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Abstract

A-patches are implicit surfaces in Bernstein-Bézier(BB) form that are smooth and single-
sheeted. In this paper, we present algorithms to utilize the extra degrees of freedom of each
A-patch for local shape control. A ray shooting scheme is also given to rapidly generate polygonal
approximations of A-patches for graphic display. A distributed implementation of this scheme
gives nice “real time” performance on rendering the A-patches to support interactive shape
control.

Keywords: algebraic surface, free form surface, interactive techniques, smoothing, spline
and piecewise surface, rendering, polygonization, computer-aided geometric design, solid mod-
eling.

1 Introduction

The A-patch is a smooth and single-sheeted zero-contour patch of a trivariate polynomial in
Bernstein-Bézier(BB) form defined within a tetrahedron[BCX94al], where the “A” stands for al-
gebraic. Solutions to the problem of constructing a C' mesh of implicit algebraic patches based
on polyhedron P have been given by [Dah89, BCX94a, BCX94b, DTS93, Guo91l, Guo93, BI92].
While papers [BI92, Dah89, DTS93, Guo91, Guo93] provide heuristics based on monotonicity and
least square approximation to circumvent the multiple sheeted and singularity problems of implicit
patches, [BCX94a] introduces new sufficiency conditions for the BB form of trivariate polynomials
within a tetrahedron, such that the zero contour of the polynomial is a single sheeted non-singular
surface within the tetrahedron (the A-patch) and guarantees that its cubic-mesh complex for P is
both nonsingular and single sheeted.

The geometry of implicit surfaces has been proven to be more difficult to specify, interactively
control, or polygonize than those of their parametric counterpart. Literature that concerns these

issues includes [Bli82, WMWS86, Pra87, Blo88, BW90, Hal90, BIW93, WH94]
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In the A-patch scheme proposed in [BCX94a], several degrees of freedom remain to modify the
resulting C'! piecewise surface. In this paper, we utilize these weights for local shape control. We
also present a rapid ray shooting algorithm, to show how to polygonize A-patches in a distributed
fashion.

The rest of this paper is as follows. Section 2 gives some preliminary facts about Bernstein-
Bézier(BB) representations, A-patches and a simplicial hull. Section 3 discuss the techniques for
shape controls of A-patches. Section 4 describes the ray shooting algorithm for polygonization and
graphics display.

2 Notation and Preliminary Details

2.1 Bernstein-BézierRepresentation

Let {p1,...p;} € IR®. Then the convex hull of these points is defined by [pips...p;] = {p € IR? :

p= Ele ;pi, 0y > O,Z‘Zzl a; = 1}. Let py, pa, p3, ps € IR? be affine independent. Then the

tetrahedron(or three dimensional simplex) with vertices py, p2, ps, and pa, is V = [p1p2pspa]. For
4

any p = Zaipi € R®, a = (a1, ay,as,a4)! is the barycentric coordinate of p. Let p = (z,y,2)%,
=1

pi = (i 95, 2)"

Any polynomial f(p) of degree m can be expressed in Bernstein-Bézier(BB) form over V as
f(P) = Xjpjzm by BY(a), A€ Z3 where BY'(a) = Ww ajtay2as? ey are the trivariate
Bernstein polynomials for [A] = Y20, A; with A = (A1, Az, A3, A9)T. Also a = (ay,a9,a3,a4)T is
the barycentric coordinate of p, by = by, a, 1,0, (as a subscript, we simply write A as A A2A3A4) are
called control points, and Zfll_ stands for the set of all four dimensional vectors with nonnegative
integer components. Let

F(Oé) = Z b/\BZ\n(a% la| =1, (21)
[A|=m

be a given polynomial of degree m on the tetrahedron S = {(ay, az, a3, a4)’ € R* : Z?Zl a; =

1, a; > 0}. The surface patch within the tetrahedron is defined by Sy C S : F(aq, oz, a3, 04) = 0.
2.2 A-Patch

Definition 2.1 Three-sided patch.

Let the surface patch SE be smooth on the boundary of the tetrahedron S. If any open line
segment (e;, ) with a* € §; = {(a1,az,a3,a4)T 1 a; = 0,0; > 0, Y izj @i = 1} intersects Sf at
most once(counting multiplicities), then we call Sy a three-sided j-patch (see Figure 2.1).

Definition 2.2 Four-sided patch.

Let the surface patch Sg be smooth on the boundary of the tetrahedron S. Let (i,7,k,() be a
permutation of (1, 2, 3, 4). If any open line segment (o, 3*) with o* € (e;e;) and 3* € (ereq)
intersects Sg at most once(counting multiplicities), then we call Sy a four-sided ij-k{-patch (see
Figure 2.1).

It is easy to see that if Sy is a four-sided ij-kf-patch, it is then also a ji-€k-patch, a £k-ji-patch,
and so on.
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Figure 2.1: Three-sided patches (a)-(d) and four-sided patches (e)(f) The filled vertices mark the
boundary patch. Note that these disconnected patches are still single sheeted.

Lemma 2.1 ([BCX94a]) The three-sided j-patch and the four-sided ij-k{-patch are smooth (non-
singular) and single-sheeted.

Theorem 2.1 (/BCX94a)) (i) Let F(a) = 3 |\=, brx B3 (@) salisfy the smooth vertez and smooth
edge conditions and j(1 < j < 4) be a given integer. If there exists an integer k(0 < k < n) such
that

bA1)\2A3A4 Z 07 A] = 07 17 .t ‘7k - 17 (22)

bAJAQASA;} S 07 A] = k —I_ 17 . '74n (23)

and Y ja=n by >0 if k>0, 3" y= by < 0 for at least one m(k < m < n), then Sf is a three-sided
A;=0 Aj=m

7-patch.
(ii) Let F(a) = 3z =n baBY (@) satisfy the smooth vertex and smooth edge conditions and (i, j, k,{)
be a permutation of (1, 2, 3, 4). If there exists an integer k(0 < k < n) such that

b)\1/\2)\3k4 Z 07 AZ —I_ A] = 07 17 .t ‘7k - 17 (24)
and Y p=n by > 0k >0, 3 p=n by < 0 for at least one m(k < m < n), then Sp is
Ai+A;=0 Ai+Aj=m

four-sided 1j-k{-patch.
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Figure 2.2: Interpolatory scheme: smoothing a “jar”

2.3 Two useful properties

a. For a three-sided j-patch, any point P € Sg can be mapped to a barycentric triple (a;, ax, ay),
a;jtoapt+ap=1,a;,a;,a,>0o0rapoint a* € 5; = {(al,ag,ag,a4)T : a; = 0, Furthermore,
there exists a one to one mapping between Sp and 57 = {a* : @™ € 5}, F(e;) - F(ax) < 0}.

b. For a four-sided ij-k{-patch, any point P € Sr can be mapped to a tuple (a;,ax), 0 < a; < 1,
0 < oy <1, or two points a* € (ee;) = {(al,az,ag,a4)T tap = ap =0} and 8 € (eger) =
{(e1, 02, a3,a4)T 1 @; = a; = 0}. Furthermore, there exists a one to one mapping between
Sp and {(a;, Bx)! : F(a*) - F(B*) < 0}. If F(a*) = 0, Sp is degenerate and all the points
with the same aj collapse into one point.

2.4 Simplicial Hull

The simplicial hull packing scheme that we use here is detailed in [BCX94a|. For a triangulation
7, a pair of face tetrahedra, [p1papsps] and [p1p2psqs] are built on each face [p1paps] € 7, one on
each side. Two face tetrahedra [pi1p2psps] and [p|papsp)] on adjacent faces do not intersect with
each other (other than share a common edge). Two edge tetrahedra [p|p2pspas] and [pypz2psp)] are
“filled” into and gap in between, where psp/p} are collinear (see Figure 2.5). Each of the tetrahedra
is a local domain that defines an A-patch.

In a C! scheme, the face tetrahedra need to be high enough so that for any vertex of the
triangulation, there is a tangent plane that intersects all the face tetrahedra pair built on its incident
faces. We call this the tangent containment condition. Face tetrahedra that do not intersect with
any tangent plane can be deleted as they contain no A-patches. A three-sided patch that passes
through py,po, ps is defined in each face tetrahedron [pypapsps], while a four-sided patch passes
through py and ps is defined in each edge tetrahedron.

2.5 The C! and single-sheeted scheme

See Figure 2.5. Let Vi = [pipapsps] and V] = [pi1papsqa] be a pair of face tetrahedra, V, =

[pip2pspl] and V§ = [pipapsqi] be the neighboring pair that share edge [paps], W1 = [p{p2pspal,
Wy = [pp2psph], W1 = [q)papapal, W5 = (¢ p2psp}]. be the edge tetrahedra between them, and



=| Splinex Window 0 dz (CUBRENT). Contains: J0.3,1]. [ 0| [ Swlinex Window 0 dz (CURREN). Cortairs: {1]. [« (0] [=_ Spfinex Window 0 dz (CURRENT). Coritains: J0.3,1]. (=0

4 e !
i
.,/*'

)
=
vl

Figure 2.3: Interpolatory scheme: smoothing a “three finger” free form object
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Figure 2.4: Left: a complete “three finger”. Center and Right: Corner cutting scheme, smoothing
a “satellite”
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Figure 2.5: Adjacent Tetrahedra, Cubic Functions and Control Points for two Non-Convex Adjacent
Faces

the polynomials f; over V;, g; over W;, f! over V/ and g! over W/ be expressed in Bernstein-Bézier
form with coefficients a&, bg and cg, respectively.

In the following algorithms, we mostly describes the setting between Vi and W; and between
Wy and W3, as the others are trivially symmetric.

Algorithm 1 C! cubic scheme

(1) (At vertices. Interpolating the positions and normals of the vertices)
For face tetrahedron Vi, sel aygg = af300 = agoze = 0.0, and (a3100; 430105 43001), (@12005 @2105 U201);
and (algyg, @190, @d091) according to the normal at the vertices. For edge tetrahedron Wy, set

(2) (Third level)
(i) When [p1p2psp}] is not coplanar, ay # 0, solve a linear equation (C' condition between

/1 and Vy arount edge [paps]) for alyq1, then solve compute by, accordingly. Similarly, aly,

1
and aj,y, are set.

(i) A degeneraled case is when [p1papsp)] are coplanar, namely, the base faces of two neigh-
boring tetrahedra are coplanar, in which case ay = 0, alyy; cannot be expressed in terms of
other weights in by. In this case, a Clough-Tocker split is needed.

(3) (Second level)
Setting bi1o1, bio11 of the neighboring tetrahedra by C' condition.

(4) (Top level)
Selting byyg in the neighboring edge tetrahedra by C' condition.

(5) (C' condition between edge patches)
Setting baioo, baoio and bsgoo according to the C1 condition between Wi W,.
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Figure 2.6: Corner cutting scheme: smoothing the same tricube with different configurations.

In Algorithm 1, alyy9, algoz, @102, @do1o and adggs in fi and blyg, in g; are free. In the following
algorithm, Algorithm 2, we adjust them to enforce single-sheetedness. The description of Algo-
rithm 2 is actually an add-on of Algorithm 1. Step n’ is to be inserted before step n of Algorithm 1.

Algorithm 2 Single-sheeted

(2°) If [p1p2p3] is not coplanar to the base face of any ils neighboring face tetrahedra, aty,q is lefl
free from the C1 condition.
(i) If all a}\l/\ﬂgo excepl aly,o are of the same sign, adjust ai,,, to make sure the BB poly-
nomial defined over [pypaps] does not intersect with face [pipaps]. A simple solution is just
setting aiy;o to be of the same sign.
(ii) If one of the three edges [p1pz], [p2ps3], or [pspz2] is nonconvex (for example, on [paps],
adyqo and aly g are of different signs), then the weights al the third level, a}\1A2A31 have to be of
the same sign as that of the top level weight. If needed, a Clough-Tocher split is performed to
ensure this sign restriction. In the case that a Clough-Tocher split is need, V1 = (Vi1, V12, Vi3)
and Vo = (Vay, Vag, Vas), Adjust aliyg, aiiig to ensure that alyqy, adi1q, lo be posilive and
111, €8111 to be negative.

(3”) (Single-sheeted condition/Second level)
Adjust asgo1, @o201 and agor so that they are big enough in absolute value to ensure that

bi101, bio11 in the neighboring edge tetrahedra are of the same sign as they are related in C*
condition.

(4”) (Single-sheeted condition/Top level)
Adjust aggos so that it is big enough in absolute value to ensure that byigg in the neighboring
edge tetrahedra are of the same sign when selting the C condition between them.

(5°) (Single-sheeted condition/Fdge patch) Set edge weight biago to be of the same sign as bogos.

3 Shape Control

In the C! and single-sheeted scheme, weights ai;10, @1g02s @d1025 @012 and @dges of Vi and by, of
Wy are adjustable within some ranges. This freedom, on the one hand, allows us to locally change



the shape of the surface, while on the other hand, burdens us with extra work to remove bumpy
defects.

3.1 Default weights
3.1.1 Approximating lower patches

One commonly used method is to keep the surface patch close to a lower degree patch([Baj92,
DTS93]), which, in our case, is quadric patch. Specifically, we determine a quadric that is least
square approximating the known weights of the cubic and then set the unknown weights of the
cubic from the quadric by a degree raising formula.

However, the least square optimization is subject to the C'! and single-sheeted linear constraints.
Hence this is typically a non-linear programming problem with quadratic object function and linear
constraints. We employ some simple heuristic to obtain an approximation of the optimal solution
should the solution of the unconstrained counterpart falls outside the constraints.

3.1.2 Edge patch first

The previous method fails to consider the shape of neighboring face patches beyond the fact that
they share common normals. Such neglect could lead to unwanted variation in the edge patch
between them. The next scheme sets the ideal weights of the edge patches first. Then the weights
of the face patches “honor” the choice of the edge patches by making sure the ideal edge patch
weights are changed the least when the C'! conditions are set.

Considering edge patch W7 and Wj. Let £ be the intersection of the two tangent plane at py
and p3. The weights around the two vertices are set by the interpolatory and normal conditions.
We set the rest of the weights so that g; = 0 is actually a swept surface parallel to £ and the cross
section curve approximate a quadric in least square sense. This can be done by a few basis change
of the polynomials. Set g; to be the same as g;.

By C! conditions, the edge patch weights propose values for the neighboring face patches. A
face patch, however, take weighted averages of the proposed values from different edge patches
around it and set them as default values. In taking the weighted average, smaller edge patch
weighs more as for the same BB-represented surfaces, smaller tetrahedra yields larger curvature
and larger curvature change for the same amount of change in the weights.

The heuristic methods we discussed above are “cheap” for they do not require any massive
computations. “Expensive” global optimization methods can also be used to improve the surface
by minimizing the “energy”, or some smoothness criteria, of the surface.

3.2 Interactive Shape Control

At a vertex, if the normal becomes longer then the surface becomes flatter around this vertex.
The change of normal length is equivalent to a scaling of all the weights around the vertex by the
same ratio. Altering the direction of a normal also changes the shape around the verttex. However,
when we desire a direction change we need to check that it does not violate the tangent containment
constraints.

In a face tetrahedra V', we can raise or lower the weights aggos, @1002, o102 and agp12 defining
the surface patch without altering its variation (see Figure 2.6); Weight a1119 alters the variation
of the surface. Please note that by C'! conditions, a111¢ is related to agi11, @¢1011 and a1101, and also



Figure 3.7: Setting the edge patches first to reduce unwanted variations. Left: piecewise surface in
multipatch shading mode. Center and Right: shown in an RGB model where the normal vectors
become the color RGB vector. Center: face patches are set first. Right: edge patch are set first.
One sees that the right picture exibits a fairer surface

Figure 3.8: Changing a1110 on a face patch affecting other face patches. From left, ay110 =
—0.5,—1.0,0.5. The corner is popped up in the center picture while sucked in in the right one

there are other weights that could alter the surface geometry (see Figure 3.8). Hence the effect of
changing 1110 in changing variation could be exaggerated or reduced, depending on the geometric
relationship between the tetrahedra. Also, as @110 are related to neighboring patches in a linear
equation, change of this weight propagates further into to neighboring patches, while that of @199z,
ao102 and agprz do not affect neighboring face patches and that of agges affects only adjacent edge
patches.

In general, a desirable modification involves collaboration of several adjustable weights rather
than a single one. Hence an alternative way is to specify some additional data points in the
tetrahedra, and then approximate these points in the least square sense.

4 Rapid Display Scheme

Algorithms to generate polygonal approximations of a three-sided or four-sided patch are suggested
by properties (d) and (e) of A-patches in [BCX94a].



Figure 3.9: Ray shooting A-patches

For two based sharing 3-sided 4-patch [p1p2pspa] and [p1p2psqa], (see Figure 2.5) any point V'
on the surface defined in them is in a one to one mapping with a point a* on face [p;pops]. This
is because polyline psa*qy intersects with the union of two patches exactly once (see Figure 3.9).
Hence the barycentric coordinate of points on [pypaps] can be used as a parameterization of the
union of the two three-side apatches. Similarly, for two edge sharing four-sided 14-patches [p}papspa]
and [¢}'p2psqa](see Figure 2.5), the union of the two 4-sided A-patches can be parameterized into a
quadtilateral domain (s, 1), where (1—s, s) is the barycentric coordinate of both a point 3* € [p{p4]
and a point v* € [¢]qs]. Let (1 — ¢,¢) be the coordinate of a point a* € [paps] as polyline §*a*y*
intersection the union of A-patches once( see Figure 3.9). We call such a pair of three-sided or
four-sided patches as a double A-patch and call the parametrizations ray coordinate.

A simple polygonization algorithm can be described as follows, for both three-sided and four-
sided A-patches. The algorithm works in an adaptive fashion. Beginning with some initial triangles,
we keep subdividing them until the shape is desirable to some criterion.

Algorithm 3 Ray-shooting

(1) Initialization. (i) three-sided double A-patches: Compute vertices A, B and C' whose ray
coordinates are (0,0), (1,0) and (0,1), respectively. Enter [ABC| as the first cell in the polygon
list.
(ii) four-sided double A-patch: Compute vertices A, B, C and D whose ray coordinates are (0,0),
(0,1), (1,1) and (1,0), respectively. Enter [ABC| and [AC D] as the first two cells in the polygon
list.

(2) For each edge [A = (sp,t0), B = (s1,11)], if it is too long, Compute

o= (1) (@) (3)

for some a € [0, 1], weighted by the normals at A and B. Replace [AB] by [AC] and [CB]. Exit if
no edge is broken; go to (3) otherwise.
(3) Triangulate every cell that has broken edges due to step 2. Go to (2).

Please note that a four-sided double patch may have some special points where the surface passes
through edge paps. At those points, s, the first component of its ray coordinate, is undefined. For
all the points with the same ¢ value coincide at one point.

We observe that, in a simplicial hull, a large portion of edge tetrahedra are thin compared to
their neighboring face tetrahedra. If we ray-shoot each double patch separately, the polygonal mesh

10



of an edge tetrahedron could be rather skew and dense compared to that of its neighboring face,
which is not desirable for display or further processing of the polygonal representation. To obtain
a more uniform polygonal mesh, we instead ray-shoot a group of A-patches collectively, namely,
a double face patch and the double edge patches adjacent to it. The algorithm is essentially the
same. except

The two algorithms can be speed up dramatically by distributing the computation to differ-
ent machines or parallelizing into different processors. However, we need to make sure that the
boundary curves of two neighboring partition are approximated by the same polyline. This can
be achieved by enforcing, on both side of the common boundary, the same deterministic criterion
for breaking up edges. We have implemented this distributed scheme in SplineX[BCE93]. With
servers running on 9 networked Sun Workstation, it takes less than 2 minutes to polygonize the
satellite object(Figure 2.4) containing over 1392 A-patches. Each apatch is polygonized into about
40 triangles,
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