
Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

Visibility Algorithms I:

Visible Surface Determination:

We are given a collection of objects (represented, say, by a set of polygons) in 3-space, and

a viewing situation, and we want to render only the visible surfaces. Each polygon face

is assumed to be flat (although extensions to hidden-surface elimination of curved surfaces

is an important problem). We may assume that each polygon is represented by a cyclic

listing of the (x, y, z) coordinates of their vertices, so that from the “front” the vertices are

enumerated in counterclockwise order.

Output:

1. generate the set of pixels that form the final image.

2. generate a collection of polygons in the plane, whose interiors do not intersect, and which

together form the final image.

The University of Texas at Austin 1

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

n strips

n strips

The University of Texas at Austin 2

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

Back-face culling

For each polygonal face, we assume an outward pointing normal can be computed. If

this normal is directed away from the viewpoint, that is, if its dot product with a vector

directed towards the viewer is negative, then the face can be immediately discarded from

consideration.

On average this quick test can eliminate about one half of the faces from further consideration.

Eye

The University of Texas at Austin 3

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

In OpenGL, the command glEnable(GL CULL FACE) can be used to enable this test.

The University of Texas at Austin 4

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

Depth-Sort Algorithm

A fairly simple visible surface determination algorithm is based on the principle of painting

objects from back to front, so that more distant polygons are overwritten by closer polygons.

Sort all the polygons according to increasing distance from the viewpoint, and then scan

convert them in reverse order (back to front). This depth-sort algorithm is sometimes called

the painter’s algorithm because it mimics the way that oil painters usually work (painting

the background before the foreground).

Compute a representative point on each polygon (e.g. the centroid or the nearest point

to the viewer), project these points saving the −1/z distance information we used in our

transformation, and then sort by decreasing order of distances, and draw in this order.

Unfortunately, just because the centroids or nearest points are ordered, it does not imply

that the entire polygons are ordered. Worse yet, it may not be possible to order polygons, as

shown in the following figure.

The University of Texas at Austin 5

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

In these cases we may need to cut one or more of the polygons into smaller polygons so that

the depth order can be uniquely assigned. Also observe that if two polygons do not overlap

in x, y space, then it does not matter much what order they are drawn in.

Depth-Sort Algorithm

We begin by sorting the polygons by depth. For example, the initial “depth” estimate of a

polygon may be taken to be the closest z value of any vertex of the polygon. Let’s take the

polygon P at the end of the list. Consider all polygons Q whose z-extents overlaps P ’s.

Before drawing P we make the following tests. If any test is passed, then we can assume P

can be drawn before Q.

The University of Texas at Austin 6

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

1. Do the x-extents not overlap?

2. Do the y-extents not overlap?

3. Is P entirely on the opposite side of Q’s plane from the viewpoint?

4. Is Q entirely on the same side of P ’s plane as the viewpoint?

5. Do the projections of the polygons not overlap?

If all the tests fail then we split either P or Q using the plane of the other. The new cut

polygons are inserting into the depth order and the process continues.

In theory this partitioning could generate O(n2) individual polygons, but in practice the

number of polygons is much smaller.

The University of Texas at Austin 7

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

Depth-buffer Algorithm

The depth-buffer algorithm is one of the simplest and fastest visible surface algorithms. Its

main drawbacks are that it requires a lot of memory, and that it only produces a result that

is accurate to pixel resolution and the resolution of the depth buffer. Thus the result cannot

be scaled easily and edges appear jagged (unless some effort is made to remove these effects

called “aliasing”). It is also called the z-buffer algorithm.

This algorithm assumes that for each pixel we store two pieces of information:

1. the color of the pixel,

2. the depth of the object that gave rise to this color.

This is called the depth-buffer (or z-buffer, since z is the axis used to store depth information).

Initially the depth-buffer values are set to the maximum depth value.

Suppose that we have a k-bit depth buffer, implying that we can store integer depths ranging

from 0 to D = 2k
− 1. After applying the perspective-with-depth transformation, we know

that all depth values have been scaled to the range [−1, 1]. If this depth is less than or

The University of Texas at Austin 8

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

equal to the depth at this point of the buffer, then we store its RGB value in the color buffer.

Otherwise we do nothing.

This algorithm is favored for hardware implementations because it is so simple and essentially

reuses the same algorithms needed for basic scan conversion. The only problem that remains

is how to interpolate the depth values for the pixels in the triangle. This is a simple exercise

involving barycentric coordinates.

Let P0, P1, and P2 be the vertices of the triangle after perspective-plus-depth transformation

has been applied, and the points have been scaled to the screen size. Let Pi = (xi, yi, zi)

be the coordinates of each vertex, where (xi, yi) are the final screen coordinates and zi is

the depth of this point.

scan lineys

x

P0

P2

P1

Pa Pb

P

The University of Texas at Austin 9

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

Warnock’s Algorithm

The area-subdivision algorithm developed by Warnock subdivides each area into four equal

squares. In the recursive-subdivision process, four relations of polygon projections occur to a

shaped square area element (see Figure):

(a) Surrounding (b) Intersecting (c) Contained (d) Disjoint

1. Surrounding polygons completely contain the (shaded) area of interest.

2. Intersecting polygons intersect the area

3. Contained polygons are completely inside the area

4. Disjoint polygons are completely outside the area.

• Disjoint polygons clearly have no influence on the area of interest.

The University of Texas at Austin 10

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

• Part of an intersecting polygon that is outside the area is also irrelevant.

• Part of an intersecting polygon that is interior to the area is the same as a contained

polygon.

The University of Texas at Austin 11

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

In each of the following four cases, a decision about an area can be made easily, so the area

does not need to be divided further to be conquered:

1. All the polygons are disjoint from the area. The background color can be displayed in the

area.

2. There is only one intersecting or only one contained polygon. The area is first filled

with the background color, and then part of the polygon contained in the area is

scan-converted.

3. There is a single surrounding polygon, but no intersecting or contained polygons. The

area is filled with the color of the surrounding polygon.

4. More than one polygon is intersecting, contained in, or surrounding the area, but one is

a surrounding polygon that is in front of all the other polygons. Determining whether a

surrounding polygon is in front is done by computing the z coordinates of the planes of

all surrounding, intersecting, and contained polygons. The entire area can be filled with

the color of this surrounding polygon.

Cases 1, 2, and 3 are simple to understand. Case 4 is further illustrated in the following

Figure.

The University of Texas at Austin 12

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

**

**

x

x

x

x

Contained
polygon

Intersecting
polygon

Surrounding
polygon

Area of interest

(a)

z

x

x

x

x
x

Intersecting
polygon

Surrounding
polygon

Area of interest

(b)

z

x

The University of Texas at Austin 13

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

• In part (a), the four intersections of the surrounding polygon are all closer to the viewpoint

(which is at infinity on the +z axis) than are any of the other intersections. Consequently,

the entire area is filled with the surrounding polygon’s color.

• In part (b), no decision can be made, even though the surrounding polygon seems to be in

front of the intersecting polygon, because on the left the plane of the intersecting polygon

is in front of the plane of the surrounding polygon. After subdivision, only contained and

intersecting polygons need to be reexamined: Surrounding and disjoint polygons of the

original area are surrounding and disjoint polygons of each subdivided area.

Up to this point, the algorithm has operated at object precision, with the exception of the

actual scan conversion of the background and clipped polygons in the four cases.

These image-precision scan-conversion operations, however, can be replaced by object-

precision operations that output a precise representation of the visible surfaces: either a

square of the area’s size (cases 1, 3, and 4) or a single polygon clipped to the area, along with

its Boolean complement relative to the area, representing the visible part of the background

(case 2).

The University of Texas at Austin 14

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

What about the cases that are not one of these four?

One approach is to stop subdividing when the resolution of the display device is reached.

Thus, on a 1024 by 1024 raster display, at most 10 levels of subdivision are needed. If,

after the maximum number of subdivisions, none of cases 1 to 4 have occurred, then the

depth of all relevant polygons is computed at the center of this pixel-sized, indivisible area.

The polygon with the closest z coordinate defines the shading of the area. Alternatively, for

antialiasing, several further levels of subdivision can be used to determine a pixel’s color by

weighting the color of each of its subpixel-sized area by its size. It is these image-precision

operations, performed when an area is not one of the simple cases, that makes this an

image-precision approach.

The University of Texas at Austin 15

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

1 1 1

1111

2

2

2

2 2 2

2

2

222

1

1

1

2 3

3

3

33
3

3
3

3

3

3
333333333

4

4
4

4

444
4
4

44444443
2

The above figure shows a simple scene and the subdivisions necessary for that scene’s

display. The number in each subdivided area corresponds to one of the four cases; in an

unnumbered area, none of the four cases are true. An alternative to equal-area subdivision,

shown in the following Figure, is to (adaptively) divide about the vertex of a polygon (if

there is a vertex in the area) in an attempt to avoid unnecessary subdivisions.

The University of Texas at Austin 16

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

3
4

3

3 3
3
3

4
4

4 4

4
4

2 2

2

22

2

B

A

The University of Texas at Austin 17

Department of Computer Sciences Graphics – Spring 2013 (Lecture 23)

Reading Assignment and News

Please review the appropriate sections related to this lecture in chapter 6, and associated

exercises, of the recommended text.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, Dave Shreiner, 6th

edition, Addison-Wesley)

Please track Blackboard for the most recent Announcements and Project postings related to

this course.

(http://www.cs.utexas.edu/users/bajaj/graphics2012/cs354/)

The University of Texas at Austin 18

