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A distributed 
environment that 
supports 
multimedia 
interfaces, Shastra 
strengthens 
collaboration in 
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engineering 
design. 
Implemented on a 
desktop system, it 
provides an 
infrastructure for 
user- and 
application-level 
cooperation. We 
describe the 
Shastra 
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tools, then walk 
through a 
scenario that 
shows how it 
enhances 
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problem solving. 

Vinod Anupam and Chandrajit  L. Bajaj 
Purdue University 

oday’s multimedia desktop systems 
are powerful tools that can revolu- 
tionize the way we collaborate in sci- T entific and engineering settings. 

Specifically, these systems let us depart from the 
traditional single-user design and analysis envi- 
ronment by supporting multiuser collaboration. 
The objective of our work is to develop next- 
generation design environments, where a geo- 
graphically distributed team can create, share, 
manipulate, analyze, simulate, and visualize com- 
plex 3D geometric designs over a heterogeneous 
network of workstations and supercomputers. 

Our approach integrates a collection of function- 
specific tools into a distributed, extensible environ- 
ment. We provide an enabling infrastructure for 
collaboration. This infrastructure saves users from 
having to implement functionality already existing 
in the environment, thus speeding up application 
development. We also provide mechanisms to sup- 
port a variety of multiuser interactions. 

In this article, we first describe our approach 
and its implementation, then present an example 
design scenario using it. 

Shastra design environment 
Shastra (a Sanskrit word meaning “branch of 

knowledge”) is a geometric and scientific design 

environment-that is, it provides facilities for geo- 
metric design and for simulation, visualization, 
and animation. At its core, Shastra features a col- 
laboration substrate that supports synchronous 
multiuser applications, and connection and com- 
munication distribution substrates that emphasize 
distributed problem solving for concurrent engi- 
neering (see Figure 1 on the next page). These sub- 
strates are function libraries with well-defined 
abstract programming interfaces that establish a 
framework for session management, data sharing, 
and multimedia communication. 

Fully integrated, Shastra supports rapid proto- 
typing and development of software tools for the 
creation, manipulation, and visualization of mul- 
tidimensional geometric data. The sidebar on page 
41 compares Shastra to related work in engineer- 
ing and scientific collaboration. 

The Shastra runtime environment consists of 
multiple interacting tools, which are implement- 
ed on top of the collaboration, connection, and 
communication substrates as shown in Figure 1. 
Some tools manage the collaborative environ- 
ment (kernels and session managers). Other tools 
implement scientific design and manipulation 
functionality (toolkits). Yet others offer specific 
services for communication and animation (ser- 
vices). These tools register with the environment 
at startup, providing information about the kind 
of services they offer (directory) and how and 
where to find them (location). 

The Shastra environment provides the user 
facilities to create remote instances of applications 
and to connect to them in client-server or peer- 
peer mode (distribution). In addition, it provides 
facilities for different types of multiuser interac- 
tion ranging from master-slave blackboarding 
(turn taking) to synchronous multiuser interac- 
tion (collaboration). It implements functionality 
for starting and terminating collaborative ses- 
sions, and for joining or leaving them. It also sup- 
ports dynamic messaging between different tools. 

Architectural features 
The Shastra design embodies the simple idea 

that geometric design and scientific manipulation 
toolkits can be considered as objects that provide 
specific functionality. These objects exchange 
messages-automatically or under user control- 
to request that other objects perform operations 
on their behalf. We present salient features of the 
Shastra architecture here (for a detailed descrip- 
tion, see Anupam and Bajaj’). 

At the system level, Shastra specifies architec- 
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Figure 1 .  The Shastra 
layer. Shastra tools 
interoperate using 
facilities provided by the 
Shastra layer- 
connection, 
communication, and 
collaboration 
management substrate. 

Figure 2. High-level 
block architecture of a 
Shastra tool. Users 
interact with tools via 
the user interface. Tools 

tural guidelines and provides communication 
facilities so that toolkits can cooperate and 
exchange information. At the application level, it 
provides collaboration and multimedia facilities 
so that users can develop applications coopera- 
tively to solve problems. Shastra integrates these 
levels to let users design sophisticated problem- 
solving virtual machines. 
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Figure 2 depicts the high-level block architec- 
ture common to all the tools in Shastra. This 
architecture makes it easy for tools to connect to 
each other and request operations, synchronous- 
ly as well as asynchronously. A tool has an appli- 
cation-specific core, the application engine, which 
implements the tool's core functions. Above the 
core is a functional interface mapper, which 
invokes functions embedded in the engine in 
response to requests from the graphical user, 
ASCII, or network interfaces. The GUI is applica- 
tion-specific. The ASCII interface is a shell-like 
front end for the application. The network inter- 

faces let tools communicate with other tools in 
the environment by multiplexing simultaneous 
network connections and implementing the 
Shastra communication protocol.' 

The entire set of connected Shastra network 
interfaces implements the abstract Shastra layer at 
runtime (see Figure 1).  This layer maintains the 
collaborative environment, provides access to dif- 
ferent systems, and provides facilities for initiat- 
ing, terminating, joining, leaving, and conducting 
collaborations. 

Tools 
Shastra tools are the building blocks of the run- 

time system. Kernels and session managers 
manage the distributed and collaborative envi- 
ronment. Shastra toolkits support scientific design 
and manipulation. Services provide mechanisms 
for communication and animation. We refer to 
toolkits and services collectively as front ends, or 
simply fronts, since they are the actual sites of user 
interaction. Any front can access the Shastra envi- 
ronment management tools to instantiate tools 
either locally or on remote sites, and to terminate 
previously instantiated tools. Fronts can connect 
directly to each other to exchange data in client- 
server or peer-peer settings using the Shastra layer. 

Kernel. The Shastra kernel consists of a group 
of cooperating kernel processes. It maintains the 
runtime environment, tracking all instances of 
tools in the distributed system. A directory lets 
users dynamically discover what tools are active 
in the environment at any time. A location facili- 
ty provides contact information about where the 
tools are running and lets applications connect to 
each other. 

Session manager. A user starts a Shastra col- 
laborative session through a front. One instance 
of a session manager runs per collaborative ses- 
sion. The session manager maintains a collabora- 
tive session, handles connection details, controls 
interaction, and regulates access. It is a repository 
of the shared objects in a collaboration, and it 
tracks membership of the collaborative group. 

The session manager provides the multicast 
facility needed for information exchange in syn- 
chronous multiuser conferencing. A constraint 
management subsystem resolves conflicts arising 
from multiuser interaction, thus maintaining 
mutual consistency of operations. The session 
manager also provides a floor-control facility 
based on baton-passing. 



multiuser manipulations of application-spec 

problem solving, because it permits cooperative 
manipulation and browsing of objects and interac- 
t ion in the context of applications that manipulate 
those objects. It supports cooperation in the design 
(problem-solving) phase as well as i n  the analysis 
(review) phase. 

Colab is a collaborative meeting facility that lets 
multiple users manipulate drawn objects simulta- 
neously.' Rendezvous presents a powerful archi- 
tecture for multiuser applications and provides 
high-level support for building groupware in a dis- 
tributed setting.8 in its centralized architecture, all 
view generation is performed in a central server. 
This doesn't scale well in a graphics-intensive sci- 
entific setting. Shastra adopts a hybrid computa- 
t ion model alleviating problems of platform 
heterogeneity and performance. 

In the scientific domain, Carlborn et  aL9 pre- 
sented a teleconferencing approach t o  modeling 
and analysis of empirical data, and discussed a col- 
laborative scientific visualization environment with- 
out  output images of visualizations shared among 
multiple users. The Shastra environment makes it 
convenient to  build collaborative visualization facil- 
ities that share not  only the results of visualizations 
but  also the input data and models. This sharing 
allows multiple users t o  interact over the data set 
while analyzing multiple simultaneous renderings 
wi th  different viewing directions, cutaways, and 
independent visualization parameters. 

Mercurio et aI.'O described an interactive visual- 
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Figure 3. Architecture of 
a collaborative session. 
Fronts have separate 
private and shared 
workspaces. They 
maintain shared 
workspaces on behalf of 
the session manager. 
The substrate supports 
media-rich interaction 
between multiple fronts. 

Figure 4. lfoma n 
flow in the Shastra envi- 
ronment. Sessions can 
span many hosts, and 
fronts can participate in 
multiple independent 
collaborative sessions. 
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Figure 3 depicts the architecture of a typical col- 
borative session in Shastra. Figure 4 shows a view 
f the Shastra world, where different tools interact 
) support a collaborative environment. The 
iastra collaboration architecture uses a replicat- 
i computation model for the multiuser system- 
copy of the application (the front) runs at each 
te involved in the collaboration. The main ben- 
its derived from this replication are support for 
ardware heterogeneity and good performance. 

Toolkits. Scientific toolkits currently under the 
iastra umbrella include Ganith, Shilp, Vaidak, 
hautik, Splinex, and Rasayan. These powerful 
and-alone systems operate on application- 
)ecific models. We integrated them into the 

Shastra environment to permit concurrent engi- 
neering and distributed problem solving. Other 
toolkits can access these integrated toolkits. This 
interoperability enhances the functionality of 
each. 

The Ganith algebraic geometry toolkit manip- 
ulates arbitrary degree polynomials and power 
series.’ It is used to solve systems of algebraic 
equations and visualize the multiple solutions. 
Ganith incorporates techniques for multivariate 
interpolation and least-squares approximation to 
an arbitrary collection of points and curves, and 
C’-smoothing using low-degree implicit patches. 
Other Shastra toolkits use the algebraic manipu- 
lation capability Ganith provides at its network 
interface-curve and surface intersection, inter- 
polation, and approximation functionality. 

Shilp is a boundary-representation-based geo- 
metric modeling system.] It provides extrude, 
revolve, and offset operations; edit operations on 
solids; pattern matching and replacement; 
Boolean set operations; fleshing of wireframes 
with smooth algebraic surface patches; and blend- 
ing and rounding of solid corners and edges. Both 
local users and remote toolkits can invoke these 
operations. 

Figure 5 shows a site during collaborative poly- 
hedron smoothing in Shastra using Shilp and 
Ganith. Conferenced Shilp instances use multiple 
remote instances of Ganith to interpolate faces of 
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a polyhedral car model in parallel 
and thereby produce a curved surface 
model with (;'-continuous surface 
patches. The toolkits communicate 
via their network interfaces. 

The Vaidak medical image recon- 
struction toolkit constructs accurate 
cross-sectional, surface, and solid 
models of skeletal and soft tissue 
structures from computed tomogra- 
phy (U), magnetic resonance imag- 
ing (MRI), or laser surface imaging 
( I S )  data. Shilp can use these models 
for design. Figure 6 shows a dis- 
tributed problem-solving scenario in 
which a geometric model of a 
human femur is reconstructed in 
Vaidak and manipulated in Shilp. 

The Bhautik physical analysis 
toolkit provides mesh generation 
facilities and a graphics interface to 
set up, perform, and visualize physi- 
cal simulations on geometric models 
created interactively using Shilp or 
on models reconstructed in Vaidak 
from imaging data. Figure 7 shows a 
load-transfer finite element analysis 
for custom design of hip implants, 
using Vaidak, Shilp, and Bhautik.' 

Splinex is a curve and surface 
modeling toolkit for interactive cre- 
ation and manipulation of implicit 
and parametric splines in Hernstein- 
Rezier and A-spline bases.' It provides 
Rezier and A-spline surface manipu- 
lation capability in the Shastra envi- 
ronment. 

Figure 5. Collaborative polyhedron 
stnoothing in  Shastru. The cession 
screen chows the original polyhedral 
cur model (top center), one designer's 
part of the shared task (bottom kft), 
and the shared, partially complete, 
curved siirfai-e car inoriel (bottom 
right). I t  a l w  rhowc images O f A  

tupporting video conference. 

Figure 6. Collaborative 
customized hip implant 
design. A designer uses 
Shilp to  interactively 
create A geometric 
model of a hip implant 
(top right) by generating 
crowsectional contours 
of the implant (bottom 
center and right) from a 
cectional model of the 
femur (center) created 
in Vaidnk. A video 
conference supports 
cotniv~unication. 

Figure 7. Stress analysis 
visualization. A 
designer uses Bhautik to  
analyze stress under 
loading patterns and 
thereby optimize the 
shape for U custom 
artificial implant for R 

human feinur (top left). 
Video conferericing 
permits communication 
utnong derigiers. 



Figure 8. One site in a three-way text 
conference. Sha-Talk provides a 
simple textual conferencing facility. 
Image bitmaps identify the owner of a 
text panel. 

Figure 9. Shared 
visualization. A group 
of researchers uses 
Sha-Poly to share 
volume visualization 
images of a head with 
cutaways (top center 
and right) and a 
cadaver (center). The 
images aregenerated by 
Vaidak from large 
volume data sets. 
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Rasayan can compute and visualize the “dock- 
ing” of drug and protein molecules under molec- 
ular Brownian motion. It provides mechanisms 
for analysis and visualization of the potential 
energy surfaces of the molecules and the station- 
ary points on these surfaces. 

Services. The current set of Shastra services 
contains communication and animation tools. 
They provide a media-rich communication sub- 
strate for collaboration. In the design of multi- 
media applications, they relieve developers of the 
burden of low-level manipulation of devices and 
media formats. In engineering and scientific set- 
tings, especially in design and analysis, most 
information shared by a collaborating team is ori- 
ented towards structured 3D graphics. The infor- 
mation is typically application specific. However, 
including text, image, audio, and video commu- 
nication greatly enhances the quality of interac- 
tion. In this section, we describe the services. In 
the next section, we present them in the context 
of a geometric design collaboration. 

Sha-Talk is a text communication tool that 
supports synchronous ti-way textual conversa- 
tions. Shown in Figure 8, Sha-Talk is useful for 
designers who do not have multimedia commu- 
nication facilities on the desktop. 

Sha-Draw is a Shastra environment sketching 
tool for generating and displaying simple 2D pic- 
tures. It uses a rich set of primitive operations. A 
collaborative session with Sha-Draw lets a group 
synchronously create and edit simple 2D sketch- 
es on shared whiteboards. (A collaborative sketch- 
ing session using Sha-Draw is discussed later in 
“The startup problem.”) 

Sha-Poly is a collaborative visualization and 
graphical-object browsing and manipulation tool. 
It supports shared viewing of 3D models using dif- 
ferent display and visualization techniques in a 
synchronously conferenced setting. Figure 9 
shows one of three sites with independent private 
windows and a shared conference window, using 
Sha-Poly for volume visualization of large medical 
data sets. 

The Sha-Phone service records and plays back 
audio information stored in multimedia objects. 
An n-way audio conference is conducted by set- 
ting up a collaborative session consisting of Sha- 
Phone instances. 

Sha-Video handles image data (without 
sound). The image data can be either still or 
motion video. It is used, both directly and by 
other tools, to play back and record video infor- 
mation stored in multimedia objects. A collabora- 
tive session with Sha-Video applications provides 
the mechanism to conduct a silent video confer- 
ence. In Figure 10 a researcher uses a live video 
window to confirm the topological accuracy of a 
reconstructed femur in Vaidak. 

Gati is an animation server that provides dis- 
tributed and collaborative real-time interactive 
animation in two and three dimensions. The sys- 



tem supports a high-level animation 
language based on a commands/ 
event paradigm. 

Collaborative problem- 
solving scenario 

We have built an application for 
collaborative design based on set 
operations. This approach to con- 
structive solid geometry offers a flex- 
ible way to create intricate 3D 
models by performing set operations 
like union, intersection, and differ- 
ence on simpler models. In solid 
modeling systems based on bound- 
ary representation, generating the 
results of set operations is computa- 

Figure 10. Video support for design. A 
researcher (top right) uses a live Sha- 
Video window (top left) to veri@ 
topological accuracy of a 
reconstructed femur model (bottom 
left, bottom right) in Vaidak. 

tion intensive. However, this design process can 
be represented as a tree in which the lower levels 
are often parallelizable. This allows a group of 
designers to work independently on those parts. 
Our application improves design throughput by 
providing a collaborative environment from the 
conception phase through the final design. 

The application uses two toolkits, Shilp and 
Sculpt. The design group creates a 3D model by 
using Shilp to perform set operations on models 
of increasing complexity and using Sculpt as a 
back end to perform the actual operations. Sculpt 
is optimized to perform set operations-union, 
intersection, difference, and complementation- 
on polyhedral geometric models.2 The Shastra 
layer links the two toolkits and enables inter- 
application cooperation. User-level collaboration 
mechanisms result in a powerful multiuser inter- 
active design facility. 

The startup problem 
One challenge of this design scenario is estab- 

lishing a starting point. This issue is traditionally 
resolved by conducting a physical meeting to 
identify a design team, synchronize on a starting 
point, and agree on an idea of the final design. 
Shastra eliminates the need for such a physical 
meeting by providing mechanisms to create a 
design group and media-rich support for a design 
brainstorming session (see Figure 11). 

A user running an instance of Shilp can query 
Shastra to find other active users in the environ- 
ment. The user can then employ Shastra's mes- 
saging facilities to invite some of them to a text 
conference. Supported by Sha-Talk, potential 
members of the group can explore their interest 
in a particular design. The original user can decide 
who to include in the working group. 

Before the design process starts, some group 

Figure 11 .  Using Sha- 
Draw for shared 2 0  
sketching. 
Collaborating designers 
(top row) use shared 
windows to create a 
sketch (bottom right) 
and a design graph 
(bottom left). 
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Figure 12. One site in a 
design collaboration. 
The design graph 
(bottom left) provides a 
context to monitor 
progress and regulate 
the task. The designer 
sees the incomplete 
shared model (right) 
and the locally designed 
part (top left). 
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members may have a mental picture of the object 
they are attempting to design, while others may 
not. One designer can initiate a collaborative 
brainstorming session using Sha-Draw. If audio 
and video processing hardware is available (as it is 
in Figure ll), the designer can invoke instances of 
Sha-Phone and Sha-Video, and initiate the rele- 
vant sessions. Sites without video hardware can 
use the software-only playback facility to display 
incoming video streams and transmit pre-recorded 
outgoing streams. Through this audio-visual com- 
munication, the group can rapidly establish the 
design goal. Then they can interactively create a 
rough sketch of the intended design. Alternatively, 
Sha-Video can broadcast a stored or live image of 
an actual physical object (or its picture) to the 
group. At the end of this phase, the entire team 
has a good idea of the task at hand. 

The designers use Sha-Draw to set up the 
dependencies of the various parts of the design in 
graphical form. They create a directed design 
graph (see Figure 1 l), where nodes indicate solid 
models and edges indicate dependencies of the 
destination nodes. The leaf nodes (that is, nodes 
that are not dependent on other nodes) represent 
existing or primitive solid models, and internal 
nodes represent intermediate models in the 
design process. A designated root node represents 
the final design goal. Directed edges indicate that 
the destination node results from an operation on 
all of the source nodes. Annotations in the graph 
indicate the operation required to obtain the des- 
tination node from the source nodes. 

Design outline 
The design outline occurs in two phases, 

design graph generation and model computation. 
The design graph, created in a Sha-Draw collabo- 

ration referring to a sketch or video 
image of the final model, is a suc- 
cinct summary of the entire design 
task. Designers can store the image 
andlor sketch with the graph for 
future reference. Shilp converts the 
graph into a form amenable to this 
operation, with maximum in-degree 
of the nodes being 2 (because Sculpt 
supports only unary and binary 
operations). An automatic disjunc- 
tive normal form (DNF) decomposi- 
tion is the simplest transformation, 
but it doesn't produce the most effi- 
cient design graph. The design team 
can cooperatively restructure the 

design graph in a Sha-Draw collaboration. 
In the model computation phase, a designer 

graphically positions models through the Shilp 
user interface. This sets up models in appropriate 
configurations for set operations. The actual oper- 
ations to generate intermediate and final models 
of the design graph are performed in Shilp by 
automatically requesting geometric services from 
Sculpt. 

Design process in the Shastra setting 
In a single-user setting, a designer would com- 

pute the various graph nodes sequentially. The 
final model would be checked for goodness, and 
the computation process repeated until a satisfac- 
tory model resulted. 

In the Shastra multiuser setting, a Shilp user ini- 
tiates a collaborative session. This user tells the 
local kernel which other users are invited to par- 
ticipate in the session, and (by default) becomes 
the group leader. The kernel instantiates a session 
manager, which starts a session with the group 
leader as its sole participant. Then it invites the 
specified users of concurrently executing remote 
Shilp instances to participate. Users who accept are 
incorporated into the session. The session manag- 
er provides access to shared objects and context at 
all participating sites. 

Any participant can leave the session at any 
time by simply unlinking from it. Users of other 
instances of Shilp in the environment can query 
the system to discover ongoing sessions and 
request participation. The group leader regulates 
whether or not they are allowed to join the ses- 
sion. The leader can also invite other Shilp users 
to participate in the session. 

Every participating Shilp session creates two 
shared windows in which all the cooperative inter- 



action occurs. (More local windows 
can be created if desired.) One 
shared window contains the design 
graph used to regulate the entire 
operation, and the second window 
contains models as they are created 
or introduced to the session (see 
Figure 1 1). Users introduce leaf node 
objects into the session by selecting 
them into the shared window. 

The session manager partitions 
the design graph into slightly over- 
lapping zones. It bases the parti- 
tioning on the number of people in 
the collaborating group and on the 
number of subtasks left in the operation (the 
number of uncomputed nodes in this case). It 
aims to minimize the number of shared partition 
nodes. Shared nodes in the graph are regions of 
contention in this collaboration scenario, since 
they constitute dependencies in an otherwise par- 
allelizable situation. 

The partitioning also aims to distribute the leaf 
nodes equally among the designers, since they 
usually represent nodes that must be created inter- 
actively. The partitioning defines a scenario for 
fair, minimal conflict, cooperative interaction. It 
is dynamically altered as users join and leave the 
session. The group leader can explicitly specify 
and alter the partitioning. 

Shastra displays the partitioned design graph in 
a shared window, which provides a context to reg- 
ulate the collaborative operation, since it captures 
the state of the operation. The system assigns par- 
titioned zones to the collaborating designers and 
colors each one differently for identification. Every 
user is responsible for filling the intermediate 
nodes in his or her zone by first positioning the 
models on the incoming edges and subsequently 
performing the actual set operation. This process 
repeats until a satisfactory design results. Figure 12 
shows one site in the design of a simple windmill 
model. Figure 13 shows another site at the end of 
the operation. 

Collaborative interaction 
The session manager regulates all interaction rel- 

evant to the operation at participating sites. 
Interaction can occur in two modes. In the regulat- 
ed mode, the user responsible for a zone creates all 
the models internal to the zone. The session man- 
ager denies all other users access to the zone interi- 
or. If the source nodes for an intermediate node are 
filled, a user locks the intermediate node by select- 
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ing it in the design graph window. The session 
manager allows this user access to models in the 
source nodes. The user interactively positions these 
models and performs the appropriate set operation. 
The resulting model is assigned to the intermediate 
node, which is subsequently unlocked. 

Users of adjacent zones must agree about the 
models at the boundary node to avoid inconsis- 
tencies in the design. A good group design proto- 
col for this setting is to resolve boundary 
condition issues at the start of the operation. 'This 
prevents unnecessary cycles later on caused by 
inconsistencies. To implement this protocol, the 
users must compute the subgraphs rooted at 
boundary nodes first, with no further design activ- 
ity proceeding until they obtain satisfactory mod- 
els at those nodes. 

All  operations are performed via the central 
session manager, which keeps all sites up to date. 
Thus, users have a dynamically changing view of 
the operation in the shared windows-the design 
graph and intermediate models. Changing a node 
requires all of its dependencies to be reevaluated. 
The operation is completed when all the de5ign 
raph nodes have been evaluated. Any site with 
opy permission can then extract the model from 
he session and save it. 

ccess regulation and collaboration modes 
Shastra's collaboration infrastructure supports 

two-tiered permissions-based access regulation 
mechanism. This mechanism structures a variety 
of multiuser interaction modes at runtime. It 
allows a high degree of tailoring and flexibility in 
CSCW applications, both in interaction and in 
data sharing and access control. 

The regulatory subsystem supports access, 
browse, modify, copy, and grant permissions for 
collaboration sites as well as for shared objects.' 

1 

Figure 13. Another site, 
a t  the end of a 
collaborative design 
session. The designer 
sees a completed shared 
model (leff), the locally 
designed part (top 
right), and the shared 
design graph (bottom 
right). 
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These permissions control what actions different 
users in the conference can take and what objects 
they can operate on. In addition, tools can define 
and use new permissions for tool-specific actions. 
The group leader controls permissions. 

The regulatory subsystem also 
provides a mechanism to enforce 

1 and regulate floor control based on 
turn-taking. Users can dynamically 
configure the interaction mode and 
permissions to suit the task. In the 
brainstorming phase, for example, it 

rapid exchange of ’ is useful to allow everyone equal 
access to all operations and objects. 
This supports the free flow of ideas. 

In the unregulated mode for this 
operation, the partitioning merely 
suggests a minimal-conflict setting, 
and the session manager doesn’t reg- 
ulate interaction beyond what is spec- 

modification. ified by collaboration permission 
settings for the site and object. In this 

The C0”miCatiOn 

facilities permit 

rationales for 

design, analysis, 

and iterative shape 

mode, users can access any node if 
they have access and modify permis- 
sions for the collaboration. 

The session manager lets only one user manip- 
ulate a “hot spot” in the graph-where there is a 
possibility of contention-at any particular 
instant. It uses the first-come-first-served paradigm 
to decide which user gets temporary exclusive con- 
trol. The last completed operation specifies the 
model associated with the node. 

The system’s baton-passing facility can be used 
for floor control-to take turns to set boundary 
nodes. Alternatively, designers can use the auxil- 
iary communication channels to regulate access 
and to decide which users will set those nodes. 

At one extreme, a single designer can use the 
Shastra implementation much like a noncollabo- 
rative environment. Allowing other users to join 
the session with only access and browse permis- 
sions sets up the environment like an electronic 
blackboard. In this way, novice users could learn 
the basics of the design mechanism. An appropri- 
ate setting of collaboration permissions and turn- 
taking might allow hands-on experience with the 
task. In conjunction with Shastra’s audio and 
video communication services, this becomes a 
powerful learning environment. 

In a different situation, a group of designers 
can set up a regulated collaborative session and 
collaborate to design an object. Each designer per- 
forms only the designated part of the shared 
design. This can speed up problem solving by as 

many times as the problem can be partitioned. 
Novice designers can join the on-going session 
with only access and browse permissions and thus 
become familiar with the group dynamics of a col- 
laborative session. 

In yet another situation, a group of designers 
can start an unregulated collaborative design ses- 
sion. Judicious use of the auxiliary communica- 
tion facilities (audio, video, and text) to regulate 
design operations can speed up the process by a 
factor equal to the number of participants. 

Heterogeneity issues 
A Shastra conference consists of multiple tool 

instances at different sites. This localizes platform- 
specific dependencies in the tool. It lets the ses- 
sion manager view tools as high-level application 
objects, without concern for details of how things 
are actually done. This approach supports the 
Shastra environment on a variety of hardware 
platforms. Specifically, tools can take advantage 
of graphics, video compression and decompres- 
sion, and audio processing hardware available in 
the environment. Thus, the Shastra architecture 
greatly simplifies multimedia interaction man- 
agement. 

The application scenario we described above is 
a homogeneous collaboration. In other words, the 
collaborative design task is supported on a collec- 
tion of instances of the same tool (Shilp in this 
case). We are currently building an environment 
for collaborative design of custom hip and knee 
implants using different Shastra toolkits coupled 
with a computer-aided manufacturing facility. 
This puts us in the realm of heterogeneous col- 
laborations between instances of different tools, 
which operate on different types of models or 
data. 

Shastra’s architecture facilitates the kind of 
interapplication cooperation required to build 
such a system. The design team uses Vaidak to 
build a model of the patient’s femur from cross- 
section information (CT/MRI images) and Shilp to 
custom design an implant for the femur (see Figure 
6). A physical analyst uses Bhautik to conduct a 
stress-strain analysis evaluating the load transfer 
between the implant and bone (see Figure 7). The’ 
design team iterates this custom design process 
until they obtain an optimally shaped customized 
implant. The multimedia communication facili- 
ties of Sha-Video, Sha-Phone, and Sha-Poly con- 
ferences permit a rapid exchange of rationales for 
design choices, interpretations of analyses, and 
iterative shape modification and analysis. 



Conclusions 
Shastra is a powerful distributed and collabo- 

rative environment. The Shastra layer provides an 
enabling infrastructure for rapid prototyping of 
tools. The runtime environment helps to build 
multiuser applications. Though we have focused 
our implementation on scientific and engineering 
design, Shastra easily abstracts to other situations. 
The Shastra layer is generic and can be used to 
implement systems for collaborative editing, code 
viewing and quality assurance, software develop- 
ment, CAD applications, and even interactive 
multiplayer games. MM 
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