DEPARTMENT OF COMPUTER SCIENCES GRAPHICS — FALL 2005 (LECTURE 8)

3D Rotation User Interfaces and Specifying 3D Orientations

Goal: Use of a 2-button or 3-button MOUSE to orient a model/camera in 3D world
coordinates

Solutions:

e Virtual Sphere or Arcball
e Rotations easier to specify as a vector (axis) in 3D and angle
e Composing Rotations about any vector in 3D,

e Quaternions as alternative to Euler Angles
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The Arcball

o &~ W -

Choose region of screen as projection of sphere: 2D point O center, radius p.
Get initial 2D point S on button-down.

Compute § = (sg, Sy).

Compute 2D radius: r? = 33; — 35'

Map 2D vector s to 3D unit vector p as before:
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If »* > p?, map to silhouette of unit sphere:

Dz < Sz /T
Dy < Sy/T

p. < 0.
Else,

Dz < Sz /P

Py < Sy/p

pz<—\/1—p§—p§-

For each new mouse position I", map to unit 3D vector ¢ as above.
Axis: @ = p X ¢.

Angle: 6 = 2cos (7 - ).

Notes:

e Rotation given by twice the angle of the great arc between p and §.
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e Doubling the angle matches orientation’s mathematical structure better.
e Points on opposite sides of the sphere silhouette allow a rotation by 360°.
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Specifying Orientation using Quaternions are easier than Euler angles

|:| @| |‘ZJ Ml Canvas

= EI5] i = canvas EEX

glMatrixMode (GL_MODELVIEW) ; Quaternion = -0.46, -0.21, -0.41, 0.75
glRotatef (45, 1, 0, 0); Rotation Matrix =

glRotatef (45, 0, 1, 0); 0.55 0.82 0.06 0.00

glRotatef (45, 0, 0, 1); -0.43 0.22 0.87 0.00
glutSolidTeapot (1) ; 0.71 -0.51 0.48 0.00

0.00 0.00 0.00 1.00
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Orientations and Quaternions
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(c) Rotate about z so that
(a) Rotate about x so that  (b) Rotate about ¥ so that T
. o _ u and v coincide with x
w lies in xz-plane. w coincides with z.

and y.
Rotating a frame to coincide with the standard frame
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Smooth Interpolation of Frames

It is possible to perform any change of orientation about an arbitrary axis with three rotations,
one about each of the coordinate axes, by a triple of three angles, (6, 8,, 8.). These define
a general rotation matrix, by composing the three basic rotations:

R(0z,0y,0:) = R:(0:)Ry(0y)Ra(62).

These three angles are called the Euler angles for the rotation. Thus, we can parameterize
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any rotation in 3-space as triple of numbers, each in the range a € [0, 27].

With ¢, = cos(6,) and s, = sin(6,),

CyCs CySz —sy 0
R(9 0,,0 ) = SgSyCr — Cx Sz SzSySz + CxC, SzCy 0
Ly ZYs me2) CmSyCz + SxS: Cl'sysz — SzC; Ca;Cy 0
0 0 0 1
— Rz(QZ)Ry(ey)RfE(ex)’

where R, (0,), R,(0,) and R.(6.) are the standard rotation matrices.

Given a point P represented as a homogeneous row vector, the rotation of P is given by P’ =

PR(6.,0,,0.). Animation between two rotations involves interpolating independently the
three angles 0,, 6, and 0.
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The standard rotation matrices are given by

1 0 0O O

0 Cy s, O

R (6) = 0O —s, ¢ O
0 0 0O 1

cy 0 —sy O

0O 1 0 0

R (62) = sy O Cy 0
0O O 0 1

C, s, 0 O

—s., ¢, 0 O

Ro(0a) =1 o7 o 1 o0
0 0O 0 1

Gimbal Lock

An example will clarify the parametric singularity problem, commonly known as gimbal
lock. Gimbal lock is a mechanical problem that arises in the support of gyroscopes by three
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nested rotating frames.

Suppose we set 6, = 7 /2 = 90°, and set 8, and 6, arbitrarily. Then ¢, =0, s, = 1 and
the matrix R(6,,7/2,0,) can be reduced to

0 0 —1 O
| SzC: — CgS:  SzS: + CiC. 0 0
R(0z, 0y, 0:) = CyCs + 8.8, CpzS8, — Sz, 0 0O
0 0 0 1
0 0 —1 O
| sin(6, —0.) cos(6,—6,) 0 O
| cos(6,—0,) sin(0,—6,) 0 O
0 0 0 1

The Transformation only depends on the difference 6, — 6., and hence only has one degree
of freedom when it should have two.

This occurs because a y-roll by 7 /2 rotates the xz-axis onto the negative z axis, and so a
x-roll by 6 has the same effect as a z-roll by —60. Gimbal lock can be very frustrating in

practice:
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e During interactive manipulation the object will seem to “stick”;
e Certain orientations can be hard to obtain if approached from the wrong direction;

e Interpolation through these parametric singularities will behave strangely.

Perhaps a somewhat more natural way to express rotations (about the origin) in 3-space is
in term of two quantities, (6, @), consisting of an angle 0, and an axis of rotation 4. Let's
consider how we might do this. First consider a vector U to be rotated to R(v). Let us

assume that « is of unit length.

In order to derive this, we begin by decomposing v as the sum of its components that are
parallel to and orthogonal to w, respectively.

)i

ey

v = (4 -

<l

§— b =7 — (@ 7).

c
-
|

Note that ¥ is unaffected by the rotation, but ¥, is rotated to a new position R(%1). To
determine this rotated position, we will first construct a vector that is orthogonal to v lying

in the plane of rotation,

—

ﬁ:ﬁx—)J_:’&,)X(’17—’17”):(ﬁX6)—(ﬁX6||):ﬁXU.
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R(v) W 9

—
~~
~

N

Angular displacement
Now, consider the plane spanned by ¥, and w. We have

R(v,) = (cos0)U, + (sin ).
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From this we have

R(v) = R(7)) + R(v.)
= R(7)) 4+ (cos 0)7 1 + (sin 0)w
= (u-V)u + (cos0)(v — (u-v)u) + (sin O)w
= (cos0)U + (1 — cos@)u(u - v) + (sinf)(u X ).

Quaternions:

iP=i"=k’=—-1 ij=k, jk=14, ki=]j.
Combining these, it follows that j2 = —k, kK = —¢ and ¢tk = —j. A quaternion is defined
to be a generalized complex number of the form

q = qo + q1t + q27 + gs3k.

We will see that quaternions bear a striking resemblance to our notation for angular
displacement. In particular, we can rewrite the quaternion notation in terms of a scalar and

vector as
qg=(s,U0) = s+ ugt + uyj + uk.
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Furthermore define the product of quaternions to be

q1q2 = (s182 — (U1 - U2), s1U2 + S2U1 + Uy X Uz).

Define the conjugate of a quaternion ¢ = (s, ) to be § = (s, —u). Define the magnitude

of a quaternion to be the square root of this product:

2 _ 2 -2
lq|” = qq = s” + |dl|”.

A unit quaternion is one of unit magnitude, |g| = 1. A pure quaternion is one with a 0

scalar component
p = (0, 7).
Any quaternion of nonzero magnitude has a multiplicative inverse, which is

Quaternion and Rotation:

Define the rotation operator
—1
Ry(p) = qpq .
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Ry(p) = (0, (s° — (@ - @))T + 2@(@ - T) + 2s(@ x T)).
Unit quaternions can be shown to be isomorphic to orientations and given by
q = (cos @, (sin0)u), where |d| = 1.
This is equivalent to a rotation by an angle 26 around the axis u.
Plugging q into the above expression R,(p), we have

Ry(p) = (0, (cos® 0 — sin® 0)T + 2(sin” 0)@(@ - T) + 2 cos O sin O(@ x 7))
= (0, (cos20)U + (1 — cos20)u(u - U) + sin 20(u X 9)).

Thus, in summary, we encode points in 3-space as pure quaternions

p = (0, 7),
and we encode a rotation by angle q about a unit vector v — as a unit quaternion

q = (cos(0/2),sin(0/2)1),
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then the image of the point under this rotation is given by the vector part of the result of

the quaternion rotation operator R,(p).

T
<>
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Rotation example.

Composing Rotations:

Given two unit quaternions g and q’, a rotation by g followed by a rotation by ¢’ is equivalent
to a single rotation by the product ¢ = q’'q. That is,

/

R/R; = R where ¢" = ¢'q.

This follows from the associativity of quaternion multiplication, and the fact that (q¢’) ™' =

1 -1
q 1q’ - as shown below.

R, (Ry(p)) = q'(qpqg — 1)q'""

= (¢'q)p(q 'qd'")
= (¢'q)p(qq") ™"

17 1"—1

= 49 pq
— Rq//(p).

Matrices and Quaternions:
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Given a unit quaternion

g = (cos(0/2),sin(6/2)@) = (w, (z, y, 2))

what is the corresponding affine transformation (expressed as a rotation matrix). By simply
expanding the definition of R,(p), it is not hard to show that the following (homogeneous)
matrix is equivalent

1 — 2y2 — 222 22y — 2wz 2xz + 2wy 0
22y + 2wz 1 — 22 — 227 2yz — 2wz 0
20z — 2wy 2yz + 2wz 1 — 222 — 2y2 0

0 0 0 1

To convert from an orthogonal rotation matrix to a unit quaternion, we observe that if
M = [m; ;] is the affine transformation in homogeneous form,

trace(M) = 4 — 4(z” + y° + 2°) = 4w”.
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Once we have w, we can find the order quantities by cancelling symmetric terms:

M3 — 1123

r = y
4w
13 — 1M31
Yy = )
4w
mMo1 — M2
z =

4w
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Pitch

Rotation Axis =1, 0,0, 0
Rotation Angle = 47 /4
Quaternion Vector = 3-0.382683 0.000000 0.000000 0.923880
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Rotation Axis =0, 1,0, 0
Rotation Angle = 47 /4
Quaternion Vector = 0.000000 4-0.382683 0.000000 0.923880
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Rotation Axis = 0,0, 1, 0
Rotation Angle = 47 /4
Quaternion Vector = 0.000000 0.000000 40.382683 0.923880
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Additonal Examples

Matrix and Quaternion FAQ
http://skal.planet-d.net/demo/matrixfag.htm

The following web-page contains C+4+ source codes:
http://www.lboro.ac.uk/departments/ma/gallery/quat/intro.html
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Reading Assignment and News

Chapter 4 pages 212 - 228, of Recommended Text.

Please also track the News section of the Course Web Pages for the most recent
Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics25/cs354/)
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