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Abstract

We propose a new scheme for modeling a smooth interpolatory surface, from a
surface discretization consisting of triangles, quadrilaterals and pentagons, by algebraic
surface patches which are subsets of real zero contours of trivariate rational functions
defined on a collection of tetrahedra and pyramids. The rational form of the modeling
function provides enough degrees of freedom so that the number of the surface patches
is significantly reduced, and the surface has quadratic recover property.
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1 Introduction

The problem considered in the present paper is to construct a smooth interpolatory surface
from a surface discretization £ by piecewise implicit surface patches. The discretization £
of the surface consists of triangles, quadrilaterals and pentagons. The constructed surface
passes through the vertices of the discretization and has the given normals at the vertices.
This solution uses piecewise rational functions defined on a hull that consists of tetrahedra
and pyramids (see Fig 1.1).

Several approaches to using implicit surface representation in modeling geometric objects
have been proposed in papers (see for examples, ([1], [3], [6], [9], [11], [14]). Most of the
schemes use various simplicial hulls over surface triangulation and polynomial functions
(see [2], [3], [6], [9], [10]). They in general consist of the following three steps: a. Generate
a normal for each vertex of £ which will also be the normal of the constructed smooth
surface at the vertex. b. Build a surrounding simplicial hull )~ (consisting of a series of
tetrahedra) of the triangulation. ¢. Construct a piecewise trivariate polynomial F within
that simplicial hull, and use the zero contour of F' to represent the surface. Dahmen [5] first
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Fig 1.1: (a) Input mesh consists of three, four and five sided polygons; (b) Constructed hull; (¢) A
zoom in four-sided patch; (d) A zoom in five-sided patch; (e) and (f) Patches over tetrahedra and
pyramids

proposed an approach for constructing a simplicial hull of £. In this approach, for each face
[pipjpi] of L, two points u;;; and v;j;, off each side of the face are chosen and two tetrahedra
[pipjpruijr) and [p;pjprusjk] (called face tetrahedra) are constructed. For each edge of £, two
tetrahedra (called edge tetrahedra) are formed that blend the neighboring face tetrahedra.
The collection of these tetrahedra contains the tangent plane near the vertices and have
no self-intersection. Since such simplicial hulls are nontrivial to construct for arbitrary
triangulation, several improvements have been made in later publications to overcome the
difficulties (see [3], [6], [9], [10]). For the construction of the surface within ), Dahmen
[5] used six quadric patches for each face tetrahedron and four quadric patches for each
edge tetrahedron. Guo [9] uses a Clough-Tocher split to subdivide each face tetrahedron
of the simplicial hull, hence utilizing six cubic patches per face of £. The edge tetrahedra



are subdivided into two. Dahmen and Thamm-Schaar [6] do not split the face tetrahedra,
but the edge tetrahedra is split. All of these papers provided heuristics to overcome the
multiple-sheeted and singularity problem of the implicit patches. Since the multi-sheeted
property may cause the constructed surface to be disconnected, Bajaj et al [3] constructed
A-patches that were guaranteed to be nonsingular, connected and single sheeted within
each tetrahedron. Xu et al [17] use rational functions in constructing F' so that the edge
patches and convex face patches do not need to be split.

All the works mentioned above construct smooth implicit surface patches for the given
surface triangulation. The more general parametric spline fitting problem of constructing
a mesh of finite elements that interpolate or approximate multivariate data is discussed in
[4]. One approach to creating multi-sided patches has been by introducing base points into
rational parametric functions. Base points are parameter values for which the homogeneous
coordinates (x,y,z,w) are mapped to (0,0,0,0) by the rational parameterization. Gregory’s
patch [8] is defined using a special collection of rational basis functions that evaluate to
0/0 at vertices of the parametric domain and thus introduce base points in the result-
ing parameterization. Warren [16] uses base points to create parameterizations of four-,
five-, and six—sided surface patches using rational Bézier surfaces defined over triangular
domains. Setting a triangle of weights to zero at one corner of the domain triangle produces
a four—sided patch that is the image of the domain triangle. [13, 12] present generaliza-
tions of biquadratic and bicubic B-spline surfaces that are capable representing surfaces of
arbitrary topology by placing restrictions on the connectivity of the control mesh, relax-
ing C! continuity to G' (geometric) continuity, and allowing n-sided finite elements. This
generalized view considers the spline surface to be a collection of possibly rational polyno-
mial maps from independent n-sided polygonal domains, whose union possesses continuity
of some number of geometric invariants, such as tangent planes. This more general view
allows patches to be sewn together to describe free form surfaces in more complex ways.

In this paper, we shall construct 3,4,5 sided A-patches from rational functions. That is
F is a piecewise rational function defined on a hull that consists of tetrahedra and pyramids.
The construction method of F' on edge tetrahedra is the same as our earlier scheme [17].
However, the method of face patch construction is new. Although the modeling function F
is rational in form, it is evaluated as easy as cubic (see section 4 and 5). Furthermore, the
surface constructed has plane recovery property. That is, if the normals at the vertices of
a face are perpendicular to the face, then the surface coincides with the face. Having this
feature is important since many geometric objects have planar portion. Even further, the
surface constructed could recover quadratics.

The paper is organized as follows. Section 2 introduces notations and facts that lay the
foundation of the present scheme. Section 3 builds the finite-element hull. The modeling
function F' and the computation of the parameters in F' are described in section 4. In Section
5, we present schemes to evaluate 3-5 sided patches. Examples that show the effectiveness
of the schemes are presented in Section 6. All the proofs are given in the Appendix.
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Fig 2.1: (a) Tetrahedron; (b) Pyramid; (c) Joined tetrahedron and pyramid

2 Bases

This section introduces the notations and the basic knowledges used in this paper. All the
proofs of the introduced facts are given in the Appendix.

Let p; and po be two different points in IR3. We use [pipo] to denote the line segment
that has end-points p; and ps. Let p1,---,pg be k (k > 3) different points in IR3. Then we
use (p1 ---pg) to denote the polygon consisting of [pipa],---, [Pk—1Pk], [Pkp1]- Further, we
use the following notations

[p1p2ps] = {p = a1p1 + aop2 + azps : @ €[0,1], a1 + a2 + a3 =1}
[P1p2p3pa] = {p = c1p1 + agpa + azps + aups s @; € 10,1}, 1 + @ + a3+ as =1}
(p1popaps) = {p = t[sp1 + (1 — 8)po] + (1 — t)[sp3 + (1 — 8)pa] = (s,t) € [0,1)*}
[pop1 -+ pa] ={p=wupo+ (1 —u)g: uwe[0,1], ¢ € (p1p2p3ps)}
That is, [p1p2ps] is a triangle, (p1pepsps) is ruled surface, [p1papsps] is a tetrahedron and
[Pop1p2p3p4] is a pyramid.

1. BB Form on Tetrahedra. The trivariate polynomials defined in a tetrahedron
are expressed in Bernstein-Bézier (BB) form in this paper. Let q1,¢2,q3,q1 € IR? (see Fig.
2.1(a)) be affine independent. Then any p € IR? could be written as is

4 4
p=(z,9,2)" =) aig, Y =1 (2.1)
=1 =1

a = (a1, 2, a3,a4)’ is the barycentric coordinate of p. Any polynomial Fr(p) of degree n
then can be expressed as BB form over [g1g2g3q4] as

Frp)= > aiju Bljy(a) (2.2)
i+j+k+l=n
where Bl () = ,]|"—k',l, ol ookl is the Bernstein polynomial. Lemma 2.1 in the following

gives conditions of C! join of two BB form polynomials defined on two adjacent tetrahedra.



Lemma 2.1 ([7]) Let Fr(p) = Yitjihti—n @ijkt Bi(@) and Gr(p) = Xt jikti=—n bijki
Bl (a) be two polynomials defined on two tetrahedra [q19293q4] and [919293q4], respectively.
Then

(i) Fr and Gt are C° at the face [q2q3qa) iff aojk = bojr for any j+k+1=n
(ii) Fr and Gt are C' at the face [q2q3qa) iff they are C° and

bi ki = Bra1 kg + B2aoj+1,k,1 + B3a0,k+1,0 + Padojkit1, J+HE+I=n—-1 (2.3)

where = (ﬁl,ﬁg,ﬁg,ﬁ4)T is defined by the relation ¢ = P1q1+ B2q2+ G393+ Paqs, |8 = 1.

Degree Elevation ([7]). A polynomial >>; ;i s1/—n 1 Gijkl B?j;ll(a) of degree n — 1 could
be written as a polynomial >7;\ i\ x11—p bijkt B (a) of degree n with

i j k !
bijrl = Q=1+ i1 ikt ik (2.4)

2. BB Form on Pyramid. The BB form polynomial of degree n on a pyramid (see Fig.
2.1(b)) [pop1p2p3pa] is defined by

n n—in—1i

Fp(z,y,2) == f(u,s,t) := Y > > b B (u) B}~ (s) By~ (t) (2.5)

1=0 j=0 k=0

where (z,y, z) € [pop1p2psp4] and (u, s,t) € [0,1]° are related by
(z,y,2)" =upo + (1 — u){t[sp1 + (1 — 8)pa] + (1 — t)[sps + (1 — s)p4]}. (2.6)

Since transform (2.6) is not linear, a polynomial in (u, s,t) may not be written as a polyno-
mial in (z,y, z). However, a polynomial in (z,y, z) of total degree n could always be written
as the same degree polynomial in (u, s,t). Since transform (2.6) is not invertible at the point
po, where (1,s,t) map to py for any (s,t), the polynomial Fp may not be smooth at the
point pg even though Fp is any time differentiable in the local system (u, s,t). Fortunately,
we do not use the smoothness of Fip at pg in this paper. The following theorem gives the
conditions of C* join between two polynomials that are defined on an adjacent tetrahedron
and pyramid (see Fig. 2.1(c)), respectively.

Theorem 2.1 Let Fr(z,y,z) and Fp(x,y,z) be defined as (2.2) and (2.5) on [q19293q4]
and [pop1p2p3pa), respectively, with g = pa,qs = py and q4 = po. Then Fr and Fp are CK
join on the interface [g2qsqs] \ {qa} if and only if

Ck CZ2+J2+k2+l2+k3
by — } : J3,k—3j3 k3 ia+j2+ka+l2
ijk — cn— %
i1+ia+j1+j2+iz+ kit ketkhks il tla=n—1i j3+ks,n—i—js3—ks
i1 +ia+j1+jat+kitkat+ly+la=3j
i1 +j1+k1+l+jz=k
o - Jj—k+j3
*a’ll+Z2,J1+J2+]3,k1+/€2+k3,51+l2+ZB1,1,Jl,kl,ll (G)BiQ,jQ,kz,lQ(b) (2.7)



forj=0,---,K,i=0,--,n—34, and k = 0,---,n — i, where a = (ay,ay,a3,a4)” and
b= (b1, by, b3,bs)T are defined by

4 4 4 4
pL= aig, » a=1 p3=)Y big, Y b=1 (2.8)
i=1 i=1 i=1 i=1

Taking K = 1 in Theorem 2.1, we have the following corollary.

Corollary 2.1 Fr and Fp that are defined in Theorem 2.1 are C' at [gog3qa] \ {q4} iff

biok = @okn—i-ki, 1=0,---,n, k=0,---,n—1
4 n—i—k
bidh = —— D Qe (0k—1n—ikyi) T ———— D Dille, (0 esn—i—k—1,i); (2.9)
n-—1 =1 n-—1 =1

i=0,---,n—-1, k=0,---,n—1
where e; € IR* is the unit vector in the I-th direction, | =1,--- 4.

n—ln—i—1n—i-1
Degree Elevation. A polynomial Z Z Z aijk B{L_l(u)B;z_i_l(s)BZ_i_l(t) of de-
i=0 j=0 k=0
n n—in—i

gree n — 1 could be written as a polynomial Z Z Z bijk B?(U)B]-”*i(s)BZ*i(t) of degree

i=0 j=0 k=0
n with
i ik (n—i—k)j
bijr, = 2 i1,k + y i)ai,j—l,k—l Wai,j—l,k
(n—i—j)k (n—i—j)(n—i—k)
-~ Qiib_ .. 2.10
n(n — i) Gijk—1+ n(n — 1) ik ( )

3. C' of Cubics around an Edge. Let qi,¢o,--,q; be the given points around a line
segment [peps3] such that ¢;—1 and g;;+1 lie on different sides of the plane [g;p2ps] and all the
tetrahedra [g;q;+1p2ps] enclose the edge [paps] as interior (see Figure 2.2(a)). Hence the five
points g;—1, gi, gi+1, P2, p3 are related by either

4
gi = &4 qi—1 + a4qgiv1 + asps + aips, Z aj =1 (2.11)
3=0
if ¢;—1,¢9i+1,p2, p3 are affine independent, or
. . o o 4 .
0=0clgi 1+ abgiy1 +0lpa+ alps, > ol =0 (2.12)
7=0

if ¢i_1,q;11,p2,p3 are affine dependent, where o # 0 and o} # 0. Let F; be the cubic
polynomial in BB-form on the tetrahedron [g;q;1p2ps] that satisfy C° condition. Let x;



Fig 2.2: Tetrahedra around Edges. (a) Closed; (b) Open

be the Bézier coefficients on the center of [g;paps]. Then the C! condition at the interface
[gip2ps] is either

z; = iz 1 + bz + abby + albs (2.13)
if gi—1,¢;+1,p2, p3 are affine independent, or

0= aia:i_l + Ol’é.’I)H_l + aébg + Oéibg (2.14)
otherwise, where by and b3 are the Bézier coefficients on the edge [paps]. Then we have

Theorem 2.2 If the tetrahedra around the edge [paps] enclose the edge, then (i) there are
k — 2 independent equations among the k C' conditions (2.13)-(2.14) with k unknowns
around the edge; (ii) any two adjacent equations of them can be deleted; (i1i) any two
unknowns T.,, T, can be chosen as free parameters if g, qn, P2, P3 are affine independent.

For the open case (see Figure 2.2(b)), we can treat it as closed case with the first and
last equations being deleted. Hence we have by Theorem 2.2 that

Corollary 2.2 If the tetrahedra around the edge [paps] do not enclose the edge, then (i)
the k—2 C' conditions (2.18)—(2.14) with k unknowns around the edge is independent; (ii)
any two unknowns T, Tn can be chosen as free parameters if qm, qn, P2, P3 are affine
independent.

Theorem 2.3 Let A = U¥_[g;gi 1pop3]. Let S3(A) be the collection of functions that are
C' on A and cubics on each tetrahedron of A. Then

dim S3(A) = 4k + 10
if [gipaps), i = 1,--- .k, lie on at least three different planes, and
dim S3(A) = 4k + 12

if [gip2ps), i =1,---, k, lie on two different planes.



Note that the index of g;11 is out off the range 1,:.:,k when ¢+ = k. We assume in
this paper that it is modulo by k. This convention is used throughout the paper without
indication.

4. Miscellaneous. If a trivariate function F' could be expressed as Bernstein polynomial
form on a line segment [p1po]. That is, F|p,, ,,1(p) = i b Bf(t) with p = (1 —t)p1 + tpo.
Then

1
bo=F(p1), bi=bo+ E(pQ —p1)"VF(p1) (2.15)

3 Finite Element Hull

Suppose we are given a surface discretization £ consisting of triangles, quadrilaterals and
pentagons with attached normal on each vertex. We assume that the surface is double
sided and all the normals on the vertices point to one side of the discretization. We call
this side as positive. The other side is negative. Since we do not assume the vertices of
any quadrilateral or pentagon are coplanar, we do not call the quadrilateral or pentagon as
face, but polygon.

Let [p;p;] be an edge of L, if (pj —pi)"n; (pi—p;)"n; > 0 and at least one of (p; —p;)"n;
and (p; — p;)T'n; is positive, then we say the edge [p;p,] is positive convez (see [3]). If both
the numbers are zero then we say it is zero conver. The negative conver edge is similarly
defined. If (p; — p;)Tn; (pi — pj)Tni <0, then we say the edge is non-convez. Let F be a
polygon of L. If all its edges are nonnegative (positive or zero) convex and at least one of
them is positive convex, then we say the polygon is positive convez. If all its edges are zero
convex then we label the polygon as zero convex. The negative convex polygon is similarly
defined. All the other cases are labeled as non-conver.

Let £ = Lyon—zero U Loero, Where Lyon_zero and L,e-, are the collections of non-zero
convex polygons and zero convex polygons of L, respectively.

Now we construct a finite-element-hull, denoted as H, that consists of tetrahedra and
pyramids on Lo, sero Such that each polygon of Ly0n— sero iS contained in H and tangent
plane at each vertex of L,¢, is contained in H.

)T

a. Build Tetrahedra for Convex Triangle. Let (p1p2ps) be a convex triangular polygon
of Lnon—zero- Let ¢ = (p1 + p2 + p3)/3, n be the normal of face [p1p2ps3] that points to the
positive side of L. Then choose a top vertezr u if the polygon is positive convex or a bottom
vertex v if the polygon is negative convex as follows: u = ¢+1tn, or v = ¢ —tn. Then positive
face tetrahedron [upipops] or negative face tetrahedron [vp1peps] are formed (see Fig. 3.1(a)),
where ¢t > 0 is a properly chosen number such that the tangent planes at the vertices are
contained in the tetrahedra constructed.

b. Build Pyramids for Convex Quadrilaterals. Let (p1p2psps) be a convex quadri-
lateral of Lyon—zero- Let ¢ = (p1 + p2 + ps + pa)/4, n be the normal of the ruled surface
(p1p2p3ps) at ¢ that points to the positive side of £. Then choose a top vertez u if the
polygon is positive convex or a bottom vertex v if the polygon is negative convex as follows:
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Fig 3.1: Finite-element Hull. (a) Convex case; (b) Non-convex case

u = c+tn, or v = ¢ — tn. Then positive face pyramid [up1papsps) or negative face pyramid
[vp1p2pspa) are formed (see Fig. 3.1(a)), where ¢ > 0 is a properly chosen number such that
the tangent planes at the vertices are contained in the pyramids constructed.

c. Build Tetrahedra for Non-convex Polygons. Let (pip2---px) (3 < k < 5) be a
non-convex polygon of Lpon—zero- Let ¢ = (p1 + -+ + pg)/k. Define a normal n as the
average of the normals of the triangle faces [p;pi+1c], ¢ = 1,---, k. Then both top vertex u
and bottom vertex v are chosen as u = ¢+ tn, or v = ¢ — tn, and k tetrahedra [uvp;p;11],
i=1,---,k, are formed (see Fig. 3.1(b)). Here ¢t > 0 is defined so that the tangent planes
at the vertices are contained in the tetrahedra constructed.

d. Build Tetrahedra for Edges. Let [p1p2] be an edge of £ where F} and F, are the two
adjacent polygons in Lyon—zero- If the top vertices u; and u, exist for F; and F, (see Fig.
3.1), respectively, then the positive edge tetrahedron is [uju,pip2]. Similarly, the negative
edge tetrahedron [vjv,p1p2] is constructed if the bottom vertices v; and v, exist for F; and
F, (see Fig. 3.1), respectively.

4 C' Modeling of Surface by Rational A-patches

In this section, we shall construct a piecewise C'! rational function F over H whose zero
contour {p : F(p) = 0} possesses a separate subset S such that SUL,e, (i) passes through
the vertices of £, (ii) has the given normal at each vertex, and (iii) is a smooth surface. We
further require that the function F' has quadratic recovery property.

4.1 Modeling Functions

First we give the forms of the modeling functions over the finite elements. The parameters
in these functions will be specified later in this section.
1. Function on tetrahedron for a convex triangular polygon. Let (pipeps) €



Fig 4.1: Weight indices on finite-element. (a) Polynomial of degree 3 on pyramid with rational
terms; (b) Cubic on edge tetrahedron with rational terms; (c) Cubic on face tetrahedron with
rational terms; All the weights are numbered (in circle) which will be referred in the Algorithms

Lnon—zero be any one convex triangular polygon. If the positive face tetrahedron [up;paps]
exists, we define (see Fig. 4.1(c) for the indices of the coefficients)

3
F|[UP1P2P3} :. ‘;l 3tijleijkl(a)
i+j+k+1=

3 2 1
t((n)na?a?» + t(()1)110120‘4 + t(()1)11a3a4

Qo3 + Qo0 + 30y

Bglll(a) (4.1)

F‘[UPIIDPS] is similarly defined if the negative face tetrahedron [vpipops] exists. In the
following we only give the expressions of the functions on positive elements. The functions
on the negative elements are in the same forms. To distinguish the difference, we place a
tilde on the corresponding coefficients.

2. Function on pyramid for convex quadrilateral. Let (pipopsps) be a convex
quadrilateral of £ and [up1pepsps] be the pyramid. Then define (see Fig. 4.1(a) for the
indices of the coefficients)

3 3—13—2

F UP1P2P3P4 ZZZPkaB B3 z( )Bg_i(t)

=0 j=0k=0
! b
+ [(pgz)zwl(b) + pighfy ) B3( ( 012w'rb +P01)2w7(~b)) B%(S)] Bj(u) B3 (t)

+ [(P(()l2)1wl(? +p(()2)1w ) Bj(s pOllwrt 0t1)1“’£t)) B%(S)] B (u)Bi ()

+ (pthwn + p{Dw, +p§31wt +p§ \wy) B} (u)BY(s) B2 (1) (42)
where
W__ v )% ORI (b) _ _
by + v Wi v+ vy ™ v+ v ™ vt



Fig 4.2: Weight indices on finite-element. (a) Four cubics on tetrahedra for quadrilateral; (b) Three
cubics on tetrahedra for triangle

WP = Y W) = Y Wi = Y w — Y
By 4v T g4, T 4w Tt w4y
Uy Up
w; = 3 Wy = )
v+ v + U+ Vp v+ U+ v+ Vp
Ut Up
wy = 3 Wy = ’
v+ v+ v+ v v+ U+ U+ Vp
with
v (s,t) = 282 (1 — t)?, v, (8,t) = (1 — 8)%t2(1 — t)?
ve(s,t) = s2(1 — s)%(1 — t)?, vp(s,t) = s2(1 — 5)*t?

In Fig. 4.1(a), the coefficients pgll)l, pgﬁ)l, pgtl)l and pgbl)l are numbered as 6. The other
coefficients of rational terms are number as 3.

3. Function on tetrahedra for non-convex 3,4-sided polygon and 5-sided poly-
gon. Let (p;---pk) be a non-convex polygon, 3 < K < 5. Then K tetrahedra [uvp;p;1]
have been constructed. On each tetrahedron, a cubic is used (see Fig. 4.2(a) and (b) for
the indices of the coefficients):

F|[“Upmpm+1] = Z tsy/:‘:)legjkl(a)? m = 1, e ,K- (43)
i+j+k+1=3

4. Function on edge tetrahedron. Let [p1p2] be a non-zero-convex edge of £ and
[wjurp1p2] be the positive edge tetrahedron. Then define (see Fig. 4.1(b) for the indices of

11



the coefficients)

_ 3
Flluwppy = 2. €ijuiBir(a)
i+j+h+1=3
O] () 0 (r)
€110121 + €11p102 3 €1110Q1 + 111022 13
B « B « 4.4
ay + as 1101( ) a1 + az 1110( ) ( )

4.2 Construction of Rational A-patches
Now we shall determine the parameters of F' step by step (see Fig. 4.1, 4.2).

Total Algorithm. Specifying the weights

Step 1. In order to have the surface constructed contains the vertices of L, we take the
number 1 weights to be zero.

Step 2. The number 2 weights are determined by formula (2.15) from the normals.

Step 3. The number 3 weights in triangle interfaces are defined by interpolating the
perpendicular directional derivative. For example, the number 3 weight on the triangle
interface [pipou] (see Fig. 4.1(c)) is defined by interpolating the directional derivative

T (g — . T .
% [—(“ |]|Zl)7gh2p2) (u—p1)+ (w=p1)"(p2—p1) ﬁ;LgTPPI) (uw —pg)] (n1+mn2) at the point %(pl +p2) where

the direction is in the face [p1pou] and perpendicular to the edge [p1p2]. We can derive that

1
ti110 = 2 [t1200 + t1020 + a(u, p1,p2)to210 + (1 — afu, p1,p2))to120]
where a(u, p1,p2) is given by

[2(u — p2) + (u—p1)]T (p1 — p2)
||P1 —172||2

a(uapl,pQ) =

The three rational coefficients t(()ll)n, té21)11 and t(()?i)n are defined as above by interpolating
directional perpendicular derivatives at the mid-point of the edge [p2ps], [p1p3] and [p1p2],
respectively. Set o111 = 3 <t(()11)11 + t(()21)11 + tg?i)ll) and then reset the values of t(()ll)ll, t02111
and té?i)n by reducing the value p111.

The number 3 weights, which are the coefficients of rational terms, on the quadrilaterals
are determined by C' condition (2.3) or (2.9). Then set the corresponding polynomial
coefficients as

1 b r 1 r
Po12 = 5 (p(()1)2 +p(()1)2) » Pl =5 (p(()tl)l +P(()1)1) ,
L/ @ b L/
Po22 =5 (p(()2)2 +p(()2)2) » Po21 = 5 (p(()2)1 +p(()t2)1) .

Then reset the rational coefficients by reducing the value of corresponding polynomial co-
efficients.

Step 4. The remaining weights on the finite elements are specified by the following sub-
algorithms.

12



Sub-Algorithm 1. Compute the weights on convex face tetrahedra
The number 4 and 5 weights are free (see Fig. 4.1(c)). We assign the function value
F(u) and gradient VF(u) as parameters. Then p3oo0 = F'(u) and, by (2.15),

1 .
12000+, = F'(u) + g(Pz’ —u)'VF(u), i=1,2,3.

The use of degrees of freedom.

Parameters F(u) and VF(u) could be used to control the shape interactively. The
default choice is we make the polynomial part of F' defined by (4.1) approximate a quadratic.
It follows from (2.4), we have a linear system with 14 unknowns and 20 equations. Since
the coefficient matrix of the system is not full rank, we add a set of equations by making
F approximate a linear function. Solving this system in the least square sense, we get the
parameters.

Sub-Algorithm 2. Compute the weights on convex pyramid

The four number 4 weights and one number 5 weight are free (see Fig. 4.1(a)). We
assign the function value F'(u) and gradient VF(u) as parameters. Then p3gop = F'(u) and,
by (2.15),

po11 = F(u) + %(Pl —u)'VF(u), poi = F(u)+ é(m — )T VF(u),
poto = F(u) + %(p3 —W)TVE(), pao = Flu) + é(m W) V().

Note that defining the number 4 and 5 weights in this way reduces the degrees of freedom
from five to four. The gain of this degree reduction is that the function defined by (4.2) is
guarantee to be C* at .

Now we consider the computation of coefficients pgll)l,pg?l, p§?1 and pgbl)l of rational

terms. These coefficients could be computed separately. Suppose the pyramid considered is
[wip1p2p3ps] and u, is the top vertex of the element adjacent to the interface [u;pops]. Then

p%)l is computed as follows. Let

p1 = Uy + Qouy + azpz + aaps,  p3 = Brug + Pour + B3p2 + Bapa-

Then by Corollary 2.1, we have
P112 = q1e2010 + a2e1110 + 3€1020 + qg€1011 = Q1P201 + X2€1110 + A3P102 + A4P101,
p110 = Preaoot + Paerion + Pseroit + Baeioo2 = Bip2oo + P2eiior + B3pior + Bapioo,

and

(r)

i1 = = (a1eg001 + ageqio1 + azelorr + aueiooz + Biezoio + B2ei110 + Bseioz0 + Paeion)

N N =

a132 a2 B2 s
Kﬂl - )pzol + (al — —) p200 + —p112 + 5-P110
Q9 Ba 1% B2

+ (53 - a?’ﬁz) p1o2 + (Ot:-s _ 22bs + B — a4ﬁ?) p1o1 + (a4 - a2;64) ploo] .

Qs B2 o) Bo
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Other coefficients of rational terms are similarly computed. Set p111 = %(pgll)l + pﬁ)l + p%

pgbl)l) and then reset the pgll)l, pg’i)l, pgtl)l and pgbl)l by reducing their values by p11:.
The use of degrees of freedom.

Parameters F(u) and VF(u) could be used to control the shape interactively. The
default choice is we make the polynomial part of F' defined by (4.2) approximate a quadratic.
Let 30itjtkti=n @ijkiBijp () be a polynomial of degree n over the tetrahedron [upipops].
Then we could express it as a polynomial Y7_o >4 %1 BP (u) B}~ (s) Bl (t) of degree
n over the pyramid [upipopsps]. Similar to the proof of Theorem 2.1, we can derive that

n
brik =) o aijme” (4.5)

I=I i+j+k=n—I
with

min{:,K,J} ol
LK _ MNE-MT-An—T=J—K+X pn—I—J—K+A

Cijk i=Xj—K+X\k—J+A,L— (a1, a2, a3,a4),

A=max{0,K—j,J—k} CKn I— KCJn I1-J

where (a1,a2,a3,a4) is defined by ps = a1u + asp1 + asps + asps, E?:l a; = 1. Hence, a
quadratic over [upipaps] could be expressed as a polynomial of degree 3 over [upipapsp4]
using (4.5) first and then (2.10). Approximating this quadratic by the polynomial part of
F defined by (4.2) we lead to a linear system with 14 unknowns (10 for the coefficients of
the quadratic, 4 for F(u) and VF(u)) and 30 equations. Solving this system in the least
square sense, we get the parameters.

Sub-Algorithm 3. Compute the weights on tetrahedra for non-convex polygon.

Consider a K —sided polygon (p; - - - px) for 3 < K < 5. The number 1,2,3 weights have
been determined (see Fig. 4.2(a) and (b) ). The other weights labeled as e are defined by
the C! condition. Under the C° condition

1 . .
tg;())k:tz(;l—cf_o)’ Z+]+k:3’ 3:1’2,"'5Ka (46)

there are 3(K + 1) 4+ 1 weights undefined. From Theorem 2.3 we know that the dimension
of S3(A) is 4K + 10. Since the function under construction interpolates positions and
gradients at the vertices p; for ¢ = 1,--- K, and interpolates two directional derivatives
at the midpoints of the edges [p;pi+1], that is, it satisfies 6K interpolation conditions, the
remaining degree of freedom is 10 — 2K. Now we take F'(v) and VF(v) as free parameters
and express other weights in terms of these parameters and derive a system of 2K — 6
equations that the parameters F(v) and VF(v) satisfy. That is, we express

tz(_;l)cl = az(;l)ch(U) + ﬂz(;I)clVF(v) + 71'(;1)913 S/)cla ’Yz(jl)cl € R, ﬁzgkl € R’ (4.7)

It is obvious that for the number 1,2,3 weights tz(ﬂ)cl, Ej,)cl =0, ﬂi;kl =0 and ’yi(;,)cl = tgjs,)cl

follows from (2.15) that

It

1 s 1
tis00 = F(v) + 5(u =)' VE@), 1{ho = F(v) + 5(ps =) VF (), s=1,--,K.

14



. 1 1
That is, 0‘(()52)10 =1, 5(();)10 = 3(ps —0)7, (();)10 = 0 and 0‘§2)00 =1, 53)0 = 3(u—0)7,
(o = 0. Let
71200 - e
U= ag )ps + ags)psﬂ + ags)ps_l + afls)v, s=1,---, K.
Then
K] s),(s s),(s s 1 s
tg1)10 = O‘g )t(()1)20 + ag )t((n)n + of )t(() 11) + 0‘( )t(()2)10a s=1,--+, K. (4.8)
Since t(()SI)QO, t(()ﬁ)n, and t(()‘izll ) are all number 2 and 3 weights, we have
910 = 9285k + a8 18 + 0§ + 08 (5 s )T V() + F(0)
Hence we have the same form expression for agsno, ,61‘;10 and 'yﬁ)m. For example,
1
0{131;10 = a%siaéﬁ)zo + ag )0‘(() ) 11t ag ))04(881111) + az(i))aéz)w = (i);
T
o = @ 0?20 + 0‘ 50111 +af 50?11 45 ﬂ0210 =305 (ps — )"
Furthermore, we have
+1 1
tgsl)oo = O‘§S)tg1)10 ta ( ) gsno) to ( : 55110) +af )tgz)om (4.9)
and
+1 s—1
‘1531)00 = ag )agl)lo + ag )0555110) + O‘g )O‘gno) + 0‘4(1 )ags2)00
_ ag )a( ) 4 a(s)affﬂ) ta (8) 518+1) + a( )
+1) 1)
B0 = ag g gl)l + ( ) 81 (s 5? 044(1 X S%)o
= jlei7el’ (p, ) ' ofla s ot
+ a0l (s — o)+l — o)1)
In the case of a planar polygon, af) = 044(184—1) for all s and we get
ol = el 4ol 4o+
~ oo
B = 3070l (ps — )" + ol (o1 — )" + 0l (py 1 — )T + (u—0)"]
= %af)[—v (o § ) 4 ags) + oz:(,f) +1)+ ozgs)pf + a(s)ps+1 + ag )ps 1 +uT]
— %a{fi[—’uT(Z — afls)) +ul — afls)vT + uT]
T
2a(u—v)".
It follows from Theorem 2.2 that (4.9) has K — 2 independent equations and they define
the same weight tgll)oo = tg)oo == tglfo)o. Therefore, we have the following equations for

F(v) and VF(v)

s s+1 s+1) s+1
0‘51)00 F(v )+52100 F(v )+’Y§1%)0 = 0‘%1450) F(v )+521?)Lo VF(v) + §1?)Lo)a

15
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for s =1,.-+ K — 3, Similarly, we have

) (s)4(s) (5) 48 ( )4(5+2) ( )4(8)

tagio = Q1 tigao + @5 tig + a3 tiorr +ai i, s=1,---, K, (4.11)
500 = o t5g0 + (s)téfﬁé“r (S)téﬁT(?)Jr (s)té?oo, s=1,,K, (4.12)

and F(v) and VF(v) satisfy the following equations

Ao (0) + BSho VE(0) + 7iehe = ol F(v) + Blase) VE(0) +7iod (4.13)

for s =1, --- K — 3. Hence all the weights are defined and all ag;kl, ﬂi;kl and 'yz(;,)cl can be

computed from (4.8)—(4.13).

The use of freedoms. Interactive shape control by giving F(v) and VF(v) under the
restrictions (4.10) and (4.13). The default choice is to make the K cubics approximate
quadratics. By using the degree elevation formula, we need to solve the following equations

j l
3755 )1 gkt 3755 ]) 1t 3tz(j,)k 1t gtz(;l)c,l—l - az(;l)ch(v) - 51'(;1)91VF(U) = 7§;I)cl’ (4.14)
fori+j4+k+1=3, s=1,---,K, in the least squares sense for the unknowns tz(;-,)cl,

F(v), VF(v) under the C° condition (4.6) for the K cubics and C° condition
tE;I?O :tz(;?(L);gi—l)a Z+]+k = 2, m = 1,2’3

and the constraints (4.10) and (4.13). System (4.14) has (4K + 3) unknowns tgj.,)cl for
i+j+k+1=2and 4 unknowns F(v), VF(v), and has 10K + 4 equations.

Sub-Algorithm 4. Compute the weights on edge tetrahedra

Suppose the edge tetrahedron considered is [uju,pip2] (see Fig. 4.1(b)). The weights
ei110 and ejjp; are set to zero. The number 6 coefficients egll)m,egq)w,egll)m and eﬁ)m are
determined by the C! condition. If the right neighbor, that is adjacent to [u,.pips], of the
edge tetrahedron is tetrahedron [u,p1paps], and if we express u; = aqu, + aopr + asps + ayps

with Z;l:l a; = 1, we have
T
e%ﬁm = a1 fa100 + @2 f1200 + a3 f1110 + o fi101,
T
e%ﬁm = a1 foo01 + @2 f1101 + a3 fio11 + 4 fioo2-

If the right neighbor of [uju,p1p2] is pyramid [u,p1p2pspa], then let

up = iUy + aopy + agpe + aups, w = Bruy + Popr + Bspa + Bapa
with 221:1 o; = Z?:l B; = 1. Then we have

6%)10 = a1p211 + Qop122 + a3pi1e + au4pioa,

e%’?m = Bip201 + Bop112 + Bapio2 + Bapior-
The weights egll)lo and egll)m are similarly computed.
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Theorem 4.1. For the given discretization L of a surface with a built finite-element hull H
on it, the surface defined by the union of all edge A-patches, face A-patches and zero conver
faces of L interpolates the vertices of the discretization and has the normals at the vertices,
and it is smooth and topologically equivalent to L.

The scheme proposed above makes the constructed surface have the plane recovery
property. Even further, the scheme can recover quadratic. That is if the normal at the
vertices of a polygon are extracted from a quadratic surface @Q(p) = 0 that passes through
the vertices of the polygon, and furthermore if the free weights are defined by approximating
a quadratic, then F'(p) = Q(p). Similarly, if the normals at the vertices of an edge and the
vertices of the two adjacent polygons are extracted from a quadratic surface Q(p) = 0 that
passes through these vertices, and if the free weights on the neighbor polygon elements are
defined by approximating a quadratic surface, then F(p) = Q(p) on the edge tetrahedron.

The proof of the quadratic recovery property is based on the following facts: (a). F
interpolates function values and first order partial derivatives of () at the vertices, and F'
interpolates directional derivatives of () in any directions that perpendicular to edges at
the mid-points of the edges. (b). The free weights are defined by the degree elevation
formula. (c). The rational function is degenerate to zero. The detailed discussion needs to
distinguish the cases when the polygon is convex or non-convex. We omit the detail here.

5 Evaluate the Surfaces

Since the patches for edges and convex triangles are defined in the same way as in [17], we
can evaluate these patches using the scheme in [17]. In the following, we ignore these cases.
A. Evaluate the Triangular Face A-patch

For each triangular nonconvex polygon in L, ,ero, we shall produce a piecewise trian-
gular approximation for the surface patch F = 0. Let (p1p2p3) € Lno—zero be one triangular
polygon and v and v be top and bottom vertices. Let N be a given positive number,
which represents the resolution of the piecewise approximation. Then the piecewise tri-
angular approximation is defined by the naive connection of the points sgy,(z +y + 2z =
N, z,y,z > 0). Here sg,, is the intersection point of the surface F' = 0 with the polygonal

. x
line [Uwaz] U [Q:cyz'u]a where Qryz = Npl + %p
puted by solving the cubic polynomial equation F' ((1 — t)qgy, + tu) = 0 if F(gsy,) < 0 or
solving a similar equation F' ((1 — t)ggy, + tv) = 0 if F(ggy,) > 0, where the required root

is the minimal one.

2 + NP3 and the intersection point is com-

Since gy, is in one of the tetrahedra [uvp;p; 1] withi =1,--+,3, gz, could be expressed
in the following form:
g =B+ B0 + Bpi + Bpisa (5.1)

Then we can derive, from (4.3), that

F((1—t)q +tu) = Z (Z §?s) (t) (5.2)

A1=s
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with O = Y, st remsonn Bonsrars B s mnans (B, 85, 65, ). Similarly, we have

F((1-t)q+tv) = i (i é&i)s) B3(t) (5.3)

s=0 \\o=s

with é)(\zg)s = E)\1+)\3+)\4:3—)\2 tgxz1)A2A3A4B§\;;2—S,A3A4 (5§Z)’ g)’ﬂ?(f)’ﬁ‘(f))'

B. Evaluate the Quadrilateral Face A-patch

For each quadrilateral polygon in Ly, ,ero, Wwe shall produce a piecewise quadrilateral
approximation for the surface patch. Let N be two given positive numbers, which represent
the resolution of the piecewise approximation and it should have the same value as above, let
(p1p2p3ps) be a quadrilateral of £, ,ero and u and v(if exist) be the top and bottom vertices
of (p1p2p3ps). Then the piecewise quadrilateral approximation is defined by connecting the
points pgy(z = 0,---,N;y =0,---, N). Here p,, is the intersection point of the polygonal
line [uggy] U [gzyv] and the surface F' = 0, where

y [x N -z ] N-ylz N -z
P2

Gzy = 77 Npl—l_ N +T NP3+ N P4

(5.4)

and the intersection point is computed by solving the cubic equation F((1 —t)gzy +tu) =0
if F(gzy) < 0 or solving a similar equation F' ((1 — t)gzy + tv) = 0 if F(ggy) > 0. Again, we
use the minimal root.

If the polygon is convex, (4.2) gives explicit expression for F'((1 — t)gzy + tu).

If the polygon is non-convex, g, is in one of the tetrahedra [uvp;p; 1] withi =1,---,4.
Using (5.4), ggy could be expressed as (5.1), and (5.2) and (5.3) could be used again.

C. Evaluate the Pentagon Face A-patch

Let (p1---,ps) be a 5-sided polygon and u and v be the top and bottom vertices. Then
The pentagon face A-patch is evaluated by evaluating 5 patches defined by F |[uvpipi+1] (p) =
0 fori =1,---5. Then the piecewise triangular approximation of Fiyy,p,. ,1(p) = 0 is defined
by connecting the points sg;z(x—i—y +z=N, z,y,z > 0). Here s(xgz is the intersection point
of the polygonal line [qu@zz] U [qggzv] and the surface F' = 0, where

z 1
N N N© ng(p1+---+105)-

The intersection point can be computed by solving the cubic polynomial equation F((1 —
t)qg}z +tu) = 0 if F(q;(cz‘q}z) < 0 or solving a similar equation F((1 — t)q;(cigz +tv) = 0 if
F(qg@}z) > 0, where the required root is the minimal one. Express q&?z as (5.1), and (5.2)
and (5.3) could be used to define the cubic equations.

. €T y

6 Conclusions and Examples

We have presented a new combination of algorithms for modeling a smooth interpolatory
surface from a surface discretization by edge A-patches and 3, 4, 5-sided face A-patches. Our
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(a) (b) ()
Fig 6.1: (a) Input mesh consists of four sided polygons; (b) and (c) Patches over tetrahedra using
the nonconvex algorithm

(a) (b) (c)

Fig 6.2: (a) Input mesh consists of three and five sided polygons; (b) and (c) Patches over tetrahedra

main contributions consist of introducing A-patches in pyramids, and the new 3, 4, 5-sided
face A-patches. The advantages of this approach include reducing significantly the number
of surface patches required, and having the quadratic recover property. The implementation
shows that the approach we have taken is successful, as seen in figures 6.1, 6.2, and 6.3.
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Appendix

The proof of Theorem 2.1. First of all, we show that the polynomial Fr on the tetra-
hedron [g1¢293q4] could be expressed as the form (2.5) in the pyramid [pop1popsps]- To
achieve this, we need to establish a relation between (a1, a0, a3, 4)” and (u,s,t)T. From
(2.1), (2.6) and (2.8), we have

l1 — 91,42 — q4, @3 — qu][u1, a2, Oés]T
ayst+bys(1 —1t)
= (1 —u)lg1 —q4,92 — q4,q3 — q4] | azst +bas(1 —t) + (1 —s)t
agst+bss(1—t) + (1 —s)(1 —1t)
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i From this equality and ay =1 — a3 — a9 — a3 we get

a; a1(l —u)st+ by (1 —u)s(1 —t)

oz | _ | a2(l—u)st+ba(1—u)s(1—¢)+ (1—s)t (7.1)
as as(1 —u)st+b3(1 —u)s(1 —t) + (1 —s)(1 —¢) '
ay as(1 —u)st +by(1 —u)s(1 —1t) +u

Substitute (7.1) into Fr, we get its expression in the pyramid [pop1popsp4]:

n n—in—1i

Fp=3% i?ijch?(U)B;'L_i(s)Bg_i(t)
i=0 j=0 k=0
where Eijk is defined by the right-handed said of (2.7) fori =0,---,n; j=0,---,n—i; k=
0,---,n —i. Now we prove that, Fr and Fp are CK at [g2g3q4] \ {qa} if and only if

bzgk:BZ]ka ]ZOaaKa Z:()aa’n’_]a kZO,,’fL—Z (72)

This conclusion is true because of the following facts: (a). The extension Fr of Fr to the
pyramid [pop1pepspa] is obviously CX join Fr at [gag3qs]- (b). The partial derivatives of
order K’ of Fp on [g2g3q4] \ {qs} depend upon only the coefficients b;;;, for j = 0,---, K’
and K' < K. Therefore, the agreement condition (7.2) implies that the partial derivatives
order K’ of Fp would be the same as the ones of Fr on [g2g3qs] \ {g4}. This is what we
want. <

The proof of Theorem 2.2. In the matrix form, (2.11) and (2.12) can be written as

@ g2 't gk P2 P3 Al _
11 -+ 1 1 1][3]_0 (7.3)
where
5 a2 0 ok
ay 0z of 0 1 .2 3 k
a=| 0 e b0 g ]
Qq Qp Qp -+ Oy
o 0 0 ot og
where
5 — -1, if ¢;—1,qit+1,p2,p3 are affine independent
v 0, if ¢;—1,¢;11,p2,p3 are affine dependent
Since o # 0, ab # 0, the matrix A4 has rank at least k—2. Since[%l qf qlk ]012 pl3

has rank 4. So the rank of [AT BT] is at most k + 2 — 4 = k — 2. Hence the rank of A and
[AT BT]is k—2. It follows from (2.13) and (2.14) that the unknown z; satisfy the equation

[1'1 e .’I)k]A + [bg bg]B =0 (74)
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Therefore, by the fact that rankA = rank[AT BT] = k — 2, equation (7.4) is solvable and
the set of the solutions is a two dimensional manifold. That is, the equation (7.4) has k — 2
independent equations. Now we need to figure out which two equations can be removed
and which two unknowns can be treated as free parameters. ;From the definition of the
matrix A, the rank of A’ is k — 2, where A’ is yielded from A by deleting any two adjacent
columns. Let 1 <14 < 5 < k be two integers, such that deleting the ¢th and jth rows from
A’ lead to a rank k — 2 square matrix A”. Then (7.3) can be written as

g1 - -1 Gi+1 qj—-1

1 --- 1 1 ... 1
or

g1 - gi-1 Gi41 qj—1

1 .- 1 1 . 1

for C = —B"A""!.
C' € IR*** such that

9m 49n P2 P3

1 1 1 1 1

and ' is full rank. Hence

_ | 9m d4n
1 1

9 45 P2 P3
1 1 1 1

gj+1
1

gj+1
1

]:[Qi 45 P2 P3
1

ak
1

ak

1

/
1 1 ¢
b2 D3 "
1 1 ¢

with C" = C'~!. Substitute (7.6) into (7.5), we have

q1 9k
1 --- 1

_ | 9n 94n P2
1 1 1

with D = C"C'. This implies that

x1 -’Ek]:

Tm Tn by b3

b3
1

Therefore, we have proved the theorem.

D

D.

&

AII _l_

|

9% 495 P2 P3 " __
[ 1 1 1 1 ]B =0
9 495 P2 P3
1 1 1 1 ]C’ (7.5)

Let ¢m,qn,p2,p3 be affine independent. Then by (7.5), there exist

(7.6)

The proof of Theorem 2.3. Let P; be cubic functions on [g;g;+1peps] fori =1,---, k. Let
li(z,y,2) = 0 be the plane containing the triangle [g;p2p3]. Then the C! join of P;(x,v, 2)
and P;11(z,y,z) on the interface [g;1+1p2p3] is expressed by the following equation

Piii(z,y,2)

P’i(xa Y, Z) + Ti(a"a Y, z)li(waya 2)2, 1

1,---

’k’

where 7;(z,y,2) is a linear polynomial. Summing up these equalities, we have

Ti(xaya Z)ll(xaya 2)2 =0.
i=1
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Then similar to the argument for dimension of the bivariate splines (see [15]), we have that
dim S5(A) = 20 + 4k — T, (7.8)

where 7 is the rank of the coefficient matrix of (7.7). Now we compute the rank of this
matrix. Let o;(z,y,2) = li(z,y,2) for i = 1,2. Let as(z,y,2) and ays(z,y, z) be other two
linear functions such that a;, a2, as and a4 are linear independent. Then the functions in
the set {afada§a : a+b+c+d = n} are the basis of the space of the polynomial of degree
n. Since [; could be expressed by [; and o, ; could be expressed by a1, g, a3 and ay:

4
li = aja1 +biag, 1=3,---,k; T'izzeijaj, i=1,---,k.
j=1

where a; and b; are known constants and e;; are unknowns. If [g;pops] lies at least three
different planes, we know that there is at least one a;b; being not zero. If [g;paps] lies two
different planes, all a;b; are zero. Substituting these into equation (7.7), we get following

coefficient matrix for unknown vector [e11,---,€14,€21,- -, €24, ", €K1, ", €ka)
100 00O0O0O0G@@ 0 0 0 a3 0 0 O 1
OlOOOOOOcla%OOcza%OO
001 000O0O0ODTU 0 0 a 0 0 0 a3 0
0001000O0UO0 0 0 a 0 0 0 d
000 01000UWb® ¢ 0 0 b c 0 0
0000O0100TUO0TW® 0 0 0 b6 0 0 ’
000000100 0 0 0 0 b 0
0000O0O0O0OD1UO0 O O ® 0 0 0 b
000000O0O0UO 0 ¢ 0 0 0 c 0
000000000 0 0 ¢ 0 0 0 c |

where ¢; = 2a1b1, co = 2a9bs. It is obvious that if there is at least one a;b; being not zero,
then the rank of the matrix above is 10. That is, 7 = 10. If all a;b; are zero, then 7 = 8.
Hence the theorem follows from (7.8). %

The proof of Theorem 4.2. We first show that the function F is C' over H. Note
that the rational function is well defined even at the points where the denominator is zero.
Hence F is a well defined function on #H. Since F' is obviously smooth in the interior of the
each tetrahedron and pyramid, we consider only the smoothness of F' at the interfaces of
the finite elements.

At the interface [p;p;u;;i], the related rational functions and their first order partial
derivatives are polynomials. Hence the coefficients determined by the C' condition (2.3) or
(2.9) make F C! at the interface. Therefore, F is C' at there.

Now we show the constructed surface has the required properties. Let S;; denote the
edge patch for the edge [p;ip;], S;;... denote face patch for the polygon (p;p; - - - p;). We note
firstly that each of the surface patches is smooth. Also, these surface patches interpolate
corresponding vertices and have the given normals on the vertices. Secondly, the edge A-
patch and face A-patch are continuous at the interface since the surface points at there
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are derived from the same equation. Further, since F is C!, the two surface patches join
smoothly on the interface.

Now we show that the zero convex polygons join smoothly with their neighbor surface
patches. Let (p;p;px) be a zero convex triangular polygon. Then the surface patch is the
face [pip;pk). If its adjacent polygon, say (p;p;pi), is also zero-convex, then the two polygons
are coplanar since they share the same surface normals at the common vertices p; and p;.
If (pip;m) is non-zero-convex, then by the construction of F', we know that S;;; contains
the edge [pip;]. That is, the polygon (pip;pr) and surface patch S;;; C? join at the edge.
Since both of the surfaces have three same normals on the edge and the normal function
is a polynomial vector of degree two, they are uniquely defined by the three normals that
are perpendicular to the face. Hence the normal function is perpendicular to the face
everywhere on the edge. That is, (p;pjpx) and S;j have the same normals on the edge.
Therefore, the two surface patches join smoothly. Similar conclusions can be proved for the
zero convex quadrilateral.

Finally, since each edge and each polygon of H corresponds to one surface patch (the
zero convex edge corresponds to itself), hence the constructed surface S is topologically
equivalent to L. o
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