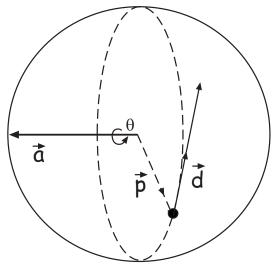
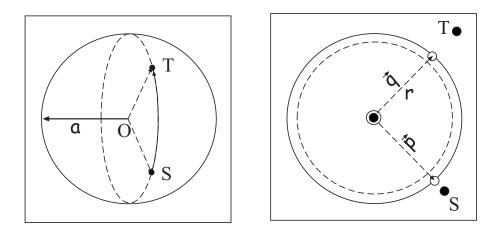

3D Rotation User Interfaces and Specifying **3D** Orientations

Goal: Use of a 2-button or 3-button MOUSE to orient a model/camera in 3D world coordinates


Solutions:

- Virtual Sphere or Arcball
- Rotations easier to specify as a vector (axis) in 3D and angle
- Composing Rotations about any vector in 3D,
- Quaternions as alternative to Euler Angles

The Virtual Sphere



- 1. Define portion of screen to be projection of virtual sphere.
- 2. Get two sequential samples of mouse position, S and T.
- 3. Map 2D point S to 3D unit vector \vec{p} on sphere.

- 4. Map 2D vector \overrightarrow{ST} to 3D tangential velocity \vec{d} .
- 5. Normalize \vec{d} .
- 6. Axis: $\vec{a} = \vec{p} \times \vec{d}$.
- 7. Angle: $\theta = \alpha |\overrightarrow{ST}|$. (Choose α so a 180° rotation can be obtained.)
- 8. Save T to use as S for next time.

The Arcball

- 1. Choose region of screen as projection of sphere: 2D point O center, radius ρ .
- 2. Get initial 2D point S on button-down.
- 3. Compute $\vec{s} = (s_x, s_y)$.
- 4. Compute 2D radius: $r^2 = s_x^2 + s_y^2$.
- 5. Map 2D vector \vec{s} to 3D unit vector \vec{p} as before:

If $r^2 > \rho^2$, map to silhouette of unit sphere:

$$p_x \leftarrow s_x/r$$

 $p_y \leftarrow s_y/r$
 $p_z \leftarrow 0.$

Else,

$$p_x \leftarrow s_x / \rho$$

$$p_y \leftarrow s_y / \rho$$

$$p_z \leftarrow \sqrt{1 - p_x^2 - p_y^2}.$$

- 6. For each new mouse position T, map to unit 3D vector \vec{q} as above.
- 7. Axis: $\vec{a} = \vec{p} \times \vec{q}$. 8. Angle: $\theta = 2\cos^{-1}(\vec{p} \cdot \vec{q})$.
- 9. Notes:
 - Rotation given by *twice* the angle of the great arc between \vec{p} and \vec{q} .

Department of Computer Sciences

- Doubling the angle matches orientation's mathematical structure better.
- Points on opposite sides of the sphere silhouette allow a rotation by 360° .

DEPARTMENT OF COMPUTER SCIENCES

GRAPHICS - FALL 2005 (LECTURE 8)

JUMP to Quaternions!

Reading Assignment and News

Chapter 4 pages 202 - 215, of Recommended Text.

Please also track the News section of the Course Web Pages for the most recent Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics24/cs354/)