DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 21)

Visibility Algorithms Il: Partitioning Trees

How to determine which surfaces are visible to the viewer and which are hidden and by how
much

Input: Collection of polygons

Output: View Independent spatial data structure (partitioning trees) so that a visibility map
can be obtained extremely fast for different viewpoints

THE UNIVERSITY OF TEXAS AT AUSTIN 1

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 21)

Binary Space Partitioning Trees

A BSP (Binary Space Partitioning) tree is a recursive sub-division of space that treats each
polygon, in 3D as a partitioning half-space and uses it to classify all remaining polygons
in either of the two (binary) half-spaces. The half-space containing the normal can be
considered the "front” half-space and the other the "back” half-space. In other words, when

a partitioning half-space is inserted into the tree, it is first classified with respect to the root
node, and then recursively with respect to each appropriate child.

Operations

e visibility orderings: viewer or light source dependent

e intersections: between geometric sets

THE UNIVERSITY OF TEXAS AT AUSTIN 2

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 21)

Converting B-REPS to Partitioning Trees

Insert Figure

Brep_to_Bspt: Brep b -> Bspt T
IF b == NULL
THEN
T
ELSE
H = Choose_HalfSpace (b)
{b+, b-, b0} = Partition_Brep (b, h)
T.faces = b0
T.pos_subtree = Brep_to_Bspt (b+)

if a left-leaf then an in-cell else an out-cell

T.neg_subtree = Brep_to_Bspt (b-)
END

THE UNIVERSITY OF TEXAS AT AUSTIN 3

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 21)

Rendering Partitioning Trees: Generalized Painter’s Algorithm

A partitioned scene is rendered by locating the eyepoint with respect to the root half-space,
recursively rendering all polygons on the "other” side, rendering the root polygon, and then
recursively rendering the polygons on the same side of the eyepoint. Because each polygon

is visited exactly once while drawing the scene, the scene can be rendered correctly in O(n)
time.

render3DScene ()

if location(eye.point) == frontSide
back.render3DScene()
renderPolygon ()
front.render3DScene ()

else if location(eye.point) == backSide
front.render3DScene ()
renderPolygon ()
back.render3DScene ()

THE UNIVERSITY OF TEXAS AT AUSTIN 4

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 21)

Intersections

Insert Figure

Merge_Bspts: (T1,T2:Bspt) -> Bspt

Types
BinaryPartitioner: {half-space, sub-half-space)
PartitionedBspt: (inNegHs, inPosHs : Bspt)

Imports
Merge_Tree_with_Cell: (T1, T2 : Bspt) Bspt
Partition_Bspt: (Bspt, BinaryPartitioner) PartitionedBspt

Definition
IF Tl.is_a_cell OR T2.is_a_cell
THEN
Val:= Merge_tree_with_cell (T1,T2)
ELSE

THE UNIVERSITY OF TEXAS AT AUSTIN 5

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 21)

Partition_Bspt (T2,Tl.binary_partitioner) -> T2_partitioned
Val.neg_substrate :=
Merge_Bspts (T1l.neg_subtree,T2_partitioned.inNegHs
Val.pos_substrate :=
Merge_Bspts (T1l.pos_subtree,T2_partitioned.inPosH:s
END

RETURN Val
END Merge_Bspts

THE UNIVERSITY OF TEXAS AT AUSTIN 6

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 21)

Comparisons to z-buffer

no numerical problems created by perspective projection
no z-buffer memory

unlimited use of transparency

anti-aliasing without subpixel color and z-buffers

no quantization errors for shadow computation which are amplified by the inverse
perspective projection

THE UNIVERSITY OF TEXAS AT AUSTIN 7

DEPARTMENT OF COMPUTER SCIENCES GrAPHICS — FALL 2005 (LECTURE 21)

Reading Assignment and News

Pages 541 - 543, of Recommended Text.

Also try BSP applet http://symbolcraft.com/graphics/bsp/index.html

Please also track the News section of the Course Web Pages for the most recent
Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics25/cs354/)

THE UNIVERSITY OF TEXAS AT AUSTIN

