Supplement to Lecture 18

Texturing in OpenGL

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics, 6th Ed., 2012* © *Addison Wesley*

University of Texas at Austin

Limits of Geometry

- Although graphics cards can render over 10 million polygons per second, that number is insufficient for many phenomena
 - Clouds
 - Grass
 - Terrain
 - Skin

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics*, 6th Ed., 2012 © Addison Wesley

University of Texas at Austin

Three Mappings

- Texture Mapping
 - Uses images to fill inside of polygons
- Environment (reflection mapping)
 - Uses a picture of the environment for texture maps
 - Allows simulation of highly specular surfaces
- Bump mapping
 - Emulates altering normal vectors during the rendering process

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from Ed Angel: Interactive Computer Graphics, 6th Ed., 2012 © Addison Wesley

Texture Mapping

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics*, 6th Ed., 2012 © Addison Wesley

University of Texas at Austin

Environment Mapping

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics, 6th Ed., 2012* © *Addison Wesley*

University of Texas at Austin

Bump Mapping

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics, 6th Ed., 2012* © *Addison Wesley*

University of Texas at Austin

Implementation Strategy

Three steps to applying a texture

- 1. specify the texture
 - read or generate image
 - assign to texture
 - enable texturing
- 2. assign texture coordinates to vertices
 - Proper mapping function is left to application
- 3. specify texture parameters
 - wrapping, filtering

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics*, 6th Ed., 2012 © Addison Wesley

Texture Mapping

S

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics, 6th Ed., 2012* © *Addison Wesley*

University of Texas at Austin

Where does mapping occur

- Mapping techniques are implemented at the end of the rendering pipeline
 - Very efficient because few polygons make it past the clipper

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics, 6th Ed., 2012* © *Addison Wesley*

University of Texas at Austin

Define Image as Texture

glTexImage2D(target, level, components,

w, h, border, format, type, texels);

target: type of texture, e.g. GL_TEXTURE_2D
level: used for mipmapping (discussed later)
components: elements per texel
w, h: width and height of texels in pixels
border: used for smoothing (discussed later)
format and type: describe texels
texels: pointer to texel array

glTexImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0, GL_RGB, GL_UNSIGNED_BYTE, my_texels);

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from Ed Angel: Interactive Computer Graphics, 6th Ed., 2012 © Addison Wesley

Specifying a Texture Image

- Define a texture image from an array of texels (texture elements) in CPU memory Glubyte my texels[512][512];
- Define as any other pixel map
 - Scanned image
 - Generate by application code
- Enable texture mapping
 - -glEnable(GL_TEXTURE_2D)
 - OpenGL supports 1-4 dimensional texture maps

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from Ed Angel: Interactive Computer Graphics, 6th Ed., 2012 © Addison Wesley

Converting a Texture Image

- OpenGL requires texture dimensions to be powers of 2
- If dimensions of image are not powers of 2

•gluScaleImage(format, w_in, h_in, type_in, *data_in, w_out, h_out, type_out, *data_out);

-data_in is source image

-data_out is for destination image

Image interpolated and filtered during scaling

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from Ed Angel: Interactive Computer Graphics, 6th Ed., 2012 © Addison Wesley

Mapping a Texture

- Based on parametric texture coordinates
- •glTexCoord*() specified at each vertex

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics, 6th Ed., 2012* © *Addison Wesley*

University of Texas at Austin

Typical Code

```
glBegin(GL_POLYGON);
glColor3f(r0, g0, b0); //if no shading used
glNormal3f(u0, v0, w0); // if shading used
glTexCoord2f(s0, t0);
glVertex3f(x0, y0, z0);
glColor3f(r1, g1, b1);
glNormal3f(u1, v1, w1);
glTexCoord2f(s1, t1);
glVertex3f(x1, y1, z1);
```

glEnd();

Note that we can use vertex arrays to increase efficiency

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from Ed Angel: Interactive Computer Graphics, 6th Ed., 2012 © Addison Wesley

University of Texas at Austin

Interpolation

OpenGL uses interpolation to find proper texels from specified texture coordinates

Can be distortions

good selection of tex coordinates

poor selection of tex coordinates texture stretched over trapezoid showing effects of bilinear interpolatio

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics, 6th Ed., 2012* © *Addison Wesley*

Filter Modes

Modes determined by

-glTexParameteri(target, type, mode)

glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MAG_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MIN_FILTER, GL_LINEAR);

Note that linear filtering requires a border of an extra texel for filtering at edges (border = 1)

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from Ed Angel: Interactive Computer Graphics, 6th Ed., 2012 © Addison Wesley

University of Texas at Austin

Mipmapped Textures

- *Mipmapping* allows for prefiltered texture maps of decreasing resolutions
- Lessens interpolation errors for smaller textured objects
- Declare mipmap level during texture definition
 glTexImage2D(GL_TEXTURE_*D, level, ...)
- GLU mipmap builder routines will build all the textures from a given image gluBuild*DMipmaps (...)

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics*, 6th Ed., 2012 © Addison Wesley

University of Texas at Austin

Texture Functions

- Controls how texture is applied
 - glTexEnv{fi}[v](GL_TEXTURE_ENV, prop, param)
- GL_TEXTURE_ENV_MODE modes
 - **GL_MODULATE**: modulates with computed shade
 - **GL_BLEND**: blends with an environmental color
 - **GL_REPLACE**: use only texture color
 - GL(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
- Set blend color with GL_TEXTURE_ENV_COLOR

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics*, 6th Ed., 2012 © Addison Wesley

Perspective Hint Correction

- Texture coordinate and color interpolation
 - either linearly in screen space
 - or using depth/perspective values (slower)
- Noticeable for polygons "on edge"
 - glHint(GL_PERSPECTIVE_CORRECTION_HINT, hint) where hint is one of
 - GL_DONT_CARE
 - GL_NICEST

• GL_FASTEST

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from Ed Angel: Interactive Computer Graphics, 6th Ed., 2012 © Addison Wesley

Generating Texture Coordinates

OpenGL can generate texture coordinates
 automatically

```
glTexGen{ifd}[v]()
```

- specify a plane
 - generate texture coordinates based upon distance from the plane
- generation modes
 - -GL_OBJECT_LINEAR
 - -GL_EYE_LINEAR
 - -GL_SPHERE_MAP (used for environmental maps)

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from Ed Angel: Interactive Computer Graphics, 6th Ed., 2012 © Addison Wesley

Other Texture Features

- Environment Maps
 - Start with image of environment through a wide angle lens
 - Can be either a real scanned image or an image created in OpenGL
 - Use this texture to generate a spherical map
 - Use automatic texture coordinate generation
- Multitexturing
 - Apply a sequence of textures through cascaded texture units

CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Department of Computer Science Notes and figures from *Ed Angel: Interactive Computer Graphics*, 6th Ed., 2012 © Addison Wesley