
Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960

www.elsevier.com/locate/cma
Adaptive and quality quadrilateral/hexahedral meshing
from volumetric data q

Yongjie Zhang, Chandrajit Bajaj *

Computational Visualization Center, Department of Computer Sciences, Institute for Computational Engineering and Sciences,

The University of Texas at Austin, TX 78712, USA

Received 27 August 2004; received in revised form 1 February 2005; accepted 14 February 2005
Abstract

This paper describes an algorithm to extract adaptive and quality quadrilateral/hexahedral meshes directly from vol-

umetric data. First, a bottom-up surface topology preserving octree-based algorithm is applied to select a starting octree

level. Then the dual contouring method is used to extract a preliminary uniform quad/hex mesh, which is decomposed

into finer quads/hexes adaptively without introducing any hanging nodes. The positions of all boundary vertices are

recalculated to approximate the boundary surface more accurately. Mesh adaptivity can be controlled by a feature sen-

sitive error function, the regions that users are interested in, or finite element calculation results. Finally, a relaxation

based technique is deployed to improve mesh quality. Several demonstration examples are provided from a wide variety

of application domains. Some extracted meshes have been extensively used in finite element simulations.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Quadrilateral/hexahedral mesh; Topology preservation; Mesh adaptivity; Mesh quality
1. Introduction

Unstructured quadrilateral/hexahedral mesh generation attracts many researchers� interest because of its
important applications in finite element simulations. However, it still remains a challenging and open prob-

lem to generate adaptive and quality quad/hex meshes directly from volumetric data, such as computed

tomography (CT), magnetic resonance imaging (MRI) and signed distance function (SDF) data.
0045-7825/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.cma.2005.02.016

q Visit http://www.ices.utexas.edu/cvc/quadhex
* Corresponding author. Tel.: +1 512 471 8870; fax: +1 512 471 8694.

E-mail addresses: jessica@ices.utexas.edu (Y. Zhang), bajaj@cs.utexas.edu (C. Bajaj).

http://www.sass1693.sandia.gov/cubit
mailto:jessica@ices.utexas.edu
mailto:bajaj@cs.utexas.edu

Fig. 1. Adaptive quadrilateral and hexahedral meshes of a biomolecule mAChE: (a) the quadrilateral mesh of the molecular surface;

(b) the wireframe of the adaptive quadrilateral mesh of the molecular surface; (c) the adaptive hexahedral mesh of the interior volume;

(d) the adaptive hexahedral mesh of the exterior volume between the molecular surface and an outer sphere. Finer meshes are

generated in the region of the cavity, while coarser meshes are kept in other areas. The cavity is shown in the red boxes.

Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960 943
The volumetric data V is a sequence of sampled functional values on rectilinear grids, and can be written

as V = {F(i, j, k)ji, j, k are indices in x, y, z coordinates in a rectilinear grid}. An isosurface or a level set

corresponding to the isovalue a is defined as SF(a) = {(x,y,z)jF(x,y,z) = a}, and an interval volume between

two isosurfaces SF(a1), SF(a2) is defined as IF(a1,a2) = {(x,y,z)ja1 6 F(x,y,z) 6 a2}. In this paper, we pres-

ent an approach to extract adaptive and quality quadrilateral meshes for an isosurface SF(a) with correct

topology, and hexahedral meshes for an interval volume IF(a1,a2) with isosurfaces as boundaries. In certain

finite element simulations, both interior and exterior hexahedral meshes are required, for example, the inte-

rior mesh of the volume inside the solvent accessibility surface of the biomolecule mouse acetylcholinester-
ase (mAChE) [31,30], and the exterior mesh between the solvent accessibility surface and an outer bounding

sphere. Since the most important part in the geometric structure of mAChE is the cavity, we need to gen-

erate finer mesh for it (Fig. 1). Our approach can also generate adaptive and quality interior and exterior

hexahedral meshes.

The main steps to extract adaptive and quality quadrilateral and hexahedral meshes from volumetric

data are as follows:

(1) The selection of a starting octree level for uniform mesh generation with correct topology.
(2) Crack-free and adaptive quad/hex meshing without any hanging nodes.

(3) Quality improvement.

In order to generate uniform quadrilateral and hexahedral meshes with correct topology, we select a suit-

able starting octree level using a bottom-up surface topology preserving octree-based algorithm. An ap-

proach provided in [15] is used to check whether a fine isosurface is topologically equivalent to a coarse

one or not. Generally correct topology is guaranteed in the uniform mesh.

The dual contouring method [15] proposes an algorithm to extract a uniform quadrilateral mesh for an
isosurface by analyzing each sign change edge, whose two ending points lie in different sides of the isosur-

face. In the octree-based data structure, each sign change edge is shared by four octree leaves, and one min-

imizer point is obtained for each leaf cell by minimizing a pre-defined quadratic error function (QEF) [14].

The QEF is defined as follows:
QEF½x� ¼
X
i

ðni � ðx� piÞÞ
2
; ð1Þ

n2

n1

P1

P2

Fig. 2. The quadratic error function (QEF) and the minimizer point in 2D. The red1 curve is an isocontour, and the green point is the

minimizer point calculated in Eq. (1). (p1,n1) and (p2,n2) represent the position and unit normal vectors of the two intersection points.

944 Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960
where pi, ni represent the position and unit normal vectors of the intersection point respectively. Fig. 2

shows one 2D example. The four minimizer points construct a quad, and the union of all the generated

quads provides an approximation to this isosurface.

Starting from a uniform quadrilateral mesh, we use templates to refine each quad adaptively. The posi-

tion of each vertex is recalculated by moving it toward the isosurface along its normal direction, which is

represented by trilinear interpolation functions within octree leaf cells. The dual contouring isosurface

extraction method has been extended to uniform hexahedral mesh generation [38,39]. In this paper,
pre-defined three dimensional templates are used to generate adaptive hexahedral meshes.

The mesh adaptivity can be controlled according to various requirements by a feature sensitive error

function [38,39], areas that users are interested in, or results from finite element calculations. Users can also

design an error function to control the mesh adaptivity according to their specific requirements.

Generally, the extracted quadrilateral and hexahedral meshes can not be used for finite element calcu-

lations directly since some elements have poor quality. We choose corresponding metrics to measure the

quality of quadrilateral and hexahedral meshes respectively, and deploy a relaxation based technique to

improve mesh quality. Several of our generated meshes have been used in finite element simulations.
The remainder of this paper is organized as follows: Section 2 reviews the related work on quadrilateral/

hexahedral mesh generation; Section 3 describes how to choose the starting octree level; Sections 4 and 5

explain the detailed algorithm for extracting adaptive quadrilateral and hexahedral meshes; Section 6 talks

about three ways to control the mesh adaptivity; Section 7 discusses the mesh quality improvement; Section

8 shows some results and applications; the final section presents our conclusions.
2. Previous work

As a structured method, quad/hex mapped meshing [9] generates the most desirable meshes if opposite

edges/faces of the domain to be meshed have equal numbers of divisions or the same surface mesh. How-

ever, it is always difficult to decompose an arbitrary geometric configuration into mapped meshable regions.

In the CUBIT project [1] at Sandia National Labs, a lot of research has been done to automatically recog-

nize features and decompose geometry into mapped meshable areas or volumes.

As reviewed in [23,35], there are indirect and direct methods for unstructured quad/hex mesh generation.

The indirect method is to generate triangular/tetrahedral meshes first, then convert them into quads/hexes.
The direct method is to generate quads/hexes directly without first going through triangular/tetrahedral

meshing.
1 For interpretation of color in figures, the reader is referred to the Web version of this article.

Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960 945
2.1. Unstructured quad mesh generation

The indirect method is to convert triangles into quads by dividing a triangle into three quads, or com-

bining adjacent pairs of triangles to form quads [20].

There are three main categories for unstructured direct quad mesh generation: quad meshing by decom-
position, advancing front quad meshing and isosurface extraction. The decomposition technique divides the

domain into simpler regions which can be resolved by templates [2,33]. The second category is to utilize a

moving front method for direct placement of nodes and elements. Starting with an initial placement of

nodes on the boundary, Zhu et al. [40] formed individual elements by projecting edges towards the interior.

As a part of CUBIT [1], the paving algorithm places elements starting from the boundary and works in [5].

Different from the decomposition and the advancing front techniques, the dual contouring method [15]

extracts uniform quadrilateral meshes from volumetric data to approximate isosurfaces which can be an

arbitrary geometry.

2.2. Unstructured hex mesh generation

Eppstein [10] started from a tetrahedral mesh to decompose each tetrahedron into four hexahedra.

Although this method avoids many difficulties, it rapidly increases the number of elements and tends to

introduce poorly shaped elements.

There are five distinct methods for unstructured direct all-hex mesh generation: grid-based, medial sur-

face, plastering, whisker weaving and isosurface extraction. The grid-based approach generates a fitted 3D
grid of hex elements on the interior of the volume, and hex elements are added at the boundaries to fill gaps

[26,28,29]. The grid-based method is robust, but tends to generate poor quality elements at the boundaries.

Medial surface methods decompose the volume into map-meshable regions, and fill the volume with hex

elements using templates [24,25]. Plastering places elements on boundaries first and advances towards

the center of the volume [6,4]. Whisker weaving first constructs the spatial twist continuum (STC) or dual

of the hex mesh, then the hex elements can be fitted into the volume using the STC as a guide [34]. Medial

surface methods, plastering and whisker weaving have successfully generated hex meshes for some geo-

metry, but have not been proven to be robust and reliable for an arbitrary geometric domain. Zhang
et al. [38,39] extended the dual contouring isosurface extraction method [15] to uniform hexahedral mesh

generation. This method is robust and reliable for an arbitrary geometry, but adaptive meshes are prefer-

able and mesh quality needs to be improved.

2.3. Quality improvement

As the simplest and most straight forward method, Laplacian smoothing relocates the vertex position at

the average of the nodes connecting to it [11]. There are a variety of other smoothing techniques based on a
weighted average of the surrounding nodes and elements. The averaging method may invert or degrade the

local quality, but it is simple to implement and in wide use. Instead of relocating vertices based on a

heuristic algorithm, people utilized an optimization technique to improve mesh quality. The optimization

algorithm measures the quality of the surrounding elements to a node and attempts to optimize it. The

algorithm is similar to a minimax technique used to solve circuit design problems [8]. Optimization-based

smoothing yields better results but it is more expensive than Laplacian smoothing. Some papers [7,12,13]

recommended a combined Laplacian/optimization-based approach.

Staten et al. [32,16] proposed algorithms to improve node valence for quadrilateral meshes. One special
case of cleanup in hexahedral meshes for the whisker weaving algorithm is presented in [21]. Schneiders [27]

proposed algorithms and a series of templates for quad/hex element decomposition. A recursive subdivision

algorithm was proposed for the refinement of hex meshes [3].

946 Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960
3. Starting octree level selection

There are three main steps in our adaptive and quality quadrilateral and hexahedral mesh extraction

from volumetric data. First, we need to choose a suitable starting octree level to generate the uniform mesh

with correct topology. Then pre-defined templates are used to refine the uniform mesh adaptively. The posi-
tions of all boundary vertices are recalculated, and the mesh adaptivity can be controlled by an error func-

tion designed in multiple ways. Finally, the relaxation based technique is used to improve mesh quality.

The bottom-up surface topology preserving octree-based algorithm is used to select a starting octree

level. Suppose the volume data has the dimension of (2n + 1)3, so the deepest octree level is n. For an iso-

surface, we first compare the surface topology at Level n and Level (n � 1). If the surface topology is equi-

valent, then we continue comparing the surface topology at Level (n � 1) and Level (n � 2) until we find the

surface topology at two neighboring levels, e.g. Level i and Level (i � 1) (i = n, . . . , 1), is different from each

other. Then we will select i as the starting octree level.
We assign a sign to each grid point in the volumetric data. If the function value at a grid point is greater

than the isovalue, then the sign is 1, otherwise it is 0. An approach is described in [15] to check whether a

fine isocontour is topologically equivalent to a coarse one or not. The fine and coarse isocontour is topo-

logically equivalent with each other if and only if the sign of the middle vertex of a coarse edge/face/cube is

the same as the sign of at least one vertex of the edge/face/cube which contains the middle vertex. Generally

we guarantee the correct topology for the boundary surfaces by choosing a suitable starting octree level,

and correct topology will be preserved in the process of adaptive mesh refinement.
4. Quad isosurface extraction

Finite element calculations sometimes require quadrilateral meshes instead of triangular meshes. It is

more challenging to generate quadrilateral meshes since not every polygon can be decomposed into quads

directly. The uniform quadrilateral mesh extraction algorithm is simpler [15], but adaptive meshes are pref-

erable over uniform ones. There are two main problems in adaptive quadrilateral mesh extraction.

(1) How to decompose a quad into finer quads?

(2) How to calculate the positions of vertices?

4.1. Mesh decomposition

4.1.1. Indirect method

In the dual contouring isosurface extraction method [15], an error function is defined to control where
we should generate fine meshes, and where we should keep coarse ones. In the adaptive octree data struc-

ture, either a sign change edge is shared by three cells resulting in a triangle, or it is shared by four cells and

a quad is generated. Therefore, the isosurface is represented by a union of quads and triangles. In order to

obtain an all-quad mesh, the indirect method splits each quad into four quads and each triangle into three

quads by inserting points at the middle of edges and at the center of the element as shown in Fig. 3. The

idea of the indirect method is simple and easy to implement, but the number of elements increases by a

factor of 2–3 over the original mesh.

4.1.2. Direct method

At the selected starting octree level, the dual contouring isosurface extraction method [15] generates uni-

form quadrilateral meshes by analyzing each sign change edge which is shared by four leaf cells. Adaptive

(d)(c)(b)(a)

Fig. 3. The templates to decompose a quad or a triangle into quads. Red points are newly inserted at the middle of edges or the

element center. (a) A quad before splitting; (b) a triangle before splitting; (c) a quad is split into four quads; (d) a triangle is split into

three quads.

Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960 947
quadrilateral meshes can be obtained from the uniform mesh by using some templates. There are multiple

ways to define templates for adaptive quadrilateral mesh construction, therefore criteria needs to be set to

evaluate them in order to generate meshes with good quality. Here we define some requirements for

templates:

(1) All resulting elements are quads.
(2) No hanging nodes exist.

(3) The resulting mesh approximates the object surface accurately.

(4) The resulting elements have good aspect ratio.

(5) The resulting mesh introduces a small number of new elements and vertices.

Fig. 4 shows three methods to define templates for adaptive quadrilateral mesh generation starting from

a uniform mesh with correct topology. In the uniform case, each sign change edge is shared by four cells

and four minimizer points are obtained to construct a quad. In Method 1, if the maximum error function
0 2b

Method1

42a1

1

3

Method 3
32a

Method 2

2b0 4

Fig. 4. Three different methods to define templates for adaptive quadrilateral isosurface extraction. In Method 1, the quad needs to be

refined; in Methods 2 and 3, octree leaf cells generating red minimizer points need to be refined.

948 Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960
value (for example, the feature sensitive error function defined in [38,39]) of the four cells is greater than a

threshold e, then the four octree cells containing the sign change edge should be subdivided, and the quad

generated from this edge should be refined. This method does not consider its neighboring information,

each quad is refined independently. If a quad needs to be refined, then the resulting mesh has 5 elements

and 4 newly inserted vertices. In Methods 2 [29] and 3, various decomposition methods are chosen accord-
ing to the cell which generates a quad node and also needs to be refined. Methods 2 and 3 are only different

in Case (2b), Method 2 generates less elements and vertices, but the quad quality is worse than in Method 3.

We can use the above five template requirements to compare the three methods in Fig. 4. It is obvious

that all the three methods only generate quad elements, and no hanging nodes are introduced. Compared

with Method 1, Methods 2 and 3 insert extra nodes on the quad edges as well as inside the quad, so they can

approximate the surface more accurately. Comparing the worst aspect ratio of the resulting quad elements

in Methods 2 and 3, we can see that Method 3 generates quads with better quality. The number of elements

and the number of newly inserted vertices for each template are listed in Fig. 5. Method 3 is preferable by
balancing the five criteria.

4.2. Vertex position calculation

In the process of mesh refinement, new vertices are inserted according to the pre-defined templates. The

next step is to update the positions of existing vertices and calculate the positions of newly inserted vertices.

In Fig. 6, we assume that the leaf cell can be divided into four subcells in the finest resolution level, there-

fore the real isosurface (the red curve) is represented by a union of three trilinear interpolation functions
within the subcells. For each existing minimizer point, first we find the octree leaf cell containing it in
Method Number of 0 1 2a 2b 3 4

2 elements 1 3 7 4 8 9

vertices 0 3 8 4 10 12

3 elements 1 3 7 7 8 9

vertices 0 3 8 8 10 12

Fig. 5. The number of elements and the number of newly inserted vertices for templates in Methods 2 and 3 shown in Fig. 4.

(b) (c)(a)

Fig. 6. The calculation of vertex positions: (a) one leaf cell; (b) the leaf cell is subdivided into four subcells, and three minimizer points

are obtained; (c) the three minimizer points are moved to the isocontour along their normal directions. The red curve is the real

isocontour. The green circle point represents an existing minimizer point of this leaf cell, and blue circle points are two newly inserted

vertices. The arrows are their normal vectors, the green and blue box points are the resulting vertices.

Fig. 7. Adaptive quad meshes generated from two direct methods. A feature sensitive error function [38,39] is chosen for mesh

adaptivity, the isovalue a = 0, the error tolerance e = 0.4. Method 1 generates a poor nose, and Method 3 generates a better result.

Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960 949
the current resolution level, then move it toward the isosurface within this leaf cell along its normal direc-

tion. The intersection point is more accurate to represent this boundary vertex than the minimizer point. If

the calculated intersection point lies outside this cell unfortunately because of bad normal vectors, we will

still keep old position and normal vectors.

For those newly inserted vertices, we first calculate their position and normal vectors by linear interpo-

lation of the four vertices of the original quad. Then we will move them toward the isosurfaces in the same

way as we update the positions of existing vertices.
Fig. 7 shows adaptive quadrilateral meshes of the human head generated from two direct methods,

Method 1 and Method 3 shown in Fig. 4. It is obvious that the original uniform mesh is refined adaptively,

and the new vertex positions are closer to the isosurface. Method 1 generates a bad nose, and Method 3

approximates the isosurface more accurately than Method 1 because it introduces extra vertices on the

refined edges of each original quad. The mesh adaptivity is controlled by a feature sensitive error function

[38,39], which is sensitive to facial features such as the nose, the eyes, the mouth and the ears.
5. Hexahedral mesh extraction

The dual contouring method [15] has been extended to uniform hexahedral mesh generation by analy-

zing each interior vertex (a grid point inside the interval volume) shared by eight different cells, which are

either boundary cells or interior cells [38,39]. A minimizer point is calculated for each boundary cell, and

the cell center is set as the minimizer point for each interior cell. Those eight minimizer points construct a

hexahedron. In this section, we will focus on adaptive hexahedral mesh generation.

5.1. 2D mesh decomposition

In 2D, the uniform quadrilateral mesh can be constructed by analyzing each interior grid point, which is

shared by four cells. One minimizer point is calculated for each cell, therefore four minimizer points are

obtained and they construct a quad. All the templates defined in Fig. 4 can be used here for adaptive

2D mesh generation. Fig. 8 shows an example of adaptive quadrilateral mesh extraction using Method

3. When we analyze each cell to calculate the minimizer point, we compare the feature sensitive error

0 1 3 42a 2b

Fig. 8. Top row—an example of adaptive quad mesh generation in 2D. Each green point represents a minimizer point of a cell to be

refined, and the red curve represents the real isocontour. Bottom row—the decomposition templates of Method 3 shown in Fig. 4.

950 Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960
function of this cell with a threshold e. If the error function value of a cell is greater than e, then this cell

needs to be subdivided. An interior grid point is shared by four cells, therefore there are a total of 24 = 16

configurations. Due to the symmetry, there are six basic templates for the quad refinement. A uniform

quadrilateral mesh can be refined adaptively by using those templates.

5.2. 3D mesh decomposition

5.2.1. Indirect method

Adaptive and quality tetrahedral meshes have been generated from volumetric imaging data [38,39],

therefore we can obtain hexahedral meshes by decomposing each tetrahedron into four hexahedra.

5.2.2. Direct method

Not all the direct methods for adaptive 2D mesh generation shown in Fig. 4 can be extended to 3D.

There are two main methods for adaptive hexahedral mesh generation, one is extended from the first 2D
direct method and the other one is derived from part of the third 2D direct method.

Extended from the first 2D direct method in Fig. 4, Method 1 refines each hexahedron independently as

shown in Fig. 9. It first splits each hexahedron into seven hexahedra by inserting one small hex in its center,

and each face of the original hex is contained in a hex independently. If one face needs to be refined, then

the hex containing it will be refined as shown in the right picture of Fig. 9. If there are i (i = 1, . . . , 6) faces
that need to be refined for a hexahedron, then the resulting mesh has (6i + (6 � i) + 1 = 5i + 7) elements and

8(i + 1) newly inserted vertices.

Method 2 is derived from part of the third 2D direct method shown in Fig. 4. In the process of refine-
ment, this method considers whether the error function value of each cell is greater than a threshold e or
not. One hexahedron has a total of eight vertices, so there are (28 = 256) configurations. Due to symmetry,

Fig. 9. Adaptive hexahedral mesh decomposition (Method 1): left—a 2D example; middle—a small hexahedron is inserted; right—the

top face of the original hexahedron needs to be refined, 6 hex and 8 extra vertices are generated.

0 1 2 4 8

Fig. 10. Templates of adaptive hexahedral mesh decomposition (Method 2) according to the cells to be refined from which red

minimizer points are generated. The bottom row shows the detailed decomposition format.

Method Number of 0 1 2 4 8

2 elements 1 4 11 22 27

vertices 0 7 19 39 56

Fig. 11. The element number and the newly inserted vertex number of Method 2 within refined hexahedra shown in Fig. 10.

Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960 951
there are only 22 unique templates [36], but only five templates are useful out of them because not all the

templates can be decomposed into hexahedra. Fig. 10 shows the five templates for adaptive hexahedral

decomposition together with a detailed view [29], which are much more complicated than the templates

for 2D quadrilateral decomposition. Fig. 11 lists the number of elements and the number of newly inserted

vertices for each template.

We set a sign for each leaf cell at the uniform starting octree level indicating if this cell needs to be refined

or not. For each leaf cell, the feature sensitive error function is calculated and compared with a threshold e.
If the function value is greater than e, then the sign is set to be 1, otherwise it is 0. For each hexahedron
extracted from the uniform level, we check if it belongs to one of the templates shown in Fig. 10. If not,

we need to convert it by looking up the table shown in Fig. 12. We keep updating the sign for each leaf

cell until no sign changes, at this time all the generated hexahedra in the uniform level are in the format

of the five templates shown in Fig. 10, then we can construct an adaptive hexahedral mesh using the

corresponding templates.

and all others

Fig. 12. The Look-Up table for converting an arbitrary configuration to one of the five templates in Fig. 10. Each green node

represents the cell from which the minimizer point is generated needs to be refined. The sign of the cell generating a red node is 1,

otherwise the sign is 0.

952 Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960
Each hexahedron is constructed by eight minimizer points, which are calculated from leaf cells in

the uniform octree level. The error function of the cell generating a minimizer point is either greater

than the threshold e or 6e, therefore there are a total of 28 = 256 configurations for a hexahedron.

Fig. 12 shows the Look-Up table for converting an arbitrary configuration to the five templates shown

in Fig. 10. The green node means the error function of the cell generating this minimizer point is greater

than the threshold e. The red node means the sign of the cell generating this node is set to be 1, otherwise

the sign is 0.
In the process of adaptive hexahedral mesh generation, we need to insert extra vertices and detect if they

lie on the boundary or not. If a vertex lies on a boundary edge or a boundary face, then it is a boundary

vertex. Otherwise it lies interior to the interval volume. There is a special case, of which we need to be care-

ful. It occurs in cases where a vertex lying on an edge whose two end points are on the boundary, or lying

on a face whose four points are on the boundary, may not be on the boundary. For those extra vertices

lying inside the interval volume, we choose the linear interpolation of the eight vertices of the original hexa-

hedron. For those existing and newly inserted vertices lying on the boundary isosurface, we first compute

their positions from the linear interpolation, then move them toward the isosurface as we do for adaptive
quadrilateral isosurface extraction.

Fig. 13 compares adaptive hexahedral meshes of the human head generated from Method 1 and Method

2. It is obvious that Method 2 constructs a better nose than Method 1 because it introduces extra vertices on

edges of refined hexes resulting in a more accurate approximation, and Method 2 tends to generate meshes

with better quality than Method 1. The extracted surface mesh from Method 2 is a little different from the

result of the third method shown in Fig. 7, since only templates 0, 1, 2a and 4 of the third method in Fig. 4

are adopted, while templates 2b and 3 are not used. Since we still use QEF (Eq. (1)) for computing mini-

mizing vertices, we can also preserve sharp edges and corners (Fig. 14).

Fig. 13. Adaptive hexahedral meshes from Method 1 (left) and Method 2 (right) for the human head. Top row shows the boundary

isosurfaces, it is obvious that Method 1 generates a poorly-shaped nose as was shown in Fig. 7. Bottom row shows cross sections, the

right part of elements are removed.

Fig. 14. Sharp features are preserved. From left to right: an adaptive quad mesh of a mechanical part, an adaptive hex mesh of a

mechanical part, an adaptive quad mesh of a fandisk, and an adaptive hex mesh of a fandisk.

Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960 953

954 Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960
6. Mesh adaptivity

In order to generate accurate meshes with the minimal number of elements and vertices, it is important

to choose a good error metric to decide where we should generate a finer mesh and where a coarser mesh

should be kept. There are three main ways to control the mesh adaptivity. Users can also design an error
function based on their specific requirements.

• Feature sensitive error function.

• Areas that users are interested in.

• Finite element calculation results.

The feature sensitive error function [38,39] is defined as the difference of trilinear interpolation functions

between coarse and fine octree levels normalized by the gradient magnitude. It is sensitive to areas of large
geometric features since it directly measures the surface difference between coarse and fine levels, for exam-

ple, the facial features (nose, eyes, mouth and ears) in the head model as shown in Figs. 13 and 18.

Sometimes, people are interested in some special areas based on their physical or biological applications.

For example, there is a cavity in the structure of the biomolecule called mouse acetylcholinesterase (mAChE)

[31,30]. A finermesh is required around the cavity areawhile a coarsemesh needs to be kept in other regions. In

this situation, the error function shouldbedefinedby regions.Fig. 1 shows the adaptivequadrilateral andhexa-

hedral meshes for the biomolecule mAChE, and it is obvious that the mesh adaptivity is controlled by regions.

In finite element simulations, we first need to construct meshes to represent the analyzed geometric do-
main, then solve ordinary/partial differential equations over it using the finite element method. For accurate

and efficient finite element analysis, adaptive meshes are preferable. The mesh adaptivity can be controlled

directly by finite element solutions to balance the error of finite element solutions over each element. Fig. 21

shows quad meshes of a bubble model. The mesh adaptivity is controlled by its deformation obtained from

the finite element analysis.
7. Quality improvement

Quality improvement is a necessary step for finite element mesh generation. First we need to choose cor-

responding quality metrics to measure the quality of quadrilateral and hexahedral meshes. Here we select the

scaled Jacobian, the condition number of the Jacobian matrix and Oddy metric [22] as our metrics [17–19].

Assume x 2 R3 is the position vector of a vertex in a quad or a hex, and xi 2 R3 for i = 1, . . . ,m are its

neighboring vertices, where m = 2 for a quad and m = 3 for a hex. Edge vectors are defined as ei = xi � x

with i = 1, . . . ,m, and the Jacobian matrix is J = [e1, . . . ,em]. The determinant of the Jacobian matrix is

called Jacobian, or scaled Jacobian if edge vectors are normalized. An element is said to be inverted if
one of its Jacobians 6 0. We use the Frobenius norm as a matrix norm, jJ j ¼ ðtrðJTJÞ1=2Þ. The condition

number of the Jacobian matrix is defined as jðJÞ ¼ jJ jjJ�1j, where jJ�1j ¼ jJ j
detðJÞ. Therefore, the three quality

metrics for a vertex x in a quad or a hex are defined as follows:
JacobianðxÞ ¼ detðJÞ; ð2Þ

jðxÞ ¼ 1

m
jJ�1jjJ j; ð3Þ

OddyðxÞ ¼
jJTJ j2 � 1

m jJ j
4

� �

detðJÞ
4
m

; ð4Þ
where m = 2 for quadrilateral meshes and m = 3 for hexahedral meshes.

Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960 955
In the process of mesh quality improvement, our goal is to remove inverted elements and improve the

worst condition number of the Jacobian matrix. First the averaging method is used to remove inverted ele-

ments. We calculate the scaled Jacobian for a vertex in each element, and relocate this vertex by the average

of all its neighbors if the Jacobian is negative. Then we calculate the condition number of the Jacobian ma-

trix for a vertex in each quad or hex, and find the vertex with the maximum value. We compute the new
position for this vertex using the conjugated gradient method with the condition number (Eq. (3)) as

objective.

If the relocated vertex is an interior node, then we replace the location of this vertex with the calculated

new position. If this vertex lies on the boundary, then we calculate its new position and move it toward the

isosurface along its normal direction. We keep reducing the maximum condition number for quad or hex

meshes until we arrive a given threshold. In this way, we can improve the worst condition number of the
Type DataSet MeshSize Scaled Jacobian Condition Number Oddy Metric Inverted

(Vertex#, Elem#) (best, aver., worst) (best, aver., worst) (best, aver., worst) Elem#

quad Bubble1 (208, 206) (1.0, 0.92, 0.36) (1.0, 1.12, 2.77) (0.0, 0.61, 13.37) 0

Bubble2 - (1.0, 0.94, 0.62) (1.0, 1.07, 1.60) (0.0, 0.34, 3.13) 0

Head1 (714, 712) (1.0, 0.92, 0.06) (1.0, 1.13, 17.41) (0.0, 0.98, 604.24) 0

0

0

Head2 - (1.0, 0.92, 0.37) (1.0, 1.10, 2.73) (0.0, 0.48, 12.93)

mAChE1 (19998, 20013) (1.0, 0.90, 0.04) (1.0, 1.17, 27.63) (0.0, 1.29, 1524.67)

mAChE2 - (1.0, 0.90, 0.16) (1.0, 1.15, 6.26) (0.0, 0.87, 76.28) 0

hex Head1 (1210, 812) (1.0, 0.85, 1.9e-3) (1.0, 2.62, 519.74) (0.0, 12.88, 6.95e-3) 1

Head2 - (1.0, 0.85, 0.02) (1.0, 1.98, 46.34) (0.0, 5.03, 638.83) 0

0

5mAChE1 (81233, 70966) (1.0, 0.94, 5.2e-5) (1.0, 2.07, 1.92e-4) (0.0, 18.35, 1.58e-6)

mAChE2 - (1.0, 0.94, 0.01) (1.0, 1.40, 74.73) (0.0, 2.37, 1379.81)

Fig. 15. The comparison of the three quality criteria (the scaled Jacobian, the condition number and Oddy metric) before/after the

quality improvement for quadrilateral meshes of bubble, head and mAChE. DATA1—before quality improvement; DATA2—after

quality improvement.

Fig. 16. The histogram of the condition number for quadrilateral (left) and hexahedral (right) meshes of mAChE and the human head.

956 Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960
Jacobian matrix, as well as improving the other two metrics, the scaled Jacobian and Oddy metric. How-

ever, it is possible to produce an invalid mesh containing inverted elements. We choose a �smart� smoothing

method [12], which relocates the point only if the mesh quality is improved.

Fig. 15 shows the improvement of the worst values of the scaled Jacobian, the condition number and

Oddy metric. The histograms of the condition number (Fig. 16) show the overall quality of quad and
hex meshes for the human head model and a biomolecule mAChE. By Comparing the three quality metrics

before and after quality improvement, we can see that the worst parameters are improved significantly.
8. Results and applications

We have developed an interactive program for adaptive and quality quadrilateral/hexahedral mesh

extraction and rendering from volumetric data, and plugged it into our LBIE-Mesh software (Level Set
Boundary and Interior–Exterior Mesher), which can generate adaptive and quality 2D (triangular/quadri-

lateral) and 3D (tetrahedral/hexahedral) meshes from volume data. The algorithm of tetrahedral mesh gen-
DataSet Type Dimension Number of Elements (Extraction Time (unit: ms))

(a) (b) (c) (d)

Bubble SDF 653 206 (172) 1478 (329) 1854 (344) –

Head SDF 653 1942 (594) 812 (375) 4049 (750) 17905 (3267)

Knee SDF 653 4058 (735) 1386 (453) 7111 (797) 36207 (1516)

Skull CT 1293 – – 20416 (9893) 10827 (9205)

Skin CT 1293 20999 (9955) 61244 (14565) – –

mAChE Given 2573 20013 (6080) – 70966 (11690) 38939 (7955)

Fig. 17. Data sets and test results. The CT data sets are re-sampled to fit into the octree representation. Rendering results for each case

are shown in Figs. 21, 18–20 and 1. Skull and skin are extracted from the UNC Head model.

Fig. 18. Quadrilateral and hexahedral meshes of the human head: (a) an adaptive quadrilateral mesh; (b) the uniform hexahedral mesh

at a chosen starting level; (c) an adaptive interior hexahedral mesh controlled by the feature sensitive error function; (d) an adaptive

exterior hexahedral mesh controlled by the feature sensitive error function.

Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960 957
eration is described in [38,39]. In this software, error tolerances and isovalues can be changed interactively.

Our results were computed on a PC equipped with a Pentium III 800 MHz processor and 1 GB main

memory.

Our algorithm has been used to generate quadrilateral and hexahedral meshes for some signed distance

function data such as the bubble (Fig. 21), the human head (Fig. 18) and the knee model (Fig. 19). We have
also extracted meshes for the skin and the skull from a CT scanned data (the UNChead, Fig. 20), and tested

the algorithm on biomolecular data (mAChE, Fig. 1). Fig. 17 shows the information for each dataset and

results. The results consist of the number of elements, the extraction time and images with respect to dif-

ferent isovalues and error tolerances. Extraction time includes octree traversal, QEF computation and mesh

extraction.
Fig. 19. Quadrilateral and hexahedral meshes of the knee: (a) an adaptive quadrilateral mesh; (b) the uniform hexahedral mesh at a

chosen starting level; (c) an adaptive hex mesh controlled by the feature sensitive error function; (d) all the hexahedral elements in

(b) are refined.

Fig. 20. Quadrilateral and hexahedral meshes are extracted from a CT-scanned volumetric data (UNC head): (a) the quadrilateral

mesh of the skin; (b) the hexahedral mesh of the volume inside the skin; (c) the quadrilateral mesh of the skull isosurface;

(d) the hexahedral mesh of the skull.

Fig. 21. Quadrilateral meshes of a bubble model: (a) the uniform mesh at a chosen starting level; (b) an adaptive mesh controlled by

finite element solutions (deformation); (c) a mesh generated by refining all the elements in (a).

958 Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960
Fig. 21 shows the extracted quadrilateral meshes for a bubble, which has been used in the simulation of

drop deformation using the finite element method. First, we generate a uniform quad mesh for the original

state of the bubble. Then we get finite element solutions such as the deformation from finite element ana-
lysis, and use the error of the deformation over each element to control the mesh adaptivity. Finally we can

provide an adaptive and quality quad mesh to limit the maximum error of finite element solutions within a

threshold.

Some physically-based simulations need both interior and exterior hexahedral meshes. For example,

when people are analyzing the electromagnetic scattering over the human head, hex meshes of the volume

interior to the head surface and hex meshes exterior to the head surface but inside an outer sphere are

needed at the same time. Fig. 18 shows the extracted interior and exterior meshes for a head model. The

facial features such as nose, eyes, mouth and ears are kept, and fine meshes are generated in those regions.
Fig. 1 shows another example of interior and exterior hexahedral meshes, the biomolecule mAChE. The

mesh adaptivity is controlled by regions, fine meshes are generated in the area of cavity.
9. Conclusions

We have presented an algorithm to extract adaptive and quality quadrilateral and hexahedral meshes di-

rectly from volumetric data. First, a bottom-up surface topology preserving octree-based algorithm is used
to select a starting octree level, at which we extract uniform meshes with correct topology using the dual con-

touring isosurface extraction method [15,38,39]. Then we extended it to adaptive quadrilateral and hexahe-

dral mesh generation using some pre-defined templates without introducing any hanging nodes. The position

of each boundary vertex is recalculated to approximate the isosurface more accurately. The mesh adaptivity

can be controlled in three ways, the feature sensitive error function [38,39], the areas that users are interested

in and finite element solutions. Users can also design their own error function to control the mesh adaptivity

according to their specific requirements. Finally, three various quality metrics are selected to measure the

mesh quality, and the relaxation based technique is used to improve it. The resulting meshes are extensively
used for efficient and accurate finite element calculations. Some of them have been used successfully.
Acknowledgements

An early version of this paper appeared in 13th International Meshing Roundtable conference [37].

We thank Bong-Soo Sohn for several useful discussions, Jianguang Sun for our system management,

Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960 959
Dr. Gregory Rodin for finite element solutions of drop deformation, Dr. Nathan Baker for providing ac-

cess to the accessibility volume of biomolecule mAChE and UNC for the CT volume dataset of a human

head respectively. This work was supported in part by NSF grants ACI-0220037, EIA-0325550, and NIH

grant P20 RR02647-01.
References

[1] Cubit mesh generation toolkit. Available from: <http://www.sass1693.sandia.gov/cubit>.

[2] P. Baehmann, S. Wittchen, M. Shephard, K. Grice, M. Yerry, Robust geometrically based, automatic two-dimensional mesh

generation, Int. J. Numer. Methods Engrg. 24 (1987) 1043–1078.

[3] C. Bajaj, J. Warren, G. Xu, A subdivision scheme for hexahedral meshes, Visual Comput. 18 (5–6) (2002) 343–356.

[4] T. Blacker, R. Myers, Seams and wedges in plastering: a 3d hexahedral mesh generation algorithm, Engrg. Comput. 2 (1993)

83–93.

[5] T. Blacker, M. Stephenson, Paving: a new approach to automated quadrilateral mesh generation, Int. J. Numer. Methods Engrg.

32 (1991) 811–847.

[6] S. Canann, Plastering and optismoothing: new approaches to automated, 3d hexahedral mesh generation and mesh smoothing.

Ph.D. Dissertation, Brigham Young University, Provo, UT, 1991.

[7] S. Canann, J. Tristano, M. Staten, An approach to combined Laplacian and optimization-based smoothing for triangular,

quadrilateral and quad-dominant meshes, in: 7th International Meshing Roundtable, 1998, pp. 479–494.

[8] C. Charalambous, A. Conn, An efficient method to solve the minimax problem directly, SIAM J. Numer. Anal. 15 (1) (1978)

162–187.

[9] W.A. Cook, W.R. Oakes, Mapping methods for generating three-dimensional meshes, Comput. Mech. Engrg. (1982) 67–72.

[10] David Eppstein, Linear complexity hexahedral mesh generation, in: Symposium on Computational Geometry, 1996, pp. 58–67.

[11] D. Field, Laplacian smoothing and Delaunay triangulations, Commun. Appl. Numer. Methods 4 (1988) 709–712.

[12] L. Freitag, On combining Laplacian and optimization-based mesh smoothing techniques, Trends in Unstructured Mesh

Generation, AMD-Vol. 220, 1997, pp. 37–43.

[13] L. Freitag, C. Ollivier-Gooch, Tetrahedral mesh improvement using swapping and smoothing, Int. J. Numer. Methods Engrg. 40

(1997) 3979–4002.

[14] M. Garland, P. Heckbert, Simplifying surfaces with color and texture using quadric error metrics, in: IEEE Visualization, 1998,

pp. 263–270.

[15] T. Ju, F. Losasso, S. Schaefer, J. Warren, Dual contouring of Hermite data, in: Proceedings of SIGGRAPH, 2002, pp. 339–346.

[16] P. Kinney, Cleanup: improving quadrilateral finite element meshes, in: 6th International Meshing Roundtable, 1997, pp. 437–447.

[17] P. Knupp, Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part I: A

framework for surface mesh optimization, Int. J. Numer. Methods Engrg. 48 (2000) 401–420.

[18] P. Knupp, Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II:

A framework for volume mesh optimization and the condition number of the Jacobian matrix, Int. J. Numer. Methods Engrg. 48

(2000) 1165–1185.

[19] C. Kober, M. Matthias, Hexahedral mesh generation for the simulation of the human mandible, in: 9th International Meshing

Roundtable, 2000, pp. 423–434.

[20] C. Lee, S. Lo, A new scheme for the generation of a graded quadrilateral mesh, Comput. Struct. 52 (5) (1994) 847–857.

[21] S. Mitchell, T. Tautges, Pillowing doublets: refining a mesh to ensure that faces share at most one edge, in: 4th International

Meshing Roundtable, 1995, pp. 231–240.

[22] A. Oddy, J. Goldak, M. McDill, M. Bibby, A distortion metric for isoparametric finite elements, Transactions of CSME, No.

38-CSME-32, Accession No. 2161, 1988.

[23] S. Owen, A survey of unstructured mesh generation technology, in: 7th International Meshing Roundtable, 1998, pp. 26–28.

[24] M. Price, C. Armstrong, Hexahedral mesh generation by medial surface subdivision: Part I, Int. J. Numer. Methods Engrg. 38

(19) (1995) 3335–3359.

[25] M. Price, C. Armstrong, Hexahedral mesh generation by medial surface subdivision: Part II, Int. J. Numer. Methods Engrg. 40

(1997) 111–136.

[26] R. Schneiders, A grid-based algorithm for the generation of hexahedral element meshes, Engrg. Comput. 12 (1996) 168–177.

[27] R. Schneiders, Refining quadrilateral and hexahedral element meshes, in: 5th International Conference on Grid Generation in

Computational Field Simulations, 1996, pp. 679–688.

[28] R. Schneiders, An algorithm for the generation of hexahedral element meshes based on an octree technique, in: 6th International

Meshing Roundtable, 1997, pp. 195–196.

http://www.sass1693.sandia.gov/cubit

960 Y. Zhang, C. Bajaj / Comput. Methods Appl. Mech. Engrg. 195 (2006) 942–960
[29] R. Schneiders, R. Schindler, F. Weiler, Octree-based generation of hexahedral element meshes, in: 5th International Meshing

Roundtable, 1996, pp. 205–216.

[30] Y. Song, Y. Zhang, C.L. Bajaj, N.A. Baker, Continuum diffusion reaction rate calculations of wild type and mutant mouse

acetylcholinesterase: adaptive finite element analysis, Biophys. J. 87 (3) (2004) 1558–1566.

[31] Y. Song, Y. Zhang, T. Shen, C.L. Bajaj, J.A. McCammon, N.A. Baker, Finite element solution of the steady-state Smoluchowski

equation for rate constant calculations, Biophys. J. 86 (4) (2004) 2017–2029.

[32] M. Staten, S. Canann, Post refinement element shape improvement for quadrilateral meshes, Trends in Unstructured Mesh

Generation, AMD-Vol. 220, 1997, pp. 9–16.

[33] J. Talbert, A. Parkinson, Development of an automatic, two dimensional finite element mesh generator using quadrilateral

elements and Bezier curve boundary definitions, Int. J. Numer. Methods Engrg. 29 (1991) 1551–1567.

[34] T. Tautges, T. Blacker, S. Mitchell, The whisker-weaving algorithm: a connectivity based method for constructing all-hexahedral

finite element meshes, Int. J. Numer. Methods Engrg. 39 (1996) 3327–3349.

[35] S.-H. Teng, C.W. Wong, Unstructured mesh generation: theory, practice, perspectives, Int. J. Comput. Geometry Appl. 10 (3)

(2000) 227–266.

[36] F. Weiler, R. Schindler, R. schneiders, Automatic geometry-adaptive generation of quadrilateral and hexahedral element meshes

for the FEM, Numerical Grid Generation in Computational Field Simulations, 1996, pp. 689–697.

[37] Y. Zhang, C. Bajaj, Adaptive and quality quadrilateral/hexahedral meshing from volumetric data, in: 13th International Meshing

Roundtable, 2004, pp. 365–376.

[38] Y. Zhang, C. Bajaj, B.-S. Sohn, Adaptive and quality 3d meshing from imaging data, in: ACM Symposium on Solid Modeling and

Applications, 2003, pp. 286–291.

[39] Y. Zhang, C. Bajaj, B.-S. Sohn, 3D finite element meshing from imaging data, Comput. Methods Appl. Mech. Engrg., in press,

doi:10.1016/j.cma.2004.11.026.

[40] J. Zhu, O. Zienkiewicz, E. Hinton, J. Wu, A new approach to the development of automatic quadrilateral mesh generation, Int. J.

Numer. Methods Engrg. 32 (1991) 849–866.

http://dx.doi.org/10.1016/j.cma.2004.11.026

	Adaptive and quality quadrilateral/hexahedral meshing from volumetric data
	Introduction
	Previous work
	Unstructured quad mesh generation
	Unstructured hex mesh generation
	Quality improvement

	Starting octree level selection
	Quad isosurface extraction
	Mesh decomposition
	Indirect method
	Direct method

	Vertex position calculation

	Hexahedral mesh extraction
	2D mesh decomposition
	3D mesh decomposition
	Indirect method
	Direct method

	Mesh adaptivity
	Quality improvement
	Results and applications
	Conclusions
	Acknowledgements
	References

