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Abstra
tDire
t volume rendering maps data values to visual properties su
h as transparen
yand 
olor through transfer fun
tions. Traditional multi-dimensional fun
tions aregenerated based on a 2D histogram of fun
tion value and gradient magnitude. Whentwo di�erent features overlap in the 2D histogram, the traditional transfer fun
tions
annot visually distinguish the features, sin
e overlapped areas have similar visualproperties. In this paper, we des
ribe a new multi-dimensional transfer fun
tion thatenables visual di�erentiation of features even in the 
ase when two di�erent featuresoverlap in the 2D histogram. Furthermore, we provide details of an implementationof our transfer fun
tion on modern programmable graphi
s hardware.Key words: Volume Rendering, Transfer Fun
tionsPACS:1 Introdu
tionDire
t volume rendering enables visualization of volume data without �rstresorting to the geometry of triangles. It simply maps ea
h volume element (orvoxel) to visual properties su
h as opa
ity and 
olor and then 
omposites theproperties into an image. The 
onversion is done via transfer fun
tions. Goodtransfer fun
tions produ
e good images that a

entuate interesting stru
turesin volume data while removing uninteresting regions. However, it is diÆ
ultto 
onstru
t good transfer fun
tions. Kindlmann's survey [7℄ reviews manyversions of transfer fun
tions and divides them into the two 
ategories ofdata-driven and image-driven fun
tions. In this paper, we extend the resultsof [13℄ (a data-driven multi-dimensional transfer fun
tion) with more detailedexposition on feature sele
tion and e�e
tively demonstrate that our multi-dimensional transfer fun
tions are signi�
antly better to visually distinguishoverlapped features than traditional transfer fun
tions.Preprint submitted to Elsevier S
ien
e 20 January 2006



Related WorkTwo-dimensional (2D) transfer fun
tions of fun
tion value (v) and gradi-ent magnitude (g) were suggested by Levoy [11℄. He also proposed semi-transparent multiple surfa
e visualization. The Kindlmann's survey [7℄ ex-plains many kinds of transfer fun
tions, but only a few multi-dimensionaltransfer fun
tions have been developed. As transfer fun
tion domains are ex-tended to two and three dimensions, the fun
tion yields more power in featuresele
tion [9℄ [10℄. For the same reason, it is diÆ
ult to set values manually.Nevertheless Kniss et al. [10℄ suggested a 
onvenient user interfa
e widgetsfor setting three-dimensional (3D) transfer fun
tions. Users, however, stillneeded to de
ide voxel transparen
ies from the displayed information of thetwo-dimensional (2D) histogram of v and g, while sele
ting interesting regions.Kindlmann and Durkin [8℄ suggest the semi-automati
 transfer fun
tion gener-ation method for boundary visualization through 3D histogram volume inspe
-tion. The method uses se
ond derivatives to automati
ally 
ompute boundarythi
kness (�). Based on �, voxel transparen
y is 
omputed in the 2D sub-spa
e de�ned by v and g. Their method has the following short
omings: iftwo di�erent voxels have the same values of v and g, then they will be setto the same transparen
y, even though the voxels belong to di�erent features.In other words, when features overlap in the 2D histogram of v and g, alloverlapped portion are assigned the same transparen
y. Distan
e maps havebeen used for volume rendering in [5℄ and [6℄ for the visualization of binarysegmented volume data. Ziou and Tabbone's survey [15℄ shows several waysto remove phantom edges.The remainder of the paper is organized as follows. In se
tion 2, we present aboundary dete
tion method for 3D volumetri
 data. In se
tion 3, we explainhow to 
ompute the distan
e from a voxel to a boundary using the boundarydete
tion method. Based on the distan
e, we suggest new opa
ity fun
tionsin se
tion 4. In se
tion 5, we provide details of the implementation of ourtransfer fun
tion in modern graphi
s hardware along with several appli
ationson volumetri
 datasets Finally, we suggest some extension of our work inse
tion 6.2 Boundary Dete
tion in 3D Volume DataSeveral boundary dete
tion (or edge dete
tion) algorithms have been pub-lished in the image pro
essing and pattern re
ognition literature. One of thetraditional edge dete
tion te
hniques is Canny's method that �nds the lo-
al maxima along the gradient dire
tion [2℄. Most 
ommon edge dete
tions
hemes 
onsist of three su
h operations: di�erentiation, smoothing and edge2



labeling [15℄.First, di�erentiation is ne
essary to identify edges. We 
ompute gradient ve
-tors represented by 5f using 
entral di�eren
es. k 5f k stands for its mag-nitude and the normalized ve
tor is 
omputed and denoted by ~n = 5fk5fk .The frequently used se
ond-order derivative operators are the Lapla
ian andthe dire
tional se
ond-order derivative (DSD). In this paper, we 
ompute anduse the DSD along the gradient dire
tion. The DSD operator is de�ned by�2f�2~n = ~n � 5 k 5f k.Se
ond, for smoothing purposes of data with substantial edge preservation, abilateral �lter [14℄ is applied to k 5f k and �2f�2~n . The domain 
omponent isWd(~x) and the range 
omponent is Wr(~x) for ea
h voxel, ~x = ( i j k )T :Wd(~x) = exp �� (~x�~y)T (~x�~y)�2d � ; ~y 2 N~x (1)and Wr(~x) = exp h� (f(~x)�f(~y))2�2s i ; ~y 2 N~x; (2)where N~x is a neighbor set of ~x. Wd(~x) 
omputes the weights of ea
h voxelbased on the spatial distan
e at ~x,Wr(~x) measures the \photometri
" similar-ity between the fun
tion values of ~x and the neighborhood. A bilateral �lter,ef(~x), is 
omposed of the two 
omponents and is des
ribed as follows:ef(~x) = P~y2N~x Wd(~x)Wr(~x)f(~x)P~y2N~x Wd(~x)Wr(~x) (3)Finally, edge labeling is used to identify authenti
 edges (surfa
e boundariesin 3D) while suppressing false edges, 
aused primarily by noise and the non-maximum high value of k 5f k. Some error a

umulation in the derivative
omputations also results in non-trivial false edges. However, in this paper, weassume that our input volume data have reasonably high signal-to-noise ratioand a pre-appli
ation of the bilateral �lter solves the error a

umulation indi�erentiation. We, therefore, only 
onsider removal of the \phantom edges"(as de�ned in [3℄) due to the multiple lo
al maxima of k 5f k.3 Distan
e to a BoundaryDire
t volume rendering does not require extra
tion of geometri
 stru
turessu
h as triangles to visualize interesting boundaries within volumetri
 data. In-stead, it is enough to assign appropriate transparen
ies for all voxels. In other3



words, if a voxel is exa
tly on a boundary and we wish to visualize the bound-ary then the voxel is assigned to be totally opaque. Furthermore, for voxelsaway from a boundary, the opaqueness should de
rease. Transparen
y de
i-sions are 
losely related to the distan
e from a voxel to a boundary. Knowingthe voxel distan
e from a boundary, one 
an easily set up voxel transparen
y.In this se
tion, we present how to 
ompute the distan
e from a voxel to anauthenti
 boundary.The distan
e is 
omputed by tra
ing two rays in both the positive (+5f) andnegative (�5 f) dire
tions from ea
h voxel lo
ation. One of the dire
tions issele
ted in whi
h k 5f k in
reases. The two values of k 5f k and �2f�2~n are tri-linearly interpolated at several sampling lo
ations along the two rays. The goalis to lo
ally and eÆ
iently determine the zero-
rossing lo
ations of �2f�2~n . Sin
ethe ve
tor of5f is perpendi
ular to the boundary [15℄, by following one of thepositive or negative dire
tions, one is guaranteed to �nd an authenti
 boundaryin 3D spa
e. Fig. 1 shows a 2D example on 
omputing the distan
e from avoxel to an authenti
 boundary edge along the negative gradient dire
tion.Ideal graphs of f(x), f 0(x), and f 00(x) are also shown.

Fig. 1. 2D Example on the Distan
e Computation (Left Fig.) and Ideal Graphs off(x), f 0(x), and f 00(x) along the Dire
tions of � 5 f (Right Fig.): The distan
efrom a voxel to a boundary 
an be 
omputed by shooting a ray along one of thedire
tions of �5 f .Based on Kindlmann's ideal boundary model [8℄ of Eq.(4), the three values off , k 5f k and �2f�2~n are 
hanged as shown in Fig. 1(right) along the dire
tionsof � 5 f . Sampling lo
ations are 
omputed by ~xs(t) = ~x + t 5f(~x)k5f(~x)k , where�dmax < t < dmax. When f 00(~xs(t1)) � f 00(~xs(t2)) < 0 is true, an authenti
boundary is between the two sampling points. On
e we �nd t1 and t2, we usethe bise
tion method [1℄ to obtain an exa
t lo
ation. Experimentally, we de�nethe sampling interval and dmax su
h as Lmin=5 and Lmin � 15 respe
tively,where Lmin = Min(width of a voxel, height of a voxel, depth of a voxel).v = f(x) = vmin + (vmax � vmin)1 + erf( x�p2)2 (4)4



To verify the nearest boundary �nding algorithm, we generated the Spheredataset with the ideal boundary model Eq. 4 and the sphere equation (x2 +y2 + z2 = r2). Sin
e Eq. 4 is a fun
tion of distan
e, the fun
tion value at avoxel lo
ation P (px; py; pz) is:v = f(x) = vmin + (vmax � vmin)1 + erf(pp2x+p2y+p2z�r�p2 )2 (5)For the Sphere dataset, the nearest boundary of a voxel is on the line that
onne
ts the voxel and the origin. We 
an write the equation of a line usingthe gradient ve
tor (5f) and voxel lo
ation (P ) asL = 5f � t + P = (Tpx; T py; T pz)� t + (px; py; pz); (6)where T = e��pp2x+p2y+p2z�r�22�2 (vmax � vmin)�p2�qp2x + p2y + p2z (7)To �nd the nearest boundary point, there should exist t for L = 5f � t+P =(0; 0; 0). Therefore, we gett = e�pp2x+p2y+p2z�r�22�2 �p2�qp2x + p2y + p2zvmin � vmax (8)Sin
e there exists only one t for ea
h line equation at P , we 
an say thatthe line passes through the origin. Therefore, the nearest boundary �ndingalgorithm 
onverges to a nearby boundary point for the Sphere volume dataset.However, there is no simple way to prove the algorithm for general datasetssu
h as Tooth and Torso. We suggest another experimental measurement ofdot produ
ts between the two gradient ve
tors of a voxel and the nearestboundary point found by the algorithm. The dot produ
t should be 
lose to1, if the boundary point is a nearest one, whi
h is 
lear in the Sphere dataset.In Fig. 2, we 
omputed the average distan
e and the average gradient mag-nitude values at ea
h dot produ
t (multiplied by 100 in the graphs). We also
omputed the ratio (%) of the number of voxels at ea
h dot produ
t to the to-tal number of voxels and it is a

umulated along the horizontal axis. To removeoutliers, two threshold values are used. One is for the gradient magnitude atea
h voxel lo
ation (=5.0) and the other is for the gradient magnitude at theboundary (=20.0). The �rst one is to remove false boundary in homogeneousregions and the se
ond one is for noise boundary. The average dot produ
tsof Tooth and Torso are 0.9909 and 0.9553 respe
tively. The both datasets are5



(a) Sphere (Synthesized data by the ideal boundary model, Eq. 5)Average dot produ
t = 0.9994
(a) Tooth (b) TorsoAverage dot produ
t = 0.9909 Average Dot produ
t = 0.9553Fig. 2. Dot Produ
ts and A

umulated Per
ents: The sphere dataset is generatedfrom the ideal boundary model with � = 3:0 and radius = 15. The horizontalaxis of ea
h graph represents the dot produ
t values (� 100) between the twogradient ve
tors of a voxel and the nearest boundary 
omputed by the algorithm.The verti
al axis represents a

umulated per
ent (left) and distan
e (right). Theleft verti
al axis is also used for the gradient magnitude. The dashed lines representthe a

umulated per
ent along the horizontal axis. The solid and dotted lines showthe average distan
e and gradient magnitude at ea
h dot produ
t value respe
tively.
lose to the synthesized sphere dataset (0.9994). Therefore, we 
an say thatthe nearest boundary �nding algorithm 
onverges to a nearby boundary. FromFig. 2, it is also known that the error in
reases with the distan
e.Fig. 3 shows the results of the distan
e 
omputation as well as a sli
e throughthese di�erent datasets: all distan
e values are 
ipped to provide easy bound-ary per
eption in the images. The ideal boundary model of Eq. 4 is used togenerate the volume data of Fig. 3 (a). The bright grey 
olors of Fig. 3 (a)(right) and (b) (right) represent the boundary of the volume dataset. Unlikethe synthesized data, Fig. 3 (b) (right) shows noise-like bright 
olors in the ho-mogeneous regions of the tooth dataset. The main reason of the noisy bound-ary is that there are many zero-
rossing lo
ations of �2f�2~n with the small value ofk 5f k in the homogeneous regions. Fig. 3 (
) shows more 
omplex boundariesof the CT-angio Torso dataset. Similar patterns are repeated as in the tooth6



(a) Sphere (� = 3:0) (b) Tooth (85th CT Image)
(
) Torso (70th CT Image)Fig. 3. Sli
e Images of Volume Datasets and Distan
e Computation Results: Theleft-hand side of (a) is a sli
e image of the volume data generated with an idealspheri
al boundary model of Eq. 4 and the distan
e 
omputation results are on theright-hand side. (b) (left) is a sli
e from a Computed Tomography (CT) dataset ofa human tooth and (b) (right) shows the distan
e map for this image. Similarly, theimages of (
) are generated from a CT-angio Torso volume dataset, the middle imagebox of (
) is enlarged in the right-hand side. Ea
h dataset resolution is following:Sphere(1283), Tooth(256 � 256 � 161), and Torso(512 � 512 � 181).dataset. The noisy boundary is easily removed from the multi-dimensionaltransfer fun
tions by desele
ting the low gradient magnitude regions.4 Multi-Dimensional Transfer Fun
tionsFor our multi-dimensional transfer fun
tions, we 
ombine a distan
e basedfun
tion with 2D opa
ity fun
tions that is based on intensity (v) and gradientmagnitude (g). The 
ombined transfer fun
tion thus has both user 
ontrol andan automati
 generation of ea
h voxel transparen
y.4.1 Opa
ity Fun
tions of Distan
eOn
e we de
ide the distan
e from ea
h voxel to a boundary, ea
h voxel trans-paren
y 
an be easily 
omputed as a suitable fun
tion of distan
e. We suggest7



three di�erent opa
ity fun
tions (linear, 
on
ave, and 
onvex) as shown inFig. 4. The linear opa
ity fun
tion maps a linearly 
ipped distan
e, while the
on
ave and 
onvex fun
tions use the n-th power of the distan
e to 
ontrolthe boundary thi
kness. For larger value of n, the 
onvex fun
tion generatesthi
ker boundaries. Similarly, thinner boundaries 
an be generated using the
on
ave fun
tions with larger n's. The three distan
e fun
tions are representedas following: �d(d) = Max(�a � dd
 + a; 0); (9)�d(d) = 8><>: adn
 (j d� d
 j)n if d < d
0 others ; (10)and �d(d) =Max(�a � dndn
 + a; 0); (11)where 0 < d
 � dmax, 0 � a � 1, and n > 1. Eq. 9, 10 and 11 are the linear(Fig. 4 (a)), 
on
ave (Fig. 4 (b)), and 
onvex (Fig. 4 (
)) opa
ity fun
tionsrespe
tively. The spatial e�e
t of the three opa
ity fun
tions are 
ontrolled bythe two variables of d
 and a, while the shape of the nonlinear fun
tions isdominated by n.
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D DDFig. 4. Alpha MapsThe opa
ity fun
tion, �d(d), automati
ally 
omputes ea
h voxel transparen
yfor the entire s
alar volume dataset. However, when one wishes to visualizeonly a small range of intensity (v) values, one 
annot a

omplish it with theopa
ity fun
tion alone, sin
e it does not have v as a parameter. To a
hieve sub-range sele
tion 
exibility, we de�ne another fun
tion of v, �u(v), that is userspe
i�ed. The �nal opa
ity values of ea
h voxel are then 
omputed by �u(v)��d(d). Our transfer fun
tion thus has both automati
 opa
ity generation anduser 
ontrol. In other words, on
e a user spe
i�es some range of v with �u(v),ea
h voxel opa
ity is automati
ally generated by �d(d) using one of the alphamaps of Fig. 4. 8



4.2 Gradient Magnitude for the Se
ond AxisMost multi-dimensional transfer fun
tions have gradient magnitude (g), as these
ondary axis, while intensity (v) works as the primary axis. The 2D transferfun
tions of v and g are more powerful than the 1D fun
tions of v [9℄ [10℄.However, as the transfer fun
tion domain is extended to 2D spa
e, it makes itmore diÆ
ult to sear
h and lo
ate features. To redu
e the sear
h time in the2D spa
e of v and g, we repla
e the values of k 5f k with the interpolatedvalues at the boundary hit lo
ation (Fig. 1). This makes all voxels have thelo
al maximum values of k 5f k along the dire
tion of 5f instead of theirprevious values.
(a) Sphere (� = 3) (b) Tooth

(
) TorsoFig. 5. Normal (Left) and Stret
hed (Right) Histograms: The horizontal axis rep-resents fun
tion values (v) and the verti
al axis represents gradient magnitude,k 5f k, (g).Fig. 5 shows the resulting histogram (the right-hand side of ea
h box) of thevoxel value repla
ement as well as the original 2D histogram (the left-handside of ea
h box). While the voxel value repla
ement generates 
learer andsimpler histograms for the spheri
al and Tooth datasets, the histogram is stillmurky for the Torso dataset. This is not be
ause the Torso dataset does nothave 
lear boundaries, but be
ause several 
omplex boundaries are 
ondensedin a very small region.There are two bene�t of the above voxel repla
ement. First, 
urved features inthe v and g spa
e are mapped to straight line features (Fig. 5 (a) (right)) aswell as parallel with the horizontal axis, thereby making it easier for user sub-range spe
i�
ation. Se
ond, when two di�erent 
urves are partially overlappedin the original histogram, they be
ome separated at ea
h maximum value of9



k 5f k. More details on this bene�t are shown in the next se
tion, via ourexample appli
ation on these volumetri
 datasets.The 1D opa
ity fun
tion, �d(d), is easily extended to a 2D opa
ity fun
tionof v and g, represented as �u(v; g), where g represents the lo
al maximumof k 5f k along 5f . Therefore, ea
h voxels opa
ity is �nally de
ided by�u(v; g) � �d(d). The 2D opa
ity fun
tion, �u(v; g), is 
ontrolled by a userlike Kniss's fun
tion [9℄, but the opa
ity values 
an be 1 (meaning 
ompletelyopaque) unlike Kniss's fun
tion over sele
ted regions. On
e an interesting areais sele
ted in the 2D spa
e of v and g with �u(v; g), the opa
ity fun
tionof distan
e, �d(d), automati
ally generates alpha values. The domain of drepla
es Kniss's dire
tional se
ond derivative axis.5 Hardware Implementation and Example Appli
ationsWe have implemented a 3D texture-based volume renderer in PCs equippedwith nVidia graphi
s 
ards su
h as GeFor
e3, 4, and FX [12℄. Multi-dimensionaltransfer fun
tions 
an also be implemented on a PC equipped with su
h graph-i
s 
ards that provide at least four 3D multi-textures and dependent texturereads with register 
ombiners. Fig. 6 (a) shows the rendering pipeline for su
h
ards and (b) is the equivalent Cg Program [4℄. In this pipeline, dependenttextures are used for implementing the opa
ity fun
tion, �u(v; g) that is 
on-trolled by a user and the texture look-up table is used for a distan
e-basedfun
tion, �d(d).The volume rendering pipeline requires six 
omponents, RGB normal (three
omponents), intensity (v), gradient (g), and distan
e (d), for ea
h voxel. If wewish to visualize a 2563 volume dataset, (=16 Mbytes), then we need at least2563 � 6, (=96 Mbytes), texture memory. The RGB normal texture 
an be
ompressed using the s3t
 format [12℄, one of the ARB OpenGL extensions,to redu
e the texture memory requirement with an image quality trade-o�.Fig. 7 shows the result images rendered by the transfer fun
tions of �u(v; g)��d(d). Ea
h area of A through E are rendered individually and any 
ombina-tion of the areas 
an be rendered at the same time like the image of C andD. The A, B, D, and E areas are rendered with the 
onvex alpha map of theparameters, a = 1, d
 = dmax, and n = 3 (whi
h generate thi
k boundaries)and the C area is with the 
on
ave map of a = 0:4, d
 = dmax, and n = 9(whi
h make thin boundaries). We experimentally de�ned the parameters toobtain visually smooth 
ontinuity between the two areas of C and D. Fig. 8shows the Torso dataset images. To render the two areas of A and B at thesame time, we make A area semi-transparent with �u(v; g) = 0:15 and thelinear map of a = 1, d
 = dmax, and n = 3 are used for both areas.10



(a) Register Combiners (b) Equivalent Cg ProgramFig. 6. Rendering Pipeline for nVidia GeFor
e Cards: (a) shows the renderingpipeline with register 
ombiners and (b) is the equivalent Cg program of (a). Inthe pipeline, three texture volume datasets, a light ve
tor, and a half ve
tor arefed into the register 
ombiners. After the user de�ned 2D dependent texture (Tex1)
onverts the (v,g) data into RGB 
olors and alpha values, the 
ombiners 
omputesthe output of �nal RGB 
olors and alpha values with di�use and spe
ular 
olors.The solid lines represent data 
ow and pro
esses, while the dashed line indi
atesregister 
ombiners.Sin
e, when we make volume datasets, the gradient magnitude values of ea
hvoxel are repla
ed with the lo
al maxima at the hit lo
ations (explained in 4.2),it is easy to sele
t overlapped features. For example, the histogram of B ispartially overlapped with the graphs of A, C and D in the normal 
ase ofFig. 7 (top right). Therefore, it is not easy to sele
t only the feature of B, whenone uses normal graphs. However, in the stret
hed histogram, the feature B
an be sele
ted, while removing all other features, sin
e the four features areseparated in v and g spa
e.6 Con
lusions and ExtensionsIn this paper, we have presented a new multi-dimensional transfer fun
tionthat has both user 
ontrol and automati
 alpha value generation. When twoor more features are overlapped in the normal histogram, it is usually diÆ-
ult to visually distinguish them separately. However, this task is signi�
antlyalleviate with our stret
hed histogram, as at least one or two overlapped fea-tures 
an be sele
ted and visualized, while removing others. Unlike traditionaltransfer fun
tions, our new transfer fun
tion also provides automati
 alphavalue generation on a per voxel basis.For extensions, we are 
urrently 
onsidering semi-automati
 ways of gener-ating �d(d) dependent with �u(v; g). Another improvement map is to redu
ethe prepro
essing time of 
omputing the distan
e. Finally, when a dataset
ontains many 
omplex features in a small area of the v-g histogram like the11



T
A B C
D E C and DFig. 7. Feature Sele
tion with the Stret
hed Histogram and Rendering Results ofthe Tooth Dataset: T (left) shows feature sele
tion on the stret
hed histogram andea
h box is lo
ated in the same pla
e on the normal histogram (right). Ea
h regionis rendered in the images of A through E.Torso dataset, it is hard to re
ognize the features through even the stret
hedhistogram. We are 
onsidering alternate transfer fun
tions to better separatethe features in the transformed histogram.7 A
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T
A B A and BFig. 8. Feature Sele
tion of the Torso Dataset: The sele
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