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Abstract—Approximate computing is the idea that systems
can gain performance and energy efficiency if they expend less
effort on producing a “perfect” answer. Approximate computing
techniques propose various ways of exposing and exploiting
accuracy—efficiency trade-offs. We present a taxonomy that
classifies approximate computing techniques according to salient
features: visibility, determinism, and coarseness. These axes allow
us to address questions about the correctability, reproducibility,
and control over accuracy—efficiency tradeoffs of different tech-
niques. We use this taxonomy to inform research challenges in
approximate architectures, compilers, and applications.

I. INTRODUCTION

Approximate computing encompasses a broad spectrum of
techniques that relax accuracy to improve efficiency. Although
the term is new, the principle is not: floating-point numbers,
for example, efficiently but approximately represent the real
numbers in the digital domain. Efficiency—accuracy trade-offs
are also commonplace in digital signal processing, where
techniques such as quantization and decimation are crucial for
tractable designs.

Opportunities abound for exploiting efficiency—accuracy
trade-offs at every layer of the system stack, from compilers to
circuit design. Cross-cutting concerns about energy efficiency
and the future of CMOS scaling have created a boom in
approximate computing research. While exciting, the multitude
of approaches complicates discussions and obscures common
patterns. A single monolithic “approximate computing” label,
spanning ideas as disparate as voltage over-scaling [9], tweak-
ing floating-point precision [24], and code perforation [33], is
too broad to identify the foundations of the field.

This paper presents a taxonomy of general-purpose ap-
proximate computing techniques. An approximate computing
technique is deemed general if it is not specific to a given
algorithm or application domain. We classify techniques along
three axes: correctability of the approximation effects, repro-
ducibility of the approximate results, and control over the
efficiency—accuracy trade-offs.

II. MOTIVATION

Our taxonomy characterizes approximation techniques
around three practical concerns:

1) Correctability: How can the effects of an approximation
technique be detected and corrected?

2) Reproducibility: How easily can the results of an ap-
proximation technique be reproduced for testing?

3) Control: How much confidence over the error magnitude
does an approximation technique provide?

In this section, we present examples to highlight the impor-
tance of these questions and demonstrate how they distinguish
techniques that may seem similar at first glance.

A. Correctability of the Approximation Effects

Correctability reflects the cost and complexity of detecting
and compensating for approximation errors. The degree of
correctability varies widely between techniques. For example,
consider two seemingly similar techniques: (1) low supply
voltage SRAM [9], which allows for soft errors when access-
ing data in SRAM; and (2) low refresh DRAM [18], which
allows for soft errors in DRAM data cells. For low supply
voltage SRAM, errors are introduced when an instruction
reads or writes the data. A precise check can thus be invoked
on each approximate load and store instruction in order to
recover from a faulty operation. On the other hand, for low
refresh DRAM, the error can be introduced at any point in the
lifetime of the data independent of any instruction’s execution.
This uncertainty makes error management more costly and
less prompt. Our taxonomy distinguishes these two approaches
(Section III-A) in terms of their architectural visibility.

B. Reproducibility of the Approximate Results

Reproducibility is the degree to which error can be mea-
sured during development and generalized to production. It
can be difficult to reason about the error introduced by an
approximation technique. We often rely on measurements from
test systems to decide whether or not the error is within
an acceptable range. For example, code perforation [33] is
an approximation technique that omits instructions during
execution. In general, its impact on error is the same regardless
of the underlying system on which it is executed, so its repro-
ducibility is straightforward. On the other hand, synchroniza-
tion elision [7] omits calls to synchronization primitives like
locks. We can measure the error of synchronization elision on a
test system and deem it satisfactory, but we may find that error
increases on a different production system. Our taxonomy
distinguishes reproducibility between deterministic techniques
like code perforation and nondeterministic techniques like
synchronization elision (Section III-B).



Software Technique Visible Deterministic Coarse

Approximate GPU Kernels [17], [26]
Approximate Synthesis [6], [20]
Algorithm Selection [4], [5]

Code Perforation [33]

Lossy Compression / Packing [26]
Parallel Pattern Replacement [25]
Bit-Width Reduction [24]
Float-to-Fixed Conversion [1]
Approximate Parallelization [7]
Statistical Query [2]
Synchronization Elision [7]
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Hardware Technique Deterministic Coarse

Digital Neural Acceleration [10]
Interpolated Memoization [21]
Approximate Warp Deduplication [39]
Bit-Width Reduction [15]

Clock Overgating [14]

Load Value Approximation [32]
Approximate Cache Coherence [22]
Instruction Memoization [3]
Precision Scaling [12], [13], [37]
Logical Simplifications [38]
Reduced-Precision FPU [36]
Analog Neural Acceleration [35]
Approx. Processors [16], [40]
Voltage Overscaling [9], [15]
Stochastic Logic [11]

Approx. PCM Multi-Level Cells [28]
SRAM Soft Error Exposure [9]
Approximate Value Dedup. [30], [31]
Approx. PCM Failed Cells [28]
Low-Refresh DRAM [18]
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TABLE I: Taxonomy of approximate computing techniques.

C. Control over the Accuracy-Efficiency Tradeoffs

Control reflects how easily a technique can trade accu-
racy for efficiency gains. All approximate computing tech-
niques enable such a trade-off. However, they fall all along
the accuracy—efficiency curve; some favor efficiency while
others favor accuracy. Consider a program that performs
many floating-point computations. We can approximate this
program either via fuzzy function memoization [21] or via
fuzzy floating-point instructions [3]. Both techniques seem
similar, yet they offer very different error—efficiency trade-
offs. Function memoization can elide code regions that are as
small as one or two instructions or as large as entire functions,
which can lead to arbitrary errors if not tested exhaustively.
Fuzzy floating-point instructions, on the other hand, limit
efficiency gains due to control overheads but also confine
errors to the execution of individual instructions, meaning that
traditional techniques such as interval analysis can be used to
guarantee control over the error introduced by the technique.
To characterize control over errors, our taxonomy distinguishes
between techniques based on their granularity (Section III-C).

III. TAXONOMY

We guide our taxonomy with the motivation questions
detailed in Section II—(1) correctability, (2) reproducibility,
(3) control—and list three orthogonal taxonomy axes that
address them: (1) architectural visibility vs. invisibility, (2) de-
terministic vs. nondeterministic, (3) coarse-grained vs. fine-
grained. For each taxonomy dimension, we provide a formal
definition, examples and discuss practical implications. Table I
lists a set of recent approximation techniques we surveyed and
classified along these three dimensions. In this table, note that

we classify techniques as software or hardware; we do not
elaborate on this as a taxonomy axis since it does not inform
any interesting new insights or properties.

A. Correctability: Architecturally Visible vs. Invisible

Definition 1. Consider a program as a sequence of in-
structions that operate on data. An approximation technique
is architecturally invisible if it can introduce error even
when the sequence of instructions is null. Otherwise it is an
architecturally visible technique.

Architecturally visible techniques introduce errors during
the execution of a specific instruction, and architecturally
invisible techniques introduce errors silently. Naturally, visible
errors are simple to detect: they can be traced to a specific
moment in time. On the other hand, invisible errors are
attributed to a phenomenon that occurs below the architectural
stack, e.g., a micro-architectural event, or a physical event
occurring at the circuit level. Consequently, architecturally
invisible techniques can require expensive error detection and
correction mechanisms and are harder to monitor dynamically.

Revisiting the examples in Section II-A, low supply voltage
SRAM [9] is architecturally visible. It approximates (via
bit upsets) only upon memory operations; thus, detecting
and managing error is straightforward. For write upsets, for
example, adding a precise check after a write operation can im-
mediately catch (and roll back) any erroneous approximations.
On the other hand, low refresh DRAM [18] is architecturally
invisible: since it yields bit flips at arbitrary times, a precise
check after a write operation cannot draw any conclusions
about error. Even if the precise check passes, an erroneous
bit-flip can still occur some time later.

Though errors are invisible, an advantage of architecturally
invisible techniques is that they are not on the critical path;
thus their latency costs can be made invisible as well. Archi-
tecturally visible techniques can introduce run time overheads,
whereas invisible approximations can be performed in the
background. For example, the Doppelgidnger cache [31] is an
architecturally invisible technique; it generates approximate
values silently upon a microarchitectural event without stalling
memory requests.

This taxonomy axis informs trade-offs in error correctabil-
ity. Architecturally visible techniques benefit from errors
which are easier to detect and correct. On the other hand,
architecturally invisible techniques benefit from generating
approximations off the critical path of program execution.

B. Reproducibility: Deterministic vs. Nondeterministic

Definition 2. An approximation technique is deterministic
if, given the same initial state, for every input I;, it yields
constant error E;. An approximation technique is nondeter-
ministic if, given the same initial state, there exists some input
1; for which it yields more than one error value Fjq, ..., Ejy,.

Nondeterministic techniques can pose a challenge for testing
and debugging. When developing techniques, the conventional
approach is to evaluate error and efficiency on a test system
and extrapolate to production systems. This is effective for



deterministic techniques since they produce the same ap-
proximations regardless of the underlying system; errors are
reproducible. Tt is possible for a user to declare any error
threshold e and concretely evaluate whether or not it is always
satisfied for a given input. However, this is not true for
nondeterministic techniques. For a given input, error can only
be probabilistically evaluated; ¢ must be accompanied by some
probability and confidence.

Nondeterministic techniques have limited reproducibility.
Such approximations are possible via exposing analog noise,
asynchrony and race conditions to the program. Revisiting
the examples in Section II-B, synchronization elision [7] is
a nondeterministic technique while code perforation [33] is
deterministic. Whereas perforating computations yields the
same output on any system, eliding synchronization primitives
exposes race conditions. This increases the number of possible
outputs and limits reproducibility. The amount of error via syn-
chronization elision can vary greatly across systems depending
on the amount of thread-level parallelism. Nondeterministic
techniques can also expose analog noise. For example, voltage-
overscaled ALUs [9] generate approximations by risking ex-
posure to the analog domain. This has low reproducibility;
error cannot be concretely evaluated and must be empirically
measured. In comparison, precision-scaled ALUs [37] are
deterministic. Scaling precision in the digital representation
of data yields the same output on any system.

As a trade-off, nondeterministic techniques can generally
offer more opportunity for efficiency gains. By exposing the
stochastic nature of the physical world, they avoid the expen-
sive digital abstraction tax. For example, voltage-overscaled
ALUs significantly improve efficiency by relaxing the safety
margins enforced by digital circuitry.

This taxonomy axis informs trade-offs in reproducibility.
Deterministic techniques benefit from high reproducibility,
simplifying testing and debugging. On the other hand, non-
deterministic techniques benefit from more opportunities for
approximation that only exist outside the digital domain.

C. Error Control: Coarse-Grained vs. Fine-Grained

Definition 3. An approximation technique is coarse-grained
if it reduces the data footprint or the number of dynamic
instructions in a program. Otherwise, it is fine-grained.

Control over the error introduced by a technique depends
on the granularity at which an approximation technique is
employed. Fine-grained techniques lower the cost of executing
an instruction or storing a word of data. Coarse-grained
techniques replace a set of instructions or a block of data with
a more efficient or compact representation.

Coarse-grained techniques offer more opportunity for error—
efficiency trade-offs. Revisiting the examples in Section II-C,
fuzzy floating-point instructions [36] are fine-grained while
fuzzy function memoization [21] is coarse-grained. Whereas
the former improves the efficiency of individual instructions,
the latter can improve the efficiency of an entire block or
function. The latter, in the most extreme case, can memoize the
entire program for the highest efficiency. In terms of storage,
fine-grained techniques, such as low refresh DRAM [18],

generate approximations in individual bits. Coarse-grained
techniques, such as approximate deduplication [31], reduce
data footprint. The latter can be more aggressively tuned for
efficiency gains, to the point where the entire data footprint is
deduplicated into a single data block.

Naturally, the coarser the granularity of a technique, the
higher the risk of error. Fine-grained techniques do not re-
move any data nor instructions. Conversely, coarse-grained
techniques risk information loss as more data and more
instructions are omitted. In the previous examples, though
memoizing an entire program yields highest efficiency, it
also yields highest error. Holistically approximating regions
of code can disregard rarely-used control-flow paths when
not exercised. Neural approximation [10] is an example of
a coarse-grained technique that can subsume entire functions,
including potentially complex control flow. This coarseness
makes testing and analysis challenging.

This taxonomy axis informs trade-offs in error control.
Coarse-grained techniques benefit from greater opportunities
for aggressive efficiency gains. On the other hand, fine-grained
techniques can limit error and are generally better suited for
programs where quality constraints are conservative.

IV. DiScuUSSION

We highlight the applicability of our proposed taxonomy by
suggesting how it can inform future research in approximate
computing. We formulate a three-pronged answer that address
the questions across layers of the compute stack: (1) architec-
ture, (2) compilers and runtimes and (3) applications.

A. How Can It Inform Architecture Research?

Research on new approximation techniques motivates the
need for approximation-aware ISAs (A-ISA). Since the days
of the IBM System/360, architects have distinguished between
architecture and implementation to guarantee the forward-
compatibility of their hardware. An A-ISA can express
instruction-level error bounds that need to be respected when
deployed on current or future hardware. Such an abstrac-
tion layer would allow hardware designers to modify the
implementation of approximations down the road in a way
that remains invisible to the software. We make a distinction
between two types of A-ISAs: strict A-ISAs and statistical
A-ISAs. Strict A-ISAs are applicable to deterministic fine-
grained techniques and provide strict error bounds on the
execution of an instruction. Examples of A-ISAs include
the Quality-Programmable ISA [37], which provides strict
error bounds relative to the maximum output value of the
instruction. Statistical A-ISAs, on the other hand, are applica-
ble to nondeterministic fine-grained techniques and provide
statistical failure guarantees. Such an ISA would have to
include probability bounds as well as confidence bounds.

B. How Can It Inform Compilers/Runtimes Research?

Research on approximation techniques motivates the de-
velopment of frameworks to make approximations safe to
use. Such frameworks include new languages, compilers and
runtimes. We discuss how each taxonomy can inform the
applicability of framework proposals.



Architectural visibility is relevant to frameworks that focus
on detecting and recovering from hardware faults. Relax [8],
for instance, can only work on top of architecturally visible
techniques because errors must be locally correctable [34].
Online monitoring proposals [23] that rely on precise replay
are also only applicable to architecturally visible techniques.

Determinism and coarseness are relevant to formulating
statically-derived or empirically-observed application-level er-
ror bounds. Nondeterministic techniques require statistical
methods like probabilistic assertions [29], while deterministic
techniques can rely on hard assertions. Fine-grained techniques
can inherit from the wealth of tools developed in numerical
analysis research [24]. More specifically, deterministic fine-
grained techniques have the advantage of providing strict error
bounds at an instruction granularity. Thus, they can provide
hard worst-case error bounds for many algorithmic patterns,
as opposed to empirically derived average-case error bounds.
Coarse-grained techniques have seen a wealth of frameworks
[4], [5], [19], [25], [27] that generally rely on empirical error
measurements to provide varying levels of error guarantees via
quality autotuning.

C. How Can It Inform Applications Research?

Research on new approximation techniques motivates better
understanding on the applicability of such techniques. Appli-
cation designers care about (1) whether a technique can be
applied to their algorithms, and (2) whether a technique can
meet the quality guarantees they wish to enforce.

Coarseness correlates to how general a technique is to
algorithmic patterns. Fine-grained techniques are broadly gen-
eralizable: any approximate floating-point algorithm can make
use of reduced-precision FPUs. Coarse-grained techniques, on
the other hand, have to adhere to specific code patterns: neural
acceleration only applies to precise-pure regions of code, while
loop-perforation applies to loops free of early exits [27].

Determinism and coarseness will both determine the error
behavior that the application will see. Nondeterministic tech-
niques generally yield large rarely-occurring errors while de-
terministic techniques yield small frequently-occurring errors.
Nondeterministic techniques would generally not be used in
mission-critical systems. The magnitude of an error is gener-
ally better controlled on deterministic fined-grained techniques
as opposed to deterministic coarse-grained techniques.

V. CONCLUSION

A wealth of approximate computing techniques has been
proposed in architecture, circuits, languages, and compilers
research. We present a taxonomy that categorizes approximate
computing techniques based their most salient properties:
visibility, determinism, and coarseness, to better inform cross-
stack research in architecture, tools, and applications.
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