POLYGON NESTING AND ROBUSTNESS

Chanderjit Bajaj
Tamal Dey

CSD-TR-918
QOctober 1989

Polygon Nesting and Robustness

Chanderjit Bajaj*,
Tamal DeyT,

Computer Sciences Department
Purdue University
CSD-TR-918
October, 1989

* Supported in part by NSF Grant MIP 88-16286, ARO contract DAAG?29-85-C-0018 under
Comell MSI and ONR contract N00014-88-K-0402.
t Supported in part by a David Ross Fellowship.

Proc. of Intl. Workshop on Discrete Algorithms and Complexity, Kyushu, Japan,

Nov. 1289.

Polygon Nesting and Robustness

Chanderjit L. Bajaj

Tamal Dey!

Department of Computer Science

Purdue University
West Lafayette, IN 47907

1 Introduction

We consider the problem of computing the nesting
structure of a set of m simple, planar polygons with
n vertices and NV notches(reflex angles). The polygons
are mutually nonintersecting, that is they do not in-
Lersect along their boundary. This problem arises as a
fundamental subproblem in our robust polyhedral de-
composition algorithm [2] as well as in the algorithms
of (4] and (12].

Problem: Let ¢ be a set of m simple polygons Fy,i =
l...,m. Corresponding to each polygon F; we define
ancestor(FP;) as the set of polygons containing P;. The
polygon P in ancestor(F;) is called the parent of P if
ancestor(Py) = ancesior(P;) — Py. Notice that there
may not exist any such Py since ancestor(F;) may be
empty. In that case we say that the parent of F; be null.
Any polygon whose parent is P; is called the child of
Pg. See Figure 1.1. The nesting structure G of p is an
acyclic directed graph(A forest of trees) in which Lhere
is 2 node n;, corresponding to each polygon F; in p,
and there is a directed edge [rom a node n; to n; iff
P; is the parent of P;. The polygon nesting problem
is to compule the nesting structure of a set of simple
nonintersecting polygons.

Related Work: In [4] Chazelle gives an O(nlogn) al-
gorithm to detect the outermost polygens and their
children, given a set of simple nonintersecting polygons
with n vertices. However his algorithm does not com-
pute the nesting structure of the given set of polygons.
Results: In section 3 we give an algorithm which com-
putes the polygon nesting structure in O(n + (m +
N)log(m + N)) time where n is the total number of
vertices in m polygons and N is the total number of
notches . Since in practice m and N are much less than
n, this algorithm runs much faster than any O(nlogn)
algorithm. In section 4 we give a robust algorithm for
the same problem restricted to a class of polygons called
fleshy polygons. Our robust algorithm has a worst-case
time bound of O(n(logn + m + N) + m?).

*Supported in part by NSF Grant MIP 88-16286, ARO Con-
tract DAAG29-85-C0018 under Cornell MSI and ONR contract
N00014-88-K-0402.

tSupported in part by a David Ross Fellowship.

2 Preliminaries

Definitions: Let P be a simple polygon with ver-
tices vy, v, .., Un in clockwise order. A vertex v; is
a notch of P il the imner angle between the edge
(vi-1,v;) and (vi,vig1) is > 180°. Between any two
consecutive notches »;, v; in the clockwise order, the
sequence of vertices (vi,vit1,..,7;) is called a con-
vex polygonal-line. Each polygonal-line can be parti-
tioned into comwvezr-chains, which are maximal pieces
of 2 polygonal-line, with the property that its verlices
form a convex polygon. Each convex-chain can be fur-
ther partitioned into at most three z-monotone maxi-
mal pieces called subchains, i.e., vertices of 2 subchain
have z-coordinates in either strictly increasing or de-
creasing order. See Figure 2.1.

A vertex or an edge is said to lie inside a polygon if
it completely lies inside the polygonal region restricted
by the boundary of the polygon. A vertex or an edge
is said to be contained in a polygon if it lies on the
boundary of the pelygon.

Let L be a line drawn through a set of polygons. Let
E be the set of edges which intersect L in the following
two ways. An edge ¢ in £ either properly intersects L
(ie. two vertices of e lies on the opposite sides of L)
or e intersects L at a vertex and the other vertex of
e lies to the right of L. The third possible case of ¢
intersecting L is ignored as the information related to
that edge would already be recorded in a plane sweep.
Finally, degenerate intersection(e is collinear with L} is
handled in section 3.

An edge € in E is said to be “above” the edge ez in
E if the point of intersection of L and e; lies above the
point of intersection of L and ez. If e; and ez have a
common vertex through which L passes, e1 is “above”
es il the other vertex of e; lies above the line containing
¢5. L induces a total order R on the edges in E with
respect to the “above” relation. If L passes through a
vertex v;, we define above(v;) as the set of edges whose
point of intersection with L is above v;. The lowest
edge in above(v;) is called the neighbor of v;. Between
v; and its neighbor there is no other edge intersecting
L. See Figure 1.1 and 3.2. Note that there may nat
exist any neighbor of v; since above(v;) may be empty.

Order R naturally extends to another order O of sub-
chains associated with the edges in R. If edpges €, ea
of subchains C; and C, are intersected by L, then &)
is “above™ o if the point of intersection of L and e) is
above the point of intersection of L and e3.

Lemma 2.1: Let P be a simple polygon with N,
notches. No line can intersect P in more than
maz(l,2N,) segments or maz(2, 2N, + 1) points.
Proof: See {2]

Lemma 2.2: Let P be a simple polygon with N,
notches. The number of subchains S, in P is bounded
as 5, < 6(1 + Np).

Proof: See [2].

Lemma 2.3. Let L be any line through a vertex v;
of a polygon P;. Let the edge e be the neighbor of v;.
Parent of P; is either the polygon P; containing e or
P;'s parent {possibly null).

Proof If the neighbor edge e of v; is an edge of P},
which is a parent of P; ,Lhe lemma holds trivially. Sup-
pose the neighbor edge e of v; is an edge of P; which
is not the parent of P;. We claim that v; lies inside
polygon P iff ¢ lies inside it. Suppose e lies inside P
and v; does not. Then the region between v; and e on L
contains a part which is outside P;. Hence there must
be an edge of P; between e and »; on L. But this 15
impossible since e is the neighbor edge of »;. Similarly,
we can argue that if v; lies inside polygon P, so does
¢. Hence e lies inside the same set of polygons, within
which v; lies. Ience il Py is the parent of P; it is a
parent of P; and vice versa. &

Lemma 2.4: Let L be any line passing through v; of
P;. v; is contained in the polygon P g 2; iff the number
of edges of P. which are in ahove(v;) is odd.

Proof: Since any edge demarks the region which is
“inside polygon P” and “outside polygon P” on L the
above proposition is obvious. &

Lemma 2.5: Let L be any line passing through v; of
P:. Let edge e of polygon Pi be the neighbor of v on
L. Il the number of edges of Py in above(v;) is odd
and k # i then P is the parent of £;. Otherwise, Pi's
parent(possibly null) is the parent of F; .

Proof: Combine Lemma 2.3 and Lemma 2.4. &

3 Polygon Nesting Structure

Plane Sweep: Each polygon P; consists of subchains
Ci1,Cizy .o Cie- We sweep & line L in the plane through
all the polygons, while maintaining the ordering O of
the subchains C induced by L. To maintain this or-
dering we stop only at the endpoints of the subchains,
while sweeping say [rom left to right. We break all the
boundaries of the polygons into subchains in no more
than O(n) time where n is the total number of ver-
tices of all the polygons. We sort only the endpoints
of all the subchains on a line perpendicular to L. At
each subchain endpoints we update the ordering O as

follows.

Update at a Vertex: if v; is a vertex such that both
snbehains €1 and Co connected to v; have not yet been
encountered by the sweep line L, we insert ¢} and C
in the ordering @ on L by a simple binary search. The
search is based on a procedure for determining the posi-
tion of v; w.r.t. the edge intersected by L on a subchain
C; already present in the ordering O on L.

For the latter purpose, we keep a last visited edge
associated with each subchain C; in (0, as we now detail.
This is reminiscent of the topological sweep of [7). Let
the edge associated with C; initially be e;, the first
edge of the subchain C;. We visit the sequence of edges
e1,€r....ex of C; stopping at the first edge ex which
intersects L. We determine the “above” relation of v;
w.r.t. ey and associate edge ez with C;. Later, when
we need to classify any other vertex w.r.t. C; we start
from edge er. See Figure 3.1. Obviously, the edges
€2, ... e are visited only once, while e; and eg are
visited more than once throughout a sweep. Now, [or
each vertex-edge classification, there will be at most two
edges similar to e; and eg of a subchain which will be
visited more than once. Since in the binary search for
determining the posilion of a vertex in the order O, we
encounter only O(logS) subchains (where S is the tolal
number of subchains) there will be at most O(logS)
edges, for each line pasition, which will be visited more
than once. Hence, for each update at v; (where we
insert subchains) we visit ¢; edges which are visited only
once throughout the sweep and O(logS) edges which are
visited more than once. If v; is a vertex such that both
subehains connected to v; have been encountered then
we delete both these subchains from the ordering O.
This again takes at most O(logS5) time. Hence the total
time taken for all updates is O (Zf=1 i,—) + O{SlogS)
where S is the total number of subchains and ¢; s the
number of edges visited, at each update, which is visited
only once throughout the sweep. Certainly, Z‘:’;l l; =
O{n) where n is the total number of vertices. Hence
updates take O(n) + O(SlogS) time.

Detecting parent of a polygon: At the vertex v
of P;, when we insert the subchains in the ordering
O on I we determine the parent of P; as follows. If
parent of P; has already been determined then we are
done. If it has not we find the neighbor edge e of v;
on L (Actually, e is found while inserting the subchains
connected to v;). Let P; be the polygon containing e
on the boundary. We determine %, the number of edges
or equivalently the number of subchains of the polygon
P; which are in above(v;). Maintaining the ordering of
subchains of each polygon separately, this number can
be obtained in O(logS;) time where S5; is the number of
subchains in that polygon. Il k is odd and P; # Fj, we
set P; as the parent of F;. Otherwise we set the parent
of P; to be the parent of P; (Lemma 2.5). Certainly
parent determination at each update add up to at mosk

O(logS) time.

Degenerate case: Degeneracy occurs when the sweep
line L passes through more than one vertex, at any
stop position of L. In these cases one or more than one
edge may also be collinear with L. Let vy, va, ..., v be
the ordered sequence (w.r.t “above” relation) of vertices
through which L passes at any stop.

We process cach v; in the ordered sequence one after
the other as follows. Let v; be the vertex of polygon F.
For v; , we insert or delete the subchain which does not
correspond to the edge collinear with Z from the order-
ing O. Since the edge collinear with L does not demark
any region on L as “in P" or “out P”, we should not
insert that edge in the ordering O and in the ordering
maintained separately for each polygon. 5o a degener-
ate edge does not affect the number of edges of P which
would be in above(v;) for any v;. See also Figure 3.2.
Algorithm:

Input: A set of m simple, noninlersecting polygons.
Oulput: A directed acyclic graph G, called the nest-
ing structure, in which there is a directed edge {from a
node n; corresponding to a polygon P; to the node n;
corresponding to the polygon P; iff P; is the parent of
P

Step I: Detect the endpoints of subchains in all poly-
gons.

Step 2: Sort the x-coordinates of these endpoints. 1f two
points have same x-coordinates, the one with higher y-
coordinate is sorted belfore the other. Let this sorted
sequence W be vy, v2, ..., V-

Step 9: Create a node for each polygon in G. Enter
two subchains, connected to the leftmost vertex of W,
in the ordering O by inserting the two polygon edges
connected to that vertex in O. Note O is initially empty.
Step 4: Sweep a pseudo-line from left to right, taking
steps at each vertex v; of W as follows. Let v; be on
the boundary of the polygon P;. If both subchains con-
nected to v; have already been visited, delete them from
the ordering O and skip steps [rom 4(a) to 4(d).

Step 4(a). Detect the position of v; with respect to
the subchains intersected by the sweep line. For this,
carry out a binary search in the ordering O of these
subchains. To detect the position of v; with respect to
a subchain C; during binary search, find the edge e;
of this subchain kept in O and then follow the linked
sequence of edges e, €3, ..., eg until the edge e is found
which intersecs L.

Step 4(b): Let e’ of polygon P; be the neighbor edge
of v; found by step 4(a). Determine the number % of
subchains of P; which are in above(v;). This is dene by
a similar binary search, as in step 4(a), in the ordering
of subchains maintained separately for each polygon.
Step 4(c): Insert two subchains connected to v; in O
and in the ordering of subchains maintained for polygen
P:. In degenerate case, insert or delete the subchain
which does not correspond to the edge, collinear with
the sweep line, from O.

Step 4{d): I[k is odd, then create a directed edge in
the nesting structure [rom the node n; corresponding
to the polygon P;, Lo the node n; corresponding to the
polygon P;. If k is even, create a directed edge from n;
to the node n;(ifany), to which n; is connected through
a directed edge.

Theorem 2.1: The problem of polygon nesting {or m
polygons can be solved in O(n + (m + N)log(m + N))
time where n is the total number of vertices and N is
the total number of notches of all polygons.

Proof: Detecling the endpoints of the subchains takes
O(n) time. Sorting these endpoints requires O(SlogS)
time. Updating and determining parent takes O(n +
SlogS) time. Hence, computing the nesting structure
for all polygons takes O(n + SlogS) time. By lemma
2.2 , S, the total number of subchains is bounded as
S < 6(m+ N) where m is the total number of polygons
and N is the total number of notches. Ilence, total time
spent is O(n + (m + N)log(m + N)).

4 Robustness under Finite Pre-
cision Arithmetic

In the algorithm given in the previous section we as-
sumed arbitrary precision arithmetic in all our compu-
tations. In this section we give an algorithm for polygon
nesting problem which is robust in that it never fails
due to finite precision arithmetic. It correctly yields
the nesting structure of a set of simple nonintersecting
polygons, possessing a minimurn feature with respect
to their “skinniness”.

We first assume that all our polygons are bounded
by a square box, —-B <z < Band ~B <y < B. We
define a polygon P to be “Oeshy” if there is a point
inside P such that a square with center(intersection
of square’s diagonals) ai that point and with sides of
length 2828 lies inside P. Here, £ is machine precision.
In our implementation we set B = 2%, & = 27%
Hence the area of the square is 784 % 2718, The poly-
gons which are not fleshy are thus extremely skinny for
most practical purposes.

Related Work: Robust computations under finite pre-
cision arithmetic have recently taken added importance
because of the increasing use of geometric manipula-
tions in computer-aided design, and solid modeling,
see for e.g. [3]. Edelsbrunner and Mucke [6], and
Yap [17], suggest using expensive symbolic perturbation
techniques for handling geometric degeneracies. Sugi-
hara and Iri [16), and Dobkin and Silver [5], describe
an approach to achieving consistent computations in
solid modeling, by ensuring that computations are car-
ried out with sufficiently higher precision than used for
representing the numerical data. There are drawbacks
however, as high precision routines are needed for all
primitive numerical computations, making algorithms
highly machine dependent. Furthermore, the required

precision for calculations is difficult to a priori esti-
mate for complex problems. Segal and Sequin [14] re-
quire estimating various numerical tolerances, tuned to
each compultalion, to maintain consistency. Milenkovic
[13] presents techniques for computing the output for
a modified input which preserves some basic topolog-
ical constraints. Green and Yao [9] present a method
for drawing line segment arrangements on a discrete
grid which alters the input symbolic data. Hoffmann,
Hoperoft and Karasick [11], and Karasick [12], propose
using geometric reasoning and apply it to the prob-
lem ol polyhedral intersections, however fail to provide
a proof of correctness. Sugihara {15] uses geometric
reasoning to avoid redundant decisions, which lead to
topological inconsistency, in the construction of planar
Voronoi diagrams. Guibas, Salesin and Stolfi [10] pro-
pose a framework of computations called e-geometry ,
in which they compute an exact solution for a perturbed
version of the input. So does Fortune {8] who applies it
to the problem of triangulating a planar point set. In
this paper we use the methods of topological reasoning
with a minimum feature assumplion on the skinniness
of the polygons.
Assumptions and Definitions: A binary predicate
CONT is defined as CONT(P, P») iff P, contains
Py. NOT(CONT(P,, P;)) denotes the negation of
CONT(Py, P;). A point py is said to be vertically visi-
ble [rom another point p2 if the vertical line through p»
also passes through p, and the vertical segment between
p1 and p» does not intersect any other edge. Similarly,
we define an edge to be vertically visible [rom a point
p1 il the vertical line through p; intersects the edge and
does not intersect any other edge in between.

The numerical computations in our algorithm are
carried out in two places.

I. Sorting the vertices:

Sorting can be carried out without any error as
the comparison of two floating point numbers is
exact to within machine precision. (This is true
on most of the machines available today). Here
we assume that given input data (coordinates of
polygon vertices) is accurate.

9. Computing the points of intersection of a vertical
sweep line with the edges:

In Lemma 3.1 we will develop a bound on the max-
imum error which can occur during this computa-
tion. Actually, this bound leads us to the estimate
of a square box with side 28¢5, Lo define a fleshy

polygon.

Results: We present a robust algerithm for comput-
ing the nesting structure of a set of simple, nonin-
tersecting, fleshy polygons. Our algorithm runs in
O(r{m + N + logn) + m®) time.

Lemma 3.1; Given an edge e between two vertices
v = (z1,1) and v3 = (22,¥2), and a vertical line in-

tersecting e at a point p, the absolute error eaps in the
computed position of p is bounded as eq3, < 783, where
¢ is the machine precision and B is the largest value of
any of the coordinates.

Proof: Let us consider a vertical line = zg which
intersects e at p. Obviously, x coordinate of p is Zo.
Let the y coordinate of p be yg and . be the computed
value of . By simple geomeiry,

T2—T1 _ ¥2— W
Tg — T Ya—
Yo— I NTo— L)
Yo = (X)+y1
Ta —)

With Anite precision the computed value y. of yo is
given by
(y2— w)(Zo —z1)(1 +£7)

Ye = (es —21) + y1(1 + &6)

where (1+E‘) — (1-!-!.‘1)f1+‘:)3:z:}f1+=5)(1+£n) and |E|'| <

e. Let tg = az¥iZo=o1) e can write

Ta—I

to(l+¢€") + y(l +c6)
loe” + 118
|toe™| + lyaél

¥ =
Ye— W =

Eabs

N

Neglecting higher order terms in &; we get |¢7| < 6.

. ETE
Since :,-:: < 1, we have
ol < lw2—ml
] < B
eats < 0BeB + €B
Babs = Teb

Lemma 3.2: Giver two simple, noninfersecling
polygons P, P, it can be correctly determined
if one of the predicates NOT(CONT(P,,FPz)) or
NOT(CONT(Ps, Py)) is true by checking the leftmost
vertices of P, and Pa.

Proof: Let v, = (z1,1), vz = (z2,42) be two
leftmost vertices of P, and P: respectively. Cer-
tainly, z, < z» implies NOT(CONT(FPz, P1)} and
z; > z» implies NOT(CONT(P,, P;)). Further-
more, £; = 3 implies NOT(CONT(P,, P,)) and
NOT(CONT(P,, P\)), since P and P, are simple non-
intersecting polygons.

Lemma 3.3: Given a set of simple, fleshy, noninter-
secting polygons in plane, there is a vertex v ol each
polygon P, such that even with finite precision arith-
metic, all ancestors of P can be correctly determined
by computing the intersection points of polygon edges
with a vertical line passing through v.

Proof: Consider a simple, fleshy, polygon P (Figure
4.1). By definition, there is a point ¢ inside P such
that a square box abed with side of 28¢5 and with cen-
ter g lies inside P. Consider two vertical lines Ly, Ly

coinciding with two sides of the square as shown in the
Figure 4.1.

Case(i): There is a vertex v of P within the two
vertical lines. W.Lo.g, v can be assumed to be above
ab. Consider a vertical line L passing through v. Let
L intersect the line passing through g and parallel to
ab at ¢'. The set of intersecting points of the edges
of the polygons with this vertical line can be parti-
tioned into three sets Tupope(v)s Letose(v)s Toetow(v) based
on the closeness of intersecting points to v. JTasouc(v)
is the set of all points of intersection whose distance
from v is greater than equal to 14cB and which are
above v. Similarly, define Ip.fow(v)- The rest of
the points of intersection constitute Iepse¢n). Corre-
sponding to cach set Ispove(v)s Iaetow(v)r Letose(v), We de-
fine Eqpove(v)s Ebetow(u)s Ectose(v) a5 the set of edges on
which those points of intersection lie.

Let s be the point of intersection of L with the
edge of P which is vertically visible from ¢’ and which
below ed. Any polygon containing P cannot have
an edge intersecting L in between v and g’ and ¢
and s. Since the distance between v and s must
be greater than equal to 28eB, the computed dis-
tance between them must be al least 21¢B. Hence,
s cannot be in Iipse(v)- For any polygen £, let
Ky ouevy Ketosew)r Kbetow(w) PE the number of edges of
F; in above(v)r Lclose(v)s Lbelow(v) TCSPECLi"clY- Poly-
gon P; contains the portions of L which is in between
Id“-"('—') and Ibcl'ow(u) ff K = I{c‘lboue(u) + I{;fnae(u) is
odd. This portion also lies in P. Hence, if K* is odd ei-
ther P contains P; or P; contains . But using Lemma
3.2 one of these two possibilities is omitied by checking
the leftmost vertex of each polygon . Hence, it can be
determined correctly whether P; is an ancestor of P or
not.

Case(ii): There is no vertex v which lies in between
two vertical lines Ly and Ls. In this case, only two
edges of P will be vertically visible from ¢. Let these
two edges be e1, ez as shown in Figure 4.1(b). Let
(I resp.) be the first vertex which is hit by a vertical
line L if we sweep L [rom the position of Lz(L, resp.)
to right(left resp.). Consider a vertical line through
r which intersects ey and e at & and ¢’ respectively.
Similarly, consider the vertical line through [which in-
tersects e; and es at a’ and &' respectively. Certainly,
the quadrilateral a’b’c’d’ lies inside P. Since abed lies
inside a’d’c’d’, one of the edges &'¢’ and a’d’ must be
greater than equal to 28¢8. W.l.o.g let us assume b'e!
is that edge. Certainly, r is at a distance of at least
14¢ B either from ¥ or ¢/. W.l.o.g let us assume the dis-
tance between r and ¢ is greater than equal to 14eD.
Following the same logic as in Case (i) we can determine
the ancestors of P by counting the number of edges in
Eibou(,_) and Ei,ou(r) for each polygon F;.
Alpgorithm:

Input : A set of simple, nonintersecting, fleshy poly-
gons.

Qutput: A acyclic directed graph, called the nesting
structure, in which each node n; represent a polygon
P;. There is a directed edge from n; to nj tff P; is the
parent of F;.

Step 1: Sort the vertices of the polygons on the x axis.
Let this sorted sequence be vy, va, v\, Un-

Step 2: Sweep a vertical line from lelt to right taking
the following steps at each vertex v;.

Step 2{a). Let P be the polygon having v; on the
boundary and E be the sct of edges which were in-
tersecled by L when the sweep line stopped at vi_:.
Compute the intersection point of L with each edge
in E. Construct the sets Eqpove(vi)) Eetose(vi)r Pbelow(v;)
for »;.

Step 2(b): Count the number of edges of P in Egpoue(v;)
and Egjose(v;)- If this number is odd then take step 2(c)
otherwise skip 2(c).

Step 2(c). TFor each polygon F; intersected by L
count the nufnber of f:dges in E'c';bow(‘_:i) and E‘;",ou(ui)j
Compute K' = E}, ..y + E;,ou(m. It Kt
is odd, then check the Se[)t.most vertices of P; and
P to determine whether NOT(CONT(F;, P)) or
NOT(CONT(P,B,)). If NOT(CONT(P,F;)) then
create a directed edge {rom the node corresponding to
P to the node corresponding to P; in the nesting struc-
ture. Note that this will create a directed edge from
n; to n; iff P; is an ancestor(not merely parent) of F;.
This nesting structure is refined in Step 3.

Step 2(d): If v, is a vertex such that both edges adjacent
to v; were not in E, then include them in E. Ifv; is a
vertex such that both edges adjacent to it were in K,
then delete them from E. If v; is a vertex such that
one of the edges were in E then delete that edge from
E and include the other edge adjacent to »; in E.
Step 8: In the nesting structure computed by Step 2(c)
determine the longest path [rom each node n; to every
other node. If no node is reachable from n; then parent
of the corresponding polygon P; is null. Otherwise,
the polygon P;, corresponding to the node nj with the
longest path length of 1, is the parent of FP;.

Time Analysis: Step I takes O(nlogn) time. Since
a vertical line intersects at most O(m + N) edges
(Lemma 2.1}, Siep 2 takes O(m + N) time for each
stop while sweeping. Hence, total time spent for Sicp
2is O(n{m + N)). The longest path determination in
step 3 for each node takes O(m?). Since the underlying
graph of the nesting structure with m nodes is directed
and acyclic, we can apply the well known Dijkstra's
shortest path algorithm (See for e.g. [1]) with negative
weight of -1 on every edge, to determine the longest
path [rom a source to every other node. Hence, step &
takes O(m3) time for m nodes. Combining these, the
time complexity T of the robust algorithm for polygon
nesting of a set of simple, nonintersecting, fleshy poly-
gons is given by, T = O(nlogn + n(m+ N)+m®) =
O(n(logn + m + N) + m?).

References

[1] Aho, A.,V., Hopcroft, J.,E., Ullman, 1.,D., “The
Design and Analysis of Computer Algorithms”,
Addison-Wesley.

[2] Bajai, C., and Dey, T., (1989} “Robust Decom-
positions of Polyhedra”, Proc. of the 9th. Confer-
ence on FST and TCS, Bangalore, India, to ap-
pear. Also,see Computer Science Technical Report,
CAPO-88-44, Purdue University

[3]) Bajaj, C., (1989) “Geometric Modeling with Alge-
braic Surfaces”, The Mathematics of Surfaces Il
edited by D. Handscomb, Oxford University Press,
to appear.

[4] Chazelle, B., (1984), “Convex Partitions of Polyhe-
dra: A Lower Bound and Worst-case Optimal Al-
gorithm", SIAM J. on Coemputing, Vol. 13, No. 3,
pp. 488-507.

[6] Dobkin, D., and Silver, D., (1988}, “Recipes for
Geometry and Numerical Analysis", Proc. of the
Fourth ACM Symposium on Computational Geom-
efry, Urbana, Illinois, 93 - 105.

[6] Edelsbrunner, H., and Mucke, P., (1988), “Sim-
ulation of Simplicity: A Technique to Cope with
Degenerate Cases in Geometric Algorithms” Proc.
of the Fourth ACM Symposium on Computationel
Geometry, Urbana, Illinois, 118-133.

[7] Edelsbrunner, H., and Guibas, L., (1989) “Topo-
logically Sweeping an Arrangement”, J. of Com-
puler and Sysiem Scicnees, 38, 165 - 194.

[8] Fortune, S., (1989) “Stable Maintenance of
Point-set Triangulations in Two Dimensions”,
Manuscript.

[9] Greene, D., and Yao, F., (1986), ‘“Finite-
Resolution Computational Geometry” Proc. 27th
IEEE Symposium on Foundalions of Computer
Science, Toronto, Canada, 143-152,

[10] Guibas, L., Salesin, D., and Stolfi, J., (1989)
“Building Robust Algorithms f[rom Imprecise
Computations”, Proc. 198% ACM Symposium on
Computational Geomeiry, Saarbuchen, West Ger-
many, 208- 217.

[11] Hoffmann, C., Hopcroft, J., and Karasick, M.,
(1987), “Robust Set Operations on Polyhedral
Solids”, Dept. of Computer Science, Cornell Uni-
versity, Technical Report 87-875.

[12] Karasick, M., (1988) “On the Representation
and Manipulation of Rigid Solids”, Ph.D. Thesis,
McGill University.

[13] Milenkovic, V., (1988), “Verifiable Implementa-
tions of Geometric Algorithms Using Finite Pre-
cision Arithmetic”, Ph.D. Thesis, CMU Tech. Re-
port CS-88-168, Carnegie Mellon Univ., Pitts-
burgh.

[14] Segal, M., and Sequin, C., (1985), “Consistent Cal-
culations for Solid Modeling®, Proc. of the First
ACM Sympestum on Computational Geomelry, 29
- 38.

[15] Sugihara, K., (1988}, “A Simple Method of Avotd-
ing Numerical errors and Degeneracy in Voronoi
diagram Constructions”, Research Memorandum
RMI 88-14, Department of Mathematical Engi-
neering and Instrumentation Physics, Tokyo Uni-
versity.

[16] Sugihara, K., and Iri, M., (1989}, “A Solid Mod-
eling System Free [rom Topological Consistency”,
Research Memorandum RMI 89-3, Department
of Mathematical Enginecring and Instrumentation
Physics, Tokyo University.

[17] Yap, C., (1988) “A Geometric Consistency Theo-
rem for a Symbolic Perturbation Theorem” Proc.
of the Fourth ACM Symposium on Compulational
Geomelry, Urbana, Illinois, 134-142.

Y
L X
Fiaurc 2.1
Vigeer * .
p"ﬂ“‘fe 1.t 1o Vy e Convea ?0"730““‘!: Line,
Vo, V, o Convex chain.
Above (0) = fe,, ¢y, ¢,,€,] 3
h:izl.!.or fud = g,q \fz,.u,v? l.o o ‘6“\);},0‘“
PMME of— P. ='P2- s ?u.'rcnl‘. a{: PsuNuLL
Ancestor oF By ='[r, p}}
{ =~ Prcudo
' Line
!
e Y
' -
el El - -
B
c 9
" b D
c i
3 \-‘_
\ -
Ftauw, 3. | ¢} L
t t Fiqur. b
e, ok b . ¢t B.] (o)
, e kept witth C), a2 fore the e,’ ukere% wibh €3 after Carn]oul-m%.

akop at vi-

position of vi with respect to Cj.

Fligure 3,2
abﬂ“ SOK % €s,r

5‘ "" G, dcgznerde C.a.gé}.

F-‘.na.u.re. G.1 ()
Case (E)

Fi.?u.ra 4.1¢w)
Cade (1)

