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ARSTRACT 

In this paper we describe a Tast approach lor imagc coli- 
trast enhmicement, bused 011 localized contrast mmiipula- 
tion. Our approach is not only fast a i d  easy to  implemcnf, 
hut also has several other promising properties (adaptive, 
multiscalc, wcightcd I~x'alization. etc.). We will also dis- 
cuss iii this paper an anisotropic version ol our approach. 
Several examples of medicnl images, includiiig brain MK 
images, chest CL' images and mammogrdphy images, will 
hc provided to demonstrate the performnicc of our approach. 

1. 1NTROL)UCTION 

Many images, such as medical images, rcmote sensing im- 
ages, electron microscopy images and even our real-life pho- 
tographic pictures, suffer from poor contrast. Therefore, 
it is very necessary to enhnice the contrast of such im- 
ages before further processing or analysis can be conducted. 
There have already been many techniques for enhancing 
image contrast. The most widely used methods include 
various contrast manipulations and histogram equalization 
[ I ,  21. Classic contrast manipulation [I]  is usually based 
on a globally defined stretching function (or called trans- 
ferfiinction in the following). Histogram clipping might he 
needed before pixel-by-pixel stretching. Traditionally his- 
togram equalization is also a global technique in the sense 
that the enhancement is based on the equalization of the 
histogram of the entire image. However, it is well recog- 
nized that using only global information is often not enough 
to achieve good contrast enhancement (for example, global 
approaches often cause an effect of intensity saturation). 

To remedy this problem, some authors proposed local- 
ized (01 adaptive) histogram equalization [I ,  3,4,5], which 
considers a local window for each individual pixel and com- 
putes the new intensity value based on the local histogram 
defined in the local window. The adaptivity can usually im- 
proves the results hut it is computationally intensive even 
though there are some fast implementations for updating 
the local histograms [6]. Furthermore, adaptive histogram 
equalization is a uniform local operator in the sense that 
aU the pixels within the local window equally contribute to 
the determination of the new value of the center pixel being 
considered. Sometimes, like Gaussian filter vs. evenly av- 

eraging blter for image smoothing, a weighted contrihution 
of all the neighbon to the center pixel is more dcsircd. 

A more rcccntly developed technique is called r d w r  
,rrode/ 171, i n  which the coiitrihutioii of each pixel within 
the local window is weighled by computing the local aver- 
age based on Gaussian fmiction. A later version, called ! i t f i / -  

fiscole refb7r.r model 181, gives hcucr results but i t  i s  com- 
putationally more intensive. Another technique for contrast 
enhancement is based on wavelet decomposition and recon- 
structioii xid has hecn used for medical image enhance- 
ment, especially for mammography images 191. 

In the present paper we propose a fast method for iuiagc 
contrast cnhancemcnt. The hasic idea of our method is to 
design a tr'msfer function for each pixel based oii the local 
statistics. Our method follows the idea of the global contrast 
manipulation, hut it also inherits the advantages of adaptive 
histogram equalization and retinex model. In addition, our 
method demonstrates a multiscale propelty, as shown later. 
We orgmize this paper as follows. we first dcscribe the de- 
tails of our approach. We then present several examples of 
medical images and show the contrast-enhanced results by 
our approach. Finally we give the conclusion. 

2. ADAPTIVE CONTRAST ENHANCEMENT 

In this section we describe the details of our algorithm. In 
our method, a new intensity is assigned to each pixel ac- 
cording to an adaptive transferfunction that is designed on 
the basis of the local statistics (local minimurdmaximum as 
well as local average intensity). 

2.1. Compute Lueal MinlMaxlAvg 

The local min/max/avg of a pixel can be simply defined as 
the minimal, maximal and averaging intensities within a lo- 
cal window of a fixed size. This is straightforward to im- 
plement but it has two problems. First, it takes a lot of time 
to search for the local min/max or compute the local aver- 
age for each pixel. Secondly, the computed min/max maps 
always manifest some block-lie artifact$. In the following 
we will compute the local min/max/avg maps using a prop- 
agation scheme. 

One way to eliminate the block-like artifacts is to apply 
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a Ciaussiai filter to the obtained minimax maps, yielding 
smoothed minimax maps. However, this q u i r e s  additional 
time. Accordhg to [ IO,  1 I], the exponential and Ciaussiai 
filters can he implemented very fast by propagation scheme. 
This idea is directly applicahle to the computation of the 
local average map. The propagation rule from a neighbor, 
say. ( n a  - I, V L )  to the pixel (rii., I L )  is defined as follows: 

hvg",,,z = ( I  ~ C )  x lavg,, ,/,, + c x lavg",-l,,, (1) 

where C is called corir/rrcrivi/~~rct~ir, rmgiiig from 0 to 1. 
The matrix I r i q  stands fnr the local average map, ini t ia lkd 
with the image intensity values. The ahnve propagatioii rule 
is sequentially applied i n  row & column directions [ IO,  1 1 J. 

In ordcr t(i compute the local minimax maps, we have r(i 

make somc modifications on the above propagation scheme. 
we introduce i n  the. lollowing a coiidifionnl proyogotion 
sclierrrr. Assume that Iruiri aid lrrlm stand for the local 
mhl/max maps, respectively, a id  are initialized with the iin- 
age inteiisity values. The conditi~inol yropogritioii .scheriir 
from (rir - I, n) to (nr, ?I,)  is defined as fnllnws: 

,if(lmiii,n-l,n < lmin ,,,, n) 
lmin,n,n = (1 - C) x Imin ",,, + C x Imin,,,-,,,& 

if(lmax,,-l,, > Imaa,,,,) 
Imax,,, = (1 - C) x Imax,,,,, + C  x Imax,,_l,, 

(2) 

2.2. Determine Transfer Funclinn 

Once we obtain the I r ~ a l  statistics (local min/max/mg) for 
every pixel, we then need to design a transfer function from 
pixel to pixel. The essential idea for most contrast enhance- 
ment techniques is to take advantage of range stretching. In 
other words, the narrow intensity range seen in the origi- 
nal image is often expanded to a much broader range. In 
our method, the original range at a pixel is given by the ah- 
solute difference between the obtained local minimum and 
maximum intensities at that pixel, that is, llmaz - Iminl. 
This value is modified according to the CUNC illusrated in 
fig.l(a), where the x-coordinate represents the input range 
while the y-coordinate stands for the output range. This 
function curve is composed of two circular arcs: 

(3) 

where wg is a fixed value. The threshold WO is used such 
that, if llniuz - lminl < WO. the contrast is thought of 
as noise and hence reduced. By this way we can suppress 
image noise while enhancing image features. 

wa + J(255 - 1 u O ) z  - (255 - z)z, else 

(a) Stretching window (h) Transfer fuuction 

Fig. 1. Determinc the transfer fuuctions 

After the mapping frnm the original iiarrnw range 1lrm:c- 
I , I I L ~ I ! , ~ ,  we ohtain a hrnadcr range (denoted by w )  such that 
I r i i l r i  and Inco:r are mapped to 0 ;uld U, respectively. I n  
the meanwhilc, the original iniagc intensity lo~<j a id  av- 
erage Aotci, which satisfy Z,rici,iL 5 /"I,,, Aoi,l 5 Inrn:c, 
uiust he linearly stretched to their new values I,,,,, A,,,,: 
r3,,, = U x l , r L ~ ~ z - l n , i , ,  a ~ d  A,,,, = 

To achieve hettcr contrast enhmiccmcut, we take account 
of the fMowiug observations. If the image intensity at a 
pixel is lower than the local intensity average, then we de- 
crease the image intensity using a concave transfer function. 
On the other hand, if the image intensity at a pixel is higher 
thai its local intensity average, we increase the image inten- 
sity using a convex transfer function. These transfer func- 
tions are adaptively defmed from pixel to pixel, h n e d  on a 
parameter (1, defined as: 01 = Specifically, we 
define the transfer function as a segment of parabolic curve, 
such that the transfer function is coiivex if a i 0 and con- 
cave if c1 > 0 (as seen in fig. l(b)). Note that those curves 
cenainly could be in other forms hut using parabolic CUNCS 

makes it easier to derive a unified formula. To derive the ex- 
plicit expression of those parabolic curves, we introduce a 
new coordinate system, namely, X'Y'-system (see fig. l(b)). 
In the new system, the parabolic curves can he represented 

I" - tm; , ,  -1mia  x 

- 

as: 

where 01 E [-1,1] and z' t [0, v%]. 

the following coordinate transformation: 
To derive the expression in XY-coordinate, we consider 

Combining (4) and (3, we have an explicit expression: 

(6) 
-b-  d m  

2LL Y =  

1002 



4. CONCLIiSlON 

In this paper we prcscnt a fast approach fur image cnntrast 
eiihmcement. Our method is based un fast computation of 
local min/madavg maps using a propagation scheme (either 
isotropic o r  anisotropic). We demonstrated the performance 
of our method aid its multiscale property on three types of 
medical images. Our experiments on mmy other types of 
images also gave promising results both on computational 
speed wid on enhancement quality. The extension of our 
approach to 3D images is straightfnrward. 

where * = ”  { t .  b = ” z - a - l  
c =  E z ’ - a z i - z  

After obtaining the transfer function for each pixel, we then 
compute the enhanced iiitensity as fi>llnws: 

la,,h = Inri,r + f (Tne! , , , )  (7) 
when J is the transfcr Function defined in (6). 

2.3. Anisotropic I’nipsgaliiin 

The c o i i d u c / i v i / ? l ~ i f ~ / ~ ~ i -  C in (1) a i d  ( 2 )  is a co~ista~it value. 
III term of filtering, however, this is isotropic, which may 
blur the features. A common technique tn remedy this prnh- 
lem is known as ;uiisotropic diffusion [12]. With this idca i n  
muid, we developed a i  anisotropic propagation h r  coiitrast 
eithaticement. Eq.( I )  and Eq.(2) become: 

3. RESULTS 

We have tested our method on various types of images. In 
this section, however, we only show several examples of 
medical images and demonstrate the enhanced results. Fig.2(a) 
shows a brain MR image with low coutnst. The enhanced 
image after applying histogram equalization and the result 
by our method (isotropic propagation with C = 0.95) are 
shown in Fig.Z(b) and (c), respectively. Fig.3Ca) shows an 
example of chest CT image. The enhanced image by his- 
togram equalization and enhanced image by our method 
(anisotropic propagation with R = 0.1) are shown in Fig.3(b) 
and (c), respectively. Finally we demonsware the multi- 
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Fig. 2. Examplc I :  brain MK imagc - (a): original imagc with IOW coilrrasr. (b): enhanced image by histogram equalization. 
(c): enhanced imagc by our method (isotmpic propagation with C = 0.95). 

(a) (b) (c) 

Fig. 3. Example 2: chest CT image - (a): original image with low contrast. (b): enhanced image by histogram equalization. 
(c): enhanced image by our method (anisotropic propagation with R = 0.1). 

(a) (b) (d (4 
Fig. 4. Example 3: mammography image - (a): original image with very low contra.%. (b): enhanced image by our method 
with isotropic propagation (C = 0.95). (c): enhanced image by our method with isotropic propagation (C = 0.85). (d): 
enhanced image by our method with isotropic propagation (C = 0.75). 

1004 


