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Abstract

In this paper, we describe a new method to generate a smooth algebraic spline (AS) approximation

of the molecular surface (MS) based on an initial coarse triangulation derived from the atomic coordinate

information of the biomolecule, resident in the PDB (Protein data bank). Our method first constructs a

triangular prism scaffold covering the PDB structure, and then generates a piecewise polynomial F on the

Bernstein-Bezier (BB) basis within the scaffold. An ASMS model of the molecular surface is extracted

as the zero contours of F which is nearly C1 and has dual implicit and parametric representations.

The dual representations allow us easily do the point sampling on the ASMS model and apply it to

the accurate estimation of the integrals involved in the electrostatic solvation energy computations.

Meanwhile comparing with the trivial piecewise linear surface model, fewer number of sampling points

are needed for the ASMS, which effectively reduces the complexity of the energy estimation.

Index Terms

Polynomial splines, molecular surfaces, prismatic scaffolds, Bernstein-Bezier basis, solvation ener-

getics, error bounds, rate of convergence.

I. INTRODUCTION

The computation of electrostatic solvation energy (also known as polarization energy) for

biomolecules plays an important role in the molecular dynamics simulation [1], the analysis of

stability in protein structure prediction [2], and the protein-ligand binding energy calculation [3].

The explicit model of the solvent provides the most rigorous solvation energy calculation [4].

However, due to the large amount of solvent molecules, most of the computation time is spent on

the trajectories of the solvent molecules, which severely increases the computation cost of this

method [5]. An alternative method is to represent the solvent implicitly as a dielectric continuum

[6], then the electrostatic potential is known by solving the Poisson-Boltzmann (PB) equations

[7] [8]. A more efficient method is to approximate the PB electrostatic solvation energy by the

generalized Born (GB) model [9] [10] [11], which computes the electrostatic solvation energy

∆Gelec as

Gpol = −τ
2

∑
i,j

qiqj

[r2
ij +RiRj exp(− r2ij

FRiRj
)]

1
2

, (1)

where τ = 1
εp
− 1

εw
, εp is the solute (low) dielectric constant, εw is the solvent (high) dielectric

constant, qi is the atomic charge of atom i, rij is the distance between atom i and j, F is an
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empirical factor (could be 4 [9] or 8 [11]), and Ri is the effective Born radius of atom i. The

effective Born radius reflects how deep an atom is buried in the molecule and consequently

determines the importance to the polarization. The formulation of the effective Born radii is

derived in [12]:

R−1
i =

1

4π

∫
Γ

(r− xi) · n(r)

|r− xi|4
dr, (2)

where Γ is the molecular surface of the solute, xi is the center of atom i, and n(r) is the unit

normal of the surface at r. The details of the derivation of (2) and a fast evaluation algorithm

based on the fast Fourier transform (FFT) for (2) is discussed in [13]. Since the numerical

integrations are done on the molecular surface Γ, an accurate and analytic representation of Γ

is needed.

Fig. 1. Three molecular surfaces are shown for two atoms in two dimension. The boundary of the union of balls (dotted red

line) with the van der Waals radii is the VWS. The SAS (solid thin line in purple) is the union of augmented van der Waals

spheres with each radius enlarged by the radius of a solvent probe (light blue sphere). The SES (the solid thick line in blue) is

boundary of all possible solvent probes that do not intersect with the interior of the VWS.

Three well-known molecular surfaces are shown in Figure 1 in 2D. The van der Waals surface

(VWS) is the union of a set of spheres with atomic van der Waals radii. The solvent accessible

surface (SAS) is the union of augmented van der Waals spheres with each radius enlarged by

the solvent probe radius (normally taken as 1.4 Å) [14]. The solvent excluded surface (SES, also

called molecular surface or Connolly surface) is the boundary of the union of all possible solvent

probes that do not intersect with the interior of the VWS [15] [16]. As described in [15], the

SES consists of the convex spherical patches which are parts of the VWS as well, the toroidal

patches and the concave spherical patches, which are generated by the probes rolling along

the intersections of neighboring atoms. The VWS causes an overestimation of the electrostatic
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solvation energy, while the SAS leads to an underestimation [11]. The SES is the most accurate

when it is applied in the energetic calculation and therefore it is most often used to model the

molecular surface. However the SES still has one significant drawback: it contains cusps when

the rolling probe self-intersects, which may cause singularity in the Born radii and the force

calculations.

In the energetic computation, knowing the patch complexes of the molecular surface is not

enough. For convenience, an analytical representation of the molecular surface is needed and the

singularity should also be avoided. One way to generate such a model is to define an analytical

volumetric density function, for example, the summation of Gaussian functions [17], Fermi-

Dirac switching function [18], or piecewise polynomials [11], and approximate the SES by

an iso-contour of the density function. Techniques of fast extracting an iso-contour of smooth

kernel functions are developed in [19] [20]. However the error of the generated isosurface could

be large and result in inaccurate energy computation. A NURBS representation for the SES

is presented in [21]. Although it provides a parametric approximation to the SES, it does not

solve the singularity problem. Edelsbrunner [22] defines another paradigm of a smooth surface

referred to as skin which is based on the Voronoi, Delaunay, and Alpha complexes of a finite set

of weighed points. The skin model has good geometric properties such as it is free of singularity

and it can be decomposed into a collection of quadratic patches. Triangulation schemes based on

the skin model are provided in [23] [24]. However when applied to the energetic computation,

the skin triangulation which in fact is a linear approximation to the SES has to be very dense

to gain accuracy, which causes oversampling on the surface and hence makes the computation

very slow. Therefore it still remains a challenge to generate a model for the molecular surface

which is accurate, smooth, and computable.

The main contribution of this paper is to provide a method to model the SES as piecewise

algebraic spline patches with certain continuity at the boundary of the patches. Each patch

has dual implicit and parametric representations. Hence high order implicit surfaces can be

parameterized onto a planer domain and therefore higher order quadrature rules of 2D such as

the Gaussian quadrature rules can be easily applied to the energetic computation. Moreover,

because higher order spline patches are used to approximate the SES, fewer number of triangles

are needed to obtain the same accuracy in the energetic computation as the linear model.

The algebraic spline patches are generated based on the prism scaffold built surrounding the
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original triangular mesh of the SES and are defined implicitly by simple BB spline functions.

Previous work on constructing piecewise spline patches within a simplical hull over a triangular

mesh includes generating quadric patches [25], cubic patches [26] [27], and nonsingular and

single sheeted cubic patches [28] in a tetrahedra scaffold. In this paper, we also show that the

so generated algebraic spline patches are error bounded and free of singularity under certain

conditions.

The paper is organized as follows: Section II describes the details of the algebraic spline

molecular surface (ASMS) generation; Section III discusses the error of ASMS and Section IV

discusses the application to the energetic computation and provides some examples.

II. ALGEBRAIC SPLINE MODEL

A. Algorithm Sketch

There are four main steps in our ASMS construction algorithm: (1) construct an initial

triangular mesh of the SES; (2) build a prism scaffold surrounding the triangulation; (3) define

a piecewise polynomial with certain continuity; (4) extract the 0-contour of the piecewise

polynomial. We are going the explain each step in detail in the following and discuss how

to make use the parametrization of the ASMS in the numerical integration.

B. Initial triangulation of the MS

So far a lot of work has been done on the triangulation of the SES or its approximation [24]

[29] [30] [31] [32]. The ASMS generation could be applied to any of these triangulations. In

our current research we use the triangulation generated by a program in the software TexMol

[32] [33] as the initial. In this program the SES is described as an iso-contour of a sign distance

function (SDF) with the isovalue equal to the radius of the water probe. The SDF measures the

distance of any point in R3 to the SAS where the sign indicates which side the point locates of

the SAS. Here we define the SDF to be positive if the point is inside the SAS and negative if it

is outside the SAS. A dual contour method is used to extract the iso-contour. The cusps created

by the self-intersecting patches are detected and removed. Features of the molecular surface are

well preserved in this triangulation. We then decimate the mesh by removing some of vertices

from the triangulation. These vertices have the smallest normal variation, so the detailed features

of the surface can still be captured after the vertices are removed [34].
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C. Implicit/parametric patches generation

Given the triangulation mesh T , let [vivjvk] be one of the triangles where vi, vj, vk are

the vertices of the triangle. Suppose the unit normals of the surface at the vertices are also

known, denoted as nl, (l = i, j, k). Let vl(λ) = vl + λnl. First we define a prism (Figure 2)

Dijk := {p : p = b1vi(λ) + b2vj(λ) + b3vk(λ), λ ∈ Iijk}, where (b1, b2, b3) are the barycentric

coordinates of points in [vivjvk], and Iijk is a maximal open interval containing 0 and for any

λ ∈ Iijk, vi(λ), vj(λ), vk(λ) are not collinear and ni, nj , nk point to the same side of the

plane Pijk(λ) := {p : p = b1vi(λ) + b2vj(λ) + b3vk(λ)}. Next we define a function in the

Fig. 2. A prism Dijk constructed based on the triangle [vivjvk].

Bernstein-Bezier (BB) basis over the prism Dijk:

F (b1, b2, b3, λ) =
∑

i+j+k=n

bijk(λ)Bn
ijk(b1, b2, b3), (3)

where Bn
ijk(b1, b2, b3) is the Bezier basis

Bn
ijk(b1, b2, b3) =

n!

i!j!k!
bi1b

j
2b
k
3.

We approximate the molecular surface by the zero contour of F , denoted as S. In order to

make S smooth, the degree of the Bezier basis n should be no less than 3. For simplicity, here

we consider the case of n = 3. The control coefficients bijk(λ) should be properly defined such

that S is continuous. In Figure 3 we show the relationship of the control coefficients and the

points of the triangle when n = 3. Next we are going to discuss these coefficients are defined.

Since S passes through the vertices vi, vj, vk, we define

b300 = b030 = b003 = λ. (4)
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Fig. 3. The control coefficients of the cubic Bezier basis of function F .

Next we are going to define the coefficients on the edges of the triangle in Figure 3. To obtain

C1 continuity at vi, we require that the directional derivatives of F at vi in the direction of b2

and b3 are equal to ∇F · (vj−vi) and ∇F · (vk−vi), respectively. Noticing that F has the form

of (3) and (b1, b2, b3) = (1, 0, 0) at vi, one can derive that b210−b300 = 1
3
∇F (vi)·(vj(λ)−vi(λ)),

where ∇F (vi) = ni. Therefore

b210 = λ+
1

3
ni · (vj(λ)− vi(λ)). (5)

b120, b201, b102, b021, b012 are defined similarly.

To obtain the C1 continuity at the midpoints of the edges of T , we define b111 by using the

side-vertex scheme [35]:

b111 = w1b
(1)
111 + w2b

(2)
111 + w3b

(3)
111, (6)

where

wi =
b2
jb

2
k

b2
2b

2
3 + b2

1b
2
3 + b2

1b
2
2

, i = 1, 2, 3, i 6= j 6= k.

Next we are going to define b(1)
111, b(2)

111 and b(3)
111. In Appendix V-A we prove that our scheme of

defining this three coefficients can guarantee the C1 continuity at the midpoints of the edges

vjvk, vivk and vivj . Consider the edge vivj . Recall that any point p = (x, y, z) in Dijk can be

represented by

(x, y, z)T = b1vi(λ) + b2vj(λ) + b3vk(λ). (7)
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Therefore differentiating both sides of (7) with respect to x, y and z, respectively, yields

I3 =


∂b1
∂x

∂b2
∂x

∂λ
∂x

∂b1
∂y

∂b2
∂y

∂λ
∂y

∂b1
∂z

∂b2
∂z

∂λ
∂z




(vi(λ)− vk(λ))T

(vj(λ)− vk(λ))T

(b1ni + b2nj + b3nk)
T

 , (8)

where I3 is a 3× 3 unit matrix. Denote

M :=


(vi(λ)− vk(λ))T

(vj(λ)− vk(λ))T

(b1ni + b2nj + b3nk)
T

 , (9)

and let A = vi(λ)−vk(λ), B = vj(λ)−vk(λ) and C = b1ni+b2nj+b3nk, then M = (A B C)T.

From (8) we have
∂b1
∂x

∂b2
∂x

∂λ
∂x

∂b1
∂y

∂b2
∂y

∂λ
∂y

∂b1
∂z

∂b2
∂z

∂λ
∂z

 = M−1 =
1

det(M)
(B × C, C × A, A×B) . (10)

According to (3), at the midpoint of vivj , (b1, b2, b3) = (1
2
, 1

2
, 0), we have

∂F
∂b1

∂F
∂b2

∂F
∂λ

 =


(vi(λ)− vk(λ))T

(vj(λ)− vk(λ))T

(ni + nj)
T/2


(

ni + nj
4

)
+


3
2
(b210 − b111)

3
2
(b120 − b111)

1
2

 .

By (6), at (b1, b2, b3) = (1
2
, 1

2
, 0) we have b111 = b

(3)
111. Therefore the gradient at (1

2
, 1

2
, 0) is

∇F = M−1(
∂F

∂b1

,
∂F

∂b2

,
∂F

∂λ
)T

=
ni + nj

4
+

1

2 det(M)
[3(b210 − b(3)

111)B × C + 3(b120 − b(3)
111)C × A+ A×B] (11)

Define vectors

d1(λ) = vj(λ)− vi(λ) = B − A,

d2(b1, b2, b3) = b1ni + b2nj + b3nk = C,

d3(b1, b2, b3, λ) = d1 × d2 = B × C + C × A. (12)

Let

c = C(
1

2
,
1

2
, 0), (13)

d3(λ) = d3(
1

2
,
1

2
, 0, λ) = B × c + c× A. (14)
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Let ∇F = ∇F (1
2
, 1

2
, 0). In order to have C1 continuity at (1

2
, 1

2
, 0), we should have ∇F ·d3(λ) =

0. Therefore, by (11) and (14), we have

b
(3)
111 =

d3(λ)T(3b210B × c + 3b120c× A+ A×B)

3‖d3(λ)‖2
. (15)

Similarly, we may define b(1)
111 and b(2)

111.

Now the function F (b1, b2, b3, λ) is well defined. The next step is to extract the zero level set

S. Given the barycentric coordinates (b1, b2, b3) of a point in the triangle [vivjvk], we find the

corresponding λ by solving the equation F (b1, b2, b3, λ) = 0 for λ and this could be done by the

Newton’s method. Then we may get the corresponding point on S as

(x, y, z)T = b1vi(λ) + b2vj(λ) + b3vk(λ). (16)

D. Smoothness

Theorem 2.1: The ASMS S is C1 at the vertices of T and the midpoints of the edges of T .

Theorem 2.2: S is C1 everywhere if every edge vivj of T satisfies

ni · (vi − vj) = nj · (vj − vi).

Theorem 2.3: S is C1 everywhere if the unit normals at the vertices of T are the same.

Proofs of the theorems are shown in the Appendix.

E. Parametrization and quadrature

In this section, we would like to show how the ASMS is applied to the computation of (2).

Since we use the ASMS to represent the molecular surface, now Γ = S. Let f = (r−xi)·n(r)
|r−xi|4 .

We decompose the entire surface S into patches {Sj} with Sj being the AMSM generated over

triangle j, then we have ∫
S

f(x) dS =
∑
j

∫
Sj

f(x) dS. (17)

For any point x = (x, y, z) on Sj , by the inverse map of (16), one can uniquely map x to a

point in triangle j and get its baricentric coordinates (b1, b2, b3) with b3 = 1− b1− b2. Therefore,

x, y, z can be represented in terms of (b1, b2):

x = x(b1, b2), y = y(b1, b2), z = z(b1, b2)
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Replacing (x, y, z) with (b1, b1, b3) in (17) and letting

g(b1, b2) = f(x(b1, b2), y(b1, b2), z(b1, b2)),

we get ∫
Sj

f(x) dS =

∫
σj

g(b1, b2)
√
EG− F 2 db1db2, (18)

where

E = (
∂x

∂b1

)2 + (
∂y

∂b1

)2 + (
∂z

∂b1

)2,

F =
∂x

∂b1

∂x

∂b2

+
∂y

∂b1

∂y

∂b2

+
∂z

∂b1

∂z

∂b2

,

G = (
∂x

∂b2

)2 + (
∂y

∂b2

)2 + (
∂z

∂b2

)2.

We then apply the Gaussian quadrature to (18):∫
σi

g(b1, b2)
√
EG− F 2 db1db2 ≈

n∑
k=1

Wkg(bk1, b
k
2)
√
EG− F 2|bk1 ,bk2 , (19)

where (bk1, b
k
2, b

k
3) and Wk are the Gaussian integration nodes and weights on the triangles.

III. ERROR OF THE ASMS MODEL

In order to show the error of S to the true surface S0, we do a test on some typical surfaces

(Table I) S0 := {(x, y, z) : z = f(x, y), (x, y) ∈ [0, 1]2} which are considered as the true

surfaces. We generate a triangulation mesh over the true surface with the maximum edge length

h being 0.1. Based on the mesh, we construct the ASMS model S. The error of S to S0 is

defined as max ‖p−q‖
‖q‖ , where p ∈ S, q ∈ S0, and p and q have the same (b1, b2, b3) coordinates

but different λ. We sample (p, q) on the surfaces and compute the maximum relative error. For

the point pair p(b1, b2, b3, λp) and q(b1, b2, b3, λq) defined above, we prove that their Euclidean

distance is bounded by the difference of their λ coordinates.

Lemma 3.1: The error of the approximation point p to the true point q is bounded by

|λp − λq|.
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TABLE I

RELATIVE ERROR AND CONVERGENCE

Function (x, y) ∈ [0, 1]2 max{ ‖p−q‖
‖q‖ } C

z = 0 0 0

z = x2 + y2 2.450030e-05 1.010636e-2

z = x3 + y3 1.063699e-04 2.610113e-2

z = e−
1
4 [(x−0.5)2+(y−0.5)2] 5.286856e-07 6.288604e-5

z = 1.25 + cos(5.4y)

6+6(3x−1)2
2.555683e-04 4.58608e-2

z = tanh(9y − 9x) 1.196519e-02 1.896754e-1

z =
p

1− x2 − y2 8.614969e-05 1.744051e-1 (h4)

z = [(2−
p

1− y2)2 − x2]1/2 1.418242e-05 1.748754e-02

Proof:

‖p− q‖ ≤ b1‖vi(λp)− vi(λq)‖+ b2‖vj(λp)− vj(λq)‖+ b3‖vk(λp)− vk(λq)‖

≤ |λp − λq|(b1‖ni‖+ b2‖nj‖+ b3‖nk‖)

= |λp − λq|

To study the rate of converges of S to S0, we gradually refine the initial mesh. Since the error

is bounded by |λp−λq|, we compute the ratio of the maximum difference of λp and λq to h, h2,

h3, and so forth. As h decreases, we check if the ratio converges or not, which allows us to know

the highest rate of convergence of S to S0. For most of the test functions in Table I, we observe

that S converges to S0 as fast as O(h3). We also observe that for the case z =
√

1− x2 − y2,

the rate of convergence reaches O(h4). We show the limit of the ratio |λ−λ′|
h3 as h ↓ 0, denoted

as C, in Table I. Hence we draw the following claim:

Claim: Let h be the maximum side length of triangulation mesh T , p be the point on the

ASMS, q be the corresponding point on the true surface, then p converges to q at the rate of

O(h3). i.e. There exists a constant C such that ‖p− q‖ ≤ Ch3.
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4600 Triangles 9216 Triangles 18434 Triangles

Fig. 4. The top row is the triangulation of the SES of protein 1ML0 with different number of triangles. The bottom row is

the ASMS generated from the above corresponding triangulation.

We generated the ASMS for the real proteins based on different size of meshes (Figure 4) and

show the error of the ASMS to the SES of three proteins: 1GCQ (843 atoms), 1ML0 (1051

atoms), and 1KKL (1276 atoms) in Table II. Here the SES is modeled as a level set of the

summation of fast decaying Gaussian functions. The ASMS is generated from the triangulation

of the SES at different resolution. The number of triangles of the initial meshes are listed in

Table II. The error εmax is defined as the one-way Hausdorff distance from the ASMS to the

SES: εmax = max
p∈ASMS

min
q∈SES

‖p − q‖. As we see in the table, the errors are small and decrease

rapidly as the initial triangulation becomes dense.

IV. APPLICATION TO THE BIOMOLECULAR ENERGETIC COMPUTATION

We apply the ASMS model to the GB electrostatic solvation energy computations of the

example proteins 1PPE (436 atoms), 1HIA (693 atoms), 1CGI (852 atoms), 7CEI (1912 atoms),

1F15 (7704 atoms), and 1KXP (11859 atoms). The ASMS models S for the proteins are generated
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TABLE II

ERROR OF ASMS TO THE SES

1GCQ 1ML0 1KKL

No. of ∆s εmax No. of ∆s εmax No. of ∆s εmax

16,312 0.266069 18,400 0.233949 19,968 0.260418

32,624 0.142149 36,864 0.142380 39,544 0.134689

65,456 0.082550 73,736 0.083895 79,096 0.085855

based on the initial mesh with different number of triangles (Table III). We show the ASMS of the

example molecules generated from the decimated triangulations in Figure 5 and Figure 6. As a

comparison, we compute the polarization energy Gpol for both the ASMS and the piecewise linear

(PL) surfaces and show the energy results and the timing in Table III. For all the computations,

a 4-point Gaussian quadrature rule over a triangle [36] is used for the numerical integration

in (19) when computing the Born radii. The running time contains the time cost of computing

the integration nodes over the surfaces, computing the Born radii, and evaluating Gpol. If we

consider the energy computed from the dense mesh as accurate, as we see from the table, the

Gpol computed from the coarse PL model has a large error, however for the coarse ASMS model,

it is very close to the dense mesh result but with less time. On the other hand, to get a energy

result of the same accuracy, fewer number of triangles are needed for the ASMS model than the

PL model. For example, for the protein 1CGI, the Gpol computed from the ASMS with 3674

triangles is -1394.227 kcal/mol. However to get a similar result, 8712 triangles are needed for

the piecewise linear model. Therefore the ASMS model is much more efficient in the energetic

computation than trivial piecewise linear models.

V. CONCLUSIONS

We have introduced a method to generate a model for the molecular surface. Like the other

molecular surface models, this ASMS model is smooth and close to the SES as long as the initial

triangulation is based on the SES. In addition, it has dual implicit and parametric representations.

The implicit representation enables us to flexibly vary the surface by selecting different level

sets, while the parametric representation allows us easily apply the ASMS to the numerical
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(a) (b) (c) (d)

Fig. 5. Molecular models of a protein(1HIA). (a) is The atomic model. (b) is the initial dense mesh of the SES (27480

triangles). (c) is the decimated mesh of the SES model (7770 triangles). (d) is the ASMS (7770 patches) generated from (c).

(a) (b) (c)

(d) (e) (f)

Fig. 6. The top row are the models of 1CGI and the bottom row are the models of 1PPE. (a) and (d) are the atomic structures of

the proteins. (b) and (e) are the decimated triangular meshes of the proteins with 8712 triangles and 6004 triangles, respectively.

(c) and (f) are the ASMS models generated from (b) and (e), respectively.
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TABLE III

ELECTROSTATIC SOLVATION ENERGY AND TIMING

Protein No. of Gpol (kcal/mol) Timing (s)

ID Triangles PL AS PL AS

24244 -835.5639 -825.3252 17.27 18.26

1PPE 6004 -852.7130 -828.2158 5.09 5.39

2748 -933.9562 -845.5085 2.74 3.27

27480 -1361.2266 -1340.6384 30.23 31.18

1HIA 7770 -1389.0175 -1347.8067 9.43 9.93

3510 -1571.8908 -1388.4665 5.21 5.21

29108 -1371.7419 -1343.1496 39.64 40.31

1CGI 8712 -1399.1948 -1346.2230 12.94 12.64

3674 -1678.4447 -1394.2270 7.40 6.11

54544 -3758.7928 -3711.3626 29.04 29.96

7CEI 17044 -3771.7803 -3753.3377 10.03 9.89

5324 -3876.7333 -3826.1959 4.11 4.08

87516 -11656.0327 -11411.9689 123.55 121.52

1F51 33660 -11691.4450 -11622.8886 51.95 52.56

8290 -12527.8362 -11721.4931 21.01 21.55

402812 -13258.0206 -13121.3053 975.08 977.96

1KXP 134272 -13325.0423 -13264.7272 340.16 346.31

94352 -14669.1209 -14071.9965 246.68 244.33

computations, such as the numerical integrations involved in the finite element method or the

boundary element method. Moreover, unlike the other piecewise linear models, the ASMS surface

is of higher degree, therefore, to get the same accuracy, fewer number of triangles (roughly one-

third of the PL model) are needed for the ASMS when it is applied to the numerical integrations.

For many large system problems, for example the atomistic molecular dynamics simulations,

efficient computation is the most concerning issue, hence he ASMS is very suitable to be used

in this kind of problems. We should mention that, while not detailed in this paper, the algorithm

of Section II-C can, by repeated evocation, yield a hierarchical multiresolution spline model of

the molecular surface. In the future research we could extend this algebraic patch model to the

electrostatic solvation forces calculation which is crucial in the molecular dynamics simulations.
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Fast and accurate numerical integration is also one of the main tasks of the force calculation

and is more challenging because the integration domain contains not only the surface but also

a skin layer over each atom.

APPENDIX

A. Proof of Theorem 2.1

Proof: It is obvious that S is C1 at the vertices. For the continuity at the midpoints of

edges, let us consider the edge vivj in triangle [vivjvk]. On the edge vivj , b3 = 0. So we may

let b2 = t and b1 = 1− t. Then matrix M can be written as

M(t) =


(vi(λ)− vk(λ))T

(vj(λ)− vk(λ))T

(ni + t(nj − ni))
T

 ,

and

M−1 =
1

det(M)
(B × C, C × A, A×B) ,

where A = vi(λ) − vk(λ), B = vj(λ) − vk(λ) and C(t) = ni + t(nj − ni). Therefore on the

edge vivj ,
∂F
∂b1

∂F
∂b2

∂F
∂λ

 =


AT

BT

CT

 (ni(1− t)2 + njt
2) +


3(b210 − b111)

3(b120 − b111)

1

 2t(1− t).

The gradient of F on the edge vivj can be written as

∇F =ni(1− t)2 + njt
2 +M−1


3(b210 − b111)

3(b120 − b111)

1

 2t(1− t)

=ni(1− t)2 + njt
2 +

2t(1− t)
det(M)(t)

[
3(B × C(t))(b210 − b111)

+3(C(t)× A)(b120 − b111) + A×B
]
. (20)

When t = 1
2
, C(1

2
) = c, therefore

B × C(t) + C(t)× A = d3(λ).
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Consider the function inside the square bracket of (20) and denote it as F1. Then

F1 =3(B × c)b210 + 3(c× A)(b120 + A×B − 3(B × c + c× A)b111. (21)

Since on the edge vivj , b111 = b
(3)
111, substituting (15) into (21), we get F1 is 0. Therefore, at the

midpoint

∇F = (ni + nj)/4. (22)

So S is C1 continuous at the midpoints of the edges.

B. Proof of Theorem 2.2

Proof: It is obvious that S is C1 within the triangles. By Theorem 2.1 we have already

known that S is C1 at the vertices and the midpoints of the edges. Here we only need to show

S is C1 at any points of the edges, let us consider the the edge vivj in the triangle [vivjvk].

Under the condition ni · (vi − vj) = nj · (vj − vi), we have b120 = b210, so (20) is written as

∇F = ni(1− t)2 + njt
2 +

2t(1− t)
det(M(t))

[3(b210 − b111)(B − A)× C + A×B]. (23)

Similar as (12), we define

d3(t, λ) = (B − A)× C(t). (24)

By (15) together with the facts that b120 = b210 and b111 = b
(3)
111 on edge vivj , we have

b210 − b111 = −dT
3(λ)(A×B)

3‖d3(λ)‖2
, (25)

where d3(λ) is defined in (14). Plug (24) and (25) in (23), we get

∇F = ni(1− t)2 + njt
2

+
2t(1− t)
‖d3(λ)‖2

[
‖d3(λ)‖2A×B − d3(t, λ)dT

3(λ)A×B
det(M(t))

]
. (26)

Consider the function inside the square bracket of (26) and denote it as F2. Our goal is to show

that F2 = 0. Since we have already known that when t = 1
2
, F2 = 0, this prompts us to compute

the derivative of F2 with respect to t and see if the derivative is 0. We observe that both the
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numerator of the denominator of F2 are linear in terms of t, so F2 is of the form at+b
ct+d

with

a = (nj − ni)× (B − A)dT
3(λ)A×B,

b = ‖d3(λ)‖2A×B + ni × (B − A)dT
3(λ)A×B,

c = (nj − ni)
T(A×B),

d = nT
i (A×B).

In order to show ∂F2

∂t
= 0, which is equivalent to show N := ad− bc = 0, we compute

N =[nj × (B − A)dT
3A×B]nT

i (A×B)

−(‖d3(λ)‖2A×B)(nj − ni)× (B − A)

−[ni × (B − A)dT
3A×B]nT

j (A×B). (27)

Under the condition ni · (vi−vj) = nj · (vj−vi), we have (B−A)Tc = (vj(λ)−vi(λ))Tc = 0,

where c = C(1
2
, 1

2
, 0). Therefore

‖d3(λ)‖2 = ((B − A)× c) · ((B − A)× c) = ‖vj(λ)− vi(λ)‖2‖c‖2, (28)

and

dT
3(λ)A×B = dT

3(λ)A× (B − A)

= ((B − A)× c) · (A× (B − A)) = −cTA‖vj(λ)− vi(λ)‖2. (29)

Plug (28) and (29) into (27) and divide both sides by ‖vj(λ)− vi(λ)‖2, we get

F3 :=
N

‖(vj − vi)(λ)‖2

=− nj × (B − A)cTAnT
i (A×B)− ‖c‖2A×B(nj − ni)

TA×B

+ (ni × (B − A)cTA)nT
j (A×B)

=[(cTAni − ‖c‖2A)× (B − A)]nT
j (A×B)

+ [(‖c‖2A− cTAnj)× (B − A)]nT
i (A×B). (30)

If ni = nj , (30) is 0. Now let us assume ni 6= nj . Recall that c = 1
2
(ni +nj). we define another

vector e = 1
2
(ni − nj) and let D = B − A. Then c is orthogonal to e and D:

cTe = 0, cTD = 0. (31)
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Furthermore

c× (D × e) = 0. (32)

By the definition of c and e,

ni = c + e, nj = c− e. (33)

Substitute (33) into (30) and replace A×B with A×D, we get

F3 =[cTA(c + e)− ‖c‖2A]×D(c− e)T(A×D)

+ [‖c‖2A− cTA(c− e)]×D(c + e)T(A×D)

=2cTA(e×D)cT(A×D)

− 2[cTAc− ‖c‖2A]×DeT(A×D). (34)

If e and D are linearly dependent, then e × D = 0, moreover e(A × D) = 0, which yields

F3 = 0. Otherwise, we introduce a new matrix

M =


DT

cT

eT

 .

Since c, e, and D are linearly independent, M is nonsingular. So F3 (a vector) is equal to

2M−1


DT

cT

eT

(cTA(e×D)cT(A×D)− [cTAc− ‖c‖2A]×DeT(A×D)
)

=− 2M−1


0

(−cTAcT(e×D)− ‖c‖2eT(A×D))cT(A×D)

(cTAeT(c×D)− ‖c‖2eT(A×D))eT(A×D)



=− 2M−1


0

(cTAcT(D × e)− ‖c‖2AT(D × e))cT(A×D)

(cTAcT(D × e)− ‖c‖2AT(D × e))eT(A×D)



=− 2[cTAcT(D × e)− ‖c‖2AT(D × e)]M−1


0

cT(A×D)

eT(A×D)

 .
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By the Lagrange’s formula:

cTAcT(D × e)− ‖c‖2AT(D × e) = (c× A) · (c× (D × e)), (35)

and (32), (35) is zero and thus F3 = 0. So far we have proved that F2 is independent of t.

Meanwhile in the proof of Theorem 2.1, we know that F2 = 0 at t = 1
2
. Hence F2 = 0 for all t

and therefore on the edge vivj , ∇F is

∇F = ni(1− t)2 + njt
2.

So S is C1 on the edges.

C. Proof of Theorem 2.3

Proof: As same as the proof of Theorem 2.2, we only need to show that S is C1 on the

edge vivj . In the proof of Theorem 2.1, we have already derived the gradient function on the

edge vivj (20):

∇F =ni(1− t)2 + njt
2 +

2t(1− t)
det(M)(t)

[3(B × C(t))(b210 − b111)

+ 3(C(t)× A)(b120 − b111) + A×B].

Let

F4 =
1

det(M)(t)
[3(B × C(t))(b210 − b111) + 3(C(t)× A)(b120 − b111) + A×B]. (36)

Following the same idea of the proof the Theorem 2.2, we compute ∂F4

∂t
. The numerator of ∂F4

∂t

is

[3(B × C ′(t))(b210 − b111) + 3(C ′(t)× A)(b120 − b111)

+ A×B] det(M)− det(M)′(t)[3(B × C(t))(b210 − b111)

+ 3(C(t)× A)(b120 − b111) + A×B]. (37)

Since

C ′(t) = nj − ni, and

det(M)′(t) = (nj − ni)
T(A×B),

(37) is 0 when ni = nj . So F4 is independent of t. By the proof of Theorem 2.1, F4 = 0 at

t = 1
2
. So F4 = 0 for all t. So S is C1 continuous.
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