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Abstract: We use simple arguments from Galois theory to prove the impossibility of exact algorithms for
problems under various models of computation. In particular we show that there exist applied compula-
tional problems for which there are no closed form solutions over models such as O+ -*/N.0,-*
/. k{), and Q (+, -, *, /, kv, q{(x)), where O is the field of rationals and g {(x)eQ [x] are polynomials with
non-solvable Galois groups.

1. Introduction

The now well known Theorem of Abel-Ruffini, (proved by Ruffini in 1813 and indepen-
dently by Abel in 1827) states that the ‘gencral’ equation of # th degree, (#25), is not solvable by
radicals”. Galois’ discoveries in the theory of equations not only provided a proof of the Abel-
Ruffini theorem but it gave a criterion for solvability by radicals of any equation not just the ‘gen-
eral’ one. Gauss showed that for the integers #=17,257 and 65537 the regular n -gon can be con-
structed with straight-edge and compass. Gauss® results were obtained by elementary and lengthy
calculations involving the roots of unity [J]. With the advent of Galois theory these results can
now be obtained rather quickly and elegantly. Our efforts here our modest, but in the same vein.
We use simple arguments from Galois theory to answer questions about the impossibility of exact
algorithms for problems under various models of computation. In particular we show that there
exist applied computational problems for which there are no closed form solutions over models
suchas Q (+, - *,/, V), Q(+, -, %, /, k), and O (+, -, *, /, kv, q(x)), where Q is the field of ration-
als and g (x) are polynomials with non-solvable Galois groups. In § 2 we briefly review some
standard models of computation and their relation to the models we discuss in subsequent sec-
tions. In § 3 we consider the restricted Quadrature computation models O (+, -, *, /, V), and show
the existence of two applied problems one which is solvable and the other non-solvable, by Qua-
drature. The results in this section are quite straightforward however are important in that the

minimal polynomials derived therein are used in the following sections.

T A real number o is expressible in terms of radicals if there is a sequence of expressions fy, ..., B, where Bie@, and
cach P; is cither a retional or the sum, difference, product, quotient or the k™ roof of preceding f's and the last B, is oz
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In § 4 we consider the much stronger Solvable computation models Q (+, -, *, /, k V), and prove
that certain applied problems are not solvable by radicals over Q. These resulis were first
obtained in [B1], [B2]). In § 5 we consider the even more powerful Algebraic Computation
models Q (+, -, *, /, kv, q(x)), where even roots of non-solvable polynomials ¢ (x) are allowed.
We again prove for the problems of § 4, the impossibility of having exact algorithms which give
closed form solutions over these general Algebraic models. These results arise from a series of
observations about the structure of the Galois groups. Extensions to higher models and directions

for further research are discussed in § 6.

2. Standard Models of Computation

The standard model of computation has been the real RAM [AHU]), a random access
machine with infinite precision, real number arithmetic. It performs addition, subtraction, multi-
plication, division, comparison and square-roots on real numbers in constant time. To develop
fast algorithms we use this real RAM, since most of the above operations are available on
modemn day computers and moreover all of them take approximately the same unit time. Further-
more the size of the parameters and more importantly the size of the intermediate results of the
various problems considered, often do not play a critical role in any of these algorithms. Where
the size of the intermediate results of the problem does become important a RAM model with
logarithmic cost criterion is used. The standard integer RAM or the rational RAM models are
similar to the real RAM with constants, variables and operations now defined over Z or 0. At
times the RAM models are more complicated than needed and thus a number of models are
defined which abstract certain features of the RAM and ignore others. Examples of such models
are Straight-line (loop-free) Programs, Bitwise Computations which reflect the logarithmic cost

function, Bit Vector Operations and Decision Trees which include the branching instructions.

The model of computation that has been used to prove worst-case lower bounds has been
the decision tree model. Although this model is less interesting from the computation point of
view, many worst-case Iower bounds have been proved for it. In this model, algorithms are
presented as trees, in which every vertex of the tree has the form of a comparison f (inputs) : 0,
where f is some function from a class of allowed functions. For linear and d** order decision
trees, where functions allowed are polynomials of degree at most 4 (d=1 for linear), several
powerful techniques are known [DLL[SY]. These models are similar to the Quadrature models of
§ 3 as long as d is a power of 2 and furthermore the order of the Galois groups of the d degree
polynomials are a power of 2. [G] proves that there exist irreducible polynomials over @ of
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degree d which are solvable by Quadrature and for which d—1 square root extractions are
required 10 obtain all the roots. Earlier [E] had illustrated a technique using method of logic, to
obtain lower bounds of complexity Q(logd) for polynomials of degree n over the Solvable Com-
putation models of § 4. The lower bounds obtained for the linear and d** order decision tree
models were significantly improved for the powerful Algebraic Computation Tree (ACT) model
[BO]. Our Algebraic models of § 5 are closely related to the ACT though not as general. The
basic limitation of the ACT is that given a polynomial of degree d in n variables, the best lower
bound complexity that can be derived for evaluating the polynomial is Q(nlogd).

3. Q(+,-, %/, ) Quadrature Computation Models

The complexity of straight-edge and compass constructions has for long known to be
equivalent to the geometric solution being expressible in terms of (+,-,*/,¥) over @, the field of
rationals, [vdW]. The impossibility of straight-edge and compass constructions for the problems
of trisecting an angle, duplicating the cube, and construction of a regular heptagon, imply the
non-solvability of these problems by quadrature. Here we discuss two applied computational
problems and sketch simple Galois methods by which we show solvability and non-solvability by

quadrature.

Consider the following fundamental geometric problem. It has a long and interesting his-
tory and has come to be known as the Weber problem [B1]. Simply stated one wishes to obtain
the optimum location of a single source point in the plane, so that the sum of the Euclidean dis-

tances o » fixed destination points is a minimum.

Given n fixed destination points in the plane with integer coordinates (a; ,b; ), determine the

optimum location (x.y ) of a single source point, that is

minimize;, f(x,y) = iy NG—a; )y ~b; )

In the decision version of this problem we ask if there exists (x,y) such that for given integer L,

¥ Nx—a;Y*Hy—b;)? < L? This problem is not even known to be in NP. Since on guessing
a solution one then attempts to verify if Z,-=|_J\lc_,- <L ?, in time polynomial in the number of
bits needed to express the rational numbers ¢y, - - - ¢, and L. However no such polynomial time
algorithm is known [Gr],[Q]. Such a decision problem is fundamental in that it also occurs in
numerous other geometric optimization problems such as in finding the minimum length

Euclidean Traveling Salesman Tour and the minimum length Euclidean Steiner Tree.
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We obtain our results by first deriving for each of the above geometric problems their
minimal polynomial, whose root over the field of rational numbers is the solution of the problem
in Euclidean space. The functon f (x,y) of the Weber problem to be minimized c¢an be shown to
be strictly convex. Hence there exists a urigue minimum solution for which the necessary and

sufficient conditions are 4f /dr = 0 and df /dy = 0. The corresponding rational equations are

df 1dx=Y;_; , (x—a; )N (x—a; Py —b; =0

df 1dy=3; 1 O —bi N (x—a; P Hy —b; =0

We make a wilg, (without loss of generality), assumption that the solution does not coincide
with any of the destination points and obtain the corresponding polynomial equations f1(x,y) =0
and f,(x,y)=0 from the above two rational equations, respectively. This is done by rationalizing
and by the elimination of square-roots by a process of repeated squaring. Note that by this step
we do not change the root of our original problem since repeated squaring preserves the root of
the polynomial. The system of two polynomial equations f;(x,y) = 0 and f,(x,y) = 0 can be
solved by elimination techniques (using resultants), [vdW], leading to a single polynomial equa-
tton p {y =0 in a single variable.

For this problem consider a case of 5 points in the plane. On applying the above technique
we obtain the single variate polynomial p (y) for the problem. This polynomial p (y) is the same
for each of the three possible configurations of five points in the plane, namely having three, four
or five points on the convex hull. All the process steps of rationalizing and eliminating square
roots were done using MACSYMA giving us the final polynomial equation below. For details see
[B1].

Q : p(y)=15y%-180y7+1030y°4128y5+11907y*

—15876y3-17928y%+75816y —54756

We show that p (y) is the minimal polynomial of our problem by noting that p (y) is irredu-
cible mod 31, (where the prime 31 is not a divisor of 15 the leading coefficient of the polyno-
mial), and hence irreducible over Q. On factoring this polynomial moduio 37, (where the prime
37 does not divide the discriminant of the polynomial), we obtain a factor of degree 7. From
Galois theory we know that 7 must be a divisor of o [Gal (p (v))], which clearly is not a power of
2 and hence the roots of the polynomial p (y) are not constructible by straight-edge and compass.
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Lemma 3.1 : For the Weber problem, in general for 225, there is no algorithm which would

give a closed form solution over the Quadrature Computation Model.

To see an example of an applied problem expressible by Quadrature, (constructible by
straight-edge and compass) consider the following shortest path problem.

Given a sequence L=(I1,l3, - - - I,) of lines in 3-dimensional space , find the shortest path
from a source point X 1o a destination point Y constrained to pass through interior points

of each of the lines 1,14, - - - I, in this order.

The problem of finding the shortest path between two points in Euclidean 3-space, bounded by a
finite collection of polyhedral obstacles is a special case of the more general problem of planning
optimal collision-free paths for a given robot system. The lines of the above problem arise from
the edges of these polyhedral obstacles where the breakpoints of the shortest path ocurr. The
necessary and sufficient conditions for the shortest path can be expressed algebraically by the set

of n equations
o;=p;, i=l.n (N

where ¢; and B; are the angles subtended at line /; by the incoming and outgoing segments of the
shortest path respectively. For the case of adjacent paralle! lines, /; is parallel to [, we further-

more have
Bi =iy, i=l.n-1 (2)

Using the equations of (1) and (2) we obtain the equation =0, where ¢, is the angle subtended
at line {, by the incoming shortest path segment from point X and B; is the angle subtended at the
line /, by the outgoing shortest path segment to point Y. On simplifying the equation oy=pB, or
equivalently the equation Cos a; = Cos B, we obtain,

Xn = b —a V(3 —b2)Hz, b)) =22 Hz 1—a5)?)

The above equation has x, expressed in terms of (+.-,*/,¥) over constant values of Q and x,.
Using sets of equations (1) and (2) it is .st.raightforward to see that each of the unknowns x;,
i=2_n, can similarly be expressed in terms of (+,-,*/,¥) over constant values of ¢ and x,. Next
solving an equation of (1), say, o, = B, we obtain x, expressed in terms of (+,-,*./,¥) over con-
stant values of (. It follows that each of the x;, i=1..n is expressible in terms of (+,~*./\) over
constant values of  and hence constructible. A similar result can be shown for the case when

adjacent lines intersect. Hence we have the following lemma
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Lemma 3.2 : 'When the adjacent lines are parallel or intersect, then the solution to the shor-
test path problem is always expressible in terms of (+,-,%/.¥) over Q.

4. Q(+,+ %/, k ) Solvable Computation Models

Again consider the Weber problem of § 3. Since the minimal polynomial p(y) of degree 8
of the problem considered there is irreducible we know that its Galois group is mransitive. Further
we shall now show that its Galois group is in fact the non-solvable symmetric group S3. We find
that for suitable primes ¢=19,31 and 37, the degrees of the irreducible factors of p(y) mod g
gives us a2 + 5 permutation, an 8 cycle and a 7 cycle. The 2 + 5 permutation when raised to the
5% power yields a transposition. This together with the 7 cycle and the 8 cycle and the transitivity
of the group generates the entire symmetric group S . This principle generalizes to an irreducible
polynomial with degree . On factoring this polynomial modulo suitable primes, occurrence of
an n—1 cycle, an n cycle and a permutation of the type 2 + factors with odd degree when n is
even, (and factors with even degree when # is odd), is enough to establish its Galois group to be
Sn- See [B1] for further details. Carrying out the same algebraic reduction technique for variants
of the Weber problem, as for the Weber problem in § 3, we obtain for the Line-restricted version
a minimal polynomial of degree 12. This for the case of 3 points in the plane and a line L not
passing through these points and the solution restricted to L.

0 : p(y)=3y'2-72y 114780y %4992y 420772y *~58500y "+113610y 6
—155448y°+156912y*~119040y3+51876y2+972y ~725=0

The non-solvability follows by showing that its Galois group is the non-solvable S {5 group. For
the 3-Dimension Weber problem we examine the simplest case of 4 points in Euclidean 3-space,

forming a tetrahedron, and obtain a minimal polynomial of degree 10.
0 : p(y)=8y1°%-112y°+507y 21492y 7-14448y°
+64932y°—-143326y *+160772y°—71112y%-324y +243=0
Again we are able to show, using factorizations modulo primes, that its Galois group is the non-

solvable §,q group.

Lemma 4.1 For the Weber problem, the Line-restricted version and the 3-Dimension Weber
problem, there is in general no algorithm which would give a closed form solution over

solvable computation models.
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Also again consider the shortest path problem of § 3. This time consider the case where the adja-
cent lines are skew to each other. We show in [B2] that for the case of even two skew lines the
solution is not expressible by radicals over Q . We again reduce the geometric problem to an alge-
braic one and with the use of MACYSMA simplify and obtain the minimal polynomial p (y ) over
Q.
0 :p )=y 12-12y 11487y 10504y 742244y ._8136y 7424948y ¢
—62160y 5+128880y “~224928y 3+297216y2-311040y +233280

The polynomial is irreducible modulo 23, gives an 11 cycle module 31 and a 2 +3+ 7 cycle
modulo 43. Again this enough to establish its transitive Galois group to be the non-solvable sym-
metric group S ;5.

Lemma 4.2 For the shortest path problem with skew adjacent lines there is in general no

algorithm which would give a closed form solution over solvable computation models.

5. Q(+ - */, kv, q(x)) Algebraic Computation Models

Now consider solving the minimal non-solvable polynomials of § 4, on the more powerful
algebraic computation models Q (+, -, *, /, k¥, q(x)) where g (x) are irreducible polynomials with
rational coefficients having non-solvable Galois groups. For example g(x) could be ‘general’
polynomial equations of degree n, n25, over Q. Then multiple use of the roots of the polyno-
mial g (x)eQ to obtain the solution can be depicted by the following field diagram (a). Here X
corresponds to the splitting field of the minimal polynomial p (y) and T; corresponds to the split-
ting field of the polynomial ¢ (x) over Q. The field diagram (b) corresponds to also the use of
polynomials q (x ) with coefficients over arbitrary fields, not just rationals.
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For what follows we need a part of the fundamental theorem of Galois theory [vdW], which sim-
ply stated is,
Galois' Theorem : Let f(x) be a polynomial in F(x], K its splitting field over F and
G, ,F) its Galois Group. For any subfield T of K which contains F let
G(K.T)={oeG(K F) | ot)=t, VteT}. Then T is a normal extension of F iff G (K,T)
is a normal subgroup of G(X ,F) and when T is a normal extension of F, then G(T ,F) is
isomorphic to G(K ,F) / G(X,T)

Let us again return to the Weber problem of § 3. Let p(y) be the minimal polynomial of the
Weber problem, X its splitting field over Q and G (K ) its Galois Group. Let the non-solvable
roots of the general fifth degres polynomial equation lie in their splitting field T', a normal exten-
sion of Q. The Galois group G (T',Q) is, the symmetric group S5, whose order is 5 !. From
Galois’ Theorem we obtain that G(X,T) is a normal subgroup and G(7,Q) is isomorphic to
G(X,Q)/ G(K,T). However from § 4, we know G (K,Q) for the polynomial is Sg, of order 8 !.
Further the only normal subgroups of Sy are the singleton set containing the identity, the Alter-
nating group of order 8 /2, and the symmetric group Sg, itself. Thus, G{(T,Q) cannot be iso-
morphic to G(K,Q)/ G(X,T), which goes to say that the normal extension T cannot exist.
Hence the Weber problem is not solvable over this algebraic computation model which allows
use of the non-solvable roots of the general fifth degree polynomial equation. Similar algorithmic
limitations apply for other general polynomial equations ¢(x), n>5. For the line-restricted
Weber problem and the shortest path problem both with Galois groups S5, algorithmic limita-
tions apply for algebraic models with non-solvable roots of general polynomial equations of

degree n upto 12. We thus have

Lemma 5.1 For the Weber problem with its variants and the shortest path problem, there is
in general no algorithm which would give a closed form solution over a variety of algebraic

computation models.

The above method of proving algorithmic limitations generalizes to various other non-solvable
Galois groups other than the symmetric group. Additional possible non-solvable Galois groups
are the alternating groups 4, and other non-abelian finite simple groups. From the classification
of finite simple groups we know that non-abelian finite simple groups are either the alternating
groups, groups of Lie type or the finitely many sporadic groups [C]. For irreducible minimal
polynomials possible non-abelian simple Galois groups are furthermore transitive. The question
of whether for any finite group G there exists a polynomial equation over Q whose Galois group
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is isomorphic to G, has for long been an extremely difficult problem [J]. The question of whether
for any non-solvable finite group G there exists 2 polynomial equation over @ whose Galois
group is isomorphic to G, is equally difficult. The earliest general results on this problem are that
the answer is affirmative if G is S, or A, for any n. Safarewic, using deep arithmetic results, had

earlier proved that the answer is affirmative for every solvable finite group G.

When the Galois group of the minimum polynomial of our problems is the Symmetric
group we have already seen above some of the consequences of limitations to algorithm solvabil-
ity. If the Galois group is a finite simple group then directly the weakest algebraic computation
model which permits a solvable algorithm is one where g (x} is the minimal polynomial of the
problem, since the splitting field of the polynomial has no normal sub-fields. Hence all ‘exact’
algorithms for this problem would finally need to approximate the roots of this minimal polyno-
mial by numerical or symbolic procedures [BCL]. Complexity lower bounds of Q(nlogd) of the
ACT model for evaluating the polynomial can be used directly.

6. Discussion and Extensions

One of the main shortcomings of the analysis of algorithmic limitations as discussed in the
above sections, is the efficent computation of Galois groups of the problems. Though various
ways of computing Galois groups of polynomials are known such as straightforward resolvent
techniques, the numerical techniques of Artin [St], and the van der Waerden Sampling methods
(vdw], the drawback is that the computations are worst case exponential Gme. Extremely large

space requirements is also a boitleneck. These become insurmountable for larger sized problems.

Nevertheless there are some very heartening features. Some polynomial time algorithms
exist for computing Galois groups of polynomials when the group is either S, or A, [L]. The
method of sampling of § 4 also proves quite effective for establishing the Symmetric Galois
group [Z]. Further, the Galois group of a polynomial p (y) is the Alternating group if and only if
the discriminant of p(y) is a perfect square of an element of Q. Also quite often we need only
obtain the order of the Galois group to answer questions about algorithmic limitations over cer-
tain models. For example the order of the Galois group not being a power of 2 implies impossi-
bility over the Quadrature models of § 3 and being n ! for polynomials of degree n implies
impossibility over Solvable models of § 4. The order of the Galois group not being » ! implies
the simplicity of the non-solvable Galois group and thus impossiblity of exact algorithms over

various algebraic models of § 5.
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An important extension o our above analysis is the exploration of algorithmic power and
limitations of Transcendental extensions. The problem of squaring the circle, like the duplication
of the cube and the trisection of an angle, is impossible over Quadrature models. However the
impossibility of squaring the circle as opposed to other problems, follows from the fact first esta-
blished by Lindemann in 1882, that IT is a transcendental number that is not algebraic over Q.
Hence exact algorithms for squaring the circle are impossible over all algebraic computation
models. Transcendental extensions such as O (+,-,*/, q(x), IT) suffice. From [BCL, pl69] we
leamn that rational operations in a field extended by a transcendental element is equivalent to per-
forming arithmetic in the field of rational functions over the field. However little clse is known
about its computational power or limitations. Meanwhile ranscendental extension models of
computation are being used in areas such as Computational Geometry where the model of com-
putation is the real RAM extended with unit time computations of transcendental trignometric
functions [Sh]. Exploring the limitations of models which permit the use of non-analytic func-
tions such as the floor function, which cannot be computed by a constant number of arithmetics

or comparisons [F], is yet in its early stages {S].
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