
Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 8)3D Rotation User Interfa
es and Spe
ifying 3D Orientations

Goal: Use of a 2-button or 3-button MOUSE to orient a model/
amera in 3D world
oordinatesSolutions:� Virtual Sphere or Ar
ball� Rotations easier to spe
ify as a ve
tor (axis) in 3D and angle� Composing Rotations about any ve
tor in 3D,� Quaternions as alternative to Euler Angles

The University of Texas at Austin 1



Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 8)The Ar
ball

T

S

T

S

Oa

p

r

q

1. Choose region of s
reen as proje
tion of sphere: 2D point O 
enter, radius �.2. Get initial 2D point S on button-down.3. Compute ~s = (sx; sy).4. Compute 2D radius: r2 = s2x + s2y.5. Map 2D ve
tor ~s to 3D unit ve
tor ~p as before:
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If r2 > �2, map to silhouette of unit sphere:px  sx=rpy  sy=rpz  0:Else, px  sx=�py  sy=�pz  q1� p2x � p2y:6. For ea
h new mouse position T , map to unit 3D ve
tor ~q as above.7. Axis: ~a = ~p� ~q.8. Angle: � = 2 
os�1(~p � ~q).9. Notes:� Rotation given by twi
e the angle of the great ar
 between ~p and ~q.The University of Texas at Austin 3
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s { Fall 2005 (Le
ture 8)� Doubling the angle mat
hes orientation's mathemati
al stru
ture better.� Points on opposite sides of the sphere silhouette allow a rotation by 360Æ.
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s { Fall 2005 (Le
ture 8)Spe
ifying Orientation using Quaternions are easier than Euler angles

glMatrixMode (GL_MODELVIEW); Quaternion = -0.46, -0.21, -0.41, 0.75glRotatef(45, 1, 0, 0); Rotation Matrix =glRotatef(45, 0, 1, 0); 0.55 0.82 0.06 0.00glRotatef(45, 0, 0, 1); -0.43 0.22 0.87 0.00glutSolidTeapot(1); 0.71 -0.51 0.48 0.000.00 0.00 0.00 1.00The University of Texas at Austin 5
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(a) Rotate about x so thatw lies in xz-plane.
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(b) Rotate about y so thatw 
oin
ides with z.
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(
) Rotate about z so thatu and v 
oin
ide with xand y.Rotating a frame to 
oin
ide with the standard frame
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Smooth Interpolation of FramesIt is possible to perform any 
hange of orientation about an arbitrary axis with three rotations,one about ea
h of the 
oordinate axes, by a triple of three angles, (�x; �y; �z). These de�nea general rotation matrix, by 
omposing the three basi
 rotations:R(�x; �y; �z) = Rz(�z)Ry(�y)Rx(�x):These three angles are 
alled the Euler angles for the rotation. Thus, we 
an parameterizeThe University of Texas at Austin 8
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ture 8)any rotation in 3-spa
e as triple of numbers, ea
h in the range � 2 [0; 2�℄.With 
a = 
os(�a) and sa = sin(�a),

R(�x; �y; �z) = 0BB� 
y
z 
ysz �sy 0sxsy
z � 
xsz sxsysz + 
x
z sx
y 0
xsy
z + sxsz 
xsysz � sx
z 
x
y 00 0 0 1
1CCA= Rz(�z)Ry(�y)Rx(�x);where Rx(�x), Ry(�y) and Rz(�z) are the standard rotation matri
es.Given a point P represented as a homogeneous row ve
tor, the rotation of P is given by P 0 =PR(�x; �y; �z). Animation between two rotations involves interpolating independently thethree angles �x, �y and �z.
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ture 8)The standard rotation matri
es are given by
Rx(�x) = 0BB�1 0 0 00 
x sx 00 �sx 
x 00 0 0 1

1CCA

Rx(�x) = 0BB�
y 0 �sy 00 1 0 0sy 0 
y 00 0 0 1
1CCA

Rx(�x) = 0BB� 
z sz 0 0�sz 
z 0 00 0 1 00 0 0 1
1CCA

Gimbal Lo
kAn example will 
larify the parametri
 singularity problem, 
ommonly known as gimballo
k. Gimbal lo
k is a me
hani
al problem that arises in the support of gyros
opes by threeThe University of Texas at Austin 10
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ture 8)nested rotating frames.Suppose we set �y = �=2 = 90Æ, and set �x and �z arbitrarily. Then 
y = 0, sy = 1 andthe matrix R(�x; �=2; �z) 
an be redu
ed to

R(�x; �y; �z) = 0BB� 0 0 �1 0sx
z � 
xsz sxsz + 
x
z 0 0
x
z + sxsz 
xsz � sx
z 0 00 0 0 1
1CCA

= 0BB� 0 0 �1 0sin(�x � �z) 
os(�x � �z) 0 0
os(�x � �z) sin(�x � �y) 0 00 0 0 1
1CCA :

The Transformation only depends on the di�eren
e �x � �z, and hen
e only has one degreeof freedom when it should have two.This o

urs be
ause a y-roll by �=2 rotates the x-axis onto the negative z axis, and so ax-roll by � has the same e�e
t as a z-roll by ��. Gimbal lo
k 
an be very frustrating inpra
ti
e:The University of Texas at Austin 11
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ture 8)� During intera
tive manipulation the obje
t will seem to \sti
k";� Certain orientations 
an be hard to obtain if approa
hed from the wrong dire
tion;� Interpolation through these parametri
 singularities will behave strangely.Perhaps a somewhat more natural way to express rotations (about the origin) in 3-spa
e isin term of two quantities, (�; ~u), 
onsisting of an angle �, and an axis of rotation ~u. Let's
onsider how we might do this. First 
onsider a ve
tor ~v to be rotated to R(~v). Let usassume that ~u is of unit length.In order to derive this, we begin by de
omposing ~v as the sum of its 
omponents that areparallel to and orthogonal to ~u, respe
tively.~vk = (~u � ~v)~u~v? = ~v � ~vk = ~v � (~u � ~v)~u:Note that ~vk is una�e
ted by the rotation, but ~v? is rotated to a new position R(~v?). Todetermine this rotated position, we will �rst 
onstru
t a ve
tor that is orthogonal to ~v? lyingin the plane of rotation,~w = ~u� ~v? = ~u� (~v � ~vk) = (~u� ~v)� (~u � ~vk) = ~u� ~v:The University of Texas at Austin 12
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Angular displa
ementNow, 
onsider the plane spanned by ~v? and ~w. We haveR(~v?) = (
os �)~v? + (sin �)~w:

The University of Texas at Austin 13
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s { Fall 2005 (Le
ture 8)From this we haveR(~v) = R(~vk) +R(~v?)= R(~vk) + (
os �)~v? + (sin �)~w= (~u � ~v)~u+ (
os �)(~v � (~u � ~v)~u) + (sin �)~w= (
os �)~v + (1� 
os �)~u(~u � ~v) + (sin �)(~u � ~v):Quaternions: i2 = j2 = k2 = �1 ij = k; jk = i; ki = j:Combining these, it follows that ji = �k, kj = �i and ik = �j. A quaternion is de�nedto be a generalized 
omplex number of the formq = q0 + q1i+ q2j + q3k:We will see that quaternions bear a striking resemblan
e to our notation for angulardispla
ement. In parti
ular, we 
an rewrite the quaternion notation in terms of a s
alar andve
tor as q = (s; ~u) = s+ uxi+ uyj + uzk:The University of Texas at Austin 14
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ture 8)Furthermore de�ne the produ
t of quaternions to beq1q2 = (s1s2 � (~u1 � ~u2); s1~u2 + s2~u1 + ~u1 � ~u2):De�ne the 
onjugate of a quaternion q = (s; ~u) to be �q = (s;�~u). De�ne the magnitudeof a quaternion to be the square root of this produ
t:jqj2 = q�q = s2 + j~uj2:A unit quaternion is one of unit magnitude, jqj = 1. A pure quaternion is one with a 0s
alar 
omponent p = (0; ~v):Any quaternion of nonzero magnitude has a multipli
ative inverse, whi
h isq�1 = 1jqj2 �q:Quaternion and Rotation:De�ne the rotation operator Rq(p) = qpq�1:The University of Texas at Austin 15
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Rq(p) = (0; (s2 � (~u � ~u))~v + 2~u(~u � ~v) + 2s(~u� ~v)):Unit quaternions 
an be shown to be isomorphi
 to orientations and given byq = (
os �; (sin �)~u); where j~uj = 1:This is equivalent to a rotation by an angle 2� around the axis ~u.Plugging q into the above expression Rq(p), we haveRq(p) = (0; (
os2 � � sin2 �)~v + 2(sin2 �)~u(~u � ~v) + 2 
os � sin �(~u � ~v))= (0; (
os 2�)~v + (1� 
os 2�)~u(~u � ~v) + sin 2�(~u � ~v)):Thus, in summary, we en
ode points in 3-spa
e as pure quaternionsp = (0; ~v);and we en
ode a rotation by angle q about a unit ve
tor u! as a unit quaternionq = (
os(�=2); sin(�=2)~u);The University of Texas at Austin 16
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ture 8)then the image of the point under this rotation is given by the ve
tor part of the result ofthe quaternion rotation operator Rq(p).
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ture 8)Rotation example.Composing Rotations:Given two unit quaternions q and q0, a rotation by q followed by a rotation by q0 is equivalentto a single rotation by the produ
t q00 = q0q. That is,Rq0Rq = Rq00 where q00 = q0q:This follows from the asso
iativity of quaternion multipli
ation, and the fa
t that (qq0)�1 =q�1q0�1, as shown below. Rq0(Rq(p)) = q0(qpq � 1)q0�1= (q0q)p(q�1q0�1)= (q0q)p(qq0)�1= q00pq00�1= Rq00(p):Matri
es and Quaternions:The University of Texas at Austin 18
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ture 8)Given a unit quaternionq = (
os(�=2); sin(�=2)~u) = (w; (x; y; z))what is the 
orresponding aÆne transformation (expressed as a rotation matrix). By simplyexpanding the de�nition of Rq(p), it is not hard to show that the following (homogeneous)matrix is equivalent0BB�1� 2y2 � 2z2 2xy � 2wz 2xz + 2wy 02xy + 2wz 1� 2x2 � 2z2 2yz � 2wx 02xz � 2wy 2yz + 2wx 1� 2x2 � 2y2 00 0 0 1
1CCA

To 
onvert from an orthogonal rotation matrix to a unit quaternion, we observe that ifM = [mi;j℄ is the aÆne transformation in homogeneous form,tra
e(M) = 4� 4(x2 + y2 + z2) = 4w2:

The University of Texas at Austin 19
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e we have w, we 
an �nd the order quantities by 
an
elling symmetri
 terms:x = m32 �m234w ;y = m13 �m314w ;z = m21 �m124w

The University of Texas at Austin 20
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h

Rotation Axis = 1, 0, 0, 0Rotation Angle = ��=4Quaternion Ve
tor = �0.382683 0.000000 0.000000 0.923880

The University of Texas at Austin 21
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Rotation Axis = 0, 1, 0, 0Rotation Angle = ��=4Quaternion Ve
tor = 0.000000 �0.382683 0.000000 0.923880

The University of Texas at Austin 22
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Rotation Axis = 0, 0, 1, 0Rotation Angle = ��=4Quaternion Ve
tor = 0.000000 0.000000 �0.382683 0.923880

The University of Texas at Austin 23



Department of Computer S
ien
es Graphi
s { Fall 2005 (Le
ture 8)Additonal Examples

Matrix and Quaternion FAQhttp://skal.planet-d.net/demo/matrixfaq.htmThe following web-page 
ontains C++ sour
e 
odes:http://www.lboro.a
.uk/departments/ma/gallery/quat/intro.html
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Chapter 4 pages 212 - 228, of Re
ommended Text.Please also tra
k the News se
tion of the Course Web Pages for the most re
entAnnoun
ements related to this 
ourse.(http://www.
s.utexas.edu/users/bajaj/graphi
s25/
s354/)
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