Fractals

Consider a complex number $z=a+b i$ as a point (a, b) or vector in the Real Euclidean plane [1, i] with modulus $|z|$ the length of the vector and equal to $\sqrt{a^{2}+b^{2}}$.

Complex arithmetic rules:

$$
\begin{aligned}
(a+b i)+(c+d i) & =(a+c)+(b+d) i \\
(a+b i)(c+d i) & =(a c-b d)+(a d+b c) i
\end{aligned}
$$

$z \rightarrow z^{2}$
All numbers with modulus 1 will stay at modulus 1 and is the attractor set or fixed-point of this iterated function system.

Julia Set for the point c: The attractor set of the iterated function system $z \rightarrow z^{2}+c$ with c a complex constant

Julia Set for $c=-0.62-0.44 i$

Mandelbrot Set: Color the point c black if Julia (c) is connected, and white otherwise.

Fractal Dimension:

$$
N(A, \epsilon)=\text { smallest number of } \epsilon \text {-balls needed to cover } A \text {. }
$$

Object A has dimension d if $N(A, \epsilon)$ grows as $C(1 / \epsilon)^{d}$ for constant C

$$
\text { Fractal dimension } d=\lim _{\epsilon \rightarrow 0} \frac{\ln N(A, \epsilon)}{\ln (1 / \epsilon)}
$$

A fractal is an object which is self-similar at different scales and has a non-integer fractal dimension

$$
\begin{aligned}
d & =\lim _{\epsilon \rightarrow 0} \frac{\ln N(A, \epsilon)}{\ln (1 / \epsilon)} \\
& =\lim _{k \rightarrow \infty} \frac{\ln N\left(A,\left(1 / 2^{k}\right)\right)}{\ln \left(1 /\left(1 / 2^{k}\right)\right)} \\
& =\lim _{k \rightarrow \infty} \frac{\ln 3^{k}}{\ln 2^{k}}=\lim _{k \rightarrow \infty} \frac{k \ln 3}{k \ln 2} \\
& =\lim _{k \rightarrow \infty} \frac{\ln 3}{\ln 2}=\frac{\ln 3}{\ln 2} \approx 1.58496 .
\end{aligned}
$$

The Sierpinski triangle covered by $3^{k}\left(1 / 2^{k}\right)$-balls
Repeated Subdivision rule:
Replace each piece of length x by b nonoverlapping piece of length x / a.

Fractal dimension is

$$
d=\frac{\ln b}{\ln a}
$$

For object below the area doesn't change but boundary length does. The fractal dimension is

$$
\frac{\ln 4}{\ln (2 \sqrt{2})}=1.3333
$$

An object with a fractal boundary via repeated subdivision.

L-Systems (Lindenmayer-Systems)

- Aristid Lindenmayer, a botanist, initially developed this as a mathematical theory for modeling plants
- Przemyslaw Prusinkiewicz (Dr. P.) fleshed this out for Graphics Modeling applications
- Central concept is of string rewriting, using productions or rewriting rules (e.g. $\mathrm{F} \rightarrow \mathrm{F}$ $+\mathrm{F}-\mathrm{F}+\mathrm{F}$ with all symbols + , - as characters not operators)
- Longer strings can be generated by repeated applications of the productions, starting from an axiom (e.g. $F \rightarrow F+F-F+F \rightarrow F+F--F+F+F+F-F+F-F$ $+F-F+F+F+F-F+F)$
- See (http://mathforum.org/advanced/robertd/lsys2d.html) for other examples.

String Re-Writing and Turtle Graphics

- Turtle is a hypothetical drawing cursor on the screen or object coordinate system. Initially assume Turtle at origin $(0,0)$ and facing UP.
- Interpret F as "Move turtle forward one unit and draw a line segment"
- Interpret - by "Turn counter-clockwise (ccw) by $\frac{\pi}{3}$ "
- Interpret + "Turn clockwise (cw) by $\frac{\pi}{3}$ "
- So then the string - F - F - - F intepreted in Turtle graphics shall draw a triangle.
- Applying the production (or rule) $\mathrm{F} \rightarrow \mathrm{F}+\mathrm{F}-\mathrm{F}+\mathrm{F}$ once to the axiom (- F--F-F) yields a Star.
- Iterated applications of this rule, yields the Koch snowflake fractal.

Constructing Trees

- The Turtle can make wiggly paths, but not branching.
- For branching we use a Stack, and the L-system symbols [for Push, and] as Pop
- A stack can be implemented using OpenGl operators PushMatrix() and PopMatrix () or the Program Stack implicit in Recursion).

Transformation Modelling

- Model Turtle (position, direction, size) by a Matrix C
- We use OpenGL by loading C into MODELVIEW matrix.
- Assume Turtle initially at origin $(0,0)$ and facing UP. This initial position is captured in C by the identity matrix
- Now we wish to find the transformation that moves Turtle to $(50,100)$ and facing an angle $\frac{2 \pi}{3}$
- This is obtained by the sequence of Modelling transformations $T(50,100) R\left(\frac{\pi}{6}\right)$ applied to C . Remember, the transformations need to be applied in the correct right2left order.

Using Recursion

- Use Recursion to replace PushMatrix (), PopMatrix() pairs with save and restore of the current matrix in the resolution of recursive calls by the Program Stack.
PushMatrix()
TurnRight() DrawLeaf(i-1)
PopMatrix()
- DrawRightLeaf(i) Double[9]SavedMatrix;

Copy(C,SavedMatrix); TurnRight() DrawLeaf(i-1) copy(SavedMatrix,C) PopMatrix()

Reading Assignment and News

Chapter 2 Exercises and Chapter 10 pages 497-520, of Recommended Text.
Please also track the News section of the Course Web Pages for the most recent Announcements related to this course.
(http://www.cs.utexas.edu/users/bajaj/graphics25/cs354/)

