Viewing I: Model Transformations

Matrix Representation of Transformations

- Let \mathcal{A}_{0} and \mathcal{A}_{1} be affine spaces.

Let $\mathbf{T}: \mathcal{A}_{0} \mapsto \mathcal{A}_{1}$ be an affine transformation.
Let $F_{0}=\left(\vec{i}_{0}, \vec{j}_{0}, \mathcal{O}_{0}\right)$ be a frame for \mathcal{A}_{0}.
Let $F_{1}=\left(\vec{i}_{1}, \vec{j}_{1}, \mathcal{O}_{1}\right)$ be a frame for \mathcal{A}_{1}.

- Let $P=x \vec{i}_{0}+y \vec{j}_{0}+\mathcal{O}_{0}$ be a point in \mathcal{A}_{0}.

The coordinates of P relative to \mathcal{A}_{0} are $(x, y, 1)$.
This can also be represented in vector form as $P=\left[\begin{array}{lll}\vec{i}_{0} & \vec{j}_{0} & \mathcal{O}_{0}\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

- What are the coordinates $\left(x^{\prime}, y^{\prime}, 1\right)$ of $\mathbf{T}(P)$ relative to F_{1} ?
- An affine transformation is characterized by the image of a frame in the domain.

$$
\begin{aligned}
\mathbf{T}(P) & =\mathbf{T}\left(x \vec{i}_{0}+y \vec{j}_{0}+\mathcal{O}_{0}\right) \\
& =x \mathbf{T}\left(\vec{i}_{0}\right)+y \mathbf{T}\left(\vec{j}_{0}\right)+\mathbf{T}\left(\mathcal{O}_{0}\right)
\end{aligned}
$$

- $\mathbf{T}\left(\vec{i}_{0}\right)$ must be a linear combination of \vec{i}_{1} and \vec{j}_{1}, say $\mathbf{T}\left(\vec{i}_{0}\right)=t_{1,1} \vec{i}_{1}+t_{2,1} \vec{j}_{1}$.
- Likewise $\mathbf{T}\left(\vec{j}_{0}\right)$ must be a linear combination of \vec{i}_{1} and \vec{j}_{1}, say $\mathbf{T}\left(\vec{j}_{0}\right)=t_{1,2} \vec{i}_{1}+t_{2,2} \vec{j}_{1}$.
- Finally $\mathbf{T}\left(\mathcal{O}_{0}\right)$ must be an affine combination of \vec{i}_{1}, \vec{j}_{1}, and \mathcal{O}_{1}, say $\mathbf{T}\left(\mathcal{O}_{0}\right)=t_{1,3} \vec{i}_{1}+t_{2,3} \vec{j}_{1}+\mathcal{O}_{1}$.
- Then by substitution we get

$$
\begin{aligned}
\mathbf{T}(P) & =x\left(t_{1,1} \vec{i}_{1}+t_{2,1} \vec{j}_{1}\right)+y\left(t_{1,2} \vec{i}_{1}+t_{2,2} \vec{j}_{1}\right)+t_{1,3} \vec{i}_{1}+t_{2,3} \vec{j}_{1}+\mathcal{O}_{1} \\
& =\left[t_{1,1} \vec{i}_{1}+t_{2,1} \vec{j}_{1} t_{1,2} \vec{i}_{1}+t_{2,2} \vec{j}_{1} t_{1,3} \vec{i}_{1}+t_{2,3} \vec{j}_{1}+\mathcal{O}_{1}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& =\left[\vec{i}_{1} \vec{j}_{1} \mathcal{O}_{1}\right]\left[\begin{array}{ccc}
t_{1,1} & t_{1,2} & t_{1,3} \\
t_{2,1} & t_{2,2} & t_{2,3} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

Using \mathbf{M}_{T} to denote the matrix, we see that $F_{0}=F_{1} \mathbf{M}_{T}$

- Let $\mathbf{T}(P)=P^{\prime}=x^{\prime} \vec{i}_{1}+y^{\prime} \vec{j}_{1}+\mathcal{O}_{1}$

In vector form this is

$$
\begin{aligned}
P^{\prime} & =\left[\begin{array}{lll}
\vec{i}_{1} & \vec{j}_{1} & \mathcal{O}_{1}
\end{array}\right]\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] \\
& =\left[\vec{i}_{1} \vec{j}_{1} \mathcal{O}_{1}\right]\left[\begin{array}{ccc}
t_{1,1} & t_{1,2} & t_{1,3} \\
t_{2,1} & t_{2,2} & t_{2,3} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

So we see that

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
t_{1,1} & t_{1,2} & t_{1,3} \\
t_{2,1} & t_{2,2} & t_{2,3} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

We can write this in shorthand $-\mathbf{p}^{\prime}=\mathbf{M}_{T} \mathbf{p}$

- \mathbf{M}_{T} is the matrix representation of \mathbf{T}
- The first column of \mathbf{M}_{T} represents $\mathbf{T}\left(\vec{i}_{0}\right)$
- The second column of \mathbf{M}_{T} represents $\mathbf{T}\left(\vec{j}_{0}\right)$
- The third column of \mathbf{M}_{T} represents $\mathbf{T}\left(\mathcal{O}_{0}\right)$
- Translation
- Points are transformed as $\left[\begin{array}{ll}x^{\prime} & y^{\prime}\end{array}\right]^{T}=\left[\begin{array}{ll}x & y\end{array} 1\right]^{T}+\left[\begin{array}{lll}\Delta x & \Delta y & 0\end{array}\right]^{T}$.
- Vectors don't change.
- Thus translation is affine but not linear.

If it were linear, we would have $\mathbf{T}(P+Q)=\mathbf{T}(P)+\mathbf{T}(Q)$, but point addition is undefined.

- Translation can be applied to sums of vectors and vector-point sums.
- Matrix formulation:

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & \Delta x \\
0 & 1 & \Delta y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+\Delta x \\
y+\Delta y \\
1
\end{array}\right]} \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & \Delta x \\
0 & 1 & \Delta y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]}
\end{gathered}
$$

- Shorthand for the above matrix: $T(\Delta x, \Delta y)$
- Example

$$
\begin{gathered}
\text { glTranslatef }(.7, .5,0) ; \\
\text { glBegin(GL_LINE_LOOP); } \\
\text { glVertex2f }(-1,0) ; \\
\text { glVertex2f }(1,0) ; \\
\text { glVertex2f }(1,1) ; \\
\text { glVertex2f }(-1,1) ; \\
\text { glEnd(); }
\end{gathered}
$$

- Scale
- Linear transform - applies equally to points and vectors
- Points transform as $\left[\begin{array}{lll}x^{\prime} & y^{\prime} & 1\end{array}\right]^{T}=\left[\begin{array}{lll}x S_{x} & y S_{y} & 1\end{array}\right]^{T}$.
- Vectors transform as $\left[\begin{array}{ll}x^{\prime} & y^{\prime}\end{array}\right]^{T}=\left[\begin{array}{lll}x S_{x} & y & S_{y}\end{array}\right]^{T}$.
- Matrix formulation:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
S_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x S_{x} \\
y S_{y} \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
S_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]=\left[\begin{array}{c}
x S_{x} \\
y S_{y} \\
0
\end{array}\right]}
\end{aligned}
$$

- Shorthand for the above matrix: $S\left(S_{x}, S_{y}\right)$
- Note that this is origin sensitive.
- How do you do reflections?
- Example

- Rotate
- Linear transform - applies equally to points and vectors
- Points transform as

$$
\left[x^{\prime} y^{\prime} 1\right]^{T}=[x \cos (\theta)-y \sin (\theta) x \sin (\theta)+y \cos (\theta) 1]^{T} .
$$

- Vectors transform as

$$
\left[x^{\prime} y^{\prime} 0\right]^{T}=[x \cos (\theta)-y \sin (\theta) x \sin (\theta)+y \cos (\theta) 0]^{T}
$$

- Matrix formulation:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x \cos (\theta)-y \sin (\theta) \\
x \sin (\theta)+y \cos (\theta) \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]=\left[\begin{array}{c}
x \cos (\theta)-y \sin (\theta) \\
x \sin (\theta)+y \cos (\theta) \\
0
\end{array}\right]}
\end{aligned}
$$

- Shorthand for the above matrix: $R(\theta)$
- Note that this is origin sensitive.
- Example

$$
\begin{aligned}
& \text { glRotatef(45, 0, 0, 0, 1); } \\
& \text { glBegin(GL_LINE_LOOP); } \\
& \text { glVertex2f }(-1,0) ; \\
& \text { glVertex2f(1, 0); } \\
& \text { glVertex2f }(1,1) ; \\
& \text { glVertex2f }(-1,1) ; \\
& \text { glEnd(); }
\end{aligned}
$$

- Shear
- Linear transform - applies equally to points and vectors
- Points transform as $\left[\begin{array}{ll}x^{\prime} & y^{\prime}\end{array}\right]^{T}=[x+\alpha y, y+\beta x, 1]^{T}$.
- Vectors transform as $\left[x^{\prime} y^{\prime} 0\right]^{T}=[x+\alpha y, y+\beta x, 0]^{T}$.
- Matrix formulation:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & \alpha & 0 \\
\beta & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+\alpha y \\
y+\beta x \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
0
\end{array}\right]=\left[\begin{array}{lll}
1 & \alpha & 0 \\
\beta & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]=\left[\begin{array}{c}
x+\alpha y \\
y+\beta x \\
0
\end{array}\right]}
\end{aligned}
$$

- Shorthand for the above matrix: $\operatorname{Sh}(\alpha, \beta)$
- Example

$$
\begin{gathered}
\text { float ShearMatrix }[]=\{ \\
1,1,0,0 \\
0,1,0,0, \\
0,0,1,0, \\
0,0,0,1\}
\end{gathered}
$$

Traspose(ShearMatrix);
glMultMatrixf(ShearMatrix);

- Composition of Transformations
- Now we have some basic transformations, how do we create and represent arbitrary affine transformations?
- We can derive an arbitrary affine transform as a sequence of basic transformations, then compose the transformations
- Example - scaling about an arbitrary point $\left[x_{c} y_{c} 1\right]^{T}$

1. Translate $\left[\begin{array}{lll}x_{c} & y_{c} & 1\end{array}\right]^{T}$ to $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\left(T\left(-x_{c},-y_{c}\right)\right)$
2. Scale $\left[\begin{array}{ll}x^{\prime} & y^{\prime} \\ 1\end{array}\right]^{T}=S\left(S_{x}, S_{y}\right)\left[\begin{array}{ll}x & y\end{array}\right]^{T}$
3. Translate $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}$ back to $\left[x_{c} y_{c} 1\right]\left(T\left(x_{c}, y_{c}\right)\right)$

- The sequence of transformation steps is $T\left(-x_{c},-y_{c}\right) \circ S\left(S_{x}, S_{y}\right) \circ T\left(x_{c}, y_{c}\right)$
- Example

- In matrix form this is

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] } & =\left[\begin{array}{lll}
1 & 0 & x_{c} \\
0 & 1 & y_{c} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
S_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -x_{c} \\
0 & 1 & -y_{c} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
S_{x} & 0 & x_{c}\left(1-S_{x}\right) \\
0 & S_{y} & y_{c}\left(1-S_{y}\right) \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
\end{aligned}
$$

- Note that the matrices are arranged from right to left in the order of the steps.
- The order is important (why)?
- Three Dimensional Transformations
- A point is $\mathbf{p}=\left[\begin{array}{lll}x & y & z\end{array}\right]$, a vector $\vec{v}=\left[\begin{array}{lll}x & y & z\end{array}\right]$
- Translation:
$T(\Delta x, \Delta y, \Delta z)=\left[\begin{array}{cccc}1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1\end{array}\right]$
- Scale:

$$
S\left(S_{x}, S_{y}, S_{z}\right)=\left[\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Rotation:
$R_{z}(\Theta)=\left[\begin{array}{cccc}\cos (\theta) & -\sin (\theta) & 0 & 0 \\ \sin (\theta) & \cos (\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
More on 3D Rotations later, especially using Quaternions!

OpenGL Transformation Matrices

There are three matrices that are part of the OpenGl pipeline, and all are manipulated by a common set of functions. To select the matrix type on which operations apply use glMatrixMode function. For example,

```
glMatrixMode(GL_MODELVIEW); or glMatrixMode(GL_PROJECTION)
```

- The matrix applied to all primitives is the product of the ModelView matrix and the Projection matrix.
- Matrix is loaded with function
glLoadMatrixf(pointer_to_matrix)
- Matrix is altered with function
glMultMatrixf(pointer_to_matrix)
- Translation is provided with function
glTranslatef (dx, dy, dz)
- Rotation is provided with function
glRotatef (angle,vx,vy,vz)
- Scaling is provided with function

```
glScalef(sx,sy,sz)
```

- All three transformations alter the selected matrix by postmultiplication.

Order of Applying Transformations The rule in OpenGL: The transformation specified last is the one applied first.

Consider the example sequence to form the required matrix for a 45-degree rotation about a vector $(1,2,3)$. The object frame's origin is $(4,5,6)$ and that is its center of rotation. The sequence is to move the object's frame to the origin ($0,0,0$), rotating about the origin, and finally moving the rotated object back to its original location.

```
glMatrixModel(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(4.0,5.0,6.0);
glRotatef(45.0, 1.0,2.0,3.0);
glTranslatef(-4.0,-5.0,-6.0);
```


Projections as an Example of Projective Transformations

Perspective Projection

- Identify all points with a line through the eyepoint.
- Slide lines with viewing plane, take intersection point as projection.
- This is not an affine transformation, but a projective transformation.

Projective Transformations:

- Angles are not preserved.
- Distances are not preserved
- Ratios of distances are not preserved.
- Affine combinations are not preserved.
- Straight lines are mapped to straight lines.
- Incidence relationships are preserved in a general way.
- Cross ratios are preserved.

Perspective Map

- Given a point P, we want to find its projection P^{\prime}.

- Similar triangles: $P^{\prime}=(x n / z, n)$
- In 3D, $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \mapsto(x n / z, y n / z, n)$
- Have identified all points on a line through the origin with a point in the projection plane.
- Thus, $(x, y, z) \equiv(k x, k y, k z), k \neq 0$.
- These are known as homogeneous coordinates.
- If we have solids, or colored lines, then we need to know "which one is in front."
- This map loses all z information, so it is inadequate.

Why Map Z

- 3D $\mapsto 2 \mathrm{D}$ projections map all z to same value.
- Need z to determine occlusion, so a 3D to 2D projective transformation doesn't work.
- Further, we want 3D lines to map to 3D lines (this is useful in hidden surface removal).
- The mapping $(x, y, z, 1) \mapsto(x n / z, y n / z, n, 1)$ maps lines to lines, but loses all depth information.
- We could use

$$
(x, y, z, 1) \mapsto(x n / z, y n / z, z, 1)
$$

Thus, if we map the endpoints of a line segment, these end points will have the same relative depths after this mapping.
BUT: It fails to map lines to lines

- The map

$$
(x, y, z, 1) \mapsto\left(\frac{x n}{z}, \frac{y n}{z}, \frac{z f+z n-2 f n}{z(f-n)}, 1\right)
$$

does map lines to lines, and it preserves depth information.

Mapping Z

- It's clear how x and y map. How about z ?

$$
z \mapsto \frac{z f+z n-2 f n}{z(f-n)}=P(z)
$$

- We know $P(f)=1$ and $P(n)=-1$. What maps to 0 ?

$$
\begin{aligned}
P(z) & =0 \\
\Rightarrow \quad & \frac{z f+z n-2 f n}{z(f-n)}
\end{aligned}=0, ~ z=\frac{2 f n}{f+n}
$$

Note that $f^{2}+2 f>2 f n /(f+n)>f n+n^{2}$ so

$$
f>\frac{2 f n}{f+n}>n
$$

- What happens as map z to 0 or to infinity?

$$
\begin{aligned}
\lim _{z \rightarrow 0^{+}} P(z) & =\frac{-2 f n}{z(f-n)} \\
& =-\infty \\
\lim _{z \rightarrow 0^{-}} P(z) & =\frac{-2 f n}{z(f-n)} \\
& =+\infty \\
\lim _{z \rightarrow+\infty} P(z) & =\frac{z(f+n)}{z(f-n)} \\
& =\frac{f+n}{f-n} \\
\lim _{z \rightarrow-\infty} P(z) & =\frac{z(f+n)}{z(f-n)} \\
& =\frac{f+n}{f-n}
\end{aligned}
$$

- What happens if we vary f and n ?

$$
\begin{aligned}
\lim _{f \rightarrow n} P(z) & =\frac{z(f+n)-2 f n}{z(f-n)} \\
& =\frac{\left(2 z n-2 n^{2}\right)}{z \cdot 0}
\end{aligned}
$$

which is not surprising, since we're trying to map a single point to a line segment.

$$
\begin{aligned}
\lim _{f \rightarrow \infty} P(z) & =\frac{z f-2 f n}{z f} \\
& =\frac{z-2 n}{z}
\end{aligned}
$$

- But note that this means we are mapping an infinite region to [0,1] and we will effectively get a far plane due to floating point precision,

$$
\begin{aligned}
\lim _{n \rightarrow 0} P(z) & =\frac{z f}{z f} \\
& =1
\end{aligned}
$$

i.e., the entire map becomes constant (again, we are mapping a point to an interval).

- Consider what happens as f and n move away from each other.
- We are interested in the size of the regions $[n, 2 f n /(f+n)]$ and $[2 f n /(f+n), f]$
- When f is large compared to n, we have

$$
\frac{2 f n}{f+n} \doteq 2 n
$$

So

$$
\frac{2 f n}{f+n}-n \doteq n
$$

and

$$
f-\frac{2 f n}{f+n} \doteq f-2 n
$$

But both intervals are mapped to a regions of size 1 .

- Thus, as we move the clipping planes away from one another, the far interval is compressed more than the near one. With floating point arithmetic, this means we'll lose precision.
- In the extreme case, think about what happens as we move f to infinity: we compress an infinite region to an finite one.
- Therefore, we try to place our clipping planes as close to one another as we can.

Region Mapping

4	(7)	$(10$	(3)	
5	(8)	11	(2)	
∞	6	9	12	(1)
-1	+1		∞	

Reading Assignment and News

Chapter 4 pages 200-212, of Recommended Text.
Please also track the News section of the Course Web Pages for the most recent Announcements related to this course.
(http://www.cs.utexas.edu/users/bajaj/graphics25/cs354/)

