
CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Supplement to Lecture 15

Polygon Shading in OpenGL

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

1.  Enable shading and select model

2.  Specify normals

3.  Specify material properties

4.  Specify lights

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Steps in OpenGL Shading

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• In OpenGL the normal vector is part of the state

• Set by glNormal*()
- glNormal3f(x, y, z);

- glNormal3fv(p);

• Usually we want to set the normal to have unit

length so cosine calculations are correct

- Length can be affected by transformations

- Note that scaling does not preserved length

- glEnable(GL_NORMALIZE) allows for

autonormalization at a performance penalty

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Normals

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

p0

p
1

p2

n

plane n ·(p - p0) = 0

n = (p2 - p0) ×(p1 - p0)

normalize n = n/ |n|

p

Note that right-hand rule determines outward face

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Normal for a Triangle

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Shading calculations are enabled by

- glEnable(GL_LIGHTING)

- Once lighting is enabled, glColor() ignored

• Must enable each light source individually

- glEnable(GL_LIGHTi) i=0,1…..

• Can choose light model parameters

- glLightModeli(parameter, GL_TRUE)

• GL_LIGHT_MODEL_LOCAL_VIEWER do not use

simplifying distant viewer assumption in calculation

• GL_LIGHT_MODEL_TWO_SIDED shades both sides of

polygons independently

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Enabling Shading

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Defining a Point Light Source

• For each light source, we can set an RGBA for the

diffuse, specular, and ambient components, and

for the position
GL float diffuse0[]={1.0, 0.0, 0.0, 1.0};

GL float ambient0[]={1.0, 0.0, 0.0, 1.0};

GL float specular0[]={1.0, 0.0, 0.0, 1.0};

Glfloat light0_pos[]={1.0, 2.0, 3,0, 1.0};

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glLightv(GL_LIGHT0, GL_POSITION, light0_pos);

glLightv(GL_LIGHT0, GL_AMBIENT, ambient0);

glLightv(GL_LIGHT0, GL_DIFFUSE, diffuse0);

glLightv(GL_LIGHT0, GL_SPECULAR, specular0);

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Distance & Direction
• The source colors are specified in RGBA

• The position is given in homogeneous

coordinates

-  If w =1.0, we are specifying a finite location

-  If w =0.0, we are specifying a parallel source

with the given direction vector

• The coefficients in the distance terms are by

default a=1.0 (constant terms), b=c=0.0 (linear

and quadratic terms). Change by
a= 0.80;

glLightf(GL_LIGHT0, GLCONSTANT_ATTENUATION, a);

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

SpotLights

• Use glLightv to set

- Direction GL_SPOT_DIRECTION

- Cutoff GL_SPOT_CUTOFF

- Attenuation GL_SPOT_EXPONENT

• Proportional to cos��

��� �

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Ambient light depends on color of light

sources

- A red light in a white room will cause a red

ambient term that disappears when the light is

turned off

• OpenGL also allows a global ambient

term that is often helpful for testing
- glLightModelfv(GL_LIGHT_MODEL_AMBIENT,

global_ambient)

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Global Ambient Light

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Light sources are geometric objects whose

positions or directions are affected by the

model-view matrix

• Depending on where we place the position

(direction) setting function, we can

- Move the light source(s) with the object(s)

- Fix the object(s) and move the light source(s)

- Fix the light source(s) and move the object(s)

- Move the light source(s) and object(s) independently

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Moving Light Sources

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0};

GLfloat diffuse[] = {1.0, 0.8, 0.0, 1.0};

GLfloat specular[] = {1.0, 1.0, 1.0, 1.0};

GLfloat shine = 100.0

glMaterialf(GL_FRONT, GL_AMBIENT, ambient);

glMaterialf(GL_FRONT, GL_DIFFUSE, diffuse);

glMaterialf(GL_FRONT, GL_SPECULAR, specular);

glMaterialf(GL_FRONT, GL_SHININESS, shine);

• Material properties are also part of the OpenGL

state and match the terms in the modified Phong

model

• Set by glMaterialv()

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Material Properties

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• The default is shade only front faces which

works correctly for convex objects

• If we set two sided lighting, OpenGL will shade

both sides of a surface

• Each side can have its own properties which are

set by using GL_FRONT, GL_BACK, or

GL_FRONT_AND_BACK in glMaterialf

back faces not visible back faces visible

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Front and Back Faces

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• We can simulate a light source in OpenGL

by giving a material an emissive

component

• This component is unaffected by any

sources or transformations

GLfloat emission[] = 0.0, 0.3, 0.3, 1.0);

glMaterialf(GL_FRONT, GL_EMISSION, emission);

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Emissive Term

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Material properties are specified as RGBA

values

• The A value can be used to make the

surface translucent

• The default is that all surfaces are opaque

regardless of A

• Later we will enable blending and use this

feature

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Transparency

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Because material properties are part of the
state, if we change materials for many surfaces,
we can affect performance

• We can make the code cleaner by defining a
material structure and setting all materials during
initialization

• We can then select a material by a pointer

typedef struct materialStruct {

 GLfloat ambient[4];

 GLfloat diffuse[4];

 GLfloat specular[4];

 GLfloat shineness;

} MaterialStruct;

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Efficiency

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Polygon Shading

• Shading calculations are done for each

vertex

- Vertex colors become vertex shades

• By default, vertex shades are interpolated

across the polygon

- glShadeModel(GL_SMOOTH);

• If we use glShadeModel(GL_FLAT); the

color at the first vertex will determine the

shade of the whole polygon

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Polygons have a single normal

- Shades at the vertices as computed by the

Phong model can be almost same

-  Identical for a distant viewer (default) or if there

is no specular component

• Consider model of sphere

• Different normals at

each vertex

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Polygon Normals

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Set a normal at each

vertex

• Easy for sphere model

-  If centered at origin n = p

• Now smooth shading

works

• Note silhouette edge

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Smooth Shading

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Mesh Shading

• The previous example is not general

because we knew the normal at each

vertex analytically

• For polygonal models, Gouraud proposed

we use the average of the normals around

a mesh vertex

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4|

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• Gouraud Shading

- Find average normal at each vertex (vertex normals)

- Apply modified Phong model at each vertex

-  Interpolate vertex shades across each polygon

• Phong shading

- Find vertex normals

-  Interpolate vertex normals across edges

-  Interpolate edge normals across polygon

- Apply modified Phong model at each fragment

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Gouraud and Phong Shading

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

• If the polygon mesh approximates surfaces with

a high curvatures, Phong shading may look

smooth while Gouraud shading may show edges

• Phong shading requires much more work than

Gouraud shading

- Until recently not available in real time systems

- Now can be done using fragment shaders

• Both need data structures to represent meshes

so we can obtain vertex normals

CS 354 Computer Graphics
http://www.cs.utexas.edu/~bajaj/
Department of Computer Science University of Texas at Austin

Notes and figures from Ed Angel: Interactive Computer
Graphics, 6th Ed., 2012 © Addison Wesley

Comparison

Monday, March 4, 13

http://www.cs.utexas.edu/~bajaj/
http://www.cs.utexas.edu/~bajaj/

