
Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

Viewing II: Camera,Projections and their Relations

Positioning and Orienting the Camera

• Positioned (VRP=view reference point) by

set_view_reference_point(x,y,z)

• Orientation (VPN=view plane normal and VUP = view-up vector) by

set_view_plane_normal(nx,ny,nz) and set_view_up(vup_x,vup_y,vup_z)

• The projection of the VUP onto the view-plane is a up-direction vector v

• u = v x n a vector orthogonal to v and n . The (u,v,n) and the VRP yields the viewing

coordinate system

• Camera is usually located at a point e called the eye point, and it is pointed at the at

point a. This defines VRP, and VPN = e - a. Finally use the OpenGL utitility function

gluLookAt ()

glMatrixMode(GL_MODELVIEW); glLoadIdentity();

gluLookAt(eyex,eyey,eyez,atx,aty,atz,upx,upy,upz);

The University of Texas at Austin 1



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

Projections

• Mapping from 3 dimensional space to 2 dimensional subspace

• Range of any projection P : R3 → R2 called a projection plane

• P maps lines to points

• The image of any point p under P is the intersection of a projection line through p with

the projection plane.

The University of Texas at Austin 2



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

Taxonomy of Projections

• Parallel

– orthographic

– oblique

• Perspective

– 1-pt

– 2-pt

– 3-pt

The University of Texas at Austin 3



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

Parallel Projections

• All projection lines are parallel.

• An orthographic projection has projection lines orthogonal to projection plane.

• Otherwise a parallel projection is an oblique projection

• Particularly interesting oblique projections are the cabinet projection and the cavalier

projection.

The University of Texas at Austin 4



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

The OpenGL Orthographic Matrix

(1, 1, 1)

(-1, -1, -1)

f

n

• The visible volume in world space is known as the viewing volume.

• Specify with the call glOrtho(l, r, b, t, n, f)

• In OpenGL, the window is in the near plane

• l and r are u-coordinates of left and right window boundaries in the near plane

• b and t are v-coordinates of bottom and top window boundaries in the near plane

• n and f are positive distances from the eye along the viewing ray to the near and far

planes

• The left and right clipping planes are x = −1 and x = 1

• The bottom and top clipping planes are y = −1 and y = 1

• The near and far clipping planes are z = −1 and z = 1

The University of Texas at Austin 5



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)









x′

y′

z′

1









=









1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

















x

y

z

1









The University of Texas at Austin 6



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

Perspective Projection

• All projection lines pass through the center of projection (eyepoint).

• Therefore also called central projection

• This is not affine, but rather a projective transformation, (also discussed in previous

lecture).

• Differences in Perspective

– 1-pt

– 2-pt

– 3-pt

The University of Texas at Austin 7



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

Perspective Transform in Eye Coordinates

• Given a point p, find its projection P(p)

• Convenient to do this in eye coordinates, with center of projection at origin and z = n

projection plane

• Note that eye coordinates are left-handed

(0,0) z

Projection plane, z = n

y

p’=(x’,y’,n)

p=(x,y,z)

y

z

y’

n

• Due to similar triangles P(p) = (nx/z, ny/z, d)

• For any other point q = (kx, ky, kz), k 6= 0 on same projection line P(q) =

(nx/z, ny/z, n)

• If we have surfaces, we need to know which ones occlude others from the eye position

• This projection loses all z information, so we cannot do occlusion testing after projection

The University of Texas at Austin 8



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

The OpenGL Perspective Matrix

• The visible volume in world space is known as the viewing pyramid or frustum.

• Specify with the call glFrustum(l, r, b, t, n, f)

• In OpenGL, the window is in the near plane

• l and r are u-coordinates of left and right window boundaries in the near plane

• b and t are v-coordinates of bottom and top window boundaries in the near plane

• n and f are positive distances from the eye along the viewing ray to the near and far

planes

• Maps the left and right clipping planes to x = −1 and x = 1

• Maps the bottom and top clipping planes to y = −1 and y = 1

• Maps the near and far clipping planes to z = −1 and z = 1

(1, 1, 1)

(-1, -1, -1)

f

n

The University of Texas at Austin 9



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

Manipulating the Camera

viewing frustum

y

x x

y

z
viewing frustum

[-(r-l)/2,(t-b)/2,-n]

[(r-l)/2,-(t-b)/2,-n]

(t+b)/2

z
(r+l)/2

f
n

b

l r
t

f
n

• After applying the modelview matrix, we are looking down the −z axis.

• We need to move the ray from the origin through the window center onto the −z axis.

• Rotation won’t do since the window wouldn’t be orthogonal to the z axis.

• Translation won’t do since we need to keep the eye at the origin.

The University of Texas at Austin 10



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

• We need differential translation as a function of z, i.e. shear.

• When z = −n, δx should be −r+l
2n and δy should be −t+b

2n , so we get

x
′

= x +
r + l

2n
z

y
′

= y +
t + b

2n
z

z
′

= z









x′

y′

z′

1









=









1 0 r+l
2n 0

0 1 t+b
2n 0

0 0 1 0

0 0 0 1

















x

y

z

1









The University of Texas at Austin 11



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

Adjusting the Clipping Boundaries

• For ease of clipping, we want the oblique clipping planes to have equations x = ±z and

y = ±z.

• This will make the window square, with boundaries l = b = −n and r = t = n.

• This requires a scale to make the window this size.

[-(r-l)/2,(t-b)/2,-n]

[n,-n,-n][(r-l)/2,-(t-b)/2,-n]

z

y

x

y

x

z

[-n,n,-n]

Thus the mapping is

The University of Texas at Austin 12



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

x
′

=
2nx

r − l

y
′

=
2ny

t − b

z
′

= z

or in matrix form:









x′

y′

z′

1









=











2n
r−l 0 0 0

0 2n
t−b 0 0

0 0 1 0

0 0 0 1



















x

y

z

1









The University of Texas at Austin 13



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

Field of View Frustum Scaling

• After the frustum is centered on the −z axis:
y

zθ

n

(t-b)/2

window
near plane

viewing frustum

• Note that n
t−b = cot

(

θ
2

)

• This gives the y mapping y′′ = y′ cot
(

θ
2

)

• Since the window need not be square, we can define the x mapping using the aspect

ratio aspect = ∆x
∆y = (r−l)

(t−b)

• Then x maps as x′′ = x′
cot

(

θ
2

)

aspect

The University of Texas at Austin 14



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

• This gives us the alternative scaling formulation:









x′

y′

z′

1









=













cot
(

θ
2

)

aspect 0 0 0

0 cot
(

θ
2

)

0 0

0 0 1 0

0 0 0 1





















x

y

z

1









• This is used by gluPerspective(θ, aspect, n, f)

The University of Texas at Austin 15



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

Complete OpenGL Perspective Matrix

• Combining the three steps given above, the complete OpenGL perspective matrix is











2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0











=











1 0 0 0

0 1 0 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0





















2n
r−l 0 0 0

0 2n
t−b 0 0

0 0 1 0

0 0 0 1



















1 0 r+l
2n 0

0 1 t+b
2n 0

0 0 1 0

0 0 0 1









• Using gluPerspective the matrix becomes











cot(θ/2)
aspect 0 0 0

0 cot(θ/2) 0 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0











The University of Texas at Austin 16



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

glMatrixMode (GL_MODELVIEW); glMatrixMode (GL_MODELVIEW);

gluLookAt(0,0,0, 0,0,-1, 0,1,0); gluLookAt(0,0,0, 0,0,-1, 1,1,0);

glMatrixMode (GL_PROJECTION); glMatrixMode (GL_PROJECTION);

glLoadIdentity(); glLoadIdentity();

glFrustum(-1, 1, -1, 1, 2, 7); glFrustum(-3, 1, -3, 1, 2, 7);

glMatrixMode (GL_MODELVIEW); glMatrixMode (GL_MODELVIEW);

glutSolidTeapot(1); glutSolidTeapot(1);

The University of Texas at Austin 17



Department of Computer Sciences Graphics – Fall 2005 (Lecture 7)

Reading Assignment and News

Chapter 5 pages 233 - 259, of Recommended Text.

Please also track the News section of the Course Web Pages for the most recent

Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics25/cs354/)

The University of Texas at Austin 18


