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1 Introduction

Reconstructing the shape of a 3D object from a digital scan
of its surface has a range of applications, such as reverse
engineering, authoring 3D synthetic worlds, shape analysis,
3D faxing and tailor-fit modeling.

Input data might come in dfierent forms, depending on
the scanning device used. It is usually comprised of the
location (zI, yl, zi) of points on the surface of the object,
and at times additional topological and geometric informa-
tion, as well as measures of other physical properties. The
sampling provided by recent scanning devices (such as the
Lzser range scanner) is dense, in the sense that the resolution
is much smaller than the sise of shape features of interest.
Often multiple scans are required to capture the entire ob-
ject’s surface. We make no assumptions on spatiaJ relations
among sample points, and assume that the input is a large,
but unorganized, collection of measurements.

Our goal is to reconstruct a boundary representation of
the object, based on implicit polynomial surface patches of
low degree, that has the tiesired geometric continuity and
approximates the data within a user-specified parameter E.
For a discussion of related prior work the reader is referred
to [6].

In [I], we presented a method based on alpha-shapes, to
build an initial piecewise-linear reconstruction, followed by
an incremental, adaptive piecewise polynomial fitting of the
signed distance function defined by the alpha-shape. The
method relied on the user to select a good a-value. The
final reconstructed model was represented as a collection of
C] -smooth implicit algebraic patches. A more up-to-date,
detailed description of the algorithm can be found in [2].

In this paper, and the accompanying video presentation,
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we present a novel reconstruction technique (more details
can be found in [6]), capable of handling piecewise-smooth
objects. W bile we still use alpha-shapes and implicit alge-
braic patches in the new method, there are significant dif-
ferences with our previous method. First, we devised an au-
tomatic selection met hod to find an optimal a-value. Sec-
ond, we developed a heuristic-based approach, to improve
the quality of the selected (regularized) alpha-shape. Third,
instead of approximating the signed-distance function, we
apply a mesh-reduction algorithm followed by an interpol a.
tory A-patch fitting scheme.

2 Algorithm overview

An example of the reconstruction process is shown in Fig-
ure 1. Our algorithm is based on the following three phases:

1. Build an initial triangle mesh that interpolates all data
points, approximating the object shape (Figure I (a)-(c)).
Our approach is based on (regularized) alpha-shapes [8], and
is capable of automatically selecting an optimal a-value and
improving the resulting mesh in areas of insufficient sam-
pling.

The resulting triangle mesh can be used to estimate nor-
mals at smooth vertices (by averaging the normals of inci-
dent triangles) and to detect sharp features (by looking at
the dihedral angle formed by two adjacent triangles). Notice
that for the dense surface sampling that we are interested in,
these estimates are usually quite accurate. The use of more
complex and accurate sharp-feature detection strategies will
be investigated in the future.

2. Simplify the mesh to reduce the number of triangles,
while guaranteeing good aspect-ratio of triangles, bounded
distance of the data points from the reduced mesh, and fea-
ture preservation (Figure 1 (d)). The technique used in our
paper has been extended from [4]. The edges and vertices of
the reduced mesh are “tagged” as either smooth (the surface
is Cl continuous across it) or sharp (only Co continuity),
and vertices are classified according to the type of incident
edges and the number and type of estimated vertex normals
(Figure I (e)).

3. The reduced mesh is used as the starting point for a
polynomial-patch data fitting. For every triangle, we build
an implicit Bernstein-B6zier patch of low degree which in-
terpolates the vertices and vertex normals (if defined ) and
least-squares approximates data points in its vicinity. The
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Figure 1: The complete reconstruction process. (a) Point sampling. (b)
Simplified mesh. (e) Sharp features. (f) Support mesh. (g) A-patches. (h)

algebraic patches used (cubic A-patches [3]) allow a simple
formulation of C1 continuity constraints between adjacent
patches, and have been extended to allow the modeling of
sharp features such as linear sharp edges, piecewise-planar
curved creases and sharp corners (Figure 1 (f)-(h)).

3 Shape Reconstruction Using Alpha-Shapes

One of the most difficult problems ofsurface reconstruction
from unorganized points is understanding how to connect
the points so as to form a surface that has the same topolog-
ical (e.g. number of handles) and geometric (e.g. depressions
and protrusions) characteristics of the original. In particu-
lar, we look at the following problem (D(K, B) is a suitably
defined “distance” measure):

Let B be the boundary of a solid M, and S c B a finite
set of points (sampling). Construct a (geometric) simplicia[

complex ~, such that A-(o) = S, 1( is homomorphic to B,
and D(A-,B) < E.

We call p-dense a sampling such that any sphere of radius
p, centered on the surface of the object, contains at least
one sample point. We prove in [5] that for a manifold whose
radius of curvature and “feature-size” are larger than p, a
p-dense sampling suffices to guarantee a homomorphic and
error-bounded reconstruction using alpha-shapes. While the
theorems above give us sufficient conditions for a sampling to
allow a faithful reconstruction using alpha-shapes, in prac-
tice one has to deal with less than ideaf scans.

In general, i.e. when the conditions of the theorems above
are not satisfied, an alpha-shape is a non-connected, mixed-
dimension polytope. We define the aIpha-solid to be the
union of alf tetrahedral in the 3D Delaunay triangulation
T of S that are contained within a continuous envelope of
alpha-shape triangles. The alpha-solid is clearly a homoge-
neously three-dimensional object. Observe also that it can
be computed very efficiently from the underlying triangula-
tion, by simply traversing the adjacency graph. Varying a,
one obtains a finite collection of different alpha-solids, rang-
ing from the empty set for sufficiently small values of a, to
the convex hull of the set of points for a large enough. We
can perform a binary search for the minimal rr-value such
that all points lie on the boundary or in the interior of the
alpha-solid, and such that the alpha-solid is a closed, con-
nected manifold. This search takes O(log n) time ( where n

(c) (d)

k) (h)

3D Deiaunay triangulation. (c) Alpha-solid.
Reconstructed model.

(d)

is the size of S) because the number of possible cr-values is
bounded by the number of simphces in T, which is polyno-
mial in n. Observe also that the convex hull satisfies the
three properties above, so the algorithm always terminates
successfully. For a sufficiently dense and uniform sampling
of the object boundary the alpha-solid selected by this strat-

egy 1Sa good approximation of the object’s shape. However,
small, concave features may be occluded by unwanted tetra-
hedral, and some of the sampled points might lie in the in-
terior of the alpha-solid.

Our criterion for improving the initial alpha-solid is based
on the search for a subset of tetrahedral whose boundary in-
terpolates all the points, and that maximizes the “smooth-
ness” of the triangle mesh, defined as ~e, Ir – ~, 1, over all

edges of the triangle mesh, where y, is the dihedral angle
formed by the two triangles incident on edge e,.

Searching for the globaf optimum for this optimization
problem would be clearly computationally expensive, but in
practice our alpha-solid is already a good approximation of
the optimal polyhedron, and we only need to modify it where
concave, high curvature features are present. We therefore
resort to a simple greedy strategy, similar to the “sculp-
turing” approach proposed by Boissonnat [7]. However, we
apply the iterative removal of tetrahedral only to locally im-
prove the alpha-solid, rather than as a global strategy to
extract an interpolating mesh from the 3D Delaunay trian-
gulation. Figure 2 and Table 1 illustrate some examples of
alpha-sofids computed with the technique described above.

4 Mesh Simplification

Surface mesh simplification refers to a general category of
techniques designed to generate compact, adaptive approx-
imations of dense tessellated surfaces. A discussion of pre-
vious work in the field can be found in [4].

In this work, we adapt and improve the method of [4] to
handle explicit edge feature detection and preservation. The
resulting algorithm is able to maintain a strict bound on the
distance between the originaf mesh and the surface mesh, in
addition to maintaining sharp features in the reconstructed
triangulation.

The simplification algorithm follows the basic strategy of
other “vertex deletion” schemes, and is based on accumu-
lated error bounds which are propagated from the original
surface mesh through the successive simplified meshes pro-
duced by point deletion. A compact error representation

432



>VtLmber Alpha-solid .N’um ber oj Removed IVur71 be v of
Object oj ~oirzts Tzmr tetrahedru tetwhecira Trtangies

Femur 9807 1.5 36182! 3704 19610

Tibia g~oo 1.4 33232 2172 18396
Fibula 8146 1.1 30876 2896 16~88

Patella 2050 0.3 7536 683 4096

CSG Solid 13040 2.5 42507 2473 26088

Club 16864 4.1 58657 754 33142

Bunny 33123 19.6 127607 3761 66224
Mannequin 10392 2.1 35383 2077 19802

Table 1: Results of alpha-solid reconstruction. The table shows for each object, from left to right: (1) The number of points
in the sampling; (2) The time, in minutes, required by the alpha-solid computation (including 3D Delaunay triangulation,
computation of family of idpha-shapes, automatic selection of a-value, improvement by locaf sculpturing). All computations
were carried out on a SGI Indigo2, with a 250 MHz MIPS 4400 CPU; (3) The number of tetrahedral in the initial alpha-solid;
(4) The number of tetrahedral removed by the heuristic; (5) The number of triangles in the boundary of the final reconstructed
model.
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Figure 2: Example of reconstruction using alpha-shapes. [a)-(c) Random samDline of a solid generated with a commercial-. .,. , .“

modeler. (a) Point sampling. (b) Selected alpha-shape. (c) Improved via locaf smoothness heuristic. (d)-(f) Reconstruction
from isocontours of a CT scan (Visible Human Project). (d) Points. (e) Alpha-solid. (f) Reconstructed knee model. (g)-

(i) Reconstruction from laser range data. (g) Data points. (h) Improved alpha-solid. (i) Phong rendering of the alpha-solid.
(1)-(m) Use of weighted alpha-shapes for reconstruction from multiresolution scans. (1) Sampling. (m) Weighted points.
(n) Alpha-solid.
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Figure 3: Reconstruction and piecewise-smooth A-patch fitting. (a) Scanned points. (b) alpha-solid. (c) Decimated mesh.
(d) Reconstructed model (different colors identify different surface patches).

consisting of two scalar error bounds per triangle is used.
The error values correspond to a bound on the error (geo-
metric displacement) toward the outside (inside) of the ob-
ject. These bounds effectively form an envelope surrounding
the simplified mesh which is guaranteed to contain the orig-
inal surface, thus maintaining a bound on the total amount
of accumulated error through successive deletion of vertices.
The algorithm can be summarized as follows:

1.

2.

3.

Initialize errors on all triangles to O

Initialize priority queue P of candidate vertices v,

(a)

(b)

(c)

(d)

Clsssify v, according to number of incident “sharp”
edges

Compute an initial triangulation of the neighbors
of v,

Perform edge flipping to lower the error in the
new triangulation

Assign priority based on introduced error associ-
ated with Wt

While next candidate vertex v from P does not violate
error constraints

(a) Delete v and incident triangles

(b) Add new triangles

(c) Update error values for new triangles

(d) Update P

5 A-patch Fitting

Our A-patch fitting scheme interpolates the vertices (and
estimated surface normals) of the simplified mesh computed
as described above, and approximates the remaining data
points. Features tagged as sharp during mesh simplification
are retained in the resulting piecewise-smooth model. The
fitting process begins with the construction of a tetrahedral
mesh to act as support for the A-patches. Then, weights for
each patch are set to interpolate vertices and sharp features,
and least -squares approximate e the remaining point. Finally,
a fairing and fitting optimization can be applied to improve
the quality of the reconstructed model.

The scheme used here follows Bajaj, Chen and XU [3],

and consists basically in building one tetrahedron for each
side of every triangle of the mesh (face- tetrahedra) and four
edge- tetrahedra to close the gaps.. Clough-Tocher splitting

is only used in special cases. This scheme can be extended
to accommodate sharp features of the following type:

1. Sharp corners (multiple normals defined, for example
the corner of a cube).

2. Singular vertices (no normal defined, for example the
apex of a cone).

3. Straight edges (two normals, one for each side, defined
at each endpoint).

4. Planar or piecewise-planar curved ridges (two normals
at each endpoint).

Some of the weights of each patch are only constrained in
sign by the single-sheeted condition. Their value can be set
by solving a least-squares problem that minimizes the local
error-of-fit to the data points. An ad~ltional optimization
step to improve the fitting and obtain a better fairing can
be applied as a postprocessing to the piecewise surface.

Figure 3 shows an example of reconstruction using this
algorithm.
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