. PGM Explainer (pgm)
(Vu & Thai, 2020) uses a probabilistic graphical model to
provide instance-level explanations and the local dataset is
obtained by random node feature perturbations.

3.4. Results

In this section we present our metrics over the models and
explainers previously described. Due to implementation and
time constraints, we present results for only Integrated Gra-
dients, GNN Explainer and PGM Explainer for GAT node
classification models. But these are still explainers of differ-
ent categories as discussed in the previous section. We are
unable to present results for GraphConv models for graph
classification. While calculating disagreement in node clas-
sification, we only consider the nodes correctly classified by
the model. Similarly, we only consider correctly classified
graphs in graph classification models.

Node Classification

Figure 2 and Figure 3 summarize the Jaccard Index among
explainers for GCN models for Cora and Citeseer datasets
respectively. The low Jaccard Index among explainers show-
cases the disagreement in the set of nodes. We see agree-
ment among PGE Explainer, CAM, and Grad-CAM but we
observe these explainers have been returning a trivial set of
nodes for the explanation, i.e., these explainers have been
returning all the neighbors accessible to the convolution
layers of the GCN model.

Figure 4 and Figure 5 summarize the authority score based
centrality score cosine distance among different explainers
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Figure 2. Heatmap of Jaccard Indices for GCN model with Cora
dataset

Figure 3. Heatmap of Jaccard Indices for GCN model with Citeseer
dataset

for the GCN model for Cora and Citeseer datasets respec-
tively. Other than the trivial explanation methods (PGE
Explainer, CAM and Grad-CAM), all other explainers show
high distances. Thus, while the nodes being selected by
the explainers are different shown by the Jaccard Index,
the nodes being selected also have a different connectivity
within the graph. Thus the explainers disagree on the type
of nodes being selected as well.

In Figure 6 and Figure 7, we take a random sample of nodes
classified from test data and plot the average degree central-
ity of important nodes selected by the explainers. You can
see by the spread across explainers that by degree centrality
as well, the nodes being selected have different connectivity.
A heatmap for degree centrality cosine distances and all
results for GAT models showing similar trends can be found
in the appendix.

Graph Classification

Figure 8 and Figure 9 summarize the Jaccard Index among
explainers for GCN 3L model for MUTAG and PROTEINS
dataset respectively. Again, the low values of Jaccard Index
for both datasets show disagreement in the nodes being
selected by the explainers to understand the classification.
When we look at the authority score-based cosine distances,
we observe very low values among certain explainers in
MUTAG and almost among all explainers in the PROTEINS
dataset.

While there exists disagreement in the type of nodes being

Figure 4. Heatmap of Authority score cosine distances for GCN
model with Cora dataset

Figure 5. Heatmap of Authority score cosine distances for GCN
model with Citeseer dataset

Figure 6. Average degree centrality score of important nodes se-
lected by explainers for classification of a random sample of nodes
in Cora dataset by GCN model

Figure 7. Average degree centrality score of important nodes se-
lected by explainers for classification of a random sample of nodes
in Citeseer dataset by GCN model
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Figure 8. Heatmap of Jaccard Indices for GCN 3L model with
MUTAG dataset

Figure 9. Heatmap of Jaccard Indices for GCN 3L model with
PROTEINS dataset

selected by explainers in the MUTAG dataset, the nodes
being selected by the explainers in the PROTEINS dataset
are the same based on authority score. This shows that the
explanations being provided in the PROTEINS dataset while
selecting different nodes, do agree on the type of nodes
being used for the explanation. Thus, the explanations are
alternatives to one another. In Figure 12 and Figure 13 we
observe that in the MUTAG dataset, we still have the spread
across explainers, while the average degree centrality of
important nodes of explainers bunch together and overlap
in PROTEINS datasets. PGM Explainer is found to be
an odd one out in all graph classification models which
we believe is the artifact of it being the only surrogate-
based explainer. The heatmap for degree centrality cosine
distances is available in the appendix.

Figure 10. Heatmap of Authority score cosine distances for
GCN 3L model with MUTAG dataset

Figure 11. Heatmap of Authority score cosine distances for
GCN 3L model with PROTEINS dataset

Figure 12. Average degree centrality score of important nodes se-
lected by explainers for classification of a random sample of graphs
in MUTAG dataset by GCN 3L model

Figure 13. Average degree centrality score of important nodes se-
lected by explainers for classification of a random sample of graphs
in PROTEINS dataset by GCN 3L model
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4. Final Remarks
In this project, we study the disagreement problem in graph
neural networks for node classification and graph classifica-
tion tasks. We proposed 2 metrics to measure disagreement
among explainers. We conduct this empirical study across
various datasets and classification models. Using Jaccard
Index, we found disagreement in the nodes being selected
by explainers across all the cases we examined. Using cen-
trality based scores we found that these explanations are
sometimes different in the type of nodes being selected. We
also found examples where the explanations select differ-
ent graph nodes that have similar connectivity within the
network. We believe these are alternate explanations being
provided by different explainers.

Based on our findings, we firstly always recommend us-
ing multiple explainers and not trust one explainer when
analysing GNNs as well. As we see, the agreement among
explainers can change with both the model and the dataset,
such a study before model deployment is really useful to
find the best explainers for use. Also, the study should al-
ways include explainers from various categories. Within
the limited number of explainers we study, we find GNN
explainer to be the most coherent with other explainers for
both node and graph classification tasks.

We focused our metrics to elements of the explanation that
exploit the graph structure but a study of disagreement with
respect to other features like node features is also necessary.
The study also can be extended to link prediction tasks. As
we found, there are sometimes fundamental differences in
the connectivity of nodes being selected. Thus an study that
focuses on properties of explainers that makes them select
different nodes is an important avenue to explore.

Software and Data
The codes are available on GitHub https://github.com/YANI-
ALT/FML-GNN DisagreementProblem. The datasets were
obtained from PyTorch Geometric. The GNN models were
implemented in PyTorch and were trained locally on a CPU,
the weights and models can be found in the GitHub repo.
The implementations for the explainers were obtained from
the GraphXAI library (Agarwal et al., 2022).
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A. Appendix
The results for GAT models for graph classification and a few supplementary results for the GCN models for node
classification and GCN 3L for graph classification are presented in this section.

Figure 14. Heatmap of degree centrality cosine distances for GCN model with Cora dataset on the left and Citeseer dataset on the right

Figure 15. Heatmap of Jaccard similarity scores for GAT model with Cora dataset on the left and Citeseer dataset on the right

Figure 16. Heatmap of Authority score cosine distances for GAT model with Cora dataset on the left and Citeseer dataset on the right
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Figure 17. Heatmap of degree centrality cosine distances for GAT model with Cora dataset on the left and Citeseer dataset on the right

Figure 18. Heatmap of degree centrality cosine distances for GCN 3L model with MUTAG dataset on the left and PROTEINS dataset on
the right


