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AbstratDiret volume rendering maps data values to visual properties suh as transparenyand olor through transfer funtions. Traditional multi-dimensional funtions aregenerated based on a 2D histogram of funtion value and gradient magnitude. Whentwo di�erent features overlap in the 2D histogram, the traditional transfer funtionsannot visually distinguish the features, sine overlapped areas have similar visualproperties. In this paper, we desribe a new multi-dimensional transfer funtion thatenables visual di�erentiation of features even in the ase when two di�erent featuresoverlap in the 2D histogram. Furthermore, we provide details of an implementationof our transfer funtion on modern programmable graphis hardware.Key words: Volume Rendering, Transfer FuntionsPACS:1 IntrodutionDiret volume rendering enables visualization of volume data without �rstresorting to the geometry of triangles. It simply maps eah volume element (orvoxel) to visual properties suh as opaity and olor and then omposites theproperties into an image. The onversion is done via transfer funtions. Goodtransfer funtions produe good images that aentuate interesting struturesin volume data while removing uninteresting regions. However, it is diÆultto onstrut good transfer funtions. Kindlmann's survey [7℄ reviews manyversions of transfer funtions and divides them into the two ategories ofdata-driven and image-driven funtions. In this paper, we extend the resultsof [13℄ (a data-driven multi-dimensional transfer funtion) with more detailedexposition on feature seletion and e�etively demonstrate that our multi-dimensional transfer funtions are signi�antly better to visually distinguishoverlapped features than traditional transfer funtions.Preprint submitted to Elsevier Siene 20 January 2006



Related WorkTwo-dimensional (2D) transfer funtions of funtion value (v) and gradi-ent magnitude (g) were suggested by Levoy [11℄. He also proposed semi-transparent multiple surfae visualization. The Kindlmann's survey [7℄ ex-plains many kinds of transfer funtions, but only a few multi-dimensionaltransfer funtions have been developed. As transfer funtion domains are ex-tended to two and three dimensions, the funtion yields more power in featureseletion [9℄ [10℄. For the same reason, it is diÆult to set values manually.Nevertheless Kniss et al. [10℄ suggested a onvenient user interfae widgetsfor setting three-dimensional (3D) transfer funtions. Users, however, stillneeded to deide voxel transparenies from the displayed information of thetwo-dimensional (2D) histogram of v and g, while seleting interesting regions.Kindlmann and Durkin [8℄ suggest the semi-automati transfer funtion gener-ation method for boundary visualization through 3D histogram volume inspe-tion. The method uses seond derivatives to automatially ompute boundarythikness (�). Based on �, voxel transpareny is omputed in the 2D sub-spae de�ned by v and g. Their method has the following shortomings: iftwo di�erent voxels have the same values of v and g, then they will be setto the same transpareny, even though the voxels belong to di�erent features.In other words, when features overlap in the 2D histogram of v and g, alloverlapped portion are assigned the same transpareny. Distane maps havebeen used for volume rendering in [5℄ and [6℄ for the visualization of binarysegmented volume data. Ziou and Tabbone's survey [15℄ shows several waysto remove phantom edges.The remainder of the paper is organized as follows. In setion 2, we present aboundary detetion method for 3D volumetri data. In setion 3, we explainhow to ompute the distane from a voxel to a boundary using the boundarydetetion method. Based on the distane, we suggest new opaity funtionsin setion 4. In setion 5, we provide details of the implementation of ourtransfer funtion in modern graphis hardware along with several appliationson volumetri datasets Finally, we suggest some extension of our work insetion 6.2 Boundary Detetion in 3D Volume DataSeveral boundary detetion (or edge detetion) algorithms have been pub-lished in the image proessing and pattern reognition literature. One of thetraditional edge detetion tehniques is Canny's method that �nds the lo-al maxima along the gradient diretion [2℄. Most ommon edge detetionshemes onsist of three suh operations: di�erentiation, smoothing and edge2



labeling [15℄.First, di�erentiation is neessary to identify edges. We ompute gradient ve-tors represented by 5f using entral di�erenes. k 5f k stands for its mag-nitude and the normalized vetor is omputed and denoted by ~n = 5fk5fk .The frequently used seond-order derivative operators are the Laplaian andthe diretional seond-order derivative (DSD). In this paper, we ompute anduse the DSD along the gradient diretion. The DSD operator is de�ned by�2f�2~n = ~n � 5 k 5f k.Seond, for smoothing purposes of data with substantial edge preservation, abilateral �lter [14℄ is applied to k 5f k and �2f�2~n . The domain omponent isWd(~x) and the range omponent is Wr(~x) for eah voxel, ~x = ( i j k )T :Wd(~x) = exp �� (~x�~y)T (~x�~y)�2d � ; ~y 2 N~x (1)and Wr(~x) = exp h� (f(~x)�f(~y))2�2s i ; ~y 2 N~x; (2)where N~x is a neighbor set of ~x. Wd(~x) omputes the weights of eah voxelbased on the spatial distane at ~x,Wr(~x) measures the \photometri" similar-ity between the funtion values of ~x and the neighborhood. A bilateral �lter,ef(~x), is omposed of the two omponents and is desribed as follows:ef(~x) = P~y2N~x Wd(~x)Wr(~x)f(~x)P~y2N~x Wd(~x)Wr(~x) (3)Finally, edge labeling is used to identify authenti edges (surfae boundariesin 3D) while suppressing false edges, aused primarily by noise and the non-maximum high value of k 5f k. Some error aumulation in the derivativeomputations also results in non-trivial false edges. However, in this paper, weassume that our input volume data have reasonably high signal-to-noise ratioand a pre-appliation of the bilateral �lter solves the error aumulation indi�erentiation. We, therefore, only onsider removal of the \phantom edges"(as de�ned in [3℄) due to the multiple loal maxima of k 5f k.3 Distane to a BoundaryDiret volume rendering does not require extration of geometri struturessuh as triangles to visualize interesting boundaries within volumetri data. In-stead, it is enough to assign appropriate transparenies for all voxels. In other3



words, if a voxel is exatly on a boundary and we wish to visualize the bound-ary then the voxel is assigned to be totally opaque. Furthermore, for voxelsaway from a boundary, the opaqueness should derease. Transpareny dei-sions are losely related to the distane from a voxel to a boundary. Knowingthe voxel distane from a boundary, one an easily set up voxel transpareny.In this setion, we present how to ompute the distane from a voxel to anauthenti boundary.The distane is omputed by traing two rays in both the positive (+5f) andnegative (�5 f) diretions from eah voxel loation. One of the diretions isseleted in whih k 5f k inreases. The two values of k 5f k and �2f�2~n are tri-linearly interpolated at several sampling loations along the two rays. The goalis to loally and eÆiently determine the zero-rossing loations of �2f�2~n . Sinethe vetor of5f is perpendiular to the boundary [15℄, by following one of thepositive or negative diretions, one is guaranteed to �nd an authenti boundaryin 3D spae. Fig. 1 shows a 2D example on omputing the distane from avoxel to an authenti boundary edge along the negative gradient diretion.Ideal graphs of f(x), f 0(x), and f 00(x) are also shown.

Fig. 1. 2D Example on the Distane Computation (Left Fig.) and Ideal Graphs off(x), f 0(x), and f 00(x) along the Diretions of � 5 f (Right Fig.): The distanefrom a voxel to a boundary an be omputed by shooting a ray along one of thediretions of �5 f .Based on Kindlmann's ideal boundary model [8℄ of Eq.(4), the three values off , k 5f k and �2f�2~n are hanged as shown in Fig. 1(right) along the diretionsof � 5 f . Sampling loations are omputed by ~xs(t) = ~x + t 5f(~x)k5f(~x)k , where�dmax < t < dmax. When f 00(~xs(t1)) � f 00(~xs(t2)) < 0 is true, an authentiboundary is between the two sampling points. One we �nd t1 and t2, we usethe bisetion method [1℄ to obtain an exat loation. Experimentally, we de�nethe sampling interval and dmax suh as Lmin=5 and Lmin � 15 respetively,where Lmin = Min(width of a voxel, height of a voxel, depth of a voxel).v = f(x) = vmin + (vmax � vmin)1 + erf( x�p2)2 (4)4



To verify the nearest boundary �nding algorithm, we generated the Spheredataset with the ideal boundary model Eq. 4 and the sphere equation (x2 +y2 + z2 = r2). Sine Eq. 4 is a funtion of distane, the funtion value at avoxel loation P (px; py; pz) is:v = f(x) = vmin + (vmax � vmin)1 + erf(pp2x+p2y+p2z�r�p2 )2 (5)For the Sphere dataset, the nearest boundary of a voxel is on the line thatonnets the voxel and the origin. We an write the equation of a line usingthe gradient vetor (5f) and voxel loation (P ) asL = 5f � t + P = (Tpx; T py; T pz)� t + (px; py; pz); (6)where T = e��pp2x+p2y+p2z�r�22�2 (vmax � vmin)�p2�qp2x + p2y + p2z (7)To �nd the nearest boundary point, there should exist t for L = 5f � t+P =(0; 0; 0). Therefore, we gett = e�pp2x+p2y+p2z�r�22�2 �p2�qp2x + p2y + p2zvmin � vmax (8)Sine there exists only one t for eah line equation at P , we an say thatthe line passes through the origin. Therefore, the nearest boundary �ndingalgorithm onverges to a nearby boundary point for the Sphere volume dataset.However, there is no simple way to prove the algorithm for general datasetssuh as Tooth and Torso. We suggest another experimental measurement ofdot produts between the two gradient vetors of a voxel and the nearestboundary point found by the algorithm. The dot produt should be lose to1, if the boundary point is a nearest one, whih is lear in the Sphere dataset.In Fig. 2, we omputed the average distane and the average gradient mag-nitude values at eah dot produt (multiplied by 100 in the graphs). We alsoomputed the ratio (%) of the number of voxels at eah dot produt to the to-tal number of voxels and it is aumulated along the horizontal axis. To removeoutliers, two threshold values are used. One is for the gradient magnitude ateah voxel loation (=5.0) and the other is for the gradient magnitude at theboundary (=20.0). The �rst one is to remove false boundary in homogeneousregions and the seond one is for noise boundary. The average dot produtsof Tooth and Torso are 0.9909 and 0.9553 respetively. The both datasets are5



(a) Sphere (Synthesized data by the ideal boundary model, Eq. 5)Average dot produt = 0.9994
(a) Tooth (b) TorsoAverage dot produt = 0.9909 Average Dot produt = 0.9553Fig. 2. Dot Produts and Aumulated Perents: The sphere dataset is generatedfrom the ideal boundary model with � = 3:0 and radius = 15. The horizontalaxis of eah graph represents the dot produt values (� 100) between the twogradient vetors of a voxel and the nearest boundary omputed by the algorithm.The vertial axis represents aumulated perent (left) and distane (right). Theleft vertial axis is also used for the gradient magnitude. The dashed lines representthe aumulated perent along the horizontal axis. The solid and dotted lines showthe average distane and gradient magnitude at eah dot produt value respetively.lose to the synthesized sphere dataset (0.9994). Therefore, we an say thatthe nearest boundary �nding algorithm onverges to a nearby boundary. FromFig. 2, it is also known that the error inreases with the distane.Fig. 3 shows the results of the distane omputation as well as a slie throughthese di�erent datasets: all distane values are ipped to provide easy bound-ary pereption in the images. The ideal boundary model of Eq. 4 is used togenerate the volume data of Fig. 3 (a). The bright grey olors of Fig. 3 (a)(right) and (b) (right) represent the boundary of the volume dataset. Unlikethe synthesized data, Fig. 3 (b) (right) shows noise-like bright olors in the ho-mogeneous regions of the tooth dataset. The main reason of the noisy bound-ary is that there are many zero-rossing loations of �2f�2~n with the small value ofk 5f k in the homogeneous regions. Fig. 3 () shows more omplex boundariesof the CT-angio Torso dataset. Similar patterns are repeated as in the tooth6



(a) Sphere (� = 3:0) (b) Tooth (85th CT Image)
() Torso (70th CT Image)Fig. 3. Slie Images of Volume Datasets and Distane Computation Results: Theleft-hand side of (a) is a slie image of the volume data generated with an idealspherial boundary model of Eq. 4 and the distane omputation results are on theright-hand side. (b) (left) is a slie from a Computed Tomography (CT) dataset ofa human tooth and (b) (right) shows the distane map for this image. Similarly, theimages of () are generated from a CT-angio Torso volume dataset, the middle imagebox of () is enlarged in the right-hand side. Eah dataset resolution is following:Sphere(1283), Tooth(256 � 256 � 161), and Torso(512 � 512 � 181).dataset. The noisy boundary is easily removed from the multi-dimensionaltransfer funtions by deseleting the low gradient magnitude regions.4 Multi-Dimensional Transfer FuntionsFor our multi-dimensional transfer funtions, we ombine a distane basedfuntion with 2D opaity funtions that is based on intensity (v) and gradientmagnitude (g). The ombined transfer funtion thus has both user ontrol andan automati generation of eah voxel transpareny.4.1 Opaity Funtions of DistaneOne we deide the distane from eah voxel to a boundary, eah voxel trans-pareny an be easily omputed as a suitable funtion of distane. We suggest7



three di�erent opaity funtions (linear, onave, and onvex) as shown inFig. 4. The linear opaity funtion maps a linearly ipped distane, while theonave and onvex funtions use the n-th power of the distane to ontrolthe boundary thikness. For larger value of n, the onvex funtion generatesthiker boundaries. Similarly, thinner boundaries an be generated using theonave funtions with larger n's. The three distane funtions are representedas following: �d(d) = Max(�a � dd + a; 0); (9)�d(d) = 8><>: adn (j d� d j)n if d < d0 others ; (10)and �d(d) =Max(�a � dndn + a; 0); (11)where 0 < d � dmax, 0 � a � 1, and n > 1. Eq. 9, 10 and 11 are the linear(Fig. 4 (a)), onave (Fig. 4 (b)), and onvex (Fig. 4 ()) opaity funtionsrespetively. The spatial e�et of the three opaity funtions are ontrolled bythe two variables of d and a, while the shape of the nonlinear funtions isdominated by n.
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D DDFig. 4. Alpha MapsThe opaity funtion, �d(d), automatially omputes eah voxel transparenyfor the entire salar volume dataset. However, when one wishes to visualizeonly a small range of intensity (v) values, one annot aomplish it with theopaity funtion alone, sine it does not have v as a parameter. To ahieve sub-range seletion exibility, we de�ne another funtion of v, �u(v), that is userspei�ed. The �nal opaity values of eah voxel are then omputed by �u(v)��d(d). Our transfer funtion thus has both automati opaity generation anduser ontrol. In other words, one a user spei�es some range of v with �u(v),eah voxel opaity is automatially generated by �d(d) using one of the alphamaps of Fig. 4. 8



4.2 Gradient Magnitude for the Seond AxisMost multi-dimensional transfer funtions have gradient magnitude (g), as theseondary axis, while intensity (v) works as the primary axis. The 2D transferfuntions of v and g are more powerful than the 1D funtions of v [9℄ [10℄.However, as the transfer funtion domain is extended to 2D spae, it makes itmore diÆult to searh and loate features. To redue the searh time in the2D spae of v and g, we replae the values of k 5f k with the interpolatedvalues at the boundary hit loation (Fig. 1). This makes all voxels have theloal maximum values of k 5f k along the diretion of 5f instead of theirprevious values.
(a) Sphere (� = 3) (b) Tooth

() TorsoFig. 5. Normal (Left) and Strethed (Right) Histograms: The horizontal axis rep-resents funtion values (v) and the vertial axis represents gradient magnitude,k 5f k, (g).Fig. 5 shows the resulting histogram (the right-hand side of eah box) of thevoxel value replaement as well as the original 2D histogram (the left-handside of eah box). While the voxel value replaement generates learer andsimpler histograms for the spherial and Tooth datasets, the histogram is stillmurky for the Torso dataset. This is not beause the Torso dataset does nothave lear boundaries, but beause several omplex boundaries are ondensedin a very small region.There are two bene�t of the above voxel replaement. First, urved features inthe v and g spae are mapped to straight line features (Fig. 5 (a) (right)) aswell as parallel with the horizontal axis, thereby making it easier for user sub-range spei�ation. Seond, when two di�erent urves are partially overlappedin the original histogram, they beome separated at eah maximum value of9



k 5f k. More details on this bene�t are shown in the next setion, via ourexample appliation on these volumetri datasets.The 1D opaity funtion, �d(d), is easily extended to a 2D opaity funtionof v and g, represented as �u(v; g), where g represents the loal maximumof k 5f k along 5f . Therefore, eah voxels opaity is �nally deided by�u(v; g) � �d(d). The 2D opaity funtion, �u(v; g), is ontrolled by a userlike Kniss's funtion [9℄, but the opaity values an be 1 (meaning ompletelyopaque) unlike Kniss's funtion over seleted regions. One an interesting areais seleted in the 2D spae of v and g with �u(v; g), the opaity funtionof distane, �d(d), automatially generates alpha values. The domain of dreplaes Kniss's diretional seond derivative axis.5 Hardware Implementation and Example AppliationsWe have implemented a 3D texture-based volume renderer in PCs equippedwith nVidia graphis ards suh as GeFore3, 4, and FX [12℄. Multi-dimensionaltransfer funtions an also be implemented on a PC equipped with suh graph-is ards that provide at least four 3D multi-textures and dependent texturereads with register ombiners. Fig. 6 (a) shows the rendering pipeline for suhards and (b) is the equivalent Cg Program [4℄. In this pipeline, dependenttextures are used for implementing the opaity funtion, �u(v; g) that is on-trolled by a user and the texture look-up table is used for a distane-basedfuntion, �d(d).The volume rendering pipeline requires six omponents, RGB normal (threeomponents), intensity (v), gradient (g), and distane (d), for eah voxel. If wewish to visualize a 2563 volume dataset, (=16 Mbytes), then we need at least2563 � 6, (=96 Mbytes), texture memory. The RGB normal texture an beompressed using the s3t format [12℄, one of the ARB OpenGL extensions,to redue the texture memory requirement with an image quality trade-o�.Fig. 7 shows the result images rendered by the transfer funtions of �u(v; g)��d(d). Eah area of A through E are rendered individually and any ombina-tion of the areas an be rendered at the same time like the image of C andD. The A, B, D, and E areas are rendered with the onvex alpha map of theparameters, a = 1, d = dmax, and n = 3 (whih generate thik boundaries)and the C area is with the onave map of a = 0:4, d = dmax, and n = 9(whih make thin boundaries). We experimentally de�ned the parameters toobtain visually smooth ontinuity between the two areas of C and D. Fig. 8shows the Torso dataset images. To render the two areas of A and B at thesame time, we make A area semi-transparent with �u(v; g) = 0:15 and thelinear map of a = 1, d = dmax, and n = 3 are used for both areas.10



(a) Register Combiners (b) Equivalent Cg ProgramFig. 6. Rendering Pipeline for nVidia GeFore Cards: (a) shows the renderingpipeline with register ombiners and (b) is the equivalent Cg program of (a). Inthe pipeline, three texture volume datasets, a light vetor, and a half vetor arefed into the register ombiners. After the user de�ned 2D dependent texture (Tex1)onverts the (v,g) data into RGB olors and alpha values, the ombiners omputesthe output of �nal RGB olors and alpha values with di�use and speular olors.The solid lines represent data ow and proesses, while the dashed line indiatesregister ombiners.Sine, when we make volume datasets, the gradient magnitude values of eahvoxel are replaed with the loal maxima at the hit loations (explained in 4.2),it is easy to selet overlapped features. For example, the histogram of B ispartially overlapped with the graphs of A, C and D in the normal ase ofFig. 7 (top right). Therefore, it is not easy to selet only the feature of B, whenone uses normal graphs. However, in the strethed histogram, the feature Ban be seleted, while removing all other features, sine the four features areseparated in v and g spae.6 Conlusions and ExtensionsIn this paper, we have presented a new multi-dimensional transfer funtionthat has both user ontrol and automati alpha value generation. When twoor more features are overlapped in the normal histogram, it is usually diÆ-ult to visually distinguish them separately. However, this task is signi�antlyalleviate with our strethed histogram, as at least one or two overlapped fea-tures an be seleted and visualized, while removing others. Unlike traditionaltransfer funtions, our new transfer funtion also provides automati alphavalue generation on a per voxel basis.For extensions, we are urrently onsidering semi-automati ways of gener-ating �d(d) dependent with �u(v; g). Another improvement map is to reduethe preproessing time of omputing the distane. Finally, when a datasetontains many omplex features in a small area of the v-g histogram like the11
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A B C
D E C and DFig. 7. Feature Seletion with the Strethed Histogram and Rendering Results ofthe Tooth Dataset: T (left) shows feature seletion on the strethed histogram andeah box is loated in the same plae on the normal histogram (right). Eah regionis rendered in the images of A through E.Torso dataset, it is hard to reognize the features through even the strethedhistogram. We are onsidering alternate transfer funtions to better separatethe features in the transformed histogram.7 AknowledgmentsThis researh was supported in part by NSF grants INT-9987409, ACI-022003,EIA-0325550, NIH grant OP20 RR020647, a grant from the Whitaker founda-tion, and a subontrat UCSD 1018140 as part of the NSF-NPACI, InterationEnvironments Thrust. 12
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