Pixels

- Pixel: Intensity or color sample.
- Raster Image: Rectangular grid of pixels.
- Rasterization: Conversion of a primitive's geometric representation into
- A set of pixels.
- An intensity or color for each pixel (shading, antialiasing).
- For now, we will assume that the background is white and we need only change the color of selected pixels to black.

Pixel Grids

- Pixel Centers: Address pixels by integer coordinates (i, j)
- Pixel Center Grid: Set of lines passing through pixel centers.
- Pixel Domains: Rectangular semi-open areas surrounding each pixel center:

$$
P_{i, j}=(i-1 / 2, i+1 / 2) \times(j-1 / 2, j+1 / 2)
$$

- Pixel Domain Grid: Set of lines formed by domain boundaries.

Specifications and Representations

Each rendering primitive (point, line segment, polygon, etc.) needs both

- A geometric specification, usually "calligraphic."
- A pixel (rasterized) representation.

Standard device-level geometric specifications include:
Point: $A=\left(x_{A}, y_{A}\right) \in \mathbf{R}^{2}$.
Line Segment: $\ell(A B)$ specified with two points, A and B. The line segment $\ell(A B)$ is the set of all collinear points between point A and point B.

Polygon: Polygon $\mathcal{P}\left(A_{1} A_{2} \ldots A_{n}\right)$ specified with an ordered list of points $A_{1} A_{2} \ldots A_{n}$. A polygon is a region of the plane with a piecewise linear boundary; we connect A_{n} to A_{1}.

This "list of points" specification is flawed... a more precise definition will be given later.

Line Segments

- Let $\ell(A B)=\left\{P \in \mathbf{R}^{2} \mid P=(1-t) A+t B, t \in[0,1]\right\}$
- Problem: Given a line segment $\ell(A B)$ specified by two points A and B,
- Decide: Which pixels to illuminate to represent $\ell(A B)$.
- Desired properties: Rasterization of line segment should

1. Appear as straight as possible;
2. Include pixels whose domains contain A and B;
3. Have relatively constant intensity (i.e., all parts should be the same brightness);
4. Have an intensity per unit length that is independent of slope;
5. Be symmetric;
6. Be generated efficiently.

Line Segment Representations

1. Given $A B$, choose a set of pixels $L_{1}(A B)$ given by

$$
L_{1}(A B)=\left\{(i, j) \in \mathbb{Z}^{2} \mid \ell(A B) \cap P_{i, j}\right\}
$$

Unfortunately, this results in a very blotchy, uneven looking line.
2. Given $A B$, choose a set of pixels $L_{2}(A B)$ given by

$$
L_{2}(A B)=\left\{\begin{array}{c}
\left|x_{B}-x_{A}\right| \geq\left|y_{B}-y_{A}\right| \longrightarrow \\
\left\{(i, j) \in \mathbb{Z}^{2} \mid(i, j)=(i,[y]),(i, y) \in \ell(A B), y \in \mathbf{R}\right\} \\
\cup\left(\left[x_{A}\right],\left[y_{A}\right]\right) \cup\left(\left[x_{B}\right],\left[y_{B}\right]\right) . \\
\left|x_{B}-x_{A}\right|<\left|y_{B}-y_{A}\right| \longrightarrow \\
\left\{(i, j) \in \mathbb{Z}^{2} \mid(i, j)=([x], j),(x, j), \in \ell(A B), x \in \mathbf{R}\right\} \\
\cup\left(\left[x_{A}\right],\left[y_{A}\right]\right) \cup\left(\left[x_{B}\right],\left[y_{B}\right]\right) .
\end{array}\right.
$$

Where $[z]=\lfloor z+1 / 2\rfloor$, and $\lfloor w\rfloor$ is the greatest integer less than or equal to w.

Line Equation Algorithm

Based on the line equation $y=m x+b$, we can derive:

```
LineEquation (int xA, yA, xB, yB)
    float m, b;
    int xi, dx;
    m = (yB - yA)/(xB - xA);
    b = yA - m*xA;
    if ( xB - xA > 0 ) then dx=1;
    else dx = -1;
    for xi = xA to xB step dx do
        y = m*xi + b;
        WritePixel( xi, [y] );
endfor
```

Problems:

- One pixel per column so lines of slope >1 have gaps
- Vertical lines cause divide by zero

To fix these problems, we need to use $x=m^{-1}(y-b)$ when $m>1$.

Discrete Differential Analyzer

Observation: Roles of x and y are symmetric...

- Change roles of x and y if $\left|y_{B}-y_{A}\right|>\left|x_{B}-x_{A}\right|$

Observation: Multiplication of m inside loop...

- The value of m is constant for all iterations.
- Can reduce computations inside loop:
y_{i+1} and be computed incrementally from y_{i}

$$
y_{i+1}=m\left(x_{i}+1\right)+b=y_{i}+m
$$

```
DDA (int xA, yA, xB, yB)
    int length, dx, dy, i;
    float x,y,xinc,yinc;
dx = xB - xA;
dy = yB - yA;
length = max ( |dx| > |dy| );
xinc = dx/length; # either xinc or yinc is -1 or 1
yinc = dy/length;
x = xA; y = yA;
for i=0 to length do
    WritePixel( [x], [y] );
    x += xinc;
    y += yinc;
endfor
```


Bresenham's Algorithm

- Completely integer;
- Will assume (at first) that $x_{A}, y_{A}, x_{B}, y_{B}$ are also integer.
- Only addition, subtraction, and shift in inner loop.
- Originally for a pen plotter.
- "Optimal" in that it picks pixels closest to line, i.e., $L_{2}(A B)$.
- Assumes $0 \leq\left(y_{B}-y_{A}\right) \leq\left(x_{B}-x_{A}\right) \leq 1$ (i.e., slopes between 0 and 1).
- Use reflections and endpoint reversal to get other slopes: 8 cases.

- Suppose we know at step $i-1$ that pixel $\left(x_{i}, y_{i}\right)=P_{i-1}$ was chosen. Thus, the line passed between points A and B.
- Slope between 0 and $1 \Rightarrow$
line must pass between points C and D at next step \Rightarrow $E_{i}=\left(x_{i}+1, y_{i}\right)$ and $N E_{i}=\left(x_{i}+1, y_{i}+1\right)$ are only choices for next pixel.
- If M_{i} above line, choose E_{i};
- If M_{i} below line, choose $N E_{i}$.
- Implicit representations for line:

$$
\begin{gathered}
y=\frac{\Delta y}{\Delta x} x+b \\
F(x, y)=\underbrace{(2 \Delta y)}_{Q} x+\underbrace{(-2 \Delta x)}_{R} y+\underbrace{2 \Delta x b}_{S}=0
\end{gathered}
$$

where

$$
\begin{aligned}
\Delta x & =x_{B}-x_{A} \\
\Delta y & =y_{B}-y_{A} \\
b & =y_{A}-\frac{\Delta y}{\Delta x} x_{A} \Rightarrow S=2 \Delta x y_{A}-2 \Delta y x_{A}
\end{aligned}
$$

Note that

1. $F(x, y)<0 \Rightarrow(x, y)$ above line.
2. $F(x, y)>0 \Rightarrow(x, y)$ below line.
3. Q, R, S are all integers.

- The mystery factor of 2 will be explained later.
- Look at $F\left(M_{i}\right)$. Remember, F is 0 if the point is on the line:
- $F\left(M_{i}\right)<0 \Rightarrow M_{i}$ above line \Rightarrow choose $P_{i}=E_{i}$.
- $F\left(M_{i}\right)>0 \Rightarrow M_{i}$ below line \Rightarrow choose $P_{i}=N E_{i}$.
- $F\left(M_{i}\right)=0 \Rightarrow$ arbitrary choice, consider choice of pixel domains...
- We'll use $d_{i}=F\left(M_{i}\right)$ as an decision variable.
- Can compute d_{i} incrementally with integer arithmetic.
- At each step of algorithm, we know P_{i-1} and $d_{i} \ldots$
- Want to choose P_{i} and compute d_{i+1}
- Note that

$$
\begin{aligned}
d_{i} & =F\left(M_{i}\right)=F\left(x_{i-1}+1, y_{i-1}+1 / 2\right) \\
& =Q \cdot\left(x_{i-1}+1\right)+R \cdot\left(y_{i-1}+1 / 2\right)+S
\end{aligned}
$$

- If E_{i} is chosen then

$$
\begin{aligned}
d_{i+1} & =F\left(x_{i-1}+2, y_{i-1}+1 / 2\right) \\
& =Q \cdot\left(x_{i-1}+2\right)+R \cdot\left(y_{i-1}+1 / 2\right)+S \\
& =d_{i}+Q
\end{aligned}
$$

- If $N E_{i}$ is chosen then

$$
\begin{aligned}
d_{i+1} & =F\left(x_{i-1}+2, y_{i-1}+1 / 2+1\right) \\
& =Q \cdot\left(x_{i-1}+2\right)+R \cdot\left(y_{i-1}+1 / 2+1\right)+S \\
& =d_{i}+Q+R
\end{aligned}
$$

- Initially, we have

$$
\begin{aligned}
d_{1} & =F\left(x_{A}+1, y_{A}+1 / 2\right) \\
& =Q_{x_{A}}+R_{y_{A}}+S+Q+R / 2 \\
& =F\left(x_{A}, y_{A}\right)+Q+R / 2 \\
& =Q+R / 2
\end{aligned}
$$

- Note that $F\left(x_{A}, y_{A}\right)=0$ since $\left(x_{A}, y_{A}\right) \in \ell(A B)$.
- Why the mysterious factor of 2 ?

It makes everything integer.

```
Bresenham (int \(x A, y A, x B, y B)\)
    int d, dx, dy, xi, yi
    int incE, incNE
    \(d x=x B-x A\)
    \(d y=y B-y A\)
    incE \(=\mathrm{dy} \ll 1 \quad / * \mathrm{Q} * /\)
    incNE = incE - dx<<1; \(\quad / * \mathrm{Q}+\mathrm{R} * /\)
    \(\mathrm{d}=\mathrm{incE}-\mathrm{dx} \quad / * \mathrm{Q}+\mathrm{R} / 2 * /\)
    xi = xA; yi = yA
    WritePixel( xi, yi )
    while ( xi < xB )
        xi++
        if ( \(\mathrm{d}<0\) ) then \(/ *\) choose \(\mathrm{E} * /\)
        d += incE
    else /* choose NE */
            d += incNE
        yi++
    endif
```

```
    WritePixel( xi, yi )
endwhile
```

- Some asymmetries (choice when $==$).
- Did we meet our goals?

1. Straight as possible: yes, but depends on metric.
2. Correct termination.
3. Even distribution of intensity: yes, more or less, but:
4. Intensity varies as function of slope.

- Can't do better without gray scale.
- Worst case: diagonal compared to horizontal (same number of pixels, but $\sqrt{2}$ longer line).

5. Careful coding required to achieve some form of symmetry.
6. Fast! (if integer math fast ...)

- Interaction with clipping?
- Subpixel positioning of endpoints?
- Variations that look ahead more than one pixel at once...
- Variations that compute from both end of the line at once...
- Similar algorithms for circles, ellipses, ...
(8 fold symmetry for circles)

Reading Assignment and News

Chapter 8 pages 379-399, of Recommended Text.
(Recommended Text: Interactive Computer Graphics, by Edward Angel, 4th edition, AddisonWesley)

Please also track the News section of the Course Web Pages for the most recent Announcements related to this course.
(http://www.cs.utexas.edu/users/bajaj/graphics24/cs354/)

