THE ALGEBRAIC COMPLEXITY OF SHORTEST
PATHS IN POLYHEDRAIL SPACES

Chanderjit Bajaj

CSD-TR-523
June 1985




The Algebraic Compiexity of Shortest Paths in Polyhedral Spaces

Chanderjit Bajaj

Department of Computer Science,
Purdue University,
West Lafayette, IN 47907

ABSTRACT

In this paper we show that the problem of finding the shortest
path between two points in Euclidean 3-space, bounded by a firite col-
lection of polyhedral obstacles, is iu_general not solvable by radicals
over the field of rationais. The problem is shown to be not solvable
even for the case when only two obstacle edges are encountered in the
shortest path in 3-space. One direct consequence of the non-solvability
by radicals is that for the shortest path problem there cannot exist an
exact algorithm under models of computation where the root of an
algebraic equation is obtained using arithmetic operations and the
extraction of £ roots. This leaves only numerical or symbolic approx-
imations to the solutivns, where the complexity of the approximations
is primarily a function of the algebraic degree of the optimum solu-

tion.

For special relative orientations of the polyhedral obstacles how-
ever the shortest path is shown to be straight-edge and compass con-
structible. Simple polynomial time exact algorithms are known for such

cascs.
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1. Intreduction

The use of algebraic methods for analyzing the complzxity of geometric prob-
lems has been popular since the time of Descartes, Gauss, Abel and Galois. The com-
plexity of straight-edge and compass constructions has bcen long known to be
equivalent to the geometric solution being expressible in terms of (+,-,*,/,4/) over Q,
the field of rationals [CR41),f[vdW53]. In this paper we show that the problem of
finding the shortest path between two peints in Euclidean 3-space, bounded by a
finite collection of polyhedral obstacles, is in general not solvable by radicals’ over
Q0. We penerate the minimal polynomial whose root over the field of rational
numbers is the solution of the shortest path problem. We show the generated poly-
nomial to be minimal by proving it irreducible over 0 and use Galois theory to prove
the polynomial to be not solvable by examining the structure of its Galois group. For
special relative orientations of the polyhedral obstac!zs however we show the shortest

path to be straight-edge and compass constructible”.

A number of immediate consequences arise from the non-selvability of the shor-
test path problem. First, for this problem in general there cannot exist exact algo-
rithms under models of computation where the root of an algebraic equation is
obtained using arithmetic operations and the extraction of k™ roots. Second, this
leaves only numerical or symbolic approximations to the optimum solution. In order
to use numerical or symbolic approximation techniques one first needs to compute a
sequence of disjoint intervals with rational endpoints, each containing esactly one
real root of the minimal polynomial and together containing all the real roots, (root
isolation). Given an isolating interval with rationa! endpoints one can use symbolic

t A rcal number @ is expressible in terms of radicals if there is a sequence of cxpressions
By ..., By, where B1€Q, and each B_,- is either a rational or the sum, differenee, product,
quotient or the k™ roor of preceding B's and the last 8, is a.

% Hencelorih by constructible we shall mean siraight-edge and compass constructible.
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bisection and sign calculation methods [CL82] or Niiton’s iterations {Li78] to
rapidly approximate the solution to any cesired degree of accuracy. The complexiiy
of the algorithms which isolate the roots of a polynomial P of degree d with integer
coefficients is bounded below by a power of log(1/sep(P)} where sep(P) is the
minimum distance between distinct real roots of P. A lower bound for sep(P) given
by [Ru79] satisfies sep(P) > 1/(2d“/(1P 1+1)). Hence from the minimal poiyno-
mial of the shortest path problem one can in effect derive a complexity bound for
approximations which primarily depends on the algebraic degree of the op:iimum
solution point, (the degree of the minimal polynomial). A similar complexity bound
may also be derived for the order of convergence of a sequence of numericalal
approximations of the optimum solution point. [Ku75] relates the order of conver-
gence of approximations of an algebraic number with the algebraic degree of the

number, provided the approximation sequence is of bounded order of convergence.

2. Shortest Path Problem

The problem of finding the shortest path between two points in Euclidean 3-
space, bounded by a finite collection of polyhedral obstacles is a special case of the
more general problem of planning optimal collision-free paths for a given robot sys-
tem. In Euclidean 2-space (the Euclidean plane) the problem is easy to solve and the

shortest path is polynomial time computable, [LW79].

The problem for Euclidean 3-space is much harder and known shortest path
computations require exponential time, {SS84]. In Euclidean 3-space the shortest path
between two given points, in the presence of polyhedral obstacles, can be again
shown to be piecewise straight lines {polygonal lines), as for the planar 2-dimensional
problem, with break points that lie on the edges of the given polyhedral obstacles.
Since the edges of the polyhedral obstacles are arbitrary lines in Euclidean 3-space,
the problem of determining the points of contact of the shortest path with these

edges can without loss of generality be versed also as follows.

Given a sequence L =(l,l,, - - - I} of lines in 3-dimensional space , find the shor-
rest path from a source point X to a destination point Y constrained to pass through

interior points of each of the lines Iy,l5, - - - [, In this order.

We identify three different cases of the relative positions of the lines. All the vari-
ous configurations of the n lines in 3-space consist of combinations of these basic

orientations between pairs of lines.




{a) Lines are parallel to eacl: other.
(b) Lines are not parallel but intersect.
(¢) Lines are skew and do not intersect.

In § 3, we show that when the lines are oriented as a combination of the cases
(a) and (b), then the shortest path problem in Euclidean 3-space is constructible.
Simple polynomial time exact algorithms are known for such cases, [BM85]. However
in § 4, we show that for the case (c) of even two skew lines the solution is not con-
structible and furthermore not solvable by radicals. This leaves only numericaial or

symbolic approximations to the shortest path, [SS84] and [BM85].

3. The Consiroctible Cases

The complexity of straight-edge and compass constructions has been long known
to be equivalent to the geometric solution being expressible in terms of (+,-,*/,\/
over 2, the field of rationals [CR41],[vdW53]. We now show that when the lin:=s are
oriented as a combination of the cases {(a) and (b), then the solution to the shortest

path problem is always expressible in terms of {(+,-,*./,\) over Q.

Between pairs of lines in 3-space which are parallel to each other there exists a
unique plane which contains both of them. The same applies to pairs of lines in 3-
space which intersect. Also a point and a line in 3-space define a unique plaie
between them. The problem of finding the shortest path between X and ¥ in 3-space
for cases (a) and (b), then reduces to a constrained 2-1/2 dimensional space problem
as follows. Let the point X and line /; define the plane P, the lines /; and /;,, define
the planes P;,y, i=1l.n—1, and the line {, and the poiat Y define the plane P, ,,.
The original problem is now reduced to finding the shortest path between two points
X and Y in 3-space with the path constrained to the planes P;, i =1..n, (Figure 1).
On unfolding all the planes P; to a common plane P,, the straight line connecting X
and the corresponding transformed point, ¥’ is clearly the shortest path and one that
subtends equal angles, at each of the lines /. The length of the path as well as thz
subtended angles remain invariant under the above unfoldings and thus the shortest
path from X to Y which passes through the given sequence of lines /; enters and
leaves {; at equal angles. The necessary and sufficient conditions for the shortest
path can be expressed algebraically by the set of n equations

a; =B; , i=l.n (1)
where a; and B; are the angles subtended at linc {; by the incoming and outgoing

segments of the shortest path respectively.
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Figure 1: Lines which are Parallel or Intersect

For the case (a) of parallel lines, since {; is parallel to /; ;,, we furthermore have
B: =0;4y, i=1l.n-1 (2)
Using the equations of (1) and (2) we obtain the equation a;=p, where o, is the
angle subtended at lire {, by the incoming shortest path segment from point X and
B; is the angle subtended at the line /, by the outgeing shortest path segment to
peint Y. We are given the cartesian coordinates (a,,z,,24) and (b;,b3,63) of the
points X and Y respectively and the line vectors {;, all values over 0. Without loss
of generality we can assume all lines {; to be parallel to the x axis. The contact
points on lines {; could then be taken to be x;.y;,z; where we need to determine the
unknowns x; with the values of y; and z; being constant. The equation a;=B, or
equivalently the equation Cosay = Cos B, (equality of the direction cosines) is then
expressed as
(a1=x 1/ Vx1—a ) +(r1—a ) +(z1=a3) = (x5 —b 1/ V(% b1 +(, —b2) + (2, —b3)?
Simplifying the equation we obtain
Xy = byt —a )V —b2)*+ (20 =53 W((1—a2)°+(z 1—a3)")

The above equation has x, expressed in terms of (+,-,*,/,3\/) over constant values of

0 and x;. Using sets of equations (1) and (2) it is straightforward to see that each of
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the unknowns x;, i =2..n, can similarly be expressed in terms ¢ (+,-,*/,v/) over con-
stant values of @ and x;. Next solving an equation of (1), say, o, = B, we obtain x,
expressed in terms of {+,-,*/,V/) over constant values of Q. It follows that each of
the x;, i=1..n is expressible in terms of (+,-,*/,V/) over constant valucz of @ and

hence constructible.

For the case (&) of intersecting lines, since ; intersects /; ,;, we have in addition
to the set of equations (1) the set of equations
®;4 =Bite;, i=1lr-1 (3
where c; is the angle between [; and /; ;; and is a constant value incependent of the
unknowns. This linear dependence amongst the angles is again sufficient to make
each of the unknowns x;, i=1..n to be expressible in terms of (+.-,*,/,3/) over con-

stant values of @ and hence constructible.

4. The Non-Solvable Case

Even for skew lines the piecewise straight line shortest path enters and leaves
each line /; at equal angles [S884]. However when any two adjacent lines {; and [;
are skew to one another there oxists no common plane containing both of them.
Hence simplifications of the previous section are no longer possible. In fact we show
that even for the case of two skew lines the solution is not constructible and further-
more not constructible by radicais. Consider the configuration of two skew lines as
shown in Figure 2. We wish to obtain the shortest path between points X and ¥
which pass through interior points of lines {; and /; in that order. Stating it algebra-
ically we wish to minimize the length of the path XC + CD + DY where C and D
are interior points of the lines {,, {,.

minimize, ; f (x,z)= ‘\/m + Vz2ix244 + V(x —3)*+1
From the fact that in the shortest path, the path segments CD and DY subtend egual

angles with the line /5 we obtain
x[Vat 42244 = (x-3)/V(x —3+1
and thereby
x =3+ 3/(Vz?44-1)
Substituting for x in f (x,2) we reduce the shortest path problem for the above
configuration to a minimization problem in a single variable.

minimize, g(z) = V(z —3)*+5 + (1/(Vz2+4-1))
(VeH+4)(2+14-2V5 24 + Vii+14—2 V2 14)




Yy
ts €3,3,0)

Figure 2: Skew Lines

The shortest path problem in Euclidean 3-space has a unique minimum, Sharir,
Schorr [4]. The above function g(z) can also shown to be strictly convex. Hence for
the unique minimum Isolution the necessary and sufficient condition is dg /dz = 0.
The corresponding rational equation is

dgldz = (z —3)Nm +z (m+l)N22+4(V(sz+4-l)2+9
—2z (V22 +4+1V(V2 2 +4-1+9/(z2+32 V2244 = 0

By a process of repeated squaring one can eliminate all the square-roots from
the rational equation above. Starting with say a sum of n different square-roots,
sqrt(i ), i=1..n, equated to a constant, the technique is to take all terms of sgrt(i),
for a certain i, to one side of the equation and the remaining terms on the other
side, squaring both sides and thereby eliminating sqrt(i ). Repeating this process by
again isolating one of the remaining independent square-roots and squaring, one is
able to eliminate all square-roots from the original equation in a maximum of n
steps. Note that by this step we do not change the root of our original problem since
repeated squaring preserves the root of the polypomial. Eliminating square-roots we
obtain the polynomial,i(z), with the following factorization over 0, (Table 1). Since
the first two factors of £(z) have only complex roots we obtain g(z), (Table 1) as the
polynomial whose real root is the solution to our problem. Our first step is to prove

it irreducible, over Q.




Table 1

Q : h(z)=(22+3)%(22+4)2(z°—122 7 +99z 1B—6482 17 +3334, 16
—14976z ¥ +56370z 11—183360z 1*+512669z 12—12554522 11+ 25781192 1©
—50069522+71751962 2—98645042 7 +31608362 6 +267274082°
—71592336z I+1856986562 2 — 1675883522 2 —251942402 +18895680)

0 : q(z)=z%—-12: %4992 18648, 17+3334z 15~ 14976z " 456370z 1*

—183360z *+512669z2 212554522 11+25781192 1050069522 ?
+71751962 5—98645042 7 +31608362 5+267274082°—715923362*
+1856986562 *— 16758835222 25194240z + 18895680
Disc{q(z)) : 2'3/ 5561 largeprime (> 100)
Mod 37: q(z)= (z —10)(z 228452176218+ 182 5 +42 11— 15, 13 +10- 12
—14z 1143, 10-31294+82 722417292 —10z°—422—15)
Mod 47 : q(2)= (2¥-12:1+5:18+102 -3 16+177 1413, -7, 12
+12211-19: 104571228327 825+1225-92*+1123+182%+162 —12)
Mod 79 : q(z)= {z +20)(z2—6z —15)(z17—262 1634z P +15; 1423, B
+222-127 1415, 10-7,9-39:8426274225+192°—282*
—31z3+3322-20z +9)

Factorizations obtained with use of
MACSYMA, (actually Vaxima on Unix).

Lemmau 1: The polynomial g (z), [Table 1], is irreducible over Q.

Proof : Since the monic polynomial g (z) is irreducible mod the prime 47 it fol-

lows that ¢ {(z) is irreducible over @ and is our minimal polynomial. o

As our next step we show the impossibility of constructions with straight-edge

and compass. The fellowing important criterion for non-constructibility suffices.
Lemma 2 : [He75] If the real number o satisfies an irreducible polynomial over @

of degree n and if n is not a power of 2, then a is not constructible.

Theoremt 3 : The solution of the shortest path problem, in general, is not con-

structible by straight-edge and compass for n=2, where n is the number of




obstacle

edges encountered in the shortest path.

Proof : Through the foregoing algebraic reduction, we only need to show that
the roots of the polynomial g{z) of Table 1 are not constructible by straight-edge
and compass. We know that g (z) is irreducible over ¢ from Lemma 1 and direct use

of Lemma 2 proves our assertion. O

We now state a few facts from Galois theory to explain the method we use to
prove the non-solvability of the roots of ¢(z) over Q0 by radicals. The following are
well known and proofs and details may be found in [vdW353),[He75],[Ga71).

A polynomial q(z)eQ [y] is called soivable over Q if there is a finite sequence of
fields Q =F ;<F< - - - <F,, (where F; ;<F; implies that F;_, is a subfield of F;)

and a finite sequence of integers ng,...,n7; _; such that F; ,=F;(o;) with u,-"‘eF,- and if
all the roots of ¢ (z) lie in Fy, that is , ECF,, where E is the splirting field of q(z).
F, is called a radical extension of Q.If q(z)eQ[y], a finite extension E of QO is said
to be a splitring field over @ for q(z) if over E but not over any proper subfield of
E, g(z) can be factored as a product of linear factors. Alternatively, E is a splitting
field of q(z) over @ if E is a minimal extension of @ in which g(z) has n roots,
where n =degree of g(z). Given a polynomial g(z) in Q[y], the polynomial ring in y
over O, we shall associate with ¢ (z) a group, Gaf (g (z)), the Galois group of g(z).
The Galois group turns out to be a certain permutation group of the roots of the
polynomial. It is actually defined as a certain group of automorphisms of the splitting
field of g(z) over 0. From the duality, expressed in the fundamental theorem of
Galois Theory, between the subgroups of the Galois group and the subficlds of the
splitting ficld one can derive a condition for the solvability by means of radicals of

the roots of a polynomial in terms of the algebraic stracture of its Galois group.

Lemma 4: [Ga7]] For a finite field F, |F |=p" and ¢(z )eF [y] factors over F into
k different irreducible factors, g(z}=q(y)...q; (), where degree g;(y)=n;, then
Gal (¢ (z)) is cyclic and is generated by a permutation containing k& cycles with

orders ny, . . . ,ny.

The shape of a permutation of degree n is the pariition of n induced by the lengths
of the disjoint cycles of the permutation. The factorization of a polynomial modulo
any prime p also induces a partition, namely the partition of the degree of g(z)

formed by the degree of the factors. The above Lemma 4 states that the degree
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partition of the factors of q(z) modulo p is the shape of tiie generating permutation
of the group, Gal (g (z)), which is furthermore cyclic. To prove the non-solvability of
q{z) over @ by radicals we use the Ceboratev —Van der Waerden sampling method to
determine the Galois group of g(z), [Mc79],[Za71]. From the density theorem of

Ceboratev one obtains,

Lemma 5: As 5 - » , the proportion of occurrences of a partition « as the degree
partition of the factorization of g (z )med p;, (i =1..s), tends to the proportion of
permutations in Gal(g(z)) whose shape is w. (The shape of a permutation of
degree n is the partition of » induced by the lengths of the disjoint cycles of

the permutation).

In order to then apply this method of obtaining the group of the polynomial over 0
one needs a table of permutation groups of the desired degree, along with a distribu-
tion of its permutations, [St73]. We could restrict our attention to transirive’ permu-
tation groups since we know that polynomial q(z)eQ is irreducible iff the Galois
group, Gal (g(z)) is transitive, [vdW53]. If the Gaiois group of the polynomial is the
symmetric group, S, , (the group of all permutations of [1..rz]), the Ceboratev-Van der

Waerden method in fact realizes this very quickly. Indeed,

Lemma 6: [Za71] If n=0(med 2) and n > 2 then after sampling about (i +1) good ¥
primes we run across an {# —1)-cycle and an n-cycle and a permutation of the
type 2+{n —3) and that will be enough to establish that Gai{g(z)) over O is the
symmetric group §,. If n=1(mod 2) then one will run across an (»—1) cycle
and a permutation of the type 2+(r —2) in about the same time and that will be

enough.

Proof - We prove why, if we run across cycle permutations of the above kind, it
is enough for the Galois group to be the symmetric permutation group. Since
for n=0(mod 2), n—3 is odd, the permutation type 2+(n —3) when raised to a
power (n-3) yields a 2-cycle. This together with the n —1 cycle and the n cycle
generate the symmetric group 5, as follows. Let (12..n —1) be the n—1 cycle. By
virtue of transitivity, the 2-cycle (i) can be transformed inte (kn), where & is
one of the digits between 1 and (n—1). The transformation of (4n) by (12..n—1)
and its powers yield all cycles (1n)(2r)..{r—1n) and these cycles together

T A permutation group on 1.1 is called fransitive if for any k, 1=k =, i1 contains a pee-
mulation w which sends 1 to k.

+ A good prime for a polynomial ¢ (z) is onc which docs not divide the discriminant of the
polynomial, disc (g{z)).
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generate the symmetric group, §, [vdW53).

For n=1(mod 2), again as n—2 is odd, the permutation type 2+(rn-2) when
raised to a power (n—2) yields a 2-cycle, which together with the n —1 cycle gen-

erates the symmetric group as above. o

We are now ready to prove our main theorem. From Galois theory we know

that

Lemma 7 : [He75) q(z)eQ[y] is solvable by radicals over @ iff the Galois group
over Q of g(z), Gal{g(z)) is a solvable group.

Lemma 8 : [He75)] The symmetric group S, is aot solvable for n =5,

Theorem 9: The shortest path problem, in general, is not solvable by radicals
over 0 for n=2, where n is the number of obstacle edges eucountered in the

shortest path.

Proof : Restating the assertion, we need to show that the polynomial ¢(z) of
Table 1 is not solvable by radicals over Q. We note from Table 1 that for the ‘good’
primes p =37,47 and 79, the degrees of the irreducible factors of g(z) mod p gives us
a 2 + 17 permutation, a 20 cycle and a 19 cycle, which is enough to establish, from
Lemma 6 for n =20, that Gal (g(z))=S 2, the symmetric group of degree 20. Lemma 8
tells us that this is not a solvable gproup and hence our assertion follows from

Lemma 7. 0O

5. Discussion & I'urther Research

We have used an alpebraic reduction procedure to obtain the minimal polyno-
mial, whose root over the field of rational numbers is the solution of the shortest
path problem in Euclidean 3-space. This may be applied to a number of other optimi-
zation problems as well [Ba84]. Other methods of computing minimal polynomials
could also be nsed [PR85]. Having obtained the minimal polynomial one uses Galois
theoretic methods to check for solvability as sketched above. Alternatively one can
use the computational procedure of [LM83]. From the minimal polynomial of the
non-scolvable optimization problems one can derive a complexity bound for approxi-
mations which primarily depends on the algebraic degree of the optimum solution
point, (the degree of the minimal polynomial). For the case when the polynomial is
solvable computational lower bounds for obtaining the solution based on the order
of the solvabie Galois group, may be derived using methods of logic, [En76]. It
seems that the domain of relations between the algebraic degree, the order of the
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Galois group of the minimal polynomials aud the complexity of obtaining the solu-

tion point of optimization problems is an exciting area to explore.
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