Viewing II: Camera,Projections and their Relations

Positioning and Orienting the Camera

- Positioned (VRP=view reference point) by

```
    set_view_reference_point(x,y,z)
```

- Orientation (VPN=view plane normal and VUP = view-up vector) by
set_view_plane_normal(nx,ny,nz) and set_view_up(vup_x,vup_y,vup_z)
- The projection of the VUP onto the view-plane is a up-direction vector v
- $u=v \times n$ a vector orthogonal to v and n. The (u, v, n) and the VRP yields the viewing coordinate system
- Camera is usually located at a point e called the eye point, and it is pointed at the at point a. This defines VRP, and VPN $=e-a$. Finally use the OpenGL utitility function gluLookAt ()
glMatrixMode(GL_MODELVIEW); glLoadIdentity();
gluLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, upz);

Projections

- Mapping from 3 dimensional space to 2 dimensional subspace
- Range of any projection $\mathcal{P}: R^{3} \rightarrow R^{2}$ called a projection plane
- \mathcal{P} maps lines to points
- The image of any point \mathbf{p} under \mathcal{P} is the intersection of a projection line through \mathbf{p} with the projection plane.

Taxonomy of Projections

- Parallel
- orthographic
- oblique
- Perspective
- 1-pt
- 2-pt
- 3-pt

Parallel Projections

- All projection lines are parallel.
- An orthographic projection has projection lines orthogonal to projection plane.
- Otherwise a parallel projection is an oblique projection
- Particularly interesting oblique projections are the cabinet projection and the cavalier projection.

- The visible volume in world space is known as the viewing volume.
- Specify with the call gIOrtho (l, r, b, t, n, f)
- In OpenGL, the window is in the near plane
- l and r are u-coordinates of left and right window boundaries in the near plane
- b and t are v-coordinates of bottom and top window boundaries in the near plane
- n and f are positive distances from the eye along the viewing ray to the near and far planes
- The left and right clipping planes are $x=-1$ and $x=1$
- The bottom and top clipping planes are $y=-1$ and $y=1$
- The near and far clipping planes are $z=-1$ and $z=1$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Perspective Projection

- All projection lines pass through the center of projection (eyepoint).
- Therefore also called central projection
- This is not affine, but rather a projective transformation, (also discussed in previous lecture).
- Differences in Perspective
- 1-pt
- 2-pt
- 3-pt

Perspective Transform in Eye Coordinates

- Given a point \mathbf{p}, find its projection $\mathcal{P}(\mathbf{p})$
- Convenient to do this in eye coordinates, with center of projection at origin and $z=n$ projection plane
- Note that eye coordinates are left-handed

Projection plane, $\mathrm{z}=\mathrm{n}$

- Due to similar triangles $\mathcal{P}(\mathbf{p})=(n x / z, n y / z, d)$
- For any other point $\mathbf{q}=(k x, k y, k z), k \neq 0$ on same projection line $\mathcal{P}(\mathbf{q})=$ ($n x / z, n y / z, n$)
- If we have surfaces, we need to know which ones occlude others from the eye position
- This projection loses all z information, so we cannot do occlusion testing after projection

The OpenGL Perspective Matrix

- The visible volume in world space is known as the viewing pyramid or frustum.
- Specify with the call gIFrustum (l, r, b, t, n, f)
- In OpenGL, the window is in the near plane
- l and r are u-coordinates of left and right window boundaries in the near plane
- b and t are v-coordinates of bottom and top window boundaries in the near plane
- n and f are positive distances from the eye along the viewing ray to the near and far planes
- Maps the left and right clipping planes to $x=-1$ and $x=1$
- Maps the bottom and top clipping planes to $y=-1$ and $y=1$
- Maps the near and far clipping planes to $z=-1$ and $z=1$

Manipulating the Camera

- After applying the modelview matrix, we are looking down the $-z$ axis.
- We need to move the ray from the origin through the window center onto the $-z$ axis.
- Rotation won't do since the window wouldn't be orthogonal to the z axis.
- Translation won't do since we need to keep the eye at the origin.
- We need differential translation as a function of z, i.e. shear.
- When $z=-n, \delta x$ should be $-\frac{r+l}{2 n}$ and δy should be $-\frac{t+b}{2 n}$, so we get

$$
\begin{aligned}
& x^{\prime}=x+\frac{r+l}{2 n} z \\
& y^{\prime}=y+\frac{t+b}{2 n} z \\
& z^{\prime}=z \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & \frac{r+l}{2 n} & 0 \\
0 & 1 & \frac{t+b}{2 n} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] }
\end{aligned}
$$

Adjusting the Clipping Boundaries

- For ease of clipping, we want the oblique clipping planes to have equations $x= \pm z$ and $y= \pm z$.
- This will make the window square, with boundaries $l=b=-n$ and $r=t=n$.
- This requires a scale to make the window this size.

Thus the mapping is

$$
\begin{aligned}
x^{\prime} & =\frac{2 n x}{r-l} \\
y^{\prime} & =\frac{2 n y}{t-b} \\
z^{\prime} & =z
\end{aligned}
$$

or in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & 0 & 0 \\
0 & \frac{2 n}{t-b} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Field of View Frustum Scaling

- After the frustum is centered on the $-z$ axis:

- Note that $\frac{n}{t-b}=\cot \left(\frac{\theta}{2}\right)$
- This gives the y mapping $y^{\prime \prime}=y^{\prime} \cot \left(\frac{\theta}{2}\right)$
- Since the window need not be square, we can define the x mapping using the aspect ratio aspect $=\frac{\Delta x}{\Delta y}=\frac{(r-l)}{(t-b)}$
- Then x maps as $x^{\prime \prime}=x^{\prime} \frac{\cot \left(\frac{\theta}{2}\right)}{\text { aspect }}$
- This gives us the alternative scaling formulation:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\cot \left(\frac{\theta}{2}\right)}{\text { aspect }} & 0 & 0 & 0 \\
0 & \cot \left(\frac{\theta}{2}\right) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

- This is used by gluPerspective $(\theta$, aspect, $n, f)$

Complete OpenGL Perspective Matrix

- Combining the three steps given above, the complete OpenGL perspective matrix is

$$
\left.\begin{array}{c}
\\
=\left[\begin{array}{cccccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right] \\
0
\end{array} 1 \begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & \frac{-(f+n)}{f-n} \\
0 & 0 & -1
\end{array} \frac{-2 f n}{f-n} 0 .\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & 0 & 0 \\
0 & \frac{2 n}{t-b} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & \frac{r+l}{2 n} & 0 \\
0 & 1 & \frac{t+b}{2 n} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) .
$$

- Using gluPerspective the matrix becomes

$$
\left[\begin{array}{cccc}
\frac{\cot (\theta / 2)}{\text { appect }} & 0 & 0 & 0 \\
0 & \cot (\theta / 2) & 0 & 0 \\
0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

glMatrixMode (GL_MODELVIEW);
gluLookAt ($0,0,0,0,0,-1,0,1,0$); glMatrixMode (GL_PROJECTION); glLoadIdentity();
glFrustum (-1, 1, -1, 1, 2, 7); glMatrixMode (GL_MODELVIEW); glutSolidTeapot(1);

glMatrixMode (GL_MODELVIEW); gluLookAt ($0,0,0,0,0,-1,1,1,0$); glMatrixMode (GL_PROJECTION); glLoadIdentity(); glFrustum (-3, 1, $-3,1,2,7)$; glMatrixMode (GL_MODELVIEW); glutSolidTeapot(1);

Reading Assignment and News

Chapter 5 pages 233-259, of Recommended Text.
Please also track the News section of the Course Web Pages for the most recent Announcements related to this course.
(http://www.cs.utexas.edu/users/bajaj/graphics25/cs354/)

