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ABSTRACT

In this paper we describe a fast approach for image con-
trast enhancerment, based on localized contrast manipula-
tion. Our approach is not only fast and easy to implement,
but also has several other promising properties (adaptive,
multiscale, weighted localization, etc.). We will also dis-
cuss in this paper an anisotropic version of our approach.
Several examples of medical images, including brain MR
images, chest CT images and mammography images, will

be provided to demonstrate the performance of our approach,

1. INTRODUCTION

Many images, such as medical images, remote sensing im-
ages, electron microscopy images and even our real-life pho-
tographic pictures, suffer from poor contrast. Therefore,
it is very necessary to enhance the contrast of such im-
ages before further processing or analysis can be conducted.
There have already been many techniques for enhancing
image contrast. The most widely used methods include
various contrast manipulations and histogram equalization
[1, 2]. Classic conirast manipulation [1] is usually based
on a globally defined stretching function (or called trans-
fer function in the following). Histogram clipping might be
needed before pixel-by-pixel stretching, Traditionally his-
togram equalization is also a global technique in the sense
that the enhancement is based on the equalization of the
histogram of the entire image. However, it is well recog-
nized that using only global information is often not enough
1o achieve good contrast enhancement {(for example, global
approaches often cause an effect of intensity saturation).

To remedy this problem, some authors proposed local-
ized (or adaptive) histogram equalization [1, 3, 4, 5], which
considers a local window for each individual pixel and com-
putes the new intensity value based on the local histogram
defined in the local window. The adaptivity can usually im-
proves the results but it is computationally intensive even
though there are some fast implementations for updating
the local histograms [6]. Fusthermore, adaptive histogram
equalization is a uniform local operator in the sense that
all the pixels within the local window equally contribute to
the determination of the new value of the center pixel being
considered. Sometimes, like Gaussian filter vs. evenly av-
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eraging filter for image smoothing, a weighted contribution
of all the neighbors to the center pixel is more desired.

A more recently developed technique is called refinex
model [7], in which the contribution of ¢ach pixel within
the local window is weighted by computing the local aver-
age based on Gaussian funiction. A later version, called mul-
tiscale retinex model [8], gives better results bue it is com-
putationally more intensive. Another technique for conirast
enhancement is based on wavelet decomposition and recon-
struction and has been used for medical image enhance-
ment, especially for mammography images [9].

In the present paper we propose a fast method for image
contrast cnhancement. The basic idea of our method is to
design a transfer function for each pixel based on the local
statistics, Our method follows the idea of the global contrast
manipulation, but it also inherits the advantages of adaptive
histogram equalization and retinex model. In addition, our
method demonstrates a multiscale property, as shown later.
We organize this paper as follows. we first describe the de-
tails of our approach. We then present several examples of
medical images and show the contrast-enhanced results by
our approach. Finally we give the conclusion.

2. ADAPTIVE CONTRAST ENHANCEMENT

In this section we describe the details of our algorithm. In
our method, a new intensity is assigned to each pixel ac-
cording to an adaptive transfer funciion that is designed on
the basis of the local statistics (local minimurymaximum as
well as Jocal average intensity).

2.1, Compute Local Min/Max/Avg

The local min/max/favg of a pixel can be simply defined as
the minimal, maximal and averaging intensities within a lo-
cal window of a fixed size. This is straightforward to im-
plement but it has two problems. First, it takes a lot of time
to search for the local min/max or compute the local aver-
age for each pixel. Secondly, the computed min/max maps
always manifest some block-like artifacts. In the following
we will compute the local min/max/avg maps using a prop-
agation scheme.

One way to eliminate the block-like artifacts is to apply
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a Gaussian filier to the obtained min/max maps, yielding
smoothed min/max maps. However, this requires additional
nme. Accmding to [10, 111, the exponential and Gaussian
filters can be implemented very fast by propagation scheme.
This idea is directly applicable to the computation of the
local average map. The propagation mle from a neighbor,
say, (m — 1, n) to the pixel (ne, ») is defined as follows:

lavgm,n = (1 - C) X lavgm,n -+ Cx lavgm.—l,n (l)

where € s called conductivity fuctor, ranging from 0 1o 1.
The matrix favg stands for the tocal average map, initialized
with the image intensity values. The above propagation rule
is sequentially applied in row & column directions [10, 11},

In order to compute the local min/max maps, we have t
make some modifications on the above propagation scheme.
we introduce in the following a conditional propagation
schenre.  Assume that fmin and Imax stand for the local
min/max maps, respectively, and are initialized with the 1m-
age intensity values. The conditional propagation scheme
from (m — 1, ) o {ne, ) is defined as follows:

if{Imin,, 1 »n < lmin,, ,)
Imityn 0 = (1 = €) x Iming, , + C x Imin,,_1 ..

tf(Imaxm - 1,n > IMaxm p)
Imax, n = (1 — C) x IMaXem o + € X INaXypoy o
(2)

2.2. Determine Transfer Function

Once we obtain the local statistics (local min/max/favg) for
every pixel, we then need to design a transfer function from
pixel to pixel. The essential idea for most contrast enhance-
ment techniques is to take advantage of range stretching. In
other words, the narrow intensity range seen in the origi-
nal image is often expanded to a much broader range. In
our method, the original range at a pixel is given by the ab-
solute difference between the obtained local minimum and
maximum intensities at that pixel, that is, |lmaz — Imin|.
This value is modified according to the curve illustrated in
fig.1{a), where the x-coordinaie tepresents the input range
while the y-coordinate stands for the output range. This
function curve s composed of two circular-arcs;

wp — Jwi — 22, if z <wp
y= (3
wyg 4 +/(255 — wg)? — (265 — 2)%, else

where wyg is & fixed value. The threshold wg 18 used such
that, if |lmer — Imin| < wg, the contrast is thought of
as noise and hence reduced. By this way we can suppress
image noise while enhancing image features.
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Fig, 1. Determine the transter functions

After the mapping from the original narrow range |fmee—
Ernvin, we obain a broagler range (denoted by w) such that
Ievine and e are mapped o 0 and w, respectively. In
the meanwhile, the original image intensity [,y and av-
erage Aoq, which satisty min < fyq, Age < Imace,
must be linearly stretched o their new values frew, Anei:
Few = w x 2B 4nd A, = w x Aate=imie

To achieve better contrast enhancement, we take account
of the following obscrvations. If the image intensity at a
pixel is lower than the local intensity average, then we de-
creasc the image intensity using a concave transfer function.
On the other hand, if the image intensity at a pixel is higher
than its local intensity average, we increase the image inten-
sity using a convex transfer function. These transfer func-
tions are adaptively defined from pixel to pixel, based on a
parameter «, defined as: o = M““‘l’%l_ Specifically, we
define the transfer function as a segment of parabolic curve,
such that the transfer function is convex if o < 0 and con-
cave if & > 0 (as seen in fig.1(b)). Note that those curves
certainly could be in other forms but using parabolic curves
makes it easier to derive a unified formula, To derive the ex-
plicit expression of those parabolic curves, we inuoduce a
new coordinate system, namely, XY’ -system (see fig. 1(b)).
In the new system, the parabolic curves can be represented
as: :

[ 4
Ly f_ 4
Y ﬁwm(z Vaw) (4

where « € [~1,1] and =’ € [0, v2u].
To derive the expression in XY-coordinate, we consider
the following coordinate transformation:

z % —2‘@ x
= . (3)
! NG
y -2 4 y
Combining (4) and (5), we have an explicit expression:
—b—~ /b2 — dac
y=—— ®
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where
(434
=5
b= S%p —a—1
W

C=5-T —oar-x

Alter obtaining the transfer function for each pixel, we then
compule the enhanced intensity as follows:

Font = Emiin + f{Fnew) "

where [ is the transfer function defined in (6).

2.3. Anisotropic Propagation

The conductivity factor C in (1) and (2) is a constant value.
In term of filiening, however, this is isotropic, which may
blur the teatures. A common technique to remedy this prob-
lem is known as anisotropic diffusion [12]. With this idca in
mind, we developed an anisotropic propagation for contrast
cnhancement. Eq.(1) and Eq.(2} become:

( '?:f(lmiﬂm—l,n < lmi-nm,ﬂ-)
lmin,,,_,,,_ += (lml.l] m—1n — lminrr:,-n.)
wexp(— K |Iming, 1 n — IMing, )

i f(lmax,m—1,n > IMaXp, )
Imax,, ,+=(IMax,_; », — Imax,, ,}
*exp(— R * |lMaXp, —1 » — IMXn, o)

®)

lavgm,n, = (lavgm—l,n - lavgm,n)
L *B‘TP(_'R * |lavgm71,n - lavgfn,nl)

where R is called resistance factor and generally chosen
from the interval [0.01,0.1] in our experiments.

3. RESULTS

‘We have tested our method on various types of images. In
this section, however, we only show several examples of

medical images and demonstrate the enhanced results. Fig.2(a)

shows a brain MR image with low contrast. The enhanced
image after applying histogram equalization and the result
by our method (isotropic propagation with C = 0.95) are
shown'in Fig.2(b) and (c), respectively. Fig.3(a) shows an
example of chest CT image. The enhanced image by his-
togram equalization and enhanced image by our method
(anisotropic propagation with B = 0.1) are shown in Fig.3(b)
and (¢), respectively. Finally we demonstrate the multi-
scale property of our method (by isotropic propagation) in
Fig.4. The original image (Fig.4(a)) is a mammography im-
age with very low contrast. Fig.4(b)Xc)(d) illustrate results
by our method using different conductivity factors, yielding
different scales of image details that are enhanced.

4. CONCLUSION

In this paper we present a fast approach for image contrast
enhancement. QOur method is based on fast computation of
local min/max/avg maps using a propagation scheme (either
isotropic or anisotropic). We demonstrated the performance
of our method and its multiscale property on three types of
medical images. Cur experiments on many other types of
images also gave promising results both on computational
speed and on enhancement quality. The extension of our
approach to 3D images is straightforward.
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Fig, 2. Examplc 1: brain MR image {a). original image with low contrast. (b): enhanced image by histogram equalization.
(c): enhanced image by our method (isotropic propagation with € = 0.95).

Fig. 3. Example 2: chest CT image — (a): original image with low contrast. (b): enhanced image by histogram equalization.
{c): enhanced image by our method {anisotropic propagation with K = 0.1).

(@
Fig. 4. Example 3: mammography image — (a): original image with very low contrast. (b): enhanced image by our method

with isotropic propagation (C = 0.95). (c): enhanced image by our method with isotropic propagation (C' = 0.85). (d):
enhanced image by our method with isotropic propagation (C' = 0.75).
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