Feature Selection of 3D Volume Data through
Multi-Dimensional Transfer Functions

Sangmin Park® Chandrajit Bajaj?

aUniversity of Texas at Austin

Abstract

Direct volume rendering maps data values to visual properties such as transparency
and color through transfer functions. Traditional multi-dimensional functions are
generated based on a 2D histogram of function value and gradient magnitude. When
two different features overlap in the 2D histogram, the traditional transfer functions
cannot visually distinguish the features, since overlapped areas have similar visual
properties. In this paper, we describe a new multi-dimensional transfer function that
enables visual differentiation of features even in the case when two different features
overlap in the 2D histogram. Furthermore, we provide details of an implementation
of our transfer function on modern programmable graphics hardware.

Key words: Volume Rendering, Transfer Functions
PACS:

1 Introduction

Direct volume rendering enables visualization of volume data without first
resorting to the geometry of triangles. It simply maps each volume element (or
voxel) to visual properties such as opacity and color and then composites the
properties into an image. The conversion is done via transfer functions. Good
transfer functions produce good images that accentuate interesting structures
in volume data while removing uninteresting regions. However, it is difficult
to construct good transfer functions. Kindlmann’s survey [7] reviews many
versions of transfer functions and divides them into the two categories of
data-driven and image-driven functions. In this paper, we extend the results
of [13] (a data-driven multi-dimensional transfer function) with more detailed
exposition on feature selection and effectively demonstrate that our multi-
dimensional transfer functions are significantly better to visually distinguish
overlapped features than traditional transfer functions.

Preprint submitted to Elsevier Science 20 January 2006

Related Work

Two-dimensional (2D) transfer functions of function value (v) and gradi-
ent magnitude (g) were suggested by Levoy [11]. He also proposed semi-
transparent multiple surface visualization. The Kindlmann’s survey [7] ex-
plains many kinds of transfer functions, but only a few multi-dimensional
transfer functions have been developed. As transfer function domains are ex-
tended to two and three dimensions, the function yields more power in feature
selection [9] [10]. For the same reason, it is difficult to set values manually.
Nevertheless Kniss et al. [10] suggested a convenient user interface widgets
for setting three-dimensional (3D) transfer functions. Users, however, still
needed to decide voxel transparencies from the displayed information of the
two-dimensional (2D) histogram of v and g, while selecting interesting regions.

Kindlmann and Durkin [8] suggest the semi-automatic transfer function gener-
ation method for boundary visualization through 3D histogram volume inspec-
tion. The method uses second derivatives to automatically compute boundary
thickness (o). Based on o, voxel transparency is computed in the 2D sub-
space defined by v and g. Their method has the following shortcomings: if
two different voxels have the same values of v and g, then they will be set
to the same transparency, even though the voxels belong to different features.
In other words, when features overlap in the 2D histogram of v and g, all
overlapped portion are assigned the same transparency. Distance maps have
been used for volume rendering in [5] and [6] for the visualization of binary
segmented volume data. Ziou and Tabbone’s survey [15] shows several ways
to remove phantom edges.

The remainder of the paper is organized as follows. In section 2, we present a
boundary detection method for 3D volumetric data. In section 3, we explain
how to compute the distance from a voxel to a boundary using the boundary
detection method. Based on the distance, we suggest new opacity functions
in section 4. In section 5, we provide details of the implementation of our
transfer function in modern graphics hardware along with several applications
on volumetric datasets Finally, we suggest some extension of our work in
section 6.

2 Boundary Detection in 3D Volume Data

Several boundary detection (or edge detection) algorithms have been pub-
lished in the image processing and pattern recognition literature. One of the
traditional edge detection techniques is Canny’s method that finds the lo-
cal maxima along the gradient direction [2]. Most common edge detection
schemes consist of three such operations: differentiation, smoothing and edge

labeling [15].

First, differentiation is necessary to identify edges. We compute gradient vec-
tors represented by v/ f using central differences. || 7 f || stands for its mag-
nitude and the normalized vector is computed and denoted by 7 = ﬁ.
The frequently used second-order derivative operators are the Laplacian and
the directional second-order derivative (DSD). In this paper, we compute and
use the DSD along the gradient direction. The DSD operator is defined by
92 =

L =a-v Il

Second, for smoothing purposes of data with substantial edge preservation, a

2
bilateral filter [14] is applied to || 7 f || and %. The domain component is

Wa(Z) and the range component is W, (Z) for each voxel, 7 = (i j k)”:

Wa(Z) = exp [— 7(”’:3‘”’] , 7€ Ny (1)
and
WT‘(f) = exp |:7 (f(i);gf(g))z} , g’ I Nf; (2)

where Ny is a neighbor set of #. W,(#) computes the weights of each voxel
based on the spatial distance at &, W, (&) measures the “photometric” similar-
ity between the function values of # and the neighborhood. A bilateral filter,
f(f), is composed of the two components and is described as follows:

5 o Lgeny Wa(Z)W, (Z) f(Z)
1@ = S gen; Wa(Z)W,(7))

Finally, edge labeling is used to identify authentic edges (surface boundaries
in 3D) while suppressing false edges, caused primarily by noise and the non-
maximum high value of || \7f ||. Some error accumulation in the derivative
computations also results in non-trivial false edges. However, in this paper, we
assume that our input volume data have reasonably high signal-to-noise ratio
and a pre-application of the bilateral filter solves the error accumulation in
differentiation. We, therefore, only consider removal of the “phantom edges”
(as defined in [3]) due to the multiple local maxima of || 7 f ||.

3 Distance to a Boundary

Direct volume rendering does not require extraction of geometric structures
such as triangles to visualize interesting boundaries within volumetric data. In-
stead, it is enough to assign appropriate transparencies for all voxels. In other

words, if a voxel is exactly on a boundary and we wish to visualize the bound-
ary then the voxel is assigned to be totally opaque. Furthermore, for voxels
away from a boundary, the opaqueness should decrease. Transparency deci-
sions are closely related to the distance from a voxel to a boundary. Knowing
the voxel distance from a boundary, one can easily set up voxel transparency.
In this section, we present how to compute the distance from a voxel to an
authentic boundary.

The distance is computed by tracing two rays in both the positive (+v7 f) and
negative (— 57 f) directions from each voxel location. One of the directions is
selected in which || \7f || increases. The two values of || 5/ f || and % are tri-
linearly interpolated at several sampling locations along the two rays. The goal
is to locally and efficiently determine the zero-crossing locations of %. Since
the vector of 7 f is perpendicular to the boundary [15], by following one of the
positive or negative directions, one is guaranteed to find an authentic boundary
in 3D space. Fig. 1 shows a 2D example on computing the distance from a
voxel to an authentic boundary edge along the negative gradient direction.

Ideal graphs of f(z), f'(x), and f"(z) are also shown.

False Boundary
|/ Grafdient Vector
———’/
Voxel Sainpling Locations Authentic
LT / Edge
Hit | —*% .
Location f [<=—Distance = f
oxel
-—— "
False Positive Negative E.Z:ilse
. R , e
Authentic Boundary Edge Direction Direction) £

Fig. 1. 2D Example on the Distance Computation (Left Fig.) and Ideal Graphs of
f(x), f'(x), and f"(x) along the Directions of + 17 f (Right Fig.): The distance
from a voxel to a boundary can be computed by shooting a ray along one of the
directions of + v/ f.

Based on Kindlmann’s ideal boundary model [8] of Eq.(4), the three values of
£, I vf || and gzé are changed as shown in Fig. 1(right) along the directions
of + 57 f. Sampling locations are computed by #,(t) = & + t||§§E§§||a where
“dimae < t < dpaz- When f"(Z,(t1)) x f"(Zs(t2)) < 0 is true, an authentic
boundary is between the two sampling points. Once we find ¢; and t,, we use
the bisection method [1] to obtain an exact location. Experimentally, we define
the sampling interval and dp., such as Lpy,/5 and Ly, X 15 respectively,
where L, = Min(width of a voxel, height of a voxel, depth of a voxel).

1+ erf(-2-)

v = f(:l?) = Umin T (Umam - Umin) 9 o2 (4)

To verify the nearest boundary finding algorithm, we generated the Sphere
dataset with the ideal boundary model Eq. 4 and the sphere equation (z? +
y? + 22 = r?). Since Eq. 4 is a function of distance, the function value at a
voxel location P(p,, py,p,) is:

2192192 o
1 + erf(M2ePuipz Ty

ov2 (5)

v = f(.'E) = Umin + (vmaw - vmin) 9

For the Sphere dataset, the nearest boundary of a voxel is on the line that
connects the voxel and the origin. We can write the equation of a line using
the gradient vector (7 f) and voxel location (P) as

L= Vf Xt+P = (Tpxanyanz) X t+ (pxapyapz)a (6)

where ,
T — e 202 (Umaz - Umz'n) (7)

oV 2m,/p2 + p?/ + p?

To find the nearest boundary point, there should exist ¢ for L = \yf xt+ P =
(0,0,0). Therefore, we get

2
(«/p,%+p§+p§—r)

e” = oV2m/p2+ p2+p? -
t = 8

Umin — VUmaz

Since there exists only one t for each line equation at P, we can say that
the line passes through the origin. Therefore, the nearest boundary finding
algorithm converges to a nearby boundary point for the Sphere volume dataset.
However, there is no simple way to prove the algorithm for general datasets
such as Tooth and Torso. We suggest another experimental measurement of
dot products between the two gradient vectors of a voxel and the nearest
boundary point found by the algorithm. The dot product should be close to
1, if the boundary point is a nearest one, which is clear in the Sphere dataset.

In Fig. 2, we computed the average distance and the average gradient mag-
nitude values at each dot product (multiplied by 100 in the graphs). We also
computed the ratio (%) of the number of voxels at each dot product to the to-
tal number of voxels and it is accumulated along the horizontal axis. To remove
outliers, two threshold values are used. One is for the gradient magnitude at
each voxel location (=5.0) and the other is for the gradient magnitude at the
boundary (=20.0). The first one is to remove false boundary in homogeneous
regions and the second one is for noise boundary. The average dot products
of Tooth and Torso are 0.9909 and 0.9553 respectively. The both datasets are

)
=1
-

=)

= = = Gradvag
— —Acc. Percent 4
Distance

=

™~
IS

Distance

Percent (%)

ro

0.99 0.98 0.97 0.96 0.95 0.34 0.93
- = =GradMag 337274 | 329649 | 329649 | 329649 | 329649 | 329649 | 32.9649
— —Acc. Percent 994 100 100 100 100 100 100
Distance 3327563 | 6365760 | 6365759 | 6.3607H0 | 63656750 | 6365759 | 6365759

Dot Products

(a) Sphere (Synthesized data by the ideal boundary model, Eq. 5)
Average dot product = 0.9994

120 5
120 5 4.5
100
4 45 - =]
o0 _ AL Tenl” e —m— T 4
- /\/\/?/\f 19 e 80 - 135
X rd
L 135 £, - - -GradMag 3 g
e [—
< - - -Gradviag 13 o c — - Acc. Percent| | C
e c @60 25 =
= — =Acc. Percent| | o5 g 0 — Distance L
8 —Distance 2 o 2 Qa
5 128 e —— 115
a / ______________ ..l . 115 _// -
oo 177 41 20 H {
105 0.5
0 9 0 L 0
IR N A S R ORI PG ® R PR D PR LR
Dot Products Dot Products
(a) Tooth (b) Torso

Average dot product = 0.9909 Average Dot product = 0.9553

Fig. 2. Dot Products and Accumulated Percents: The sphere dataset is generated
from the ideal boundary model with ¢ = 3.0 and radius = 15. The horizontal
axis of each graph represents the dot product values (x 100) between the two
gradient vectors of a voxel and the nearest boundary computed by the algorithm.
The vertical axis represents accumulated percent (left) and distance (right). The
left vertical axis is also used for the gradient magnitude. The dashed lines represent
the accumulated percent along the horizontal axis. The solid and dotted lines show
the average distance and gradient magnitude at each dot product value respectively.

close to the synthesized sphere dataset (0.9994). Therefore, we can say that
the nearest boundary finding algorithm converges to a nearby boundary. From
Fig. 2, it is also known that the error increases with the distance.

Fig. 3 shows the results of the distance computation as well as a slice through
these different datasets: all distance values are flipped to provide easy bound-
ary perception in the images. The ideal boundary model of Eq. 4 is used to
generate the volume data of Fig. 3 (a). The bright grey colors of Fig. 3 (a)
(right) and (b) (right) represent the boundary of the volume dataset. Unlike
the synthesized data, Fig. 3 (b) (right) shows noise-like bright colors in the ho-
mogeneous regions of the tooth dataset. The main reason of the noisy bound-
ary is that there are many zero-crossing locations of gzé with the small value of
|| V£ |l in the homogeneous regions. Fig. 3 (c¢) shows more complex boundaries
of the CT-angio Torso dataset. Similar patterns are repeated as in the tooth

(c) Torso (70th CT Image)

Fig. 3. Slice Images of Volume Datasets and Distance Computation Results: The
left-hand side of (a) is a slice image of the volume data generated with an ideal
spherical boundary model of Eq. 4 and the distance computation results are on the
right-hand side. (b) (left) is a slice from a Computed Tomography (CT) dataset of
a human tooth and (b) (right) shows the distance map for this image. Similarly, the
images of (c) are generated from a CT-angio Torso volume dataset, the middle image
box of (c) is enlarged in the right-hand side. Each dataset resolution is following:
Sphere(1283), Tooth(256 x 256 x 161), and Torso(512 x 512 x 181).

dataset. The noisy boundary is easily removed from the multi-dimensional
transfer functions by deselecting the low gradient magnitude regions.

4 Multi-Dimensional Transfer Functions

For our multi-dimensional transfer functions, we combine a distance based
function with 2D opacity functions that is based on intensity (v) and gradient
magnitude (g). The combined transfer function thus has both user control and
an automatic generation of each voxel transparency.

4.1 Opacity Functions of Distance

Once we decide the distance from each voxel to a boundary, each voxel trans-
parency can be easily computed as a suitable function of distance. We suggest

three different opacity functions (linear, concave, and convex) as shown in
Fig. 4. The linear opacity function maps a linearly flipped distance, while the
concave and convex functions use the n-th power of the distance to control
the boundary thickness. For larger value of n, the convex function generates
thicker boundaries. Similarly, thinner boundaries can be generated using the
concave functions with larger n’s. The three distance functions are represented
as following:

d
aq(d) = Max(—a; ta, 0), 9)
a(ld—d,|)"ifd<d,
ag(d) = ¢ : (10)
0 others
and
dn
aq(d) = Maz (-2 Zn +a, 0), (11)

where 0 < d. < dppaz, 0 < a <1,and n > 1. Eq. 9, 10 and 11 are the linear
(Fig. 4 (a)), concave (Fig. 4 (b)), and convex (Fig. 4 (c)) opacity functions
respectively. The spatial effect of the three opacity functions are controlled by
the two variables of d. and a, while the shape of the nonlinear functions is
dominated by n.

ak a a
a- a a
0 dc DV 0 de p 0 dc ;
(a) Linear Map (b) Concave Nonlinear (€) Convex Nonlinear

Fig. 4. Alpha Maps

The opacity function, ay(d), automatically computes each voxel transparency
for the entire scalar volume dataset. However, when one wishes to visualize
only a small range of intensity (v) values, one cannot accomplish it with the
opacity function alone, since it does not have v as a parameter. To achieve sub-
range selection flexibility, we define another function of v, a,(v), that is user
specified. The final opacity values of each voxel are then computed by a,(v) x
ag(d). Our transfer function thus has both automatic opacity generation and
user control. In other words, once a user specifies some range of v with a,(v),
each voxel opacity is automatically generated by ay(d) using one of the alpha
maps of Fig. 4.

4.2 Gradient Magnitude for the Second Azxis

Most multi-dimensional transfer functions have gradient magnitude (g), as the
secondary axis, while intensity (v) works as the primary axis. The 2D transfer
functions of v and g are more powerful than the 1D functions of v [9] [10].
However, as the transfer function domain is extended to 2D space, it makes it
more difficult to search and locate features. To reduce the search time in the
2D space of v and g, we replace the values of || 7f || with the interpolated
values at the boundary hit location (Fig. 1). This makes all voxels have the
local maximum values of || \7f || along the direction of 7 f instead of their
previous values.

(c) Torso

Fig. 5. Normal (Left) and Stretched (Right) Histograms: The horizontal axis rep-
resents function values (v) and the vertical axis represents gradient magnitude,

£ 15 (9)-

Fig. 5 shows the resulting histogram (the right-hand side of each box) of the
voxel value replacement as well as the original 2D histogram (the left-hand
side of each box). While the voxel value replacement generates clearer and
simpler histograms for the spherical and Tooth datasets, the histogram is still
murky for the Torso dataset. This is not because the Torso dataset does not
have clear boundaries, but because several complex boundaries are condensed
in a very small region.

There are two benefit of the above voxel replacement. First, curved features in
the v and g space are mapped to straight line features (Fig. 5 (a) (right)) as
well as parallel with the horizontal axis, thereby making it easier for user sub-
range specification. Second, when two different curves are partially overlapped
in the original histogram, they become separated at each maximum value of

|| Vf ||. More details on this benefit are shown in the next section, via our
example application on these volumetric datasets.

The 1D opacity function, a4(d), is easily extended to a 2D opacity function
of v and g, represented as (v, g), where g represents the local maximum
of | vf || along 7f. Therefore, each voxels opacity is finally decided by
ay (v, g) X ag(d). The 2D opacity function, «,(v,g), is controlled by a user
like Kniss’s function [9], but the opacity values can be 1 (meaning completely
opaque) unlike Kniss’s function over selected regions. Once an interesting area
is selected in the 2D space of v and g with (v, g), the opacity function
of distance, a4(d), automatically generates alpha values. The domain of d
replaces Kniss’s directional second derivative axis.

5 Hardware Implementation and Example Applications

We have implemented a 3D texture-based volume renderer in PCs equipped
with nVidia graphics cards such as GeForce3, 4, and FX [12]. Multi-dimensional
transfer functions can also be implemented on a PC equipped with such graph-
ics cards that provide at least four 3D multi-textures and dependent texture
reads with register combiners. Fig. 6 (a) shows the rendering pipeline for such
cards and (b) is the equivalent Cg Program [4]. In this pipeline, dependent
textures are used for implementing the opacity function, «,(v, g) that is con-
trolled by a user and the texture look-up table is used for a distance-based
function, ay4(d).

The volume rendering pipeline requires six components, RGB normal (three
components), intensity (v), gradient (g), and distance (d), for each voxel. If we
wish to visualize a 256° volume dataset, (=16 Mbytes), then we need at least
256% x 6, (=96 Mbytes), texture memory. The RGB normal texture can be
compressed using the s3tc format [12], one of the ARB OpenGL extensions,
to reduce the texture memory requirement with an image quality trade-off.

Fig. 7 shows the result images rendered by the transfer functions of a, (v, g) x
ag4(d). Each area of A through E are rendered individually and any combina-
tion of the areas can be rendered at the same time like the image of C and
D. The A, B, D, and E areas are rendered with the convex alpha map of the
parameters, a = 1, d. = dpqe, and n = 3 (which generate thick boundaries)
and the C area is with the concave map of a = 0.4, d, = dypez, and n = 9
(which make thin boundaries). We experimentally defined the parameters to
obtain visually smooth continuity between the two areas of C and D. Fig. 8
shows the Torso dataset images. To render the two areas of A and B at the
same time, we make A area semi-transparent with «,(v,g) = 0.15 and the
linear map of a = 1, d, = d,4z, and n = 3 are used for both areas.

10

1 float3 Expand(float3 Vector) { return (Vector - 0.5)*2.0; }

Dependent Texture)

Volume Data a.(v,g) Clv, g

w2

14 float3 Specularf3 = float3(Power8 , Power8 , Power8);
15 float3 vg_Tex = tex3D(vg_Map, TexCoor).rgb;// (v, g) of Each Voxel

Conversion through

2 void main (float3 TexCoor : TEXCOORDOQ, // Texture Coordinates
3 out float4 oColor : COLOR, // Output RGBA
4 uniform sampler3D RGB_NormalMap, /I Voxel Normal, Tex2
e L L e TP 5 uniform sampler3D DistanceMap, // Distance, Tex3
__| Dot Product (L N) [Diffuse ! 6 uniform sampler3D vg_Map, I (v, g), Tex0
e | ' 7 uniform sampler2D TwoDimTF, /I User Defined, Tex1
"""" ! 8 uniform float3 Lightv, /I Light Vector
1 9 uniform float3 Halfv) { // Half Vector
! 10 float3 Normal = Expand(tex3D(RGB_NormalMap, TexCoor).rgb);
: 1" float Diffuse = abs (dot (Normal, Lightv)); // Diffuse Color
ffffffff : 12 float Specular = abs (dot (Normal, Halfv)); // Specular Color
3 13 float Power8 = pow(Specular, 8); // 8th Power of Specular

M‘ Lok Up Table 16 float4 TwoDim_RGBA = tex2D(TwoDimTF, float2(vg_Tex.x, vg_Texy));
17 float4 DistanceTex = tex3D(DistanceMap, TexCoor); // Distance-Based o
ffffffffffff i 18 oColor.w = Distance Tex.w*TwoDim_RGBA.w;
Register Combiners 19 oColor.xyz = (Diffuse*TwoDim_RGBA xyz + Specularf3)*oColor.w; }

(a) Register Combiners (b) Equivalent Cg Program

Fig. 6. Rendering Pipeline for nVidia GeForce Cards: (a) shows the rendering
pipeline with register combiners and (b) is the equivalent Cg program of (a). In
the pipeline, three texture volume datasets, a light vector, and a half vector are
fed into the register combiners. After the user defined 2D dependent texture (Tex1)
converts the (v,g) data into RGB colors and alpha values, the combiners computes
the output of final RGB colors and alpha values with diffuse and specular colors.
The solid lines represent data flow and processes, while the dashed line indicates
register combiners.

Since, when we make volume datasets, the gradient magnitude values of each
voxel are replaced with the local maxima at the hit locations (explained in 4.2),
it is easy to select overlapped features. For example, the histogram of B is
partially overlapped with the graphs of A, C and D in the normal case of
Fig. 7 (top right). Therefore, it is not easy to select only the feature of B, when
one uses normal graphs. However, in the stretched histogram, the feature B
can be selected, while removing all other features, since the four features are
separated in v and g space.

6 Conclusions and Extensions

In this paper, we have presented a new multi-dimensional transfer function
that has both user control and automatic alpha value generation. When two
or more features are overlapped in the normal histogram, it is usually diffi-
cult to visually distinguish them separately. However, this task is significantly
alleviate with our stretched histogram, as at least one or two overlapped fea-
tures can be selected and visualized, while removing others. Unlike traditional
transfer functions, our new transfer function also provides automatic alpha
value generation on a per voxel basis.

For extensions, we are currently considering semi-automatic ways of gener-
ating a4(d) dependent with a, (v, g). Another improvement map is to reduce
the preprocessing time of computing the distance. Finally, when a dataset
contains many complex features in a small area of the v-g histogram like the

11

D E C and D

Fig. 7. Feature Selection with the Stretched Histogram and Rendering Results of
the Tooth Dataset: T (left) shows feature selection on the stretched histogram and
each box is located in the same place on the normal histogram (right). Each region
is rendered in the images of A through E.

Torso dataset, it is hard to recognize the features through even the stretched
histogram. We are considering alternate transfer functions to better separate
the features in the transformed histogram.

7 Acknowledgments

This research was supported in part by NSF grants INT-9987409, ACI-022003,
ETA-0325550, NIH grant OP20 RR020647, a grant from the Whitaker founda-
tion, and a subcontract UCSD 1018140 as part of the NSF-NPACI, Interaction
Environments Thrust.

12

Fig. 8. Feature Selection of the Torso Dataset: The selected areas in T are rendered
in the images of A and B.

References

[1]

2]

J. L. Buchanan and P. R. Turner. Numerical Methods and Analysis. McGraw-
Hill, Inc., 1992.

J. Canny. Finding edges and lines in images. Master’s thesis, Massachusetts
Institude of Technology, 1983.

J. J. Clark. Authenticating edges produced by zero-crossing algorithms. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(1):43-57, 1989.

R. Fernando and mark J. Kilgard. The Cg Tutorial. Addison-Wesly, 2003.

S. F. F. Gibson. Constrained elastic surface nets: generating smooth surfaces
from binary segmented data. In Medical Image Computation and Computer
Assisted Surgery, pages 888—898, 1998.

S. F. F. Gibson. Using distance maps for accurate surface representation in
sampled volume. In Volume Visualization Symposium, pages 23-30. IEEE, 1998.

G. Kindlmann. Multidimensional transfer functions for interactive volume
rendering: Design, interface, interaction. SIGGRAPH Course Notes, 8(3), 2002.

G. Kindlmann and J. W. Durkin. Semi-automatic generation of transfer
functions for direct volume rendering. In Proceedings of the 1998 IEEE
Symposium on Volume Visualization, pages 79-86, October 1998.

13

[9] J. Kniss, G. Kindlmann, and C. Hansen. Interactive volume rendering using
multi-dimensional transfer functions and direct manipulation widgets. In
Proceedings of the Conference on Visualization, pages 255-262, October 2001.

[10] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer functions
for interactive volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 8(3):270-285, 2002.

[11] M. Levoy. Display of surfaces from volume data. Computer Graphics and
Applications, 8(5):29-37, 1988.

[12] NVIDIA. NVIDIA OpenGL Extension Specifications. NVIDIA Corporation,
December 2004. http://developer.nvidia.com/object/nvidia-opengl-specs.html.

[13] S. Park and C. Bajaj. Multi-dimensional transfer function design for scientific
visualization. In Fourth Indian Conference on Computer Vision Graphics and
Image Processing, ICVGIP, pages 23-30, December 2004.

[14] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
pages 839-846, January 1998.

[15] D. Ziou and S. Tabbone. Edge detection techniques - an overview. Pattern
Recognition and Image Analysis, 8(4):537-554, 1998.

14

