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Abstract

We consider algorithms to compute the genus and rational parametric equations, for implicitly
defined irreducible rational plane algebraic curves of arbitrary degree. Rational parameterizations exist for
all irreducible algebraic curves of genus 0. The genus is computed by a complete analysis of the singulari-
ties of plane algebraic curves, using affine quadratic transformations. The rational parameterization tech-
niques, essentially, reduce to solving symbolically systems of homogeneous linear equations and the com-

putation of resultants.
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1. Introduction

Effective computations with algebraic curves and surfaces are increasingly proving useful in the
domain of geometric modeling and computer graphics where current research is involved in increasing the
geometric coverage of solids to be modeled and displayed, to include alpebraic curves and surfaces of arbi-
trary degree, see de Montaudoin and Tiller (1984), Sederberg (1984), Hoperoft and Kraft (1985), Farouki
(1986). An irreducible algebraic plane curve is implicitly defined by a single prime polynomial equation
J{x,y)=0. Rational plane algebraic curves have an alternate representation, namely the ratonal
parametric equations which are piven as ( x(¢), y(¢) ), where x(t} and y (¢} are rational functions in ¢, i.e.,
the quotient of polynomials in ¢. All the polynomials considered here are assumed to be defined over an

algebraically closed feld of characteristic zero, such as the field of complex numbers.

As both implicit and parametric representations have their inherent advantages it becomes crucial to
design algorithms for both these curve representations as well as algorithms o convert efficiently from one
to the other, whenever possible. Though all algebraic curves have an implicit representation only irreduci-
ble algebraic curves with genus = 0 are rational, i.e., have a rational parametric representation, see Salmon
(1852). The genus of the curve measures the deficiency of singularities on the curve from its maximum

allowable limit.

A variety of algorithms have been presented earlier for computing the genus of algebraic curves: by
counting the number of linearly independent differentials of the first kind (without poles), Davenport
(1979), the computation of the Hilbert function, Mora, Moller (1983), and the computation of ramification
indices, Dicrescenza, Duval (1984). A method of computing the genus of imreducible plane algebraic
curves is presented in this paper, which uses affine quadratic transformations and is noteworthy for its sim-
plicity.

Recently, various efficient methods have been given for obtaining the parametric equations for spe-
cial low degree irreducible rational algebraic curves: degree two and three plane algebraic curves, Abhyan-
kar and Bajaj (1987a,b), the rational space curves arising from (he intersection of certain degres two sur-
faces, Levin (1979), and the rational space curves arising from the intersection of two rational surfaces,
Ocken, Schwartz, Sharir (1986). The parameterization algorithms presented in this paper are applicable for
implicilly defined irreducible rational algebraic curves of arbitrary degree. The computed rational parame-
terization is over the tradidonal power basis, however one may convert this to an equivalent Bermnstein form
over an arbitrary parameter range, by using the univariate power to Bemstein conversion algorithm of

Geisow (1983).
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The reverse problem of converting from parametric (o implicit equations for algebraic curves, called
implicitization is achieved by straightforward elimination methods, i.e., the computation of polynomial
resultants, see Rowe (1917), Sederberg, Anderson, Goldman (1984), Bajaj (1987). Efficient computation of
polynomial resultants, also known as the Sylvester resultant, see Salmon (1885), van der Waerden (1950)
has been considered by various authors: for univariate polynomials, Schwartz (1980), for multivariate

pelynomials, Collins (1971).

The rest of this paper is as follows. In §2 we examine the intricate relationship of genus with the
rational parameterization of ireducible plane curves. Examples of rational curves are: conics (depree 2
curves); cubics with a singular (double) point; quartics with three distinct double point singularities, etc. In
§3 we present an efficient algorithm to construct rational parameterizations for a special class of plane
curves. These parameterizations are obtained by taking lines through a distinct singular point on (he curves,
with the slope of the lines being the parameter. This technique suffices for the rational parameterization of
conics, cubics with one double point and all irreducible higher degree 4 curves with a -1 fold distinct
singularity. In §4 we generalize the algorithm of §3 10 provide rational parameterizations for all irreducible
rational plane curves. These rational paraméterizations are obtained by taking a one parameter family (a
pencil) of curves of degree d—2 through fixed points on the original curve of degree 4. Crucial here is the
distinction between distinct and infinitely near singularities of an algebraic plane curve. Various algo-
rithmic techniques are also presented, such as the mapping of points to infinity, the "passing" of a pencil of

curves through fixed points, the "blowing up” of singularities by affine quadratic transformations, etc.

2. Genus and Parameterization

An irreducible algebraic curve C,; of degree d in the plane is one which is met by most lines in &
points. Lines through a point P meet C; (outside P) in general at d — mult,Cy points, where
mult,C; = ¢ = multiplicity of C; at P. If ¢ = 1 then P is called a simple point. If ¢ = 2 then P is called
a double point. Similarly we talk about an e-ple point or an e -fold point. If ¢ =0: P isnoton C,. If
e > 1 we say P is a singular point of the curve C; with multiplicity e. This also leads 1o the following

theorem for curves

Theorem 1: [Bezout] Curves of degree 4 and curves of degree e, with no common components,

meet at £-¢ points, counting multiplicities and points at infinity. (C; - C, = 4-e points.)

Consider curve C; of degree d to be also of order e.

Ci: flr,y)= 3% ayx'y

esSi+jsad
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=fd(x1y)+fd—l(x!y)+ +f¢(x1y)

(with f3(x, y) # 0 and f, (x, y) # 0, so that d = degree and ¢ = order). Thus f4(x, y) is the degree form
and f, (x, y) is the initial or order form. Again, the multiplicity of a point P on C, is geometrically, the
number of points that a line through that point P meets C, at P. By translation, {if (a, &) is the point P,
thenx — x —a,y — y — b} we can assume the point P to be the origin. Then the equation of a line

through itis y = mx. Its intersection with the curve is given by
fa, mx)=fale, mx)+fq_1(x, mx)+ <o+ f(x, mx)
=xUfg(, m) + x4y (L, m)+ - x"f,(1, mx)
=xf[fy(Lmax? =% + -+ +F.(1, m)]

Lines through the origin meet the curve, outside the origin, in 4 — ¢ points. Hence the multiplicity of the
origin = e (= order of the curve). Thus if the curve C, has a 4—1 fold point (origin), then lines through that

point meet F at one other point, and thereby parameterizes the curve (rational).

Here we can also note that for most values of rz, f,(1, m) # 0. The values of m for which it is zero

comrespond to the tangents f,(x, ¥} = [J(y — m;x) to the curve at the origin. (Tangents at P are thus

i=1
those special lines which meet C,; at P at more than e points, where ¢ = multiplicity of C; at P .)

Now note for example that there are «° conics. As an equation of a conic has five independent
coefficients and if we take five ‘independent’ points in the plane and consider a conic passing through these
points then this will give five linear homogeneous equations in the five coefficient variables. If the rank of

the matrix is 5 then there is a2 unique conic through these points. In general, the number of independent

coefficients of a plane algebraic curve C; of degree 4 is @

One can easily prove by Bezout’s theorem that 2 curve of degree 4, for example, cannot have 4 dou-

ble points. In general one may see that the number of double points, say DP, of C,, is € W
Assume DP > W Then since W fixed points determine a C, _, curve and if

@-d-2

we choose + 1 double points of C; then to determine C; .. ; one needs a remaining

(d—2};d+1) _((d“l)z(d"z) +1)=(d-2)—1=d - 3 points

So take (d — 3} other fixed simple points of C;. Then we can pass a C,_, curve through the above

(d - 1){d -2}

5 + 1 double points of C; and (d — 3) other simple points of C;. Then counting the




number of points of intersection of C; and C; _,

=d-1)(d-2)+2+d -3
=d?-2d +1=(d -2)d + 1
=Cd'cd._z+1

which contradicts Bezout, Thus assuming Bezout we see that

DP < {d-1(d-2)
2
In general, we have Table 1.
degreeofcurve | 1 [ 2 | 3 | 4 5 6 - | d
the maximum
number of ofoy1|3 |6 |10 M)E@—:ﬁ
double points
the number of
curves of the 2|59 14|20 27 i@iﬂ)—
given degree

Table 1
One definition of the genus g of a curve Cy is a measure of how much the curve is deficient from its

maximum allowable limit of singularities,

pod-DE-2) .

2
where DP is a *proper’ counting of the number of double points of C,; (surnming over afl singularities). In
counting the number of double points DP of C, an e-ple point of C is to be counted as -21—3 (¢ — 1) double

points. However this counting is not very precise as such is the case only for the so called distinct multiple
points of C. For a multiple point, that is not distinct, one has also to consider infinitely near singularities.

In general a double point is roughly either a node or a cusp. If a cusp is given by y2 — x> we call it a
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distinct cusp and is counted as a single double point. Cusps other than distinct look like y* — x2* +! (an
m~—fold cusp). Though the multiplicity of the origin is two (= order of the curve) the origin accounts for m
double points when counted properly. The proper counting was achieved by Noether using homogeneous
*‘Cremona quadratic transformations®’, see Walker (1978). Following Abhyankar (1983) we can achieve

the same thing by using *‘affine quadratic transformations’’.

Consider for example, the cusp y — x> = 0 which has a double point at the origin. The quadratic

t

transformation’ {or substitution) § given by

x=x and y=X¥ ()]

yields

0=y2—_x3=fl)—,2_x—3=fﬂ62_'x-)

and cancelling out the extraneous factor X2 we get the nonsingular parabola y2 — % = 0. So the origin in
this case was a distinct singular point and counted as a single double point. To desingularize the m—fold
cusp one has to make a succession of m transformations of the type (1). Only the m” successive applica-
tion of (1} changes the multiplicity of the origin from two to one. Hence in this case, counting properly, we
say that the cusp has one distinct double point and (m—1) infinitely near double points, giving a total DP

count of m.

In a general procedure for counting double points, given an e -fold point P of a plane curve C, we
choose our cocrdinates to bring P to the origin and then apply (1). If now C: £ (x, y) = 0, then the substi-
tution (1) transforms € into the curve C: f (%, ¥) = 0 given by

FEEF =T f&E
C will meet the line E: X = 0 in the points P* , ..., P™, the roots of £(0,y)=0 which corresponds to
the tangents to C at P. If P’ is a e;-fold point of C, then we shall have g1+ ' +e, <e. Wesay that
P!,..., P™ are the points of C in the first neighborhood of P, and the multiplicity of C at P; is ¢;. Now

iterate this procedure. The points of C infinitely near P can be diagrammed by the singularity tree of C at

P : (see Figure 1).

t The quadratic transformation § maps the origin to the line X = 0, and is one-one for all points (x,y ) with x=0.
Viewed allemnatively, § maps tangent directions to f at the origin to different points on the exceplional line x=0. This
may be seen by noling that the lines ¥ = #tx arc mapped 1o parallel lines ¥ = #2 which intersect the exceptional line at
points (0,m ). Bul § does nol map the line x=0 properly, so we must make sure that x=0 is not a tangent direclion 10
the curve at the origin. This is done by a nonsingutar linear transformation X=izX + V¥ and y=rxX + 5¥ where neither
wX + vy nor FX + 5¥ arc tangents to f at the origin.



second neighborhood

first neighborhood

Figure 1: Singularity Tree

At every node of this tree (including the roct) we keep a count equal to the multiplicity of C at that
point which will then be > the number of branches arising at that node. It follows that every node higher
than a certain level will be unforked, that is have a single branch. The desingularization theorem for alge-
braic plane curves, see Abhyankar (1983), or Walker (1978), says that at every node higher than a certain
[evel, the count equals one; in other words, C has only a finite number of singularities infinitely near P,
Thus, since C has only finitely many distinct singularities, it follows that C has only a finite number of

sinpular points, distinct as well as infinitely near.

Thus, by summing the counts of each node and counting %e (¢ — 1) double points for & count ¢ and

additionally summing over all singularities of C and their corresponding singularity trees, we obtain a pre-
cise count of the total number of double points DP of €. With this proper counting of double points one

then has the following
Theorem 2 : [Cayley-Reimann] g = 0 if C has a rational parametrization.
In other words if the given plane curve has its maximum allowable limit of singularities, then it is rational,

Note also that in counting singularities we consider all the singularities of the projective curve. That
is we consider the singularities at both finite distance as well as at infinity. The process of considering
singularities at infinity is no different than that at finite distance. With regard to homogeneous coordinates
let us consider Z = O to be the line at infinity. By swapping one of the axis lines x = 0 or y = 0 with the
line at infinity we can bring the points at infinity to the affine plane. We illusrate this as well as Theorem 2

2m +1

by means of an example. Consider again the m—fold cusp y* —x . We have seen earlier that the



-8-

origin accounts for m double points when counted properly. Now consider the singularity at infinity. We

swap the Z=0 line with the ¥ =0 line by homogenizing and then setting ¥ = 1,

Yzzh—l_xzm+l Zm=-1_ Zm+1

== Z X

The singularity at infinity is again at the origin and of multiplicity 2m — 1 accounting for

(2m — 1)(2m —2)
2

double points. On applying an appropriate quadratic transformationx =¥ andz =x z

Z—ZM—I_EZ

with the multiplicity at the origin reduced to 2. After a sequence of m—1 additional quadratic ransforma-
tions the multiplicity at the origin finally reduces to one. These infinitely near singularities then account for

totally m—1 additional double points, resulting in a total DP count for the curve to be equal to

Jem-nem-2 | _ @w)es-1

m 2 2

which is exactly the maximum number of allowable double points for a curve of degree 2m -+ 1. Hence the
m—fold cusp has genus O and is rational with a parameterization given by

2 Im+1

x=t¢ y=t

3. Parameierizing with Lines

The geometric idea of parametrizing a circle or a conic is to fix a point and take lines through Lhat
point which meet the conic at one additional point. Hence conics always have a rational parameterization,
with the slope of the line being the single parameter. Next, consider a cubic curve, C3. A cubic curve is a
curve to which most lines intersect in three points. If we consider a singular cubic curve then lines through
the singular (double) point meet the curve at one additional point and hence ratonally parametrize the
cubic curve. If C4 has no singular points, then C, cannot be parametrized by rational functions. Now inter-
secting a curve C with a pencil of lines through a fixed point P on it, can be achieved by sending the point
P on C to infinity. To understand this, let us first consider an ireducible conic which is represented by the
equation

g, yy=ax®+ byt +cxy +dx +ey +f
From the genus formula of §2 we note that all conics are rational. Further Bezout confirms that the iredu-
cible conic cannot contain a double point for otherwise the conic consists of two lines. We observe that the

trivial parameterizable cases are the parabola y? = x which has no term in x?; the parabola x% = y which

has no term in y2; and the hyperbola xy = 1 which has no terms in x2 and y2. The non-trivial case arises
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when a and b are both non-zero, e.g. ellipse. This then suggests that to obtain a rational parameterization

all we need to do is to kill the term in y? say, by a suitable linear transformation resulting in the equation
(rx +5)y +(x? +vr +w)=0.
Then one could obtain a rational parametrization

x=f

_ =t +w)

r= {rt +5)
The elimination of the x or the y* term through 2 coordinate transformation is said to make the conic
irregular in x or y respectively. Geometrically speaking, a conic being irregular in x or y means that most
lines parallel to the x or y axis respectively, intersect the conic in one point. Note that most lines through a
fixed point on the conic meet the conic in one additional varying point. By sending the fixed point to
infinity we make all these lines parallel to some axis and the curve irregular in one of the variables (x, or
¥} and hence amenable to parameterization. The coordinate transformation we select is thus one which

sends any point on the conic to infinity along either of the coordinate axis x or y.

As an example consider the unit circle and fix a simple point P (-1, 0) on it
x, y affine coordinates -1, 0
X, Y, Z homogeneous coordinates (-1, 0, 1)

and send P to 2 point at infinity along the y-axis. That is, send (-1, 0, 1) to (0, 1, 0). (Explanation: A
point on y -axis is like (0, p, 1) divide by p (%, %, i) now let p — oo and thus we obtain (0, 1, 0} ).
This we achieve by a homogeneous linear transformation which transforms (-1, 0, 1) to (0, 1, 0)

X >oX +BY +yZ
Y s>oX +fY +9Z
ZoS>dX+BY+¥2Z

The chosen point on the circle (-1, 0, 1) determines

[l =
—

=P
= [3'
and the o “s and ¥ ’s are chosen such that the det [ ot ’s , B s , ¥ s | #0, yielding a well defined invertible
transformation. So let us take as our homogeneous linear ransformation

X o5-Y

Y 5Z
Z5X+Y
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Note we transformed the circle x* + y2 — 1=0 to X2 + Y2 — Z% = 0 by homogenizing. On applying this

transformation we eliminate the Y2 term

P42 @ +TP=0
RT =X

- 2_32
7 Z—_X
22X

Then dehomogenizing Z = 1 and using the linear transformation to obtain the original affine coordinates

. S

Z X4+Y
_¥__1
A

and setting X = ¢ we obtain the rational parametrization of the circle

_—0-Ae 1-4

1-12 1+122

{ +

X =t 21
}-,_1_;2"),: 1 _x
Y, 1—1*  1+¢2
[+ —
2t

In general, curves of degree 4 with a distinct d—1 fold point can be rationally parameterized by
sending the d—1 fold point to infinity. Consider f (x, y) a polynomial of degree 4 in x and y representing
a plane algebraic curve C,; of degree d with a distinct d—1 fold singularity. Singularities of a plane curve
can computationally be oblained by simultaneously solving the equations f = f, = f, = 0 where f, and f,
are the x and y partial derivatives of f, respectively. One way of obtaining the common solutions is to
find those roots of Res, (f,fy) = 0 which are also the roots of f = 0. Here Res, (f,.f,} is the resultant of
fx and f, treating them as polynomials in x. Note singularities at infinity can be obtained the same way
after replacing the Iine at infinity with one of the coordinate axes. In particular on homogenizing a plane
curve f (x,y) to F (X,Y,Z) we can set Y=1 to obtain f (x,z) thereby swapping the line at infinity Z=0 with

the line Y=0. Now the above procedure can be applied tof(x,z) to find the singularities at infinity.
Let us obtain the -1 fold singularity of the curve C4 and translate it to the origin. Then we can
write
S y)=Ffab, )+ faix, ¥)

where f4, (degree form), consists of the terms of degree d and f,_, consists of terms of degree 4-1.
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Alternatively on homogenizing this curve we obtain
FX .Y, Zat? +a 7 "X + - +aX?
+ bOY‘i_IZ + blY" _2X A RN bdxd—lz

Now by sending the singular point {0,0,1) to infinity along the ¥ axis we can eliminate the Y¢ term. This as
before by a homogeneous linear transformation which maps the point (0,0,1) to the point (0,1,0) and given

by

Il
Ny
N
Il
et

X=X Y

which yields
FX .Y, Z=aZ%+aZ "X + --- +a,X¢
+ 5020 + 5,28 Y + - + b XYY

aZ® +aZ? X 4+ - +a, X4

Y=—2 - —
b2 4+ 5, 2° "% + -+ 4 byxd!

Then dehomogenizing, Z =1and using the linear transformadon to obtain the original affine coordinates

b
Il

=N g3

e
Il
N~ N

and setting X = 1 we obtain the rational parametrization of the curve.

Alternatively we could have symbolically intersected a single parameter family (pencil} of lines
through the d-1 fold singularity with C, and obtained a rational parameterization with respect to this
parameter. This concept of passing 2 pencil of curves through singularities is generalized in the next sec-

tion,

4, Parameterizing with Higher Degree Curves

From the genus formula and Bezout’s theorem we note that an irreducible rational quartic curve in
the plane has either a distinct triple point or three distinct double points. The rational parameterization of
the quartic with a distinct triple point is handled by the method of §3. Let us then consider an imreducible
quartic curve C, with three distinct double points. From the table of §2 we know that through 5-points a
conic can be passed. Choose three double points and a simple point on the curve C,, yielding a one param-

eter family (pencil) of conics, C,(t). Now C, - C,(t} = 8 points. Since the fixed points (3 double points
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and a simple point) account for 2 + 2 + 2 + 1 = 7 points, the remaining point on C, is the variable point,

giving us a rational parametrization of C, in terms of parameter ¢,

Computationally we proceed as follows. Consider first C; with three distinct double points. We first
obtain the three double point singularities of the homogeneous quartic F(X,Y,Z) as well as a simple point
on ir. Let them be given by (X1,Y1,Z,), (X2,Y2,Z,), (X3,Y3,Z3) and (XY ,Z,) respectively. Consider next

the general equation of a homogeneous conic C, given by
G(X,YZ)=aX?+ bYt+ XY + dXZ + e¥Z + fZ2 =0

which has six coefficients however five independent unknowns as we can always divide out by one of the
nonzero coefficients. We now try to determine these unknowns to yield a one parameter family of curves,
Ca{t). We pass C, simply (hrough the singular double points and the simple point of C,. (In general we
shall pass a curve through an m—fold singularity with multiplicity =—1). In other words we equate for
i=1,--- 4,

FXLY.Z)=G6XY,2)=0

This yields a linear system of 4 equations in five unknowns. Set one of the unknowns to be ¢ and solve for

the remaining unknowns in terms of 1.

Next compute the intersection of C 4 and C,(t), by computing Resy (I ,G) which is a polynomial in
X, Z and . On dehomegenizing this polynomial by setting Z=1, (since resultants of homogeneous polyno-
mials are homogeneous) and dividing by the common factors (x — x;)” for i=1..3 and (x — x,} we obtain a
polynomial linear in x which yields the rational parameterization, The process when repeated for y by tak-
ing the Resy(F,G) and dividing by the common factors (y — y;)? for i=1..3 and (y — y,) yields a polyno-
mial in y and ¢ and linear in y which yields the rational parameterization.

Next consider an example of a quintic curve with infinitely near singularities. In particular, the
homogenized quintic cusp Cs : F(X,Y,Z) = ¥Y2Z* — X5 has a distinct double point and an infinitely near
double point (in the first neighborhood) at (0, 0, 1), and a distinct triple point and an irfinitely near double
point at (0, 1, 0). Counting all the double points, properly, we see that C's has 6 double points and hence
is of genus 0 and rational. To obtain the paramelerization we pass a one parameter family of cubics Cq(t)
given by G(X,Y,Z) = aX® + bY? + cX2Y + dX¥? + eX*Z + fY°Z + gXYZ + hXZ? + iYZ2 + jZ* through
the singularities of Cs. Passing C,(t) through the distinct double peint (with multiplicity 2 — 1 = 1) is

obtained as before by equating

F(0,0,)=G(0,0,1)=0. .. )
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and the distinct triple point, (with muttiplicity 3 — 1 = 2) by equating

F(0O,,00=G({0,1,0=0... (2)
Fx(0,1,0)=Gx(0,1,0=0... (3)
F7(0,1,00=Gz(0, 1, =0. .. 4

These conditions for our example curve C; makes j =0, b =0, £ =0 and f = 0 in C5(¢) yielding the
curve G(X, Y, Z) = aX?® + cX2Y + eX?Z + gXYZ + hXZ* + iYZ%

‘We now wish to pass C4(t) through the infinitely near double point in the first neighborhood of the
singularity at (0, 0, 1) of Cs. To achieve this we apply the quadratic transformation X =X , ¥ = XY,
Z=Z centered at (0,0,1) to both F(X,Y,Z) and G(X,Y,Z). The transformed equation
Fr =Y?Z> _ X3 has a double point at (0, 0, 1) and we pass the curve of the transformed equation

725
_'r ax? + cX%Y +eXZ + gXﬁ + HZ? +iYZ? through the double point as before by equating,

Fr(0,0,1)=G7(0,0, 1) =0. .. (5)
This condition makes 4 = 0 in C5(t) yielding G (x, y, z) = aX® + cX2Y + eX?Z + gXYZ + i¥Z2,

Similarly we pass €5 through the infinitely near double point in the first neighborhood of the singu-
larity at (0, 1, 0) of C's. To achieve this we apply the quadratic transformation X =X, ¥ =¥, Z = X7
centered at (0, 1, 0) to both F (X, ¥, Z) and G(X, ¥, Z). The transformed equation Fy = ¥27* — X2 has
a double point at (0,1,0) and we pass the curve of the transformed equation
Cfr =aX +c¥ +eXZ + gﬁ +i¥Z? through the double point as before by equating

Fr(0,1,0=G(0,1,0=0. .. (6)
This condition makes ¢ = 0in C, yielding G (x, y, z) = aX* + eX?*Z + gX¥Z + iYZ™

Qur final condition to determine pencil of cubics C4(r) is to choose two simple points on C;, say

(1, 1, 1} and (1, —1, 1) and pass C, through it by equating.
F(1,1,1)=6(@1,1,1)=0... (7)
F(1,-1, =G, -1, 1)=0... (8)

Note that in total we applied eight conditions to determine the pencil, since nine conditions completely

determine the cubic. The last two conditions yield the equations
a+e+g+i=0

ate—-g-i=0
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In choosing the pencil C4(¢) we allow one of the coeficients to be ¢ and we may divide out by another
coefficient (or choose it to be 1). The above equations yield @ + ¢ =0 and g +i = 0 and on choosing
a=1¢ and g =1 we obtain ¢ =—t and { =—1. Hence our homogeneous cubic pencil is given by
Gy(X,Y,2Z,0)=1X? - X*Z + XYZ - YZ? or the dehomogenized pencil
Gyx,y,t)=tx® — x? + xy —y = 0. This yields y = —2x2. Intersecting it with the dehomogenized quin-
tic Cs:y,—x° yields 2x® — x° = 0 or x = ¢? on dividing out by the common factor x*. Finally the
parametric equations of the rational quintic Cs are givenby x = r*andy = —°.

In the general case we consider an irreducible curve C; with the appropriate number of distince and
infinitely near singularities which make C, rational (genus 0). We pass a curve C,. 5 through these singular
points and d—3 additional simple points of C;. Consider again F (X,Y,Z) and G (X ,Y,Z) as the homogene-
ous equations of curves C; and C,_; respectively. For a distinct singular point of multiplicity m of C, at
the point (X;,Y;,Z;) we pass the curve C,_, through it with a multiplicity of m—1. To achieve this we

equale
F X Y0Z) = G (X0, Y1 .7;)
Fy(X; Y .2 = Gy (X, ,Yi,Z)
Fy(,,Y:,Z:) = Gy(X,,Y;.%:)
Fax (%Y%) = Goe (Ko Y Z:)
Fyy (%0Y1,Z) = G (X X0 Z;)
Fry(XY:.2) = G (X..Y;.Z,)

Fup XY, 2) = Gpp (X YZ) 0<j+k<m-2

For an infinitely near singular point of C; with its associated singularity tree we pass the curve Cy_,
with multiplicity r—1 through each of the points of multiplicity r in the first, second, third, ..., neighbor-
hoods. To achieve this we apply quadratic transformations T; to both F(X,Y,Z) and G (X ,¥,Z) centered
argund the infinitely near singular points corresponding to the singularity tree. The appropriate multiplicity
of passing is achieved by equating the transformed equations Fr, and Gr, and their partial derivatives as

above.

A simple counting argument now shows us that this method generates the correct number of condi-

tions which specifies Cy_, and furthermore the total intersection count between C; and Cy_, satisfies
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Bezout. A curve C4 of genus = 0 has the equivalent of exactly (d_#g)— double points. Then to

pass a curve Cy., through these double points and d—3 other fixed simple points of C; and one variable

point specified by ¢, the total number of conditions (= to the total number of linear equations) is given by

d—-1)d -2) _ _{d=2d +1)
—2 + {d 3)+1——~—-—2

which is exactly the number of independent unknowns to determine C,_, (see table of §2 ). Next, counting
the number of points of intersection of C; and C, _,

=d-1)d-2)+d-3+1

=(d — 2)d

=Ca-3"Ca
satisfying Bezout. For further details of the applicability of Bezout's theorem with respect to infinitely near
singularities, see Abhyankar (1973). Then computing the Res,(C,, C,_,) which yields a polynomial of
degree d(d—2) in y and dividing by the common factors corresponding to the (d—3) simple points (a poly-

nomial of degree (4-3) in y) and (‘1;2)2(‘1—‘9- double points (a polynomial of degree (d—2)(d—1) in y)

yields a polynomial in y and ¢ which is linear in y, (for the single variable point) and thus gives a rational
parameterization of y in terms of ¢. Similarly repeating with Res, (C,, C4_,) yields a ratonal parameteri-

zation of x in terms of ¢.

As an example consider the m—foid cusp y% — x2™*! once again (for the last time). We know from
§2 that it i5 a rational curve with genus 0 and with a distinct double point and m—1 infinitely near double
points at the origin ((,0,1) and a distinct (2m—1)-fold singularity and m—1 infinitely near double points at
infinity (0,1,0). Now we pass a pencil of curve C,,_; of degree 2m—1 appropriately (as explained above)
through these singularities and also through 2m+1 — 3 = 2m-2 simple points of the m-fold cusp Cap, ;.

In the following let F(X,Y, Z)=0 be the equation of C,,,; and G(X, Y, Z) the equation of
Cyn-1. Now the conditions available to specify a pencil of curves C,,,_, is given as follows. A total of
2m -2 conditions are given by equating F and & at the 2m—2 simple points of C,,,.,;. Further by equating
F and G and the corresponding transformed Fr, and Gy, (transformed by a sequence of quadratic transfor-
mations) at the dissiner and infinitely near double points of the origin (0,0,1) and infinitely near double
points of infinity (0,1,0). This totally accounts for m + m—1 =2m—1 additional conditions. Finally
through the (2m—1) fold singularity at infinity of Cs,,,; the pencil C,,,_; is passed with multiplicity 2m—2
which is obtained by equating the equations and the partial derivatives Fy'y = Gyt for all

2m-2)2m-1)

0<f +k& < 2m—2 which yields 2

conditions. One final condition is achieved by equating
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one of the coefficients of C,,,_; to ‘¢’. Hence totally the conditions available to specify the pencil of

{(2m-2)(2m—1) _ (2m—1}{2m +2)
2 2

number of conditions required to specify a pencil of curve C,,_, as given by the table in §2. This then

curves C,,  is piven by 1 +2m—-2 + 2m-1 +

which is exactly the

yields a linear system of (2m—1)(m+1) equations in the same number of unknowns and can be easily

solved.

Finally, note that the total number of intersections (counting multiplicities) between C,,,_; are given
by 1 { single variable point} + (2m--2) {fixed simple points} + 2(2Zm—1) {double points} + (2m—1)(2m—2)
{2m -2 multiplicity of C'5,_; at the (2m—1)-fold singularity of C,,,1} = (2m—1)(2m-+1) satisfying Bezout.
Hence on computing the Res,(Cypnyyy Con-1) and dividing by the common factors corresponding to the
{2m-2) simple points, (2m—1) double points and the 2m—2 multiplicity of C,,_; at the (2m—1)-fold singu-
larity of C'y,,+ yields a polynomial in y and ¢ which is linear in y, (for the single variable point) and thus
gives a rational parameterization of y in terms of ¢. Similarly repeating with Resy (Comsts Cam) yields a

rational parameterization of x in terms of ¢.

5. Conclusion

In this paper we presented algorithms to obtain rational parameterizations of irreducible algebraic
curves. These methods also apply to all irreducible planar algebraic curves, where planar curves are either
specified by a single polynomial equation in the plane, f (x,y} = 0 or may be specified by two polynomial
equations in space, f (x,y,z) =0 and g (x,y,2) = 0 (defiring an irreducible space curve) where one of the
two equations is rational. In the latter case the two equations specifying the space curve are easily mapped
to a single polynomial equation #(s,r} = 0 describing the curve in the parametric plane s—¢ of the rational
surface. This mapping between the (x,y,z) points of the space curve and the (s,¢) points of the plane curve
is birational (one to one and onto) and hence a rational parameterization of this plane curve gives a rational
parameterization of the space curve. Automatic rational parameterization algorithms provide this birational
mapping for intersection curves of low degree ratonal surfaces, Abhyankar and Bajaj (1987a, b), Seder-
berg (1987). Rational parameterization techniques for irreducible algebraic space curves which are
specified by two polynomial equations in space, without conditions on the ratignality of the defining sur-

faces, are considered in Abhyankar and Bajaj (1987¢).
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