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In this article, we characterize the solution space of low-degree, implicitly defined, algebraic
surfaces which interpolate and/or least-squares approximate a collection of scattered point and
curve data in three-dimensional space. The problem of higher-order interpolation and least-
squares approximation with algebraic surfaces under a proper normalization reduces to a
quadratic minimization problem with elegant and easily expressible solutions. We have imple-
mented our algebraic surface-fitting algorithms, and included them in the distributed and
collaborative geometric environment SHASTRA. Several ekamples are given to illustrate how
our algorithms are applied to algebraic surface design.
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1. INTRODUCTION

Computer-Aided Geometric Design (CAGD) deals with the representation
and approximation of three-dimensional physical objects. A major task of
CAGD is to automate the design process of such objects as car bodies,
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airplane wings, and propeller blades, usually represented by smooth meshes
of curves and surfaces. Research in surface design has been largely domi-
nated by the theory of parametric curves and surfaces due to their highly
desirable properties for trimmed surface design and computer graphics.
In recent years, however, increasing attention has been paid to geometric
design with implicitly defined algebraic curves and surfaces which provide
a more comprehensive class of flexible surfaces, especially at lower degree.
See Bajaj [1988; 1992; 1993], Bajaj and Ihm [1992a, 1992b], Bajaj et al.
[1988], Bloomenthal [1988], Farouki [1988], Hoffmann and Hopcroft [1987],
Owen and Rockwood [1987], Sederberg [1982; 1990a; 1990b], and Warren
[1986; 1989].

An algebraic surface S in R3 is implicitly defined by a single polynomial
equation f ( x, y, z) = O, whose coefficients are over the real numbers. The
class of algebraic surfaces provides enough generality for geometric model-
ing as well as having the advantage of closure under several geometric
operations like intersection, offsets, etc. [Bajaj 1988; 1993]. Smooth algebraic
surfaces naturally define half spaces, which is a desirable property in solid
modeling. Also, they are amenable to ray-surface intersection computation. A
primary motivation for our work using implicit algebraic surfaces is based on
the observation that implicitly represented algebraic surfaces are very natu-
ral for interpolation and least-squares approximation to both points and
space curves with or without higher-order derivative information [Baj aj 1992;
1993]. As shown in this article, this fact yields compact computational
schemes for a wide range of surface-fitting applications.

Fitting of algebraic curves (primarily lines and conies) has been con-
sidered by some authors [Albano 1974; Bajaj and Xu 1992; Bookstein 1979;
Gnanadesikan 1977; Sampson 1982]. A good exposition of exact fits and
least-squares fits of algebraic curves and surfaces through given data points
is presented in Pratt [1987]. Sederberg [1990a] presents the idea of Co
interpolation of data points and curves with algebraic surfaces. This previous
work on interpolation is extended by Bajaj and Ihm [1992a], where they
present algorithms for C 1 interpolation of points and space curves, repre-
sented either implicitly as the common intersection of algebraic surfaces or in
the rational parametric form, possibly associated with tangential informat-
ion.

In this article we present a computational model for low-degree, implicitly
defined algebraic surface fitting. We consider least-squares fitting (approxi-
mation) as well as exact fitting (interpolation). This fitting scheme uses a
proper normalization of coefilcients of algebraic surfaces. The mathematical
model we derive is a constrained minimization problem of the form:

minimize XTM~MAX

subject to MIX = O,

XTX = 1,

where MI and MA are matrices for interpolation and least-squares approxi-
mation, respectively, and x is a vector containing coefficients of an algebraic
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surface. In Section 2, we consider interpolation, least-squares approximation,
and normalization in detail, and we show how the minimization problem is
derived. Then, in Section 3, compact computational algorithms are explained
with examples in algebraic surface rounding, blending, joining, and meshing.
Finally, we discuss implementation and open problems for algebraic surface
design in Section 4.

2. COMPUTATION OF MATRICES FOR ALGEBRAIC SURFACE DESIGN

2.1 Interpolation

2.1.1 Cl Interpolation for Implicit and Parametric Data. Bajaj and Ihm
[1992a] present a constructive characterization, called Hermite interpolation,
of implicitly defined algebraic surfaces which smoothly contain given points
and algebraic space curves, with associated normal directions, where these
geometric input data are expressed either implicitly or parametrically. For
an algebraic surface S: f( x, y, z ) = O of degree n, the Hermite interpolation
algorithm takes as input positional and first-derivative constraints on points
and space curves and produces a homogeneous linear system M, x = O,
M, E R~J,X‘7,

>‘here x ‘s a ‘ector ‘f ‘he d= (’N) Coemcientsof “ Only
when the rank r of MI is less than the number of the coefllcients n,, does
there exist a nontrivial solution to the system. All vectors except O in the
nullspace of Ml form a family of algebraic surfaces, satisfying the given input
constraints, whose coefficients are expressed by homogeneous combinations
of q free parameters, where q = n, – r is the dimension of the nullspace.

Example 2.1 (Generation of a Homogeneous Linear System). Let C(t) =

((2 t/1 + t2),(1 – t 2/ 1 + t 2), O) be a quadratic curve with an associated nor-
mal vector n(t) = ((4t\l + t2), (2 – 2t2/1 + tz), O). (This curve and normal
direction are from the intersection of the sphere x 2 + y 2 + z 2 – 1 = O with
the plane z = O.) To find a quadratic surface f(x, y, z) = C1X2 + CZY2 +
C:lzz + Cixy + c5yz + CGZX+ CTX + c~y + Cgz + CIO, the Hermite interpola-
tion algorithm produces five linear equations for containment and another
five for tangency:

MIX =

o 10 0 0 00 –1 o 1
0 00 –2 o 02 0 00
4 –20 o 0 00 0 02
0 00 2 0 02 0 00
0 10 0 0 00 1 01
0 00 0 2 00 0 –2 o
0 00 0 0 –40000
o 00 0 –4 00 0 00
0 00 0 0 40 0 00
0 00 0 2 00 0 20

c,

C2

C3

C4

C5

C6

CT

C8

Cg

= o.

‘There m-e (“~ “) mefilcients in f(x, y, z) of degree n.
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2.1.2 Higher-Order Interpolation for Implicit Data. In the Hermite inter-
polation, smoothness is achieved by forcing normals of tangent planes of a
surface to be parallel to those of given points and space curves. For some
applications of geometric modeling, for example, design of ship hulls, how-
ever, more than tangent-plane continuity is desirable. The concept of smooth-
ness is generalized by defining a higher-order geometric continuity. DeRose
[1985] gives such a definition between parametric surfaces, where two sur-
faces FI and Fz meet with order k geometric continuity, concisely stated as
C~ continuity along a curve C if and only if there exist local reparameteriza-
tions F~ and FL of FI and Fz, respectively, such that all partial derivatives of
~1 and Fj up to order k agree along C. Warren [1986] formulates an intuitive
definition of C~ continuity between implicit surfaces as follows:

Definition 2.1. Two algebraic surfaces f(x, y, z) = O and g(x, y, z) =
O meet with C~ resealing continuity at a point p or along an irreducible
algebraic curve C if and only if there exists two polynomials a( x, y, z) and
M x, y, z), not identically zero at p or along C, such that all derivatives of
af – bg up to order k vanish at p or along C.

This formulation is more general than just making all the partials of

f(x, Y, Z) = O and g(x, y, z) = O agree at a point or along a curve. For
example, consider the intersection of the cone f( x, y, z) = xy – (x + y –
z )2 = O and the plane g( x, y, z) = x = O along the line defined by two planes
x = O and y = z. It is not hard to see that these two surfaces meet smoothly
along the line since the normals to f( x, y, z) = O at each point on the line
are scalar multiples of those to g( x, y, z) = O. But, this scale factor is a func-
tion of z. Situations like these are corrected by allowing multiplication by
certain polynomials, not identically zero along an intersection curve. Note
that multiplication of a surface by polynomials nonzero along a curve does
not change the geometry of the surface in the neighborhood of the curve.
Garrity and Warren [1991] also prove that this notion of resealing C&
continuity is equivalent to other order k derivative continuity measures as
well as to reparameterization continuity for parametric surfaces.

In Bajaj and Ihm [1992a], it is shown that, given a surface degree, the
Hermite interpolation algorithm finds all surfaces meeting each other with
Cl continuity. Though we are currently unable to translate geometric specifi-
cations for C k continuity (k > 2) into a matrix Ml whose nullspace captures
all C~ continuous surfaces of a fixed degree, we can generate an interpolation
matrix MI whose nullspace captures an interesting proper subset of the
whole class. This technique is based on the following theorem.

THEOREM2.1. Let g( x, y, z) and h(x, y, z) be distinct, irreducible polyno-
mials. Zf the surfaces g( x, y, z) = O and h( x, y, z) = O intersect transversally
in a single irreducible curve C, then any algebraic su+ace f( x, y, z) = O that
meets g( x, y, z) = O with Ck resealing continuity along C must be the form
f(~, y, 2) = a(x, y, Z)g(x, y, 2) + ~(x, y, z)h~+l(x, y, Z). If g(x, y, Z) = O
and h( x, y, z) = O share no common components at infinity, then the degree
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of a(x, y, z)g(x, y, z) < degree of f(x, y, z) and the degree of B(x, y, z)hk+l
(x, y, z) S degree of f(x, y, z).

PROOF. If g = O and h = O intersect transversally in a single irreducible
curve, then Kunz [1985, Ch. VI] and Warren [1986, Ch. III] show that the
space of all surfaces interpolating (g = O) n (h = O) consists of exactly those
surfaces that can be expressed as cg + gh = O where c and d are polynomials
in x, y, and z. Algebraically, this condition corresponds to the fact that the
polynomials g and h generate a prime ideal (see Warren [1986] for more
details). Macaulay [1916, p. 52] shows that this algebraic condition implies
that any polynomial p, all of whose partial derivatives up to order k vanish
along (g = O) n (h = O), must be expressible in the form p = ~~~~ yig ‘hk + 1-‘
where the yi are polynomials in x, y, and z.

By the definition of Ch resealing continuity, there must exist a( x, y, z ) and
b( x, y, z) (not identically zero on (g = O) n (h = O)) such that all partial
derivatives of af – bg up to order k vanish on (g = O) n (h = O). Thus,
af – bg = ~~~~ ~igihk+ l-i. This expression can be rewritten as af = eg +
/hk+ 1. Finally, since a(x, y, z) is nonzero on (g = O) n (hk+ l-i = O), it is
possible to show [Warren 1986, p. 15] that f by itself can be expressed in the
form ag + ~hk+l.

The second portion of the theorem follows directly from the fact that g = O
and h = O do not have any common components at infinity. A proof of this
fact appears in Warren [1986, Ch. V]. ❑

For given curves C,, z = 1,... , 1 which are, respectively, the transversal
intersection of given surfaces gi(x, y, z) = O and hi(x, y, z) = O, a surface
f( x, y, z) = O containing space curves Ci with C~ continuity can be construc-
tively obtained by the relations

f(~,.y,z~ = a~(~,~>z~gl(~>y,z) +~i(x, ~,z)h~+l(~, y,z), i = l)...,l.

(1)

Since the g, and h, are known surfaces, the unknown coefficients are those of
f, a,, and ~1. When the hypothesis of Theorem 2.1 is met, the polynomials
a, and ~, are of bounded degrees. From the relations in (l), we see that
these unknown coefficients form a system of linear equations, yielding an
interpolation matrix MI.

Example 2.2 (Algebraic Surfaces with C2 and C3 (Continuity). Consider
a space curve C defined by the two equations fl(x, y, z) = X2 + 2y2 + 2Z2 –
2 = O and f2(x, y, z) = x = O. We compute a cubic surface f~(x, y,z) = O
which meets f ~ along C with C 2 continuity as follows. A general cubic
algebraic surface is given by f~(x, y,z) = CIX3 + c2y3 + c~z3 + c1x2y +
c? Xy2 +C6X2Z +C7XZ 2 + c8y2z + c9yz2 + Cloxyz + C11X2 + c12y2 + C13Z2 +
Cllxy + cl~yz + CIGXZ+ CITX + cl~y + Clgz + C20= O. Equating the generic
f3 for C2 continuity as explained, we have f~(x, y, z) = (rlx + r2 y + r3z +
r4) fl( x, y, z ) + r5 f2( x, y, z )3, yielding the linear equations: c1 –rl–r~=
0,cz–2r2= 0,c~–2r3 =0, c4–r2=0, c~–2rl=0, cG– r3=0, c7–
2rl =0, c~–2r3=0, cg–2r2 =0, clO=O, cll–r4 =0, c12–2r4 =0,
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Fig. 1. A C2  continuous  algebraic  surface.

cl3 -2r, = 0, cl4 = cl5 = cl6 = 0, Cl7 + 2r, = 0, Cl8 + 2r, = 0, Cl9 + 2r, =
0, czO + 2r, = 0 in the unknowns ci, . . . , czO and ri,. . . , r5. By eliminating
Fl,. . . , r5 from the equations, we get a homogeneous linear system M,x =
0 in terms of f3’s coefficients ci,. . . , czO.  An instance  cubic  surface  fJx,
y,z)= -2*y*2~+2*x*2~+10*2~-2*y3+2*x*y2+10*y2-x2*
y+2*y+5*xz- 2 * x - 10 is shown  in Figure 1.

In the same  way,  we can compute quartic surfaces f,(x,  y, z) = 16z4 -
6yz3  + 32xz3 + 32.~~ + 16y2z2  - 16xyz2  - 16~2~ +24x2z2  + 32x.zz - 16~~2  +
32xy’z  + 32~‘~ - 8x2yz + 16~2  + 32x32 + 16x22  - 32x2 - 32.~ - 9y4 -
16xy3-16y3+16x2y2+32xy2+16y2-8x3y-8r2y+16xy+16y+
24x4 + 32x3 - 8x2 - 32x - 16 which meets  f, with C3 continuity along the
curve defined  by f, and f’(x, y, z) = y = 0. See also  Figure 2, where  four
algebraic surfaces meet four ellipses in each  of the two different
configurations, all with C3 continuity.
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Fig. 2. C” continuous algebraic surfaces.

2.1.3 Higher-Order  Interpolation  for Parametric  Data. There  exists  exten-
sive literature on parametric curves  and surfaces and their use in computer-
aided geometric design; see DeRose  [ 19851 for several  referen-
ces.  Parametric surfaces  have  been  successfully used in creating three-
dimensional  objects,  and it is quite  natural to have  higher-order geometric
information available  in the parametric form. That is, geometric input  infor-
mation  could  be given  in terms  of a parametric surface  in x, y, z space,
H(s, t) = (x(s, t), y(s, t), z(s, t)), where x(s, t), y(s, t), and t(s, t) are ratio-
nal polynomials in s and  t, and a parametric curve  described  by C(u) =
(s(u),  t(u)) in the s, t parameter space.

An algebraic surface  f(x, y, z) = 0 that meets H(s, t 1 along H(C(u))  with
C’ continuity can again  be selected  from the nullspace  of a properly  com-
puted  matrix.  As discussed in Garrity and Warren [19911,  f(x,  y, z 1 = 0
meets  H(s, t) at a smooth  point  p0 = H(C(u,))  with Ck continuity if and
only if fC H( s, t )I and all the partial  derivatives  of f(H( s, t )) up to order  k
are zero  at C(u, 1. Knowing this we can easily  see that  an algebraic surface
( fC x, y, .z) = 0 meets  a parametric surface  H(s, t) along the entire  curve
H(C)u )) if and only if fC H(C(u)))  and all the partial  derivatives of fC H(C( u)))
up to order  k are zero for all values of u.

Example 2.3 (Computation  of C2 Continuous  Blobs). Consider two circles
on two spheres  H,(s, t) = (x: = (1 + 2s + s2 + t2),41 + s* + t2), y = (2t)/
(1 + s* + t”), z = (1 - s* - t*)/(l  + s2 + t*))  and H,(s, t) = (X = (- 1 +
2s - s2 - &/(l + s2 + t*j,  y = (2t)/(1  + s* + t2), 2 = (1 - s2 - t2,/
(1 + s2 + t2)), that  are defined  by C,(u)  = C,(u) = (s = 0, t = u) in the
parameter space.  A generic quartic algebraic surface  fC x, y, z) = 0 has 35
unknown  coefficients,  and making f(H,(.s, t 1) and all of its partial  deriva-
tives up to order  two vanish along  C,(u) produces 88 homogeneous linear
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equations in terms of the 35 unknowns. The rank of this homogeneous lin-
ear system turns out to be 32, and the surface contains three free parameters
in its coefficients: fix, y, z) = r~ + (–4rl – rz – 2rs)z2 + (5rl + r2 + r3)
24 + (–4rl – r2 – 2r3)y2 + (lOrl + 27-2 + 2r3)y2z2 + (5rl + r2 + r3)y4 +
rzx2 + (–2rl – r2)x2z2 + (–2rl – rz)x2y2 + rlx4. When rl = –r3 = 1,
one can use rz as a control coefficient for gradually changing the shapes
of the surfaces that join two half spheres with C 2 continuity. Three instan-
ces of blobs are illustrated in Figure 3, for rl = – r3 = 1, and with r2 =
O, – 3, – 5, respectively.

2.2 Normalization

To compute an algebraic surface that least-squares approximates given data,
one needs to first define a distance metric which is meaningful and com-
putationally efficient. The geometric distance of a point p from a surface
S: f( x, y, z ) = O k the Euclidean distance from p to the nearest point on S.
However, computing the geometric distance from a point to an algebraic
surface itself entails an expensive computational procedure, and when it is
adopted for surface approximation, the problem becomes even more intrac-
table. A commonly used approximation to geometric distance from a point to
implicitly represented algebraic curves and surfaces is the value ~(p), that is,
the algebraic distance. Since cf( x, y, z) = O is the same surface for all c #
O, the coefficients of ~ are first normalized such that ~( x, y, z) = O is a
representation of the equivalence class {cfl x, y, z) = OIc # O}.

The normalization we shall use is a quadratic normalization of the form
x~x = 1. While some variations [Bookstein 1979; Pratt 1987; Sampson 1982]
of a quadratic normalization have been proposed in fitting scattered planar
data with conic curves, it is not easily seen how different quadratic or non-
quadratic normalizations affect surface fitting when the degree of a surface is
greater than two, a case of considerable interest for geometric modeling. The
normalization x~x = 1 is a sphere in the coefficient vector space and does not
have singularities. That is, this normalization only eliminates the degener-
ate surface with all zero coefficients as a possible solution. This normaliza-
tion also leads to compact and efficient algorithms for surface fitting. It
remains open to determine a generalized quadratic normalization of the form
XTMNx = 1, where MN is no longer the identity matrix, with good properties
for surface fitting.

2.3 Least-Squares Approximation

2.3.1 Approximation on Algebraic Distances. When the rank r of the
interpolation matrix Ml E R’I” u is less than the dimension n” of the coef-
ficient vector, there exists a family of algebraic surfaces which satisfy
the given geometric constraints where the underdetermined coefficients can
be homogeneously expressed in terms of q ( = nu – r) free parameters. An
important problem is to interactively and intuitively select a surface which is
most appropriate for a given application. Selecting an instance surface from
the family is equivalent to assigning values to each of the q parameters. One
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Fig.  3. A C2 continuous algebraic surface  family of blobs.

scheme  for this is proposed,  in Bajaj  and Ihm [1992a],  where  interactive
shape  control  is achieved  by adjusting weights on a tetrahedral control  net in
the barycentric coordinate system.

Least-squares approximation can also help  control  the shape  of the result-
ing algebraic  surface.  When there  are some degrees  of freedom left, we may
additionally  specify  a set of points,  curves, or surfaces  around  the given  input
data, which approximately describes  a desirable  surface.  The final  fitting
surface  can be obtained  by consuming the remaining degrees  of freedom  via
least-squares  approximation to the additional  data set.

The algebraic  distance  f(p)  is straightforward to compute and, in the case
where  the data point  is close  to a surface,  approximates  the geometric
distance  quite  well. When the sum of squares  of the algebraic distances of
all points  is minimized,  we obtain  algebraically nice solutions.  Each  row
of the approximation matrix M, is computed by evaluating each  term in
fC x, .v, z) at the corresponding point. And,  the sum of squares  is expressed  as
llM,xl12 = xTM;MAx.

2.3.2 Approximation  on Contour  Levels. An algebraic surface ftx, y, z) =
0 can be viewed  as the zero contour of an explicit function w = f(x,  y, z).
Sometimes  it is more effective  to generate approximation data for some
level  values  w,, not only  w = 0. In Bajaj  and Ihm [ 1992131,  this contour-level
approximation is found  to remove unfavorable phenomena, such as singular
points,  self intersections, holes,  etc.  In this case, the objective  function of our
minimization problem  becomes IlM,x - b]]‘,  and its computational details
with examples  are discussed  in Bajaj  and Ihm [ 1992b].

2.3.3  Approximation  on the First-Order  Approximations  of Geometric  Dis-
tances. In addition  to the algebraic distance  and the contour level,  we look
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at a nonalgebraic distance metric fl p)/V/l p ). Sampson [1982] proposed its
use, in conic curve fitting, as a distance measure which is, in fact, a first-order
approximation to the geometric distance. With this metric, a better approxi-
mation to the geometric distance is achievable, however, only at the expense
of several iterative applications of least-squares approximation. We give an
example of application of this metric to quadratic surface fitting in Section 3.

2.3.4 Approximation on Hybrid Geometric Data. Containment of points,
curves, and surfaces is not the only way to produce MA. The matrix for
higher-order interpolation can be used as an approximation matrix when a
surface is not flexible enough for the higher-order interpolation. For exam-
ple, in Example 2.2, suppose that there are more points that must be con-
tained in the fitting surface. Then, it may not be possible that a cubic surface
f,( x, y, z) = O not only meets fl with C2 resealing continuity but also
contains the extra points. If Cl continuity is permissible, we can generate MI
for containment of the intersection curve (C 1), and the points (Co) using the
Hermite interpolation technique and the matrix produced in the example
can be used as MA. That is, the remaining degrees of freedom, after interpola-
tion, are used so that the C2 continuity requirement is satisfied as much
as possible. See Bajaj [1992] for more details.

3. COMPUTING OPTIMUM SOLUTIONS

In the foregoing section, we showed how the algebraic surface-fitting problem
is transformed into a constrained quadratic minimization problem of the
form:

minimize XT M~MAX

subject to MIX = O

XTX = 1,

where MA G RnOx”I, MI E Rn’xn’, and x ● R“ L.This minimization problem
appears in some applications [Golub and Underwood 1970]. In Golub [1973],
a solution is obtained by applying Householder transformations to MI to
obtain its orthogonal decomposition and then by directly computing eigenval-
ues and eigenvectors of a reduced matrix. In this section, we consider some
cases of the surface-fitting problems which arise in geometric design, and we
describe different algorithms where the singular-value decomposition (SVD)
is applied to computation of eigenvalues and eigenvectors. In each case, we
assume a quadratic normalization constraint which always guarantees a
nontrivial solution.

3.1 Interpolation Only

The first case we consider is that of interpolation alone. For example, a
surface which smoothly joins four pipes is found by interpolating four curves
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with prescribed normals. Here, the algebraic translation of this geometric
problem is find x such that MI x = O and XTX = 1.

Finding a surface satisfying the given geometric specifications is equivalent
to computing a nontrivial x in the nullspace of MI. In order for a nontrivial
solution to exist, the degree of a surface must be high enough to guarantee
that the rank r of Ml is less than the number n ~ of coefficients. To find the
null space in a computationally stable manner, we compute the SVD of MI
[Golub and Van Loan 1983] where MI is decomposed as MI = U 2V~ where
~ ● Rn,xn, and V = RnIxnL are orthonormal matrices, and Z = diag
(U1, Uz, . . ..q. )GRnIxn I is a diagonal matrix with diagonal elements ml >
W2> . .. > q, > 0 (S = rnin{nl, n,,)). The rank r of MI is the number of the
positive diagonal elements of Z, and that the last n,, – r columns of V span
the nullspace of MI. So, the nullspace of M ~ is compactly expressed as:

{x= Rnlx = ~~lr LU,V,+,, where W, e R, and v] is thejth column of V},

or x = V., ,W where V. ., ● RnIX(’ll-’) is made of the last 4) n,, – r

columns of V, and w a (n, – r )-vector.

For the quadratic normalization, we have XTX = XT V~T ,Vn, ,W = w Tw =
1. Hence, any nonzero x from the subspace of dimension n,, – r spanned by
the last n, – r columns of V can be the coefficients of a surface resulting
from the interpolation specified by Ml.

Example 3.1 (Computation of the Nullspace). Consider MI in Example
2.1. Its singular values Z are diag(5.65685, 4.89898,4.89898,2.82843,
2.82843,2.82843,2.0, 1.41421,0.0, 0.0). Hence, the rank of MI is 8, and
the nullspace of MI is given as x = rl . Vg + rj . VIO, where Vg = (0.0, 0.0,
1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, O.O)T, and Vlo = (0.57735, 0.57735, 0.0,

0.0,0.0,0.0,0.0,0.0, 0.0, – 0.57735)T. That is, the interpolating surface is

f(x, y, z) = 0.57735rzx 2 + 0.57735r2y2 + rlzz – 0.57735rz = O which has
one degree of freedom in controlling its coefficients. The nontrivial solutions
are obtained by making sure that the free parameters, r, and r-z, do not
vanish simultaneously.

Example 3.2 ( A Quintic Surface for Blending a Corner of a Table ). Gener-
ating blends that provide smooth transitions between the sharp corners and
edges of solids has been recognized as one of most important problems
in geometric modeling [Woodwark 1987]. A direct application of the inter-
polation technique to an algebraic surface is a simple way of computing
a blending surface. Consider a corner of three faces that consist of the
first quadrants of xy, yz, zx planes. (See Figure 4.) First, the three edges
are smoothed out by three quadratic surfaces: a cone 4 z 2 + 4 xz – 12 z +
4y~ + 4xy – 12y + X2 – 6x + 9 = O (red checker), another cone 10yz –
25z Z + 40z – y2 + 10xy – 8y – 25x2 + 40x – 16 = O (blue checker), and a
circular cylinder ( x – 1)2 + ( y – 1)2 – 1 = O (green checker). These three
surfaces, intersected with x = O, y = O, and z = O, respectively, produces
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Fig. 4. Corner blending with algebraic surfaces.
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Now, we look for a quintic surface S: f( x, y, z) = O which smoothly
interpolates the three curves. Our Hermite interpolation technique gener-
ates a homogeneous linear system of 66 equations and 56 unknown coefll-
cients. The rank of this 66 x 56 system is 45; hence, the dimension of the
solution space is 11. An instance surface f( x, y, z ) = 0.0388z5 – 0.0928yz4 +
0.1610xz4 – 0.2979z4 + 0.0358y2zs + 0.2155xyz3 + 0.1259yz3 – 0.0924X2ZS –
0.5050xz3 + 0.6738z3 – 0.0274ysZz – 0.3272 xy2z2 + 0.2301y2z2 –
0.1092 xzyz2 + 0.0442 xyzz – 0.3133yzz + 0.2005X3Z2 – 0.2869X2Z2 +
0.7299xz2 – 0.4393z Z– 0.0030y4z + 0.3321xy3z – 0.2238y3z – 0.1341 xzy2z +
0.0963XY2Z – 0.0541y2z + 0.3321 x:1yz – 0.4679x Zyz – 0.0340xyz + 0.4404yz –
0.1311X4Z – 0.0386X3Z + 0.4673X2Z – 0.3843xz – 0.19742 + 0.0655y5 –
0.2883xy4 – 0.0719y4 + 0.0297x2y3 + 0.6958xy3 – 0.1392yJ – 0.2488x3y2 +
0.7195x2yz – 1.4771.ry2 + 0.7541y2 – 0.0357x4y + 0.2427x3y – 0.7298x2y +
1.3307xy – 0.9488y + 0.0395x S – 0.0663x4 – 0.0286x3 + 0.3023x2 –
0.5897x + 0.4443 in this solution space is shown in Figure 4 (skin).

While computing the above quintic triangular patch for corner blending, it
is observed that the surface is singular at the three vertices where three
circles are tangent to each other even though we arrange that the normal
vectors along the circles are compatible at the vertices. In Ihm [ 1991], it is
shown that just enforcing two curves to have the same normal vector at an
intersection point does not guarantee the regularity of an interpolating
surface at the point. In fact, the normal vectors along the curves must be
compatible up to order two at the point, and an algebraic surface conveniently
solves this problem through singularity when the normal vectors are not
compatible. We also tried a quartic algebraic surface for this blending. The
rank of the 54 x 35 matrix computed during C 1 interpolation is 33; hence,
there is a family of quartic algebraic surfaces with two degrees of freedom.
However, singularity occurs along the whole circles from the cones as well as
from the three vertices as predicted by the theory. This phenomenon is
interpreted as a quartic algebraic surface is not powerful enough for these
geometric data, and the algebraic degree must be, at least, five.

3.2 Interpolation and Approximation

In the previous subsection, w is a (n,, – r )-vector whose elements are free
parameters that appear in coefficients of a family of algebraic surfaces. A
final surface is selected by providing proper values for w, by a process termed
shape control. One method is for a user to specify an approximate shape of a
desired surface with an additional set of points or curves and then let the
system automatically y find a solution vector x. Then, what the system needs to
solve efficiently is a constrained quadratic optimization problem: minimize
xTM~M~x subject to MIX = O and XTX = 1.

The solution to this minimization problem can be expressed analyti-
cally in closed form. From the interpolation constraint, we get x =
v ~, ,W as before. Hence, after removing the linear constraints, we are led
to the problem minimize wTV~~_ ,M~MAV~L ,W subject to WTW = 1.
Note that V.: ,M~MAVn is a positive definite matrix, and this prob-,r
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lem is equivalent to minimizing the ratio of two quadratics R(w) =
(wTV:_,M~M V* .,,. ,w)/(w~w). R(w), which is called Rayleigh’s quotient,
is min{mized by the first eigenvector w = w~i. of V.:_ ,M~MAVn,, _,, and its
minimum value is the smallest eigenvalue A~i. [Strang 1988].

Contrary to computing the eigenvectors and eigenvalues of
V~~_,M:M~VnL, , directly as in Golub [ 1973], we apply singular-value decom-
position to MAV., _, without computing Vn~_, MI MAVa, _, explicitly. This
leads to a nume~cally cheaper computation. Here, we assume that n. >
nU – r, and that the rank of MAV” U_, is n” – r. (That is, there must be
enough linear constraints to consume the remaining degrees of freedom.)
Then, MAV~,,_, = ~QQT Where P ~ R“.’”. and Q ~ Rtn-’jxt’,-’) are o~ho-

normal matrices, and Q = diag(~l, Oz, ..., Onu_r) = R’” X(”C-’) with WI >
o.)~2 . . . > oJn,_r > 0.

Now, ‘

Aw = V~T_ ,M~M~V~ . ,W
L’

Here, flTf) is a (nu – r) X (n” – r) diagonal matrix with a diagonal entry
m,2>0, i=l,2 ,..., (n. – r). Then, from the above equation, fl~fl(Q”w) =
A(QT w) which implies that the first eigenvector w~i~ of V“: ,M~MAV”,, _, is
such that Q~w~i. = e“, ., where e.,,., = [0,0, . . . ,0, llT is a (nU – r)-vector,
and its minimum value Ami“ is O;,.,. Hence, w~i~ is the last column of Q.
Once we compute Q, we get the coefficients of the algebraic surface x =
X., _, Qe.L,_,, which is nontrivial, and hence satisfies the normalization
constraint.

Example 3.3 (Two Quartic Surfaces for Smoothly Joining Four Cylindrical
Surfaces). In this example, we compute a surface S: f( x, y, z) = O which
smoothly joins four cylinders which are given as CY LI: y 2 + z 2 – 1 = O for
X >2, CYL2: y2 +22 –l=Ofor x<–2, CYL~:x2+y2 –l=Oforz>2,
and CYLb: X2+Y2– 1 =Oforz< –2.

The interpolation requirement is for S to meet the four curves on the
cylinders with C 1 continuity. Interpolation for a quartic surface S generates
MI = Ra x35 (64 linear equations and 35 coefficients) whose rank is 33.2 This
implies a 2-parameter family of quartic surfaces satisfying the interpolation
constraints.

Then we need to select a surface with desired shape from this family.
We use least-squares approximation during this process. To illustrate
the effect of approximation, two sets of points are chosen: SI = {(O, 1.75, O),

(0, – 1.75, 0), (– 1, 1.25, 0), (– 1, – 1.25, O), (1, 1.25, O), (1, -1.25, O)} and
S2 = ((O, 1.25, O), (O, – 1.25, O), (– 0.5,1.125, O), ( – 0.5, – 1.125, O), (0.5, 1.125,
O), (0.5, – 1.125, O)). (See Figure 5.)

For the least-squares approximation with normalization, the eigen-
values and eigenvectors for S’l and Sz are computed. As a result, we obtain

‘As a byproduct of interpolation process, it is found out that degree 4 is the required minimum.
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Fig. 5. Points to be approximated.

A17?1n.< ~ = 1.265429. 10-1, A~i,,s, = 5.097809 “ 10”s, and ~$jx, y, z) =
0.315034x Z + 0.273947yz + 0.31503422 – 0.849216 – 0.035612X4 –
o.030137x~y2 – 0.030137XZZ2 + 0.005474y4 – 0.030137Y2Z2 – 0.035612z4,

fsjx, Y, z) = 0.281104x2 + 0.615461y 2 + 0.281104z2 – 0.201225 +
0.005325x4 – 0.323706x2y2 – 0.323706X2ZZ – 0.329031y4 – 0.323706y2z2 +
0.005325z 4. The surfaces are shown in Figure 6.

Example 3.4 (Smoothing a Solid with Triangular Algebraic Surface
Patches ). Generation of a mesh of C 1 surface patches that smooths a solid
has been an important problem in computer-aided geometric design. Bajaj
and Ihm [ 1992b] present an efficient algorithm for generating a family of
curved solid objects with boundary topology related to an input solid. Given a
solid with triangular faces, each edge is replaced by a conic or a cubic curve,
depending on the geometry around the edge, which is, then, associated with
normal vectors of the same degree along the curved edge. Each face, now
made of three curves and associated normals, is fleshed with a degree five,
six, or seven algebraic surface patch using the interpolation and approxima-
tion technique. In this local scheme, the shape of the resulting curved solid is
controlled mainly by controlling shapes of boundary curves. Figure 7 illus-
trates a solid, made of 100 triangular faces, with curved edges (a) and a
smoothed solid (b).
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Fig. 6. Two  different least-squares approximations.

3.3 Least-Squares  Approximation  Only

At times,  we desire  a surface  which is only  a least-squares approximation
from given geometric data. This is often  the case when straightforward
interpolation leads to a prohibitively high algebraic degree  of the resulting
surface.  This least-squares problem,  by itself,  is just a special  case  (M, = 0) of
the minimization problem in the previous  section.  In this case,  V,,- r disap-
pears  in the solution, which results in x = Qe,L,.

Example 3.5 (Least-Squares  Approximation to Points: Algebraic Distance).
Consider that we are computing a quadric surface  f(x, y, z) = 0 which
approximates the following collection of points  in the least-squares sense:
S = ((0.451663,  - 0.623974,  0.0683961,  (0.328349,  - 0.677433,  - 0.0589291,
(0.439221, - 0.591023, - 0.112337), (0.203666, - 0.713408, - 0.1796081,
(0.316158, - 0.642981, - 0.235268), (0.416159, - 0.548033, - 0.2837861,
( - 0.013524,  - 0.726372,  - 0.3577001,  (0.091099, - 0.689252,  - 0.4140741,
(0.086853, - 0.728675, - 0.279685), (0.189591, - 0.627654, - 0.4652151,
(0.198347, - 0.674498, - 0.335774), (0.350256, - 0.445695, - 0.5359441,
(0.385507, - 0.498320, - 0.4253211,  (0.277729, - 0.544938, -0.506400),
(0.299997,  - 0.596124, - 0.382735)).

Each  row of M, is obtained by simply evaluating, at each  point,  the basis  of
quadrics:  (x2, y’, z2, xy, yz, ZX, x, y, z, 1). After applying SVD to M,, we get
a quadric surface whose error-of-fit is Amin = 2.281646.  10a7.

In the previous  example, what is minimized is the sum of squares  of the
algebraic  distance,  which is the contour level  of the function w = f(x,  y, z).
This algebraic distance is not always  the same as the geometric  distance,
which  is the actual  distance  from a point to a surface.  Sometimes, it is
more  desirable  to minimize the sum of squares  of the real distance.  Unfortun-
ately,  this nonalgebraic metric entails  an intractable minimization problem
whose  solution  cannot be expressed analytically in closed  form. Sampson
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[1982] uses a nonalgebraic distance metric, which approximates geometric
distance, in fitting conic curves. This concept can be naturally extended to
the surface-fitting problem. We get to this nonalgebraic metric via a different
derivation.

First, let us recall that the distance from a point p to a surface ~( x, y, z) = O

is the distance from p to a nearest point on the surface. Let q be the point on
the surface which results in the distance. Then, the line in the direction of the
normal of ~ at q must pass through p, and q = p + t(Vf(q ))/11Vf(q)ll where
the absolute value of t is the distance. From Taylor’s expansion,

o =f(q) =f(p)

Hence,

Itl=

()Vf( q )
+ Vf(p)” t

Ilvf(q)ll + ““”’

-f(p) llvf(q)ll

Vf(p). vf(q)
(2)

is the first-order approximation to the distance from p to f. When p is close
to the surface, Vfl p) is a good approximation to Vf(q ). In this case, the
expression (2) becomes

Itl=
-f(p) llvf(p)ll
Vf(p) “ Vf(p)

. -f(p) llvf(p)ll

llvf(p)112

If(p)l *fdi~t (p)

= Ilvf(p)ll f “

This argument suggests that distf ( P), the weighted algebraic distance, be a
good approximation to the geometric distance, and that

~ Czistf(p)’ = ~or~,p ,,:;:’;,,2
for all p

(3)

be minimized instead of

z f(p)’. (4)
for all p

However, the solution which minimizes the expression (3) cannot be easily
expressed in closed form due to introduction of the weight IIVf(P) II.

This numerical intractability can be avoided by an iterative refinement
algorithm, First, we compute XIOJ,coefficients of a surface fio~, such that (4),
the sum of squares of algebraic distances, is minimized. To do this, MA = M~(0)
is obtained as before. The gradient of fro) gives an initial guess to Vf( p).
Then, dividing each row of MA by llV~Of p)ll for each corresponding p results
in Mxl ~which is, then, singular-value-decomposed to compute X(I} and fil ~.
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Table 1. The Geometric and Algebraic Distances

k

o
1

2

3

4

5

6

i’

8

9
. . .

26

27

28

aeo. distance

3.925480319e-05
2.870799913e-05

2.76291 1566e-05
2.696617975e-05

2.661304527e-05

2.642308921e-05

2.632187346e-05

2.626807583e-O.5

2,623953195e-05

2.622440016e-05

alg. distance

2.281646641e-07

2.497249375e-07

2.472207775e-07
2.465526346e-07

2.461413816e-07

2.459224774e-07

2.458047987e-07

2.457421127e-07

2.457087993e-07

2.456911254e-07
. . . . . .

2.620735209e-05 2.45671201.5e-07

2.620735193e-05 2.456712014e-07

2.620735184e-05 2.456712013e-07

This process is repeated further, producing sequence of~h~ which refines
the solution. In each iteration, ~~) is expected tobe a better approximation
tothe surfacewe are trying to find.

Example 3.6 (Iterative Weighted Least-Squares Approximation to Points:
Nonalgebraic Distance). In Example 3.5, we have computed MA =MA(OJ,
and fro). Table I illustrates the result of application of the iterative algorithm
to the set of points. The gee. distance column shows the sum of squares of
the real geometric distance3 for ~ ~~,and the alg. distance column shows the
value of the expression (4), the sum of squares of the algebraic distances for

fik,. It is obse~ed that the sum Of Squares Of the geometric distances
decreases as iterations proceed, which implies that ~ ~, converges to the
surface which best fits the given point data. It is also interesting to see that
the sum of squares of the algebraic distances makes a quantum jump at the
first iteration and then converges to a local minimum.

4. CONCLUDING REMARKS

We have implemented our algebraic surface-fitting algorithms and included
them in SHASTRA, a collaborative distributed geometric design and manipu-
lation environment [Anupam and Bajaj 1993]. SHASTRA consists of a grow-
ing set of X-11 toolkits for geometric design, that are networked into a highly
extensible environment where all the toolkits are interoperable.

‘The geometric distance was calculated by solving a 4-by-4 system of nonlinear equations,
derived using the Lagrange multiplier method.
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In this article, we have seen that implicitly represented algebraic surfaces
can be very appropriate for C k interpolation and approximation to geometric
data. However, there still remain some difficult problems to be solved
for algebraic surfaces to be fully used for geometric modeling. First, it is
not always easy to make sure that input points and curves lie on one real
component of the solution surface. One heuristic, which can be used, is to
include auxiliary points and curves to effectively bridge the gap between
separate surface components. Another approach is proposed in Moore and
Warren [1991] where a signed-distance fit is used to generate a single sheet
of a surface inside a tetrahedron for densely scattered point data. However,
the question remains open for producing necessary and sufficient conditions
on the coefficients of the fitting surfaces, which would ensure that all given
points and curves lie on the same continuous real-surface component.

Another unfavorable issue in algebraic surface design is that of singu-
larities. We need to be able to ensure that singularities do not occur on
some interior region of a surface that we are interested in. For example, the
triangular algebraic surface patch in Figure 4 is singular at the three vertices
while it is regular inside. In fact, singularities are useful in this case because
no regular patch can smoothly blend the corner for that particular configur-
ation. It is highly desirable again to derive polynomial constraints required
to guarantee that any specified algebraic surface patch . is without any
singularities.
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