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Abstract

Building a system to actively visualize extremely large data sets on large tiled displays in a real-time immersive

environment involves a number of challenges. First, the system must be completely scalable to support the rendering of

large data sets. Second, it must provide fast, constant frame rates regardless of user viewpoint or model orientation.

Third, it must output the highest resolution imagery where it is needed. Fourth, it must have a flexible user interface to

control interaction with the display. This paper presents the prototype for a system which meets all four of these

criteria. It details the design of a wireless user interface in conjunction with two different multiresolution techniques—

foveated vision and progressive image composition—to generate images on a tiled display wall. The system emphasizes

the parallel, multidisplay, and multiresolution features of the Metabuffer image composition hardware architecture to

produce interactive renderings of large data streams with fast, constant frame rates.
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1. Introduction

Today imaging and simulations are increasingly

yielding larger and larger data streams. These data sets

can range in size from gigabytes to terabytes of

information. In many cases, such data sets are much

too large to store and render on a single machine.

Viewing these large data sets poses yet another problem.

In some cases, the detail allowed by a single high

performance monitor may not be adequate for the

resolution required.

To cope with these issues, many systems have been

designed which use parallel computation and tiled screen

displays. Dividing the data set among a number of

computers reduces its enormous bulk to more reason-

ably sized chunks that can be quickly rendered. Like-

wise, using tiled displays results in a larger amount

of display space. Small details that might be culled out
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on a single monitor can be spotted in an immersive

visualization laboratory with hundreds of square feet

of screen space. Such approaches have been used

since the 1960s in single-display systems [1–6]. More

recent work includes the PixelFlow [7], Sepia [8], and

AIST [9] systems. Multiple display systems, which

are the focus of this paper, include Lightning-2 [10],

the Metabuffer [11], the Princeton project [12], and

Chromium [13].

Most current parallel, multidisplay systems have

common problems in regards to user interactivity.

Because they usually depend on data locality in some

form (dividing the data set evenly among the proces-

sors), changing the view-point of the user can often

wreck any careful load balancing done on the data set.

An unevenly load balanced data set will significantly

degrade the frame rate which a user experiences. Even

worse, in some cases if the tiled displays are linked only

to certain machines, large quantities of data or pixels

may need to be moved immediately simply to render the

frame correctly. This can result in a significant delay to

the user. Also, large tiled displays require immense
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amounts of computing resources to render. This is

despite the fact that, in most cases, much of the display

is either not in the user’s view or is only within the user’s

peripheral vision. Current parallel, multidisplay systems

are limited in how they can allocate their computing

resources to cope with a partially viewed scene in order

to accelerate the possible frame rate.

By using multiresolution techniques, such as those

supported by the Metabuffer hardware architecture,

these data locality and resource allocation problems can

often be alleviated in parallel multidisplay systems that

render interactive large-scale data streams. This paper

shows how the Metabuffer system, coupled with a

flexible user interface, uses multiresolution techniques to

provide an essential balance between display quality and

frame rate in an active visualization environment.

Display

Fig. 1. Metabuffer architecture.

2. Metabuffer architecture

The Metabuffer [11] hardware supports a scalable

number of PCs and an independently scalable number of

displays—there is no a priori correspondence between

the number of renderers and the number of displays to

be used. It also allows any renderer to be responsible for

any axis-aligned rectangular viewport within the global

display space at each frame. Such viewports can be

modified on a frame-by-frame basis, can overlap the

boundaries of display tiles and each other arbitrarily,

and can vary in size up to the size of the global display

space. Thus, each machine in the network is given equal

access to all parts of the display space, and the overall

screen is treated as a uniform display space, that is, as

though it were driven via a single, large frame buffer,

hence the name Metabuffer.

Because the viewports can vary in size, the system

supports multiresolution rendering, for instance allow-

ing a single machine to render a background at low

resolution, while other machines render foreground

objects at much higher resolution. Also, because the

Metabuffer supports supersampling, antialiasing is

possible as well as transparency using the screen door

method.

Fig. 1 shows a Metabuffer architecture using three

rendering engines and four output displays utilizing

multiple pipelined data paths and busses as intercon-

nects. External to the board, commercial off-the-shelf

(COTS) rendering engines (A) deliver their data to on-

board frame buffers (B) by means of the recently

adopted industry standards for digital video transmis-

sion, the digital visual interface (DVI). Since COTS

rendering engines (A), at this time, transfer only 24 bits

per pixel over these digital links, color is transferred on

even frames, while alpha and Z information is trans-

ferred on odd frames. At a refresh rate of 60 Hz; this is

still fast enough to provide enough RGB, alpha and Z
information for 30 frames/s. The on-board frame buffer

(B) stores information from both transmissions in

memory. Control information, such as the location of

the viewports and their final destination in the overall

display, is stored on the first scan line of each rendering

engine’s image (A). This first scan line is never displayed.

Instead, DSP code, viewport data, or anything else that

is needed by the control logic of the Metabuffer can

be written here using standard OpenGL glDrawPixels()

calls.

When a full frame has been buffered, data are

selectively sent over a wide bus to the composer units

ðCÞ based on viewport locations. The composers ðCÞ
take only the data that are required to build their

column’s output image and ignore the rest. Each

composer ðCÞ then sends its data in pipeline fashion

down the column to the next lower composer ðCÞ so

that the pixel Z-order information can be compared

with those Z values from the other COTS renderers (A).

This way, only the front-most pixel is saved. The

collaged data are then stored on another on-board

frame buffer. These smart frame buffers can perform

post processing on the data for anti-aliasing and are

also able to drive the off-board displays again using the

DVI specification.

Because the composers compute their data in a

pipelined manner, adding more COTS rendering engines

to a system only results in more latency–the overall

throughput of the system is not affected. However, since

this latency is measured in pixels per rendering engine

(the number of pixels depending on the width of the data

pipeline), even a Metabuffer consisting of 1000 render-

ing engines would only be penalized at most one or two

scan lines worth of latency. The overriding latency

problem is during the buffering of the COTS image to

the on-board Metabuffer frame buffer. This results in a
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Table 1

Bandwidth analysis

Data Period Deadline

C1a ¼ l=2 T1a ¼ 2w D1a ¼ 2w

C1b ¼ ðw � lÞ=2 T1b ¼ 2w D1b ¼ 2w

C2 ¼ w=2 T2 ¼ 2w D2 ¼ 2w

C3a ¼ l=2 T3a ¼ 2w D3a ¼ 2w

C3b ¼ ðw � lÞ=2 T3b ¼ 2w D3b ¼ 2w

C4 ¼ w=2 T4 ¼ 2w D4 ¼ 2w
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full frame of latency because of the need for random

access within the imagery.

Although the Metabuffer architecture is very similar

to the Lightning-2 system, there are several differences.

The Lightning-2 system reorganizes the data on the

video card before sending it over the DVI port to avoid

the buffering latency mentioned above, but this can

affect throughput by tying up the video card. Also, the

Metabuffer supports multiresolution image compositing

while there is currently no such feature on Lightning-2

(although this could be added to their architecture as

well).

2.1. Data flow analysis

The Metabuffer supports multiresolution techniques

by employing viewports of varying size and position. It

is important to demonstrate that the bandwidth

requirements of the composers will not exceed the

limited data rate of the bus that connects them to the

input frame buffers. If the bandwidth requirements are

exceeded in certain viewport configurations, glitches in

the output image are certain to occur. The analysis that

follows proves that the Metabuffer has a constant

bandwidth requirement regardless of the size or orienta-

tion of the viewports that are used.

In order to analyze the worst case data flow of the

board, a scheme is used similar to the one presented in

the paper by Kettler et al. [14]. Since all data needs are

periodic (because of the raster display), each task

(display) can be described in terms of the amount of

data needed ðCÞ; its period ðTÞ; and its deadline ðDÞ: By

quantifying these values for a sample case, it is easy to

see that the bandwidth requirements do not change as

the viewport geometry becomes more complex.

In Fig. 2, the example viewport is four times as large

as the image generated by the COTS rendering engines

and overlaps the displays generated by nine composers.

The numbers superimposed over the figure show how

the area of the nine displays covered by the viewport on

the left, when rearranged, form four distinct screens of

data on the right. Thus, when rasterized, these four

screens of data will simultaneously need to be placed on
1 1
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Fig. 2. Nine screen low-resolution viewport.
the bus at the same time. However, because the ratio of

pixels is 1:4 (because of the lowered resolution), there is

one-fourth the bandwidth requirement and buffering

can solve this problem of multiple bus accesses.

The same numbers that demarked Fig. 2 are also used

in Table 1 to show the contributions of the individual

image segments. The variable w refers to the width of a

display. The variable l; which cancels out in the resulting

equations, is used to delineate the vertical break between

segments 1a and b and the vertical break between

segments 3a and b. The horizontal break seen in

segments 1 and 2 only changes the destination of the

data and does not affect the scheduling of the bus for a

rasterized display, and so is ignored for the purpose of

these calculations.

As shown in Table 1, because pixels are being

replicated to twice their size, the period ðTÞ of the

scheduling increases by a factor of 2 because there are

half as many rows to process. Likewise, the data needed

ðCÞ decrease by a factor of 2. If all of the C values are

totaled, the result is 2w; which is the same as the period.

2.2. Buffering the bus

Although the bandwidth requirements remain con-

stant across the generation of the display, at many times,

multiple composers must simultaneously have data.

Because of this fact, supplying a local buffer on each

composer is necessary to allow for simultaneous access

of the image data.

The more interesting fact about creating local buffers

on the composers is that it is then possible to do

multiresolution pixel replication. The buffer that each

composer maintains closely resembles a queue, except

for one important difference. While the buffer acts in a

FIFO manner when there is no replication (the source

pixels and destination pixels are in a 1:1 ratio), if pixel

replication needs to be done, it is necessary to remember

data from the previous row. If advanced smoothing

is being performed then multiple rows may be needed.

Therefore, the cache behaves like a queue, but also has

a moving window of data that always stores the

previous row.
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In order to send data to the local buffers on the

composers in a simple, yet good performing manner, an

idle recovery slot allocation (IRSA) round robin

approach [14] is employed which distributes data to

the composers evenly based on the amount of data

needed ðCÞ; the period ðTÞ; and the deadline ðDÞ: No

effort is made to look ahead in the geometry of the

viewports to find the most efficient way to send the data

out. However, because of the previous discussion, the

uniformity of the data transmitted to each buffer will

result in few delays using this simple method.
Fig. 4. Composited output images.
3. Metabuffer output

Fig. 3 shows the three original images that were

rendered for this example of Metabuffer output: a ball, a

tube, and finally a seascape. The fourth and final

diagram illustrates how these images were distributed

using the Metabuffer to the four output displays by

being broken up into viewports. Note that every image is

sent to at least two output displays. As discussed earlier

in this paper, the location and geometry of the viewports

are arbitrary. The bandwidth requirements over the bus

remains constant.

Running the three images into a three input frame

buffer by four output frame buffer Metabuffer yields the

four output screens in Fig. 4. Note that the tube resides

in four separate displays, despite being rendered on a

single machine. Also, see how the seascape here is being

used as a low-resolution background display with the

higher-resolution foreground images layered on top.

Finally, the Z order of the input images is always taken
Fig. 3. Three input images with viewport configuration.
into account, whether that means that the ball is in front

of the tube, or that the ocean surface laps at the base of

the foreground objects.

3.1. Metabuffer antialiasing

One problem with compositing separate images like

the ones above is the aliasing that results on the edges. A

solution that has been implemented on the Metabuffer

involves supersampling. Simply increasing the detail of

the input images and then having the output frame

buffers average the pixel values down to the original size

effectively smoothes the image. Only the problem pixels

at the edges are affected. The rest of the composited

image pixels remain as sharp as on the original.

This technique is commonly used in graphics cards to

antialias displays. It is extremely simple, since the only

major change to the graphics pipeline, besides the

increase in resolution, is an averaging step at the very

end. The main disadvantage is the fact that the graphics

hardware has to run so much faster in order to generate

the extra pixels. This is not much of an issue inside the

tightly coupled hardware of a graphics card. In a more

loosely coupled system like a cluster, these heightened

bandwidth requirements could be a problem. But, even

with the bandwidth concerns, supersampling has been

implemented in PixelFlow [7], another sort last system

similar to the Metabuffer.

The two images generated by the Metabuffer in Fig. 5

(magnified eight times to show the difference in detail)

demonstrate the effect supersampling has on the

resulting image quality. On the left, no supersampling

has been performed. There is a jagged transition

between the different input images at the Z buffer

transition. On the right, the input images were rendered

to be four times as detailed and the final output pixels
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Fig. 5. Zoomed image without (left) and with (right) antia-

liasing.

Fig. 6. Screen door transparency Metabuffer output.

Fig. 7. Zoom of transparency example.
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were averaged by the output frame buffer from the four

nearest pixels that traveled through the composer

pipeline. The jagged transition is now much smoother

while the rest of the image has lost no quality.

3.2. Metabuffer transparency

Sort-last image compositing systems, such as the

Metabuffer, suffer from many known problems with

order-dependent rendering semantics such as stencil

buffers, alpha-blending, and transparency. The screen

door transparency method was implemented on the

Metabuffer primarily because of the flexibility it gives

regarding the ordering of the compositing pipeline.

Unlike Sepia [8], with its configurable ServerNet II

network, the Metabuffer’s pipeline is fixed in hardware.

But since the screen door algorithm requires no polygon

sorting, changing user viewpoints will not require

shuffling the data set and, thus, will not adversely affect

the frame rate.

Another advantage of the screen door algorithm is

that the Metabuffer system already uses pixel replication

for multiresolution and employs supersampling for

antialiasing. This abundance of redundant pixels makes

it quite easy to create screen door masks without

affecting the quality of the image. For instance, on

non-supersampled viewports, each pixel is replicated

four times and then averaged down to one pixel on the

final display. By employing a simple checkerboard mask

on the replicated pixels, the averaged output pixel

correctly achieves a 50% transmission coefficient. An

example using this method is shown in Fig. 6.

The screen door technique is not without its problems.

Because the Metabuffer only employs 4� supersam-

pling, transparency can only be quantized into four

levels. Also, if multiple transparent layers of polygons

overlap, the screen door patterns may interfere with

each other creating undesirable effects. Fig. 7 is a zoom

of Fig. 6 showing how the ball completely obscures the

tube behind it as a result of these mask collisions. In

addition, performing the screen door mask on replicated

pixels will produce problems if polygons from different

machines interleave, since only the front-most Z values
for each machine’s viewport are recorded. However, if

these limitations are taken into account, screen door is

an adequate way to achieve transparency.
4. Multiresolution techniques

Multiresolution techniques, either dealing with object-

space (polygon count) or image-space (resolution), have

been used frequently for frame rate control [15]. Two

multiresolution techniques in the context of active

visualization were studied using the Metabuffer frame-

work: progressive image composition and foveated

vision [16].

The configuration used to test these two techniques

consisted of 19 machines in our visualization cluster.

Each machine was equipped with a high-performance

Hercules Prophet II graphics card, 256 MB of RAM, an
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800 MHz Pentium III processor and ran the Linux

operating system. Nine of the machines were set to

actually emulate the Metabuffer hardware. They per-

formed the image compositing and output of the 3� 3

tiled display space. The other 10 machines were tasked

with actually rendering the scenes.

All 19 machines were connected via 100 Mbps Fast

Ethernet. We limited the test to 19 machines instead of

the full 32 in the cluster with graphics cards because the

higher amounts of data transfer exceeded the capabil-

ities of the network and significantly slowed emulator

performance. We anticipate that the addition of

Compaq’s ServerNet II to the cluster will greatly reduce

this constraint. The actual Metabuffer design, when put

into hardware form, eliminates this overhead entirely.

4.1. Progressive image composition

How to quickly navigate a large data set while still

retaining high-quality image output is a problem for

parallel rendering on multiple displays. To achieve good

user interactivity, an application must guarantee time-

critical rendering of the massive data stream. However,

for the instance of displaying a triangular mesh, though

a good load balanced partition among the parallel

machines can be computed for a given user view point,

new computation and data shuffling are required

whenever the view point is significantly changed. Either

triangles may fall out of the viewport because of the

movement of the viewing direction or the viewport

cannot cover all the polygons assigned to it because of

zooming. Redistributing primitives or imagelets in order

to render all of the polygons correctly takes time. If the

user is simply navigating the data set, this additional

time will result in slower frame rates hampering user

interactivity.

To solve this problem, we propose adapting the

concept of progressivity to the generation of images via
Fig. 8. Sample frames from the progressive image composition m
image compositing on the Metabuffer, terming the

technique progressive image composition. By employing

the Metabuffer’s multiresolution feature, it is possible to

ensure the user will always have constant frame rates no

matter what the viewing angle or zoom factor. Instead of

redistributing polygons or imagelets while the user is

rapidly changing views, a viewport can instead go to a

lower resolution and enlarge in order to accommodate

the current polygons assigned locally to the machine.

When the user finally arrives at the view of interest and

stops changing viewpoints, frame rate is no longer a

concern. At this point, polygons are redistributed in

order to once again form completely high-resolution

viewports.

The example data set used in this paper to test the

progressive image composition technique is an isosur-

face generated by Zhang [17] from the visible human

model. This data set consists of 9,128,798 polygons split

into 10 partitions of 912,880 polygons each using a

greedy polygon to viewport allocation algorithm [16].

To demonstrate that the frame rates do not change

regardless of the user’s viewpoint a 720 frame movie was

generated in which the data set was zoomed in and out

while constantly being rotated. A sample of the frames

taken throughout the movie is included in Fig. 8. All the

movies presented in this paper can be seen in their

entirety on the world wide web at http://www.ices.utex-

as.edu/ccv/projects/DiDi/Metabuffer.htm.

At the beginning of the movie, the image is cleaved

into the nine tiles that form the 3� 3 tiled display space.

During the movie, these tiles are rejoined to show the

overall display, and then separated again at the end to

reinforce the fact that the Metabuffer is acting on a

multitiled display space.

The black boxes visible in the frames show the

viewport locations. As the data set is zoomed in and

out, it is readily apparent when the viewports shift from

high to low resolution by the sizes of these black boxes.
ovie using the isosurface from the visible human data set.

http://www.ices.utexas.edu/ccv/projects/DiDi/Metabuffer.htm
http://www.ices.utexas.edu/ccv/projects/DiDi/Metabuffer.htm
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Fig. 10. Composited visible human in visualization lab.
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Initially, the individual viewports belonging to each

renderer are cycled around in a circle to demonstrate

that they can be located anywhere within the global

display space and are indeed disparate. Each viewport is

color coded according to the renderer that drew it.

Later, the viewports are composited together to form

the data set. The user zooms in while rotating the scene.

As this is occurring, viewports dynamically move and

resize themselves to adjust to the expanding extent they

must cover to render all of their triangles. Finally, the

user zooms out and the viewports shrink.

Note that the timings shown in Fig. 9 for rendering

the viewports for each frame are almost completely flat.

No communication between rendering machines has to

occur between frames, and this lack of communication

overhead means that the user sees no drop in

interactivity regardless of how the data set is viewed.

From the graph, it is evident that the renderers are not

completely load balanced. Currently, the greedy polygon

assignment algorithm balances viewports in terms of

polygon count. In the case of the visible human

isosurface, this metric was not sufficient to evenly load

the rendering machines. Other data sets fare much

better, but including better metrics in the polygon

assignment algorithm to more accurately measure

rendering time would improve the load balancing of

the visible human and other similar data sets.

All of the frames for this movie were created for a

3� 3 display to facilitate an easier presentation of them

for this article. In reality, the cluster hosting the

Metabuffer is connected to a 5� 2 tiled display space

in our visualization laboratory. Typically, 10 machines

are used to do the Metabuffer emulation, each

responsible for driving one of the displays. The

composited visible human is pictured in Fig. 10 from

our visualization laboratory during a test run.
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Fig. 9. Rendering times for the frames from the progressive

image composition movie using the isosurface from the visible

human data set.
4.2. Foveated vision

Rendering to multiple panel displays in high resolu-

tion to visualize extremely large data sets uses a

tremendous amount of computing resources, takes a

large amount of time and, thus, results in slow frame

rates. This despite the fact that, because of our limited

vision systems, much of the display either will not be

seen at all (because it is behind us in a cave arrangement)

or only in the periphery in low resolution.

Using the physical characteristics of the eye as an

advantage, the foveated vision multiresolution technique

matches the computing resources of the Metabuffer to

the areas in the display that are being examined [18]. The

majority of the rendering servers concentrate their work

where the user is gazing. In this manner, a high-

resolution image is generated quickly and exactly where

the user is focused. The periphery of the display is

rendered in lower and lower levels of resolution and

detail corresponding to the rod/cone concentration in

the human eye. Assuming the frame rate of the system is

not fill limited, this allows only a few renderers to be

used to create the entire periphery of what could be a

building-sized display. This fact is what provides the

speed gains of the algorithm. While the gazes of multiple

users could be tracked resulting in multiple foveated

viewpoints, this would lessen the low-resolution periph-

ery. Thus, the foveated vision approach usually only

works well in single-viewer environments.

Decimated data sets coupled with variable sized

viewports means that rendering servers can be concen-

trated at the user’s gaze. In the example presented in this

paper with a 3� 3 tiled display and 10 renderers, seven

renderers deal with the high-resolution viewing area, two

deal with the next larger area, and one works with the

lowest-resolution viewport covering the entire display.

The data set with the highest level of detail is divided

evenly among the seven machines. The middle level of
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detail data set is divided between the two. Finally, the

lowest level of detail data set is given to the one machine

which is responsible for the extreme periphery. This even

division means that large data sets can be easily used in

the Metabuffer system. The large amount of memory on

the cluster as a whole is used collectively to store the

polygon count.

In the case of the visible human data set (the same

data set used in the progressive image composition

example), the highest-resolution mesh consists of

9,124,090 polygons. The medium-resolution mesh con-

sists of 1,060,106 polygons. Finally, the lowest-resolu-

tion mesh has only 241,988 polygons. Given the

processor assignments from above with the polygon

counts from the progressive meshes of the visible human

generated by the isosurface extraction, the high-resolu-

tion mesh is divided among seven rendering servers

resulting in 1,303,441 polygons per server. The medium-

resolution mesh is divided between two rendering servers

giving 530,053 polygons/server. The low-resolution

mesh is assigned to one rendering server which is

responsible for all 241,988 polygons.

At first, it may seem that these assignments are

imbalanced, but it is important to remember that,

because the high-resolution imagery will only be drawn

for one area of the display, not all of the polygons

assigned to the high-resolution renderers will need to be

drawn. This is true to a lesser degree for the medium-

resolution polygons too. Therefore, the larger number of

polygons assigned to the high-resolution rendering

servers are not necessarily the number that will be

required to be drawn, given a good frustum culling

algorithm.

Even so, efficiency must still be considered. The

important fact to remember is that the rendering

servers that are responsible for the high-resolution area

are in the majority and that these rendering servers

will always be balanced among themselves. Because

the polygons for all the servers are distributed evenly
Fig. 11. Sample frames from the foveated vision movie u
across object space, different viewpoints or zooms

should not affect loading. On the other hand, the

rendering servers doing the medium- and low-resolution

areas, while not fully loaded, will not adversely affect

parallel efficiency. This is because, first, they are in

the minority and, second, they will always finish their

work before the high-resolution rendering servers thus

guaranteeing that they will not undermine the overall

frame time.

The images in Fig. 11 show 10 of the frames from a

720 frame movie. At the beginning and end of the movie,

the nine separate screens in the tiled display split apart

to reveal the geometry of the overall scene. In the middle

of the movie they join together to show how the unified

display would look.

During the movie, the visible human data set is

moved through a zoom in and out while being

continually rotated. Meanwhile, the user’s gaze is being

tracked and that area is rendered in high resolution

no matter what the viewpoint. The user is not restricted

to where he or she may look. Anywhere in the entire

display space is a valid place for the high-resolution

viewport.

Polygons are color coded according to which render-

ing server created them. This gives the imagery within

the high-resolution viewport a mottled appearance, since

seven rendering machines are responsible for this area.

The medium-resolution viewport, on the other hand,

only has two colors from the two renderers that are

assigned to it. Finally, the low-resolution viewport is

being rendered by only one machine and thus is a solid

green.

Notice that the display decreases in resolution

and complexity according to the ‘‘foveated pyramid’’

[19] of multiresolution viewports which are marked as

black rectangles. The level of detail differences in

the progressive meshes and the resolution differences

are most noticeable in the zoomed in views (such as

frame 352). For example, the fine detail of the lower
sing the isosurface from the visible human data set.
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torso of the human inside the high-resolution viewport

contrasts with the less detailed data set being

rendered by the low-resolution viewport of the leg in

these views.

Timings from the movie are shown in Fig. 12. Because

the polygons are distributed evenly across the scene

between the processors, all the timing lines from the 720

frame movie are flat (frustum culling has not yet been

applied to this technique). No matter where the user

looks or how much he or she zooms into the scene, the

load will always be the same.

A parallel application is only as fast as its slowest

component, so the frame rate for this example using 10

rendering machines would be 0:81 s=frame: That is the

speed at which the seven high-resolution rendering

servers draw their viewports. The second grouping of

timings is the two medium-resolution rendering servers

at 0:28 s=frame: Finally, the sole low-resolution render-

ing server takes 0:11 s=frame to render the background.

Again, because the three non-high-resolution rendering

servers are in the minority, the lower loads should not

adversely affect the overall parallel efficiency of the

system.

The timings shown in these examples are not

real time. However, because of the scalable nature of

the Metabuffer architecture, adding additional render-

ing machines only results in additional pixels worth

of latency and does not affect throughput. By

applying 100 machines to render the same examples,

the data set would be further reduced by a factor

of 10 and so would the rendering times. More

rendering machines would result in similar increases in

frame rate.
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Fig. 12. Rendering times for the frames from the foveated

vision movie using the isosurface from the visible human data

set. The timing at 0:1 s is from the low-resolution rendering

server, the timings at 0:3 s are from the two medium-resolution

rendering servers, and the timings at 0:8 s are from the seven

high-resolution rendering servers.
5. Wireless user interface

Employing handhelds to control the visualization

system opens up many interesting new research areas to

explore. Many different groups have studied the use of

handheld devices for user interfaces for such things as

ubiquitous computing [20], augmented reality and

situated information spaces [21], and context-aware

applications including memory prostheses [22].

Recent advances in wireless handheld technology have

rendered what used to be a complicated technical under-

taking to just plugging in a collection of commercial off

the shelf components. The handheld device carried by

the user is a Compaq iPAQ Pocket PC. This device runs

the Windows CE operating system from Microsoft. For

wireless connectivity, an Orinoco RG-1000 residential

gateway is employed along with Lucent wireless

Ethernet cards. The wireless Ethernet cards plug into

the iPAQs by means of a PCMCIA adapter. They are

then configured to talk to the RG-1000 which is

connected to the Metabuffer cluster’s LAN. From this

point, communicating over the network is seamless.

Fig. 13 shows an actual screen shot of the user

interface. At the top of the shot is a representation of the

5� 2 tiled display wall. The longhorn icon is placed

where the user is gazing via the stylus. For now this

provides the center of the user’s foveated viewing region

until a retina tracker is installed in the visualization lab.

The X ;Y ; and Z vectors shown at the lower portion of

the screen are a hypervolume control as described by
Fig. 13. Wireless visualization device user interface.
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Bajaj et al. [23]. Using a classical rotation-based user

interface in order to visualize data sets in higher

dimensions than 3D is very tedious. Examples of such

data sets include gated MRI volume scans of heart

motion, time varying data from computational fluids

dynamics, and molecular van Der Waal energies as a

function of molecular configurations (bond angles).

Using the hypervolume control shown here allows for

controlling any number of dimensions in a scalable

manner. For each dimension, only a single vector is

needed. By controlling the length and relative angle of

each vector, it is possible to maneuver the viewed object

into any possible position in the three-dimensional

space. As shown by Bajaj et al., for simple 3D case like

the one shown in Fig. 13 it is easy to convert these three

individual vectors into a more familiar 3D projection

matrix [23].

The orientation and gaze information received from

the graphical UI is transmitted over the wireless

Ethernet as UDP packets to a server residing on the

land-based host cluster. This server collects the informa-

tion from all the wireless devices and stores the current

state of all locally. At each frame, the Metabuffer

application queries the server about the status of the

wireless users. This is done via a named pipes mechan-

ism. The server was separated from the Metabuffer

application because the Metabuffer emulator uses MPI

as its basis. Currently, the version of MPICH running of

the Metabuffer’s host cluster does not support multi-

threading. Therefore, running it as a separate process

allows the Metabuffer to run unencumbered. The

individual process model will also make it easier for

other applications to have access to the same data.
6. Conclusion

High-resolution imagery and frame rates are usually a

tradeoff in most visualization applications. High resolu-

tion requires more computation time yielding slower

frame rates. Low resolution requires less computing

power and gives a faster display, but the image quality is

not as good. A primary issue is managing the balance

between high resolution and frame rate in order to

provide the best interactivity for the user. In an active

visualization system, multiresolution, in conjunction

with the appropriate user interface, can manage this

balance effectively resulting in higher levels of user

interactivity than possible with other systems that do not

exploit this feature.

The Metabuffer’s implementation of multiresolution

viewports in not entirely seamless. Because the band-

width requirements of the Metabuffer must be even

throughout the entire rasterization of the display, there

are limitations on the sizes of the viewports that can be

used. Viewports can only be of integer multiples of
resolution (twice as large with half the detail, or three

times as large with one third the detail, etc.). This is

because the bandwidth needs are lessened by using pixel

replication on the composer nodes. If the resolution

multiples are not integer values, pixel replication will not

be as effective and this will mean higher bandwidth

needs that in some cases may swamp the bus. Also, if a

viewport is in low resolution, it can only be positioned

on a location that is a multiple of that resolution. Again,

this is to assist pixel replication.

Pixel replication in general is another limitation of the

Metabuffer. While fast and simple, it yields blockiness at

very low resolutions. To achieve higher quality low

resolution images some form of linear interpolation

should be used to smooth the replicated pixels. This

would add greatly to the complexity of the Metabuffer

hardware but would not be impossible to add.

The Metabuffer requires non-trivial custom hardware

in order to implement. In this regard, the Princeton

project [12] which uses a standard cluster and the Sepia

project which uses COTS components would be easier to

deploy. However, Lightning-2 shares the same basic

architecture as the Metabuffer. By reprogramming the

compositing nodes of this board to have an on-board

cache and do pixel replication it should be possible to

yield the multiresolution features of the Metabuffer.

The benefits of multiresolution techniques vary in

usefulness. Certainly for the cases in which image quality

is paramount, multiresolution techniques will not be a

valid option. However, for situations in which user

interactivity is an overriding concern, such as active

visualization, and rendering loads are large because of

data set size or complexity, multiresolution techniques

such as progressive image composition and foveated

vision do provide fast, consistent frame rates when used

in the context of a parallel, multidisplay image

compositing system such as the Metabuffer.
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