Case Study: Interactive Rendering of Adaptive Mesh Refinement Data

Sanghun Park*
CCV TICAM
University of Texas at Austin

Abstract

Adaptive mesh refinement (AMRY) is a popular computational sim-
ulation technique used in various scientific and engineering ficlds.
Although AMR data is organized in a hierarchical muli-resolution
data structure, the traditional volume visualization algorithms such
as ray-casting and splatting cannot handle the form without convert-
ing it to a sophisticated data structure, In this paper, we present a
hierarchical muli-resolution splatting technique using k-d trees and
octrees for AMR data that is suitable for implementation on the lat-
est consumer PC graphics hardware. We describe a graphical user
interface to set transfer function and viewing / rendering parameters
interactively. Experimental results obtained ont a general purpose
PC equipped with NVIDIA GeForce card are presented to demon-
strate that the technique can interactively render AMR data (over
20 frames per second). Our scheme can easily be applied to paral-
lel rendering of time-varying AMR data.

CR Categories: 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interactive Techniques, Graphics Data Structures and
Data Types; 1.3.8 [Computer Graphics]: Applications

Keywords: AMR, K-d trees, Octree, Hierarchical splatting, Tex-
ture mapping

1 INTRODUCTION

Adaptive mesh refinement (AMR) is a computational technique for
improving the efficiency of numerical simulations of systems of
partial differential equations. After Berger and Oliger [2] devel-
oped AMR in 1980s to simulate gas dynamics, it has become a
popular technique in computational physics and various engineer-
ing fields. The basic idea of AMR is to refine, both in space and in
time, regions of the computational domain where high resolution is
needed to resolve developing features, while leaving the less inter-
esting paris of the domain at lower resolutions. AMR techniques
have been shown 10 be very successful in reducing the computa-
tional and storage requirements for solving many partial differential
equations and used in various engineering applications where there
are regtons of greater interest such as global atmospheric modeling
and numerical cosmology. For example, Bryan [3] shows how a
hybrid approach of AMR can be applied to cosmological research.

Although AMR data has a hierarchical multi-resolution struc-
ture, it is impossible for traditional visualization techniques devel-
oped for simple mesh data to handle AMR data without any modifi-
cation. Relatively few results have been presented on visualization
of AMR data. Norman et al. (6] presented problems and solutions

*e-mail:hun@ticam utexas.edu
te-mail:bajaj@cs.utexas. edu
*e-mail:skvinay @ecs.utexas.edu

JEEE Visuahzation 2002 Gct. 27 - Nov. 1, 2002, Boston, MA, USA
(-7803 -7498-3/02/$17.00 © 2002 IEEE

521

Chandrajit L. Bajaj’
CCV TICAM
Department of Computer Sciences
University of Texas at Austin

Vinay Siddavanahalii
CCV TICAM
Department of Computer Sciences
University of Texas at Austin

in storing, handling, visualizing, virtually navigating, and remote-
serving data produced by large-scale AMR simulations. Weber
et al. {8} introduce crack-free isosurface extraction methods from
AMR data. They also present a hardware-accelerated rendering
interface for previewing and cell-projeciion based progressive re-
finement rendering scheme in [7]. In another paper [9]. they render
AMR data using the progressive cell-projection approach and level-
dependent transter function. Even though their method can produce
high quality images, it takes about 23~113 seconds to render one
image from an AMR data with a 80 x 32 x 32 root-grid resolution
and a three-level hierarchy.

In this paper, we describe a hierarchical multi-resoluticn splat-
ting of AMR data. Our main contributions are the design and im-
plementation of

e k-d tree and octree data structures for hierarchical storing and
rendering of AMR data;

» a hardware accelerated splatting algorithm for interactive ren-
dering of AMR data;

e a graphical user interface for determining transfer function
and viewing / rendering parameters interactively;

The rest of this paper is organized as follows. Section 2 presents
the implementation details of our scheme. Section 3 contains the
results of our techniques regarding rendering time, image quality,
and graphical user interface. Finally this paper is concluded in Sec-
tion 4.

2 IMPLEMENTATION DETAILS
2.1 K-d Trees

A k-dimensional (k-d) tree is a data structure that splits multidi-
mensional spaces. It is used in computer sciences during orthogo-
nal range searching. It allows us t find the set of voxels that fall
within a given block or brick in a space. Given a k-d tree of voxels,
it is possible ta tind the resulting vaxels in Q{/n+ k) where a is the
number of voxels and & is the number of voxels in the result. An
AMR simulation algorithm generates a grid hierarchy dasa struc-
ture {a tree of arbitrary structure and depth) and every node and leaf
of the free is associated with a 3D grid. Since these have various
shapes, sizes, and spattal resolutions, we need to convert this form
to a sophisticated data structure.

AMR data is represented by U{ﬁw(i,j,k)} where ¢ is the
timestep of time-varying AMR data, / is the refinement level and
v is the index of function values. To convert the data to a k-d tree
structure, the first step is to determine the minimum bounding boxes
surrounding each group in the AMR data space. The voxels in-
cluded in 4 group are connected in spatial resolution of the current
level and each group may include several levels of AMR data. In
the next stage, our scheme splits the bounding boxes o a set of
bricks using a modified k-d tree algonithm. The generated bricks
have poiniers 1o actual function value sets in each level.

As we mentioned, a k-d tree is not only useful for rendering, but
also for storing AMR data hierarchically. In fact, the raw form of
AMR data is a list of records that consist of a voxel index (i, j, &),
some function values fr,l,v’ and a level /. Replacing the raw AMR
data format with a k-d tree is very efficient in that it contains hier-
achical, multiresolution structures and we don’t have to store the
voxel indices any more. Figure 1 shows the partition result of
test AMR data using a k-d tree. To exploit spatial coherence, our
scheme constructs an octree structure for relatively large bricks.

{a) 3D view

(h) 2D view

Figure 1: Different views of splitting AMR data space into a set of
bricks in k-d tree structure.

2.2 Hierarchical Splatting

Splatting is an object space direct volume rendering algorithm
that generates high quality images [10]. A voxe{’s contribution is
mapped directly onto the image plane, eliminating the need for in-
terpolation. Since only interesting voxels {weighted by the discrete
voxe! values) are required to be represented by a 3D kernel, it 1s pos-
sible to generate the final images at interactive speed. Splatting has
been used in the past to handle hierarchical error and higher dimen-
sion rendering {5, 1. This techniques allow us to render different
level data sets using footprints of various sizes. By projecting the
footprint to a polygon, we can exploit OpenGL 2D texture mapping
hardware, Crawfis ¢t al. propose to render each splat using tex-
ture mapping hardware [4]. This technique alleviates the CPU from
the computational complexity incurred in resampling the footprint
tables and compositing each splat into a frame buffer.

In our algorithm, the rendering of a selected range of isovalues,
together with a transfer function is performed through splatting.
While the k-d tree data structure provides an accelerated search al-
gorithm for bricks, we further optimize our algorithm through the
use of octrees at each node of the k-d tree. Each brick is represented
as an octree of voxels. Each voxel is then projected by transforming
its position from world coordinates to screen coordinates.

In each brick and octree, we store an isovalue code to ensure
that only relevant volumes are considered for the search algorithm.
This isovalue code is implemented as a 32-bit number, each bit rep-
resenting the presence or absence of a range of isovalues. As a pre-
processing step, we compute and store the binary code. It is com-
puted for each level of the octree. We traverse through all voxels
contained in a leaf and determine the bits in the code to be turned
on to indicate the presence of at least one voxel in that range. If
there are n bits for the code, and we have a range of r for the vox-
¢ls in the whole volume, then each bit covers a range of % Once
we have obtained the code for each leaf, we recursively obtain the
code for a node as the boolean OR of the codes of its children. The
code of an octree’s root is assigned to the brick containing the oc-
tree. This procedure is used for each function in the vector field.
‘We do not perform weighting for this code. For example, we do not
assign fewer bits to non-interesting regions, hence assuming the en-

522

3 Load AMR data
2 CQreate k-d tree and octree data structure
3 Set current transfer function and viewing / render-
ing parameters
Determine brick list BL according to viewing direction
For (Bi in BL} {
Splatting (Bi, lLed)
Composite the current partial image
}

Display final image

R-R S = LY Y

Figare 2: K-d tree based splatting algorithm

tire range to be of equal interest to user. An OR operator is used to
build a search code when the user changes the range of important
isovalues. A simple AND operator is sufficient to eliminate those
sub-volumes whose codes do not fall under the carrently selecied
range of isovalues. This is implemented at both the brick level and
the octree level. Within an octree, each child that is not NULL con-
tains such a code to help its traversal. We found this method to be
considerably faster than storing min-max values. A second useful
feature of the octree 1s the fast and natural ordering of voxels that it
provides to obtain high quality images quickly. We sort bricks for
each view from the k-d wree.

We have implemented a color table to be used as lookup for the
transfer function. An interactive selection of opacity values for dif-
ferent isovalues is used. This is also extended to handle vector val-
ued data.

2.3 Algorithm

Figure 2 shows our rendering algorithin for splatting of AMR data.
Since creating k-d trees and octrees of the given AMR data (line
2} can be done at the preprocessing stage, they don’t affect the ac-
tual run-time rendering speed. Once a k-d tree is created, the brick
list BL can be efficiently determined by traversing the k-d tree de-
pending on the viewing direction (line 4). In this step, the bricks
that don’t contain any interesting voxels are not included in the
brick dist. A single bitwise AND operation is needed for check-
ing whether the brick will be rendered or not. Then, splatting is
applied to each brick B, in the sorted list of relevant bricks and the
generated partial images are composited to form a final image (lines
6 and 7). Since the nodes in the brick list have pointers to function
values corresponding to several levels, the rendering level of detail
{od should be chosen and a proper transfer function and footprint
size should be used according to the lod. As we mentioned, it is
possible to accelerate the performance of the tines 6 and 7 by tex-
ture mapping hardware.

3 RESULTS

Gur splatting technique was implemented on a PC, equipped with
a 800 MHz Intel Pentium Il Processor, 256MB main memory and
a graphics card with an NVIDIA GeForce3 processor and 64MB of
memory. To test our proposed algorithm, we implemented a pro-
gram in OpenGL with GLUT.

Our test data is the result from a simulation of a radiative jet col~
liding with a dense cloud. The simulation result is stored in AMR
format with a 64 x 64 x 128 finest-grid resolution and a four-level
hierarchy (0 < [< 3). Fifteen function values are given at the nodes
of the mesh in floating point format (0 < v < 14). We scaled the
values to range from 0 to 4095, Interesting values include energy
density (v = 0), mass density (v =4}, electron density (v = 6), and
so on. The image sequences in Figure 3 and 4 were generated from

(ar=1l1 byr=12 ©r=13

(dyt=14 Hr=16

Figure 3: Images generated from mass density (v = 4} of test time-varying data

b)) t=17 ©)t=18

=19

(=21

Figure 4: Tmages generated from electron density (v = 6) of test time-varying data

mass density and electron density function values of the test time-
varying AMR data using our technique respectively.

Using a k-d wree data structure, we are able to effeciively limit
the search space. As described before, the bricks have a code rep-
resenting the range of isovalues contained in the brick. This helps
us to achieve considerable performance. The octree structure at
each brick of the k-d tree helps to further limit the search space. Tt
was observed that a maximum octree width of 8 was quite efficient
when the number of voxels was greater than 40,000 to 50,000. Less
dense volumes performed well with an octree size of 4. We show
the results comparing the performance due to addition of the octrees
and also compare the performance using 4, 8, and 16 as the max-
imum octree width. Figure 5 shows the ratios of searched voxels
and search gains resulted from rendering the time-varying image
sequence in Figure 3.

Nearly interactive frame rates were achieved using our imple-
mentation. Although considerable gains in limiting the search space
was achieved with smaller octree width values, the search time be-
came a bottleneck. We give both the gain in the search space limita-
tion and the speed of rendering as comparison with different octree
widths. Figure 6 shows the resulting rendering speeds and gains
from generating the images of Figure 3. We define search gain and

rendering gain as follows: search gain = EE%M rendering
it

R r'n‘hp _Twug _
gain =~ where n .. and 1., are the number of vox

without wit
els searched without and with octree, respectively, similarly, £,
and 7, are the rendering speeds without and with octree, respec-

tively.

The data structure combination of k-d trees and octrees result
in interactive rendering of data sets as large as 64 x 64 x 128 with
highest resolutions. While we get very fast selection of regions in
space where relevant voxels exists with our k-d trees, the octree
further improves search time and gives a natural ordering of vox-
els for any view direction. Although the relevant bricks of the k-d
tree are sorted for every viewing change, it does not prove to be
a bottleneck due to the limited number of selected bricks. This is
particularly true of volumetric data, where the region of interest is

523

Figure 7: The graphical user interface for interactive rendering

usually not dense throughout the object space. Hence we have par-
tially solved the problem of quickly obtaining an ordering on the
rendering primitives. This gives us significantly faster rendering
speeds.

Figure 7 shows the graphical user interace desiged for interactive
rendering. Users can set transfer function, rendering and viewing
pararneters through the interface.

4 CONCLUSIONS AND FUTURE WORK

We presented a hierarchical multi-resolution splatting scheme to
render AMR dara interactively, Qur technique constructs a k-d
tree and octrees from AMR data during preprocessing. The data
structures are used effectively for rendering and storing the data.
Our technique takes advantage of hardware accelerated 2D texture
mapping supported by NVIDIA GeForce card in implementing an
interactive splatting algorithm. We designed a graphical user inter-
face to allow users to select various viewing / rendering parameters

Frame Num of total voxels Num of voxels in searched bricks Search pain (%)
no octree octree 16 octree 8§ octree 4 octree 16 octree 8 octree 4
(a) 1120288 26656 { 2.4%) 24057 (2.1%) 14874 (1.3%) 4700 (0.4%) 9.7 442 824
(b) 1174304 48880 (4.2%) 39234 (3.3%) 17904 (3.5%) 5966 (0.5%) 19.7 63.4 87.7
© 1203872 58672 (4.9%) 51148 (4.2%) 31898 (2.6%) 11479 (1.0%) 12.8 44.5 80.4
(d) 1274336 87520 (6.9%) 68328 (5.4%) 39585 (3.1%) 13940 (1.1%) 219 32.0 84.0
(e) 1391776 143520 (10.3%) 81052 (5.8%) 37376 (2.7%) 12614 (1.0%) 43.5 739 91.2
)] 1412992 164736 (11.7%) 164736 (7.2%) 47010 (3.3%) 16502 (1.2%) 38.3 71.5 89.9
Figure 5: The ratios of searched voxels and search gains in the finest level
Frame Rendering speed (frames per second} Rendering gain (%)
noociree octree 16 octree 8 octree 4 octree [6 octree 3 octree 4

(a) 1119 106.1 120.2 140.4 5.2 7.4 255

(b) 60.6 59.7 753 88.3 -1.5 243 457

(<} 43.3 411 45.6 51.3 -5.1 53 18.5

() 29.6 29.4 54.8 357 -0.7 85.1 20.6

(&) 211 231 28.1 29.3 9.5 33.2 389

(H 18,0 184 23.5 23.5 22 30.6 30.6

Figure 6: Rendering speeds and rendering gains in the finest level

as well as a transfer function.

An important challenge is to apply our scheme to parallel ren-
dering of AMR data. Our k-d tree based splatting scheme has a
good structure to be extended to parallel rendering. The view de-
pendent brick list can be considered as a task pool. Assume that
there is a master processor and several slave processors for this par-
allel scheme. The master processor assigns a task to a proper slave
processor and composites pariial images from slave processors ac-
cording to a sorted brick order. Each slave processor loads the as-
signed bricks, creates partial images using splatting, and then sends
them to the master processor. Another challenge is to implement an
encoding and rendering method exploiting temporal coherence for
time-varying AMR data. If we develop lossless or lossy compres-
sion techniques, the data can be stored in compact forms and thus
rendering speed ta produce videos for analyzing time-varying data
can be enhanced. Finally, we can consider combining images gen-
erated from simultaneously rendering AMR and geometric mod-
els. For example, we can create an apimation such that a spaceship
model navigates a cosmology AMR data space. Since AMR data
space is partitioned by a k-d tree, the brick that includes the space-
ship can be easily detected.

Acknowledgements

This work was supported in part by NSF granis ACI-
9982297, CCR-9988357, a DOE-ASCI grant BD4485-MOID from
LLNL/SNL and from grant UCSD 101814(} as part of NSF-NPACI,
Interactive Environments Thrust, and a grant from Compagq for the
128 node PC cluster. We thank Marcelo Alvarez and Prof. Paul
Shapire of the Galaxy Formation and Intergalactic Medium Re-
search Group, University of Texas at Austin for allowing us to use
the AMR test data. The data was trom a workshop hosted by Ale-
jandro C. Raga in Mexico City in 2002.

References

[1] C. L. Bajaj, V. Pascucci, G. Rabbiolo, and D. R. Schikore.
Hypervolume visuafization: A challenge in simplicity. In Pro-
ceedings of IEEE/ACM 1998 Symposium on Volume Visual-
ization, pages 95-102, Oct 1998.

524

[2] M. Bergerand J. Oliger. Adaptive mesh refinement for hyper-
bolic partial differential equations. Journal of Compurational
Physics, 53:484-512, 1984,

f3] G.L.Bryan. Fluids in the universe: adaptive mesh refinement

in cosmology. Computing in Science & Engineering, 1(2):46—

33, 1999,

{4} R. Crawfis and N. Max. Textwre splats for 3D scatar and
vector field visualization. In Proceedings of IEEE Visualiza-

tion'93, pages 261-267, Oct 1993,

. Laur and P. Hanrahan, Hierarchical splatting: a progres-
sive refinement algorithm for volume rendering. Computer
Graphics, 25(4):285-288, 1991.

[6] L. Norman, M., I. Shalf, S. Levy, and G. Daues. Diving
deep: data-management and visualization strategies for adap-
tive mesh refinement simulations. Computing in Science &
Engineering, 1(4):36-47, 1999,

[7) G. H. Weber, H. Hagen, B. Hamann, K, 1. Joy, T. J. Ligocki,
K.-L. Ma, and J. M. Shalf. Visualization of adaptive mesh
refinement data. In Proceedings of the SPIE (Visual Data Ex-
ploration and Analysis VI, May 2001,

[81 G.H. Weber, Q. Kreylos, T. J. Ligocki, J. M. Shalf, H. Hagen,
B. Hamann, and K. I Joy. Extraction of crack-free isosur-
faces from adaptive mesh refinement data. [n Proceedings of
the Joint EUROGRAPHICS and IEEE TCVG Symposium on
Visualizarion, pages 25-34, May 2001.

[9]1 G. H. Weber, O. Kreylos, T. J. Ligocki, J. M. Shalf, H. Hagen,
B. Hamann, K. L. Jay, and K.-L. Ma. High-quality volume
rendering of adaptive mesh refinement data. In Proceedings
of the 6th International Foll Workshop on Vision, Medeling,
and Visualization 2001, pages 121-128, Nov 2001.

j10] L. Westover. Footprint evaluation for volume rendering. Com-
puter Graphics, 24(4):367-376, 1990.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

