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Figure 1: Snapshots of the data passing through the IMAGING-TO-MODELING software system for modeling patient-specific human heart
from CT Angio imaging data. (a) Volume rendering of the input imaging data. (b) Initial geometric model extracted from the data. (c)
Spurious, noisy parts (transparent red) from the initial model are detected and removed to obtain a clean heart geometry (green) (Section
3.1). (d) The geometry is further segmented and annotated according to the six main compartments of heart (Section 3.2). (e) The muscle
wall of the patient heart is built by computing anatomically correct offset surface from (d) (Section 4).

Abstract

Computer Tomography (CT) and in particular super fast, 64 and
256 detector CT has rapidly advanced over recent years, such that
high resolution cardiac imaging has become a reality. In this pa-
per, we briefly introduce a framework that we have built to con-
struct three dimensional (3D) finite-element and boundary element
mesh models of the human heart directly from high resolution CT
imaging data. Although, the overall IMAGING-MODELING frame-
work consists of image processing, geometry processing and mesh-
ing algorithms, our main focus in this paper will revolve around
three key geometry processing steps which are parts of the so-called
IMAGING-MODELING framework. These three steps are geometry
cleanup or CURATION, anatomy guided annotation or SEGMEN-
TATION and construction of GENERALIZED OFFSET SURFACE.
These three algorithms, due to the very nature of the computation
involved, can also be thought as parts of a more generalized model-
ing technique, namely geometric modeling with distance function.
As part of the results presented in the paper, we will show that our
algorithms are robust enough to effectively deal with the challenges
posed by the real-world patient CT data collected from our radiol-
ogist collaborators.
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1 Introduction

Computer aided diagnosis and treatment of cardiovascular disease,
in particular atherosclerosis, left ventricular hypertrophy, valvu-
lar dysfunction, increasingly rely on faithful patient specific mesh
models of heart that can be used in full-cycle simulation of pul-
satile blood flow through the heart. An emerging methodology to
construct spatially realistic human heart models is via super fast,
64 and 256 detector (high resolution) Computer Tomographic (CT)
imaging [Toshiba Medical Systems - 64 Slice CT 2006]. To fur-
ther emphasize the premise of modeling heart from patient-specific
imaging data, we state a few computational biomedical modeling
and simulation examples: 3D computational modeling of the hu-
man heart for a quantitative analysis of cyclical electrical conduc-
tance on the heart membrane [Luo and Rudy 1991; Luo and Rudy
1994; Hodgkin and Huxley 1952; Hille 1992; Winslow et al. 2000];
the biomechanical properties (stress-strain, elasticity) of the heart
ventricular walls [Vetter et al. 1998; Rogers and McCulloch 1994;
Rudy and Plonsey 1980; Costa et al. 1996; Hunter et al. 1988;
Sachse 2004]; and 3D modeling and simulation of pulsatile blood
flow through human arteries/veins for vascular by-pass surgery pre-
planning on a patient specific basis [Taylor et al. 1998b; Taylor et al.
1998a; Taylor et al. 1999; Sahni 2005; Sahni et al. 2005; Yin et al.
2005]. A finite element decomposition of the geometric domain,
capturing the detailed spatial features that can be gleaned from the
imaging, is therefore the essential first step toward performing the



necessary numerical simulations [Hackbusch 1985; Braess 1995;
Brown et al. 1989; de Munck 1992].

Because of such paramount medical importance, modelers have
tried to capture the geometry and displacements from static and
dynamic imaging. While some prior papers have attempted to geo-
metrically model the entire human heart [Mari et al. 2001; Veistera
and Lotjonen 2001; Allouche et al. 2001], others have mainly fo-
cused on functional modeling of cardiac tissue to estimate and study
electrical and mechanical properties of the myocardium or ventric-
ular walls [Simelius et al. 2001; Tilg et al. 2001; Muller et al. 2001;
McVeigh et al. 2001]. However, very few papers provide a compre-
hensive computational processing pipeline for modeling the human
heart based on patient-specific imaging data[Bajaj et al. 2006]. In
this paper, we describe a unified 3D reconstruction and geometric
modeling framework that integrates various image processing and
geometry processing functionalities that are needed to accomplish
this task. A more detailed description of the so-called IMAGING-
TO-MODELING framework for modeling patient-specific cardio-
vascular anatomy being out of the scope of this paper, we focus
primarily on three algorithmic components of the geometry pro-
cessing stage. These three components are CURATION or geometry
cleanup, SEGMENTATION of the inner wall into anatomically rele-
vant sub-components, and GENERALIZED OFFSETING to construct
the outer wall of the heart from the annotated multi-component in-
ner wall.

The organization of the paper is as follows. In Section 2.1 we give a
brief description of the framework including the kind of input data
being processed, so that the reader can appreciate the context of the
algorithms that we further describe in the subsequent sections. In
Section 2.2 we give a brief information on the necessary theoret-
ical and computational background, mainly dealing with distance
function. Due to fundamental similarity of the algorithm applied
for curation and segmentation, we discuss them together in Section
3. In Section 4 we describe the construction of anatomically cor-
rect outer wall from the segmented inner wall of patient heart using
generalized offset technique. Finally, we show the performance of
these techniques on a real-world imaging data in Section 5 and con-
clude in Section 6 with insights and future directions of research.

2 IMAGING-TO-MODELING Framework

2.1 Background

Computer aided diagnosis and treatment relies on the creation of a
suitably discretized and spatially realistic geometric model from CT
imaging data. In this Section, we describe a complete software sys-
tem that takes the input imaging data from the scanners and builds
a linear and/or higher order meshed model of the inner and outer
wall of the patient heart. Although the description of all the com-
ponents of this software system is outside the scope of this paper,
we, nevertheless, indulge ourselves to a brief description to put the
rest of the paper in proper context.

The imaging data that we obtain as the output of CT-Scan essen-
tially gives a three dimensional description of the patient heart and
the surrounding tissue and bone structure. In particular, a dye is
injected into the blood-stream of the patient, and as it circulates the
patient heart, images of the heart and its surroundings are taken us-
ing a scanner. This scanning process is often challenged by several
factors, like motion blur (as the heart is breathing), differing con-
trast of the dye in different chambers of the heart (as the contrast
of the dye decreases as time passes) and its limited ability to distin-
guish between materials (tissue and bone) of nearly same density.

These topics are currently under investigation by the radiologists
and we point the interested readers to any standard source of pub-
lication in this area for a detailed description of the ability, use and
shortcomings of one such state-of-the-art instrument [Goerres et al.
2002; Pinsky et al. 2006]. Moreover, since the dye passes through
the blood-stream, using CT scanner, one can only obtain informa-
tion of the inner-wall of the heart where the blood contacts. The
chambers of the heart surrounded by the inner wall is therefore of-
ten called the blood volume.

Figure 2: Data Flow for Modeling Patient-Specific Human Heart.
The steps marked with asterix are discussed in this paper.

As modeleres of a biological system, although we are limited by
the performance of the scanning instrument, we would like to do
our best to bring out the essential features using the computational
tools that we have in our possession. Toward that goal, we have
built a comprehensive system which takes an imaging data, possibly
flawed with insufficient contrast and noise, and applies a series of
image processing algorithms to improve the quality of the input. It
then applies the geometry processing algorithms to clean-up the ini-
tially extracted geometry and segments the inner-wall into anatom-
ically accurate sub-parts, namely left and right ventricle, left
and right atrium, aorta, and pulmonary artery, and fi-
nally builds a geometric model of the outer wall from this annotated
atlas. As mentioned earlier, we will describe the algorithmic foun-
dations of these three steps in the subsequent subsections. Finally,
we build a linear (triangle/tet) or higher-order (A-patch, NURBS,
quad/hex) mesh of the inner wall, outer wall and the volume in-
between to complete the process. Figure 2 shows a schematic di-
agram of the whole framework with all the modules encapsulated
and the data flow between them. The dashed arrows imply that a
DAG (directed acyclic graph) of the modules inside every unit is
a possible scheduling of the operations and a certain assignment is
usually chosen by the user depending on the nature and quality of
the imaging data.

The overall framework is built with two main processing units -
Image Processing and Geometry Processing. The image processing
unit has the modules for contrast enhancement [Yu and Bajaj 2004],
denoising [Bajaj and Xu 2003], image segmentation [Yu and Ba-
jaj 2002] and contouring/reconstruction [Lorensen and Cline 1987;
Dey and Goswami 2003; Dey and Goswami 2004]. The geome-
try processing unit consists of curation and geometry segmentation
(Section 3), skeleton extraction [Goswami et al. 2006], muscle wall
construction (Section 4), denoising [Bajaj and Xu 2003] and deci-
mation [Bajaj and Xu 2001]. The mesh generation unit is also part
of geometry processing and it has its own modules for linear and
higher order surface and volumetric mesh generation [Bajaj and Xu
2001; Goswami et al. 2007; Labelle and Shewchuk 2007; Zhang
et al. 2008]. While the rest of the algorithms are known and can be
found in the corresponding papers cited therewith, here we focus
on the steps of curation, geometry segmentation and muscle wall
construction.

The snapshot of the raw input data passing through the different



stages of our software system is shown in Figure 1. Subfigure (a)
shows the volume rendering of a CT64 dataset. The rest of figure
shows the initial geometry extracted from the processed imaging
data (cluttered with bones and other tissues), curated geometry (af-
ter removing all the unnecessary parts), annotated atlas of the inner
wall (colored according to anatomical sub-parts), and the wireframe
rendering of the suitably inflated outer wall with the segmented in-
ner wall inside.

2.2 Definitions and Notations

In this subsection, we briefly review some of the basic concepts
related to distance function and its critical points. Readers must
note that an in-depth dealing of these concepts can be found in the
papers cited in this subsection, e.g. [Dey et al. 2003; Goswami et al.
2006].

Distance Function and Its Critical Points: Given a compact
surface Σ, a distance function hΣ assigns to every point x ∈ R3, the
distance to its closest point in Σ. When Σ is sampled by a finite set
of points P, hΣ can be approximated with hP which assigns to ev-
ery x ∈ R3, the distance to the closest sample point in P. Distance
function hΣ and its approximation has been used earlier for geo-
metric modeling. The distance function has been traditionally used
for sample based geometric modeling, e.g. reconstruction [Edels-
brunner 2002; Giesen and John 2003], medial axis approximation
[Chazal and Lieutier 2004], and feature analysis [Dey et al. 2003;
Goswami et al. 2006]. However, very few past works have tried
to establish connection between the distance function induced by a
shape with its biological characteristics [Edelsbrunner et al. 1998].
Recently, Bajaj and Goswami have demonstrated a novel use of
distance function at molecular scale [Bajaj and Goswami 2006]. In
this paper, we provide evidences that, even at a much higher scale
(organ level), distance function based modeling techniques prove
to be extremely useful in bringing out essential features of human
anatomy which are then used to build patient-specific models of the
same.

The critical points of hP is intimately related with the
Voronoi/Delaunay diagram of P. In particular, Siersma showed that
the critical points can be detected by checking the intersection of
the Voronoi elements with their dual Delaunay simplices [Siersma
1999]. This leads to the nice connection that we use in this paper -
maxima are the Voronoi vertices which lie inside their dual Delau-
nay tetrahedra; the minima are the sample points themselves as they
lie inside their Voronoi cells, the index 2 saddle points are the in-
tersections of the Delaunay triangles with dual Voronoi edges, and
index 1 saddle points are the intersections of the Voronoi faces with
their dual Delaunay edges. Note that index of a saddle point indi-
cates the number of independent directions the function decreases
locally around the critical point. Below we mention some of the
basic facts about the distance function (hP) values at the critical
points.

Fact 1 Let c be a critical point that belongs to a Delaunay simplex
σ , then hP(c) equals the radius of the smallest ball enclosing σ .

Note, when c is a maximum, hP(c) is the circumradius of the corre-
sponding Delaunay tetrahedron, when c is an index-2 saddle, hP(c)
is the circumradius of the Delaunay triangle, and so on.

If a point x ∈ R3 is allowed to move in the direction of the gradient
of hP, it traces a path in R3, and eventually ends at a critical point,
say c. All such points which end at c this way, forms the set which
is defined as the stable manifold of c. The computation of the stable
manifolds of the critical points is described in the next Section as

this is the main ingredient for curation and segmentation. Without
going into generalization, we state another fact,

Fact 2 Let c1 and c2 be two maxima whose stable manifolds share
a common boundary made by the stable manifold of an index-2 sad-
dle s, then min{hP(c1),hP(c2)} ≥ hP(s).

3 Curation and Segmentation

After the image processing operations on the raw imaging data are
performed, an initial geometric model is extracted. There are pri-
marily two ways to extract one such model. Either one can perform
isocontouring (e.g. Marching Cubes [Lorensen and Cline 1987] or
Dual Contouring [Ju et al. 2002]), or one can treat the centers of
the boundary voxels of a region resulting from image segmentation
as scattered points, and perform a point-cloud based reconstruction
[Dey and Goswami 2003; Dey and Goswami 2004]. In this paper,
the results that we show start with the geometry extracted via con-
touring using Marching Cubes method. In any case, for the abstrac-
tion of the curation problem, we assume that we have a triangulated
surface model Σ and a set of points P sampling Σ. Visualization of
one such geometric model can be seen in Figure 3(a).

This model is not suitable for many reasons. First of all, it is not
often a closed surface, especially when the chosen isovalue is such
that the contour crosses the bounding box of the imaging data (Fig-
ure 3(c)). Secondly, as Figure 3(b) shows, it has many spurious
components, like thin blood vessels, surrounding bones etc. which
are not only excess for the modeling of patient heart, but negatively
impact further processing and simulations as the model gets unnec-
essarily large and detailed. Finally, the left and right sub-parts of
the inner walls of the human heart should be ideally separated from
each other as there is a muscle wall between them. But in the ini-
tial model they are often connected by thin bridges (Figure 3 (d)).
Therefore, we need a user-guided geometry clean-up of the initial
model. However the initial geometry is so complex that any com-
putational tool that aides the user-intervention in a meaningful way
is indispensable. We use the critical points of the distance function
hP induced by P to build such a computational tool.

Our algorithm computes the stable manifolds of the maxima of hP
following the algorithm given in [Dey et al. 2003]. We briefly men-
tion this algorithm just for the completeness of this paper.

Stable Manifold Computation: The stable manifolds of the
critical points of hP can be computed from the Voronoi and Delau-
nay diagram of P. Giesen and John first described the computation
of stable manifold of the critical points of hP in [Giesen and John
2003]. However since stable manifolds may not be sub-complex of
DelP, approximating them with Delaunay simplices was necessary
and was done in [Dey et al. 2003].

Let two Delaunay tetrahedra be σ and σ ′ which share a common
triangle t. We say σ < σ ′, if the circumcenter of σ lies in the
half-space defined by t that does not contain the fourth vertex of
σ . Note, by the property of Delaunay triangulation, the relation
< is asymmetric, i.e.σ < σ ′ ⇒ σ ′ ≮ σ . In R3, however σ ′ is not
always unique for σ . Still, this can be shown that, σ can have
at most two neighbors σ1 and σ2, for which σ < σ1 and σ < σ2.
Also, it is to be noted, that the Delaunay tetrahedron σmax whose
dual Voronoi vertex is a maximum, has none of its neighbors σ ′ for
which σmax < σ ′. The maxima are first sorted in descending order
according to hP. Then the algorithm proceeds with each tetrahedron
containing a maximum and collects all the tetrahedra following the
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Figure 3: (a) An initial model of patient heart extracted from the
imaging data using Marching Cubes. (b) The model has more than
one component. The component containing heart is shown in white
while the rest of them are colored. (c) The initial model is not a
closed surface. The edges surrounding the cracks are drawn in
blue. Note the blood vessels and some of the bones and tissues are
connected with the heart. (d) Close-up of the connecting thin bridge
between the left and right sub-parts marked by red circle.

relation <. This forms a partition of all the tetrahedra into the stable
manifolds of the maxima of hP.

3.1 Curation

We pose the problem of curation as follows: Given a triangulated
input surface Σ, possibly with more than one connected component,
how can one identify the noisy and irrelevant features and remove
them?

Clearly, it is subjective as to what one calls spurious or noisy fea-
tures and moreover it heavily depends on the application. For our
purpose, we notice that in the initial model, the patient heart is the
most voluminous part and either that is disjoint from the surround-
ing tissues and bones, or the connection between the heart and the
surrounding components are very thin. To further quantify this ob-
servation, we recourse to the stable manifolds of the maxima of hP.
Before we proceed to the curation algorithm, we want to mention
an important prior step, that is marking every maximum as in or
out.

In-Out Marking of Maxima: Since Σ may not be closed (Figure
3(c)), it is not possible to unambiguously tag any point in R3 \Σ

as in or out w.r.t. Σ. However, based on the imaging data, one
can orient the normal vector at any point on the isocontour so that it
points outward. Now, even if Σ is not closed, it still locally carries
the notion of in and out which is all we need to tag a maximum
as in or out.

A maximum is a Voronoi vertex c which lies inside its dual Delau-
nay tetrahedron σ = convex hull(v1,v2,v3,v4). For each vi, let the
outward normal be −→ni . For every maximum, we compute the angle
θi = ∠−→ni ,

−→cvi. If cos(θi)≥ 0 for all i = 1 . . .4 and we tag c as in,
otherwise we mark it out.

Clearly, the density of P with respect to Σ plays an important role
for this test to succeed. However we note that, by the result of
[Chazal and Lieutier 2006; Dey et al. 2005], the critical points of
hP for a well sampled Σ are either near Σ or near the medial axis
of Σ. With this test, we are at least able to mark the maxima which
lie near the medial axis of Σ and therefore have higher distance
function values.

Algorithm: The stable manifold of each maximum is a volumet-
ric subset of R3 and is approximated by a collection of Delaunay
tetrahedra. The stable manifold of the maximum inherits the same
in/out marking as that of the maximum itself.

(a) (b)

(c) (d)

Figure 4: Results of two-step curation: (a) The resulting clean
model of the patient heart (green) along with the extraneous com-
ponents (red) which are discarded. Note, the left and right sub-
parts are still connected. (b) A stricter merge parameter (ρ = 5,
described in the text) separates the two subparts as desired. (c,d)
The left and right parts are shown separately for visual clarity.

For curation, we choose only the inner maxima and compute
their stable manifolds. The neighboring stable manifolds are then
merged carefully. We observe that, when the stable manifolds of
two maxima c1 and c2 have non-empty intersection and an index-2
saddle s lies at the common intersection, then without loss of gen-
erality,



1. if c1 comes from subvolume which is substantially thinner
than the subvolume that c2 belongs to, then following Fact 2,

hP(c2)� hP(c1)≥ hP(s)

, and

2. if both c1 and c2 belong to subvolumes which are comparably
“fat”, but are connected via a thin channel, then following Fact
2,

min{hP(c1),hP(c2)}� hP(s)

.

Following the above two relations, we introduce a parameter ρ ≥ 1
and merge two adjacent stable manifolds, if

min{hP(c2)
hP(s)

,
hP(c1)
hP(s)

} ≥ ρ

Parameter ρ affects how restrictively we merge the subvolumes to
form bigger clusters. Bigger the value of ρ , less restrictive it is
and therefore it allows the coalescence of stable manifolds with
more disparate maxima. We note that similar techniques were also
used earlier for free-form object segmentation [Dey et al. 2003] and
topological noise removal [Bajaj et al. 2007].

For our purpose, we initially select a high value of ρ , typically
around 20 and merge the adjacent stable manifolds to form large
clusters hoping that the patient heart will still survive while the thin
blood vessels and barely connected bones and tissues will get de-
tached from it. In fact, as is shown in Figure 4, that is indeed the
case. The thin vessels and the loosely connected bones and other
tissues are collected as union of tetrahedra which are simply re-
moved by changing their in-out tag from inside to outside.
As we further decrease the parameter ρ (around 5), we can separate
the left and right part of the patient heart. We must note that ide-
ally they should not have been connected in the first place, because
the inner wall of the left and right part are separated by a muscle
wall. However in the initial model, they are almost always con-
nected with each other by thin bridges which are merely due to the
anomalies present in the imaging data or are contouring artifacts
(Figure 3 (d)). The curation process cures such topological incon-
sistency and produces a clean model of the patient heart which is
then used for anatomy-guided annotation.

3.2 Geometry Segmentation

The result of the curation step is a pair of tetrahedral solids which
serves as a working geometric model of the patient heart. How-
ever, one such geometric model does not carry all the necessary
information, as we shall see in the next section. A further semantic
description following the true human anatomy is essential to per-
form the subsequent tasks. Again, one must translate the problem
into the geometric domain so that a computational solution can be
found. Luckily, the shape of the human heart is such that again the
information encoded in the distance function comes to rescue.

Our goal in this step is to decompose the whole patient heart into
six main compartments, namely left and right ventricle, left
and right atrium, aorta and pulmonary artery. We start
with two subvolumes, one for the left part and one for the right part
of the heart. Each of these sub-parts consists of a ventricle which
is roughly ellipsoidal and an atrium and a vessel are connected to it
through two relatively narrower disjoint openings. We have already
discussed in the last subsection, the pattern of hP that such geo-
metric model induces. Near the openings, there are index-2 saddles

whose stable manifolds form a natural layer and thereby separates
the maxima on each side. The stable manifolds of each sub-group
of the maxima then describes the ventricle, atrium and aorta or pul-
monary artery depending on the left or right side of the heart that
we look at.

The task is thus almost similar to the curation step. The user needs
to select a suitable value for ρ , which will prevent merging of
the stable manifolds of two maxima which are coming from two
anatomically different regions. Apparently straight forward, the
choosing ρ proves to be quite tricky and in our experience, it is
often almost impossible to come up with a single value for ρ that
automatically dissects the left or right portion into three desired
compartments.

(d) (e) (f)

(a) (b) (c)

Figure 5: The segmentation of the patient heart into (a) aorta,
(b) pulmonary artery, (c) left atrium, (d) right
atrium, (e) left ventricle, and (f) right ventricle

To tackle this problem, we add one important utility function
that aides in an iterative process by which the user can semi-
automatically perform the desired segmentation. Since every stable
manifold, and hence the union of two or more of them is essen-
tially a collection of Delaunay tetrahedra, one can easily subtract
a certain subset from all the interior Delaunay tetrahedra, and then
recursively apply the merging process with different ρ on the rest.
Thus the segmentation algorithm works as follows:

• Starting with a Delaunay tetrahedralized volume of either the
left or the right portion of the patient heart, we choose a suit-
able value of ρ which segments one of the desired compart-
ments from the rest. In our experience, typically a value of ρ

between 3 and 5 segments the aorta from the left side and the
pulmonary artery from the right side.

• Once the segmentation reaches the desired accuracy (mea-
sured visually) for one compartment, that component is sub-
tracted from the overall volume and the segmentation with a
different ρ is performed on the rest.

Figure 5 shows the performance of the segmentation process on the
curated model. The blue cloud around every segmented part shows
the whole point set from where the portions are segmented.



4 Construction of Muscle Wall

After the curation and segmentation of the inner wall, we obtain a
clean, annotated geometric model of the inner wall. But the mod-
eling process does not stop there as also need to model the muscle
wall of the patient heart with proper thickness so that it can support
further simulation-based diagnosis and treatment of the mechani-
cal and electrical behavior of the patient heart. This is a relatively
well-understood geometric problem. We approach this problem us-
ing the concept of variable offset surface where each compartment
of the inner wall may offer different thickness. This is more real-
istic because the thickness of the muscle wall is not uniform. For
example, left ventricle has to pump oxygenated blood to the whole
body through aortic branches and so the muscle thickness around
the left ventricle is larger than that around the right ventricle which
has to pump blood to the lungs. Moreover, If we consider the pos-
sible anomalies present in the patient heart, the problem becomes
more involved and asks for a more general solution.

Offset Surface: Modeling by offset surface is well-studied in
the area of geometric modeling and manufacturing. Given an ori-
entable surface Σ and one can modify the (unsigned) distance func-
tion hΣ to a signed distance function h±

Σ
by multiplying hΣ with +1

(or −1) if the point where the function is evaluated lies outside
(or inside). Now a uniform ε-offset surface, denoted as Σε , is
defined as

Σε = {x|h±
Σ
(x) = ε}

. Σε , thus defined, is a fixed distance ε away from Σ.

x

y

z

Figure 6: Left: The test dataset used to explain the generalized dis-
tance volume. Middle: Volume rendering of typical distance func-
tion using uniform weight on all three parts. Top subfigure shows
a single slice on X-Z plane. As the distance function increases,
the color changes from yellow to red. Right: Similar result when
weights are modified according to the description in the text. No-
tice, the function is no more continuous and as a result the offset
surfaces are not smooth.

There are numerous prior work that uses and analyzes the properties
of offset surface in the context of geometric modeling and manu-
facturing [Chen and Ravani 1987; Maekawa 1999; Pottmann 1995;
Pottmann 1997]. Unfortunately, most of these works consider uni-
form offsetting around a curve or a surface and therefore does not
offer any easy extension to build a muscle wall of variable thickness
around different components of the patient heart. Recently, a novel
approach to model multi-material volume using distance function
was reported in [Biswas et al. 2004]. In this paper, authors pre-
sented ways to blend multiple distance function induced by more

than one object so that the resulting function can model the den-
sity of different materials in the object. However in this way one
has to compute a separate distance function for every object which
is computationally expensive. Instead of modifying the range of
the multi-material distance function we modify the effect of each
of the materials in a way that automatically achieves the same ef-
fect. Also, we feel the approach presented in this section is more
intuitive and within a single object, it can assign different material
properties.

Computing Signed Distance Function: Before we proceed
further, we would also like to mention that although in Section 3
we have used hP (or unsigned distance function), we did not re-
ally have to compute the function explicitly on any arbitrary point.
We only used the connection between hP and Vor/Del diagram of P
and occasionally we have used the function values but only at the
critical points where again the circumradius of the dual Delaunay
simplex containing that point was the function value.

The extensive use of signed distance function (sdf) in computer
graphics, image processing and many other domains makes any
further description redundant. However, we want to devote a short
paragraph to describe a simple customized algorithm that we imple-
mented for our purpose. In this implementation we take advantage
of the fact that the surface Σ is already well-sampled and after the
curation and the segmentation steps, it is described as the boundary
of a subset of Delaunay tetrahedra from the whole Delaunay trian-
gulation of the points sampling the surface. This essentially means
the tetrahedra are marked either in or out. To determine the sign
of any point in R3, we therefore locate the point within the tetra-
hedralization and assign the positive or negative sign based on the
marking of the tetrahedron. Once the sign is determined, we com-
pute the magnitude of the distance value. Again, since the surface
is well-sampled, we first identify the closest vertex on the triangu-
lated boundary using kd-tree. Then we explicitly compute the dis-
tance value to every triangle forming the disk-neighborhood around
the nearest vertex to get the minimum distance. This substantially
improves the time complexity without losing precision much as we
see in the results that we present.
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Figure 7: Smoothing bands are drawn in purple and cyan. For
a point x which lies in the smoothing band (purple), the weight is
linearly interpolated from the two adjacent materials (with weights
w1 and w2). Right subfigure shows that the distance volume is con-
tinuous and any variable-offset surface is smooth.

Generalized Offset: The main purpose of building one such
generalized distance volume is so that we can select an appropriate
isovalue and the isosurface (offset surface) gives a realistic approxi-
mation of the muscle wall around the inner wall of the patient heart.
Following the segmentation, we assign a scalar weight on the wall
of every compartment. Before we talk about the choice of suitable
scalar wights, we analyze the effects of these scalar weights on a
test dataset.
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Figure 8: (a) Transparent muscle wall around the segmented inner
volume. (b) Cut-away of the muscle (yellow) between the inner
(green) and outer (red) wall of the left sub-part shows the variable
thickness around different components. Notice the thicker muscle
around the ventricular region.

We trisect a capped cylinder and assign three material properties
on each part, denoted by three different colors (see Figure 6(a),
red - material 1, yellow - material 2, green - material 3). Now
we assign equal scalar weights on each part w1 = w2 = w3 =
1. The resulting distance volume is just the normal signed dis-
tance volume (Figure 6 (middle)). Now we modify the weights
w1 = 0.5, w2 = 0.3, w3 = 0.5. The change in the distance
function can now be seen in the right subfigure of Figure 6. One
can clearly see the difference between the two distance volumes. In
particular we see that in the latter case, the distance volume bulges
around the yellow sub-part of the inducing object (cylinder in this
case). This is not surprising since due to the assignment of a rel-
atively smaller weight in the yellow portion, the distance function
grows slower around that region. This is the fundamental idea be-
hind the modeling of variable-thickness muscle wall around the an-
notated inner wall. But before that, we want to point out some of
the undesirable properties of the generalized distance volume and
any isosurface that results from that.

Smoothness of Generalized Offset Surface: If one looks at
the volume (and slice) rendering of the weighted distance volume,
one notices that at the cost of achieving the desired non-uniform
thickness, the resulting function is discontinuous and any isosur-
face (other than the zero-set) will be non-smooth. Not surprisingly,
the discontinuity occurs in places where two regions with different
weights interfere. So we must cure the problem by changing the
weight near the interface of two materials continuously.

To achieve smooth blending of the weights of two different materi-
als, we create a smoothing band around the interface in one material
and vary the weight of that material so that it matches the weight
of the neighboring material at the interface. This process is illus-
trated in Figure 7, where we have shown two smoothing bands -
purple strip within red and cyan strip within green sub-part. The
position of the smoothing band is not so important in our applica-
tion, however ideally one would like it to place it so that it covers
both the interfacing regions. We then define an interpolation (lin-
ear in Figure 7) and blends the weights within the smoothing band.
For any p ∈ R3, if the nearest point to the surface (x in Figure 7)
falls within any of these bands, we compute the geodesic distance
of x from the two interface boundaries on the surface and depending

on the interpolation technique used, we assign a new weight at x,
say wx, which we then use to scale the Euclidean distance ‖p− x‖
and generate the generalized signed distance function value at p.
Note, instead of blending the function values in the whole resulting
volume which may be quite large and dense, this approach offers
additional efficiency as compared to [Biswas et al. 2004].

Variable Thickness of Muscle Wall: Now we are in a position
to build a geometric model of the muscle wall that faithfully de-
scribe the anatomy. Following the annotation obtained via the seg-
mentation process, we first assign different weights on the surfaces
of the aorta, left ventricle and so on. As mentioned earlier, the
muscle thickness around left and right ventricle are more than any
other part, and so we assign the smallest weight to left ventricle
and the second smallest weight to the right ventricle. We then com-
pute the generalized distance volume as described and select a suit-
able isovalue to output the geometric model of the muscle wall of
the whole heart. Figure 8 shows the muscle wall around the seg-
mented inner volume. We have implemented the algorithm of [La-
belle and Shewchuk 2007] to produce the tetrahedral mesh of the
muscle wall. The variation of thickness around different sub-parts
is clearly seen.

5 Implementation and Results

5.1 Implementation

All three steps discussed in this paper heavily rely on a robust im-
plementation of Voronoi/Delaunay diagram of a set of point in three
dimension. We have used CGAL to construct these two datastruc-
tures as it offers numerical robustness and handles nearly degener-
ate cases gracefully [CGAL Consortium 2007]. However CGAL
only provides the base classes for these structures which we have
inherited and enhanced according to our own needs. Other than
construction of the Voronoi/Delaunay datastructure, we have also
used the point location algorithm in CGAL to assign the sign of the
signed distance function value.

For volume rendering of the distance volume and the input imag-
ing data, we have used the open source volume visualization soft-
ware VolRover [CVC, UT Austin 2005] and for the rendering of
the geometric models we have used geomview [Geometry Center,
University of Minnesota 1996].

5.2 Timing

In this paper we have described three key steps of the geometry pro-
cessing sub-unit of our IMAGING-MODELING framework. In this
subsection, we briefly mention the complexity of each step and the
time it took in each step to build the final model. All the compu-
tations were done on a machine with quad 2.4 GHz AMD Opteron
processors and 8GB RAM. The codes were compiled using g++
(version 4.1.1) with optimization flag -O1.

The curation and segmentation steps both work on the Delaunay tri-
angulation of the point set sampling the surface at any stage. Com-
puting the triangulation of a point set of size 351K took 80 seconds.
Tagging the tetrahedra in and out and subsequently computing
the stable manifolds took only 15 seconds. The curation and seg-
mentation steps then require possibly repetitive merging of the sta-
ble manifolds with different merge parameters (ρ) and each such
merge takes only a few (less than 2) seconds.



The generalized offsetting step builds a distance volume and sam-
ples it on a three dimensional volume of resolution 257×257×257
grid. With the modified distance computation (described in Section
4), this step took only about 2 minutes. The last step is to compute
the tetrahedral mesh of the muscle wall which took about 1 minute.

5.3 Results

We tested our algorithm on a patient CT scan provided by Dr. Char-
lie Walvaert of Austin Heart Hospital, USA. The original CT image
is of dimension 512×512×368 and the spacing in x,y,z directions
are respectively 0.439 mm, 0.439 mm, 0.5 mm. Figure 9 shows
the performance of our algorithm on this sample dataset. We have
used the following parameters to construct the muscle wall shown
in Figure 9. The weights to construct generalized offset volume
are as follows - weights of Atria, Aorta and Pulmonary Artery are
unity; of right ventricle it is 0.75; of left ventricle it is 0.5. The
outer boundary of the muscle wall is then described as the isocon-
tour corresponding to isovalue 0.74 and the solid mesh is created
as an interval volume between two contours corresponding to 0 and
0.74 using the algorithm of [Labelle and Shewchuk 2007]. The
choice of the value is arbitrary and the modeling algorithm accom-
modates any scalar value. However this particular choice should
be guided by an expert. We are currently examining certain topo-
logical invariants that the muscle wall should possess which should
automatically guide the choice of the parameters to produce the in-
terval volume (and hence the solid muscle wall) that is anatomically
correct.

6 Conclusions

In this paper, we have described three main steps of a compre-
hensive framework to construct a suitably discretized, anatomically
correct, patient-specific geometric model of human heart from real
CT imaging data. We have explained the challenges that often arise
with such imaging data and have shown evidences how robustly and
effectively these algorithms perform. A suitable (generalized) dis-
tance function is the key ingredient of all three algorithms. We are
currently exploring ways to interactively manipulating the distance
volume to give real-time feedback to the user so that one can more
efficiently build a geometric model following the patient parame-
ters.
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