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Abstract

Interactive data visualization concerns the real time manipulation of sampled and

computed data for comprehensive display. The goal of the visualization is to bring to

the user a deeper understanding of the data as well as the underlying physical laws and

properties. In this survey paper I focus on two problem areas relating to interactive

data visualization. The �rst is in data reduction and dealing with the computation

of error-bounded reduced detail meshes with topological correctness. The second is in

data reconstruction from scattered point scans and dealing with accurate spline models

which support interactive querying and manipulation. For each of these problem areas I

survey some of the related research and simultaneously present some of our own recent

results.

1 Introduction

Interactive data visualization concerns the real time manipulation of sampled and computed

data for comprehensive display. The goal of the visualization is to bring to the user a

deeper understanding of the data as well as the underlying physical laws and properties.

Such visualization may be used to enlighten a physicist on the complex interaction between

electrons, to guide the medical practitioner in surgery, or simply to 
y over the surface of

a planet which has never been seen by human eyes.

Through the presentation of massive amounts of data as images, we allow the visu-

alization user to rapidly prune useless information, focus on necessary information, and

comprehend the science behind the data. Interaction with data brings another level of

understanding. Static images can be misleading and mask important features of the data.

Motion in visualization brings out hidden features which are inherently dynamic. Interac-

tive manipulation and control of visualization is an important tool which allows scientists

to more quickly focus on the region of interest. In environments which are immersive, the

motion is critical, to the point that delays or inconsistencies can make the viewer ill. In
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this case there is a desire to bound response time using time-critical techniques. Here we

consider user interaction on the workstation, although the speed-up techniques can prove

useful in other real-time applications as well.

The important aspects of interactive data visualization can be broken down into three

categories:

Computation - the ability to speedily compute a visualization. This may include computing

a spline approximation to an isosurface of a scalar function, or the computation of

a particle trace through a time-dependent vector �eld, or any action which requires

extracting an abstract object or representation from the data being examined.

Display - the ability to quickly display the computed visualization. Display encompasses

both computed visualizations as listed above, as well as projection display methods

such as volume visualization and ray tracing.

Querying - the ability to interactively probe a displayed visualization for both quantitative

and metric information with the purpose of further understanding on a �ne scale what

is being displayed on a large scale.

Previous research for interactive visualization has focused on each of the three basic

needs: computation, display, and querying of scienti�c data. Algorithmic techniques de-

veloped can be categorized as Reducing Detail, Reducing Computation and Spatial Data

Structures. In this survey paper I focus on two algorithmic areas relating to interactive

data visualization. The �rst is in data reduction and dealing with the computation of

error-bounded reduced detail meshes with topological correctness. The second is in data

reconstruction from scattered point scans yielding accurate spline data structures which

support interactive querying and manipulation. For each of these areas I survey some of

the related research and simultaneously present some of our own recent results.

2 Data Reduction

Interactive visualization is often impeded by the sheer size of the data being visualized.

One approach for reducing this stress is through reduction in the number of primitives

used to represent the data with a speci�ed level of �delity. Reduction of detail can refer

to elimination of geometric detail, data detail, or both. Reduction of geometric detail

is commonly used in real-time environments and simulations. Interactive frame rates are

critical in such applications as 
ight simulators, Virtual Reality walk-throughs, etc. The

goal of geometry reduction is to produce a reduced detail representation for a given object,

based on certain criteria which, hopefully, provide a measure of the error between the two

representations.

Algorithms for reducing the complexity of models can be placed into three categories:
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Vertex insertion/deletion - algorithms which iteratively delete vertices from a dense rep-

resentation, or add vertices to a sparse representation, until a satisfactory result is

achieved.

Optimization - algorithms which iteratively converge to a desirable result through use of

energy minimization.

Multi-resolution analysis - algorithms which use a functional decomposition of data into

nested levels of resolution in order to isolate the important features in the data.

2.1 Vertex insertion/deletion

Vertex insertion and deletion forms the basis for many mesh reduction algorithms. In the

case of arbitrary surface meshes (geometric mesh reduction), vertex deletion is the most

natural approach. For functional surfaces, both insertion and deletion techniques have been

considered.

Schroeder, et al [38], compute reduced representations for dense triangular surface

meshes such as those computed by Marching Cubes[33] or similar isosurfacing algorithms.

Vertices in the dense mesh are examined and classi�ed based on geometric features in the

triangulation surrounding the vertex. If error criteria are satis�ed, the vertex is deleted

and the resulting hole is retriangulated. There is no error propagation, and therefore no

guarantee on the amount of accumulated error in the �nal representation.

Hinker, et al [31] perform \geometric optimization" on triangular surface meshes be

grouping faces into contiguous sets which are nearly co-planar, deleting points which are

interior or along nearly linear edges, and retriangulating the resulting hole. They note that

vertex deletion methods such as this have the advantage that auxiliary vertex information

(normals, texture coordinates) can be propagated to the resulting reduced mesh, however

their method fails to consider such auxilary information in the vertex removal criteria,

opting to consider only the geometric aspect of the mesh reduction.

Much of the work for functional surfaces has been related to mesh reduction for dense

geographical data. Lee [4] contains an overview and comparison of point insertion and point

deletion methods for functional surfaces. In this context, the function is that of height, and

the goal is to accurately model a terrain using the fewest number of elements possible. Ge-

ographical Information Systems (GIS) researchers have adopted the Triangulated Irregular

Network (TIN) as a representation for simpli�ed meshes [29]. Exploiting the nature of the

data de�ned over a planar mesh, exact errors may be computed at the original mesh points

as a measure of error.
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2.2 Optimization

Optimization methods de�ne measures of energies for point sets or triangulations based on

an original mesh, and attempt to minimize these energies in forming a simpli�ed mesh.

In Turk [40], reduced polygonal surfaces are computed at a desired resolution of vertices.

Contrast this the point insertion and deletion methods which are driven by error computa-

tions rather than desired resolution. Given the desired number of vertices, point repulsion

on the polygonal surface spreads the points out. A mutual tessellation of the original trian-

gulation and the introduced points followed by deletion of the original vertices guarantees

that the topology of the polygonal surface is maintained. Point repulsion is adjusted based

on estimated curvature of the surface, providing an adaptive triangulation which maintains

geometric features.

Hoppe, et al. [32] perform time-intensive mesh optimization based on the de�nition

of an energy function which balances the need for accurate geometry with the desire for

compactness in representation. The level of mesh reduction is controlled by a parameter

in the energy function which penalizes meshes with large numbers of vertices, as well as a

spring constant which helps guide the energy minimization to a desirable result.

2.3 Multiresolution analysis

Multiresolution analysis is a structured mathematical decomposition of functions into mul-

tiple levels of representation. Through the use of wavelet transforms [35, 28], a hierarchi-

cal representation of functions can be obtained by repeatedly breaking the function into

a coarser representation in addition to a set of perturbation coe�cients which allow the

full recovery of the original representation from the coarse representation. Generally, the

wavelet basis is chosen such that the perturbation coe�cients have desirable attributes

such as direct correlation with some measure of error which is introduced at a given level

of representation. During reconstruction from the wavelet representation, su�ciently small

wavelet coe�cients can be left out, resulting in a coarser approximation to the original data,

with a known bound on the amount of error [34, 26, 39]. Further extensions have provided

similar basis for the decomposition of surfaces [27]. Muraki [36] applies wavelets in 3D to

compute multiresolution models of 3D volume data. Isosurfaces and planar cross sections of

the resulting data show little change in image quality with large reductions in the amount

of data representing the volume.

2.4 Our Current Research

In [37] we extend geometric reduction methods to arbitrary surfaces in 3D and to any

number of data variables de�ned over the mesh by developing a algorithm for mapping

from a surface mesh to a reduced representation and measuring the introduced error in

both the geometry and the multivariate data. Furthermore, through error propagation, our
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algorithm ensures that the errors in both the geometric representation and multivariate

data do not exceed a user-speci�ed upper bound. In addition, we describe a procedure

by which a nested triangulation can be obtained, allowing smooth interpolation between

meshes of varying resolution. The user-speci�ed error bounds for geometry and data are

intuitive, making it easy to guide or automate the mesh reduction process resulting in a

mesh of desirable quality.

The algorithm for reduction follows the basic strategy of other \vertex deletion" schemes.

From an initially dense surface mesh, vertices are considered as candidates for deletion. A

candidate vertex is deleted if a valid retriangulation of the hole which results from deletion

can be found. A valid retriangulation must maintain the topology of the original mesh, and

the sum of the propagated errors and errors introduced from the deletion must be within

user-speci�ed bounds.

Unlike some mesh reduction schemes, there is no 'vertex classi�cation' scheme which

determines if a vertex is a candidate for deletion. All vertices are candidates, and may

deleted so long as their removal does not violate the user-de�ned constraints. The error

minimization scheme employed in retriangulation will automatically maintain edges in both

the geometry and the data by choosing a retriangulation which is closest to the original

data. Note that we consider only the cases of meshes which are 2-manifold, which are

common in scienti�c data. For non-manifold meshes, classi�cation may be required in order

to determine if a vertex should be considered for deletion.

A desirable trait for a mesh reduction algorithm is the ability to create multiple nested

levels of detail for an object, which can be smoothly interpolated and blended. Such methods

are frequently used in real-time rendering systems such as a 
ight simulator, so that objects

which are far away and appear small to the user may be rendered using a coarse resolution

model [5]. As the object nears the user, the model can be smoothly blended to a more

detailed resolution. Such methods would also be very useful in a navigable visualization

environment. We describe a method to generate nested sets of models and interpolate

between them.

The error control in the mesh reduction is driven by a mapping from one triangulation to

another. Using this fact, we can develop a simple method for interpolating between multiple

levels of triangulation. The �rst step is to generate multiple nested representations for a

surface mesh. In a vertex removal mesh reduction, this is easily accomplished by generating

meshes in the order of the most detailed to the most simpli�ed mesh. At each stage of

the mesh reduction, we use the previous mesh as a starting point and further reduce the

mesh. We are guaranteed that the lower resolution meshes will contain only vertices from

the higher resolutions.

In order to properly interpolate between the representations, we need only to store a

description of the mapping which was used to create the reduced representations. When

a retriangulation is projected to the original surface, the surface is segmented into linear
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pieces. When interpolating between a higher and lower resolution model, it is these linear

pieces which are interpolated from one resolution to the other. When the interpolation

reaches the higher or lower resolution, the pieces can be replaced with the exact resolution

model.

Figure 1 demonstrates the mesh reduction on a constant surface of density in a pion

collision simulation. The surface was extracted through isosurfacing of a 70 x 40 x 25

volume of data. Seven variables, including density, pressure, and component velocities were

all interpolated to the isosurface. Reduced meshes were computed with relative error bounds

of 3% and 6%. Three pseudocolored surfaces are shown, representing three of the variables

in the mesh. The reduced meshes are 70% - 80% smaller than the original mesh, while

maintaining the geometry and data on the mesh.

In �gure 2, an isosurface was extracted from a 54 x 24 x 24 volume mesh from a bullet

impact simulation. Six variables de�ned on the mesh were interpolated to the surface.

Meshes of reduced resolution were computed with relative error bounds of 3% and 9%.

Three pseudocolored surfaces show the values of three of the variables on the original mesh

as well as the simpli�ed meshes. Mesh simpli�cation reduced the size of the meshes by 50%

- 70%.

3 Data Reconstruction

Reconstructing a topologically consistent and geometrically accurate model of the object and

of its associated physical properties allows for the rapid display of di�erent visualizations

as well as supports interactive querying and manipulation. Several types of sensors are

available to scan a 3D object and measure the location of points on its surface. Mechanical

probes, used in the manufacturing industry, are extremely accurate but very slow to use.

Laser Range Scanners can measure the location of a large number of points in a relatively

small time. Recent models are also capable of capturing the RGB components of the

color of the surface at each sample point. Less accurate (and cheaper) hand-held devices,

based on ultrasound or magnetic �elds, are also being marketed. Assuming no particular

organization of the data allows us to treat several variations of the problem with a uniform

approach, and constitutes an interesting theoretical challenge. The approach one might

take in trying to solve this problem depends heavily on the assumptions that can be made

about the sampled object and the data itself. For example, the object might be assumed to

be smooth or instead contain creases and corners. The sampling might be very dense and

uniform, or rather sparse.
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3.1 Piecewise-linear reconstruction

In a short paper dated 1981, O'Rourke [18] explores the use of polyhedra to represent

the \most reasonable" reconstruction of an object from a set of points. In particular, he

proposes polyhedra of minimal surface area as a \natural" model for a given set of points,

and describes an algorithm for the computation of an approximation of such polyhedra.

The problem of reconstructing a polygon of minimal perimeter having a given set of points

as vertices is easily proved to be equivalent to the Euclidean Traveling Salesman problem,

which is known to be NP-hard. The problem of computing a polyhedron of minimal surface

area is the 3D version of the minimal perimeter polygon, and is conjectured to be NP-hard

as well.

Boissonnat [9] proposes two methods to build a triangulation having the given points as

vertices. The �rst method is \local" and surface-based, whereas the second one is \global"

and volume-based. Following his �rst approach, one starts with creating an edge between

the two closest points. A third point is then chosen and added, so that a triangle is formed.

Other points are successively added and new triangles are created, and joined to an edge

of the current triangulation boundary, until all points have been included. The selection

of which point to insert and to which edge to join the new triangle is based on a visibility

heuristic. The second method proposed is based on the idea of �rst computing a Delaunay

triangulation of the convex hull of the set of points, and then sculpting the volume by

removing tetrahedra, until all points are on its boundary, or no tetrahedra can be further

removed. The author suggests a heuristic to select which tetrahedron to remove.

Choi et al. [10] propose a method to grow a triangulation, starting from an initial

triangle, based on the assumption that there exists a point from which all the points of the

surface are visible. After a triangulation is built, it is improved by edge swapping based on

a smoothness criterion. Veltkamp [24] introduces a new geometric structure, called 
-graph,

which contains as a special case many well known geometric graphs, such as the Euclidean

Minimum Spanning Tree, the Delaunay Triangulation, the Convex Hull and the Gabriel

Graph. The 
-graph is progressively constricted (i.e. tetrahedra having boundary faces are

deleted) until the boundary of the 
-graph is a closed surface, passing through all the given

points.

Hoppe et al. [14] use an approach based on normal propagation to correctly orient the

approximated manifold. Their method next constructs a regular subdivision of a paral-

lelepiped containing the data points into cubes. The value of a function � is computed at

all vertices of the subdivision as the signed distance of the vertex from the oriented plane

associated with the closest point in P . An algorithm similar to marching cubes is then used

to construct a piecewise-linear approximation of the zero contour of �. In two subsequent

steps, described in [15, 13], the constructed mesh is optimized (i.e., the number of triangles

is reduced while the distance of the mesh from the data points is kept small) and then a
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smooth surface is built on it. While this approach gives very convincing results, and allows

for smooth objects with sharp features to be correctly reconstructed, the computational

time required by the optimization and smoothing steps is signi�cant.

3.2 Piecewise curved surface �tting

While the theory for approximating a set of points, under certain constraints, with a poly-

nomial of given degree is well developed, all these methods have to deal with the problem

of inferring the right topology for the surface.

An early application of this method is described by Shmitt et al. [22]. The input points

are assumed organized in a rectangular grid, and are adaptively �tted using Bernstein-B�ezier

parametric bicubic patches, joined to form a G1 continuous surface. The approximation

process begins with a rough approximating surface and uses subdivision to achieve the

needed level of accuracy. The method is applicable to a restricted, yet important, class of

objects, namely those for which a rectangular grid of points su�ces to describe the surface

(for example objects with an \almost cylindrical" geometry, like a human head). Objects

of genus greater than 0, or objects with a convoluted geometry, require multiple point of

views to be completely scanned.

Moore and Warren [17] describe a method for �tting algebraic surfaces to scattered dense

data. Their method is adaptive and able in principle of dealing with complex geometry

and topology. The �tting begins with a uniform mesh of tetrahedral elements that �ll a

region containing the data points. Then for each element in the mesh that contains points,

a surface patch that approximates the points is computed based on least squares �t of

the data points and of auxiliary data. It is known that least squares approximation of

data points with algebraic patches might produce surfaces having extraneous parts. The

auxiliary data serves the purpose of avoiding extraneous surface sheets. This data is an

approximate sampling of the signed-distance function �(x; y; z). They give examples of

C0 reconstruction of surfaces and brie
y discuss a C1 method (non adaptive) based on

biquadratic, tensor-product implicit patches.

Goshtasby [12] introduces a new representation for parametric curves and surfaces, using

Gaussian bases in rational form, and shows applications to the recovery of shape from noisy

image data. The standard deviation of Gaussians control the smoothness of a recovered

shape.

3.3 Physically Based Modeling

Another class of algorithms is based on the idea of deforming an initial approximation of a

shape, under the e�ect of external forces and internal reactions and constraints. Terzopoulos

et al. [23] use an elastically-deformable model with intrinsic forces that induce a preference

for symmetric shapes, and apply them to the reconstruction of shapes from images. The
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algorithm is also capable of inferring non-rigid motion of an object from time-varying images.

Pentland and Sclaro� [19] adopt an approach based on the �nite element method and

parametric surfaces. They start with a simple solid model (like a sphere or cylinder) and

attach virtual \springs" between each data point and a point on the surface. The equilibrium

condition of this dynamic system is the reconstructed shape. They show how the set of

parameters that describe the recovered shape can be used in object recognition. Similar

approaches are described in [21, 20, 16].

3.4 Our Current Research

Our research has focused on reconstruction algorithms [8, 7, 1] based on piecewise algebraic

surface splines [2, 3]. Algebraic surface splines have many attractive qualities, from the

closure properties with respect to important modeling operations such as intersection and

blending, to a high design 
exibility for a relatively low algebraic degree [6].

We consider the following reconstruction problem:

Let an unorganized collection of points P = f(xi; yi; zi)g � R3 and associated

values W = fwig � R1, i = 1 : : :n, be given. The points P are assumed to be

sampled from a domain D in R3 (the boundary of a three-dimensional object)

while the values W are assumed sampled from some scalar function F on the

domain D.

Construct a C1 smooth piecewise polynomial surface SD : fD(x; y; z) = 0 and a

C1 smooth piecewise polynomial function (surface-on-surface) SF : fF (x; y; z)

on some domain that contains P such that, for i = 1 : : :n:

1. jfD(xi; yi; zi)j < "D

2. jfF (xi; yi; zi)� wij < "F

where "D and "F are user-de�ned approximation parameters. The user can

also choose the degree of the Bernstein-B�ezier polynomial patches used in the

approximation.

Our approach aims at the following objectives:

1. Unrestricted topological genus. The method should be able to reconstruct objects

of arbitrary genus.

2. Approximation of the data. Since the data set is noisy and usually very dense,

attempting to interpolate all data points would lead to ine�ciency and to an unnec-

essarily large number of patches.
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3. Adaptiveness. Many objects have localized, small-scale features and large, 
at or

constant-curvature areas. Therefore it is convenient to be able to use patches of

di�erent size in di�erent areas of the object surface.

4. Tangent-plane continuity. Often smooth manufactured objects can be modeled

quite accurately with surface patches joining so that �rst-order derivatives across the

common boundary are continuous. The present approach cannot automatically handle

objects with mixed continuity (i.e., objects whose surface is formed by smooth regions

that join at a crisp edge or corner). This will be the subject of future investigation.

5. Reconstruction of a �eld over the surface. In many important cases a scalar �eld

has been sampled at the data points locations. The algorithm must be able to recon-

struct a C1-continuous function, de�ned over the object surface, that approximates

the sampled data.

We have developed, implemented and experimented with several solutions to the recon-

struction problem. Our algorithms consist of the following phases (for a detailed description

of the reconstruction algorithms see [8, 7]):

1. Build an approximation of the signed-distance function. If M is a connected

and orientable surface in R3, then it is possible to de�ne (in all R3) a function �(p),

called signed-distance, by

�(p) := sign � dist(p;M)

where dist(p;M) denotes the Hausdor� distance from the point p to the surface M

and the sign is chosen so that �(p) is positive when p is on one side ofM , and negative

when p lies on the other side. Then �(p) = 0 will recover the surface M .

When only discrete data on a surface is available, an approximate signed-distance

can be de�ned in some appropriate way (see e.g. [17, 14, 8]). In particular, we have

tried both the normal propagation approach proposed in [14], and a technique based

on �-shapes [11], to de�ne the signed-distance function (notice that this requires a

topologically consistent reconstruction of the surface orientation at each point).

This step can be seen as transforming the problem from a surface-data reconstruction

to a volume-data approximation.

2. Approximate the signed-distance by a piecewise polynomial function. Build,

in an adaptive fashion, a piecewise polynomial approximation fD(x; y; z) of �(p;M).

The piecewise polynomial is built by least squares �tting of trivariate polynomials,

in each cell of a decomposition of a domain containing P , to the data points within

the cell and to additional samples of the signed-distance function � de�ned in phase 1

above. If the error-of-�t in a cell of the subdivision exceeds the given bounds, then
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the decomposition is locally re�ned and the process is repeated in each new cell. The

reconstructed domain is implicitly de�ned as SD(x; y; z) = 0.

Both tensor-product (Figure 4) and barycentric (Figure 3), C1 smooth piecewise im-

plicit Bezier patches have been used for the data �tting.

3. Approximate the scalar �eld de�ned over M . Concurrently to the approxi-

mation of the signed-distance function, a piecewise polynomial approximation of the

scalar �eld can be computed in a similar fashion by least squares �tting of the scalar

�eld data in each cell of the decomposition.

4. Make the reconstructed surface C1-smooth. Two smoothing techniques, namely

the free-form blending [17] and the three-dimensional Clough-Tocher split [25] have

been employed to achieve C1-continuity.

The data for the human femur in Figure 3, 9223 points, comes from contouring of a

CT scan. The algorithm does not use the fact that the data is arranged in slices. The

reconstructed C1 surface is made by 400 barycentric cubic, implicit Bezier patches. The

reconstruction algorithm took about 6 minutes on a SGI MIPS4400 workstation.

The sampled points in Figure 4 come from the surface of a jet engine, while the associ-

ated values measure the pressure on the engine (data from a simulation). Figure 4 shows

several steps of the reconstruction process on one part of the engine. The 3780 data points

for the outer cowl are preprocessed to associate local �tting planes and orient the associ-

ated normals (4(a)). The approximation algorithm begins with a given grid (in this case, a

uniform subdivision into 5� 5� 5 equally-sized cubes) and then adaptively re�nes it until

the error bound conditions are met (the error in this example was set to 0.01 times the

max size of the object). The �nal subdivision is displayed in Figure 4(b). After averaging,

a C1-smooth piecewise polynomial surface is obtained, as shown in Figure 4(c). The com-

plete reconstruction of this object took about 30 seconds on a SGI MIPS4400 workstation.

The full reconstructed engine is �nally shown in Figure 4(d). At the same time, a di�erent

piecewise polynomial, whose domain is the same as for the surface implicit function, approx-

imates the sampled scalar �eld (see Figure 5). Figure 5 shows four di�erent visualization

of the jet engine data. In Figure 5(a) some isoregions of the pressure �eld have been drawn

on the engine surface. In Figure 5(b) we have used the normal-projection method to show

the scalar �eld as a surface-on-surface: Points on the domain surface have been projected

along the surface normal direction to a distance proportional to the value of the �eld at

that point. The �eld surface patches are visible in Figure 5(c). Finally, in Figure 5(d), we

show isocontours projected on the surface-on-surface.
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(a) (b) (c)
Density surfaces from pion collision data (3450 triangles)

(d) (e) (f)
Reduced surfaces with 3% relative error bounds (1043 triangles)

(g) (h) (i)
Reduced surfaces with 6% relative error bounds (660 triangles)

(j) (k) (l)
Flat shaded surfaces of (a), (d), and (g) reveal the tesselation

Figure 1: Original surface data with two levels of mesh reduction, shown for 3 variables
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(a) (b) (c)
Density surfaces from bullet impact data (2869 triangles)

(d) (e) (f)
Reduced surfaces with 3% relative error bounds (1356 triangles)

(g) (h) (i)
Reduced surfaces with 9% relative error bounds (844 triangles)

(j) (k)
Wireframe surfaces of (a-c) and (g-i)

Figure 2: Original surface data with two levels of mesh reduction, shown for 3 variables
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(a) (b) (c)

Figure 3: (a) Data set for the upper part of a human femur. Data from a CT scan. (b) Final
decomposition (wireframe). (c) Reconstructed object.
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(a) (b)

(c) (d)

Figure 4: Reconstruction of a jet engine: (a) Input data for the outer cowl, with the oriented
normals. (b) Octree subdivision generated by the approximation algorithm. (c) Piecewise
polynomial approximation. (d) Reconstructed engine.
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(a) (b)

(c) (d)

Figure 5: Visualization of the reconstructed jet engine and a pressure �eld on its surface: (a)
Iso regions of the pressure �eld. (b) The pressure �eld displayed with the normal projection
method (surface on surface). (c) The piecewise polynomial patches. (d) Isocontours of the
pressure �eld displayed on the projected surface.
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