BB-splines, A-Splines and B-Splines

Spline Curves

- Successive linear blend
- Basis polynomials
- Recursive evaluation
- Properties
- Joining segments

Tensor-product-patch Spline Surfaces

- Tensor product patches
- Recursive Evaluation
- Properties
- Joining patches

Triangular-patch Spline Surfaces

- Barycentric Coordinates and Basis
- Recursive Evaluation
- Properties
- Joining patches

Bernstein-Bézier (BB) Polynomials):

- The control points appear as coefficients of Bernstein-Bézier polynomials

$$
\begin{aligned}
P_{0}^{0}(t)= & P_{0} 1 \\
P_{0}^{1}(t)= & (1-t) P_{0}+t P_{1} \\
P_{0}^{2}(t)= & (1-t)^{2} P_{0}+2(1-t) t P_{1}+t^{2} P_{2} \\
P_{0}^{3}(t)= & (1-t)^{3} P_{0}+3(1-t)^{2} t P_{1}+3(1-t) t^{2} P_{2}+t^{3} P_{3} \\
P_{0}^{n}(t)= & \sum_{i=0}^{n} P_{i} B_{i}^{n}(t) \\
& B_{i}^{n}(t)=\frac{n!}{(n-i)!i!}(1-t)^{n-i} t^{i}=\binom{n}{i}(1-t)^{n-i} t^{i}
\end{aligned}
$$

- The $B B$ polynomials of degree n form a basis for the space of all degree-n polynomials

Bernstein-Bézier Basis Functions

Bernstein-Bézier Polynomial Properties:
Partition of Unity: $\sum_{i=0}^{n} B_{i}^{n}(t)=1$
Recurrence: $B_{0}^{0}(t)=1$ and $B_{i}^{n}(t)=(1-t) B_{i}^{n-1}(t)+B_{i-1}^{n-1}(t)$
Derivatives: $\frac{d}{d t} B_{i}^{n}(t)=n\left(B_{i-1}^{n-1}(t)-B_{i}^{n-1}(t)\right)$

Bernstein -Bézier Splines: Implicit and Parametric

Parametric Bernstein-Bézier Curve Segments and their Properties
Definition:

- A degree n (order $n+1$) Bézier curve segment is

$$
P(t)=\sum_{i=0}^{n} P_{i} B_{i}^{n}(t)
$$

where the P_{i} are k-dimensional control points.

Convex Hull:

$$
\sum_{i=0}^{n} B_{i}^{n}(t)=1, B_{i}^{n}(t) \geq 0 \text { for } t \in[0,1]
$$

$\Longrightarrow P(t)$ is a convex combination of the P_{i} for $t \in[0,1]$
$\Longrightarrow P(t)$ lies within convex hull of P_{i} for $t \in[0,1]$

Affine Invariance:

- A Bézier curve is an affine combination of its control points
- Any affine transformation of a curve is the curve of the transformed control points

$$
T\left(\sum_{i=0}^{n} P_{i} B_{i}^{n}(t)\right)=\sum_{i=0}^{n} T\left(P_{i}\right) B_{i}^{n}(t)
$$

- This property does not hold for projective transformations!

Interpolation of End Control Points:

$$
B_{0}^{n}(0)=1, B_{n}^{n}(1)=1, \sum i=0^{n} B_{i}^{n}(t)=1, B_{i}^{n}(t) \geq 0 \text { for } t \in[0,1]
$$

$$
\begin{aligned}
& \Longrightarrow B_{i}^{n}(0)=0 \text { if } i \neq 0, B_{i}^{n}(1)=0 \text { if } i \neq n \\
& \Longrightarrow P(0)=P_{0}, P(1)=P_{n}
\end{aligned}
$$

Derivatives:

$$
\begin{aligned}
& \frac{d}{d t} B_{i}^{n}(t)=n\left(B_{i-1}^{n-1}(t)-B_{i}^{n-1}(t)\right) \\
& \Longrightarrow P^{\prime}(0)=n\left(P_{1}-P_{0}\right), P^{\prime}(1)=n\left(P_{n}-P_{n-1}\right)
\end{aligned}
$$

Smoothly Joined Segments (G^{1}):

- Let P_{n-1}, P_{n} be the last two control points of one segment
- Let Q_{0}, Q_{1} be the first two control points of the next segment

$$
\begin{aligned}
P_{n} & =Q_{0} \\
\left(P_{n}-P_{n-1}\right) & =\beta\left(Q_{1}-Q_{0}\right) \text { for some } \beta>0
\end{aligned}
$$

Recurrence, Subdivision:

$$
B_{i}^{n}(t)=(1-t) B_{i}^{n-1}+t B_{i-1}^{n-1}(t)
$$

\Longrightarrow deCasteljau's algorithm:

$$
\begin{aligned}
P(t) & =P_{o}^{n}(t) \\
P_{i}^{k}(t) & \left.=(1-t) P_{i}^{k-1}(t)+t\right) P_{i+1}^{k-1} \\
P_{i}^{0} & =P_{i}
\end{aligned}
$$

Use to evaluate point at t, or subdivide into two new curves:

- $P_{0}^{0}, P_{0}^{1}, \ldots P_{0}^{n}$ are the control points for the left half
- $P_{n}^{0}, P_{n-1}^{1}, \ldots P_{0}^{n}$ are the control points for the right half

Tensor Product Patches

Tensor Product Patches:

- The control polygon is the polygonal mesh with vertices $P_{i, j}$
- Thepatch basis functions are products of curve basis functions

$$
P(s, t)=\sum_{i=0}^{n} \sum_{j=0}^{n} P_{i, j} B_{i, j}^{n}(s, t)
$$

where

Properties:

- Patch basis functions sum to one

$$
\sum_{i=0}^{n} \sum_{j=0}^{n} B_{i}^{n}(s) B_{j}^{n}(t)=1
$$

- Patch basis functions are nonnegative on $[0,1] \times[0,1]$

$$
B_{i}^{n}(s) B_{j}^{n}(t) \geq 0 \text { for } 0 \leq s, t \leq 1
$$

\Longrightarrow Surface patch is in the convex hull of the control points
\Longrightarrow Surface patch is affinely invariant
(Transform the patch by transforming the control points)
Subdivision, Recursion, Evaluation:

- As for curves in each variable separately and independently
- Tangent plane is not produced!
- Normals must be computed from partial derivatives

Partial Derivatives:

- Ordinary derivative in each variable separately':

$$
\begin{aligned}
\frac{\partial}{\partial s} P(s, t) & =\sum_{i=0}^{n} \sum_{j=0}^{n} P_{i, j}\left[\frac{d}{d s} B_{i}^{n}(s)\right] B_{j}^{n}(t) \\
\frac{\partial}{\partial s} P(s, t) & =\sum_{i=0}^{n} \sum_{j=0}^{n} P_{i, j} B_{i}^{n}(s)\left[\frac{d}{d t} B_{j}^{n}(t)\right]
\end{aligned}
$$

- Each of the above is a tangent vector in a parametric direction
- Surface is regular at each (s, t) where these two vectors are linearly independent
- The (unnormalized) surface normal is given at any regular point by

$$
\pm\left[\frac{\partial}{\partial s} P(s, t) \times \frac{\partial}{\partial t} P(s, t)\right]
$$

(the sign dictates what is the outward pointing normal)

- In particular, the cross-boundary tangent is given by (e.g., for the $s=0$ boundary):

$$
n \sum_{i=0}^{n} \sum_{j=0}^{n}\left(P_{1, j}-P_{0, j}\right) B_{j}^{n}(t)
$$

(and similarly for the other boundaries)

Smoothly Joined Patches:

- Can be achieved by ensuring that

$$
\left(P_{i, n}-P_{i, n-1}\right)=\beta\left(Q_{i, 1}-Q i, 0\right) \text { for } \beta>0
$$

(and correspondingly for other boundaries)

Rendering:

- Divide up into polygons:

1. By stepping

$$
\begin{aligned}
s & =0, \delta, 2 \delta, \ldots, 1 \\
t & =1, \gamma, 2 \gamma, \ldots, 1
\end{aligned}
$$

and joining up sides and diagonals to produce a triangular mesh
2. By subdividing and rendering the control polygon

Triangular Patches

deCasteljau Revisited Barycentrically:

- Linear blend expressed in barycentric coordinates

$$
(1-t) P_{0}+t P_{1}=r P_{0}+t P_{1} \text { where } r+t=1
$$

- Higher powers and a symmetric form of the Bernstein polynomials:

$$
\begin{aligned}
& P(t)=\sum_{i=0}^{n} P_{i}\left(\frac{n!}{i!(n-i)!}\right)(1-t)^{n-i} t^{i} \\
& =\begin{array}{c}
i+j=n \\
i \geq 0, j \geq 0
\end{array} P_{i}\left(\frac{n!}{i!j!}\right) t^{i} r^{j} \text { where } r+t=1 \\
& \Longrightarrow \quad \begin{array}{c}
i+j=n \quad P_{i j} B_{i j}^{n}(r, t) \\
i \geq 0, j \geq 0
\end{array}
\end{aligned}
$$

- Examples

$$
\begin{aligned}
\left\{B_{00}^{0}(r, t)\right\} & =\{1\} \\
\left\{B_{01}^{1}(r, t), B_{10}^{1}(r, t)\right\} & =\{r, t\} \\
\left\{B_{02}^{2}(r, t), B_{11}^{2}(r, t), B_{20}^{2}(r, t)\right\} & =\left\{r^{2}, 2 r t, t^{2}\right\} \\
\left\{B_{03}^{3}(r, t), B_{12}^{3}(r, t), B_{21}^{3}(r, t), B_{30}^{3}(r, t)\right\} & =\left\{r^{3}, 3 r^{2} t, 3 r t^{2}, t^{3}\right\}
\end{aligned}
$$

Surfaces - Barycentric Blends on Triangles:

- Formulas

$$
\begin{aligned}
& P(r, s, t)=\sum \quad P_{i j k} B_{i j k}^{n}(r, s, t) \\
& B_{i j k}^{n}(r, s, t)=\frac{n!}{i!j!k!} r^{i} s^{j} t^{k}
\end{aligned}
$$

Triangular deCasteljau:

- Join adjacently indexed $P_{i j k}$ by triangles
- Find $r: s: t$ barycentric point in each triangle
- Join adjacent points by triangles
- Repeat
- Final point is the surface point $P(r, s, t)$
- final triangle is tangent to the surface at $P(r, s, t)$
- Triangle up/down schemes become tretrahedral up/down schemes

Properties:

- Each boundary curve is a Bézier curve
- Patches will be joined smoothly if pairs of boundary triangles are planar as shown

Splines

If give up on small support, get natural splines; every control point influences the whole curve.

If give up on interpolation, get cubic B-splines.

Figure 1: Cubic B-spline basis function

B-Splines

Need only one basis function, all $B_{i}(t)$ are obtained by shifts: $B_{i}(t)=B(t-i)$. The basis function is piecewise polynomial:

$$
B(t)= \begin{cases}0 & t \leq-2 \\ \frac{1}{6} t^{3}+2 t+\frac{4}{3}+t^{2} & t \leq-1 \\ \frac{2}{3}-t^{2}-\frac{1}{2} t^{3} & t \leq 0 \\ \frac{2}{3}-t^{2}+\frac{1}{2} t^{3} & t \leq 1 \\ \frac{4}{3}-2 t+t^{2}-\frac{1}{6} t^{3} & t \leq 2 \\ 0 & 2 \leq t\end{cases}
$$

B-Splines

The curve with control points $p_{0}, p_{1}, p_{2}, \ldots p_{n}$ is computed using

$$
p(t)=\sum_{i=0}^{n} p_{i} B(t-i)
$$

The allowed range of t is from 1 to $n-1$; outside this interval our functions do not sum up to 1 , which means in particular that if we move control points together in the same way, the curve outside the interval will not move rigidly.

B-Splines

The minimal number of points required is 4; this corresponds to the interval for t of length 1.

Figure 2: Cubic B-spline basis function

This is inconvenient - but we can always add control points by reflection.

B-Splines

Adding control points by reflection:

$$
p_{-1}=2 p_{0}-p_{1} ; \quad p_{n+1}=2 p_{n}-p_{n-1}
$$

Drawing B-Splines

Hardware typically can draw only line segments. Need to approximate B-spline with piecewise linear curve. Simplest approach:

Choose small Δt
Compute points $p(0), p(\Delta t), p(2 \Delta t)$,
Draw line segments connecting the points.

Not very efficient - have to evaluate a cubic polynomial (or several) at each point.

Can do better using a magic algorithm (subdivision).

B-Splines via subdivision

It turns out that the smooth curve be obtained by subdivision of the original polyline:
Subdivision adds new control points between the original control points and updates positions of original control points.

Subdivision

Subdivision rules for updating old points:

Subdivion rules for inserting new points:

Subdivision rules
Even rule (in the new sequence of points the points with even numbers are the old points with updated positions).

$$
p_{2 i}^{j+1}=\frac{1}{8}\left(p_{i-1}^{j}+6 p_{i}^{j}+p_{i+1}^{j}\right)
$$

Odd rule (in the new sequence the points with odd numbers are newly inserted points).

$$
p_{2 i+1}^{j+1}=\frac{1}{8}\left(4 p_{i}^{j}+4 p_{i+1}^{j}\right)
$$

Subdivision

Of course, in a finite number of steps subdivision generates only polylines. But they get arbitrarily close to a limit C^{2} and this curve is exactly a cubic B-spline.

Algorithm:

Start with an array of control points of length $n+1$.
Compute from the original points new array of length $2 n+1$ using subdivision rules for even and odd points.
Then from the new array compute an array of length $4 n+1$ etc., (typically $4-5$ steps is enough).
Then draw the line segments connecting sequential control points.

Endpoints

What do we do when a point is missing?

In this case, apply reflection (recall adding missing control points). This results in the following trivial rule:

$$
p_{0}^{j+1}=\frac{1}{8}\left(p_{1}^{j}+6 p_{0}^{j}+\left(2 p_{0}^{j}-p_{1}^{j}\right)\right)=p_{0}^{j}
$$

that is, just keep the old value.

General B-Splines:

- Nonuniform B-splines (NUBS) generalize this construction
- A B-spline, $B_{i}^{d}(t)$, is a piecewise polynomial:
- each of its segments is of degree $\leq d$
- it is defined for all t
- its segmentation is given by knots $t=t_{0} \leq t_{1} \leq \cdots \leq t_{N}$
- it is zero for $T<T_{i}$ and $T>T_{i+d+1}$
- it may have a discontinuity in its $d-k+1$ derivative at $t_{j} \in\left\{t_{i}, \ldots, t_{i+d+1}\right\}$, if t_{j} has multiplicity k
- it is nonnegative for $t_{i}<t<t_{i+d+1}$
- $B_{i}^{d}(t)+\cdots+B_{i+d}(t)=1$ for $t_{i+d} \leq t<t_{i+d+1}$, and all other $B_{j}^{d}(t)$ are zero on this interval
- Bézier blending functions are the special case where all knots have multiplicity $d+1$

Evaluation:

- There is an efficient, recursive evaluation scheme for any curve point
- It generalizes the triangle scheme (deCasteljau) for Bézier curves
- Example (for cubics and $t_{i+3} \leq t<t_{i+4}$):

Reading Assignment and News

Chapter 11 pages 583-600, of Recommended Text.
Please also track the News section of the Course Web Pages for the most recent Announcements related to this course.
(http://www.cs.utexas.edu/users/bajaj/graphics25/cs354/)

