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Abstract—This report has been prepared after extensive lit-
erature review and summarizes the motivation for the need of
undersampling in k-space and time during the acquisition of
fMRI signals. Further, the report highlights numerous classical
techniques used for the reconstruction and concludes with the
recent developments in Deep Learning and the applications of
these methods to the above mentioned reconstruction.

Index Terms—fMRI, k-t undersampling, bayesian deep learn-
ing

I. INTRODUCTION

Resting State fMRI (R-fMRI) measures low frequency
fluctuations in the Blood Oxygen Level Dependent (BOLD)
signals to obtain information about the functional architecture
of the brain [1]. This technique enables the identification of
Resting State Networks (discernable functional communities
in the brain [2]). The applications of Resting State fMRI in
presurgical planning for brain tumour and epilepsy patients
has shown potential along with possible applications in the
diagnosis of neurological and psychiatric diseases.
In addition to the above, undersampled reconstruction in R-
fMRI will lead to improved spatiotemporal resolution and
improved brain connectivity maps [3]. Faster acquisition also
enables the study of dynamic networks and reduces the risk
of data corruption due to patient motion. Current methods to
speed up scan rely on numerous techniques such fully-sampled
parallel imaging [4], undersampled reconstruction using signal
priors [5] and Bayesian graphical framework relying on learn-
ing data-adaptive prior models through dictionaries designed
to be robust to large physiological fluctuations typical in R-
fMRI signals.
With the recent developments in deep learning and the in-
troduction of convolutional architectures which have led to
efficient and accurate outcomes in several image processing
tasks, there has been an interest in the application of these
methods to the reconstruction task as discussed above. Deep
Learning-based accelerated fMRI reconstruction is an active
topic of research, with constant focus on the characterisation
of these architectures and investigating when these networks
may fail to reconstruct [6].
In this report, we start with a brief background of R-fMRI, and
then a discussion of the classical techniques mentioned above
and discuss the various shortcomings associated with them,
which motivate the use of deep learning networks to improve

performance. A further discussion is presented on the existing
deep learning framework, its scope for improvement and the
related future work.

II. BACKGROUND OF RFMRI
fMRI using task based or stimulus driven paradigms has

been vital in the current understanding of the various func-
tional networks in the brain. This technique focuses on the
measurement of the changes in the BOLD signal in various
areas of the brain during the performance of a cognitive,
language or motor task. In recent times, there has been a
piqued interest in the application of this technique at rest,
enabling us to study functional networks in the brain called
the Resting State Networks, the most fundamental of these
being the Default Mode Network (DMN), first identified from
PET data by Raichle et al. [7]. This can be instrumental in
the study of brain disorders, neurodevelopment in children, or
neurodegeneration in aging.
Studies have hypothesized that there are two large opposing
systems in the brain, one including the DMN (”task-negative”
or ”extrinsic”) and one involving task-based or attentional
systems (”task-positive” or ”intrinsic”) [8]. In addition to the
DMN, several other RSNs have been identified such as the
somatosensory network and the language network, therefore,
furthering the interest in this field.
Typically, fMRI signals have component frequencies less than
0.8Hz. However, conventional fMRI acquisition used higher
temporal sampling rates to overcome noise and large phys-
iological fluctuations common to these type of signals but
this came at the cost of spatial resolution. Faster scans were
eventually developed which did not affect the Signal-to-Noise
ratio (SNR) and also enabled more reliable studies.

III. CLASSICAL TECHNIQUES

Having established the idea behind R-fMRI, we now move
on the numerous classical techniques which have been used
for analyzing the BOLD signals. GRAPPA is analyzed briefly
before a more complete description of dictionary-learning and
k-t FASTER.

A. Generalized autocalibrating partially parallel acquisitions
(GRAPPA)

GRAPPA is a novel partially parallel acquisition method
used to accelerate image acquisition using a radio frequency



(RF) field coil for spatial encoding. A detailed, highly accurate
RF field map is not needed prior to reconstruction in GRAPPA.
This information is obtained from several k-space lines which
are acquired in addition to the normal image acquisition. This
signal is called the auto-calibration signal (ACS).

IV. ROBUST, SUBJECT-INVARIANT,
SPATIALLY-REGULARIZED DICTIONARY PRIOR

A. Introduction

A Bayesian graphical reconstruction framework is employed
that relies on learning data-adaptive prior models through
dictionaries that are designed to be robust to large physio-
logical fluctuations that are typical in R-fMRI signals. The
robustness comes from modelling the prior to be heavy-tailed
non-Gaussian distributions on signals.

B. Mathematical Framework

A Markov Random Field is used to model the complex
valued 4D spatiotemporal R-fMRI image having V voxels and
T time points. The BOLD-signal time series is modelled using
a dictionary D with J atoms represented as a matrix where
column j ∈ [1, J ] is the atom dj ∈ RT .
A few constraints are required in the above setup, namely
‖dj‖2 = 1 and d0 := 1 to model shifts of the average value
with the time series at voxel v. Each xv is modeled (upto
the time-series’s average value) as a linear combination Dav
where av ∈ RJ , of a few atoms in the dictionary.
In general, Pearson’s correlation, which is used to characterize
the key functional networks, is consistent across subjects who
exhibit the same network. However, the possible variations
in the underlying time-series are modeled using a similarity
transform. This transform has been incorporated as:
• a constant atom d0 for shifting
• coefficients av for scaling
• rotation is modeled using an orthonormal T × T matrix
R for all non-constant atoms dj(j ≥ 1) that model one
subject

Therefore, a new dictionary is obtained which is used to model
the magnitude time series corresponding to another subject as
RDa′v + d0a

′
v0.

The R-fMRI signal is very weak and prone to a number of
physiological fluctuations which are not captured by the dimin-
ishing tails which are characteristic of Gaussian distributions.
Hence, a heavier-tailed distribution is realised by penalizing
the p-th norm of the residual where p ∈ (0, 2). Another
penalization which is included is the q-the power of the q
quasi-norm of each coefficient vector av where q ∈ (0, 1).
This enforces sparsity on av and prevents overfitting.
In addition to the above, spatial correlations present in R-fMRI
series are also enforced by spatial depedency in av across the
voxels.

C. Dictionary Learning Formulation

We first model the time series xv at voxel v by an indepen-
dent generalized multivariate complex Gaussian. Define A to
be the image of the dictionary coefficient vectors [av0, av]

T .

For a voxel v, let Φv be the transform incorporating phase.
The expression for the multivariate Gaussian probability thus
becomes:

P (x|D,A,R,Φ) := ηexp(−
V∑
v=1

‖xv −Φv(RDav + d0av0‖p2)

(1)
A maximum a posteriori (MAP) estimate is learned over N
fully-sampled images to output the dictionary to be used for re-
construction. The estimation problem is solved using gradient
ascent with adaptive step size. The atoms are initialized using
k-means clustering with J clusters and the free parameters are
tuned using cross validation.

V. K-T FASTER: ACCELERATION OF FUNCTIONAL MRI
DATA ACQUISITION USING LOW RANK CONSTRAINTS

A. Introduction

The paper explores the concept of utilizing the intrinsic
spatiotemporal structure of MRI data to accelerate the process
of acquisition as opposed to accelerating on a volume-by-
volume basis. This technique exploits the low rank structure
of fMRI data.

B. Mathematical Framework

The k-t FASTER technique relies on low-rank matrix
completion strategies. In reality, the k-t matrix is only ap-
proximately low rank due to the presence of thermal and
physiological noise.
The matrix completion (MC) problem can be directly com-
pared to compressed sensing (CS). The underlying idea behind
CS is that the data can be represented in a known basis using
a limited number of coefficients which are non-zero. This can
be thought of as enforcing sparsity to limit the possibilities
of reconstruction. For the MC problem, instead of the idea of
sparsity in some known basis, the idea of imposing a low rank
on the data is employed.
The major difference between CS and MC is that CS requires
a prespecified basis and computes the non-zero coefficients but
MC has no such requirement. From the above formulation, we
can now write:

X = UΣV T +N (2)

where U is an m×r matrix of normalized spatial components,
Σ is an r× r diagonal matrix consisting of weights and V is
an n× r matrix of normalized temporal components. N is an
m× n matrix which represents additive noise.
The first term is an outer product which can be thought of as
the Singular Value Decomposition (SVD) of a matrix with m
voxels and n time points. The SVD decomposition of a matrix
is directly linked to its Principal Component Analysis (PCA),
therefore, the above analysis establishes the dimesionality
reduction aspect of the problem.
The reconstruction approach relies on the Iterative Hard
Thresholding algorithm, which solves the constrained opti-
mization problem

min‖Y − Φ(X)‖2 (3)



under the constraints that

rank(X) = r (4)

The above equations are stated for a more general setting,
however in the current setup, X can be thought of the
reconstructed image that is being estimated by the algorithm,
Y can be thought of as the quantity that is being measure or
acquired, which is the undersampled image in this case and Φ
is the mapping between the two, which is the Fourier transform
followed by the undersampling operator.
The problem is solved by the following recursive relation:

Xn+1 = Sr(X
n + µ(Ω(X)− Ω(Xn))) (5)

In the above relation, Xn is the nth estimate, µ is a step size
parameter, Ω is a matrix subsampling operator and Sr is the
hard thresholding operator that can be expressed as follows:

σi =

{
σi if i ≤ r
0 otherwise

where σi represents the ith singular value of the matrix and
r represents the fixed rank cutoff. An alternative relaxed
approach which uses the shrinkage operator (this approach
involves the substitution of the low rank constraint which is
non-convex by a convex nuclear norm constraint [12]) can be
stated as follows:

σi =

{
σi − τ if σi ≥ τ
0 otherwise

which τ , the shrinkage parameter shrinks the non-zero singular
values by a fixed amount.
The convexity involved in the second method offers certain
advantages, however, to also address the fact that the data
has an intrinsic low rank structure, we combine both the
approaches and obtain

σi =

{
σi − τ if i ≤ r
0 otherwise

Notably, this reduces the original hard thresholding problem
if τ = 0.

C. Evaluation of k-t FASTER method

The k-t FASTER method was evaluated using two different
types of experiments, namely the use of retrospectively un-
dersampled data and the use of prospectively undersampled
acquisition.
In the first method, the acquired images are taken to be the
ground truth even though they may still have thermal and
physiological noise. This data is Fourier transformed along the
spatial dimensions and subsequently undersampled to create
training data. Undersampling in the time dimension is also
done. Lower frequencies are retained in the k-space as they
contain more information and a sampling of about 23.8% is
done.
In prospectively undersampled data, the reconstruction was
performed on a coil-by-coil basis and then the sum of squares

was combined. A rank constraint of 72 was used, as opposed
to 26 in the retrospectively undersampled case. However, all
other sampling and reconstruction parameters were same as
that in the restroctively undersampled case.

D. Discussion and Conclusion

The error metric used for evaluating the reconstruction
quantitatively is as follows:

errF (X̂) = 100× ‖X̂ − x‖F
‖X‖F

(6)

where error is defined with respect to the Frobenius norm. A
rank truncated version of the ground truth using PCA (Rank-
128) was also used to compute the error against which this
particular error was tested.
Over a list of 6 subjects, the two errors can be summarised
as in the table below: As can be seen from the above table,

Subject Rank-128 k-t FASTER
1 3.5 4.4
2 3.3 3.7
3 2.8 3.4
4 3.4 3.8
5 2.7 3.3
6 3.8 4.2

the values are reasonably close and validate the low rank
approximation.
However Frobenius norm is not an effective method to capture
the spatial regularities which are present in images, therefore
correlation maps are also used as metric to evaluate the
results which also confirms the impressive performance of this
method.
It can be concluded that even though the success of CS-
based acceleration strategies has motivated several strategies
in the field of MRI imaging to exploit the low rank structure
inherent to this data, the approach has still not been applied
to functional neuroimaging which before the introduction of
this paper, relied heavily on partial parallel image acquisition.
To this effect, k-t FASTER presents a technique making use of
the spatiotemporal structure of the data and uses the method
of hard thresholding to obtain reconstruction which is found to
be robust across the fMRI data of various subjects. However,
it is an iterative method and can require several hours of
computation time for large k-t matrices. The paper aims to
resolve in the future, a better selection criteria for the hard
thresholding of ranks as well as explore parallel computational
techniques and GPU-based acceleration to improve computa-
tional efficiency.

VI. ACCELERATING MAGNETIC RESONANCE IMAGING
VIA DEEP LEARNING

A. Introduction

This paper proposes one of the earliest applications of Deep
Learning to the field of MRI [11]. A simple convolutional
neural net structure is designed to map MRI images obtained
from the zero filled reconstruction to the images obtained
from the fully-sampled k-space data. The network is built in



a way such that it is also compatible with online constrained
reconstruction methods.

B. Mathematical Framework

The raw k-space data which is acquired during the under-
sampled acquisition can be written as:

f = PFu (7)

Here P represents the undersampling transform and F denotes
the normalized Fourier transform matrix (therefore Fu rep-
resents the fully-sampled k-space data). Therefore, the zero-
filled reconstruction can be written as:

z = FHPFu (8)

where H represents the Hermitian transpose operator and since
F is the normalized Fourier transform matrix, FHF = I ,
therefore, FH acts as the inverse Fourier transform.
The paper now establishes a loss function over which to
optimize the parameters of the neural network. This can be
stated as follows:

L(Θ) =
1

2T

T∑
t=1

‖C(zt; Θ)− ut‖22 (9)

where Θ is the parametrization of the neural network over
the set of weights and C represents the mapping that is being
learned by the neural network from the undersampled images
to the fully-sampled images. A minor refinement is made
to this objective function has dividing the image pairs into
overlapping subimage pairs which leads to the loss function
now being:

L(Θ) =
1

2TN

T∑
t=1

N∑
n=1

‖C(zt,n; Θ)− ut,n‖22 (10)

This increases the robustness of the model by increasing the
size of the training set.

C. Reconstruction Formulation

The parameters Θ can be learned by minimizing over the
objective function as derived above. Now, the reconstruction
problem can be established as an optimization problem which
is stated as follows:

argminu‖C(FHf ; Θ)− u‖22 + λ‖f −Fu‖22 (11)

This is a least squares problem which admits an analytical
solution which can be finally expressed as follows:

Fu(kx, ky) =

{
S(kx, ky) if (kx, ky) /∈ Ω
S(kx,ky)+λS0(kx,ky)

1+λ if (kx, ky) ∈ Ω

where Ω is the set where the samples are available.

D. Architectural Details

The network consists of three layers of convolution. The
filter weights in each layer are initialized as random values
from a Gaussian distribution with zero mean and a standard
deviation of 0.001. The biases are initialized to 0.

E. Discussion and Conclusion

The paper is one of the earliest applications of deep learning
methods to MRI images and the reconstruction task with
respect to them. The neural network being considered in the
paper is a convolutional model consisting of 3 layers. A brief
theoretical framework is presented which is concluded using
an analytical solution to obtain the reconstructed image from
the undersampled one.
The results show that the proposed network performs well and
restores the details and fine structures that are lost in the zero-
filled image.

VII. DEEP LEARNING FOR UNDERSAMPLED MRI
RECONSTRUCTION

A. Introduction

This paper [13] explores the application of a convolutional
network, specifically UNET, which is a popular architecture
for image processing tasks. Uniform subsampling is used
in the phase encoding direction (which consumes maximum
time during acquisition). This allows the capture of high-
resolution information, but still permits the image-folding
problem dictated by the Poisson summation formula.
However, to deal with the localization uncertainty which arises
as a result of image folding, a small percentage of low
frequency k-space data is added.

B. Mathematical Framework

Undersampled MRI problem can be equivalently stated as
an optimal reconstruction function f : x → y, a mapping
between undersampled k-space data (x) and the MRI image
(y) which corresponds to the fully-sampled k-space data.
Compressed sensing MRI, which makes of the prior on the
data that enforces sparsity, formulates the problem as follows.

y = argminy‖x− S ◦ F(y)‖2l2 + λ‖T (y)‖l1 (12)

where F denotes the normalized Fourier transform operator. S
denotes the subsampling operator and T represents a transform
that enforces sparsity prior on the reconstruction. is the
regularization parameter controlling the trade-off between the
residual norm and regularity. A popularity used example of a
sparsity enforcing prior is the L1-norm of the gradient of the
reconstruction.
The deep learning paradigm can be seen as opposite to the
least squares minimization approach. Here, the network aims
to learn a function f : x → y where it uses a significant
amount of training data to learn the function as follows:

f = argminf∈Unet

1

N

N∑
i=1

‖f(xi)− yi‖2 (13)

A UNET can provide low dimensional latent space repre-
sentation of an image and the higher resolution features can
be recovered by concatenating feature maps from the earlier
layers to the further layers. The reconstruction function can
be viewed as an inverse mapping of the forward model which
is subject to the constraint of MR images, which are assumed



to exist in a low dimension manifold.
Let y be an MRI image which is to be reconstructed, consisting
on N2 pixels. Consider a framework wherein this image has
a fully-sampled k-space data xfull. The reconstruction of y
from xfull can be written as:

y(n,m) =

N/2∑
a=1−N/2

N/2∑
b=1−N/2

xfull(a, b)e
2iπ(an+bm)/N (14)

The convention is taken such that the frequency encoding is
along the a-axis and the phase encoding is along the b-axis in
the k-space data.
In the undersampled case, there is violation of the Nyquist
criterion and sub-Nyquist sampling is used to speed up the
time-consuming phase-encoding.
According to Poisson summation formula, the discrete Fourier
transform of uniformly subsampled image which a subsam-
pling factor of in the phase encoding will give us the following
two-folded image:

y2−fold(n,m) = y(n,m) + y(n,m+N/2) (15)

The deep leaning needs to find an unfolding map y2−fold → y,
so that the data can be acquired at a higher rate and the neural
net reconstructs the data from the undersampled acquisition.
However, it is not possible to obtain the above mentioned un-
folding map for two reasons. There is a possible construction
of a case (presented in Figure 2 in the paper) wherein we
consider two similar images y1 and y2 with small anomalies
at different locations. It is clear that F(y1) and F(y2) are
not the same. However, for uniformly subsampled data with a
subsampling factor of 2, it is observed that:

P ◦ S ◦ F(y1) = P ◦ S ◦ F(y2) (16)

In the above equation, S is the subsampling operator and P
is the zero padding operator. Therefore, the acquired data for
both the images is completely identical and the unfolding
map will give the same output for both the inputs. Therefore,
the location of the anomaly can not be determined by this
formulation.
The above problem is what the paper refers to as the
problem of separability. This problem can be addressed by
adding a few low frequency data, which helps in capturing
numerous anomalies that form a part of MRI scans and help
in achieving separability in conditions like the above example
where the anomalies differ only in their position. Therefore,
the subsampling strategy is decided as follows: there is an
undersampling by a factor of 4 (25% k-space data, 64 out of
256 lines) but an extra 4% data at lower frequencies (about
12 out of 256 lines).

C. Image Reconstruction Function

From the above reconstruction strategy, around 70% of the
data has not been acquired and the first step in the reconstruc-
tion process is to fill in zeros in place of the unacquired data.

One solution can be the minimum norm solution which can
be stated as follows:

yb = argminys.t.S◦F(y)=x‖y‖l2 (17)

This solution is equal to the zero filled solution (inverse
Fourier Transform of the zero-filled k-space data), however,
practically, this solution is not the correct one and therefore,
undesirable in most cases.
The paper makes use of the UNET architecture to fill in
the zeroes at the unacquired locations to generate the correct
reconstruction. However, during this recovery, the acquired
parts of the data may get distorted so they are manually fixed
later to generate the correct reconstruction. This process is
called as k-space correction and is represented by the function
fcorr.
To above obtained result, an inverse Fourier transform is
applied and the absolute value is given as output of the recon-
struction process. This can be summarized by the following
equation:

f = |F−1| ◦ fcorr ◦ F ◦ fd ◦ |F−1| ◦ P (18)

where fd is the trained UNET function which is learnt by
standard training strategies.

D. Discussion and Conclusion

The proposed method suppresses the artifacts due to fold-
ing and also provides surprisingly sharp and natural looking
images. If the UNET is used without the k-space correction,
most of the folding artifacts are removed. However, if k-space
correction is used, even the remaining folding artifacts are
removed. The results have been summarized in the table below,
which lists the mean values of MSE and SSIM for the three
cases.

Method Mean MSE Mean SSIM
Aliased 0.0043 0.6516
UNET 0.0012 0.8782
UNET with fcorr 0.0004 0.9039

The above results have been taken from the paper. This
demonstrates the use of the deep learning formulation to this
problem and especially the effectiveness of k-space correction.
The paper starts with the mathematical framework of the prob-
lem and proceeds to highlight the problem of separability. This
is solved by using a specific subsampling strategy. The UNET
architecture is used to learn the mapping from undersampled
images to the reconstruction.
The experiments show that the learned function appears to
have highly expressive representation capturing analytical ge-
ometry as well as small anomalies. The flexibility of the
proposed model is tested by applying the learned model to
the reconstruction of other similar images (CT images) that
were never used in the training data. The competitive results
on the untrained datasets suggested that the proposed model
is fairly flexible.



VIII. BAYESIAN DEEP LEARNING FOR ACCELERATED MR
IMAGE RECONSTRUCTION

A. Introduction

This paper explores the application of Bayesian deep learn-
ing techniques to model the uncertainty associated with deep
learning-based reconstructions. MC-dropout and heteroscedas-
tic loss is applied to model epistemic and aleatoric uncertainty.
The main objective is to analyze the kind of errors that are
produced by the deep learning networks. This kind of analysis
is crucial for the deployment of these networks in clinical
settings.
Taking inspiration from their application in MRI image quality
transfer/super-resolution tasks, MC-dropout and heteroscedas-
tic loss are used to capture model and data uncertainty
respectively. These two techniques are primarily applied to
two architectures, UNET [9] and a deep cascade of CNNs (DC-
CNN) [10].
The paper shows that Bayesian Deep Learning methods are
able to approximately characterize the confidence associated
with the generated reconstructions. However, it has been
pointed out that the proposed formulation seems overly sim-
plistic and might need to be refined before being employed in
a more practical setting.

B. Mathematical Framework

Consider a complex valued MRI image which is fully
sampled. Denote this image by x ∈ Cn. Correspondingly,
consider y ∈ Cm which is given as follows:

y = Fux+ ε (19)

where Fu is the undersampling Fourier operator and
ε N (0, σ2I).
The network aims to learn the inversion map p(x|y) or p(x|xu)
(xu = FHu y is the zero filled reconstruction). A typical
approach to solving this is to approach the problem using the
concept of maximum a posteriori (MAP) estimate which can
be written as:

argmaxxp(x|y) = arminx − logp(y|x)− logp(x) (20)

The above can now be solved as a minimisation problem, and
the likelihood and prior terms correspond to data fidelity and
regularization terms respectively. In this light, deep learning
frameworks are viewed as an approximation to learning a MAP
inference.
The deep learning framework basically learns an inversion
function fw(xu) ≈ x where w is a parametrization over the
weights of the neural network. The network parameters are
learnt over the set of input dataset D.
The major shortcoming of the above setup is that it provides
a point estimate. For deep learning, there exists no theoretical
framework that establishes a clear relationship between the
number of measurements, validity of assumed prior and the
reconstruction error. Therefore, it remains unknown when the
network fails in the reconstruction task.

In this respect, it might be more useful to model the distribu-
tion p(x|y) instead to obtain the confidence associated with the
reconstruction (can be modeled with respect to the variance
associated with the output). This motivates the Bayesian deep
learning setup which is specified as follows.
For an undersampled image xu and dataset D, a predictive
distribution over the reconstructed image is given as follows:

p(x|xu,D) =

∫
p(x|xu, w)p(w|D)dw (21)

The important thing to note here is that p(w|D) is in practice
indeterminable and is therefore approximated by q(w) (varia-
tional inference). The predictive distribution is computed using
Monte Carlo integration as an analytical solution does not exist
in most cases.

C. Types of Uncertainty
Given the current theoretical framework, two types of

uncertainty can be identified. The first kind is the aleatoric
uncertainty. This refers to the irreducible uncertainty which
is observed in the data. In the current setup, this uncertainty
can stem from measurement noise. However, there is also
an inherently high level of ambiguity whether a pixel value
represents an aliasing pattern, some anatomy or a texture. If
such an uncertainty is encountered by the network in a specific
region, the model should output low confidence in this region
of the image.
The second kind of uncertainty is called epistemic uncer-
tainty. This results from the fact that given a dataset D, there
are more than one distinct sets of parameters w, that will
map the undersampled images to the correct reconstructions.
This causes a major issue as the only way to deal with this
uncertainty is to increase the size of the dataset which, in the
medical imaging domain, is often quite difficult. This makes
it crucial to account for the variability caused in the network
output by this uncertainty.

D. Modeling Uncertainties
Aleatoric uncertainty and epistemic uncertainty are modeled

by incorporating heteroscedastic loss and MC-dropout respec-
tively. The likelihood function is written as:

p(x|xu, w) = N (x|fw(xu), gw(xu)) (22)

where fw(xu) gives the mean prediction and gw(xu) models
the variance of the prediction, thereby accounting for the
uncertainty found in the input. The pixel-wise error is weighted
by the predicted inverse pixel variance.
MC-dropout is simply the application of dropout to the net-
work activation maps. During inference, the predictive mean
is given as the output.

E[x] ≈ 1

T

T∑
t=1

fwt(xu) (23)

where wt is the configuration of the network after dropout
has been applied. Finally, the variance of each complex-valued
pixel is given by the sum of the variance of real component
and the variance of imaginary component.



E. Network Architectures

The two popular architectures for image processing tasks
are UNET and DC-CNN. These architectures are used to im-
plement the functions w(xu) and w(xu). Each of the functions
can be parametrized independently, or using one network with
multiple heads.
Two variants of the DC-CNN are considered:
• DC-CNN1: This takes the penultimate feature maps from

each of the convolutional networks and feeds these into
a 5-layer variance network which is used to obtain the
function w(xu).

• DC-CNN2: This trains a separate 5-layer variance net-
work which takes the undersampled image as the input
itself.

UNET uses a common encoder to train the functions fw(xu)
and gw(xu), however, it used separate decoders to obtain both
the functions.

F. Discussion and Conclusion

The Bayesian models perform competitively when the test-
ing data is away from the training distribution. The uncertainty
maps also showed a strong correlation with the error maps.
However, numerous shortcomings of the above model must
also be addressed. The characterization of aleatoric uncertainty
is heavily dependent on whether or not f and g are modeled
to be correlated or not, a choice that is heavily influenced by
architectural decisions. This decision must be made by the
user based on the task.
Another shortcoming of the above model is are noticeable
differences between the error maps and the uncertainty maps.
This could possibly be attributed to the fact that MC-dropout
is quite a simple technique and may not be able to represent
the complex model uncertainty in the reconstruction task.
However, Bayesian deep learning shows promising potential
and can be improvised to a stage where it is suitable for clinical
applications.

IX. IMPLEMENTATION AND ANALYSIS WORK

The implementation work centered around the further ap-
plication of deep learning techniques especially, convolutional
neural networks to the problem of undersampled reconstruc-
tion to MRI images [14]. The network can be described in terms
of a three stage CNN architecture:
• The first stage consists of a CNN which is used to recon-

struct the k-space data which has not been acquired using
the data present in spatial and temporal neighbourhood
(exploits the spatiotemporal structure of the data)

• The second stage takes the data from the k-space to the
image domain by the use of an inverse Fourier transform

• The thirst stage uses a CNN learned from quality en-
hancement in the spatiotemporal domain and refines the
output features and details

The use of Bayesian Deep Learning is employed for uncer-
tainty estimation and a loss function which is robust to large
physiological fluctuations in these type of signals is used.

A. Architectural Details
The architecture as specified above has been divided into

three stages:
• Stage 1: This consists of a CNN which takes as input the

zero-filled k-space acquired data for all the timepoints for
which an acquisition has been made. For these timepoints,
the CNN fills in the values of the unacquired data
points. The k-space data is divided into two halves. A
convolutional neural net is applied individually to each
of these halves with separate weights.

• Stage 2: The framework now takes the fully-sampled k-
space images which are still undersampled in the time
domain and takes the inverse Fourier transform of these
images to obtain the images in the spatial domain. Now
the images are temporally upsampled and this is done
using linear interpolation so that it is computationally
efficient.

• Stage 3: The third stage takes the complete time series
and models a probability density function over this which
is paramterized by a univariate Gaussian with real valued
means and positive real-valued standard deviations. The
mean is output as the reconstructed image and the stan-
dard deviation is used to generate the uncertainty map.

B. Loss Metrics
Three loss functions were proposed to evaluate the perfor-

mance of the model. They have been summarized below.
• Mean-Squared Error Loss: This is the typical loss used

in the optimization problem setup. However, in addition
to computing the loss of the final output of the third stage
against the ground truth images that we had for training
samples, we also compute the loss between the inverse
Fourier transform of the output of the first stage of the
neural net for the time points for which we have samples
available. A convex combination of these two terms was
taken.

• Robust Loss: The mean-squared error loss arises from
the assumption of a Gaussian distribution on the data.
However, in the case of MRI images, the physiological
noise leads to a more heavy-tailed distribution than the
Gaussian, therefore, making use of the mean-squared er-
ror loss does not make the model robust to physiological
noise. Therefore, the robust loss is used which penalizes
the pth power of the Frobenius norm where p ≤ 2 is a
free parameter that can be tuned.

• Loss Based on Bayesian Modeling: Assuming that the
ground truth X is drawn from a Gaussian distribution
with mean ΨM and standard deviation PsiS (both of
which are outputs of the neural network), the posterior
probability density can be stated as:

P (X|Y ) =

V∏
v=1

T∏
t=1

G(Xv,t; ΨM
v,t,Ψ

S
v,t) (24)

The log likelihood of the above posterior probability can
be maximized as an objective which will be equivalent
to minimizing the Bayesian loss.



C. Results

The results were measured in the form of mSSIM (mean
Structural Similarity), the graph for which has been presented
below. The high values of mSSIM show that the architecture

Fig. 1. Results for Different Loss Functions

works fairly well. Bayesian loss in particular performs sig-
nificantly well and robust loss also performs competitively as
they both capture different aspects of the task.

X. FUTURE WORK

The model can still be improved in terms of accuracy by
further changes to the architecture (using deeper networks or
making changes to activation or pooling functions using more
intelligent alternatives).
Another strategy we have been looking at is the expectation
maximization framework. Typically used in an unsupervised
setting, it is used for the clustering task and reduces to
the famous K-means clustering algorithm under special cir-
cumstances. However, it has also been shown to be used
for reconstruction task in the medical image domain with
success [15]. This will potentially form the basis of our work
as we go ahead.
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