DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 17)

Illumination Models IV: Global Diffuse

Radiosity

The whole philosophy of our previous lectures on illumination were based on what we called
“quick-and-dirty” methods: efficient approaches that manage to “fool the eye”. The local
illumination is central to the efficiency of these approaches.

A global illumination model is a model which take into account the fact that light is not just
coming from a few point light source, but that light is arriving indirectly form many different
directions.

What are the elements of a global illumination model?

The basic idea is vewing each object as being a potential light source. Some objects (light
sources) radiate light directly, but others (nonblack surfaces) can radiate light indirectly.

Radiosity is another example of a global illumination model.

THE UNIVERSITY OF TEXAS AT AUSTIN 1



DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 17)

Example for indirect illumination using RayTracing
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Example for indirect illumination using Radiosity
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Example for combined illumination
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Radiosity Overview

Radiosity: the intensity of each point on the surface of some object in our environment.

This intensity of the point P is a function of

e the emittance of light from this point (if it is a light source),

e the reflection of light coming from other surfaces in the environment.

The second component is quite complicated, because it depends on the radiosity of points
on surfaces throughout the environment, whether these points are visible from P, and how
reflective the surface is that P lies on.
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Sampling

Radiosity computations are quite expensive since for every point we need to know the
illumination of all the surface elements that this point can see. A common way is to choose
some sampled points in the environment.

How to selected?

The most common way is based on a generalization of the finite element method.

e Subdivide each of the object surface into a number of small polygonal patches (surface
mesh)

e For each patch, compute an approximation of the radiosity of this patch. For example,
this could be done by computing the radiosities at each of its vertices and then averaging
these.

How to construct these patches?

e Small patches can give good accuracy, but expensive.

e Large patches can give speed, but lost of accuracy.
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The best method is to use an adaptive approach:

e First start with a coarse mesh, determining in which areas the radiosity is varying most
rapidly.
e Then refining these ares and trying again.

e When the radiosity values are fairly constant in the neighborhood of a patch of the mesh,
or when the patches are deemed to be “small enough” then we do not need to refine
further.

More sophisticated methods, like discontinuity meshing actually attempt to align the edges
of the mesh with sharp changes in radiosity (e.g. as happens along the edge of a shadow).
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Who Comes First?

The radiosity at point A depends on the radiosity from all visible points B. And visa versa.
Then how to compute radiosities?

There are two general approaches.

e Define a large linear system of equations, that “encodes” all of the radiosity dependencies.

By solving this equation, we can determine all the radiosities at all the points.
The problem is the size of this linear equation is enormous.

2

n surface patches = n? x n? matrix.

e Progressive refinement radiosity: The idea is:
— starting with the brightest light source and shooting its radiation around to the entire

scene.
— Then we move to the next brightest light source and repeat this process.

Note that as we do this, surface that were initially black start picking up more and more
intensity. Eventually a non-emitting light source can start accumulating more and more
intensity, until it becomes the brightest light source, and then it shoots its intensity to
the surrounding scene.
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Energy Balance Equation

L°(x, 07, ¢, \°) = L°(z,0,, o, X\°)+

% 27 )\max . . .
/ / / pbd(m70;7¢;7>‘27027¢;7>‘0)
0 0 Amin

cos(02) L' (z, 0, ', A\)dX\ sin(6")de’ d6’

L°(x, 02, ¢:, \°) is the total radiance

— at wavelength \°

— leaving point x

— in direction 09, ¢

L(z, 0;, ¢7, X°) is the (exitance) radiance emitted by the surface from the point
L'(xz, 0., ¢, \") is the incident radiance impinging on the surface point

pva(x, 02, - X", 0% $2,\°) in short BRDF, describes the directional reflective
properties at the surface point.
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— describes the surface’s interaction with light at the point

the integration is over the hemisphere above the point
the standard property used to describe light sources is exitance, or radiant emitted flux
density, defined as energy radiated per unit time and unit area (similar to radiancy).
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Basics of Radiance

The most basic concept of radiosity is radiance.

Radiance L: the amount of energy per unit time (or equivalently power) emitted from a
point x in a given direction per unit area (perpendicular to direction) per unit solid angle.

Define:

e 0: the angle with respect to the surface normal,
e ¢: the angle of the projection onto the surface.
e w: the resulting directional vector.

Thus

L =L(x,0,¢) = L(x,w)
d x40
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The energy radiating during time interval dt from a small patch dz? in some small solid
angle dw can be expressed as:

L(x,0,¢) dxcosf dwdt

projectedarea

Radiance is measured in watts per square meter per steradian.

Then the radiosity, denoted by B, the total power (energy per unit time) leaving a point on
a surface, per unit area on the surface is as follows

B(z) = L(z,0,¢) cosfdw
Q

where €2 is the hemisphere’s surface lying on the above the surface.

A corresponding quantity called irradiance is expressed in the same units as B, represents
the total incident flux density at a point and is measured in Watts/m?.
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Simple Radiosity Equation

If surfaces are Lambertian (idea diffuse surface), then we can simplify L(x, 8, ¢) and just
write L(x). The radiosity at the point x is given by

B(x) = . L(x,0, ¢) cos O8dw
= L(x) cosfdw where dw = sin 0d0d¢
Q
0 27
= L(x) cos 0 sin 0dOd¢
0 0
= L (x).

This means simply that depends only on the radiance, the light power, at the point.
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Radiosity equation (for Lambertian reflectors):

L(z) = Lo(x) + pd(x)

Li(xz,0,¢) cosOdw
Q
where L. denotes emitted radiance and L; denotes the incoming irradiance, py(x) denotes
the coefficient of diffuse reflection (earlier we had written this as kg).

We cannot eliminate the directional component from the L; term, because we still need to
consider Lambert's law for incoming radiation.

If we define

H(z) =  Li(x,0,¢)cosfdw
Q
and let E(x) denote the emitted radiosity 7w L.(x), and recall that B(x) = wL(x) then

we can write this as

B(z) = E(z) + pa(z)H ()
The term H (x) essentially describes how much illumination energy is arriving from all other
points in the scene.

To simplify H(x) we can use the Lambertian assumption. Rather than integrating over
the angular space surrounding x, instead we will integrate over the set of points on the
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surface, denoted S. Let y € S be such a surface point visible from x in direction
w=<80,p>=< 0" ¢ >. Let 0’ denote the angle between the surface normal at y and
the line-of-sight vector from y to z(—w), and let ¢’ be defined similar to ¢ but for y. Let
r denote the distance from x to y.

By symmetry of radiance, we have L(z, 0, ¢) = L(y, 6', ¢').

Since all surfaces are Lambertian, we have

L(y,0',¢") = Bl)

And
cos 0'dy

dw = >

T
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Putting these together, we can define H(x) in terms of an integral over surface points:

cos 0 cos 6’
H(z) =  BW) 2222V (2, y)dy.
yeS wr

where

V( ) 1, if x can see y
€T, = ]
Y 0, otherwise

is the visibility function.
Hence the radiosity equation (Lambertian)

cos 0 cos 6’
B(z) = E(x) + pa(z) SB(y) — V(zy)dy.
ye
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Radiosity Equation (Lambertian Surfaces)

In practice, we cannot expect to be able to solve this integral equation. As mentioned before,
most radiosity methods are based on subdividing space into small patches, and assuming
that the radiosity is constant for each path. Thus, in the equation for H(x) above, we can
assume that B(y) is constant for all points y in a surface patch.

The radiosity equation becomes

cos 0 cos 6’

B(z) = E(x) + pa(z) Z B(y)———V(z,y)dy.

GPj

and since B(y) = B;,Vy € P;,

cos 0 cos 6’
2

B(m):E(a:)—I—pd(a:)ZBj i V(x,y)dy.
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Note: Even though B(x) varies over a patch P;, we consider B as constant over a

patch only for purpose of illuminating other surfaces. The constant radiosity value is an

area-weighted average of the pointwise radiosities B; = - Joep. B(x)dz; similarly exitance
1 1

E; = A%‘ meP,L' E(x)dx and Py(xz) = P; (constant).

Hence
N 1 cos 0 cos 0’
B; = E; + p; BjX > V(z,y)dzdy
=1 i xzEP; yYEP; r
or more compactly,
N
Bz:Ei+pz F’LB]
j=1
or
N
Ei= B —p;  BjFi
j=1

where Form factor F; ;: the fraction of light energy leaving P; that arrives at patch P;:

1 cos 0 cos 6’
Fij = 1 —V (@, y)dydz
j xEP; yeP; Tr
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F; ; is a dimensionless quantity. If patches are close, large, and facing one another, F; ; will
be large.

Here B; is the radiosity of patch ¢ (the amount of light reflected per unit area), E; is the
amount of light emitted from this patch per unit area, p; is the reflectivity of patch 7 (p = 0
means a dark non-reflecting object and p = 1 means a bright highly reflecting object). A;
and A; are the areas of patches P; and P;, respectively.
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Form Factors

lts matrix form is

1—p1F1p  —p1F12 - —p1F1n B E
—p2F21 1 —paFro - -- —p2F> B _ Es
_pnFn,l pnFn,2 T 1 - pnFn,n Bn En

The values p; are dependent on the surface types. The hard thing to compute are the values
of F; ;. The linear system is sparse. lterative techniques from numerical analysis, such as
Gauss-Seidel, can be used to solve this type of system.

It can be shown that there is a fairly simple geometric interpretation of F; ;.
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1. Break the 2-th patch into small differential elements.
For each element consider a hemisphere surrounding this element, and project patch 3
onto this hemisphere through its center.

3. Then project this projection orthographically onto the base circle of the hemisphere.

4. The value of F; ; is the area of this projection, divided by the area of the circle.

Thus intuitively, patches that occupy a larger field of view contribute more to F;; and
patches that are more nearly orthogonal to the surface contribute more.
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Computing this orthogonal projection of a spherical projection is somewhat tricky (considering
that it must be repeated for every tiny element of every patch), so it is important of speed
this computation up, at the cost of the introduction of approximation errors. We can
approximate the hemisphere by a hemicube, and discretize the surface of the hemicube into
square (pixel-like) elements. We project all the surrounding patches on to each of the faces
of the hemicube. (Note that this is essentially a visible surface elimination task, which can be
solved with hardware assistance, e.g. using a z-buffer algorithm.) Each cell of the hemicube
is now associated with a patch, and we apply a weighting factor that depends on the square
of the hemicube, and sum these up.

Needless to say, this process is extremely computationally intensive. We are basically solving
a visible surface determination problem at every point on the surface of our objects. Much of
the research in radiosity is devoted to mechanisms to save computations, without sacrificing
realism.
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Reading Assignment and News

Chapter 12 pages 638 - 646, of Recommended Text.

Please also track the News section of the Course Web Pages for the most recent
Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics25/cs354/)
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