
Shastra:
Multimedia
Collaborative
Design
Environment

-
A distributed
environment that
supports
multimedia
interfaces, Shastra
strengthens
collaboration in
scientific and
engineering
design.
Implemented on a
desktop system, it
provides an
infrastructure for
user- and
application-level
cooperation. We
describe the
Shastra
architecture and
tools, then walk
through a
scenario that
shows how it
enhances
collaborative
problem solving.

Vinod Anupam and Chandrajit L. Bajaj
Purdue University

oday’s multimedia desktop systems
are powerful tools that can revolu-
tionize the way we collaborate in sci- T entific and engineering settings.

Specifically, these systems let us depart from the
traditional single-user design and analysis envi-
ronment by supporting multiuser collaboration.
The objective of our work is to develop next-
generation design environments, where a geo-
graphically distributed team can create, share,
manipulate, analyze, simulate, and visualize com-
plex 3D geometric designs over a heterogeneous
network of workstations and supercomputers.

Our approach integrates a collection of function-
specific tools into a distributed, extensible environ-
ment. We provide an enabling infrastructure for
collaboration. This infrastructure saves users from
having to implement functionality already existing
in the environment, thus speeding up application
development. We also provide mechanisms to sup-
port a variety of multiuser interactions.

In this article, we first describe our approach
and its implementation, then present an example
design scenario using it.

Shastra design environment
Shastra (a Sanskrit word meaning “branch of

knowledge”) is a geometric and scientific design

environment-that is, it provides facilities for geo-
metric design and for simulation, visualization,
and animation. At its core, Shastra features a col-
laboration substrate that supports synchronous
multiuser applications, and connection and com-
munication distribution substrates that emphasize
distributed problem solving for concurrent engi-
neering (see Figure 1 on the next page). These sub-
strates are function libraries with well-defined
abstract programming interfaces that establish a
framework for session management, data sharing,
and multimedia communication.

Fully integrated, Shastra supports rapid proto-
typing and development of software tools for the
creation, manipulation, and visualization of mul-
tidimensional geometric data. The sidebar on page
41 compares Shastra to related work in engineer-
ing and scientific collaboration.

The Shastra runtime environment consists of
multiple interacting tools, which are implement-
ed on top of the collaboration, connection, and
communication substrates as shown in Figure 1.
Some tools manage the collaborative environ-
ment (kernels and session managers). Other tools
implement scientific design and manipulation
functionality (toolkits). Yet others offer specific
services for communication and animation (ser-
vices). These tools register with the environment
at startup, providing information about the kind
of services they offer (directory) and how and
where to find them (location).

The Shastra environment provides the user
facilities to create remote instances of applications
and to connect to them in client-server or peer-
peer mode (distribution). In addition, it provides
facilities for different types of multiuser interac-
tion ranging from master-slave blackboarding
(turn taking) to synchronous multiuser interac-
tion (collaboration). It implements functionality
for starting and terminating collaborative ses-
sions, and for joining or leaving them. It also sup-
ports dynamic messaging between different tools.

Architectural features
The Shastra design embodies the simple idea

that geometric design and scientific manipulation
toolkits can be considered as objects that provide
specific functionality. These objects exchange
messages-automatically or under user control-
to request that other objects perform operations
on their behalf. We present salient features of the
Shastra architecture here (for a detailed descrip-
tion, see Anupam and Bajaj’).

At the system level, Shastra specifies architec-

1070-986X/94/14.00 01 1994 IEEE

Figure 1 . The Shastra
layer. Shastra tools
interoperate using
facilities provided by the
Shastra layer-
connection,
communication, and
collaboration
management substrate.

Figure 2. High-level
block architecture of a
Shastra tool. Users
interact with tools via
the user interface. Tools

tural guidelines and provides communication
facilities so that toolkits can cooperate and
exchange information. At the application level, it
provides collaboration and multimedia facilities
so that users can develop applications coopera-
tively to solve problems. Shastra integrates these
levels to let users design sophisticated problem-
solving virtual machines.

-I

A

t T f T

The Shastra layer

Collaboration substrate
Initiate, terminate, join, leave, invite ...

I 1 L

User interface Shastra interface

Interfaces

ASCII Network

interactsimultaneously I '7' 7
with multiple tools via
the network interface.

+ + +
Interface mapper 1 Application engine

I I
~ ._ .

Figure 2 depicts the high-level block architec-
ture common to all the tools in Shastra. This
architecture makes it easy for tools to connect to
each other and request operations, synchronous-
ly as well as asynchronously. A tool has an appli-
cation-specific core, the application engine, which
implements the tool's core functions. Above the
core is a functional interface mapper, which
invokes functions embedded in the engine in
response to requests from the graphical user,
ASCII, or network interfaces. The GUI is applica-
tion-specific. The ASCII interface is a shell-like
front end for the application. The network inter-

faces let tools communicate with other tools in
the environment by multiplexing simultaneous
network connections and implementing the
Shastra communication protocol.'

The entire set of connected Shastra network
interfaces implements the abstract Shastra layer at
runtime (see Figure 1). This layer maintains the
collaborative environment, provides access to dif-
ferent systems, and provides facilities for initiat-
ing, terminating, joining, leaving, and conducting
collaborations.

Tools
Shastra tools are the building blocks of the run-

time system. Kernels and session managers
manage the distributed and collaborative envi-
ronment. Shastra toolkits support scientific design
and manipulation. Services provide mechanisms
for communication and animation. We refer to
toolkits and services collectively as front ends, or
simply fronts, since they are the actual sites of user
interaction. Any front can access the Shastra envi-
ronment management tools to instantiate tools
either locally or on remote sites, and to terminate
previously instantiated tools. Fronts can connect
directly to each other to exchange data in client-
server or peer-peer settings using the Shastra layer.

Kernel. The Shastra kernel consists of a group
of cooperating kernel processes. It maintains the
runtime environment, tracking all instances of
tools in the distributed system. A directory lets
users dynamically discover what tools are active
in the environment at any time. A location facili-
ty provides contact information about where the
tools are running and lets applications connect to
each other.

Session manager. A user starts a Shastra col-
laborative session through a front. One instance
of a session manager runs per collaborative ses-
sion. The session manager maintains a collabora-
tive session, handles connection details, controls
interaction, and regulates access. It is a repository
of the shared objects in a collaboration, and it
tracks membership of the collaborative group.

The session manager provides the multicast
facility needed for information exchange in syn-
chronous multiuser conferencing. A constraint
management subsystem resolves conflicts arising
from multiuser interaction, thus maintaining
mutual consistency of operations. The session
manager also provides a floor-control facility
based on baton-passing.

multiuser manipulations of application-spec

problem solving, because it permits cooperative
manipulation and browsing of objects and interac-
t ion in the context of applications that manipulate
those objects. It supports cooperation in the design
(problem-solving) phase as well as i n the analysis
(review) phase.

Colab is a collaborative meeting facility that lets
multiple users manipulate drawn objects simulta-
neously.' Rendezvous presents a powerful archi-
tecture for multiuser applications and provides
high-level support for building groupware in a dis-
tributed setting.8 in its centralized architecture, all
view generation is performed in a central server.
This doesn't scale well in a graphics-intensive sci-
entific setting. Shastra adopts a hybrid computa-
t ion model alleviating problems of platform
heterogeneity and performance.

In the scientific domain, Carlborn et aL9 pre-
sented a teleconferencing approach t o modeling
and analysis of empirical data, and discussed a col-
laborative scientific visualization environment with-
out output images of visualizations shared among
multiple users. The Shastra environment makes it
convenient to build collaborative visualization facil-
ities that share not only the results of visualizations
but also the input data and models. This sharing
allows multiple users t o interact over the data set
while analyzing multiple simultaneous renderings
wi th different viewing directions, cutaways, and
independent visualization parameters.

Mercurio et aI.'O described an interactive visual-

Enabling Technologies for Concurrent Engineering,
Concurrent Eng. Enabling Technologies Group,
CERC, West Va. Univ., Morgantown, W.Va., 1992,

3. T. Crowley et al., "MMConf: An Infrastructure for
Building Shared Multimedia Applications," Proc.
ACM CSCW PO, ACM Press, New York, 1990, pp.

pp. 21-37.

329-342.
4. S. Ahuja, I. Ensor, and D. Horn, "The Rapport

Multimedia Conferencing System," Proc. ACM
YCOIS, ACM Press, New York, 1988, pp. 1-8.

5. E. Craighill et al., "Environments to Enable
Informal Collaborative Design Processes," Proc.
hrst Workshop on Enabling Technologies for
Concurrent Engineering, Concurrent Eng. Enabling
Technologies Group, CERC, West Va. Univ.,
Morgantown, W.Va., 1992, pp. 47-51.

6. K Watabe et al., "A Distributed Multiparty
Desktop Conferencing System," Proc ACM CSCW
90, ACM Press, New York, 1990, pp. 27-38.

Computer Support for Collaboration and Problem
Solving in Meetings," Comm ACM, Vol. 30, No. 1,

Jan. 1987, pp. 32-47
8. I. Patterson et al , "Rendezvous: An Architecture

for Synchronous Multiuser Applications," Proc
ACM CSCW 90, ACM Press, New York, 1990, pp

7. M Stefik et al., "Beyond the Chalkboard:

3 I 7-328
9. I Carlbom e t al., "Modeling and Analysis of

Ernpirical Data in Collaborative Environments,"
Comm ACM, Vol 35, No. 6, June 1992, pp 73-84

10 P Mercurio e t al., "The Distributed Laboratory,"
Comm ACM, Vol 35, No. 6, June 1992, pp. 54-63

VI

\o
\o
P

.__ ~--

....................................... a
-_ ______

//’

I

Images I Text 1
........... I

I

Figure 3. Architecture of
a collaborative session.
Fronts have separate
private and shared
workspaces. They
maintain shared
workspaces on behalf of
the session manager.
The substrate supports
media-rich interaction
between multiple fronts.

Figure 4. lfoma n
flow in the Shastra envi-
ronment. Sessions can
span many hosts, and
fronts can participate in
multiple independent
collaborative sessions.

Iy w w

Figure 3 depicts the architecture of a typical col-
borative session in Shastra. Figure 4 shows a view
f the Shastra world, where different tools interact
) support a collaborative environment. The
iastra collaboration architecture uses a replicat-
i computation model for the multiuser system-
copy of the application (the front) runs at each
te involved in the collaboration. The main ben-
its derived from this replication are support for
ardware heterogeneity and good performance.

Toolkits. Scientific toolkits currently under the
iastra umbrella include Ganith, Shilp, Vaidak,
hautik, Splinex, and Rasayan. These powerful
and-alone systems operate on application-
)ecific models. We integrated them into the

Shastra environment to permit concurrent engi-
neering and distributed problem solving. Other
toolkits can access these integrated toolkits. This
interoperability enhances the functionality of
each.

The Ganith algebraic geometry toolkit manip-
ulates arbitrary degree polynomials and power
series.’ It is used to solve systems of algebraic
equations and visualize the multiple solutions.
Ganith incorporates techniques for multivariate
interpolation and least-squares approximation to
an arbitrary collection of points and curves, and
C’-smoothing using low-degree implicit patches.
Other Shastra toolkits use the algebraic manipu-
lation capability Ganith provides at its network
interface-curve and surface intersection, inter-
polation, and approximation functionality.

Shilp is a boundary-representation-based geo-
metric modeling system.] It provides extrude,
revolve, and offset operations; edit operations on
solids; pattern matching and replacement;
Boolean set operations; fleshing of wireframes
with smooth algebraic surface patches; and blend-
ing and rounding of solid corners and edges. Both
local users and remote toolkits can invoke these
operations.

Figure 5 shows a site during collaborative poly-
hedron smoothing in Shastra using Shilp and
Ganith. Conferenced Shilp instances use multiple
remote instances of Ganith to interpolate faces of

Session manager

Front
, .-_
8

L_1 Host
r - - - - , : ; Session
....

Session link

Control link

2- Client/server link

-e.+ Peer/peer link

a polyhedral car model in parallel
and thereby produce a curved surface
model with (;'-continuous surface
patches. The toolkits communicate
via their network interfaces.

The Vaidak medical image recon-
struction toolkit constructs accurate
cross-sectional, surface, and solid
models of skeletal and soft tissue
structures from computed tomogra-
phy (U), magnetic resonance imag-
ing (MRI), or laser surface imaging
(I S) data. Shilp can use these models
for design. Figure 6 shows a dis-
tributed problem-solving scenario in
which a geometric model of a
human femur is reconstructed in
Vaidak and manipulated in Shilp.

The Bhautik physical analysis
toolkit provides mesh generation
facilities and a graphics interface to
set up, perform, and visualize physi-
cal simulations on geometric models
created interactively using Shilp or
on models reconstructed in Vaidak
from imaging data. Figure 7 shows a
load-transfer finite element analysis
for custom design of hip implants,
using Vaidak, Shilp, and Bhautik.'

Splinex is a curve and surface
modeling toolkit for interactive cre-
ation and manipulation of implicit
and parametric splines in Hernstein-
Rezier and A-spline bases.' It provides
Rezier and A-spline surface manipu-
lation capability in the Shastra envi-
ronment.

Figure 5. Collaborative polyhedron
stnoothing in Shastru. The cession
screen chows the original polyhedral
cur model (top center), one designer's
part of the shared task (bottom kft),
and the shared, partially complete,
curved siirfai-e car inoriel (bottom
right). I t a l w rhowc images O f A

tupporting video conference.

Figure 6. Collaborative
customized hip implant
design. A designer uses
Shilp to interactively
create A geometric
model of a hip implant
(top right) by generating
crowsectional contours
of the implant (bottom
center and right) from a
cectional model of the
femur (center) created
in Vaidnk. A video
conference supports
cotniv~unication.

Figure 7. Stress analysis
visualization. A
designer uses Bhautik to
analyze stress under
loading patterns and
thereby optimize the
shape for U custom
artificial implant for R

human feinur (top left).
Video conferericing
permits communication
utnong derigiers.

Figure 8. One site in a three-way text
conference. Sha-Talk provides a
simple textual conferencing facility.
Image bitmaps identify the owner of a
text panel.

Figure 9. Shared
visualization. A group
of researchers uses
Sha-Poly to share
volume visualization
images of a head with
cutaways (top center
and right) and a
cadaver (center). The
images aregenerated by
Vaidak from large
volume data sets.

w
w s

Rasayan can compute and visualize the “dock-
ing” of drug and protein molecules under molec-
ular Brownian motion. It provides mechanisms
for analysis and visualization of the potential
energy surfaces of the molecules and the station-
ary points on these surfaces.

Services. The current set of Shastra services
contains communication and animation tools.
They provide a media-rich communication sub-
strate for collaboration. In the design of multi-
media applications, they relieve developers of the
burden of low-level manipulation of devices and
media formats. In engineering and scientific set-
tings, especially in design and analysis, most
information shared by a collaborating team is ori-
ented towards structured 3D graphics. The infor-
mation is typically application specific. However,
including text, image, audio, and video commu-
nication greatly enhances the quality of interac-
tion. In this section, we describe the services. In
the next section, we present them in the context
of a geometric design collaboration.

Sha-Talk is a text communication tool that
supports synchronous ti-way textual conversa-
tions. Shown in Figure 8, Sha-Talk is useful for
designers who do not have multimedia commu-
nication facilities on the desktop.

Sha-Draw is a Shastra environment sketching
tool for generating and displaying simple 2D pic-
tures. It uses a rich set of primitive operations. A
collaborative session with Sha-Draw lets a group
synchronously create and edit simple 2D sketch-
es on shared whiteboards. (A collaborative sketch-
ing session using Sha-Draw is discussed later in
“The startup problem.”)

Sha-Poly is a collaborative visualization and
graphical-object browsing and manipulation tool.
It supports shared viewing of 3D models using dif-
ferent display and visualization techniques in a
synchronously conferenced setting. Figure 9
shows one of three sites with independent private
windows and a shared conference window, using
Sha-Poly for volume visualization of large medical
data sets.

The Sha-Phone service records and plays back
audio information stored in multimedia objects.
An n-way audio conference is conducted by set-
ting up a collaborative session consisting of Sha-
Phone instances.

Sha-Video handles image data (without
sound). The image data can be either still or
motion video. It is used, both directly and by
other tools, to play back and record video infor-
mation stored in multimedia objects. A collabora-
tive session with Sha-Video applications provides
the mechanism to conduct a silent video confer-
ence. In Figure 10 a researcher uses a live video
window to confirm the topological accuracy of a
reconstructed femur in Vaidak.

Gati is an animation server that provides dis-
tributed and collaborative real-time interactive
animation in two and three dimensions. The sys-

tem supports a high-level animation
language based on a commands/
event paradigm.

Collaborative problem-
solving scenario

We have built an application for
collaborative design based on set
operations. This approach to con-
structive solid geometry offers a flex-
ible way to create intricate 3D
models by performing set operations
like union, intersection, and differ-
ence on simpler models. In solid
modeling systems based on bound-
ary representation, generating the
results of set operations is computa-

Figure 10. Video support for design. A
researcher (top right) uses a live Sha-
Video window (top left) to veri@
topological accuracy of a
reconstructed femur model (bottom
left, bottom right) in Vaidak.

tion intensive. However, this design process can
be represented as a tree in which the lower levels
are often parallelizable. This allows a group of
designers to work independently on those parts.
Our application improves design throughput by
providing a collaborative environment from the
conception phase through the final design.

The application uses two toolkits, Shilp and
Sculpt. The design group creates a 3D model by
using Shilp to perform set operations on models
of increasing complexity and using Sculpt as a
back end to perform the actual operations. Sculpt
is optimized to perform set operations-union,
intersection, difference, and complementation-
on polyhedral geometric models.2 The Shastra
layer links the two toolkits and enables inter-
application cooperation. User-level collaboration
mechanisms result in a powerful multiuser inter-
active design facility.

The startup problem
One challenge of this design scenario is estab-

lishing a starting point. This issue is traditionally
resolved by conducting a physical meeting to
identify a design team, synchronize on a starting
point, and agree on an idea of the final design.
Shastra eliminates the need for such a physical
meeting by providing mechanisms to create a
design group and media-rich support for a design
brainstorming session (see Figure 11).

A user running an instance of Shilp can query
Shastra to find other active users in the environ-
ment. The user can then employ Shastra's mes-
saging facilities to invite some of them to a text
conference. Supported by Sha-Talk, potential
members of the group can explore their interest
in a particular design. The original user can decide
who to include in the working group.

Before the design process starts, some group

Figure 11 . Using Sha-
Draw for shared 2 0
sketching.
Collaborating designers
(top row) use shared
windows to create a
sketch (bottom right)
and a design graph
(bottom left).

VI
C
3
3
7
\o
P

Figure 12. One site in a
design collaboration.
The design graph
(bottom left) provides a
context to monitor
progress and regulate
the task. The designer
sees the incomplete
shared model (right)
and the locally designed
part (top left).

/2 '.? I

I

members may have a mental picture of the object
they are attempting to design, while others may
not. One designer can initiate a collaborative
brainstorming session using Sha-Draw. If audio
and video processing hardware is available (as it is
in Figure ll), the designer can invoke instances of
Sha-Phone and Sha-Video, and initiate the rele-
vant sessions. Sites without video hardware can
use the software-only playback facility to display
incoming video streams and transmit pre-recorded
outgoing streams. Through this audio-visual com-
munication, the group can rapidly establish the
design goal. Then they can interactively create a
rough sketch of the intended design. Alternatively,
Sha-Video can broadcast a stored or live image of
an actual physical object (or its picture) to the
group. At the end of this phase, the entire team
has a good idea of the task at hand.

The designers use Sha-Draw to set up the
dependencies of the various parts of the design in
graphical form. They create a directed design
graph (see Figure 1 l), where nodes indicate solid
models and edges indicate dependencies of the
destination nodes. The leaf nodes (that is, nodes
that are not dependent on other nodes) represent
existing or primitive solid models, and internal
nodes represent intermediate models in the
design process. A designated root node represents
the final design goal. Directed edges indicate that
the destination node results from an operation on
all of the source nodes. Annotations in the graph
indicate the operation required to obtain the des-
tination node from the source nodes.

Design outline
The design outline occurs in two phases,

design graph generation and model computation.
The design graph, created in a Sha-Draw collabo-

ration referring to a sketch or video
image of the final model, is a suc-
cinct summary of the entire design
task. Designers can store the image
andlor sketch with the graph for
future reference. Shilp converts the
graph into a form amenable to this
operation, with maximum in-degree
of the nodes being 2 (because Sculpt
supports only unary and binary
operations). An automatic disjunc-
tive normal form (DNF) decomposi-
tion is the simplest transformation,
but it doesn't produce the most effi-
cient design graph. The design team
can cooperatively restructure the

design graph in a Sha-Draw collaboration.
In the model computation phase, a designer

graphically positions models through the Shilp
user interface. This sets up models in appropriate
configurations for set operations. The actual oper-
ations to generate intermediate and final models
of the design graph are performed in Shilp by
automatically requesting geometric services from
Sculpt.

Design process in the Shastra setting
In a single-user setting, a designer would com-

pute the various graph nodes sequentially. The
final model would be checked for goodness, and
the computation process repeated until a satisfac-
tory model resulted.

In the Shastra multiuser setting, a Shilp user ini-
tiates a collaborative session. This user tells the
local kernel which other users are invited to par-
ticipate in the session, and (by default) becomes
the group leader. The kernel instantiates a session
manager, which starts a session with the group
leader as its sole participant. Then it invites the
specified users of concurrently executing remote
Shilp instances to participate. Users who accept are
incorporated into the session. The session manag-
er provides access to shared objects and context at
all participating sites.

Any participant can leave the session at any
time by simply unlinking from it. Users of other
instances of Shilp in the environment can query
the system to discover ongoing sessions and
request participation. The group leader regulates
whether or not they are allowed to join the ses-
sion. The leader can also invite other Shilp users
to participate in the session.

Every participating Shilp session creates two
shared windows in which all the cooperative inter-

action occurs. (More local windows
can be created if desired.) One
shared window contains the design
graph used to regulate the entire
operation, and the second window
contains models as they are created
or introduced to the session (see
Figure 1 1). Users introduce leaf node
objects into the session by selecting
them into the shared window.

The session manager partitions
the design graph into slightly over-
lapping zones. It bases the parti-
tioning on the number of people in
the collaborating group and on the
number of subtasks left in the operation (the
number of uncomputed nodes in this case). It
aims to minimize the number of shared partition
nodes. Shared nodes in the graph are regions of
contention in this collaboration scenario, since
they constitute dependencies in an otherwise par-
allelizable situation.

The partitioning also aims to distribute the leaf
nodes equally among the designers, since they
usually represent nodes that must be created inter-
actively. The partitioning defines a scenario for
fair, minimal conflict, cooperative interaction. It
is dynamically altered as users join and leave the
session. The group leader can explicitly specify
and alter the partitioning.

Shastra displays the partitioned design graph in
a shared window, which provides a context to reg-
ulate the collaborative operation, since it captures
the state of the operation. The system assigns par-
titioned zones to the collaborating designers and
colors each one differently for identification. Every
user is responsible for filling the intermediate
nodes in his or her zone by first positioning the
models on the incoming edges and subsequently
performing the actual set operation. This process
repeats until a satisfactory design results. Figure 12
shows one site in the design of a simple windmill
model. Figure 13 shows another site at the end of
the operation.

Collaborative interaction
The session manager regulates all interaction rel-

evant to the operation at participating sites.
Interaction can occur in two modes. In the regulat-
ed mode, the user responsible for a zone creates all
the models internal to the zone. The session man-
ager denies all other users access to the zone interi-
or. If the source nodes for an intermediate node are
filled, a user locks the intermediate node by select-

* =;.. ..*::"'

ing it in the design graph window. The session
manager allows this user access to models in the
source nodes. The user interactively positions these
models and performs the appropriate set operation.
The resulting model is assigned to the intermediate
node, which is subsequently unlocked.

Users of adjacent zones must agree about the
models at the boundary node to avoid inconsis-
tencies in the design. A good group design proto-
col for this setting is to resolve boundary
condition issues at the start of the operation. 'This
prevents unnecessary cycles later on caused by
inconsistencies. To implement this protocol, the
users must compute the subgraphs rooted at
boundary nodes first, with no further design activ-
ity proceeding until they obtain satisfactory mod-
els at those nodes.

All operations are performed via the central
session manager, which keeps all sites up to date.
Thus, users have a dynamically changing view of
the operation in the shared windows-the design
graph and intermediate models. Changing a node
requires all of its dependencies to be reevaluated.
The operation is completed when all the de5ign
raph nodes have been evaluated. Any site with
opy permission can then extract the model from
he session and save it.

ccess regulation and collaboration modes
Shastra's collaboration infrastructure supports

two-tiered permissions-based access regulation
mechanism. This mechanism structures a variety
of multiuser interaction modes at runtime. It
allows a high degree of tailoring and flexibility in
CSCW applications, both in interaction and in
data sharing and access control.

The regulatory subsystem supports access,
browse, modify, copy, and grant permissions for
collaboration sites as well as for shared objects.'

1

Figure 13. Another site,
a t the end of a
collaborative design
session. The designer
sees a completed shared
model (leff), the locally
designed part (top
right), and the shared
design graph (bottom
right).

v)
C
3
3
2
\o
\o
P

These permissions control what actions different
users in the conference can take and what objects
they can operate on. In addition, tools can define
and use new permissions for tool-specific actions.
The group leader controls permissions.

The regulatory subsystem also
provides a mechanism to enforce

1 and regulate floor control based on
turn-taking. Users can dynamically
configure the interaction mode and
permissions to suit the task. In the
brainstorming phase, for example, it

rapid exchange of ’ is useful to allow everyone equal
access to all operations and objects.
This supports the free flow of ideas.

In the unregulated mode for this
operation, the partitioning merely
suggests a minimal-conflict setting,
and the session manager doesn’t reg-
ulate interaction beyond what is spec-

modification. ified by collaboration permission
settings for the site and object. In this

The C0”miCatiOn

facilities permit

rationales for

design, analysis,

and iterative shape

mode, users can access any node if
they have access and modify permis-
sions for the collaboration.

The session manager lets only one user manip-
ulate a “hot spot” in the graph-where there is a
possibility of contention-at any particular
instant. It uses the first-come-first-served paradigm
to decide which user gets temporary exclusive con-
trol. The last completed operation specifies the
model associated with the node.

The system’s baton-passing facility can be used
for floor control-to take turns to set boundary
nodes. Alternatively, designers can use the auxil-
iary communication channels to regulate access
and to decide which users will set those nodes.

At one extreme, a single designer can use the
Shastra implementation much like a noncollabo-
rative environment. Allowing other users to join
the session with only access and browse permis-
sions sets up the environment like an electronic
blackboard. In this way, novice users could learn
the basics of the design mechanism. An appropri-
ate setting of collaboration permissions and turn-
taking might allow hands-on experience with the
task. In conjunction with Shastra’s audio and
video communication services, this becomes a
powerful learning environment.

In a different situation, a group of designers
can set up a regulated collaborative session and
collaborate to design an object. Each designer per-
forms only the designated part of the shared
design. This can speed up problem solving by as

many times as the problem can be partitioned.
Novice designers can join the on-going session
with only access and browse permissions and thus
become familiar with the group dynamics of a col-
laborative session.

In yet another situation, a group of designers
can start an unregulated collaborative design ses-
sion. Judicious use of the auxiliary communica-
tion facilities (audio, video, and text) to regulate
design operations can speed up the process by a
factor equal to the number of participants.

Heterogeneity issues
A Shastra conference consists of multiple tool

instances at different sites. This localizes platform-
specific dependencies in the tool. It lets the ses-
sion manager view tools as high-level application
objects, without concern for details of how things
are actually done. This approach supports the
Shastra environment on a variety of hardware
platforms. Specifically, tools can take advantage
of graphics, video compression and decompres-
sion, and audio processing hardware available in
the environment. Thus, the Shastra architecture
greatly simplifies multimedia interaction man-
agement.

The application scenario we described above is
a homogeneous collaboration. In other words, the
collaborative design task is supported on a collec-
tion of instances of the same tool (Shilp in this
case). We are currently building an environment
for collaborative design of custom hip and knee
implants using different Shastra toolkits coupled
with a computer-aided manufacturing facility.
This puts us in the realm of heterogeneous col-
laborations between instances of different tools,
which operate on different types of models or
data.

Shastra’s architecture facilitates the kind of
interapplication cooperation required to build
such a system. The design team uses Vaidak to
build a model of the patient’s femur from cross-
section information (CT/MRI images) and Shilp to
custom design an implant for the femur (see Figure
6). A physical analyst uses Bhautik to conduct a
stress-strain analysis evaluating the load transfer
between the implant and bone (see Figure 7). The’
design team iterates this custom design process
until they obtain an optimally shaped customized
implant. The multimedia communication facili-
ties of Sha-Video, Sha-Phone, and Sha-Poly con-
ferences permit a rapid exchange of rationales for
design choices, interpretations of analyses, and
iterative shape modification and analysis.

Conclusions
Shastra is a powerful distributed and collabo-

rative environment. The Shastra layer provides an
enabling infrastructure for rapid prototyping of
tools. The runtime environment helps to build
multiuser applications. Though we have focused
our implementation on scientific and engineering
design, Shastra easily abstracts to other situations.
The Shastra layer is generic and can be used to
implement systems for collaborative editing, code
viewing and quality assurance, software develop-
ment, CAD applications, and even interactive
multiplayer games. MM

Acknowledgments
We thank the anonymous referees for their

comments and suggestions.
A preliminary version of this article, titled

“Collaborative Multimedia Scientific Design in
Shastra,” appeared in the Proceedings of the First
ACM Intemational Conference on Multimedia, ACM
Press, New York, 1993, pp. 447-456.

This work was supported in part by NSF grants
CCR 92-22467, DMS 91-01424, AFOSR grant
F49620-93- 10138, NASA grant NAG- 1 - 14 73, and
a gift from ATSTT.

References
1 . V. Anupam and C. Bajaj, “Shastra: An Architecture

for Development of Collaborative Applications,”
Proc. Second Workshop on €nabling Technologies:
hfrastructure for Collaborative Enterprises, IEEE
Computer Society Press, Los Alamitos, Calif., 1993,
pp. 155-1 66.

2. W. Thibault and B. Naylor, ”Set Operations on
Polyhedra Using Binary Space Partitioning Trees,”
Computer Graphics (Proc. Siggroph), Vol. 21, No. 4,
1987, pp. 153-1 61.

Vinod Anupam is a doctoral
candidate in the Department of
Computer Sciences at Purdue Uni-
versity, West Lafayette, Indiana.
His research interests include com-
puter-supported cooperative work
and groupware, networking and

distributed systems, geometric modeling, graphics and
visualization, hypermedia, and graphical user interfaces.

Anupam received his bachelor’s degree in computer
science from Birla Institute of Technology and Science,
Pilani, India in 1988. He is a member of Upsilon Pi
Epsilon.

Chandrajit L. Bajaj is a professor
in the Department of Computer
Sciences at Purdue University,
West Lafayette, Indiana, and
directs the Collaborative Modeling
and Visualization Laboratory. His
research is in computational sci-

ence, geometric modeling, computer graphics, scientif-
ic visualization, and distributed and collaborative
multimedia systems.

Bajaj graduated from the Indian Institute of Technol-
ogy, Delhi in 1980 with a bachelor’s degree in electrical
engineering. He received his MS and PhD in computer
science from Cornell University, Ithaca, New York in
1983 and 1984, respectively.

Readers may contact Bajaj at the Dept. of Computer
Science, Purdue Univ., West Lafayette, IN 47907, e-mail
ba jaj@cs.purdue.edu.

More information on Shastra software is available via
anonymous ftp from ftp.cs.purdue.edu and via the
World Wide Web server using xmosaic from http:
//wwMi.cs.purdue.edu/research/shastra/shastra.html.

mailto:jaj@cs.purdue.edu
http://ftp.cs.purdue.edu

