Scalar Field Modeling & Visualization on the Intel Delta®

Chandrajit Bajaj

Department of Computer Science,
Purdue University,

West Lafayette, IN 47907
Email: bajaj@cs.purdue.edu

Kwun-Nan Lin

Department of Electrical Engineering,
Purdue University,

West Lafayette, IN 47907

Email: kwunnan@ecn.purdue.edu

Abstract

We describe the parallelization of 3D scalar field
modeling/visualization programs on a MIMD machine
using message passing. The 3D scalar field is a 3D
cuberille volume of scalar intensities such as parallel
image slices of CT (Computed Tomography) or MRI
(Magnetic Resonance Imaging) data. The cuberille
volume is divided into small subcubes. Each subcube
is approximated by a trivariate cubic polynomial func-
tion. These polynomial functions are constructed to
locally achieve C'' continuity on the shared faces of the
cubes, and provide a compact interior representation
(model) of the entire volume image data. The paral-
lelization is based on a ”multi-host” partition scheme.
Several possible partition methods are discussed, and
our method is justified in terms of efficiency and low
I/O overhead. Several strategies were implemented to
eliminate or alleviate the problems usually associated
with “host-slave” partition scheme. Our implementa-
tion shows efficient utilization of all nodes with good
scalability.

1 Introduction

Measurement-based volumetric data sets arise for
example from medical imaging (Computed Tomog-
raphy — CT, Magnetic Resonance Imaging — MRI),

*Supported in part by NSF grants CCR 92-22467, DMS
91-01424, AFOSR grants F49620-93-10138, F49620-94-1-0080,
ONR grant N00014-94-1-0370 and NASA grant NAG-93-1-1473.

atmospheric, geological, geophysical measurements.
Synthetic volume data sets are generated for exam-
ple by computer based simulation such as meteorolog-
ical, thermodynamic simulations, finite element stress
analyses and computational fluid dynamics. Model-
ing the information contained in these, typically huge,
data sets via trivariate polynomial finite element ap-
proximations provides mechanisms to allow querying,
interaction and manipulation. Volume visualization
provides mechanisms to express information contained
in these, typically huge, data sets via translucent dis-
plays of isosurfaces or volume renderings — the chal-
lenge, of course, lies in making these images easy to
understand.

Previous related work on MIMD architectures has
concentrated on the parallel rasterization of polygons,
see for e.g. [6, 3, 4]. In this paper we are involved with
the parallel generation of polygons representing dif-
ferent isocontours (isosurfaces) of volume images (3D
reconstruction). Our reconstruction approach differs
from others (for .e.g [5]) in that we use higher order
approximation schemes to yield both a compact C!
smooth reconstruction and a concise analytic repre-
sentation (model) for post volume modeling manipu-
lations, volume deformations, etc. Generating poly-
gon isosurfaces from such C! reconstruction also gets
rid of polygon shading artifacts such as Mach ringing.

We utilize standard graphics hardware for interac-
tive manipulation and viewing of the isosurfaces. Ras-
terization of the polygons using the parallel machine
would be a desirable feature for interactive visualiza-

tion once a high speed connection is available at Pur-
due between the MIMD machine and a graphics front-
end.

In §2 of this paper we present details of trivari-
ate cubic polynomial approximation computations for
dense cuberille data (CT/MRI). In §3 we briefly de-
scribe the current Intel computing resources at Pur-
due. In §4 we discuss the pros and cons of differ-
ent data and computation partitioning schemes. In §5
elaborate on the ”multi-host” partition scheme that
we used and provide implementation details. Finally,
in §6 we present several tables of timing results from
our implementation and experiments.

2 Modeling via Trivariate Cubic Ap-
proximation

The input is a set of CT slices of certain XY resolu-
tion (such as 512 by 768). Each pixel is associated with
a gray level. The number of slices, which form the Z
axis, might range from a hundred to several hundreds.
We construct piecewise C'' approximation functions
F(x,y, z) such that the function value of every pixel
is equal or close to its gray level. The desired out-
put for interactive visualization are sets of polygons.
Fach set corresponds to an isosurface F(z,y,2) = ¢
corresponding to different anatomical regions. See for
example Figures 1,3.

Bernstein-Bezier (BB) forms are used to represent
the cubic trivariate polynomial approximation func-
tions. Fz,y,z) =
S Yy Y wi g BP (0B (y)BL(:); e
BrMt) = % t'(1 —)"~ The polynomial function
is trivariate cubic if (m,n,q) = (3,3,3). The C? data
of a pixel i1s defined as:

f2L o8 of 0% 0% 9% | _&f
Y dx) Oy Oz dxdy’ dydz’ dxdz’ Jxdydz

and 1s

computed using finite difference formulas. Let Az,
Ay and Az be the unit distances of the grid in X,V
and Z directions. Here Z axis is formed by slices. Fig-
ure 2 shows an example to compute C3 data from 2
slices Sp and 5. The C? data of vertex (1,1,0) is ob-
tained as:

af _ f(21,0)-f(0,1,0) af £(1,2,0)-£(1,0,0)
dx T 2 Az) dy 2 Ay)
af _ f(1,1,1)=f(1,1,0)

z Ay

%f _ f(2,2,0)-f(0,0,1) %f _ f(1,2,1)-f(1,0,0
dxdy 2 Az 2Ay ’ dydz 2 Ay Az ’
8% _ f(2,1,1)-f(0,1,0)
dxdz 2 Az Az

8%f _ f(2,2,1)-/(0,0,0)
dxdydz — 2 Az 2Ay Az

Paper [2] gives mathematical proofs of the C*! piece-
wise continuity of both a (2,2,2) and (3,3,3) trivariate

Figure 1: A Stack of C' Smooth Cubic Spline Con-
tours which are Iso-Curves from a Stack of MRI Data
Slices

zn Slice1

(%1)) R
(1,20)
O

Slice0

(000) (L00) (200)

Figure 2: Two Slices of a Cuberille Volume, and a
Subcube between these Slices

polynomial approximation. These piecewise higher or-

der approximations are generalizations of the C¥ con-

tinuous piecewise linear or trilinear approximations

[5, 7]. Here we concentrate on the parallelization of

these computations and the generation of isosurfaces.
The algorithm consists of the following steps:

Step 1: read 2 slices Sy and Sy from disk

Step 2: compute C® data of all pixels located at
the corner of the user defined grid from two
slices Sy and Sy.

It is very computation expensive if the grids
cover all pixels. A large grid requires much
less computation, but it loses detailed image
information since most pixels are not used.
The largest grid with every pixel used is 4 x4
pixels. Only one quarter of all pixels are at
the corner of 4 x 4 grids. The rest pixels are
still used in the computation of C? data.

Step 3: read another slice S,

Step 4: similar to step 2, compute C? data from
three slices Sy, S1 and S

Figure 3: Shaded Display of a Head, Brain, Femur and
Lungs which are Isosurfaces of Volume Cuberille MRI
Data

The calculation of C? data from three slices is
similar to that of two slices. It uses the lower
slice instead of itself while 0z is involved. Of
course all Az is replaced by 2 Az.

Step b: fit a trivariate cubic (3,3,3) function
F(x,y, z) to each subcube
Now we have two slices with C® data to form
subcubes (Figure 4). Every grid of a slice
with its matching grid on the other slice form
a subcube. Each subcube consists of 8 ver-
tices, and each vertex has 8 pieces of C2 data.
So there are 64 equations to solve 64 pa-
rameters of (3,3, 3) interpolation in the least
square sense.

Step 6: for each node, compute the polygons of iso-
surface corresponding to certain constant c
such that F(z,y,z) =c¢

Step 7: discard one slice and go to step 3 to read
a new slice

3 Computing resources

The machine used in this project was Intel’s
iPSC/860 installed at Purdue University with 16
nodes and binary compatible with the Touchstone
Delta at Caltech. The Paragon that Purdue Univer-
sity is installing will have 128 nodes and be program
compatible with the iPSC/860 and Delta machine.

srm iPSC/860
(Intel 386) 16 nodes

ipscgate
(Sun Sparc)

s [D
storage
<[> ethernet

Figure 4: The iPSC/860 system configuration at Pur-
due

The following description is restricted to our exper-
iments with the iPSC/860 located at Purdue Univer-
sity. Our connection time to the Delta was limited to
sporadic use and then only for short durations.

Each node of iPSC/860 is an independent processor
with its own local memory (16 M bytes). There is no
shared memory. Information exchange is achieved by
message passing through a high speed interconnection
network. Fach node has access to Internet by TCP/TP.
All 16 nodes shares a same TP address.

The programs run by each nodes are loaded by
a system resource manager (srm) which is an Intel
80386 class machine. The srm is mainly used to
allocate nodes, load programs, kill nodes’ processes
and deallocate nodes. The program development is
performed in a faster machine (Sun Sparc) named
ipscgate. srm and ipscgate share the same file sys-
tems by NFS. Each node can access the storage by
iPSC concurrent file system (CFS). The iPSC user
guide states that the CFS allows several (perhaps not
all, T guess) nodes to access the storage simultaneously.
See also Figure 4.

4 Partitioning Schemes

The algorithm in §2 is for a single processor ma-
chine. Different partition methods can be utilized to
divide the work load. There are at least three classes
of partition methods: symmetry, host-slave and multi-
host models.

4.1 Symmetry Partitions

In symmetry partitioning each node (processor
unit, PE) performs the same job. The volume of CT
slices is divided into sub-volumes, and each node pro-
cesses a sub-volume independently. This static par-
tition usually has problems of unbalanced load and
high I/O overhead. The processing time of each sub-
volume might be very different, and it is difficult to
utilize idle nodes to help busy nodes using a symme-
try partition. The cause of high I/O overhead is that a

NS

(b)

Figure 5: Symmetry Partitions along (a) 7 axis, and

(b) X and YV axis

slice might be read more than once by different nodes.
This partition suits the situation where the slice num-
ber is large, and the processing time of each slice does
not vary much.

One always incurs higher disk read overhead if the
computation requires shared slices. If the partition in-
volves the Z direction such as in Fig. 4.a, some nodes
obviously are not used when the node number is more
than the slice number. Since four slices (or three slices
at the top or the bottom of the volume) are required
for the calculation of C® data of two slices, the bound-
ary slices between sub-volumes need to be read more
than once. For example, if each sub-volume contains
only one slice, every slice except the top and bottom
slices will be read four times by different nodes.

If the partition involves X, Y or both directions
such asin Fig. 4.b, it still has high T/O overhead. Each
sub-volume contains a certain region of every slice.
The time to read a small region from a whole slice is
not proportional to its size. The data proceeding the
desired region need to be skipped or scanned. If the
slice is in compressed form, the data proceeding the
desired region need to be read and uncompressed. So,
it takes the same time to read only the last pixel as to
read the whole slice of compressed form.

The 1/0 overhead could decrease efficiency of each
node if the concurrent file system (CFS) supports very
limited number of simultaneous disk access. Some
nodes need to wait for I/O access if they try to ac-
cess 1/O at the same time.

4.2 Host-slave and Multi-host Partitions

Host-slave partition has one host to assign jobs to
other nodes. The load of the slaves are usually bal-
anced because the work load of each slave is obtained
dynamically. But this partition incurs communication
overhead, bottleneck, idle host and idle slaves.

It requires communication overhead because data
is transferred from the host to slaves upon request.
The slave nodes require the host to always listen to

them to achieve fast response. If the host is doing
something, such as reading files, other than listening
to slave, the slave nodes become idle since no data
available from the host. The host causes a bottleneck
if it has insufficient computing power compared to its
ability to hand out data. On the other hand, it 1dles
if there 1s no request from slaves during certain time
periods.

The multi-host partition entails multiple hosts to
reduce the bottleneck incurred from insufficient host
computing power. All nodes are divided into groups.
Each group has one host and several slaves, and it
process a subset of slices. Basically the multi-host
partition is a hybrid of host-slave and symmetry parti-
tions. If there is only one group, it is a pure host-slave
model. It becomes a symmetry partition if each group
has only one node which is doing all the work. How-
ever, the multi-host model can re-assign the nodes of
a finished group as slave nodes to other groups. Thus
the load of each node is better balanced compared to
that of the symmetry partition.

5 Implementation Details

Besides, the volume data 1s usually stored in com-
pressed form. So symmetry partition is not a good
candidate because of its unbalance load and high
disk T/O overhead. We use the multi-host partition
scheme. All nodes are divided into several groups,
and each group is host-slave partitioned. Since the the
size of the volume image that needs to be processed
could vary a lot and the computation times may also
differ greatly for different subvolumes, the symmetry
partition 1s not a good candidate because of its load
imbalance problem and high disk I/O overhead.

5.1 Host-Slave Implementation

Several schemes are implemented to alleviate or
eliminate the problems associated with the host-slave
partition.

In order to discuss our partition scheme, we over-
simplify the algorithm stated in section 1 as in Listing

1.

Step 1. read slices. (takes very long time)

Step 2. compute C® data (takes short time)

Step 3. fit (3,3,3) functions (takes long time)

Step 4. compute the polygons (takes longest time)
Step b. goto step 1

Listing 1. The Oversimplified Algorithm

The best work division for host-slave partition is
that the host does steps 1 and 2, and the slaves do
steps 3 and 4. Step 2 takes very short time but requires
lots of involved data; it requires 27 pixel information
to compute the C2 data of a pixel. So the host perform
step 2 to avoid much communication overhead. The
host sends the C2 data of subcubes to slave nodes, and
the slave nodes can do steps 3 and 4.

So the algorithms for host node and slave nodes are
in Listings 2 and 3.

Step 1. reads slices

Step 2. computes C3 data

Step 3. transfers subcubes to and receives polygons
from slave nodes

Listing 2. The Host Node’s Algorithm

Step 1. request and get subcubes from the host
Step 2. fit (3,3,3) functions.
Step 3. compute polygons
Step 4. send polygons to the host
Listing 3. The Slave Nodes” Algorithm

The host-slave partition usually incurs some prob-
lems as described in section 3.2. We employ several
strategies to reduce the communication overhead, and
eliminate the problems of idle host and idle slaves.

Three actions are taken to reduce the communica-
tion overhead.

1. All communications are asynchronous.
It alternates between two buffers while
sending any message. As long as the
send_message is called, the node returns im-
mediately and can begin to pack data into
the other buffer. It waits only when the pre-
vious message sending is not completed.

2. Start communication early.
When a slave node is almost finished pro-
cessing subcubes; it sends a request to the
host, so the slave can process newly arrived
subcubes without any delay. This reduce the
communication latency.

3. Reduce the number of transferred message
It takes almost the same time to send one
subcube or 10 subcubes. The host packs a
couple rows of subcubes into one transmis-
sion packet. This has a two-fold effect. It
not only reduces the number of transferred
packets, but also reduce the total transmit-
ted bytes. The shared boundary between
subcubes is sent only once instead of four
times. A pixel can be shared by 4 subcubes,

and thus 1t will be sent four times if it sends
one subcube per packet.

The slave nodes store calculated polygons in
local memory. They empty the polygons to
the host when the polygons data accumulate
to a certain level.

The program uses an interrupt handler to process
communication requests. So, it can still hand out sub-
cubes or receive polygons even when it is doing some-
thing. That is, the host always listen to slave nodes,
and thus eliminate the idle slave node problem due to
an unattending host. It is very tricky to implement
interrupt driven software. From our experience, many
hard to trace bugs, which only happen once in a while,
are related to the critical section violations.

As to the problem of the idle host, the host pro-
gram is designed to use its idle time to help processing
subcubes. When the host is waiting for all subcubes
of two slice to be transferred, it also processes addi-
tional subcubes. It still allows request interrupt to
arrive while it is helping process a subcube, so the
data transmission to a slave is not delayed. Mutual
exclusion is carefully implemented. The host sends
out large quantities of subcubes to each node at the
beginning of a slice, and reduces the number of sent
subcubes exponentially when the slice is almost done.
This avoids long host idle time waiting for a slave to
complete.

The algorithms for host node is in Listings 4. There
is little change in the slave’s algorithm.

Step 1. read slice S; and compute its C® data
Step 2. starts the interrupt handler so the subcube
transmission to slaves can happen

in background. This step takes little
time since it does not wait.
Step 3. read new slice S;y1 and compute its C® data
Step 4. wait for all subcubes of the ”old” slice S;
to be transferred to slave nodes by the
interrupt driven handler. The subcubes
formed by the new slice S;41 read at
step 3 is transferred at the next iteration,
and not the current iteration.

Step 5. go to step 3

Also help processing subcubes while waiting.

Listing 4. The Host Node’s Interrupt Driven
Algorithm
5.2 Multi-Host Implementation

Multi-host partition is used to solve the bottle-
neck problems caused by insufficient host’s computing

power. All nodes are divided into several groups in
which there is one host and some slave nodes. Each
group processes a subset of slices (Figure 6 (a)).
When a group finishes its share of slices, the nodes in
that group are re-assigned as slave nodes to other un-
finished groups (Figure 6 (b)). The number of nodes
assigned to each unfinished group is proportional to
the unfinished work load of that group.

The following is the detailed implementation: Each
group determine its share of slices. The boundary
slices of every group are overlapped to provide the
proper boundary condition. Each group processes its
share independently. There is no synchronization be-
tween groups. When a group finish a slice, it broad-
casts a message to other group hosts, so each group is
aware of how much work is left in the other groups.
When a group has only half a slice left; it broadcasts
a message to avoid the re-assignment of nodes from
other groups to it. When a group finishes its work, it
sends the total amount of calculated polygons to a spe-
cific node, and also registers that it 1s done. Then all
nodes in the finished group are re-assigned to other
group according to the remaining work of the other
groups. The host sends messages to other group hosts
to inform them of his new slaves. The very last group
host need to do some cleanup such as obtaining the
total amount of generated polygons and released all
nodes.

Although the multi-host partition has better per-
formance over symmetry and single-host partitions, it
is relatively difficult to implement because it could
cause a deadlock because of communication delay. In-
tel iPSC is a message passing, not a shared memory,
system and each message takes time to be delivered
and received. For example, although a finished group
has posted a ”done” message, the message might not
be processed in time by the other groups. So two fin-
ished groups might re-assign its group nodes to each
other, and thus cause a deadlock. One solution to
avold such deadlocks is simply to discard newly as-
signed slave nodes when the group has finished its
work. Those discarded slave nodes become orphans
which have no host, and don’t do any more work.

6 Results

The input for our initial experiments was 65 slices
of 512x512 resolution images of a sphere with gray
level increasing with the sphere’s radius. The image
data is generated by the group host on the fly. The
results of Table 1-4 are obtained using the (1,1,1) ap-
proximation from C° data. Table 5 is obtained from

QR W

finished

@)

Figure 6: (a) Initial Multi-Host Partition (b) The
Nodes of a finished Group are re-assigned to other
Groups

by a (3,3,3) approximation of 65 slices with 192x 128
resolution. The algorithm for (1,1,1) yielding a C°
smooth approximation is very similar to the (3,3,3)
approximation which is at least C'' smooth. The out-
put is seven sets of polygons, each set corresponding to
a 1sosurface of a certain value. The total output size is
121,486 polygons for the (1,1, 1) approximation, and
78,741 polygons for the (3,3, 3) approximation. Each
polygon have three to six vertices of XY 7 coordinate
values and a normal associated with each vertex.

The total time is the total processing time from the
beginning to the end. It includes generating the sphere
test data, message passing, processing and collecting
calculated polygons. The polygons are transfered to
the group hosts, and then discarded to avoid writing
to disk. The idle teme is measured as the time to
wait for a message to come in. The slave ave. idle
is the average slave idle time. The sl. id. maz — min
row shows the variation in slave idle time. The smaller
number means better load balancing. The speed/node
row shows the speed up per node. The maximum is
1. In the multi-host results Table 2,3 and 5, the slave
ave. idle and sl. id. max —min are not available when
there is more than one group. In multi-host partition,
one node could be a group host and a slave at a dif-
ferent time. Or it could become an orphan which has
no host (see the multi-host partition section), so it is
hard to accurately measure the slave idle time.

Table 1 (at the end of the paper) shows the result
of single host partition. The slave nodes begin to idle
with the increasing number of nodes because they can
not get subcubes fast enough to keep them busy. It is
clear that the bottleneck occurs when the PE number
is more than 8. The total processing time increases
slightly with the increasing number of nodes because

the the extra slave nodes become a burden for the
already busy host to take care of.

Table 2 shows the results of a multi-host parti-
tion scheme. Each group has eight nodes. When a
group finishes its share, all nodes in that group are re-
assigned to other group as slave nodes. The number
of assigned nodes to each group is proportional to the
remaining slices of that group.

Because the multi-host partition is a hybrid of host-
slave and symmetry partitions, it has a little unbal-
ance load problem when there are many groups. The
unbalance load problem 1s alleviated, but not totally
eliminated, by re-assigning nodes of finished group to
unfinished groups. If the re-assignment is not per-
formed, the ”speed/node” ratio for 256 nodes drops
from 0.564 to 0.481 as shown in table 2 and 3.

Table 3 shows the result if the finished group does
not re-assign its nodes to other unfinished groups. It
can be seen that the performance is worse than Table
2. The load balance between groups does not differ
much because the test data is a perfect sphere. The
degrading of Table 3 could become much worse if the
processing time of different sections varies much.

The speed/node of 256 nodes degrades a lot be-
cause the slave idle time, during the host’s reading two
slices, begins to dominate. The slaves stay idle before
its group host has read 2 slices inthe (1, 1, 1) scheme or
three slices in the (3,3, 3) approximation. When there
are many groups, each group only process very limited
number of slices. This idle time becomes a large por-
tion of the total processing time. It is reasonable to
preload the group host with two slices for the (1,1, 1)
or three slices for the (3,3,3) approximation. If we
process hundreds of slices, this preloading time is neg-
ligible. Table 4 is obtained by preloading each host
with two images before starting the time clock. This
achieves near linear speed up.

Table 5 is obtained by the (3,3,3) approximation
obtained from 65 slices of 192x 128 resolution (not the
512x512 for (1,1,1)). The calculation of (3, 3, 3) takes
a much longer time than (1,1, 1) with the same size
of image. So the communication time becomes less
important. The slave idle time is mainly caused by
an unattending host and communication delay and is
smaller compared to (1,1,1). The bottleneck of the
single host partition won’t occurs when a host has
fewer than 32 slave nodes. The speed/node of two
nodes is relatively worse than four or eight nodes. This
might be caused by the waiting time for the slave to
fetch the last subcube of a slice. The host use its idle
time to help process additional subcubes, but it won’t
finish the last subcube and start processing a new slice

for programmatic reasons. So the host needs to be idle
until the last subcube is requested by any slave. This
idle time might be very long if a slave is given a large
chunk of subcubes a time. When a slice is almost done,
the host reduces the number of sent subcubes expo-
nentially to a predefined minimum number to achieve
a shorter host idle time. The expected idle time of
this kind of the partition with only one slave should
be N times that of the partition with N slaves if the
slaves’ requests are modeled as a Poisson process.

7 Conclusion

The results shown in Tables 1 — 5 do not involve
the writing of polygons to disks. We did experiment
with the different partitions with the output files being
written to disk. The slave idle becomes longer since
writing files takes a large amount from the group hosts’
processing time. It has better performance when one
group has fewer number of nodes. The optimal num-
ber of nodes in a group is heavily dependent on the
hosts’ file I/O time and the slaves’ processing time.
Longer slaves’ processing time or smaller I/O time
means the optimal group size will be large. Our imple-
mentation provides one way to manually achieve near
optimal performance.

Other features of our implementation include:

1. low I/O overhead

2. high efficiency even when a group has only a few
nodes because the host help in processing sub-
cubes

3. The host still pays attention to its slaves to
achieve low slave idle time even when it is do-
ing something else such as reading files or doing
numerical calculations.

Having parallel MIMD algorithms for modeling and
visualization 1s also only a step way from distributed
computations on a network cluster of workstations
(with slightly different tradeoffs). In [1] we present
details of a distributed volume rendering computation
of volume images based on distributed ray casting on a
network cluster. We are also now porting our approx-
imation and iso-contouring parallel MIMD modeling
and visualization algorithms to a network cluster.

References

(1]

V. Anupam, C. Bajaj, D. Schikore, and
M. Schikore. Distributed and Collaborative Volume
Visualization. IEEE Computer, x(x):x—y, 1994.

C. Bajaj and G. Xu. Trwariate Interpolants and
Scientific Visulization. Computer Science Tech-
nical Report, CSD-TR-93-18, Purdue University,
1993.

T. Crockett and T. Orloff. A mimd rendering al-
gorithm for distributed memory architectures. In
Proceedings of the IEEE/ACM 1993 Parallel Ren-
dering Symposium, pages 35-42, 1993.

D. Ellsworth. A multicomputer polygon rendering
algorithm for interactive applications. In Proceed-
ings of the IEEE/ACM 1993 Parallel Rendering
Symposium, pages 43-48, 1993.

Lorensen, W., and Cline, H. Marching Cubes:
A High Resolution 3D Surface Construction Al-
gorithm. Computer Graphics, 21:163-169, 1987.

S. Whitman. A task adaptive parallel graphics
renderer. In Proceedings of the IEEE/ACM 1993
Parallel Rendering Symposium, pages 27-34, 1993.

J. Wilhelms and A. Van Gelder. Octrees for Faster
Isosurface Generation. Computer Graphics, 24:57—

62, 1990.

of nodes 128 64 32 16 8 4 2 1
total time (sec) | 107.8 | 99.1 93.8 90.7 143 284 567 1110
host idle time 03% |[02% |01% | 01% | 0.0% |0.1% | 05% | 0%
slave ave. idle | 91.2% | 82.3% | 62.9% | 22.3% | 1.7% | 0.8% | 0.4% | N/A
sl. id. max-min | 0.7% | 0.9% | 0.4% | 0.5% | 0.0% | 0.0% | N/JA | N/A
speed/node 0.080 | 0.170 | 0.370 | 0.756 | 0.964 | 0.976 | 0.978 | 1.0
Table 1. The result of single host partitions.
of nodes 256 128 64 32 16 8 4 2 1
total time (sec) | 7.69 | 12.06 | 20.90 | 38.8 | 73.8 | 143 284 567 1110
host idle time 0.3% | 0.3% | 0.1% | 0.0% | 0.0% | 0.0% | 0.1% | 0.5% | 0%
slave ave. idle | N/A | N/A | N/JA | N/A | N/A | 1.7% | 0.8% | 0.4% | N/A
sl. id. max-min | N/JA | N/JA | N/JA | N/A | N/A | 0.0% | 0.0% | N/JA | N/A
speed/node 0.564 | 0.719 | 0.830 | 0.894 | 0.940 | 0.964 | 0.976 | 0.978 | 1.0
Table 2. The result of multi-host partitions, where
each group has 8 nodes.
of nodes 256 128 64 32 16 8 4 2 1
total time (sec) | 9.02 | 13.39 | 22.23 | 40.3 | 76.5 | 143 284 567 1110
host idle time 05% | 0.2% | 0.2% | 0.2% | 0.1% | 0.0% | 0.1% | 0.5% | 0%
slave ave. idle | N/A | N/A | N/JA | N/A | N/A | 1.7% | 0.8% | 0.4% | N/A
sl. id. max-min | N/JA | N/JA | N/JA | N/A | N/A | 0.0% | 0.0% | N/JA | N/A
speed/node 0.481 | 0.648 | 0.780 | 0.862 | 0.908 | 0.964 | 0.976 | 0.978 | 1.0
Table 3. The result of multi-host partitions with no
node re-assignment.
of nodes 256 128 64 32 16 8 4 2 1
total time (sec) | 5.237 | 9.60 | 18.45 | 36.36 | 71.38 | 141 282 565 1108
speed/node 0.826 | 0.902 | 0.938 | 0.952 | 0.970 | 0.979 | 0.982 | 0.983 | 1.0
Table 4. The result of multi-host partitions if eac
group 1s preloaded with two data slices.
of nodes 256 128 64 32 16 8 4 2 1
total time (sec) | 6.20 | 10.7 | 18.8 | 37.6 | 76.4 | 156 318 693 1165
host idle time 31% | 1.9% | 1.5% | 0.7% | 0.6% | 0.3% | 1.2% | 4.9% | 0%
slave ave. idle | N/A | N/A | N/A | N/A | 1.4% | 24% | 0.7% | 0.2% | N/A
sl. id. max-min | N/JA | N/JA | N/JA | N/A | 2.3% | 1.8% | 0.1% | N/JA | N/A
speed/node 0.733 | 0.849 | 0.966 | 0.967 | 0.953 | 0.934 | 0.917 | 0.840 | 1.0

Table 5. The result of multi-host partitions for (3,3,3)

approrimation.

